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Introduction
DQM (Data Quality Management) refers to the processes, technologies, and

practices used to maintain high quality in data through its lifecycle. It encompasses
the acquisition, implementation, and control of data accuracy, completeness,
reliability, and relevance in enterprise systems. DQM ensures that data remains
accurate, consistent, and accessible across all platforms and applications within
an organization.

In the age of big data and advanced analytics, DQM is not just a luxury—it’s
an imperative. It is critical for modern enterprises for many reasons, including
the following:

• Informed Decision-Making
High-quality data is pivotal for accuracy in decision-making. Decisions based
on inaccurate or incomplete data can lead to significant financial losses and
strategic missteps.

• Regulatory Compliance
Many industries are subject to regulations that mandate the integrity and
confidentiality of data. For example, the GDPR in Europe and HIPAA in
the United States impose strict guidelines on data privacy and the quality of
information that is stored and processed. DQM helps organizations comply
with these regulations and avoid hefty penalties by ensuring data is managed
correctly throughout its lifecycle.

• Enhanced Customer Satisfaction
Data quality directly impacts customer experience. Accurate customer
data helps businesses better understand their clients and better tailor their
interactions, improving customer satisfaction and loyalty.

• Operational Efficiency
High-quality data reduces errors and the need for rework. For instance,
accurate inventory data helps manage stock levels efficiently, avoiding over-
stocking or stockouts. By automating data cleansing and enrichment, or-
ganizations can streamline workflows and allow employees to focus on
higher-value activities rather than correcting data errors.

• Risk Mitigation
Poor data quality is a significant risk — it can skew analysis, leading to mis-
guided strategies that may harm the business. DQM practices identify and
correct discrepancies in data before they propagate through the enterprise,
thereby mitigating risks associated with data handling and storage.

The need for programmatic access
In the context of DQM, most commonly, the center point of the focus is on

the persona of the so-called ’data steward.’ [1] This is because data stewards are

7



crucial for any data quality initiative. Data stewards must be involved in setting
up data quality processes to ensure success. This includes tasks such as defining
data quality rules, profiling, and addressing data quality issues.

In the world of DQM, there arises a need to consume data quality tools
programmatically. This is where the persona of a data engineer comes into play.
There are more reasons for this, in simple terms, the necessity is a corollary to
the need to integrate data quality tools into data pipelines, which is what data
engineers are responsible for.

It follows that any solution aimed at pipeline integration should be designed
to accommodate data engineers as they will be its users. In the following sections,
we will discuss the needs of data engineers in the context of DQM tools.

Data Quality Management Tools at Ataccama
Ataccama stands out in the field of DQM (Data Quality Management) due to

its comprehensive suite of tools designed to enhance data quality across multiple
dimensions. Ataccama ONE, the flagship product, is renowned for its robust data
profiling, quality rule enforcement, monitoring, and issue resolution capabilities.
This platform serves as a critical tool for enterprises looking to maintain high
standards of data integrity.

However, one of the primary limitations of Ataccama ONE is its primary
reliance on a web interface, which poses challenges for seamless integration into
automated data pipelines typically managed by data engineers. This limitation
highlights the need for programmatic access to its powerful DQM features to fully
leverage its capabilities in more dynamic, code-driven environments.

Data Quality Rules
Ataccama ONE’s capacity to define complex data quality rules using its

expression language is one of its most potent features. These expressions allow for
precise specifications of data quality requirements that can dynamically adapt to
varying data sets and conditions. This expression language supports an extensive
range of functions and operators, enabling detailed data validation and cleansing
processes that are crucial for reliable data analytics.

Integrating these expression-based rules into typical data engineering workflows
could significantly streamline processes involved in data validation and correction,
providing a more robust framework for ensuring data quality at scale. Enabling
programmatic access to these rules would allow data engineers to automate and
integrate data quality checks directly into data ingestion and processing pipelines,
thereby enhancing efficiency and reducing the likelihood of errors.

Personal Motivation and Practical Applications
The focus on Ataccama in this thesis is influenced by practical and personal

considerations. As a developer relations employee at Ataccama, I have unique
access to the platform and a vested interest in exploring its capabilities deeply.
This position provides a unique opportunity to bridge the gap between Ataccama’s
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current offerings and the needs of data engineers who require more flexibility and
programmatic control over their data quality tools.

By leveraging Ataccama’s existing robust framework and extending its accessi-
bility to data engineers through programmatic interfaces, this project aligns with
industry best practices while pushing the boundaries of traditional data quality
management. The goal is to transform Ataccama from a primarily UI-driven tool
into a versatile backend service that can power complex data pipelines, making it
an even more valuable asset in the data engineer’s toolkit.

Objective of the thesis
This thesis aims to significantly enhance the accessibility of Ataccama’s data

quality management tools for data engineers by developing a programmatic
interface that allows for direct execution and integration of Ataccama’s robust
expression language within automated data workflows. The expected outcome
is to provide data engineers with the tools they need to enforce data quality
seamlessly within their pipelines. By doing so, this work not only extends the
usability of Ataccama ONE within modern data-driven environments but also
contributes to the broader field of data quality management by bridging the gap
between advanced data quality rules and operational data engineering practices.
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1 Analysis
There are many benefits to having DQM (Data Quality Management) processes

in place. In fact, in today’s data-driven environments, the assurance of data quality
is not just a preference but a critical necessity. Organizations rely on accurate,
timely, and reliable data to make informed decisions, drive strategies, and optimize
operations. As such, the field of DQM has evolved to address these needs through
sophisticated tools and methodologies. However, the effective implementation of
these tools requires a deep understanding of both the tools themselves and the
roles of those who interact with them.

This chapter delves into the analysis of the current landscape of DQM, focusing
particularly on the need for programmatic access to these tools. This need stems
from the growing requirement to seamlessly integrate data quality solutions into
existing data pipelines, a task that typically falls within the purview of data
engineers. As we explore this topic, we will discuss the challenges faced by data
engineers.

1.1 Similar Solutions
This section compares Ataccama ONE to other DQM tools that are designed

for programmatic access, highlighting the relative strengths and limitations of
each solution in terms of features, technology stack, and integration capabilities.

1.1.1 Soda Core
Soda Core [2] is a robust open-source tool tailored to integrate data quality

checks directly into data pipelines. However, its feature set primarily focuses on:

• Data Monitoring and Alerting
Automatically detecting and alerting on anomalies in data as it flows through
pipelines.

• Customizable Quality Checks
While flexible, these are generally more basic compared to the depth provided
by comprehensive DQM platforms.

• Python Integration
Strong integration with Python-based data ecosystems, suitable for teams
relying heavily on Python for data processing.

1.1.2 Great Expectations
Great Expectations [3] offers a framework for setting up complex data validation

and documentation, which is crucial for maintaining high data quality standards.
Its key features include:
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• Validation Framework
Extensive support for defining expectations about data, which can be
automatically validated against data batches.

• Data Docs
Automatically generated documentation that helps keep teams aligned on
data quality standards.

• Integration
While it offers broad integration capabilities, it requires significant setup
and maintenance compared to more out-of-the-box solutions.

1.1.3 Comparison with Ataccama ONE
Ataccama ONE offers a more extensive suite of features than either Soda

Core or Great Expectations. This includes advanced functionalities like Master
Data Management, Data Cataloging, and enriched Metadata Management, which
are not typically found in the aforementioned open-source tools. However, also
the data quality features are more comprehensive, more advanced functions are
included out of the box, including but not limited to: reference data checks,
complex string manipulation, and set operations.

Despite its robust feature set, Ataccama’s main limitation lies in its less
flexible integration with Python-based data pipelines, which is where Soda Core
and Great Expectations excel due to their native Python support. This limitation
is a significant drawback for data engineers who rely heavily on Python for data
processing and pipeline orchestration and for this reason this thesis will focus on
enhancing Ataccama’s integration capabilities with Python-based data pipelines.

1.2 The persona of Data engineer and their needs
As previously noted, data engineers play a crucial role in integrating data

quality tools into data pipelines. It is essential to design applications that meet
the specific needs and requirements of its primary users. Therefore, any solution
intended for pipeline integration must be carefully tailored to accommodate the
unique needs of data engineers. This ensures that the tools not only fit seamlessly
into their workflows but also enhance their efficiency and effectiveness in managing
data quality across systems.

1.2.1 Used technologies
Data engineers, like any others, are working professionals. Many of them are

used to working with some particular tools and technologies. It is vital to take
into account the tools and technologies that data engineers are familiar with when
designing a solution for them.

Although among the many data engineers, there are differences in the tools
and technologies they use, there are some common tools and technologies that are
used by the majority of them in today’s world. It is important to realize that we
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should not only consider an ideal data engineer, a skilled senior, but also consider
that there are many junior data engineers. Also, it is important to consider the
cognitive load of new tools and technologies on data engineers. Not only should
the tools and technologies be easy to learn and use, but also they should be based
on familiar concepts and technologies. This way, the data engineers can focus on
their work and not on learning new tools and technologies.

The most commonly used tools and technologies by data engineers are Python,
Java, Scala, and SQL. These tools and technologies are used for the development
of data pipelines and the integration of data quality tools into these pipelines. For
any set of data engineers, the intersection of their knowledge bases will include
Python more often than anything else.

1.2.2 Ease of use
In any software, a balance between ease of use and functionality complemented

by the correctness of conceptual abstraction needs to be found. As the API surface
of this solution is not going to be large, not a lot of decisions will have to be
made on this front. However, it is important to keep in mind that the users of
the solution are data engineers, some of whom work in a consultant background.
Many of them are not used to advanced language features, and abstractions have
limited experience with software engineering. For this reason, it is important to
keep the solution simple and easy to use, avoiding any complex constructs and
patterns.

