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Abstract: This thesis explores the topic of generating Czech lyrics to English
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Introduction
Cover songs are created all around the world. Some of the covers stay very close
to the original, while others may tweak the lyrics a bit. Some covers translate the
lyrics into another language. There are two very prominent reasons why someone
would want to translate a song into their language: either they like the song and
want to bring it closer to the speakers of their language, or the song is part of
a musical film or a musical theatre show that is being adapted. Nowadays, both
of the cases are handled by a human translator or a lyricist. When creating the
cover in a different language, many formal requirements must be met: the lyrics
must fit the melody, for musicals the lyrics must fit the context in meaning and
for musical films specifically the singer must be able to lip-sync the song with
the original motion picture. The process of writing these lyrics is ineffective and
in the age of natural language processing models, automatic methods should be
explored to see how these models handle the task.

In this thesis, we address the problem of generating lyrics to Czech covers of
English songs. The task of generating lyrics is quite underresearched and we are
the first to tackle it for Czech or similar languages. To the best of our knowledge,
no adequate dataset for this task has been published. Additionally, it is not
clear how to measure the quality of the covers. Our work aims to analyze the
issue, highlight the challenges, and propose initial approaches to the automatic
generation of Czech covers.

We collect and process the necessary data and conduct initial experiments.
We propose some possible metrics and analyze their behaviour on various kinds
of data. We try several approaches to Czech cover generation and subsequently
evaluate these approaches to determine which avenue of research to take next. In
this work, we compare various generative models with different training strategies.

In Chapter 1 (Background), we will introduce the necessary terminology and
knowledge for understanding the rest of the work. In Chapter 2 (Related work),
we will summarise the research already done on this topic. In chapter 3 (Metrics)
we will introduce the metrics we use in this work, both our own and the ones
proposed by various papers. In chapter 4 (Datasets), we describe the process of
making, as well as the final form of two datasets. In chapter 5 (Methodology),
we describe in detail the methods used in each step of the proposed pipeline.
In chapter 6 (Experiments), we run many experiments and thoroughly evaluate
them both by the automatic metrics and the human evaluators. In chapter 7 we
describe the high-level overview of the pipeline as well as the overview of the web
application attached to this work, and document the usage.
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1. Background
In this chapter, we will define terms and provide the necessary background for
the reader to understand the rest of this work. First, we will explain all necessary
terminology associated with songs and their lyrics. Then, we will briefly introduce
language models and methods of leveraging the model outputs.

1.1 Song lyrics
Song lyrics are words that are sung to a song. Usually, the lyrics map onto the
melody of the song and flow with the changes of the rhythm and the intonation.
Even though we see the importance of melody concerning lyrics, due to the lack
of proper data, we will explicitly work only with the lyrics.

By deciding to work purely with the lyrics of the songs, our task in some ways
similar to poetry translation and generation. In some cases, similar approaches
and tools can be used for either poetry or lyrics generation/translation, however,
in other cases, the tasks are substantially different and have to be approached
differently, especially concerning the formal constraints of poems and song lyrics.

1.1.1 Song sections
In this work, we decided to focus on individual song sections rather than whole
songs. A music section can be defined as a complete, but not independent, musical
idea. [Bye, 1993] By this definition, song sections are commonly intro, verse, pre-
chorus, chorus, bridge, outro etc. For our task, only the sections with lyrics are
of interest to us. These usually are verse and chorus, occasionally bridge or pre-
chorus. Each of these sections holds a different role: while the chorus is usually
repetitive and simple to remember, the role of a verse or a pre-chorus is to tell a
story or lead up to the chorus of the song.

We use the terms section or lyrics section to address the lyrics of any coherent
music section of a song, regardless of whether it is a chorus, a verse or any other
song section. In the following example, we can see one verse and one chorus of
the same song. We will handle each of these sections independently.

The snow glows white on the mountain tonight
Not a footprint to be seen
A kingdom of isolation
And it looks like I’m the queen

Let it go
Let it go
Can’t hold it back anymore
Let it go
Let it go
Turn away and slam the door
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1.1.2 Cover versions
‘A “cover” is typically defined as a recording of a song that was first recorded by
someone else.’ writes Magnus [2022] in his book ‘A Philosophy of Cover Songs’.
A similar definition is provided by Cusic [2005]: ‘The definition of a “cover” song
is one that has been recorded before.’ However, this topic is much more complex.
Magnus introduces 5 problems of cover songs. They deal with the definition of an
original version based on the time of the first recording or a performance, as well
as on the authorship of the song. For us, the most relevant problem is the fifth
problem about whether when the lyrics are changed, the new song still qualifies
as a cover. According to Magnus [2022], it does.

In Czechoslovakia in the 1970s, many well-known foreign songs were covered
and in the process translated into Czech or Slovak. These covers sometimes stayed
close to the original meaning of the text, but frequently concentrated more on
phonetic similarity and singability. One of the famous examples may be “Mám
Styl Čendy” [I have Čenda’s style] by Karel Gott, covering Elton John’s “I’m Still
Standing”. Later on, these covers continued, but mostly for satyric reasons (for
example parodies by the band Těžkej Pokondr). A comprehensive list of Czech
Cover versions can be found on Wikipedia1, to date counting 5118 cover songs.

A subset of Czech cover songs is considered to be song translations, oftentimes
made for a musical theatre or a musical film. These, except for a few exceptions,
do not appear on the Czech Cover Versions List (which contains mainly parodies),
but due to having the same melody, according to Magnus [2022], these songs also
qualify as covers. The challenge in song translation is mainly in conveying the
meaning without sacrificing the essence of the song. As stated by [Low, 2003] “In
song translation, the constraints are imposed by the pre-existing music”.

Based on that, [Franzon, 2008] introduces the following Five choices in song
translation:

1. Leaving the song untranslated

2. Translating the lyrics but not taking the music into account

3. Writing new lyrics to the original music with no overt relation to the original
lyrics

4. Translating the lyrics and adapting the music accordingly – sometimes to
the extent that a brand new composition is deemed necessary

5. Adapting the translation to the original music

Each of these choices is adequate for a different task. For making different
language cover versions, choices 3, 4 and 5 are relevant, as they satisfy both the
‘different language’ part and the ‘Cover’ part. When making subtitles, option 2
is perfect. When making a musical film adaptation, option 1 might be a good
choice. In this work, we decided not to take music directly into account, so it is
out of the question to adapt the music to the lyrics (choice 4), which leaves us
with choices 3 (results in parodies) and 5 (results in singable translations).

1Wikipedia, The Free Encyclopedia, Seznam Českých coververźı zahraničńıch skladeb. [ac-
cessed 18-March-2024]
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As Franzon [2008] suggests, song translation is not a translation in the true
sense of the word, it is more of making a cover version while taking the original
meaning, mood and context into account. In this work, we will use the terms
song translation and song cover interchangeably, always meaning that lyrics were
rewritten from the original language to a target language.

1.1.3 Singable covers and translations
In this section, we will introduce the main principles that make a song translation
singable, almost entirely adapted from Peter Low. In his paper, Low [2003]
introduces the pentathlon principle of singable translations, which consists of
five criteria: singability, sense, naturalness, rhythm and rhyme. Low describes
the pentathlon principle as an attempt to balance the above-mentioned criteria,
the same as athletes competing in pentathlon must compete in five events, and
optimize their scoring overall. Even though Low writes purely about translations,
as stated in Section 1.1.2, the line between non-parodic cover versions and song
translations is very thin and therefore the principle applied to both cases.

Rhythm and Singability

Rhythm and singability are closely connected and even though Low describes
them separately we decided to refer to them together as singability. Singability is
a property of a text, meaning that the text can be easily and comfortably mapped
onto a certain melody. To do that, the text has to have a certain rhythm, mainly
dictated by syllable counts and subsequently by syllable stress.

Keeping the same syllable counts per line as the original lyrics is highly desir-
able for easily mapping lyrics onto the melody, but it is not strictly necessary, as
the melody can be slightly tweaked to accommodate the lyrics. The standard in
Western music is to put one syllable per each note, however, in some cases, it is
possible to sing one syllable over several notes instead. It is called melisma, and
a famous example in English is the final “ Hallelu-u-u-u-jah” of the chorus in the
song Hallelujah by Leonard Cohen, or in Czech the “voda hu-u-č́ı po luči-i-nách”
from the Czech national anthem. The opposite example may be splitting one
long note into several shorter ones to fit more syllables in. Another option for
adapting lyrics to the melody may be slurring syllables together, and not pro-
nouncing them properly. One of the common examples of this phenomenon may
be the schwa sound, called the reduced vowel, which is very popular in English.
The schwa sound is, for example, the ’a’ in ’about’ or the second ’e’ in ’every-
thing’. Simply put, the speaker can decide to pronounce it fully, but oftentimes it
becomes so reduced that the syllable created by this vowel can be skipped over.
[Flemming, 2009]

Low [2003] also emphasizes the importance of not only keeping the syllable
counts, but also choosing the correct words in the correct parts of the lyrics based
on the stress of the word: “Common English words like ‘it’ and ‘the’ can easily
be sung to a short note, preferably a quaver, but can scarcely be held for a minim.
It is true that singers sometimes pronounce ‘it’ as ‘eeet’ while still making sense;
but often this will not match the music.” The stressed syllables usually fall on
down beats and on notes held for a longer time, but detecting these patterns in
song lyrics might prove to be difficult, as ”Rhythm in songs is not the same as a
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metre in traditional poetic scansion.” [Low, 2003] It is much more song-specific,
dependent on the dynamics of the melody as well as the stress patterns of the
lyrics.

Sense

Unless making a parody, it is desired that the cover version has some semantic
similarity with the original version. However, the constraints of the song justify
and sometimes even require a modification of meaning.

Naturalness

The lyrics of the cover should sound natural. It is okay to switch up word order
a bit in favour of other criteria, for example to enforce rhyming or singability,
but according to Low [2003]: ”A song text must communicate effectively on first
encounter. ... A singable translation is not worth making unless it is understood
while the song is sung.” When making a cover, it is better to omit some meaning
of the song to express the few core thoughts naturally.

Rhyme

Rhyme oftentimes makes up the structure of the song, pairing up the lines and
sections and tying it all together. On the other hand, keeping up the rhyme
scheme perfectly may come at the cost of ignoring the sense or the naturalness
of the lyrics, which is not ideal. Low [2003] mentions that: ”In this case the
rhymes will not have to be as perfect or numerous as in the original, and the
rhyme scheme need not be observed strictly.”

Compared to poetry, songs do not require to have perfect rhymes (identical
phonemes at the end of the lines). Slant rhymes (similar but not identically
sounding), identical rhymes (the same word in both sound and sense) and even
words that can be mispronounced to sound similarly are considered rhyming in
song lyrics. Another difference is that while poetry is heavily based on rhyme
schemes considering rhymes at the end of the line, a lot of rhymes in song lyrics
are hidden by repetition of a sequence of phonemes within a line or a section
(internal rhyme).

perfect rhyme Patience unmoved! no marvel though she pause
They can be meek that have no other cause

slant rhyme Hey yo, I’m just like my country
I’m young, scrappy and hungry

identical rhyme Cause way down deep inside we’ve got a dream
I’ve got a dream

internal rhyme Of course it’s hard to have intercourse
over four sets of corsets

Table 1.1: Types of rhymes commonly appearing in song lyrics
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1.2 N-gram Language Model
The n-gram model is a probabilistic model that predicts the likelihood of a word
given the previous n − 1 words in a text sequence.

It operates on the principle of Markov assumption, which states, in the context
of n-grams, that the probability of a word wk depends only on the previous n − 1
words instead of the whole history of the words preceding wk. Let us consider a
simple bi-gram model with n = 2. With w1, w2, . . . , wk−1 being a word sequence,
to predict the probability of wk following this sequence, normally the probability
would be counted as P (wk|w1w2 . . . wk−1). The Markov assumption for n = 2
says that:

P (wk|w1w2 . . . wk−1) ≈ P (wk|wk−1) (1.1)
To construct an n-gram model, we obtain the probabilities by calculating

the maximum likelihood estimation (MLE). The probability of a word wk using
n-grams of size n given the previous words wk−n+1 . . . wk−1 is computed as:

P (wk|wk−n+1 . . . wk−1) = Count(wk−n+1 . . . wk−1wk)
Count(wk−n+1 . . . wk−1) (1.2)

The n-gram model is constructed by tokenizing a corpus of text into words
and then calculating the probability of each n-gram appearing in the corpus of
text according to Eq. 1.2. To combat the problem of words appearing in a
previously unseen context, smoothing is used. The simplest way to do smoothing
is to use the Laplace smoothing. In Laplace smoothing, 1 is added to each word
of the vocabulary (each word appearing in the corpus of text the model is trained
on) before normalizing the counts into probabilities. The new probabilities are
calculated as follows, with V signifying the vocabulary size:

PLaplace(wk|wk−n+1 . . . wk−1) = Count(wk−n+1 . . . wk−1wk) + 1
Count(wk−n+1 . . . wk−1) + V

(1.3)

1.3 Neural Language Models
In this section, we are going to assume that the reader has basic knowledge about
neural networks. We will introduce the transformer architecture and mention
self-attention and its importance. Then we will discuss the training and fine-
tuning process of transformer-based models, as well as inference, sampling and
prompting methods.

Most modern neural language models are based on the transformer architec-
ture that is based on the encoder-decoder architecture. When used for causal
language modelling (predicting the next token following a sequence of tokens),
the transformer gets a sequence of words as the input and returns a prediction
of the following token. The encoder part of the transformer focuses on under-
standing and extracting information from the input and creating a contextualized
representation of it, while the decoder takes this representation and is responsible
for generating new tokens.
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Figure 1.1: The original transformer model architecture from the paper Attention
is all you need by Vaswani et al. [2017]

Nowadays, the majority of relevant language models are based on transform-
ers. Transformer-based models are split into three categories: encoder-only archi-
tectures, encoder-decoder architectures and decoder-only architectures. All have
in common that they consist of stacks of transformer blocks.

1.3.1 Transformer block
A transformer block maps a sequence of input vectors (x1, . . . , xn) to a sequence
of output vectors (z1, . . . , zn). The block consists of a multi-headed self-attention
layer and a layer of small feed-forward neural networks, one for each token, with
layer normalization after each operation and residual connections around each
operation (see Fig. 1.1).

The layer normalization normalizes the outputs of both self-attention and the
feed-forward neural network to keep the values in a reasonable range to avoid
exploding and vanishing gradients. Residual connections allow passing of infor-
mation from lower layers to the higher layers more efficiently.

Self-attention mechanism looks at the surrounding token representations and
integrates the information from them into the current token representation, to
better build the meaning of the token based on the surrounding context. It helps
the model with learning the relations between words and parts of the input, as
well as focusing on specific parts of the input while generating the following token.

The attention mechanism calculates a weight for each element of the input, in-
dicating the importance of that element for the current prediction. These weights
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are then used to calculate a weighted sum of the input, which is used to generate
the prediction. Multihead self-attention is a specific type of attention mechanism
where the model pays attention to different parts of the input sequence in order to
make a prediction. It means the model is looking at the input sequence multiple
times, and each time it is looking at it, it is focusing on different parts of it.
[Jurafsky and Martin, 2024]

Attention can be either masked or unmasked, depending on whether the model
can look into the future or not. In encoder transformer blocks, the attention
should look into the future, in the decoder transformer blocks, upon inference
the model only knows the preceding sequence of tokens, therefore during training,
masking all tokens occurring after the current one is necessary. Then, the model
is performing a masked self-attention.

1.3.2 BERT
Bidirectional Encoder Representations from Transformers (BERT) [Devlin et al.,
2018] is an example of a model implementing the encoder-only architecture.
BERT is able to learn complex connections from input texts, and create con-
cise word and sentence embeddings.

1.3.3 Generative large language models
Generative large language models typically use the decoder-only architecture,
with multiple decoder-type transformer blocks being stacked onto each other.
Around this sequence of transformer blocks, a necessary interface must be built.

First, the input of the model has to be tokenized by a pre-trained tokenizer.
The tokenizer segments the text into subwords from a vocabulary of a fixed size.
There are many different tokenization methods available. One of the common
options is using the BPE (Byte-Pair Encoding) algorithm [Sennrich et al., 2015],
which gradually merges the most frequent character sequences until we achieve
the desired vocabulary size. The tokenizers can encode text into tokens as well
as decode the output tokens back to text.

The tokenization is followed by an embedding layer. The token embeddings
are assigned to individual tokens, as learned during the training phase. We also
provide information about the positions of the tokens, both absolute and relative
to surrounding tokens, to the self-attention algorithm, which is done by creating
a position embedding.

Finally, the tokenized and embedded input is passed through the sequence of
the transformer blocks. The probabilistic distribution over the tokens that could
be generated next is computed from the output of the transformer blocks by the
language modeling head composed of a linear layer outputting the logits and a
softmax layer outputting probabilities of individual tokens from the vocabulary.

1.3.4 Training and fine-tuning
Both training and fine-tuning of generative transformer-based language models
use a self-training algorithm, which in each time step t tries to predict the next
word. We train the model to minimize the error in predicting the true next word

10



in the training sequence, using cross-entropy as the loss function. [Jurafsky and
Martin, 2024]

LCE = −
∑︂
w∈V

Pt(w)logP̂ t(w) (1.4)

Cross-entropy loss measures the difference between a predicted probability
distribution P̂ t(w) and the correct distribution Pt(w).

1.3.5 Few-shot prompting
Few-shot prompting is a technique of teaching models to generate a specific an-
swer to a specific question via prompting. It is done by showing several question-
answer pairs as an example in the prompt before posing the question we want
the model to respond to, as can be seen in Table 1.22.

Prompt: This is awesome! // Positive
This is bad! // Negative
Wow, that movie was rad! // Positive
What a horrible show! //

Model output: Negative

Table 1.2: Example of 3-shot prompting a model to output a sentiment of a
sentence in one word

1.3.6 Sampling methods
Lastly, let us briefly mention different sampling methods. Sampling is the process
of choosing a token to generate based on the probability distribution provided
by the model. While the simplest decoding method is greedy sampling (choosing
the most probable token), it does not often provide satisfactory results.

Top-k sampling means choosing the most probable k tokens, normalizing their
probabilities to sum up to 1 and choosing out of these tokens according to their
probability. Similarly, top-p sampling chooses the top most probable options, but
instead of fixing a number, it chooses the most probable p percentage. [Holtz-
man et al., 2019] In general, the higher the p, the more diverse the generated
vocabulary.

In temperature sampling, the probabilistic distribution is reshaped before
sampling, by dividing the logits u by the temperature parameter t, computing
the probabilities as:

P = softmax
(︃

u

t

)︃
(1.5)

Low temperature values usually mean more logical text, while high tempera-
ture lets the model choose more freely.

2Example of few-shot prompting from https://www.promptingguide.ai/techniques/fewshot
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2. Related Work

2.1 Poetry and Lyrics Generation
Poetry and lyrics generation tasks are closely connected and while each has its
specifics, many of the main ideas are similar.

There are two main approaches to poetry and lyric generation. Generation
according to a given structure, or generation via a constrained translation of
a source section. One could say these two options are equivalent to when a
human lyricist is writing lyrics for a song with only melody and no previous
lyrics (or without understanding the previous lyrics) and trying to make a singable
translation of the song.

The main difference between poetry and lyric generation is that while poetry
is heavily based on formal constraints like rhyme schemes and metric patterns,
lyric generation is heavily based on a pre-existing melody.

Many different approaches have been taken to poetry and lyrics generation.
After some rule-based attempts that have been proposed as early as in the 1970s
[Farringdon, 1970], (for example [Dı́az-Agudo et al., 2002] with a rule-based ap-
proach to generating Spanish poetry), Manurung [2004] proposed the use of evo-
lutionary algorithms.

Genzel et al. [2010] constrain a statistical MT system to return translations
of a specific length, meter and rhyme scheme. This is done as a tradeoff to the
overall translation quality. Malmi et al. [2016] propose a deep learning approach
to rap lyrics generation and introduce a rhyme-density metric. Hopkins and
Kiela [2017] use recurrent neural networks with rhythmic constraints for poetry
generation. RNNs are also used by Watanabe et al. [2018], who proposed a
melody-conditioned language model based on mapping word boundaries onto
breaks in the melody.

Lee et al. [2019] takes a new approach to lyrics-to-melody generation by split-
ting the task into two subtasks: lyrics-to-rhythm (duration of the notes) and
rhythm-to-melody (pitches of the notes), using an LSTM seq2seq model for each.
A lyric-melody-aligned dataset was used to train both of these models.

Transformer-based auto-regressive language models were used to generate
song lyrics with a predefined format, with special symbols to improve the models’
performance [Li et al., 2020, Zou et al., 2021, Lo et al., 2022]

Song translation for tonal languages (in this case Chinese) is addressed by Guo
et al. [2022], adapting the tone of the lyrics to the changes in melody. Special
tokens specifying the desired number of syllables and a rhyme scheme, as well as
word boundary tokens were added by Ou et al. [2023].

Recently, a new metric for evaluating the singability of translated lyrics was
proposed by Kim et al. [2023b]. The metric does not rely on the melody and
considers just a pair of song lyrics and their linguistic properties.

2.2 Existing Datasets
To the best of our knowledge, there are no datasets containing Czech and English
aligned song lyrics, Czech lyrics with melodies available, or even English lyrics
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aligned with melodies, to which a Czech translation could be found.
In general, datasets of song lyrics are rare. Goto et al. [2002] made a database

of song lyrics with aligned melodies, however, the majority of the song lyrics are
in Japanese. Benito-Santos et al. [2023] put together a dataset of Spanish song
lyrics without melodies for comparing semantic similarity across songs. A Chinese
hand-aligned dataset of lyrics and melodies extracted from midi was created by
Lee et al. [2019]. Guo et al. [2022] uses monolingual and unaligned data in
English and Chinese as a train set, and only a few aligned English-Chinese song
lyrics with melodies as a test set. An English-Korean singable lyric translation
dataset aligning Korean and English lyrics line-by-line and section-by-section was
proposed by Kim et al. [2023a]. Approximately 89% of the dataset consists of
K-pop song lyrics.

13



3. Metrics
Metrics play a pivotal role in our task. They are needed throughout the whole
solution, from the analysis of datasets, through training of the language models,
to the final evaluation of results.

We experimented with many metrics, but in the end, settled on the ones
described in this section. We divide them into three categories based on the
origin of the metric. The first category contains external metrics, that are well
known and commonly used to evaluate results. The second category contains
reimplemented metrics, that we reimplemented and adapted based on descriptions
in previous works by other authors. The last category contains our metrics which
we invented based on the need to measure that specific information and the lack
of an adequate metric for that specific task.

As stated in Section 1.1.2, a defining quality of a cover version is that the
main musical idea (such as melody) stays mostly unchanged, even when the lyrics
change. Covers do not have to be translations, but unless a satyric cover is desired,
it is usually considered to be better when covers have at least a similar topic or
are conveying the same feeling as the original. Our goal is to propose metrics to
measure foremost the singability of the covers, rhyme of the covers and semantic
similarity between the cover and the original, copying the modified pentathlon
principle presented in Section 1.1.3. Even though song translations and cover
versions differ from traditional translations of unconstrained text, tracking the
scores of translation metrics tells us about the naturalness and correctness of
word order.

3.1 External Metrics

3.1.1 BLEU
BLEU (Bilingual Evaluation Understudy) introduced by [Papineni et al., 2002] is
a metric commonly used to evaluate the quality of machine translations against
one or more (usually human) reference translations. It was developed to address
the challenge of automatically measuring the quality of translations without hu-
man judgment.

BLEU is based on the concept of overlapping n-gram precision. For each n,
the ratio of the number of n-grams in the candidate translation that also appear
in any reference translation, to the total number of n-grams in the candidate
translation is calculated. From these precision scores, the weighted average is
computed. Usually, n is from 1 to 4, with the weights for the weighted average
being (0.25, 0.25, 0.25, 0.25). There is also a brevity penalty, penalizing shorter
translations, that could artificially increase the precision score.

Due to BLEU being a weighted average of precision multiplied by a brevity
penalty which is between 0 and 1, the BLEU score will always give a number
between 0 and 1. A higher BLEU score (closer to 1) indicates that the ma-
chine translation is closer to the human-translated references in terms of n-gram
matches.
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3.1.2 chrF
The Character n-gram F-score (chrF) metric introduced by [Popović, 2015] is
another method used to evaluate the quality of machine translations compared
to human reference translations. chrF is based on the idea of comparing character-
level n-gram overlap between the candidate translation and reference translations,
instead of word sequences as in BLEU (see 3.1.1). This ensures that chrF works
well when evaluating translations in languages with complex morphology.

The chrF metric computes the F-score, which combines precision and recall
of character n-grams. Precision measures the proportion of character n-grams in
the candidate translation that also appear in the reference translation, whereas
recall measures the proportion of character n-grams in the reference translation
that are found in the candidate translation. The F-score is calculated as the
harmonic mean of precision and recall:

Fβ-score = (1 + β2) · precision · recall
(β2 · precision) + recall (3.1)

chrF gives results between 0 and 1, closer to 1 means that the candidate
translation has a higher overlap with the reference translation and, therefore
should be better.

3.2 Reimplemented Metrics
The topic of computational song lyrics analysis is quite underresearched and
there are not many resources on metrics comparing the singability of songs. Four
metrics are proposed in “A Computational Evaluation Framework for Singable
Lyric Translation” paper by Kim et al. [2023b], each covering a different aspect of
creating singable song translations, specifically for English, Japanese and Korean.
One focuses on syllable counts, one on the meaning of the lyrics and two on the
high level overview of the song, comparing individual sections of both songs in
the correlation of repetitiveness and similarity of the sections within the song,
effectively checking whether choruses map onto choruses and verses on verses.
As we focus on generating individual sections without the knowledge of the rest
of the song, we reimplement only the two metrics that use the individual song
sections independently of the rest of the song.

3.2.1 Syllable count distance
Maintaining similar syllable counts between the original and the new lyrics for
each line is essential for the two sets of lyrics to fit the same melody. Syllable
count distance measures the closeness of lengths of each two lines.

Let us denote a pair of lyrics consisting of n lines as X = {x1, . . . , xn} and
X̃ = {x̃1, . . . , x̃n}, where each element represents one line. Let syl be a syllable
counter function. For example, if the first line of the English lyrics X is x1 = ”Do
you want to build a snowman” and the corresponding line in Czech lyrics would
be X̃ is x̃1 = ”Nechceš postavit sněhuláka”, then syl(x1) = 8 and syl(x̃1) = 9.

[Kim et al., 2023b] define the line syllable count distance between a pair of
lyrics X and X̃ as follows:
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SylDist(X, X̃) = 1
2n

n∑︂
i=1

(︄
|syl(xi) − syl(xĩ)|

syl(xi)
+ |syl(xi) − syl(xĩ)|

syl(x̃i)

)︄
(3.2)

This metric returns a float, that could be interpreted as the percentual differ-
ence in length of the two texts. Therefore, it can take values from zero to infinity,
usually staying in the range of 0 to 1, as it is unusual that one of the compared
lyric lines is more than 100% longer than the other one.

3.2.2 Semantic similarity
To show how much the meaning of an original song deviates from the meaning
of the cover song, Kim et al. [2023b] propose the semantic similarity metric.
First, the contextual embeddings of each lyrics are obtained using a pre-trained
Sentence BERT model1 and then the cosine similarity between the embeddings
is calculated. As this model was trained for English, the lyrics in the different
languages have to be machine-translated before obtaining the embeddings. Kim
et al. [2023b] explore the semantic similarity of the two songs based on the size
of the subsections that are being compared. They concluded that due to the
various word orders of different languages, and the varying number of syllables
needed to express the same thoughts in different languages, the best option is to
compare the semantic similarity section-wise, not line-wise. After obtaining the
similarity for each section of the song, it is averaged by a weighted average, where
the weights are the number of lines in each section over the number of lines in
the whole song.

We adapted this metric for just one section, as we generate only one section
at a time. We are also translating the Czech sections into English using Lindat
translator [Popel et al., 2020] before obtaining the embedding of the whole sec-
tion. From the section embeddings, cosine similarity is calculated. This cosine
similarity is the output of the metric for each section separately.

3.2.3 Phoneme distinct-2
Phoneme distinct-2 is a monolingual metric, that describes the diversity and
repetitiveness of a section of a text, as the ratio of the number of distinct phoneme
bigrams to the total number of phoneme bigrams23. Originally, it was introduced
by [Li et al., 2015] where it measured diversity in terms of word bigrams, later
the metric was adapted for phonemes by [Kim et al., 2023b]. Even though this
metric is monolingual, Kim et al. [2023b] use it in the two metrics comparing the
section-wise structure of the whole song. We are using it in one metric of our own
(3.3.4), so we thought it appropriate to describe it properly here. The phoneme
distinct-2 (dist2 ) of section Xi is computed as:

dist2(Xi) = #distinct bigrams in Xi

#bigrams in Xi

(3.3)

1sentence BERT https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
2Czech phonetic transcription https://github.com/lukyjanek/phonetic-transcription
3English phonetic transcription https://pypi.org/project/eng-to-ipa/
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Phoneme distinct-2 can take values between 0 and 1. Lower values indicate
higher repetition and vice versa.

3.3 Our metrics
The reimplemented metrics from Kim et al. [2023b] focus on the linguistic rela-
tionship between English, Japanese and Korean lyrics. Also, from the pentathlon
principle of singability (see Section 1.1.3), they tackle only the criterium of sense
and one aspect of singability. In this section, we will propose two metrics measur-
ing rhyme (Rhyme scheme agreement and Rhyme scheme accuracy), two metrics
measuring singability (Syllable count accuracy and Phoneme repetition difference)
and two metrics measuring sense (Keyword similarity and Line-by-line keyword
similarity).

None of the metrics we propose measures the naturalness of the lyrics, as we
find that it can only be measured by human evaluators. Evaluation of naturalness
will have to be done manually. We tried implementing a metric comparing the
singability in a sense of the rhythm of the Czech and English lyrics by using tools
made for detecting metre in poetry. However, as stated in Section 1.1.3, song
lyrics usually do not follow any specific metre, as the stress falls on the syllables
accentuated by the melody, not necessarily where the stress should correctly be.
Furthermore, stress in Czech and English acts differently, is defined differently
and overall is not well transferable from one language to the other.

For the whole of the following section, we will refer to a pair of lyrics con-
sisting of n lines as X = {x1, . . . , xn} and X̃ = {x̃1, . . . , x̃n}, where each element
represents one line.

3.3.1 Rhyme Scheme Agreement
Rhymes are very prominent in both Czech and English texts, compared to Eastern
poetry and songs, therefore, we decided to include a rhyme scheme agreement as
a metric. We assume that one of the two schemes being compared is the ideal
rhyme scheme we are trying to achieve, while the other is our attempt to get as
close as possible to the desired rhyme scheme. Let’s call them desired and new
rhyme schemes. This metric is not symmetrical.

Our metric consists of two components put together by weighted average. The
first component is a cross-lingual, checking how many specific rhymes were kept
in the new scheme during the translation (recall), and the second component is
checking only whether enough rhymes were kept, not dependent on their location.
This comes from [Low, 2003], where is stated that having fewer rhymes, or rhymes
in different places is better than having no rhymes.

Let us denote the desired rhyme scheme as a graph R with the indices of
lines {x1, . . . , xn} as nodes, and the new rhyme scheme as a graph R̃, with the
indices of lines {x̃1, . . . , x̃n} as nodes. An edge between the nodes i and j in the
rhyme scheme R means that the lines xi and xj rhyme. Edg(R) returns the set
of indices of the rhyming lines in the rhyme scheme R. Both the desired and the
new rhyme scheme have to have the same amount of nodes, meaning the same
amount of lines in the song section.
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The first part is computed as a recall, and the second part is computed as the
minimum of rhymes per section out of the two compared sections, divided by the
number of rhymes in the desired rhyme scheme. Let #Edg(R) be the number of
edges (rhymes) in the rhyme scheme.