Furthermore, it should be taken into account that the library can be used
outside of IDE and similar environments where code suggestion and documentation
might not be available. For example, when writing integrations in the platforms
discussed below such as Azure Data Factory and Data Bricks, the user will not
have access to the documentation or code suggestions. For this reason, the API
should be designed to be self-explanatory, and should be designed to be easy to
use without the need for extensive documentation.

1.2.3 Data security
When designing data quality solutions for integration into existing data

pipelines, especially those that involve interfacing with external applications
or servers, security is a paramount concern. This is particularly critical when
the data involved is sensitive, as is often the case in industries such as finance,
healthcare, and government.

Sending data over the internet to a third-party service can be a security risk.
Data security is a major concern for data engineers, and it is important to take
into account the security requirements of data engineers when designing a solution
for them.

When a data quality integration in a pipeline needs to access the server - an
application running somewhere else - the network of the server has to be accessible.
This can be a security risk as every new network endpoint provides an additional
entry point for attackers. When applications within a private network start
communicating with external entities, these points of interaction need to be secured,
adding complexity and potential for oversight. If the networked application has
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vulnerabilities, such as insufficient authentication, flawed authorization practices,
or software bugs, it could be exploited by attackers to gain unauthorized access.
This could lead to data breaches, data loss, or malicious data manipulation.

Additionally, data transmitted over networks can be intercepted, viewed,
or altered by unauthorized parties if not adequately protected. This risk is
particularly severe if data is transmitted over unsecured or improperly secured
connections, such as those not using TLS/SSL protocols.

1.2.4 Ease of configuration
The need to access a running instance of a DQM application in order to run

data quality tooling comes with added complexities.
First, the application needs to be configured and running. This is fine for an

environment where such an application is already in use. Yet, still, it is an added
complexity as part of the process is running somewhere else, so it can be more
difficult to debug, monitor, and maintain.

Second, the pipeline needs to access the application over a network. This
means that the application needs to be exposed to the network, which can not
only be a security risk but also provide further complexities in terms of network
configuration. In case of the server being accessible only on a private network,
the application needs to be exposed to the network, which can, in some cases, be
even out of question and make the integration impossible, or it can be an obstacle
on the way to successful integration.

1.3 Data pipelines and requirements for the in-
tegration of data quality tools

Data pipelines are a crucial part of any data engineering project. Data pipelines
are used to move data from one place to another and to transform data from one
format to another.

Many of the use cases for integrating data quality tools into data pipelines
include the requirement to integrate with existing data pipeline or solutions. The
data quality tools should support integration into commonly used data pipelines.
It also follows that forcing a new data pipeline or ETL (Extract-Transform-Load)
solution is not a valid requirement.

For example, in Ataccama, the application is intended to be connected to
all the data sources and data targets using its custom connectors. To access
the Ataccama engine and run any sort of evaluation of data quality rules, the
data must be loaded into Ataccama ONE using a connection setup within the
application, or Ataccama can pushdown processing directly into databases or the
data needs to be sent into a service set up from within the application. Either way,
there is no straightforward way to process the data directly in the data stream
because Ataccama current solution is oriented more toward table processing. In
summary, all of these approaches present a challenge for integrating Ataccama
into existing data pipelines.
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1.3.1 Pipelines in commonly used data platforms
Modern data ecosystems are diverse, with organizations leveraging a variety

of data storage solutions and computing environments to manage and analyze
data. Here’s how Python integration plays a critical role across commonly used
platforms:

• Snowflake
Snowflake[4] supports multiple programming languages, including Java and
.NET, but Python remains a popular choice due to its extensive library
support and community.
Python is well-supported in Snowflake through connectors like Snowflake
Connector for Python, which allows executing SQL statements and perform-
ing data manipulations directly from Python scripts.

• AWS Glue
AWS Glue[5] supports Python and Scala. Python, being one of the main
languages supported by AWS Glue, benefits from seamless integration with
other AWS services.
Python scripts in AWS Glue can perform ETL tasks effectively, which can
be developed and debugged directly in Python using Glue’s development
endpoints.

• Azure Data Factory
Azure Data Factory[6] supports custom activities in various languages, but
Python’s use in Azure functions for custom processing activities is notable
due to its simplicity and effectiveness.
Python in ADF can be used to orchestrate complex data workflows, invoking
Python-based processes as part of the data integration pipelines.

• Databricks
Databricks[7] offers a unified analytics platform that supports Python, Scala,
SQL, and R. Python’s integration, particularly with PySpark for big data
processing, makes it a primary choice for many developers.
Python is extensively used in Databricks notebooks for data exploration,
visualization, and machine learning, highlighting its versatility and ease of
use.

Given the need to operate within commonly used compute platforms such as
the above-mentioned, it is imperative to consider the compatibility of programming
languages supported by these environments. Each platform offers support for
various technologies; however, Python stands out due to its universal acceptance
and extensive integration capabilities across these systems. Whether it is executing
complex data manipulation tasks in Snowflake, orchestrating ETL processes in
AWS Glue, running custom activities in Azure Data Factory, or performing data
analysis and machine learning in Databricks, Python is consistently supported.

Therefore, focusing on Python to implement data quality rules not only aligns
with the operational capabilities of these platforms but also ensures that our
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solutions are versatile and adaptable across different technological ecosystems.
This strategic choice maximizes the utility and reach of our DQM tools, making
them accessible and functional within the predominant data processing frameworks
employed by contemporary organizations.

1.4 Enhancing Ataccama’s Integration Capabili-
ties

While Ataccama offers a rich set of data quality management features, one
critical area where enhancement is needed is in its programmatic accessibility.
This thesis sets out to address this limitation by focusing on the development
of methodologies that will enable better integration into automated data envi-
ronments, particularly through the reimagination of Ataccama’s data quality
expression language.

The core of this enhancement strategy involves reimplementing Ataccama’s
expression language in a way that maintains full compatibility with the original
system. The intention is not to build entirely new features but to translate the
existing capabilities into forms that are more accessible for programmatic use.
This effort requires careful consideration to ensure that all functionalities remain
consistent with Ataccama’s established methods, thus preserving the integrity
and reliability of the platform while extending its usability.

This focus on reimplementing the expression language aims to facilitate the
direct application of Ataccama’s powerful data quality rules within more diverse
programming environments. By doing so, the project seeks to bridge the gap
between Ataccama’s robust data management tools and the practical, operational
needs of modern data pipelines, making it more adaptable for data engineers who
need to incorporate sophisticated data quality checks directly into their workflows.
The outcome will be a more flexible tool that fits seamlessly into existing data
infrastructures, enhancing Ataccama’s integration capabilities while upholding
the essence of its trusted features.

1.5 Ataccama Expression Language
To facilitate the integration of Ataccama’s data quality rules, a thorough

understanding of the Ataccama Expression Language is essential. Below is an
overview of the language components, types, and operational logic.

1.5.1 Anatomy of an expression
The structure of an expression in Ataccama’s language consists of:

• Statements

– Variable Assignments
Variables are assigned values which can include literals, operations, or
function calls.
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– Function Definitions
Optional definitions that encapsulate logic or operations reusable within
the expression.

• Resulting Expression
This is the final part of the expression where the previously defined variables
and functions are utilized to compute a result. The outcome of the resulting
expression is the output of the entire expression.

1.5.2 Examples of an expression
The two following examples illustrate the structure of an expression in Atac-

cama’s language.

Simple example: Arithmetic Expression

a := 10;
b := a * 2;
b + 5

In this example, variables a and b are used in statements to set up values
that are manipulated in the resulting expression, b + 5, which computes the final
output.

Complex example: Digit sum

value := replace(trim(input), '-', '');
function digitSum(integer digit) {

set.sumExp(
trim(substituteAll("(.)", "$1 ", toString(digit))),
" ",
(x) {toInteger(x)}

)
}
digitSum(value) % 13 == 0

This example demonstrates a more complex expression that includes a func-
tion definition, digitSum, which is then called in the resulting expression, digit-
Sum(value). The expression is a simplified excerpt from a data quality rule that
checks ISIN numbers for validity.

1.5.3 Components of Ataccama Expression Language
Ataccama Expression Language, also called ONE Expressions, organizes data

operations and logic into a series of expressions and operands defined by a rigorous
structure:
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Operands

Operands in Ataccama Expressions are categorized into four main types:

• Literals
These include numeric, string, or logical constants (e.g., TRUE, FALSE)
and the null literal. All keywords are case-insensitive.

• Columns
Identified by their names, which require square brackets if they include
spaces. In multiple input scenarios, columns are specified using dot notation
(input_name.column_name). If only one input is used, dot notation can be
omitted.

• Set
Used exclusively with the IN operation, representing a constant expression.
Sets can only appear on the right side of the IN operation.

• Complex Expressions
These may involve various combinations of the above operand types and
function calls.

Data Types and Conversions

Operands can be of specific column types such as INTEGER, FLOAT, LONG,
STRING, DATETIME, DAY, and BOOLEAN. Ataccama handles type conversions
automatically, widening data types as necessary ( e.g., INTEGER - LONG -
FLOAT ) to accommodate operations.

Handling Null Values

The handling of null values aligns with SQL rules, with a notable exception
for the STRING data type. In Ataccama, a null string is considered equal to an
empty string, impacting how comparisons and operations are performed.

Variables

Expressions in Ataccama can include sequences of assignment expressions
followed by a resulting expression, separated by semicolons. The first occurrence
of a variable defines its type, with subsequent references needing to conform to
this type.

Operations and Functions

Ataccama ONE supports a variety of operations and functions:

• arithmetic functions

• logical functions

• comparison functions
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• set functions

• date functions

• string functions

• bitwise functions

• MinMax functions

• aggregating functions

• conditional functions

• conversion functions

• formatting functions

• word set operation functions

The full list of functions and their descriptions can be found in the Ataccama
ONE Expressions documentation [8].