RhymeAgree(R, R̃) = α · Edg(R) ∩ Edg(R̃)
Edg(R) + (1 − α) · min(#Edg(R), #Edg(R̃))

Edg(R)
(3.4)

The best score of the metric is 1 when both of its components achieve a score
of 1. The first part is equal to 1 when all of the edges from the desired rhyme
scheme are also in the new rhyme scheme. Extra edges in the new rhyme scheme
don’t influence the score in any way. The second part of the score is 1 when there
are at least as many edges in the new rhyme scheme as in the desired rhyme
scheme, regardless of the position. This way, when the new rhyme scheme has 0
overlapping edges with the desired scheme, but the same amount of edges as the
desired scheme, it can still obtain a score of (1 − α) as it is better than having
no rhymes at all.

3.3.2 Rhyme scheme accuracy
Similarly as in Section 3.3.1, let us denote the rhyme schemes of two compared
song sections as graphs R and R̃, where the nodes of the graph are the indices
of lines {x1, . . . , xn} and {x̃1, . . . , x̃n}. An edge is between two nodes idx(xi) and
idx(xj) when the lines xi and xj rhyme. Edges(R) returns the set of indices of
the rhyming lines in the rhyme scheme R. The compared sections have to have
the same number of lines, so the rhyme schemes can be mapped onto each other
by the line indices. Rhyme scheme accuracy is computed as:

RhymeAcc(R, R̃) = Edges(R) ∩ Edges(R̃)
Edges(R) ∪ Edges(R̃)

(3.5)

Effectively computing the number of common edges divided by the number of
all edges

3.3.3 Syllable accuracy
Syllable accuracy is the accuracy of syllable counts of the English verse being
equal to the syllable counts of the Czech verse computed over all n lines. Let syll
be a syllable counter function. Then, syllable accuracy is calculated as follows:

SyllAcc(X, X̃) =
∑︁n

i 1 if syl(xi) == syl(x̃i) else 0
n

(3.6)

3.3.4 Phoneme repetition difference
Phoneme repetition creates a sense of rhythm and trying to minimize the differ-
ence between the phoneme repetition of the two compared sections means getting
closer to the desired rhythm and repetition. Phoneme repetition is similar to the
rhyme density measure used for measuring the quality of rap lyrics [Malmi et al.,
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2016]. Second, phoneme repetition difference combats the nature of generative
language models to repeat themselves, by getting very low scores on the very
repetitive output sections, therefore making the difference higher.

Phoneme repetition difference is the difference of phoneme distinct-2 values
of the two song sections (see Section 3.2.3), computed as:

PhonDiff(X, X̃) = |dist2(X) − dist2(X̃)| (3.7)
The disadvantage is that because the phoneme distinct-2 is computed as the

number of distinct bigrams over the number of all bigrams, we do not have any
information about the distribution of the repeating bigrams in the section. This
means that a very rhythmic and natural section could have the same phoneme
distinct-2 as a section where one half consists of the same phoneme bigram repeat-
ing many times and the other half does not have any repetitions at all. However,
these are special cases that are not common.

3.3.5 Keyword similarity
Keywords are a simple way of summing up the meaning of text. We are using
the keyword similarity metric to compare the similarity of the keywords of the
English input section and the Czech output section.

The same as in semantic similarity in section 3.2.2, the Czech section is
machine-translated to English before the keyword extraction, the keywords are
joined by commas and then semantic similarity of these joined keywords is com-
puted.

3.3.6 Line-by-line keyword Similarity
Even though Kim et al. [2023b] showed that line-wise similarity is lower than
section-wise similarity, when generating each line separately, the line-wise simi-
larity is needed.

We also implement the line-wise similarity by comparing the keywords for
each line the same as keyword similarity in Section 3.3.5, with the only exception
of extracting the keywords, joining them and getting the semantic similarity for
each line separately. The final score is obtained by averaging the scores of all the
lines of the section.
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4. Datasets
For our task of Czech lyrics generation for cover songs, several different datasets
are needed. As already discussed in Section 1.1.3, melody and lyrics are insep-
arably tied together. It would be ideal to obtain a dataset containing aligned
lyrics in Czech, lyrics in English and their melody. Unfortunately, as discussed
in Section 2.2, such a dataset does not exist, and to the best of our knowledge,
there are no available data to make one as such.

In this section, we describe two datasets we created to the best of our abilities
to help us with the task of Czech cover lyrics generation. One dataset consists of
Czech and English aligned bilingual song lyrics and the other one is monolingual,
containing a large number of Czech song lyrics.

4.1 Bilingual Song Lyrics
In this section, we will present our Bilingual Song Lyrics dataset, containing 649
aligned song sections in Czech and English. We will show the process of the
dataset creation, as well as the dataset analysis.

Most of the songs were originally written in English and translated from En-
glish to Czech by professional human translators. A subsection of the lyrics was
originally written in French and our dataset contains the English and Czech adap-
tations of the French original (also done by human professionals). All of the song
lyrics were taken out from songs performed in popular musical theatre shows or
musical films, therefore we assume that the quality of the translations is high,
with a focus not only on singability, naturalness and rhyme, but also with a heavy
focus on sense. All of the song lyrics gathered were freely downloadable from the
internet.

The dataset contains 649 verses from 69 songs from 10 musicals, namely:
Encanto, Frozen, Frozen 2, Grease, The Jungle Book, Les Miserables, The Lion
King, The Little Mermaid, Moana and Tangled. All of these 69 songs were
obtained in both Czech and English, aligned to map onto each other line by line,
having as similar as possible number of syllables on each line, split into sections
and then saved into JSON format.

4.1.1 Alignment
There are several problems concerning the alignment of two texts, which suppos-
edly map perfectly onto each other. The first problem could be in the assumption
of the existence of the perfect mapping. Sometimes human translators sacrifice
the exact matching of syllables for meaning. Also, the lyrics we obtained some-
times (but not always) included lines of unsung dialogue and just the fact that
the dialogue is unsung poses another problem because, with the melody absent,
the syllable constraint is gone. The dialogue is often unmappable, but not distin-
guishable based on the text only, from the rest of the lyrics. Other than dialogue,
in some songs there are character names in front of sections, when the song is sung
by multiple characters. Another problem with the syllable counts per line could
originate from inaccurate analysis of the text by the syllable counting function.
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Assuming the existence of a perfect mapping, there is still the problem of
the translators taking liberty with the line breaks and rhyme schemes. Take for
example the Czech and English versions of the chorus of Les Miserables’ “Do you
hear the people sing?” (see Fig. 4.1) where it can be seen that although the
syllables of the verse match perfectly, the lines are unalignable unless the second
half of the verse is merged into one line.

Do you hear the people sing Slyš tu ṕıseň zástup̊u
Singing the song of angry men ze slzavého údoĺı
It is the music of the people chcem tady ž́ıt
Who will not be slaves again, už máme b́ıdy dost

i běd a svévoĺı

Figure 4.1: English and Czech version of “Do you hear the people sing?” from
Les Miserables with unalignable lines

We experimented with many lyric-aligning methods, including a method of
alignment using dynamic programming, where the goal was to find the minimum
loss mapping, but due to the above-mentioned problems, all of these methods
proved unsuccessful. In the end, the lyrics were aligned by a naive semi-automatic
aligning function looking for the smallest difference in syllables between two lines,
looking at the current line, split line, or current and following line combined,
taking the best combination. In case the difference was higher than 1 syllable per
pair of lines, the program stopped and waited for a manual input. In that case,
the lines in question were either correctly aligned or in the case of the dialogue
or the name tag, removed. This system proved to be much more efficient than
relying purely on an algorithm or aligning the lyrics fully by hand.

4.1.2 Postprocessing
After aligning the lyrics, the text was lower-cased, the commas, full stops and
line breaks removed from the ends of the lines, and the individual verses were
saved into a JSON format.

4.2 The Large Czech Songbook
The Large Czech Songbook is a corpus of song lyrics extracted from the Velký
zpěvńık webpage1. It contains 17599 mainly Czech songs from 1381 interprets,
both recent and from the previous century. The final dataset contains 77478
individual song sections with corresponding analysis, saved in JSON format.

4.2.1 Preprocessing
In this section, we will describe the process of cleaning the data. We got the
scraped data from the Velkyzpevnik webpage from Martin Popel in a raw text
file, containing not only the lyrics but also the metadata of the songs, chords,

1https://www.velkyzpevnik.cz/
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suitable instruments that can play the song, and information about the intro and
outro melodies.

Our first step in cleaning the data was lowercasing and gathering the most
common words in the raw text file and deciding on suspiciously frequent words,
like ‘předehra’, ‘CD’, ‘text’ or ‘sólo’. With high probability, these words denote
the song’s metadata, which is not of importance to us and our task. We removed
these words, or the whole lines containing these words, depending on the nature
of the word itself. The full list of words that triggered line deletion can be found
on GitHub2. Another type of symbol that appeared frequently was ‘...’, often
preceded by just a few words from the refrain, signalling the refrain repetition.
These words together with the dots were also removed. The last type of trigger
words were chords. These were taken care of by a series of regex, catching the
most common writings of chords. In case a chord was written in a rare form,
most often it was caught by one of the line-deleting words.

As previously stated, only most of the songs from the Large Czech Songbook
are actually in Czech. To filter away lines written in a different language than
Czech, we use langdetect.3 If neither of the resultant languages is Czech, the line
is deleted. This also worked as a ”nonsense lines” remover. If the text written on
the line could not be classified as Czech, we did not want it in the corpus.

Finally, all special symbols and diacritics except ’,’ and ’.’ were deleted.

4.2.2 Segmentation
Next, we will describe the process of segmenting the raw data into sections of
appropriate size.

Some of the song sections were separated from the rest of the text by two line
breaks, but the rest of the sections were often separated just by an indent in the
text or by the number of the verse and a colon. The preprocessed text contained
24 blocks of text longer than 100 lines without any double line breaks, with two
of them being well over 400 lines. Furthermore, sometimes a song section had
two line breaks after every line, making it seem that each line of the song section
was its own song section.

Based on these observations, determining the lower and upper limits of the
length of the song sections is necessary. We choose the lower boundary as 3 lines
per song section and the upper boundary as 8 lines per song section. Next, we
implement a recursive function for splitting a song section into two, as well as a
recursive function for joining two song sections together.

The criterion of the split is the Phoneme distinct-2 metric. For each possible
splitting point, we calculate the phoneme distinct-2 for each of the two newly
created sections. The split with the lowest sum of the phoneme distinct-2 scores
is chosen and the sections proceed to the next recursion step. The effect of this
is that lines with similar phoneme patterns will be in the same section. Similar
phoneme patterns create a sense of rhythm and compactness, which is highly
desired in a song section.

Not only the length of a section but also the line length was varied. The
longest line was 1218 characters long, the median line length was 31 characters

2https://github.com/stepankovab/GenerationOfCzechLyricsToCoverSongs
3https://pypi.org/project/langdetect
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per line. Where possible, the long lines were split on punctuation. Long lines
without punctuation were deleted.
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5. Methodology
Our task is to generate Czech lyrics based on the provided English lyrics. The
generated Czech lyrics should be singable to the same melody as the English
input without prior knowledge of the melody, as well as have similar semantic
meaning.

This task can be principally approached from two different directions, both
carrying with them their advantages and disadvantages: the machine translation
approach and the language modelling approach. We carefully considered both of
these directions. As explained in section 1.1.2, song lyrics translation is not a typ-
ical translation task. Each of the proposed choices in song translation [Franzon,
2008] requires a different generation method. Generating a new text independent
of the original meaning comes to a purely form-constrained generative language
modelling, translating the lyrics directly and adapting the melody comes to using
a plain machine translation and finally, adapting the translation to fit the melody
can be done by constrained machine translation. Dataset analysis of the bilin-
gual data (see Section 6.1) shows that according to standard machine translation
metrics, the human-translated lyrics are quite distant from machine-translated
lyrics (BLEU = 0.03 and chrF = 0.16). This shows that lyric translation seems
to be rather far from the standard setting for machine translation, despite the
lyric pairs having decent semantic similarity scores. As language models can have
constraints not only concerning the structure of the lyric but also the meaning of
the lyrics, we decided to choose the path of language models, rather than machine
translation.

The high-level overview of our solution to the task is as follows. First, we need
to analyze the input texts and extract all the important structural and semantic
information. Next, we generate the output text based on the analysis of the input
text. We take several approaches to both generation and postprocessing, all are
described in the following subsections. Finally, we evaluate the quality of the
output based on the input by automatic evaluation metrics.

We chose to experiment with different language models and different input in-
formation to find out which combination yields the best results. We implemented
the naive N-gram model with a heuristic generation function to fill in the given
lyric structure. We are also using multiple neural language models with several
different training approaches. All of the approaches we experimented with require
a specific input that encodes the structure of the original lyrics. The model input
differs based on the model-specific training but the information needed stays the
same.

5.1 Structure Extraction
Structure extraction is a crucial step that takes place multiple times in the
pipeline. First, we need to extract the structure of the English input to try
and guess the important aspects that make the English text singable. Then, we
need to extract specific aspects of the structure for the postprocessing step. Fi-
nally, we use structure extraction in the evaluation of the final generated text,
extracting structure from both the Czech and English text. In our work, we un-
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derstand ‘structure’ in a broad sense, encompassing both formal (melody) and
semantic (meaning) characteristics of the lyrics.

In this section, we will describe the methods of extracting individual charac-
teristics from both Czech and English lyrics. Originally, the idea was to extract
melody from the lyrics, however, all mentions of successful lyrics-to-melody gen-
eration worked with a dataset of aligned lyrics-melody pairs, which we did not
manage to obtain. Nevertheless, several characteristics of lyrics closely tied to
either the melody or the meaning need to be extracted: the number of sylla-
bles for each line, the rhyme scheme, keywords summarising the whole lyrics and
keywords summarising each line of the lyrics.

5.1.1 Syllable Counter
One of the most important aspects of song lyrics is the matching of syllables to
the melody. To ensure our generated outputs follow the rhythm of the original
input as closely as possible, it is crucial to have an adequate syllable counter for
both the English input and the Czech output.

Czech syllable counter

We used a rule-based algorithm for the Czech syllable division proposed by
[Štindlová, 1968] as an algorithm to decide on a word division in automatic
typesetting. We heavily based our implementation of the syllable counter on
a previous implementation of this paper, called ‘Sekáček’, made as a year project
at our university. [Macháček, 2014]

The syllabification process of ‘Sekáček’ can be divided into two parts. First, a
word mask is created for each word to be syllabified. The mask consists of three
types of symbols: a vowel symbol, a consonant symbol and a special inseparable
symbol, that denotes a character that could be wrongly separated from the rest
of the inseparable characters by the algorithm (e.g. ‘o’ in ‘ou’ or ‘h’ in ‘ch’). The
Syllable-forming instances of consonants ‘r’ and ‘l’ are masked as vowels. Second,
the mask is split according to a few simple splitting rules. After mapping the
mask back onto the word, we get the desired syllabification of the word.

We adapted the mask-creating and mask-splitting functions from ‘Sekáček’
and added a few rewriting rules to handle exceptions. These rules are applied
right before the mask creation. For example, rewrite ‘osm’ to ‘osu’ or ‘sedm’
to ‘sedu’, artificially adding a vowel to indicate a syllable (only in cases where
the ‘m’ is not followed by a vowel: ‘sedmdesát’ gets rewritten but ‘sedmikráska’
stays the same). Exceptions concerning unstressed prepositions ‘k’, ‘v’, ‘s’ and
‘z’ are solved by prepending these prepositions to the following word if it exists
and syllabifying the joined words as one.

English syllable counter

For English, we tried multiple syllable counters from various Python libraries for
natural language processing. None of them gave the syllabification we required,
mostly due to expecting a fully pronounced schwa sound in syllables, therefore
giving us more syllables than are pronounced in the lyrics. More on this topic
is discussed in section 1.1.3. It proved impossible to change just the intended
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pronunciation of the syllable-forming schwa sound, and after some trial and error,
we decided to extend the Czech syllable counter to English.

We realised that there is no use for the syllabified output and that we are
interested in the syllable count only. Also, because Czech is mostly pronounced
the same way as it is written, we can take the phonetic transcription of the English
text1, add a few rewriting rules and parse it the same way we would parse a Czech
written text. Concerning the schwa problem, because we don’t have the melodies
available, we decided to assume that when a syllable transcribed to IPA reads
[v@r], as in ‘forever’ or ‘every’, it is rewritten to read [vr]. Because of the syllable-
forming ’r’ in Czech, when [v@r] is at the end of the word, the syllable counter
catches it as a syllable and when it is in the middle of a word, it skips it just as
most native speakers would.

By running a script for comparing syllable lengths of pairs of lines from the
human-translated dataset and stopping when the lengths did not match, we fil-
tered out the majority of mistakes, leaving only mismatched lines when the lyric
counts differed. We changed the phonetic transcription to be some kind of ’Czech’
phonetic transcription. For example, rewriting ‘ay’ to ‘aj’, or ‘oy’ to ‘oj’. This
avoids the problem with ‘y’ being pronounced as [I] in Czech, or changing ‘ks’
to ‘x’ to avoid getting a word split in the wrong place. Some errors may slip
through, but considering any of the syllables can be uttered quickly, or stretched
across multiple notes, we concluded that it is an acceptable risk.

5.1.2 Rhyme Scheme Detection
The rhyme scheme detector lets us see the rhyme schemes of both Czech and
English lyrics so we can extract the structure at first and then check how well
the structure was filled.

In this section, we describe three different rhyme detectors: an external one
(RhymeTagger), our own (RhymeFinder) and an external one with a framework
built around it (Same-word RhymeTagger). We show that creating rule-based
and database-based rhymers or using rhymers made for poetry is not ideal, as
rhyming in songs is freer than rhyming in poetry (see section 1.1.3). The best
option is to use an external rhyme detector that achieves good scores on poetry
and build a rule-based framework around it to handle the rhymes frequently used
in song lyrics specifically.

RhymeTagger

RhymeTagger [Plecháč, 2018] is a collocation-driven method of discovering rhyme
schemes in poetry. It includes pre-trained models for both Czech and English.
While RhymeTagger successfully recognises a majority of rhymes, it fails to detect
for example identical rhymes, as they are not usually accepted as rhymes in
poetry, or slant rhymes that are very typical for song lyrics.

Same-Word RhymeTagger

Same-word RhymeTagger uses RhymeTagger as a base. RhymeTagger obtains a
rhyme scheme and then the rhyme scheme is modified to consider the same words

1https://pypi.org/project/eng-to-ipa/
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as rhyming. This is done by unifying the tags of each two lines that end with the
same word.

RhymeFinder

RhymeFinder is our rhyme detector that implements different methods for both
Czech and English texts. We developed it in the hope that it will be able to
better discover rhyme schemes in song lyrics, as lyrics have more relaxed rhyming
requirements than poetry (see section 1.1.3). The method of extracting the rhyme
schemes differs based on the language of the text. For Czech, we take a simple
rule-based approach due to Czech being written mostly in the same way it is
being read, while for English we use a web database of rhyming words from a
web page specialising in helping people with songwriting.

Czech RhymeFinder

The Czech part of RhymeFinder extracts a rhyme key from each line, specifically
from the last syllable of each line, by masking the last syllable according to the
masking rules. These rhyme keys are compared and based on their matching, a
rhyme scheme is made.

While this approach is definitely consistent and easily catches words with the
same ending, some rhymes do not get marked, due to rhyming on a more phonetic
base, even though the written version is a bit different. Consider the following
song section (Figure 5.1) from Surface Pressure by Lin-Manuel Miranda, where
it feels like the rhyme scheme of the Czech version should be AAABB, but the
extracted rhyme scheme is ABBCD. The words peř́ı and věř́ım are not registered
by our rhyme detector, due to the extra m at the end of one of the rhymes.

Or simple pleasure 1. Mı́t chv́ıli peř́ı
Instead we measure 2. Já tomu věř́ım
this growing pressure 3. A stejně měř́ım
Keeps growing keep going 4. jak stoupá t́ıseň hloupá
’Cause all we know is 5. co mě zkouš́ı spoutat

Figure 5.1: section from Surface Pressure from the Encanto Musical, written by
Lin-Manuel Miranda and its Czech translation

The mask is created as follows: first, all ‘ch’ phonemes are replaced by a single
letter ‘h’. If the syllable is longer than three letters, it is shortened to contain
just the last three letters. If it is shorter than three letters, it is padded from the
left, so the syllable is at the end of the rhyme key. Similarly sounding consonants
(e.g. ‘s’ and ‘z’, or ‘g’ and ‘k’) and vowels with the same pronunciation, or
pronunciation differing only by the length of the sound (e.g. ‘a’ and ‘á’, or ‘y’
and ‘i’) are rewritten as the same symbol. Lastly, if the first position of the rhyme
key is occupied by a vowel, the vowel is deleted and replaced by padding. The
same applies when there is a consonant followed by a vowel at the beginning of
the rhyme key. In that case, the consonant is replaced by the padding. (see Table
5.1)
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last word rhyme key
peř́ı *řI
věř́ım *Im
měř́ım *Im
hloupá *BA
spoutat *AD

Table 5.1: Mapping of endings to a rhyme key for Czech RhymeFinder

English RhymeFinder

Due to the inconsistent spelling of English phonemes, it would be quite difficult
to make a rule-based rhyme scheme detector for English. Therefore we used
an online dictionary of rhyming words provided by a web API2. Each line is
represented only by the last word of the line. For each of these words, we get a
list of potential rhymes. If any of the line endings appear in a list obtained from
another line ending, those two lines rhyme. The main disadvantage is that due to
checking for whole words, the rhyme detector can not detect made-up words or
less common words that rhyme but are not in the database of potential rhymes.

Comparison of rhyme detectors

We compared the rhyme detectors’ performances on the Bilingual Song Lyrics
dataset 4.1. While our RhymeFinder performs competitively to or better than the
standard RhymeTagger, we found that this is mostly due to RhymeTagger failing
to detect identical rhymes. We therefore devised the Same-Word RhymeTagger
setup, which seems to perform best in our setting.

5.1.3 Keyword Extraction
Keywords are the easiest way to summarise a text and give a general idea of what
the text is about. In this section, we are going to discuss the used techniques for
keyword extraction.

For English, we used KeyBERT [Khan et al., 2022], which uses BERT em-
beddings and searches for words in a provided text, that are the most similar
to the text itself according to cosine similarity. The most similar words are the
keywords that characterize the text the most.

For Czech, as we did not manage to find a suitable keyword extractor, we
translated the Czech lyrics into English using the Lindat translator [Popel et al.,
2020] and extracted the keywords the same way as we did from an English text,
using KeyBERT. Then, we translated these keywords back into Czech. Even
though this many machine translations might seem unnecessary, an English ma-
chine translation of both the Czech lyrics and Czech keywords is needed for
measuring their semantic similarity, so it would have to be made either way. In
a real use case of keyword extraction, we are keeping the keywords of the Czech
lyrics both in Czech and English.

For some types of downstream tasks, it is necessary to have keywords for
the whole section, and for others, it is better to have keywords for each line

2Rhymebrain by Steve Hanov https://rhymebrain.com/api.html [Accessed 21-March-2024]
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separately. The methods described above can be used for both cases, depending
only on whether the input text is the whole section or a single line.

5.2 N-gram-based framework
In this section, we will describe the framework used to generate text following
a certain structure using an N-gram language model as a base. This framework
is purely monolingual, expecting already extracted structure and generating a
Czech output according to that structure.

The N-gram model is trained on 1.25 million word tokens from fiction books,
and 1.82 million word tokens of song lyrics from the Large Czech Songbook
dataset (see Section 4.2). The model is good at predicting the following word,
and due to being trained on a decent amount of song lyrics, sounds quite poetic.
However, all of the structural constraints have to be manually reinforced during
decoding.

The framework generates the final lyrics line by line, but the N-gram model
is always prompted by the previous line to maintain continuity. During the
decoding, the N-gram-based generator takes the desired number of syllables for
each line and the desired rhyme scheme. Then, for each line, until enough syllables
are generated, a recursive function keeps choosing a word based on the probability
distribution provided by the N-gram model. When the line reaches the correct
number of syllables and (if specified) the correct ending syllable, the line gets
added to the already generated output. When the line contains more syllables or a
wrong ending, words are removed from the line, as well as from the distribution of
possibilities provided by the N-gram model and a new word is chosen according to
the new modified probability distribution. As long as there is a solution satisfying
the structure in the probabilistic space of the N-gram model, that solution will
get outputted. If there is no such possibility, the last word of the previous line
gets repeated and the n-gram model space is searched again. If even that fails
(for example for a lack of a rhyming word) a line without a rhyme, or with an
imperfect syllable count will get outputted instead.

8 A někdy se pro mě neńı ten a to byla ona a to
8 B ten který se na mne snese co se stalo v minulosti
8 A jsem stár a byl jsem obĺıben minulosti to jsem já kdo
8 B že je to ale na mne se kdo z nás má na to já jsem ti

Figure 5.2: Two examples of lyrics generated by the N-gram-based model with a
given structure of 8 syllables per line and rhyme scheme of ABAB

The biggest advantage of this framework is that it is straightforward, simple
and predictable. The generated lyrics keep the structure well. However, there
are disadvantages to this approach. The lyrics are not very singable, as the
framework often chooses monosyllabic words without stress for the last word of
the line, due to the model itself having no idea about the position the generated
word will take. It is also difficult to inject any meaning into the lyrics.

We concluded that the n-gram-based framework is not suitable for our task
of making singable covers while trying to preserve meaning, mainly because all of
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the decisions of the framework are based on simple rules and N-gram probabilities
and the framework lacks the depth required for this task. We keep the n-gram
model as a demo for the web application (see Section 7.2), but we will not explore
it further in this work.

5.3 Generative neural language models
In this section, we will discuss various methods used for leveraging the output of
neural language models to be closer to our desired results. We will look at the
different approaches we took during training and inference.

We tried three different approaches, two using fine-tuning techniques and one
using a few-shot technique. We experimented with various prompts and provided
the models with different information before generating the output. The impact
of these changes on the quality of generation can be found in section 6.

To fine-tune a language model to generate a specific output, we need to provide
the model with enough examples of the text we want to imitate. If we want the
generated text to keep a structure based on our requirements, it is also necessary
to point out these structural elements in each training example.

Coming back to the pentathlon principle of singability, a singable text has to
have rhyme, sense, singability (including rhythm) and naturalness (see Section
1.1.3). Rhyme and sense are taken care of by the encoded extracted structure, and
singability is from a big part defined by syllable counts, which are also extracted
from the English input structure. Only naturalness is not specifically defined.
We discovered that the criterium of naturalness was fulfilled by fine-tuning the
model on poetic texts of song lyrics, which by default sound as natural as we
want the generated texts to sound. As we do not have any metric checking the
naturalness of the lyrics, it will have to be manually evaluated after generation,
to assess how successful we were.

5.3.1 Fine-tuning models to generate whole lyrics
The first method of fine-tuning is to leverage the model to generate the whole
lyrics of a song section at once.

Because of the structure extraction step, there is no need for bilingual data
for training. During Inference, the English input will serve only as the source of
the structure, and the model will be able to generate a Czech version of the lyrics
based only on that structure. Therefore, we are using the Large Czech Songbook
dataset 4.2 for the training.

From each verse in the Large Czech Songbook, we extract the syllable counts,
rhyme scheme and keywords and format the training examples into a prompt
containing a subset of this information, followed by the annotated lyrics (see Table
5.2). There are four prompt types depending on the chosen subset of extracted
structural elements: syllables only, keywords only, syllables and keywords, and
syllables, keywords and a rhyme scheme. This way, we can see the influences of
individual added tags, as well as train a model without overwhelming it with too
much information. During fine-tuning, the loss is calculated as cross-entropy on
the probability of the following word in the training example being generated by
the model.
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syllables (WS)

prompt: 5 7 6 7 #
lyrics: 5 # krása a tv̊uj smı́ch

7 # mě pod košiĺı zebou
6 # trṕım jak mladej mnich
7 # a chtěl bych tě vźıt sebou

keywords (WK)

prompt: 4 # mnich krása smı́ch zima košile #
lyrics: krása a tv̊uj smı́ch

mě pod košiĺı zebou
trṕım jak mladej mnich
a chtěl bych tě vźıt sebou

syllables and keywords (WSK)

prompt: 5 7 6 7 # mnich krása smı́ch zima košile #
lyrics: 5 # krása a tv̊uj smı́ch

7 # mě pod košiĺı zebou
6 # trṕım jak mladej mnich
7 # a chtěl bych tě vźıt sebou

syllables, keywords and rhyme scheme (WSKR)

prompt: 5 7 6 7 # A B A B # mnich krása smı́ch zima košile #
lyrics: 5 # A # krása a tv̊uj smı́ch

7 # B # mě pod košiĺı zebou
6 # A # trṕım jak mladej mnich
7 # B # a chtěl bych tě vźıt sebou

Table 5.2: Training examples for fine-tuning LLM’s to generate whole song sec-
tions with different information available
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During inference, we extract the structure from the English text, make the
prompt the same as we do in the training examples and let the model generate
the rest. After generation, we isolate the lyrics from the output by removing
generated tags.

5.3.2 Fine-tuning models to generate lyrics line-by-line
We encountered problems when trying to generate a whole song section with a
specific rhyme scheme, and a perfect solution seemed to be to borrow the tech-
nique from the N-gram model (see Section 5.2) and generate each line separately.
We noticed that because of the structure tags, the lyrics are not generated in one
piece anyway, so the connectivity of the lyrics is already broken, so generating
each line separately should not have a big impact on the naturalness of the lyrics,
while improving the rhyme scheme.

We trained two models for each prompt type: one for lines that end with a
specific syllable and a second for lines that don’t have the final syllable specified
yet. The final song section is obtained by joining the individual generated lines.

The training process was the same as described in section 5.3.1. The prompt
types for a line-by-line generating model were: syllables-only, keywords-only, syl-
lables and keywords, syllables and unrhymed line, and all of the aforementioned
prompt types with the added ending tag (rhyming syllable hint) to reinforce
rhyme schemes. We will discuss individual prompt types in the rest of the sec-
tion, see Table 5.3 for examples.

The syllables-only prompt was created by prepending the syllable count of the
line to the line with a division tag in between. The syllables-and-ending prompt
was created by prepending both syllable count and the last syllable, or the last
three letters of the syllable if the syllable was longer than three characters, to
the line, also having a division tag between each information. When including
keywords and other information in the prompt, we put the keywords on a previous
line, just to have even more division between the keywords and the actual desired
output.

The unrhymed prompt types attempt to utilize the ability of language models
to rewrite text with different words while keeping the meaning. The prompt
contains a translated text by a machine translator with the number of syllables
the translated text has on one line, and the number of syllables the desired output
should have on a new line. Of course, if we want to generate a line with a certain
ending, the ending has to be included in the prompt besides the syllable count.