1.6 Summary
Let us summarize the goals of the project:

1.6.1 Use of Python
The solution should utilize Python for the implementation of the data quality

expression language. This choice is driven by two key reasons. Firstly, Python is
widely recognized and utilized among data engineers, which ensures that the tools
developed are easily adoptable and integrate seamlessly into existing workflows.
Secondly, Python’s compatibility with various data pipeline platforms makes it an
ideal candidate for ensuring that our solution can be integrated across diverse data
environments efficiently, facilitating broader accessibility and practical utility.

1.6.2 Simple API
In the analysis section, we identified data engineers as the primary users of the

solution. The project’s main objective is to develop an API that is straightforward
and intuitive for data engineers. The API should be simple and user-friendly,
avoiding overly complex abstractions or advanced design patterns. For instance,
object creation should be straightforward, utilizing basic constructors or simple
imported functions to minimize complexity and ensure ease of use.
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1.6.3 Local execution
The solution should be designed to run locally, allowing data engineers to

execute data quality rules directly within their Python environments. This is
relevant with respect to the need for ease of use and security. By enabling local
execution, data engineers can test and validate data quality rules without the
need to access external servers or applications. This approach also simplifies the
development process by removing dependencies on external services, ensuring that
the solution is self-contained and easily deployable in various environments.

1.6.4 Compatibility with the Ataccama Expression Lan-
guage

In order to maintain compatibility with the existing Ataccama ecosystem, the
Python implementation should be able to execute the same data quality rules
as the original Ataccama Expression Language. This includes supporting the
same set of functions, operators, and expressions to ensure that data quality rules
defined in Ataccama ONE can be seamlessly executed within Python environments.
The Python implementation should mirror the behavior of the original Ataccama
Expression Language as closely as possible to ensure consistency and compatibility
across platforms.

1.6.5 Reasonable performance
To be considered a viable alternative to the original Ataccama implementation

and to similar solutions on the market, the Python implementation should be able
to handle data quality rules within Python environments efficiently and effectively.
The performance of the Python implementation should be within acceptable limits,
where a slowdown by a factor of up to 10 times compared to alternatives might be
considered tolerable for deployment, but a 1000 times slowdown would indicate
serious efficiency issues that could render the solution impractical. By establishing
these performance benchmarks, we can validate that the Python implementation
meets minimum requirements for real-world applications, ensuring it is a viable
alternative for data engineers who require programmatic access to Ataccama’s
data quality tools. This will be further discussed in the evaluation section.
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2 Design
In the design section, we will detail the process of translating Ataccama’s

expression language into Python, focusing on local execution and user-friendliness.
The aim is to allow data engineers to seamlessly integrate Ataccama’s data
quality rules into their Python workflows. This section outlines the architecture,
methodologies, and tools necessary to adapt Ataccama expressions for effective
use in Python environments, ensuring the solution is both practical and easy to
use.

2.1 Context of data transformations
Data processing pipelines typically adhere to a structured pattern known

as ETL (Extract-Transform-Load)[9]2.1, crucial in data management. These
pipelines start by extracting data from various sources, which is then transformed
through cleaning, enrichment, and aggregation processes before being loaded into
a final storage destination.

This thesis specifically concentrates on this transformation step, where data
quality rules can be effectively implemented and integrated.

Extract
Fetch data from multiple sources

Transform
Clean data, Enrich data,

Aggregate data,

Apply data quality rules

Load
Store in destination

Figure 2.1 Diagram illustrating the ETL (Extract-Transform-Load) process.

2.2 Interface design
The design of the API is straightforward due to the simplicity of the public

functionality it offers. Below is a diagram that outlines the public interface of the
transpiler:

The interface is uncomplicated, designed primarily to compile and execute
expressions efficiently. This simplicity ensures that all essential actions—compiling
an expression and executing it—are both intuitive and accessible for users.

The API consists of two primary classes: Compiler and Expression. The
Compiler class is responsible for compiling the expression into Python code, while
the Expression class encapsulates the compiled code and provides a method to
execute it with a given record. The record is supplied as a dictionary, where the
keys correspond to the field names and the values to the field values.
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Figure 2.2 API overview

2.3 Architecture
The initial step in developing the solution involves establishing its architecture,

which is critical for defining how the program will function.
The architecture of the Python implementation of the Ataccama Expression

Language is designed to facilitate the translation of Ataccama’s expression lan-
guage into Python code to enable for local execution, one of the goals of outlined
in analysis. This translation process involves parsing the input expression, gen-
erating executable code, and evaluating the expression against a dataset. The
architecture is structured to accommodate these steps seamlessly, ensuring the
efficient execution of data quality rules within a Python environment.

For the first step, the input expression will be converted into an AST (Abstract
syntax tree). Given the complexity of the expression language used by Ataccama,
employing a parser generator is deemed the most effective approach. The parser
generator will utilize the predefined grammar of the language to generate a
parser capable of translating input expressions into an AST. This facilitates the
incorporation of custom logic in the subsequent steps, particularly during the
semantic analysis phase.

During semantic analysis, the AST will be traversed to construct executable
code. This transformation is essential for preparing the expression for evaluation
in a Python environment, from which the results can be dynamically generated
and returned.

The final component of the architecture involves executing the generated code
on the provided records. This step ensures that each record is evaluated according
to the defined expressions, and the outcomes are systematically returned to the
user.

2.3.1 Parser generator
For the parser generator, a specific approach is indicated. The Ataccama Ex-

pression Language implementation uses a parser generator called ANTLR. ANTLR
(ANother Tool for Language Recognition) is a powerful parser generator[10]. It’s
widely used to build languages, tools, and frameworks. From a grammar, ANTLR
generates a parser that can build and walk parse trees[11]. As the grammar of
the Ataccama Expression Language is already defined, it is simple and robust to
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use, adapt and reuse the grammar by also using ANTLR to generate the parser.

2.3.2 Code generation
Having decided on the parser generator, the next step is to decide how to

generate the code for the expression. There are two obvious approaches at hand:
Represent the expression in an object tree with execution being a recursive descent
through the tree. The second approach is to generate Python code directly. This
can be done using Python standard module ast, which can be used build an
abstract syntax tree of the expression, and then compile it into a Python function.
Alternatively, the code can be generated as a string and then executed using
Python’s exec function, but this approach is less safe, more error-prone, harder to
debug and introduces more overhead as it adds an additional step of parsing the
code.

The second approach is more efficient, as it avoids the overhead of traversing
the AST, but it is also more complex, as it requires generating Python code. The
first approach might appear simpler, but it is less efficient, as it requires traversing
the AST and does not include the option to use compilation to Python bytecode.

Using Python as the runtime also comes with the benefit of being able to use
Python’s scope resolution and name hiding to implement the scoping rules of the
Ataccama Expression Language, so a reimplementation can be avoided.

For these reasons, the second approach is chosen. The code will be generated
as Python code using the ast module, and then compiled into a Python module.

2.4 Compatibility with the Ataccama Expression
language

The Ataccama Expression Language is complex and has many features, along
with platform specific quirks a peculiarities. For this reason, the implementation
will not be a one-to-one copy of the language, but rather a subset of the language
features that are most commonly used with some differences in behaviour.

The differences between the Ataccama Expression Language and the Python
implementation will be outlined in detail in the following sections. As the goal
is to make the implementation as close to the original language as possible, the
differences will be kept to a minimum. Consequently, the implementation will be
able to run most of the data quality rules written in the Ataccama Expression
Language.

To ensure compatibility, the test suite will be created based on the Ataccama
Expression Language test suite. The test suite will be used to validate the
implementation and ensure that it behaves as expected.

The rest of this section describes a high-level overview of the differences that
will have to be introduced along with the reasons behind them. Most of the
differences are a result of a different underlying technology, decisions have to be
made on where to draw the line between mimicking the original language and

This section has two purposes: The first is to describe the language and
its features, the second is to outline and discuss design decisions related to the
individual fetatures and functionality that have to be made in order to implement
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the language in Python introducing accepting differences for the sake of simplicity
and performance.

2.4.1 Dynamic typing
The Ataccama Expression Language is statically typed, following its language

of implementation which is Java. This means that the type of each variable and
expression is known at compile time compile time. This allows the compiler to
catch type errors at compile time, and to generate more efficient code. Also,
it allows for function and operator overloading, as the compiler can choose the
correct function based on the types of the arguments. This is possible thanks to
the record format being known at compile time. The record format is a schema
that defines the types of the fields in the record. Python is dynamically typed,
which means that it is possible to allow for dynamic typing in the implementation.

On the other hand, to reimplement static typing in Python would require
aditional work like keeping track of the types of all symbols and expressions and
resolving function overloads.

Furthermore, static typing would require the user to define the record format
at compile time, which would make the API less user-friendly, which in our case
is a priority. This could be solved by allowing the user to define the record format
optionally.

Considering the above stated arguments, the decision is to allow for dynamic
typing in the implementation, as it is easier to implement and more flexible. The
implementation of optional static typing is a possible future improvement, but for
the initial implementation would constitute a great effort for little gain from the
user’s perspective.

Function and operator overloading

The decision to utilize dynamic typing in the Python implementation of the
Ataccama Expression Language carries significant implications for function and
operator overloading. Unlike in Java, where Ataccama’s static typing enables
the compiler to select the correct function or operator based on argument types
at compile time, Python’s dynamic typing means the types of variables are only
known at runtime. This characteristic prevents overloading functions and operators
based on type, as there is no way to determine the type of the inputs beforehand.