During training when we work with monolingual data, we can obtain text with
the same meaning but different wording by translating each line to English and
back. The meaning stays but the words used almost always change. We are trying
to show in the training data that the most important thing is to rewrite the line to
satisfy the syllable count we desire. Because of that, when the double-translated
line has the same syllable count as the desired line, we copy the double-translated
line to the output, effectively teaching the model to copy the input if the syllable
count is the same. When line endings come into the picture, both syllable count
and ending have to be matched to use the input line as the desired line. During
inference, we translate the input English line to Czech and consider that to be
the ”unrhymed” line. (see Table 5.3 for examples)

32



syllables (LS)

example: 7 # mě pod košiĺı zebou

syllables with ending (LS)

example: 7 # bou # mě pod košiĺı zebou

keywords (LK)

example: chladná košile # mě pod košiĺı zebou

keywords with ending (LK)

example: chladná košile #
bou # mě pod košiĺı zebou

syllables and keywords (LSK)

example: chladná košile #
7 # mě pod košiĺı zebou

syllables and keywords with ending (LSK)

example: chladná košile #
7 # bou # mě pod košiĺı zebou

syllables and unrhymed (translated) (LST)

example: 9 # ať je mi pod košiĺı zima
7 # mě pod košiĺı zebou

syllables and unrhymed (translated) with ending (LST)

example: 9 # ma # ať je mi pod košiĺı zima
7 # bou # mě pod košiĺı zebou

Table 5.3: Training examples for fine-tuning LLMs to generate song sections line
by line with different information available
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Reinforcing rhyme

Lastly, we will talk about choosing when to use the model reinforcing line endings
and when not to. The structure extractor extracts the structure out of the English
input, including the rhyme scheme. Based on the rhyme scheme, a dictionary is
created with the letters denoting the rhyming lines as keys (e.g. for the rhyme
scheme of ‘ABAB’, the keys are ‘A’ and ‘B’). When we want to generate a line
which has no value assigned to the corresponding letter in the dictionary, we use
the model focusing only on length and/or meaning. After generating the line,
the last syllable is added to the dictionary under the corresponding letter of the
rhyme scheme. When a line’s corresponding key has a value already assigned, the
model that is reinforcing endings is used, with the ending from the dictionary in
the prompt.

5.3.3 Generating whole lyrics with Few-Shot prompting
For few-shot prompting, we use the same prompt types as in section 5.3.1 when
fine-tuning a model to generate whole verses of lyrics. Effectively we build a
prompt consisting of a few examples of the training data, ending with the prompt
used for the fine-tuned model generating whole verses.

5.4 Postprocessing
Although it is valuable to consider just the raw model output to estimate the
quality of a model, we need to polish the output to have a more consistent lyrics
generator.

We implemented two kinds of postprocessing functions that can be applied
separately or after one another on the same text. The first one runs the generation
n times and then chooses the best out of the n outputs. The second takes the
generated output and removes or adds stopwords to come as close to the desired
syllable count as possible.

5.4.1 Choose Best
The first of the two postprocessing functions gets n generated outputs and only
the best one is returned. There are two variants to this function. One is choosing
the best out of n song sections, the second is choosing the best out of n lines.
The first one is used when the whole section is generated in one call, the second
one is used when the section is generated line-by-line.

Choose best line

In this section, we will describe the process of choosing the best line out of n
generated lines. When generating lyrics line by line, we decided to always choose
the best line before continuing with generating the next line, mainly to avoid
branching the dictionary of rhymes by keeping several options for each letter of
the rhyme scheme (see Section 5.3.2).

When choosing the best line, we take syllable distance (see 3.2.1), semantic
similarity (see 3.2.2) and matching of the ending (if the ending is known) into
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account. To decide on the importance of these separate aspects, we introduce
tolerance value for syllable distance and for semantic similarity. A tolerance
value states what is an acceptable value of the metric in question. Based on the
tolerance value and the metric value, a penalty P is computed. Let us denote
syllable distance as SyllDist and semantic similarity as SemSim and the generated
line as x. The syllable distance penalty is computed as:

PSyllDist(x) = SyllDist(x)
SyllDist tolerance (5.1)

This means that when the syllable distance is equal to the syllable distance
tolerance, the penalty is 1. When the syllable distance is 0, the penalty is 0. The
computation is similar to the semantic similarity penalty, with the exception that
semantic similarity has the best value at 1 and not at 0.

PSemSim(x) = (1 − SemSim(x))
(1 − SemSim tolerance) (5.2)

The penalty for a wrong ending of the line is either 1 if the line does not
rhyme with the desired ending or 0 when it does.

The penalty of each line is a sum of these three penalties. The line with
the lowest penalty is deemed the best. We experimented with the values of the
tolerances until we found such values that the best line according to the penalties
is consistently the same line we would have chosen as the best. These default
tolerance values are: SyllDist tolerance = 0.1 and SemSim tolerance = 0.6.

Choose best section

To choose the best out of n song sections, we compute syllable distance (see
3.2.1), rhyme scheme agreement (see 3.3.1), semantic similarity (see 3.2.2) and
phoneme repetition difference (3.3.4) between the input text and each of the
generated outputs. The same as when choosing the best line (see Section 5.4.1),
we introduce tolerance value and compute the penalty P from that value for each
of the considered metrics.

The penalty of syllable distance is computed as in Eq. 5.1 and the penalty
of semantic similarity is computed as in Eq. 5.2, both with the whole section as
an input. We denote the generated section as X and rhyme scheme agreement as
RhymeAgree, its penalty is computed as:

PRhymeAgree(X) = (1 − RhymeAgree(X))
(1 − RhymeAgree tolerance) (5.3)

Lastly, the penalty of phoneme repetition difference (denoted as PhonDiff ) is
computed as:

PPhonDiff(X) = PhonDiff(X)
PhonDiff tolerance (5.4)

For each generated song section, these four penalties are computed and then
summed together. The song section with the lowest sum of the penalties is chosen
as the best one. Again, we experimented with the tolerance values, until we found
a combination that yields results that correlate the most with our choice of the
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best section. These values are: SyllDist tolerance = 0.1, SemSim tolerance = 0.6,
RhymeAgree tolerance = 0.4 and PhonDiff tolerance = 0.15

The reason for a quite low rhyme scheme agreement tolerance and a strict
phoneme repetition difference tolerance is the proneness of language models to
repeat themselves. When the generated section contains four of the same lines,
the rhyme scheme agreement will be perfect, but unless the original English input
was also this repetitive, the phoneme repetition difference will be high, and some
other option with imperfect rhyme scheme, that is overall better, will be preferred.

5.4.2 Remove and add stopwords
In this section, we will describe the second postprocessing function that corrects
the length of the generated outputs. The function gets one generated song section
and the desired line lengths on the input and tries to correct the length of the
line as much as possible by removing or adding stopwords.

Remove Stopwords

For the removal of stopwords, we are using a Czech stopwords list found on a
web page dedicated to text processing tools3, from which we removed stopwords
that when removed change the sentence too much in the grammatical sense.
If the length of the output line is two or more times than the desired length,
the stopwords-removal algorithm is not even run, because removing half of the
syllables by removing stopwords would result in nonsense, if even possible. There
is also the option of keeping the last word intact if a rhyme scheme depends on
that word.

The algorithm itself is based on identifying stopwords within the output and
their subsequent recursive removal while searching for the minimal difference
between the desired length and the current length of the modified output. If
the algorithm is faced with the choice of removing more or longer stopwords and
returning the output n syllables shorter than the desired length, or removing
fewer stopwords and returning the output n syllables longer than the desired
length, it always chooses to remove more and return shorter than desired output.
This is because in that case, the output will be passed to the stopwords-adding
section of this postprocessing function.

Add Stopwords

For adding stopwords, we take a simple rule-based approach. If the difference
in syllables is 1, we randomly choose a line prefix from 5 common, meaningless
words: a, tak, že, co, dál. If the difference in syllables is 2, we choose a line
prefix from: že prý, a tak, a pak, copak, no tak. When the difference is 3 or more
syllables, we fill in this difference by a prefix consisting of ”na” copied as many
times as needed (but at least three times), resulting in lines starting with ”na na
na na”, singing without lyrics, as is common in Czech songs.

3Czech stopwords list https://countwordsfree.com/stopwords/czech
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5.5 Evaluator
In this section, we are going to introduce an evaluating function, crucial to de-
termining how good the lyric generation is. It is also used for automatically
evaluating and comparing different generation methods.

The evaluator gets the English input text and the Czech output text as the
input and returns the results of ten metrics computed on the Czech and English
inputs. The requirements the input must meet are that the lengths of the Czech
and English inputs are the same in terms of lines. Because our models concentrate
on generating only one verse at a time, it is assumed that just one verse of a song
is passed to the evaluator.

The metrics considered are syllable distance 3.2.1, syllable accuracy 3.3.3,
rhyme scheme agreement 3.3.1, rhyme scheme accuracy 3.3.2, semantic similar-
ity 3.2.2, keywords similarity 3.3, line-by-line keywords similarity 3.3, phoneme
repetition difference 3.3.4, BLEU2 score considering word bigrams 3.1.1 and chrF
score 3.1.2, all described in respective sections.

Translation scores modification

All metrics except BLEU and chrF compare the two song sections directly. Both
BLEU and chrF are popular scores used for evaluating translation by comparing
the translated text with reference translations. When dealing with song lyrics,
there are two options of what we could consider to be the reference translation: it
could be the human-translated singable adaptation of the song or a pure machine
translation of the original lyrics.

We decided to use the machine translation of the English lyrics as the ref-
erence and the Czech generated lyrics as the candidate solution. This way, we
can evaluate the translation metrics even on texts that do not have a human-
translated cover version already. The biggest disadvantage is that the translation
scores measure the translation quality in both sense and word order, and the
word order of song lyrics is oftentimes modified to fit the melody. However, if we
considered the human-translated adaptation to be the reference translation, there
would be no direct link between the reference and candidate, as the information
about the desired meaning of the song section comes from the English original,
not from the already adapted Czech Cover.

Concerning the BLEU score, word 4-grams are considered by default. Due to
the 4-gram BLEU having a score of zero even on the bilingual human-translated
dataset, we lowered the n to 2 and we are using BLEU2. That way the BLEU score
gives more relevant results. We also tried looking into a metric more adequate
for evaluating high-inflexion languages like Czech: the Character F-score.
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6. Experiments and Evaluation
In this chapter, we are going to present the results of our experiments, both in
terms of the metrics, as well as in examples of lyrics. First, we will introduce
our baselines and targets. Then, we will evaluate the results of the experiments
with automatic metrics. Lastly, we are going to discuss the results of the manual
evaluation of our experiments outputs.

6.1 Random baseline and target values
Both the random baseline and the target values are measured on the Bilingual
Song Lyrics dataset (see section 4.1).

To obtain the target values, we evaluate the English-Czech pairs of song sec-
tions from the Bilingual Song Lyrics dataset by the evaluation function (see sec-
tion 5.5). These target values are not the highest values that the individual met-
rics of the evaluation function can achieve, they are values achieved by human
lyricists and translators on songs translated for real-life projects.

To measure the random baseline, we first need random pairs of lyrics. These
are obtained by shuffling the English song sections of the Bilingual Song Lyrics
dataset and pairing them back up with the unshuffled Czech song sections. The
longer of the song sections from the pair gets truncated so both sections have the
same number of lines, and then are evaluated by the evaluation function. Even
though the choice of the pairs is random, the compared song sections are still
from the same domain of musical song lyrics. We considered comparing plain
text with song sections as the baseline, but this idea proved to be inadequate
because most of the metrics are specifically made for song lyrics.

The average values of the individual components of the evaluation function
can be seen in the following table:

worst Baseline Target best
Syllable Distance inf 0.65 0.03 0
Syllable Accuracy 0 0.10 0.83 1
Rhyme Scheme Agreement 0 0.55 0.77 1
Rhyme Scheme Accuracy 0 0.20 0.60 1
Semantic Similarity 0 0.23 0.62 1
Keyword Similarity 0 0.34 0.64 1
Line-by-line Keyword Similarity 0 0.22 0.45 1
Phoneme Repetition Difference 1 0.12 0.08 0
BLEU-2 0 0.00 0.04 1
chrF 0 0.09 0.16 1

Table 6.1: Random baseline values and Target values of metrics from the evalu-
ation function, measured on the Bilingual Song Lyrics dataset
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Figure 6.1: Syllable distance of the random baseline and the target
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Figure 6.2: syllable accuracy of the random baseline and the target

Random baseline values and target values comparison

In figures 6.1 to 6.10, we can see the specific distributions produced by the eval-
uation function both on the paired song sections and the randomly shuffled song
sections.

Syllable distance is arguably the most important metric out of the evaluation
function and Figure 6.1 shows the big difference between syllable distances on
paired and shuffled song sections. As we can see in Figure 6.2, for the random
baseline, the syllable accuracy is mostly 0, while for the target values the accuracy
is oftentimes 1.

We can see both in Figure 6.3 and Figure 6.4, that the target values have
a higher concentration of results closer to 1, but not by much. This is because
rhyme is very important in song lyrics, so much, so that it is a rarity to find a
song section without a rhyme. Also, the length of a song section in terms of lines
is limited, therefore there are not that many options in which the two sections
could have their rhymes arranged, making the chance of the same rhyme scheme
higher. Some rhymes also do not have to be registered by the rhyme detector
(see section 5.1.2).

The phoneme repetition difference has a high peak for the low values for the
target, while for the random baseline, it has smaller peaks even at high numbers
like 0.45 and 0.60 (see Figure 6.12).
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Figure 6.3: Rhyme scheme agreement of the random baseline and the target
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Figure 6.4: Rhyme scheme accuracy of the random baseline and the target
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Figure 6.5: Phoneme repetition difference of the random baseline and the target
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Figure 6.6: Semantic similarity of the random baseline and the target
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Figure 6.7: Keyword similarity of the random baseline and the target
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Figure 6.8: Line-by-line keyword similarity of the random baseline and the target
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Figure 6.9: BLEU2 score of the random baseline and the target
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Figure 6.10: chrF score of the random baseline and the target

We can observe a common trend in Figures 6.6, 6.7 and 6.8, where for the
baseline, the values lean towards the smaller numbers, while for the target the
values tend to be closer to 1. We can also see that the Line-by-line keywords
have overall much lower similarity (with averages of 0.22 for baseline and 0.45
for target) than keywords of whole sections (with averages of 0.34 for baseline
and 0.64 for target). This might be due to human translators taking the liberty
of changing the order or the detail of individual topics of the song sections, as
debated by [Kim et al., 2023b].

Lastly, let us look at the translation scores in Figures 6.9 and 6.10, showing
the results of the two translation metrics used, BLEU2 and chrF. We observe
very low values for both of the translation scores both on the randomly shuffled
song sections and on the correctly paired song sections. This proves the point
that song translation is not a typical translation task.

6.1.1 Machine translator baseline
In this subsection, we are going to present the results of the evaluation function
with an English original and a Czech machine translation (MT) on the input.

We can see in Table 6.2 that although unaltered machine translation is not an
ideal way of making lyrics for cover songs, some of the results are quite decent.
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worst Random MT Target best
Syllable Distance inf 0.65 0.26 0.03 0
Syllable Accuracy 0 0.10 0.20 0.83 1
Rhyme Scheme Agreement 0 0.55 0.32 0.77 1
Rhyme Scheme Accuracy 0 0.20 0.27 0.60 1
Semantic Similarity 0 0.23 0.91 0.62 1
Keyword Similarity 0 0.34 0.88 0.64 1
Line-by-line Keyword Sim. 0 0.22 0.81 0.45 1
Phoneme Repetition Dif. 1 0.12 0.08 0.08 0
BLEU2 0 0.00 0.49 0.04 1
chrF 0 0.09 0.56 0.16 1

Table 6.2: Machine translator baseline values

The biggest problem with machine translation is large syllable distance and small
syllable accuracy. Another problem is the lack of the rhyme scheme and the
overall poeticism of the text. Even though the rhyme scheme agreement is quite
low (0.32, compared to the baseline value of 0.55), rhyme accuracy is reasonable
(0.27, with the baseline being 0.20 and the target being 0.60). This might be
due to songs often relying on absolute rhymes (see section 5.1.2). When two lines
end with the same word, in languages with similar word order, the translation of
both of these lines will probably be the same and, therefore, rhyme again.

Unsurprisingly, all metrics measuring the semantics of the lyrics give high
scores, even higher scores than the target values. As was mentioned by Low
[2003], the hardest job of a human translator translating the lyrics is to balance
the meaning and singability. Machine translation is keeping the meaning well,
but the singability is not there.

6.2 Models
In this section, we will describe the individual models we used. The results of
the automatic evaluation of outputs of these models can be found in section 6.3,
and the results of the manual evaluation of outputs of the best subset of these
models can be found in section 6.4.

We experimented with three base models: Mistral7b, TinyLlama and GPT2.
For further work, we used models pre-trained on Czech data from the English
base models. All of the models we used have knowledge of the Czech Language
of varying levels, but never none. Outputs of the pre-trained models before we
made any changes given a prompt: “Zapadaj́ıćı slunce” [“The setting sun”] can
be seen in Table 6.4.

We use cswikimistral 0.11 pre-trained by Petr Šimeček on the data from
Czech Wikipedia. We use two models by Fajč́ık et al. [2024] from BUT-FIT:
CSTinyLlama-1.2B2 and Czech-GPT-2-XL-133k3, pre-trained on a Czech data

1https://huggingface.co/simecek/cswikimistral_0.1
2https://huggingface.co/BUT-FIT/CSTinyLlama-1.2B
3https://huggingface.co/BUT-FIT/Czech-GPT-2-XL-133k
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Abbr. Meaning
MIS cswikimistral 0.1
BTL CSTinyLlama-1.2B
BGPT2 Czech-GPT-2-XL-133k
OGPT2 Czech-GPT2-OSCAR
TL TinyLlama-1.1B
WS trained on whole texts with syllables
WK trained on whole texts with keywords
WSK trained on whole texts with syllables and keywords
WSKR trained on whole texts with syllables, keywords and rhyme schemes
LS trained on single lines with syllables
LK trained on single lines with keywords
LSK trained on single lines with syllables and keywords
LST trained on single lines with syllables and unrhymed (translated) lines

Table 6.3: Abbreviations used in Sections 6.3 and 6.4

corpus, from which 95.79% is released as BUT-Large Czech Collection4, also
by Fajč́ık et al. [2024]. Then, we used the Czech-GPT2-OSCAR5 model by
Chaloupský [2022] based on the GPT2 small model. And lastly, we used the
TinyLlama-1.1B6 model by [Zhang et al., 2024], which even though is not specifi-
cally pre-trained for Czech, from the initial experiments it seems that it has some
basic knowledge of the language. Due to our training resources, we chose to fine-
tune just the smaller models, meaning CSTinyLlama-1.2B, Czech-GPT-2-XL-
133k, Czech-GPT2-OSCAR and TinyLlama-1.1B, as described in sections 5.3.1
and 5.3.2. We tried a few-shot prompting approach, described in section 5.3.3,
for the larger model (cswikimistral 0.1). For simplicity of labelling the tables in
Sections 6.3, 6.4, we introduce the abbreviations of the models’ names and of the
prompts they were trained on in Table 6.3.

While fine-tuning the models, we noticed that the performance improved after
completing the first epoch of training but did not change further in subsequent
epochs. We tested this hypothesis with all the models using a few different
training prompts, and all of these experiments did not see any improvement in
neither the metrics nor the lyrical quality of the outputs based on our subjective
judgement. The results of one of these experiments can be seen in Figure 6.11.

6.3 Automatic evaluation
In this section, we will present the results of the automatic evaluation of both
the fine-tuned and the few-shotted models.

4https://huggingface.co/datasets/BUT-FIT/BUT-LCC
5https://huggingface.co/lchaloupsky/czech-gpt2-oscar
6https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
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Model Output
cswikimistral 0.1 Zapadaj́ıćı slunce (v anglickém originále Setting Sun)

je epizoda seriálu Star Trek: Vesmı́rná loď Voyager.
V originále se p̊uvodně vyśılala 8. ledna 1998...

CSTinyLlama-1.2B Zapadaj́ıćı slunce pomalu zapadalo za obzor. I když
bylo teprve šest hodin, už nebylo takové vedro. Za-
balená v dece jsem se těšila, jak si večer zajdu s
pejskem na procházku. Jenže v p̊ul osmé jsem se
probudila a začala přemýšlet, co s načatým dnem.
Nakonec jsem se rozhodla zajet nakoupit a připravit
se na výlet. ”Co si to zase vymýšĺı̌s?” zeptala se mě
spolubydĺıćı...

Czech-GPT-2-XL-133k Zapadaj́ıćı slunce osvětluje město a v dálce se třpyt́ı
moře. Když se lidé procházej́ı v těchto ranńıch
hodinách, většinou si při tom v hlavě přehrávaj́ı právě
tyto dvě události. ”Ne, je to sṕı̌s proto, že je to je-
den...

Czech-GPT2-OSCAR Zapadaj́ıćı slunce na obloze, které se prod́ıralo na
protěǰśı stranu od našeho domu, si mne tak źıskalo.
Vzrušovalo mne, že v takovém úleku se nemůže ani
pohnout. Spatřil jsem, jak se mu noha, která se ještě
pohybovala, třese. Pomalu jsem se posadil. Jak je to
možné?“ zeptal jsem se zděšeně...

TinyLlama-1.1B Zapadaj́ıćı slunce) - p̊uvodńı připojeńı mezi Slońcem
a slunovratem
Reference
Exterńı odkazy
Selhánky

Table 6.4: Base models outputs, prompted by “Zapadaj́ıćı slunce”
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6.3.1 Raw outputs
First, we will present the results of individual metrics and then show specific
examples of generated outputs. All of the following values are measured on the
raw output of the model without any postprocessing, other than removing the
tags containing information about the desired structure. Based on these results
we choose the six interesting models and further evaluate the outputs of these
models after various postprocessing functions in Section 6.3.2.

WS WK WSK WSKR LS LK LSK LST
Random baseline 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
OGPT2 0.22 0.65 0.23 0.31 0.18 0.61 0.3 0.31
BGPT2 0.26 0.65 0.18 0.49 0.91 1.57 0.49 1.77
BTL 0.18 0.67 0.2 0.17 3.34 0.77 0.31 0.36
TL 0.13 0.75 0.18 0.19 0.09 0.63 0.2 0.17
MIS-5shot 0.69 1.08 0.82 0.78 - - - -
MIS-10shot 0.68 0.91 0.73 0.76 - - - -
Target 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Table 6.5: Syllable distance on raw outputs

Let us look at the syllable distance shown in Table 6.5. We can see several
trends in the values of the metric. The syllable distance is high when using a WK
model (trained on whole texts with keywords) and LK (trained on single lines
with keywords). This is not surprising, because these are the only two dataset
preprocessing methods where the syllable count was omitted. We can also see
that the models trained on single lines are in general performing worse than
the models trained on whole texts, except for TL (TinyLlama-1.1B). It is also
interesting to note that the models trained on whole texts have a similar syllable
distance when being trained on syllables only, syllables and words together, and
for the bigger models (CSTinyLlama-1.2B, TinyLlama-1.1B) even on syllables,
words and rhyme schemes together. On the other hand, models trained on the
lines are not very consistent, again except for TinyLlama-1.1B (TL). The few-
shotted Mistral model also has a high syllable distance.

WS WK WSK WSKR LS LK LSK LST
Random baseline 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
OGPT2 0.29 0.11 0.28 0.24 0.32 0.11 0.21 0.25
BGPT2 0.25 0.11 0.32 0.14 0.22 0.09 0.18 0.09
BTL 0.35 0.1 0.34 0.34 0.11 0.11 0.27 0.24
TL 0.45 0.1 0.41 0.43 0.57 0.11 0.28 0.37
MIS-5shot 0.12 0.09 0.1 0.1 - - - -
MIS-10shot 0.11 0.1 0.11 0.1 - - - -
Target 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83

Table 6.6: Syllable accuracy on raw outputs

The syllable accuracy shown in Table 6.6 yields similar results to syllable
distance (see Table 6.5), showing that this metric performs poorly on models
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trained on keywords only and on the few-shotted Mistral and that TinyLlama-
1.1B reaches quite decent accuracies without any postprocessing.

WS WK WSK WSKR LS LK LSK LST
Random baseline 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
OGPT2 0.47 0.48 0.58 0.45 0.61 0.5 0.47 0.45
BGPT2 0.58 0.58 0.52 0.48 0.66 0.45 0.4 0.48
BTL 0.52 0.55 0.57 0.54 0.84 0.37 0.36 0.4
TL 0.42 0.44 0.47 0.47 0.71 0.53 0.62 0.59
MIS-5shot 0.29 0.26 0.33 0.36 - - - -
MIS-10shot 0.36 0.3 0.35 0.39 - - - -
Target 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77

Table 6.7: Rhyme scheme agreement on raw outputs

Rhyme scheme agreement values in Table 6.7 show that adding rhyme scheme
notation during the preprocessing of the training data (WSKR) has no significant
effect compared to WS, WR and WSK, even making it slightly worse. On the
other hand, we can see that except for TinyLlama-1.1B and the preprocessing of
dataset LS, the results of rhyme scheme agreement are worse for models trained
on lines, even though generating the song section line by line should promote
rhyme scheme agreement. Furthermore, most of the results stay close to the
baseline. As discussed in Section 6.1, due to the rhyming nature of song lyrics,
the baseline for rhyming agreement is quite high.

WS WK WSK WSKR LS LK LSK LST
Random baseline 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
OGPT2 0.32 0.31 0.22 0.34 0.53 0.43 0.4 0.38
BGPT2 0.21 0.18 0.21 0.26 0.45 0.39 0.36 0.27
BTL 0.21 0.19 0.23 0.29 0.41 0.33 0.33 0.35
TL 0.19 0.18 0.18 0.35 0.69 0.49 0.58 0.55
MIS-5shot 0.17 0.16 0.17 0.19 - - - -
MIS-10shot 0.17 0.16 0.18 0.21 - - - -
Target 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Table 6.8: Rhyme scheme accuracy on raw outputs

Even though the rhyme scheme agreement is lower for models trained on
single lines (see Table 6.7), Table 6.8 shows that the rhyme scheme accuracy
is higher for these models. Also, considering method WSKR, while there was
no improvement in rhyme scheme agreement, there is a visible improvement in
rhyme scheme accuracy. This could be due to the models without the knowledge
of the correct rhyme scheme generating more natural lyrics with more rhymes,
while the model with the knowledge of the desired rhyme scheme trying to fill in
the desired form, therefore generating fewer rhymes in general.

Semantic similarity (see Table 6.9) is higher on results from models trained
on keywords or translated lines than the ones trained purely on syllable counts.
Except for the models trained on translated lines, the song sections generated as
a whole yield higher semantic accuracy than those generated line by line.
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WS WK WSK WSKR LS LK LSK LST
Random baseline 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
OGPT2 0.17 0.34 0.38 0.4 0.17 0.33 0.29 0.52
BGPT2 0.17 0.41 0.45 0.46 0.16 0.37 0.41 0.25
BTL 0.16 0.4 0.46 0.47 0.13 0.39 0.37 0.55
TL 0.18 0.37 0.4 0.39 0.2 0.32 0.34 0.41
MIS-5shot 0.18 0.33 0.4 0.42 - - - -
MIS-10shot 0.17 0.39 0.46 0.48 - - - -
Target 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62

Table 6.9: Semantic similarity on raw outputs

WS WK WSK WSKR LS LK LSK LST
Random baseline 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34
OGPT2 0.22 0.44 0.49 0.53 0.24 0.42 0.36 0.52
BGPT2 0.23 0.53 0.58 0.62 0.18 0.44 0.5 0.28
BTL 0.22 0.52 0.6 0.61 0.15 0.46 0.46 0.58
TL 0.25 0.49 0.53 0.52 0.27 0.39 0.42 0.45
MIS-5shot 0.26 0.45 0.54 0.56 - - - -
MIS-10shot 0.23 0.51 0.6 0.64 - - - -
Target 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64

Table 6.10: Keyword similarity on raw outputs

Keyword similarity (see Table 6.10) yields similar results as semantic similar-
ity (see Table 6.9) in terms of inter-model comparison. As opposed to semantic
similarity, where the results are average (considering the baseline for semantic
similarity is 0.23 and the target is 0.6), The results of keyword similarity, espe-
cially those of BGPT2 and BTL when generating whole texts, are quite satisfac-
tory (considering the baseline value is 0.34 and the target value is 0.64). Also,
while the few-shotted Mistral was below average in metrics measuring rhyme and
syllable counts, with just 10 examples in the prompt of the WSKR prompt type
it reached the target value.

WS WK WSK WSKR LS LK LSK LST
Random baseline 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
OGPT2 0.17 0.24 0.25 0.27 0.17 0.33 0.28 0.42
BGPT2 0.17 0.25 0.26 0.27 0.17 0.39 0.41 0.16
BTL 0.16 0.26 0.28 0.28 0.17 0.39 0.37 0.44
TL 0.17 0.24 0.26 0.24 0.17 0.32 0.36 0.35
MIS-5shot 0.16 0.19 0.24 0.26 - - - -
MIS-10shot 0.16 0.22 0.26 0.27 - - - -
Target 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

Table 6.11: Line-by-line keyword similarity on raw outputs

Line-by-line keyword similarity on the other hand unsurprisingly yields better
results for the models generating song sections line by line, as can be seen in Table
6.11.
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WS WK WSK WSKR LS LK LSK LST
Random baseline 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
OGPT2 0.22 0.23 0.2 0.27 0.11 0.1 0.13 0.11
BGPT2 0.23 0.22 0.19 0.17 0.38 0.19 0.11 0.14
BTL 0.2 0.21 0.21 0.17 0.64 0.13 0.14 0.13
TL 0.15 0.15 0.17 0.13 0.1 0.11 0.11 0.1
MIS-5shot 0.14 0.14 0.15 0.14 - - - -
MIS-10shot 0.15 0.14 0.15 0.14 - - - -
Target 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Table 6.12: Phoneme repetition distance on raw outputs

Phoneme repetition distance (see Table 6.12) is generally smaller when the
song section is generated line by line. This might be due to language models
often getting caught in repeating the same section of a text over and over, and
generating each line separately breaks this cycle.

WS WK WSK WSKR LS LK LSK LST
Random baseline 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OGPT2 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.14
BGPT2 0.0 0.01 0.01 0.01 0.0 0.0 0.01 0.03
BTL 0.0 0.01 0.01 0.01 0.0 0.01 0.0 0.13
TL 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.11
MIS-5shot 0.0 0.0 0.0 0.0 - - - -
MIS-10shot 0.0 0.0 0.01 0.0 - - - -
Target 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Table 6.13: BLEU-2 on raw outputs

As already stated in Section 6.1, BLEU is not an ideal metric for our problem,
therefore the values are low, regardless of the model or the prompt format, except
for the models trained on the translated lines. The BLEU score of these outputs is
still significantly smaller than the BLEU score of the machine-translated outputs,
achieving 0.49 (see Section 6.1.1), compared to the highest score from the models
being 0.14.

WS WK WSK WSKR LS LK LSK LST
Random baseline 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
OGPT2 0.09 0.1 0.11 0.11 0.08 0.11 0.1 0.25
BGPT2 0.09 0.11 0.13 0.14 0.05 0.1 0.12 0.09
BTL 0.09 0.11 0.12 0.13 0.02 0.12 0.12 0.23
TL 0.09 0.1 0.13 0.12 0.09 0.11 0.12 0.22
MIS-5shot 0.09 0.1 0.11 0.11 - - - -
MIS-10shot 0.08 0.11 0.12 0.12 - - - -
Target 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

Table 6.14: chrF on raw outputs

As we can see in Table 6.14, chrF follows a similar trend as BLEU, but slight
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improvements in the score can be seen in places where semantic similarity and
keyword similarity were higher.

As we can see in Table 6.4, TinyLama-1.1B (TL) can not generate Czech very
well as it is making up new words. On the other hand, the following tables show
it fulfils the formal requirements with ease. That is mainly due to disrespecting
the naturalness of the language. From this, an intriguing conclusion can be
drawn: The models having more difficulty obeying the formal requirements should
generate rather natural Czech texts. It is more difficult to satisfy the formal
requirements while generating valid sentences than while ignoring the language
altogether.