As a result, each function in the Python implementation must be universally
applicable, handling all expected input types through internal logic. This re-
quires implementing comprehensive type checking within each function, where
the function determines the appropriate action based on the runtime types of
the arguments. Such an approach aligns with Python’s duck typing philosophy,
where operations are attempted regardless of type, with the function internally
managing any type mismatches or errors. This method ensures flexibility and
broad applicability of functions, albeit at the cost of the type-specific optimization
possible in statically typed languages like Java.

23



2.4.2 Implementation scope
The Ataccama Expression Language supports over 150 functions but the

implementation in Python will be limited to a subset of the language features.
The reasoning behind this is that many of the functions are not commonly used,
and the implementation of all of them would be a significant effort and would
be out of scope for this project as the goal is to provide a simple prototype and
validate the viability first.

For this reason, the functions have been categorized by priority, and the
implementation will focus on the high- and medium-priority functions. The
categorization is based on the frequency of use of the tasks in the data quality
rules, and the complexity of the implementation. The high-priority functions are
the most commonly used functions, and the medium-priority functions are less
commonly used but still important. The prioritization comes from Ataccama’s
knowledge base. The low-priority functions are the least commonly used functions,
and will not be implemented in the initial version of the implementation.

A list of all function along with their priority and implementation status can
be found in the appendix A.1.

2.4.3 Arithmetic
The Ataccama Expression Language operates, like standard types in Java, in

fixed-size bit arithmetic, i.e., 32 bits for integers and 64 bits for Python. On the
other hand, Python uses arbitrary precision arithmetic, which means that the size
of the integers is not limited. This means that the results of arithmetic operations
can differ between the two languages. For everyday operations, the difference is
not significant, and it could be said that the Python behaviour is better. However,
in some use cases, the fixed-size arithmetic is necessary, for example, when working
with hash tables. As the number of these cases is limited and most of them are
provided as implemented functionality, the implementation will use Python-native
arbitrary precision arithmetic and handle fixed-size arithmetic as a special case
where necessary.

Furthermore, the Ataccama Expression Language provides arithmetic oper-
ators for addition, subtraction, multiplication, division, integer division, and
remainder. Python provides the same operators, but the behaviour of the opera-
tors is different. The first significant difference is the handling of null values. In
Ataccama Expression Language, the operators are null safe and follow a SQL-like
behaviour. In Python, the operators throw an exception if any of the operands is
null. Also, the arithmetics are different; modulo and division produce different
results for negative operands. These differences will have to be addressed as the
results differ too much to be ignored. Moreover, Python uses arbitrary precision
arithmetic, whereas Ataccama Expressions use the underlying Java types, but
this difference is not significant for most use cases and could be considered an
improvement. Lastly, the plus operator in Ataccama Expression Language is
overloaded for string concatenation, converting any non-string to string first, which
is not the case in Python. This will have to be implemented as it is a common
use case.
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2.4.4 Null handling and null coalescing
The way Ataccama Expression language handles nulls has a lot of aspects

which have to be addressed.
Operators handle null values in a SQL-like way, mostly returning null if any

of the operands is null. The implication for the implementation is that it will not
be possible to use native Python operators, as they do not handle null values in
the same way.

Empty strings are treated as null values. The documentation states: ”A null
string and an empty string are considered equal”. Moreover, in the Ataccama
Expression Language, most empty string returns are coalesced to null. This
behaviour also has its own quirks, for example ‘1 + null == null‘ but ‘1 + ”” ==
”1”‘, which breaks the aforementioned statement.

Furthermore, functions have to be prepared to handle null values in any of
the arguments. Most commonly, functions return null if any of the arguments
is null, so extensive null checking has to be implemented in the functions. The
implementation in Python will have to address these differences and provide a way
to handle null values in a Python environment. Date and floating point formatting

2.5 Summary
The design of the Python implementation of the Ataccama Expression Lan-

guage is structured to facilitate the translation of Ataccama’s expression language
into Python code for local execution. The architecture is designed to accommodate
the parsing of input expressions, the generation of executable code, and the evalu-
ation of expressions against a dataset. The implementation will focus on a subset
of the language features, prioritizing high- and medium-priority functions based
on their frequency of use and complexity. The implementation will also address
key differences between the Ataccama Expression Language and Python, such as
dynamic typing, null handling, and arithmetic operations, to ensure compatibility
and functionality. The design decisions outlined in this section provide a roadmap
for the development of the Python implementation, guiding the translation of
the Ataccama Expression Language into a Python environment for accessible and
easy data quality rule execution.
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3 Implementation
The implementation phase of the project is critical for translating the design

into a functional system. This section details the setup of the development
environment, focusing on the tools and technologies selected to ensure a robust
and efficient development process. The implementation of the individual features is
then discussed, providing detailed documentation of the coding process, including
snippets and explanations of how the Ataccama Expression language features
are implemented in Python. The testing and validation process is also described.
Finally, any challenges faced during the implementation are discussed, along with
the resolutions that were implemented to overcome them.

3.1 Architecture
The following diagram illustrates the class diagram of the transpiler 3.1.

Figure 3.1 Architecture overview

The ExpressionToPythonCompiler is initiated with contexts that include
external function handling capabilities. It registers various operators and functions
that can be used within expressions, ensuring that these are correctly integrated
into the compiled code. The lexer and parser transform the input expressions into
a format that can be used to generate Python bytecode, with the visitor handling
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the actual translation into code and symbol resolution. The option for user to
provide custom functions is also available.

The IdentifierTable plays a crucial role in managing the names for fields,
variables, and functions. The FunctionFactoryContext and LookupFileResolver
provide mechanisms to incorporate external functionalities and data, enhancing
the flexibility and power of the expression evaluation.

Finally, the Expression class encapsulates the executable code, providing a
method to evaluate it with specific inputs. This architecture supports extensibility
and customization, key traits for systems requiring dynamic data manipulation
capabilities.

3.2 Implementation of individual features
This section delves into the technical specifics of implementing the key features

of the Ataccama Expression Language in Python. The primary goal is to accurately
interpret and execute the expression rules defined in Ataccama’s custom language
using Python tools and libraries.

3.3 Expression Parsing
The first step in processing Ataccama’s custom expression language in Python

is to parse the expressions into a format that can be programmatically analyzed
and executed. This is achieved using ANTLR, a powerful tool that generates a
lexer and parser based on the grammar used in Ataccama ONE.

ANTLR Lexer and Parser

The lexer reads the raw input text and converts it into a stream of tokens
based on the grammar rules defined for Ataccama’s language. The parser then
takes these tokens and builds a parse tree.

sequence:
command+ expr
| expr
;

command:
dfunc
| assign SEMIC
;

assign:
(varName | name) ASSIGN_OP expr
;

Visitor Pattern

From the parse tree, a visitor is generated—a component that traverses the
parse tree. This visitor uses the visitor design pattern to execute operations
based on the nodes of the parse tree. For the expression language, the visitor’s
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primary role is to transform the parse tree into an AST (Abstract syntax tree)
using Python’s ast module, which can then be executed or evaluated in a Python
environment. The visitor visits the non-terminals of the grammar and transforms
them to ast objects or, where needed, some other intermediate objects.

The top-level non-terminal main otherwise known as the compilation unit is
visited and the visitor returns an ast representation of Python module.

The module, when executed, stores the result of the expression in a variable
with a predefined name and from which the result can be retrieved.

The following code snippet provides an example of how the visitor pattern is
used to handle an AddExpr node in the parse tree:

def visitAddExpr(self, ctx: ExpressionsParser.AddExprContext):
if ctx.left:

op = ctx.op.children[0].symbol.type
if op == ExpressionsParser.PLUS:

name = Operator.ADD.value
elif op == ExpressionsParser.MINUS:

name = Operator.SUB.value
else:

raise ValueError(f"Unknown operator: \{op\}")
identifier = self.get_symbol_table()

.get_identifier_for_name(name,
"internal",
"load")

args = [self.visit(ctx.left), self.visit(ctx.right)]
node = self.create_call_node(identifier,

ctx.start.line,
ctx.stop.line,

args)
return ExpressionArgument(node)

return self.visitChildren(ctx)

Symbol table

There are two layers of names: visible and internal. Internal names are used
for internal workings: operators that are functions, multiline lambdas, etc. Visible
names are the names that are visible to the user, i.e. callable functions, variables,
record fields, etc.

The symbol table is also used to create child symbol tables, which handles
the logic of symbol hiding, i.e. when a symbol is defined in a scope, it hides the
symbol with the same name in the parent scope.

The use of a symbol table in our system is not primarily due to limitations
within Python’s name resolution and scoping capabilities. Instead, it addresses
specific challenges that arise in our context. Without a symbol table, name resolu-
tion would have to occur at runtime, which complicates any future implementation
of name existence checks. Additionally, it is good practice to prevent users from
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accessing internal names related to operators or multiline lambda functions. By
using a symbol table, we can simplify the mapping of complex names, such as
converting math.tan to a valid identifier such as math_tan, while also providing
a robust system for detecting and handling name collisions.

Lastly, the symbol table provides an infrastucture for compile-time type
checking, should we decide to implement it in the future.

Error Handling

Syntax errors in the expressions are handled using ANTLR’s error listeners.
These listeners are customized to provide meaningful error messages that help
identify and correct syntax issues in the input expressions.

3.3.1 Statements
Handling variables and functions within expressions involves maintaining a

symbol table where each variable’s name and value are stored. Variables are
parsed and evaluated by the visitor, which checks the symbol table to resolve their
values during the execution of expressions.

The symbol table keeps track of all symbols used in expressions. It ensures
that each variable is correctly declared and used within its scope. Additionally,
symbol transformation is employed to prevent collisions and ensure that variable
names are unique within the global execution context.

3.3.2 Functions and Operators
Implementing functions and operators in the Python version of the Ataccama

Expression Language involves defining Python functions that correspond to each
function and operator in the original language.

Each function from Ataccama’s language is mapped to a Python function.
These functions handle various data types and perform the necessary computations
or data manipulations as defined in the Ataccama language specifications.

Each operator is mapped to a function call with the operand(s) as the argu-
ments. This allows for customizing behavior for arithmetic, logical, and comparison
operations to closely align with how they function in the original implementation.

The reimplementation of the functions and operators constitutes a significant
portion of the work, as the language supports a wide range of operations that
need to be accurately translated into Python.

3.3.3 Additional Features and Utilities
In addition to the core features of the Ataccama Expression Language, several

utilities and enhancements are implemented.

Command Line Interface (CLI)

A command-line interface is developed to allow users to interact with the
expression evaluation engine directly. This CLI provides a simple way to input
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expressions and receive the output, making it easier to test and validate the
implementation.

Running ‘poetry install‘ will make the ‘evaluate-records‘ script available.
‘evaluate-records‘ can be used to evaluate records on an expression:

echo "John,25\nJohn,18" | evaluate-records "name == 'John' and
age > 20" --record-format "name:STRING,age:INTEGER"

Expression Generator

An expression generator is created to produce random expressions based on
the grammar of the Ataccama Expression Language. This tool is useful for testing
the parser and visitor components.

3.4 Testing and Validation
Testing and validation play crucial roles in software development, particularly

when reimplementing data quality rules to verify their performance in Python
environments. In this project, we utilize pytest, leveraging its parametrization
features to rigorously test the implementation of Ataccama’s data quality rules in
Python.

The use of test parametrization allows for running the same test function with
different input values. It is particularly useful in this project for applying a wide
array of test scenarios to the implemented functions to ensure comprehensive
coverage and that the rules behave as intended across diverse data sets and
conditions.

The primary focus during testing is to ensure that the reimplemented rules
behave as similarly as possible to the Ataccama Expression Language, this is
achieved using unit tests. Tests are designed to validate both typical and edge-case
scenarios, ensuring the rules are robust under various data conditions.

The test suite contains more than 1300 tests, covering the wide range of
functions, operators, and expressions. These tests are designed to validate the
correctness defined by the Ataccama implementation and ensure that the Python
version produces the same results in as many cases as possible.

This extensive testing process is crucial for identifying and resolving any
discrepancies between the original and re-implemented rules, ensuring that the
Python implementation is accurate and reliable for data quality checks. As such
it is a key component of the development process, providing confidence in the
correctness and efficiency of the reimplementation.

Expected outputs are set with the help of the original Ataccama ONE Expres-
sions Java engine, which serves as a reference for the Python implementation. This
ensures that the Python version produces consistent results with the established
behavior of the rules in the Ataccama environment. This is aided by the tool for
output comparison, which is discussed in the next section.

3.4.1 Tool for Output Comparison
To validate the accuracy of the reimplementation, we have developed a test

suite that compares the outputs of our Python implementation against those
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generated by the original Ataccama ONE Expressions Java engine. This ensures
that our implementation produces results consistent with the established behavior
of the rules in the Ataccama environment.

This test suite can be run programmatically using a script which runs the
pytest test suite; the suite is using a fixture for running any expression that
captures it and if enabled, saves it into a file. The script executes the tests and,
for a subset of them, runs the same expressions in the Ataccama ONE Desktop
environment. It then compares the outputs from both implementations and
highlights any discrepancies.

The output can be used to identify any inconsistencies between the original
and re-implemented rules, allowing for further refinement and debugging to ensure
the rules are correctly implemented.

3.5 Challenges and Resolutions

3.5.1 Date formatting strings
Problem One of the challenges encountered during the implementation was
handling date formatting strings in the Ataccama Expression Language. The
original language mirrors Java date formatting patterns [12], which are not directly
compatible with Python’s datetime module [13].

Resolution To address the date formatting issue, a mapping between Java and
Python date formatting patterns was created. This mapping allows the Python
implementation to interpret the date formatting strings correctly and convert
them to the appropriate Python format.

To perform this mapping, a separate grammar with lexer and parser was added
to parse the original date formatting string into pattern and text tokens. Pattern
tokens are then converted using a lookup table.

Related code is located in the ataccama.expressions.dateformat package
of A.2.

3.5.2 Multiline lambda functions
Problem Another challenge was implementing multiline lambda functions in
Python. The Ataccama Expression Language supports multiline lambda functions,
which are not directly supported in Python[14]. This required finding a workaround
to enable multiline lambda functions in the Python implementation.

Resolution The solution involved defining full-fledged functions instead of using
lambda expressions for multiline needs. To integrate these functions seamlessly
and avoid namespace conflicts, we employed a symbol table that manages and
mangles names dynamically. This approach ensures that all function names
are unique and avoids identifier collisions within the Python environment, effec-
tively replicating the flexibility of Ataccama’s multiline lambdas within Python’s
syntactic constraints.
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3.5.3 Lookup Files
Problem Ataccama’s expressions can perform lookups against reference data
stored in proprietary binary formats with sophisticated hashing strategies. This
feature is crucial for validating data against predefined sets which are optimized
for performance in Ataccama’s native environment.

Solution To handle this, the proprietary lookup functionality was reimplemented
in Python. This involved developing a method to read and interpret the binary
format into a usable form in Python. Additionally, to mimic the fixed-size
arithmetic and specialized hashing used by Ataccama, similar algorithms were
implemented in Python, ensuring that the lookup performance remains efficient
and consistent with the original implementation.

3.5.4 Null Handling
Problem Ataccama’s functions and operators are designed to handle null values
gracefully, often returning a null or a neutral value when encountering nulls in
expressions. This feature is essential for maintaining data integrity and ensuring
robust data quality checks.

Solution The Python implementation adopted a similar approach to null han-
dling. Custom operators and functions were developed to replicate the behavior of
Ataccama’s handling of nulls. For example, custom implementations of addition
(+) and other operators were created to return null or appropriate neutral values
when encountering null inputs. This ensures that the data quality rules continue
to function predictably and effectively even when faced with incomplete or missing
data.

This careful replication of functionality ensures that the Python version of At-
accama’s data quality rules maintains the robustness and reliability of the original
system, adhering closely to its operational logic and data handling practices.

3.6 Development Environment Setup
For this project, a modern and efficient development environment is set up to

facilitate the coding, testing, and deployment phases. The environment leverages
several key tools and technologies designed to enhance productivity and ensure the
quality of the software developed. Below is a breakdown of the core components
of the development setup:

3.6.1 Poetry for Dependency Management and Package
Publishing

Poetry[15] is utilized as the primary tool for dependency management and
package publishing. It offers a streamlined approach to manage libraries and
dependencies, ensuring that the project environment is reproducible and consistent
across different setups. Poetry simplifies the management of project dependencies,
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and its lock file ensures that the same versions are used in every environment,
reducing ”works on my machine” problems.

Configuration

The pyproject.toml file is configured to list all necessary libraries and their
specific versions. This file also includes configurations for package metadata,
making it easier to package and distribute the final software if needed.

3.6.2 Pypy for Type Checks
Given the dynamic nature of Python, mypy[16] is incorporated to provide

optional static type checking. Mypy is an optional static type checker for Python,
designed to combine the benefits of dynamic typing and static typing. By anno-
tating Python code with type hints, Mypy can catch many programming errors
before they manifest at runtime. It enhances code quality and reliability, especially
in large and complex projects where types play a crucial role in the correctness of
the program.

Configuration

Mypy is configured to run as part of the continuous integration process,
checking type annotations during development. Some leniencies are allowed in the
configuration to strike a balance between strict type checking and development
flexibility. For instance, certain third-party libraries without type hints and
generated code like the lexer and parser might be excluded from these checks to
prevent excessive false positives.

3.6.3 Pytest for Testing
Pytest[17] has been selected as the preferred testing framework for this project

also due to its support for parametrized testing and test fixtures.

Configuration

Tests are written to cover various cases, from basic unit tests that validate
each function’s behavior with different inputs to integration tests that ensure that
the system components work together as expected. Pytest fixtures[18] are used to
set up and teardown test environments, making it easy to manage test states and
dependencies.

3.6.4 Additional Tools and Practices
Version Control

Git is used for version control, with a repository hosted on the company
GitLab, providing a robust framework for collaboration and version tracking.
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Continuous Integration/Continuous Deployment (CI/CD)

CI/CD pipeline is set up using GitLab CI/CD to automate the testing and
deployment process. The pipeline is configured to run tests on every commit and
deploy the application to a staging environment if the tests pass. This setup
ensures that the software is continuously tested and can be deployed automatically
to a production environment when ready.

3.7 Example usage
To demonstrate the usage of the Python implementation of Ataccama’s data

quality rules, we provide a simple example of evaluating an expression on a set of
records. The following code snippet shows how to evaluate an expression on a list
of records using the Python implementation:

records = ...
compiler = create_compiler()
expression_str = ('( NOT ( lower(continent) in '

'\{ "asia", "africa", "europe", '
'"north america", "south america", '
'"oceania", "antarctica" \} ) )')

expression = compiler.compile(expression_str)

for record in records:
if expression.evaluate(record):

...

More examples are provided as part of appendix A.2 in the examples directory
in the form of jupyter [19] notebooks with simple demonstrations followed by
explanations and commentaries.

3.8 Summary
In the implementation the goal of keeping compatibility was stressed and the

Python implementation was designed to closely mirror the behavior of the original
Ataccama Expression Language. This was addressed on a problem by problem
basis, with each challenge met with a specific solution that ensured the Python
version behaved as closely as possible to the original. Furthermore, a wide suite
of tests was developed to validate the correctness of the reimplementation.