Choosing the best models

In the end, we decided to proceed with the four following models: CSTinyLlama-
1.2B trained on whole texts with specified syllables, keywords and rhyme schemes
(BTL-WSKR), Czech-GPT-2-XL-133k trained on whole texts with specified syl-
lables and keywords (BGPT2-WSK), TinyLlama-1.1B trained on single lines with
specified syllables and keywords (TL-LSK) and finally CSTinyLlama-1.2B trained
on single lines with specified syllables and translated English original lyrics (BTL-
LST).

We chose these four models by comparing the automatic evaluation scores
and by trying to bring the diversity of the models to the next phase. Out of
the models generating whole song sections at once, BTL-WSKR had the most
stable performance across all the metrics. Although the BGPT2 model sometimes
had problems with straying away from the form of the English input section, the
BGPT2-WSK model specifically achieved relatively good values on the evaluation
metrics. The TL model did overall great on the evaluation metrics and we chose
TL-LSK for the postprocessing evaluation. BTL-LST was chosen mainly to assess
the effect of putting translated English input into the prompt and see if the quality
of the generated song sections improves with the postprocessing.

We also chose to evaluate the effects of the postprocessing functions on the
Czech-GPT2-OSCAR trained on whole texts with marked syllables and keywords
(OGPT2-WSK), because this model is small enough to run locally, while still
producing acceptable results, and on a 10-shot prompted cswikimistral 0.1 (MIS-
10shot) to see whether the postprocessing could be enough to combat the lack of
fine-tuning.

6.3.2 After postprocessing
In this section, we are going to show the results of the individual metrics of
the evaluation function after applying various postprocessing methods to the
generated song section. We are going to compare the individual postprocessing
functions and their combinations, as well as the performance of individual models.
We will also present example outputs of these models with various postprocessing
functions applied. The two postprocessing functions we are experimenting with
are choosing the best out of n generated outputs (see Section 5.4.1) and removing
or adding stopwords to achieve a better syllable distance (see Section 5.4.2).

In the following tables, we show the results of the random baseline, then the
raw output of the model, then the choose best postprocessing function with n
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generated song sections to choose from equal to 5 and 10. After that, we show
the raw output with the stopwords function applied, as well as combining the
two postprocessing functions and showing the results after applying both of them
to the raw model output. Last, we show the target values measured on the
Human-made cover songs.

BTL
WSKR

BGPT2
WSK

OGPT2
WSK

TL
LSK

BTL
LST

F-MIS
WSKR

Random baseline 0.65 0.65 0.65 0.65 0.65 0.65
Raw output 0.17 0.18 0.23 0.2 0.17 0.76
Choose from 5 0.11 0.12 0.15 0.05 0.07 0.55
Choose from 10 0.1 0.11 0.13 0.02 0.04 0.5
Stopwords 0.03 0.03 0.06 0.02 0.07 0.17
Stopwords + Choose from 5 0.01 0.01 0.01 0.0 0.0 0.06
Stopwords + Choose from 10 0.0 0.01 0.01 0.0 0.0 0.04
Target 0.03 0.03 0.03 0.03 0.03 0.03

Table 6.15: Syllable distance after postprocessing

As we can see in Table 6.15, The syllable distance improved drastically with
the postprocessing functions, which is not surprising because the choose best post-
processing is choosing syllable distance as one of its parameters, and stopwords
postprocessing is based purely on minimizing the syllable distance between the
English original and the Czech generated cover version. In this case, when choos-
ing the best out of 5 or 10 versions with stopwords added or removed, the syllable
distance reaches even better values than the target data.

BTL
WSKR

BGPT2
WSK

OGPT2
WSK

TL
LSK

BTL
LST

F-MIS
WSKR

Random baseline 0.1 0.1 0.1 0.1 0.1 0.1
Raw output 0.34 0.32 0.28 0.28 0.37 0.1
Choose from 5 0.5 0.44 0.4 0.73 0.63 0.16
Choose from 10 0.53 0.5 0.46 0.89 0.79 0.2
Stopwords 0.94 0.93 0.92 0.93 0.91 0.82
Stopwords + Choose from 5 0.97 0.97 0.97 1.0 0.99 0.93
Stopwords + Choose from 10 0.98 0.98 0.98 1.0 1.0 0.95
Target 0.83 0.83 0.83 0.83 0.83 0.83

Table 6.16: Syllable accuracy after postprocessing

The same trend can be seen in Table 6.16, showing the syllable accuracy. We
can see that the choose best function improves the syllable accuracy quite a bit,
eliminating the outliers dragging the score down, but the true difference is made
by the stopwords postprocessing function, which makes the output of the model
score a lot better than the actual target syllable accuracy.

Rhyme agreement is slightly improving with the additional postprocessing
functions (see Table 6.17). This is interesting because the stopwords postpro-
cessing does not directly manipulate the rhyme scheme, but we can see that the
rhyme scheme is influenced by the fact whether the stopwords technique is used
or not. This is due to stopwords correcting the number of syllables in each line,
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BTL
WSKR

BGPT2
WSK

OGPT2
WSK

TL
LSK

BTL
LST

F-MIS
WSKR

Random baseline 0.55 0.55 0.55 0.55 0.55 0.55
Raw output 0.54 0.52 0.49 0.62 0.59 0.39
Choose from 5 0.57 0.51 0.56 0.68 0.46 0.42
Choose from 10 0.58 0.52 0.57 0.71 0.53 0.45
Stopwords 0.56 0.51 0.5 0.63 0.4 0.38
Stopwords + Choose from 5 0.62 0.54 0.58 0.73 0.53 0.44
Stopwords + Choose from 10 0.64 0.59 0.62 0.74 0.61 0.49
Target 0.77 0.77 0.77 0.77 0.77 0.77

Table 6.17: Rhyme scheme agreement after postprocessing

therefore the choose best function can decide which section is the best based on
the other metrics than syllable distance.

BTL
WSKR

BGPT2
WSK

OGPT2
WSK

TL
LSK

BTL
LST

F-MIS
WSKR

Random baseline 0.2 0.2 0.2 0.2 0.2 0.2
Raw output 0.29 0.21 0.3 0.58 0.55 0.21
Choose from 5 0.36 0.27 0.29 0.64 0.42 0.23
Choose from 10 0.4 0.3 0.28 0.67 0.49 0.26
Stopwords 0.29 0.21 0.29 0.6 0.35 0.2
Stopwords + Choose from 5 0.42 0.29 0.27 0.69 0.5 0.26
Stopwords + Choose from 10 0.42 0.35 0.33 0.71 0.57 0.3
Target 0.6 0.6 0.6 0.6 0.6 0.6

Table 6.18: Rhyme scheme accuracy after postprocessing

Similarly as with rhyme scheme agreement, rhyme scheme accuracy (see Table
6.18) is improving with the added postprocessing functions. The rhyme scheme
accuracy is even higher than the target value on the outputs from the TinyLlama-
1.1B model trained on individual lines with syllables and keywords.

BTL
WSKR

BGPT2
WSK

OGPT2
WSK

TL
LSK

BTL
LST

F-MIS
WSKR

Random baseline 0.23 0.23 0.23 0.23 0.23 0.23
Raw output 0.47 0.45 0.38 0.34 0.41 0.48
Choose from 5 0.51 0.49 0.42 0.4 0.64 0.51
Choose from 10 0.53 0.51 0.43 0.42 0.65 0.52
Stopwords 0.46 0.44 0.37 0.35 0.53 0.45
Stopwords + Choose from 5 0.53 0.5 0.44 0.47 0.67 0.49
Stopwords + Choose from 10 0.54 0.53 0.46 0.51 0.7 0.51
Target 0.62 0.62 0.62 0.62 0.62 0.62

Table 6.19: Semantic similarity after postprocessing

As with the rhyme accuracy and rhyme agreement, Table 6.19 shows im-
provement of semantic similarity with additional postprocessing functions. The
semantic similarity of the outputs in general is well over the baseline, and the
semantic similarity of the model trained on syllables and translated lines even
surpasses the target.
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BTL
WSKR

BGPT2
WSK

OGPT2
WSK

TL
LSK

BTL
LST

F-MIS
WSKR

Random baseline 0.34 0.34 0.34 0.34 0.34 0.34
Raw output 0.61 0.58 0.49 0.42 0.45 0.64
Choose from 5 0.66 0.63 0.53 0.47 0.66 0.67
Choose from 10 0.67 0.65 0.54 0.51 0.67 0.69
Stopwords 0.6 0.58 0.48 0.43 0.56 0.61
Stopwords + Choose from 5 0.67 0.65 0.55 0.54 0.69 0.66
Stopwords + Choose from 10 0.68 0.66 0.57 0.59 0.72 0.69
Target 0.64 0.64 0.64 0.64 0.64 0.64

Table 6.20: Keyword similarity after postprocessing

Keyword similarity of the post-processed outputs is also better than the base-
line, as can be seen in Table 6.20. The keyword similarity of the best out of
10 texts, regardless of whether the stopwords function is applied, in most cases
comfortably reaches the level of the target values. We can see that the stopwords
function doesn’t improve the semantic similarity when applied to the raw output
alone, but when applied before the choose best function, the results are slightly
better than just applying choose best function alone. This is again due to stop-
words minimizing the syllable distance, therefore taking the syllable distance out
of the equation when the choose best function weights which song section is the
best.

BTL
WSKR

BGPT2
WSK

OGPT2
WSK

TL
LSK

BTL
LST

F-MIS
WSKR

Random baseline 0.22 0.22 0.22 0.22 0.22 0.22
Raw output 0.28 0.26 0.25 0.36 0.35 0.27
Choose from 5 0.29 0.27 0.25 0.42 0.54 0.29
Choose from 10 0.29 0.27 0.26 0.47 0.56 0.29
Stopwords 0.28 0.26 0.25 0.35 0.44 0.27
Stopwords + Choose from 5 0.29 0.27 0.26 0.51 0.58 0.29
Stopwords + Choose from 10 0.29 0.27 0.26 0.57 0.62 0.28
Target 0.45 0.45 0.45 0.45 0.45 0.45

Table 6.21: Line-by-line keyword similarity after postprocessing

With line keywords similarity (see Table 6.21) when generating whole song
sections, even after the postprocessing, the values are between the baseline and
the target. On the other hand, when generating the song sections line by line, the
line keyword similarity of outputs after postprocessing is higher than the target
values. This shows that human translators and cover writers take the liberty of
switching the order of topics within a section.

Phoneme repetition difference (see Table 6.22) is starting much worse than
the baseline value, but with the postprocessing getting closer to the target. It
is directly influenced by the choose best postprocessing function, as phoneme
repetition difference is one of the four deciding metrics.

The BLEU2 score is not an ideal metric for measuring the quality of song lyrics
and Table 6.23 shows it again. Here, we can see that in the case of the model
being trained on the translated lines (LST), the BLEU score is better, but while
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BTL
WSKR

BGPT2
WSK

OGPT2
WSK

TL
LSK

BTL
LST

F-MIS
WSKR

Random baseline 0.12 0.12 0.12 0.12 0.12 0.12
Raw output 0.17 0.19 0.2 0.11 0.1 0.14
Choose from 5 0.1 0.11 0.12 0.1 0.1 0.12
Choose from 10 0.08 0.09 0.1 0.1 0.1 0.11
Stopwords 0.17 0.18 0.18 0.1 0.12 0.17
Stopwords + Choose from 5 0.08 0.08 0.09 0.09 0.09 0.14
Stopwords + Choose from 10 0.06 0.07 0.07 0.09 0.09 0.12
Target 0.08 0.08 0.08 0.08 0.08 0.08

Table 6.22: Phoneme repetition distance after postprocessing

BTL
WSKR

BGPT2
WSK

OGPT2
WSK

TL
LSK

BTL
LST

F-MIS
WSKR

Random baseline 0.0 0.0 0.0 0.0 0.0 0.0
Raw output 0.01 0.01 0.01 0.0 0.11 0.0
Choose from 5 0.01 0.01 0.01 0.01 0.17 0.01
Choose from 10 0.01 0.01 0.01 0.01 0.17 0.01
Stopwords 0.01 0.01 0.01 0.0 0.1 0.0
Stopwords + Choose from 5 0.01 0.01 0.01 0.01 0.15 0.01
Stopwords + Choose from 10 0.01 0.01 0.01 0.01 0.16 0.01
Target 0.04 0.04 0.04 0.04 0.04 0.04

Table 6.23: BLEU2 after postprocessing

BTL
WSKR

BGPT2
WSK

OGPT2
WSK

TL
LSK

BTL
LST

F-MIS
WSKR

Random baseline 0.09 0.09 0.09 0.09 0.09 0.09
Raw output 0.13 0.13 0.11 0.12 0.22 0.12
Choose from 5 0.14 0.13 0.12 0.13 0.28 0.13
Choose from 10 0.14 0.14 0.12 0.14 0.28 0.13
Stopwords 0.13 0.13 0.11 0.13 0.22 0.12
Stopwords + Choose from 5 0.14 0.14 0.13 0.14 0.27 0.13
Stopwords + Choose from 10 0.14 0.14 0.13 0.14 0.28 0.13
Target 0.16 0.16 0.16 0.16 0.16 0.16

Table 6.24: chrF after postprocessing

choosing the best section out of n improves the quality of the ‘translation’, adding
and removing stopwords slightly lowers the score. This is due to the stopwords
function changing the word n-grams, which the BLEU score is dependent on.

The results of chrF (Table 6.24) are quite similar to BLEU (Table 6.23),
except for chrF improving slightly with the choose best postprocessing method.
This might be due to two reasons, either the choose best method eliminates the
outputs that are outliers and neither make sense nor hold any form, or it is due to
choose best method considering semantic similarity while choosing the best song
section.

Next, we will present some of the postprocessed outputs from each model for
illustration. Both stopwords and choose best postprocessing functions were used,
with n = 10 for the choose best function. On the left of each figure, we show the
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English input and on the right the model output.
The outputs of BTL-WSKR can be found in Figure 6.12, demonstrating a

nice rhyme scheme agreement without unnecessary line repetition, as well as a
low syllable distance, and especially in the second section, semantic similarity.
Figure 6.13 shows the outputs of BGPT2-WSK, where is a demonstration of an
incorrectly formatted English input, which resulted in incorrect keywords extrac-
tion, and in this case the model’s assumption that ”Diff” is a name. Figure 6.14
shows the outputs of OGPT2-WSK. In Figure 6.15 we can see the outputs of TL-
LSK, demonstrating an accurate rhyme scheme and perfect syllable accuracies,
oftentimes due to the model making up new words to match the structure (e.g.
‘stav́ı’ and ‘neuvav́ı’). The same can be said for BTL-LST outputs in Figure 6.16
(e.g. ‘na světle’ and ‘v noci tle’). The Mistral model, while keeping the keywords
well, does not follow the syllable counts and rhyme scheme very closely. We can
see in Figure 6.17 that the ‘add stopwords’ postprocessing was used several times,
by adding the ‘na na na’ in the beginning of most lines.

Coming back to [Low, 2003] and his pentathlon of singable translations, au-
tomatic evaluation is insufficient for evaluating the aspects of naturalness and
singability. For that, manual evaluation is needed.

I’ll escape now from that world že po všem co se stalo
From the world of Jean Valjean a tak valjean je m̊uj svět
There is nowhere I can turn no tak už se neboj́ım
There is no way to go on dál jen tam se vrát́ım zpět

When the beating of your heart kdo to tluče a duńı
Echoes the beating of the drums to srdce v rytmu bubn̊u zńı
There is a life about to start źıtřeǰśım jednáńı
When tomorrow comes se na srdce bude hrát

Figure 6.12: Generated Czech covers of the English original song sections by the
BTL-WSKR model with choose best of 10 and stopwords postprocessing.