The goal of enabling local execution so as to avoid the need for a connection to
the Ataccama ONE environment was achieved, with the Python implementation
providing a standalone solution for evaluating data quality rules.
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4 Evaluation
One of the goals outlined in chapter 1 was for the Python implementation of

the Ataccama Expression Language to be viable for real-world applications. As a
metric for this viability, we have chosen to evaluate the performance of the Python
implementation against similar solutions, Soda Core and Great Expectations.
This chapter presents the performance testing methodology, the test environment
setup, the test cases, the performance analysis, and a discussion of the results.

4.1 Introduction to Performance Testing

4.1.1 Purpose of Testing
Performance testing is crucial in assessing the viability of the Python imple-

mentation of the Ataccama Expression Language, particularly in ensuring it can
efficiently and effectively handle data quality rules within Python environments,
i.e. comparably to similar solutions. This testing is not about matching the
performance of similar solutions - Soda Core and Great Expectations - but rather
ensuring that the Python prototype is sufficiently efficient for practical use. The
aim is to determine if the Python implementation performs within acceptable
limits, where a slowdown by a factor of up to 10 times compared to the similar
solutions might be considered tolerable for deployment, but a 1000 times slowdown
would indicate serious efficiency issues that could render the solution impractical.
By establishing these performance benchmarks, we can validate that the Python
implementation meets minimum requirements for real-world applications, ensuring
it is a viable alternative for data engineers who require programmatic access to
Ataccama’s data quality tools.

4.1.2 Testing Framework
Tools and Setup

The performance testing utilizes a structured approach where a specific data
quality rule—represented in three different formats: an original Ataccama expres-
sion, a Soda Core implementation, and a Great Expectations setup—is executed
across a range of dataset sizes. This method allows for a direct comparison of how
well the Python implementation scales with increasing data volumes, a critical
factor in many data engineering tasks.

Methodology

Dataset Sizes Tests are conducted on datasets of varying sizes, starting from
10 records and scaling up to 1 or 10 million records depending on test case
complexity. This range is chosen to simulate different real-world scenarios, from
small, manageable datasets to large-scale data processing tasks.

Execution Repetition Each test is repeated ten times to ensure consistency
and reliability in the results. This repetition helps mitigate any anomalies or
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outliers that could affect the accuracy of the performance assessment. The first
repetition is considered a warm-up to allow the Python interpreter to optimize the
code before the actual performance metrics are recorded. This approach ensures
that the performance measurements are based on the optimized execution of the
code - while Python is often perceived as an interpreted language that executes code
directly from its high-level syntax, in practice, Python first compiles the source
code into bytecode, which is a lower-level, platform-independent representation of
the code. This bytecode is then executed by the Python interpreter. During the
warm-up phase, the Python interpreter can perform several optimizations on this
bytecode, such as type specializations, loop unrolling, conditional simplifications,
and inline caching.

Process Isolation Each test run is executed in a freshly started Python process
to avoid any potential interference from memory leaks, memory layout, residual
data, or other artifacts from previous executions. This approach ensures that each
test is conducted in a clean state, providing accurate and unbiased performance
measurements.

Measurement Metrics The key performance metric collected during the tests
is execution time. This metric provides a direct measure of how long it takes
for the Python implementation to process the data quality rule on datasets of
different sizes, which is essential for assessing the viability and scalability of the
Python implementation.

4.2 Test Environment Setup
This section details the hardware and software specifications of the test envi-

ronment to ensure that the performance results are reproducible and relevant to
typical data engineering scenarios.

4.2.1 Hardware Specifications
The performance tests were conducted on a M1 MacBook Pro with the following

specifications:

• Processor: Apple M1 10-core CPU

• Memory: 32 GB

• Operating System: macOS Sonoma 14.4.1

4.2.2 Software Configuration
Python Version Python 3.10 is used for all Python-related tests.

Testing Frameworks For execution time measurements, the timeit module is
used.
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4.3 Test Cases
Test Cases Descriptions and Rationale The choice of test cases for evalu-
ating the performance and viability of the reimplemented Ataccama Expression
Language in Python is designed to reflect a range of real-world scenarios that data
engineers commonly encounter. These test cases are selected to cover a spectrum
of complexity, from relatively simple checks to more involved, multi-condition
validations that interact with external data sources and complex logic. This
selection ensures that the testing not only assesses basic functionality but also
gauges the performance under more demanding processing conditions.

There are two test cases selected for the performance evaluation representing
different levels of complexity in data quality rule validation. This scope allows for
a comprehensive assessment of the Python implementation’s performance across
a range of scenarios, from basic data validation to more intricate customer data
checks. The test cases are designed to simulate common data quality tasks that
data engineers might encounter in their daily work, providing a realistic basis for
evaluating the Python implementation’s efficiency and effectiveness in handling
these tasks.

Both of the test cases include enumerating the failed records, which is a
common requirement in DQM tasks. This feature is essential for identifying and
addressing data quality issues efficiently, making it a key aspect of the performance
evaluation.

4.3.1 Test Case 1: Simple Continent Validation
Description This test involves evaluating a relatively straightforward expression
that checks if the value of a ’continent’ field does not belong to a predefined list
of continent names.

Relevance This test case is chosen for its simplicity and its commonality in
data validation tasks. It represents typical scenarios where fields within datasets
are validated against a fixed set of allowable values. Only a single condition is used
wherein lies the simplicity of the case. Testing this case helps verify the Python
implementation’s ability to handle basic inclusion checks efficiently, a frequent
requirement in data cleaning and standardization processes. It also serves as a
check for the system’s ability to process simple expressions quickly and accurately,
possibly revealing any performance overhead and bottlenecks in the compilation
process itself.

Expressions Implementation

( NOT ( lower(continent) in \{ "asia", "africa", "europe",
"north america", "south america", "oceania", "antarctica" \} ) )

Great Expectations Implementation

{
"data_asset_type": "Dataset",
"expectation_suite_name": "default",
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"expectations": [
\{
"expectation_type": "expect_column_values_to_be_in_set",
"kwargs": \{
"column": "continent_lower",
"mostly": 1,
"value_set": [

"asia",
"africa",
"europe",
"north america",
"south america",
"oceania",
"antarctica"

]
\},
"meta": \{\}

\}
],
"ge_cloud_id": null,
"meta": \{

"great_expectations_version": "0.18.12"
\}

\}

Soda Core Implementation

checks for continents:
- invalid_count(continent_lower) = 0:

valid values: ["asia", "africa", "europe",
"north america", "south america",
"oceania", "antarctica"]

4.3.2 Test Case 2: Complex Customer Validation
Description This more complex test case. The complexity lies in applying
multiple conditions to validate customer data, involving null checks, file lookups,
regular expression pattern matching.

Below is the Ataccama Expression Language expression for the test case:

(customernumber IS NULL)
OR ( NOT ( isInFile(contactlastname, "surnames.lkp") ) )
OR (NOT isInFile(contactfirstname, "acc_first_names.lkp"))
OR (contactfirstname IS NULL)
OR ( NOT ( isInFile(contactfirstname, "first_names.lkp") ) )
OR (indexOf(upper(email), "NOREPLY") is not null)
OR ( NOT ( matches(@"^[^@]+@[A-z0-9._-]+\.+[A-z._-]+$", email) ) )
OR (email IS NULL)
OR (trim(email) is in {'NULL', 'Null', 'null', '.', ',',
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'-', '_', '', 'N/A', 'n/a', 'na', 'NA'})

The expressions references three lookup files, each of which contains a list of
valid values for the corresponding field - more than 1M rows in total.

The Great Expectations and Soda Core implementations are omitted for
brevity, but they follow the same pattern as the simple continent validation test
case.

Relevance This test case is designed to simulate the complex validation pro-
cesses often required in customer data management, where multiple fields need to
be verified against various conditions. It tests the system’s capacity to execute
multiple, diverse operations — from static reference data lookups to regular ex-
pressions and string manipulations — which are typical in scenarios involving data
integration and compliance checks. It provides a robust challenge to the system,
testing its performance and accuracy under load and complex logic conditions.

4.4 Performance Analysis
For the purpose of this performance analysis, the primary metric that will be

evaluated is execution time. Execution time is chosen as the focus metric because
it directly impacts the user experience and operational efficiency in real-world
applications of the Python implementation of the Ataccama Expression Language.
The efficiency with which the system processes data validations directly affects
throughput and responsiveness, which are critical factors for data processing
workflows.

4.4.1 Expected Outcomes
This analysis aims to validate that the Python implementation, while possibly

slower the original implementation and similar solutions, remains within an
acceptable range of performance efficiency. If the Python version performs within
a factor of up to 10-20 times slower than similar solutions, it may still be considered
viable for scenarios where Python’s ease of use and integration capabilities and
the provided feature set provide significant value over raw execution speed.

By clearly outlining and adhering to this analytical framework, the performance
analysis will provide stakeholders with the critical information needed to make
informed decisions about the viability and further development considerations of
the Python implementation of the Ataccama Expression Language.

4.4.2 Performance Results
Test Case 1: Simple Continent Validation

Table 4.1 shows the execution time comparison for test case n. 1: Continent
Validation. The results are also visualized in Figure 4.1.

More important than the absolute execution time is the relative performance
compared to the similar solutions. Table 4.1 shows the relative execution times
comparison of similar solution relative to our solution for test case n. 1: Continent
Validation. The results are also visualized in Figure 4.2.
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Figure 4.1 Execution Time Comparison for test case n. 1: Continent Validation

Figure 4.2 Execution times in test case n. 1 of similar solution relative to the Python
implementation
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data set platform mean execution time (s) standard deviation (s)

10K rows Expressions transpiler 0.024791 0.000283
10K rows Great Expectations 0.007251 0.000132
10K rows Soda Core 0.035015 0.000997
100K rows Expressions transpiler 0.243883 0.002497
100K rows Great Expectations 0.064827 0.003331
100K rows Soda Core 0.139560 0.001877
1M rows Expressions transpiler 2.373286 0.021965
1M rows Great Expectations 0.611798 0.009475
1M rows Soda Core 1.217617 0.015059
10M rows Expressions transpiler 24.142718 0.167391
10M rows Great Expectations 6.037510 0.075468
10M rows Soda Core 11.746598 0.083357

Table 4.1 Execution Time Comparison for test case n. 1: Continent Validation

data set platform speedup relative to the Python transpiler

10K rows Great Expectations 3.418893
10K rows Soda Core 0.707998
100K rows Great Expectations 3.762030
100K rows Soda Core 1.747508
1M rows Great Expectations 3.879196
1M rows Soda Core 1.949125
10M rows Great Expectations 3.998787
10M rows Soda Core 2.055294

Table 4.2 Relative execution time comparison to Soda Core for test case n. 1:
Continent Validation

In this simple test case, even for 10M records, the Python implementation
is within an acceptable range of performance efficiency compared to the simi-
lar solutions. The execution time is slower than both Soda Core and Greater
Expectations, but the difference is no more than 4x.

Test Case 2: Complex Customer Validation

Table 4.3 shows the execution time comparison for test case n. 2: Customers
Validation. The results are also visualized in Figure 4.3.

More important than the absolute execution time is the relative performance
compared to similar solutions. Table 4.3 shows the relative execution times of
similar solutions in comparison to our solution for test case n. 2: Customer
Validation. The results are also visualized in Figure 4.4.

In the more complex test case involving reference data lookups, even for 1M
records, the Python implementation is within an acceptable range of performance
efficiency compared to the similar solutions. The execution time is slower than
both Soda Core and Greater Expectations, but the difference is below 10x.
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Figure 4.3 Execution time comparison for test case n. 2: Customer Validation

Figure 4.4 Execution times in test case n. 2. of similar solution relative to the
Python implementation
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data set platform mean execution time (s) standard deviation (s)

10K rows Expressions transpiler 0.766311 0.018873
10K rows Great Expectations 5.909839 0.174845
10K rows Soda Core 1.148130 0.033612
100K rows Expressions transpiler 7.631781 0.125656
100K rows Great Expectations 6.799458 0.140569
100K rows Soda Core 2.405331 0.054677
1M rows Expressions transpiler 76.628675 1.256378
1M rows Great Expectations 12.591573 0.095586
1M rows Soda Core 14.839434 0.100132

Table 4.3 Execution time comparison for test case n. 2: Customer Validation

data set platform speedup relative to the Python transpiler

10K rows Great Expectations 0.129667
10K rows Soda Core 0.667443
100K rows Great Expectations 1.122410
100K rows Soda Core 3.172861
1M rows Great Expectations 6.085711
1M rows Soda Core 5.163854

Table 4.4 Execution times in test case n. 2. of similar solution relative to the Python
implementation

4.5 Discussion
The performance analysis of the Python implementation of the Ataccama

Expression Language reveals that the system is within an acceptable range of
performance efficiency for real-world applications. The Python version, while
up to 6-times slower on 1M records than similar tested solutions Soda Core and
Great Expectations, remains competitive in terms of execution time, even for large
datasets. The performance results indicate that the Python implementation can
handle data quality rules efficiently and effectively, making it a viable alternative
for data engineers who require programmatic access to Ataccama’s data quality
tools.

The performance gap is acceptable, especially considering the more comprehen-
sive feature set it provides compared to the other two solutions and pluggability
with data quality rules in Ataccama.

The Python implementation’s performance is likely to improve further with
optimizations and enhancements, such as parallel processing, caching, and JIT
compilation, which could help narrow the gap with the similar solutions. These
optimizations can be explored in the further development of the Python implemen-
tation but could also come from further improvements in the Python interpreter
itself.
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Conclusion
In this thesis, we embarked on the development and subsequent performance

analysis of a Python implementation of the Ataccama Expression Language. The
objective was to create a programmatic bridge allowing data engineers and analysts
to utilize Ataccama’s data quality rules within Python.

Analyzing the problem space revealed the need for a flexible and user-friendly
solution that could be easily integrated into existing Python-based data processing
pipelines while keeping compatibility with the existing Ataccama rule set. This
led to the decision to implement the Ataccama Expression Language in Python.
For the implementation to be relevant, a performance goal was set to not fall
below an acceptable threshold, which was set relative to the execution time of
similar solutions.

We designed a solution with a simple API that uses Python’s code generation
capabilities to translate Ataccama rules into executable Python code. To mantain
compatibility with the existing Ataccama rule set, we set an implementation
scope and decided to include a wide test suite to ensure the correctness of the
translation.

The subsequent phase of the project involved a performance analysis to deter-
mine whether the performance goal and as such the practicality of the Python
implementation in operational environments was met. This analysis was centered
on execution time comparisons with established data quality platforms of Soda
Core and Great Expectations, across various dataset sizes ranging from small to
large scales. Despite slower execution times in certain scenarios, the results were
acceptable. The Python implementation managed to perform within a tolerable
slowdown range, typically less than ten times slower than the baseline. This
confirmed its viability for scenarios where the ease of integration and the flexibility
offered by Python are more critical than the highest possible performance.

This thorough exploration of both development and analysis not only con-
firms the feasibility of Ataccama’s rules in Python but also opens up numerous
possibilities for their application in complex data environments.

44



Bibliography
1. Ataccama. What is a Data Steward? [online]. [N.d.]. [visited on 2024-05-09].

Available from: https://www.ataccama.com/blog/what-is-a-data-
steward.

2. Soda Core [online]. [N.d.]. [visited on 2024-05-07]. Available from: https:
//docs.soda.io/soda-core/overview-main.html.

3. Great Expectations Documentation [online]. [N.d.]. [visited on 2024-05-07].
Available from: https://docs.greatexpectations.io/docs/home/.

4. Snowflake Documentation [online]. [N.d.]. [visited on 2024-05-08]. Available
from: https://docs.snowflake.com/en/.

5. Serverless-Datenintegration – AWS Glue – Amazon Web Services [online].
[N.d.]. [visited on 2024-05-08]. Available from: https://aws.amazon.com/
de/glue/.

6. jonburchel. Azure Data Factory Documentation - Azure Data Factory
[online]. [N.d.]. [visited on 2024-05-08]. Available from: https://learn.
microsoft.com/en-us/azure/data-factory/.

7. Databricks documentation [online]. [N.d.]. [visited on 2024-05-08]. Available
from: https://docs.databricks.com.

8. ONE Expressions :: Ataccama ONE [online]. [N.d.]. [visited on 2024-05-07].
Available from: https : / / docs . ataccama . com / one / latest / common -
actions/one-expressions.html.

9. Was ist ETL? – Extract Transform Load erklärt – AWS [online]. [N.d.].
[visited on 2024-05-09]. Available from: https://aws.amazon.com/de/what-
is/etl/.

10. ANTLR [online]. [N.d.]. [visited on 2024-05-08]. Available from: https:
//www.antlr.org/.

11. AnTLR 4 Documentation [online]. [N.d.]. [visited on 2024-05-07]. Available
from: https://github.com/antlr/antlr4/blob/master/doc/index.md.

12. DateTimeFormatter (Java Platform SE 8 ) [online]. [N.d.]. [visited on
2024-04-28]. Available from: https://docs.oracle.com/javase/8/docs/
api/java/time/format/DateTimeFormatter.html.

13. datetime — Basic date and time types [online]. [N.d.]. [visited on 2024-05-07].
Available from: https://docs.python.org/3/library/datetime.html.

14. 6. Expressions [online]. [N.d.]. [visited on 2024-05-07]. Available from: https:
//docs.python.org/3/reference/expressions.html.

15. Introduction | Documentation | Poetry - Python dependency management
and packaging made easy [online]. [N.d.]. [visited on 2024-05-09]. Available
from: https://python-poetry.org/docs/.

16. mypy - Optional Static Typing for Python [online]. [N.d.]. [visited on 2024-05-09].
Available from: https://mypy-lang.org/.

45

https://www.ataccama.com/blog/what-is-a-data-steward
https://www.ataccama.com/blog/what-is-a-data-steward
https://docs.soda.io/soda-core/overview-main.html
https://docs.soda.io/soda-core/overview-main.html
https://docs.greatexpectations.io/docs/home/
https://docs.snowflake.com/en/
https://aws.amazon.com/de/glue/
https://aws.amazon.com/de/glue/
https://learn.microsoft.com/en-us/azure/data-factory/
https://learn.microsoft.com/en-us/azure/data-factory/
https://docs.databricks.com
https://docs.ataccama.com/one/latest/common-actions/one-expressions.html
https://docs.ataccama.com/one/latest/common-actions/one-expressions.html
https://aws.amazon.com/de/what-is/etl/
https://aws.amazon.com/de/what-is/etl/
https://www.antlr.org/
https://www.antlr.org/
https://github.com/antlr/antlr4/blob/master/doc/index.md
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/reference/expressions.html
https://docs.python.org/3/reference/expressions.html
https://python-poetry.org/docs/
https://mypy-lang.org/


17. pytest: helps you write better programs — pytest documentation [online].
[N.d.]. [visited on 2024-05-07]. Available from: https://docs.pytest.org/
en/8.2.x/.

18. pytest fixtures: explicit, modular, scalable — pytest documentation [online].
[N.d.]. [visited on 2024-05-07]. Available from: https://docs.pytest.org/
en/6.2.x/fixture.html.

19. Project Jupyter Documentation [online]. [N.d.]. [visited on 2024-05-07]. Avail-
able from: https://docs.jupyter.org/en/latest/.

46

https://docs.pytest.org/en/8.2.x/
https://docs.pytest.org/en/8.2.x/
https://docs.pytest.org/en/6.2.x/fixture.html
https://docs.pytest.org/en/6.2.x/fixture.html
https://docs.jupyter.org/en/latest/


List of Figures

2.1 Diagram illustrating the ETL (Extract-Transform-Load) process. 20
2.2 API overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Execution Time Comparison for test case n. 1: Continent Validation 40
4.2 Execution times in test case n. 1 of similar solution relative to the

Python implementation . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Execution time comparison for test case n. 2: Customer Validation 42
4.4 Execution times in test case n. 2. of similar solution relative to

the Python implementation . . . . . . . . . . . . . . . . . . . . . 42

47



List of Tables

4.1 Execution Time Comparison for test case n. 1: Continent Validation 41
4.2 Relative execution time comparison to Soda Core for test case n.

1: Continent Validation . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Execution time comparison for test case n. 2: Customer Validation 43
4.4 Execution times in test case n. 2. of similar solution relative to

the Python implementation . . . . . . . . . . . . . . . . . . . . . 43

A.1 List of all functions and their priority and implementation status. 51

48



Acronyms
AST Abstract syntax tree 21, 22, 28

DQM Data Quality Management 7, 8, 10, 13, 15, 37

ETL Extract-Transform-Load 13, 14, 20, 47

GDPR General Data Protection Regulation 7

HIPAA Health Insurance Portability and Accountability Act 7

49



A Attachments

50



A.1 List of Functions

Table A.1 List of all functions and their priority and implementation status.
Function Category Status Priority

math.sqr Math functions Implemented Low
math.e Math functions Implemented Low
math.log10 Math functions Implemented Low
math.tan Math functions Implemented Low
math.sqrt Math functions Implemented Medium
math.exp Math functions Implemented Low
math.sin Math functions Implemented Low
math.atan Math functions Implemented Low
math.pi Math functions Implemented Low
math.acos Math functions Implemented Low
math.asin Math functions Implemented Low
math.log Math functions Implemented Low
math.cos Math functions Implemented Low
math.pow Math functions Implemented Low
removeAccents String functions Implemented High
length String functions Implemented High
jaroWinkler String functions Not Implemented NaN
upper String functions Implemented High
matches String functions Implemented High
lastIndexOf String functions Implemented High
trim String functions Implemented High
capitalize String functions Implemented High
trashNonLetters String functions Implemented High
sortWords String functions Implemented Medium
indexOf String functions Implemented High
diceCoefficient String functions Not Implemented Low
jaccardCoefficient String functions Not Implemented NaN
right String functions Implemented High
soundex String functions Not Implemented Low
transliterate String functions Implemented Low
distinct String functions Implemented Medium
wordCombinations String functions Not Implemented Low
set.sumExp Set functions Implemented Low
replace String functions Implemented High
set.symmetricDifference Set functions Not Implemented Low
containsWord String functions Implemented High
set.lcsIntersectionResultExp Set functions Not Implemented Low
set.lastIndexOfExp Set functions Implemented Low
set.intersectionExp Set functions Not Implemented Low
set.filterExp Set functions Implemented Low
set.lcsSymmetricDifferenceResult Set functions Not Implemented Low
set.distinct Set functions Implemented Low
editDistance String functions Implemented Medium
set.lcsDifferenceResultExp Set functions Not Implemented Low
set.lastIndexOf Set functions Implemented Low
wordCount String functions Implemented High
set.differenceExp Set functions Not Implemented Low
set.approxSymmetricDifference Set functions Not Implemented Low
word String functions Implemented High
set.unionResultExp Set functions Not Implemented Low
left String functions Implemented High
set.indexOf Set functions Implemented Low
set.lcsDifferenceResult Set functions Not Implemented Low
isNumber String functions Implemented High
set.differenceResultExp Set functions Not Implemented Low
set.containsExp Set functions Implemented Low
set.union Set functions Not Implemented Low
levenshtein String functions Implemented Medium
set.lcsSymmetricDifferenceResultExp Set functions Not Implemented Low
set.difference Set functions Not Implemented Low
trimLeft String functions Implemented High
set.lcsIntersectionResult Set functions Not Implemented Low
eraseSpacesInNames String functions Implemented High
set.lcsSymmetricDifference Set functions Not Implemented Low

Continued on next page
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Table A.1 List of all functions and their priority and implementation status.
Function Category Status Priority

set.unionExp Set functions Not Implemented Low
trashNonDigits String functions Implemented High
set.indexOfExp Set functions Implemented Low
replicate String functions Implemented Low
set.intersection Set functions Not Implemented Low
set.unionResult Set functions Not Implemented Low
set.distinctExp Set functions Implemented Low
set.size Set functions Implemented Low
set.intersectionResult Set functions Not Implemented Low
set.item Set functions Implemented Low
preserveCase String functions Not Implemented Low
set.symmetricDifferenceResult Set functions Not Implemented Low
hamming String functions Implemented Low
set.subSequence Set functions Implemented Low
set.lcsIntersection Set functions Not Implemented Low
set.differenceResult Set functions Not Implemented Low
set.symmetricDifferenceResultExp Set functions Not Implemented Low
trimRight String functions Implemented High
set.contains Set functions Implemented Low
set.symmetricDifferenceExp Set functions Not Implemented Low
set.intersectionResultExp Set functions Not Implemented Low
set.lcsDifference Set functions Not Implemented Low
ngram String functions Not Implemented Low
trashConsonants String functions Not Implemented Low
set.lcsDifferenceExp Set functions Not Implemented Low
set.lcsSymmetricDifferenceExp Set functions Not Implemented Low
set.lcsIntersectionExp Set functions Not Implemented Low
set.sort Set functions Implemented Low
set.mapExp Set functions Implemented Low
isInFile String functions Implemented High
cpConvert String functions Implemented Medium
substituteAll String functions Implemented High
metaphone String functions Not Implemented Low
doubleMetaphone String functions Not Implemented Low
lower String functions Implemented High
substituteMany String functions Implemented Medium
trashVowels String functions Not Implemented Low
capitalizeWithException String functions Implemented Medium
countNonAsciiLetters String functions Implemented Medium
trashDiacritics String functions Not needed NaN
substr String functions Implemented High
squeezeSpaces String functions Implemented Medium
find String functions Implemented High
is in Set operations Implemented High
in Set operations Implemented High
not in Set operations Implemented High
is not in Set operations Implemented High
bitand Bitwise functions Implemented Low
bitxor Bitwise functions Implemented Low
bitor Bitwise functions Implemented Low
bitneg Bitwise functions Implemented Low
case Conditional expressions Implemented High
decode Conditional expressions Implemented Medium
nvl Conditional expressions Implemented High
iif Conditional expressions Implemented High
getRuntimeVersion Other operations Not Implemented Low
is Other operations Implemented High
is not Other operations Implemented High
setParameterValue Other operations Not Implemented Low
getParameterValue Other operations Not Implemented Low
NOT Logical operations Implemented High
AND Logical operations Implemented High
XOR Logical operations Implemented Medium
OR Logical operations Implemented High
today Date functions Implemented High
dateTrunc Date functions Implemented High
now Date functions Implemented High

Continued on next page
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Table A.1 List of all functions and their priority and implementation status.
Function Category Status Priority

dateAdd Date functions Implemented High
datePart Date functions Implemented High
getRequestTime Date functions Implemented NaN
dateDiff Date functions Implemented High
getDate Date functions Implemented High
geoDistance Uncategorized functions Implemented Low
namedSequence Uncategorized functions Implemented Low
coding.fromBase64 Coding functions Implemented NaN
randomUUID Uncategorized functions Implemented Low
coding.md5, encode.md5 Coding functions Implemented NaN
sequence Uncategorized functions Implemented Low
coding.toBase64, encode.base64 Coding functions Implemented NaN
random Uncategorized functions Implemented High
max MinMax functions Implemented High
safeMin MinMax functions Implemented Medium
safeMax MinMax functions Implemented Medium
min MinMax functions Implemented High
xpath Xml functions Implemented Low
toString Conversion and formatting Implemented High
math.round Conversion and formatting Implemented Medium
math.longFloor Conversion and formatting Implemented Medium
math.ceil, math.ceiling Conversion and formatting Implemented Medium
math.abs Conversion and formatting Implemented Medium
toLong Conversion and formatting Implemented High
math.floor Conversion and formatting Implemented Medium
getMilliseconds Conversion and formatting Implemented High
toInteger Conversion and formatting Implemented High
toDate Conversion and formatting Implemented High
toDateTime Conversion and formatting Implemented High
toFloat Conversion and formatting Implemented High
math.longCeil, math.longCeiling Conversion and formatting Implemented Medium
>= Comparison operators Implemented High
=, == Comparison operators Implemented High
< Comparison operators Implemented High
> Comparison operators Implemented High
<= Comparison operators Implemented High
<>, != Comparison operators Implemented High
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A.2 Expressions transpiler code
The expression transpiler package is the main source code package. It contains

the source code, tests, documentation, and additional files.

src
ataccama

expressions..................................main code package
tests

ataccama
expressions.......................package with pytest test suite

examples.......................jupyter notebooks with simple examples
docs................................markdown files with high-level docs
pyproject.toml............................................package file
README.md.............overview with installation and usage instructions
DEVELOPMENT.md............contains information about how to run tests
poetry.lock.......... lock file with dependency versions for installation
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A.3 Performance analysis code
The performance analysis is for reproduction purposes provided as code. The

package has following structure:

expressions_perf_test................package containing source code
continent.......................... implementation of test case n. 1
customers.......................... implementation of test case n. 2
common .................................. common code for test cases
run_single.py.............main script for running a single test case

README.md........................... installation and usage instructions
requirements.txt........ list of required packages, used for installation
run_all.sh ............................. script for running all test cases
results.csv. ....................... results of the performance analysis
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