So our diff ’rences ain’t diff je optimista
really that extreme ale sadista
We’re one big team jsem extrémńı
Call us brutal Sick Sadistic a tak to má být to nevad́ı
And grotesquely optimistic s t́ım už se muśıme smı́řit

Figure 6.13: Generated Czech cover of the English original song section by the
BGPT2-WSK model with choose best of 10 and stopwords postprocessing.
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The snow glows white on the mountain tonight když padá sńıh a hory houkaj́ı
Not a footprint to be seen v́ıtr všude kolem nás
A kingdom of isolation a hory k tobě přituĺı
And it looks like I’m the queen v́ıtr všude kolem nás
The wind is howling dál a ty nechceš
like this swirling storm inside tak aby se mnou chtěl j́ıt
Couldn’t keep it in heaven knows I tried no a já teď chtěl jenom něco

ř́ıct

Figure 6.14: Generated Czech cover of the English original song section by the
OGPT2-WSK model with choose best of 10 and stopwords postprocessing.

Do you want to build a snowman a ťu přǐsel stát dělej sńıh
Come on let’s go and play no tak ťápe si hrát
I never see you anymore copak ťáp a mě zase už
Come out the door tak ďábel už
It’s like you’ve gone away ďábel přij́ıt pryč brát
We used to be best buddies ňák nejlepš́ıch kámuši
And now we’re not a ťu co nás
I wish you would tell me why že ťápám za každý den

Do you want to buid a snowman ňákej chce sńıh už tě stav́ı
It doesn’t have to be a snowman ňáký sněhulák neuvav́ı

Figure 6.15: Generated Czech cover of the English original song section by the
TL-LSK model with choose best of 10 and stopwords postprocessing.

Ah yes the virtuous Fantine že óóc tyctǐz ctnostný fantine
Who keeps herself so pure and clean rát se v ńı tak čisté je ne
You’d be the cause I had no doubt tak ťa bych nebyl př́ıčinou
Of any trouble hereabout ňák o problémech neslibnou
You play a virgin in the light ťa hraju pannu na světle
But need no urgin’ in the night rát neńı třeba v noci tle

Figure 6.16: Generated Czech cover of the English original song section by the
BTL-LST model with choose best of 10 and stopwords postprocessing.

57



And so I read a book jsem ona obraz jsem
Or maybe two or three život kniha galerie je
I’ll add a few new paintings to my gallery na na na na na na na na na začátek
I’ll play guitar and knit na na na začátek
And cook and basically na na na začátek
Just wonder when will my life begin na na na na na na začátek

Figure 6.17: Generated Czech cover of the English original song section by the
Mistral model with 10-shot prompting, choose best of 10 and stopwords postpro-
cessing.

6.4 Manual Evaluation
In this section, we will explain the form of manual evaluation we use, we will
present the results and draw conclusions based on these results. The main goal
of the manual evaluation is to assess the overall fitness of the lyrics to be the
lyrics of a cover song, with a focus on the aspect of naturalness and singability,
as these two are not thoroughly covered by the automatic evaluation metrics.

6.4.1 The method
The manual evaluation was done on the output song sections from the same
six models that were chosen for postprocessing based on the automatic evalu-
ation metrics (see Section 6.3.1). The sections were generated with the choose
best out of 10 and stopwords postprocessing functions. In addition to these six
types of generated song sections, two more types were added: the original Czech
human-translated covers (denoted as ‘cs lyrics’) and the machine translation of
the English original lyrics done by the Lindat translator.

We have eight different models and we want to compare each with each to
conclude which model yields the best results. We decided to carry out the evalu-
ation using blind pairwise binary comparisons with ties disallowed (A/B testing),
providing the evaluators with a pair of outputs of two different systems for the
same input and asking them to select which of the two outputs is better than the
other. If each inter-model comparison would occur just once, that still means 28
comparisons in total, which is already quite a lot for a participant to fill in. If
we created only a single questionnaire of 28 comparisons identical for all of the
evaluators, the results would not be very objective, as each model would have just
one chance to generate an output for each inter-model comparison. If one model
was lucky and the other one not, then the participants would rate the luck of the
model, not the actual quality of its average results. As presenting more examples
to one participant would be too demanding as well as time-consuming for the par-
ticipants, we decided to randomly generate a questionnaire containing different
output sections for each participant independently. For each inter-model com-
parison, we randomly picked a song section from the Bilingual Human-translated
Lyrics dataset and provided versions of this song section generated by the cur-
rently compared models.
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Figure 6.18: An example of comparison of BTL-WSKR output section and
BGPT2-WSK output section, with the prompt ‘Lepsi:’ expecting the id of the
better song section.

6.4.2 The questionnaire
The participants were asked to choose the better cover version based on the
English original. In the instructions of the questionnaire, we had three criteria in
order of priority. First, the better cover should be singable to the same melody as
the English original: if the participant does not know the melody of the original,
they should concentrate on the rhythmicity of the English original vs the Czech
cover. Second, the better cover should be natural, with the words easily following
one another. Third, the better cover should sound like song lyrics: it is foremost
singable, and it does not have to have exactly the same meaning as the original.
An example of one comparison can be seen in Figure 6.18

6.4.3 Results
First, we will discuss the score interpretation. Each time a participant votes for
a model in the inter-model comparison, the victorious model gets a point. As
the models are 8 in total, each model can obtain a maximum of 7 points per
questionnaire, if it is chosen every time. A model can obtain a minimum of 0
points per questionnaire if it does not get chosen at all. For example, when a
model has 5 points, it means that it was victorious in 5 inter-model comparisons
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source points out of 7 chosen in % of cases
cs lyrics 6.04 86
translation 4.96 71
btl wskr 4.00 57
bgpt2 wsk 3.92 56
ogpt2 wsk 3.36 48
btl lst 2.44 35
mistral 1.76 25
tl lsk 1.52 22

Table 6.25: Averaged results of the manual evaluation from all 25 participants.

and was defeated in two inter-model comparisons. We can also express the score
by the percentage of cases in which a specific model won (computed as the number
of obtained points divided by 7 for each questionnaire).

Table 6.25 shows the averaged results of all 25 participants. We can see that
the human-translated Czech lyrics (cs lyrics) are rated the best, with an average
rating of 6.04 points and a chance of being chosen of 86%. The second spot
in the averaged ratings is taken by the machine translations with the chance of
being chosen equal to 71%. Third in order of preference of the participant, is
the BUT TinyLlama model fine-tuned on whole sections with syllables, keywords
and a rhyme scheme (btl wskr) with being chosen on average 4 times out of 7,
meaning with a 57% chance. All three language models fine-tuned on the whole
song sections yield similar results. A drop in the score occurs with the models
fine-tuned to generate song sections line by line and on the few-shotted Mistral
model.

While conducting the manual evaluation, we noticed that the responses dif-
fered from one another, so we decided to further investigate the results. We filter
the results by the number of points obtained by a specific model: For exam-
ple, if we filter the responses by a criterion that the cs lyrics have to have 6 or
7 points, we get 80% of the responses back. By averaging these responses, we
get a representation of which models are preferred by participants who like the
human-translated Czech lyrics. On the other hand, if we filter the responses by a
criterion that the cs lyrics have to be less than or equal to 3 points, we get only
one response back, showing that not liking the human-translated Czech lyrics is
an anomaly. We will explore the results by filtering them in the following figures.

In Figure 6.19, we can see that the score of the human-translated song lyrics
(cs lyrics) is generally high. In the subfigure 6.19a we can see that cs lyrics getting
a low score is an anomaly, as only 4% of participants (one participant) chose the
cs lyrics less than or equal to 4 times. Even though the cs lyrics are popular, as
we can see in the subfigure 6.19b, only 32% of participants gave the cs lyrics full
7 points (they chose the human-translated song lyrics as the better cover version
in every inter-model comparison). This implies that in the results of the other
68% of the participants, the human-translated song lyrics were beaten at least
once.

Next, we filter the results by the number of times our best-performing model
(btl wskr) was chosen. The graphs can be seen in Figure 6.20. We can see that
the number of people who like the model is roughly the same amount as the

60



1 2 3 4 5 6 7
maximum points given to cs_lyrics

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge

Human-written song translations

(a) In each tick x on the X-axis, we
show the results from participants who
gave less than or equal to x points
to the cs lyrics model. For example,
cs lyrics obtained ≤ 5 points from 20%
of participants. According to the aver-
aged scores of these specific 20% of partic-
ipants, cs lyrics were beaten by btl wskr
and by machine translations.
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(b) In each tick x on the X-axis, we show
the results from participants who gave
more than x points to the cs lyrics
model. For example, cs lyrics obtained
> 4 points from 96% of participants.
The averaged scores of these 96% of par-
ticipants say that cs lyrics is the best-
performing model with an 88% chance of
being chosen in every inter-model com-
parison.

Figure 6.19: Filtered results by human-written song translations (cs lyrics) sup-
porters. The results are filtered by the number of times cs lyrics was chosen by
each respondent individually in the inter-model comparison. Besides the model
results, we also include the thick grey line to show the percentage of participants
rating the model the specific way the X-axis describes.
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BUT TinyLlama - WSKR

(a) In each tick x on the X-axis, we
show the results from participants who
gave less than or equal to x points
to the btl wskr model. For example,
btl wskr obtained ≤ 2 points from 12%
of participants. According to the aver-
aged scores of these specific 12% of partic-
ipants, btl wskr is the worst-performing
model.
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(b) In each tick x on the X-axis, we show
the results from participants who gave
more than x points to the btl wskr
model. For example, btl wskr obtained
> 5 points from 12% of participants.
The averaged scores of these 12% of par-
ticipants say that btl wskr is the best-
performing model with a 90% chance of
being chosen in each comparison.

Figure 6.20: Filtered results by btl wskr supporters. The results are filtered by
the number of times btl wskr was chosen by each respondent individually in the
inter-model comparison. Besides the model results, we also include the thick grey
line to show the percentage of participants rating the model the specific way the
X-axis describes.
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number of people who don’t like the model. The majority of participants (76%)
gave the model between 3 to 5 points. We can see in Figure 6.20a that when
the score of btl wskr is low, the scores of other generative models are higher,
meaning that in those cases, the btl wskr model was probably unlucky. On the
other hand, in Figure 6.20b we can see that when the score of the btl wskr model
goes up, the scores of other models generating whole song sections also rise and
the score of the machine translator drops drastically. The averaged results of 68%
of participants put btl wskr above the machine translator.
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Machine translations

(a) In each tick x on the X-axis, we show
the results from participants who gave
less than or equal to x points to the
translation model. For example, trans-
lation obtained ≤ 3 points from 40% of
participants. According to the averaged
scores of these specific 40% of partici-
pants, the machine translations sit right
between the btl wskr model and the few-
shotted mistral model.
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(b) In each tick x on the X-axis, we
show the results from participants who
gave more than x points to the trans-
lation model. For example, translation
obtained > 5 points from 40% of par-
ticipants. The averaged scores of these
40% of participants say that translation
is the best-performing model with a 93%
chance of being chosen in every inter-
model comparison.

Figure 6.21: Filtered results by machine translation supporters. The results
are filtered by the number of times translation was chosen by each respondent
individually in the inter-model comparison. Besides the model results, we also
include the thick grey line to show the percentage of participants rating the model
the specific way the X-axis describes.

Finally, we filter the results by the number of times machine translation was
chosen as the better option in the inter-model comparison. As we can see in
Figure 6.21, machine translation is very stable and none of the participants gave
it 0 points. Participants who do not like the machine translation outputs pre-
fer the outputs of models generating whole sections, however, the scores of the
models generating sections line by line stay low (see Subfigure 6.21a). On the
other hand, liking the machine translation outputs does not influence the aver-
age of participants’ ratings of the generative language models (see Figure 6.21b).
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source points out of 7 chosen in % of cases
translation 6.50 93
cs lyrics 5.80 83
bgpt2 wsk 3.30 47
btl wskr 3.20 46
ogpt2 wsk 3.00 43
btl lst 2.70 39
tl lsk 1.90 27
mistral 1.60 23

Table 6.26: Averaged results of the manual evaluation from 10 participants who
rated the translation model with more than 5 points.

source points out of 7 chosen in % of cases
cs lyrics 6.20 89
btl wskr 4.53 65
bgpt2 wsk 4.33 62
translation 3.93 56
ogpt2 wsk 3.60 51
btl lst 2.27 32
mistral 1.87 27
tl lsk 1.27 18

Table 6.27: Averaged results of the manual evaluation from 15 participants who
rated the translation model with less than or equal to 5 points.

20% of participants always chose a translator when they could (translator ob-
tained 7 points). The averaged scores of 52% participants show that the machine
translation is preferred to the human-translated song lyrics.

We observed that the participants can be split into two groups: one that
prefers the machine translations and one that does not. We chose the criterion of
this split to be whether each individual participant rated the machine translator
with more than 5 points or not. The group of participants who rated translations
with more than 5 points contains 10 people, while the other group, where the
translator was rated with 5 or fewer points contains the other 15 people. We can
see in Tables 6.26 and 6.27 how the averaged results of these two groups differ.

The group of translator supporters (10 out of 25 participants) likes the results
of the translator more than the original human-translated Czech lyrics. They
also do not differentiate much between the individual models generating whole
sections at once. The other group (15 out of 25 participants) prefers the human-
translated Czech lyrics, followed by the two bigger models fine-tuned on whole
sections. There is a step in scores between these two, and the smaller ogpt2 wsk
model. The translator is also chosen a decent amount of times in comparison
with the other models.

This division of people into two groups of preferences could be due to the var-
ious knowledge of the original songs or different musical backgrounds. However,
we think that the main reason is the different preferences of the criteria of singable
translations. As we discussed in Section 1.1.3, singable translations should meet
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four criteria, all equally, none should be favoured and none should be neglected.
These criteria are singability, rhyme, sense and naturalness. Each of the evalu-
ated models meets the criteria differently and it is up to person’s preference to
choose which criteria are the most important to them. From our observation,
the generative models better meet the criteria of rhyme and singability, while the
machine translator better meets the criteria of sense and naturalness.

6.5 Discussion
In this section, we will discuss the combined results of the automatic and the
manual evaluation.

Let us start with the 10-shotted Mistral model. While the semantic similarity
was on par with the target, the rest of the criteria of singable translations (see
Section 1.1.3) were not fulfilled according to the automatic evaluation. There was
a big improvement in the syllable distance score after deploying the stopwords
postprocessing function (see Table 6.15), which implies that the output sections
were heavily stopwords-padded. Based on the results of human evaluation, the
10-shotted Mistral did not yield satisfactory results.

Next, let us look at the TL-LSK model. Based on the automatic metrics,
this model had exceptional syllable counts (Tab. 6.16) and rhyme schemes (Tab.
6.18). The semantic similarity was average. Based on the results of the manual
evaluation, the naturalness and overall singability were poor. Judging by the
above-average automatic metrics results and below-average manual evaluation
results, the model probably tried to fill in the structure without keeping any of
the naturalness, focusing on some aspects of singable covers too much and on some
too little. BTL-LSK had similar scores, except having semantic similarity better
than the target (see Table 6.19). It did a bit better in the manual evaluation,
but not by much.

The models generating whole song sections at once (BTL-WSKR, BGPT2-
WSK and OGPT2-WSK) were slightly worse than the human-translated Czech
lyrics when evaluated both by the automatic metrics and human evaluators. This
shows that these models produce overall balanced results, that still do not reach
the quality of human-made cover versions, but safely beat the random baseline.
The order of the models based on the automatic evaluation corresponds to the
order of the models based on the manual evaluation. Contrary to the models
trained on individual lines, these models preserved some sense of naturalness on
their own, keeping their good spot in both automatic and manual evaluation.

Lastly, according to the automatic metrics (Tab. 6.2), raw machine transla-
tions had great semantic similarity, neither ideal nor terrible syllable counts and
a weak rhyme scheme. Nevertheless, the naturalness of the Lindat machine trans-
lation is excellent, so the overall score is not bad, just very one-sided. It showed
during the manual evaluation when part of the participants preferred the natural-
sounding and semantically accurate translation and part of people preferred the
more poetic and structure-based adaptation.
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7. Implementation and usage
In this chapter, we will describe the implementation and usage of both of our
interfaces available for interacting with the cover-generating models. The first
option is a command line interface, which supports running generation with the
larger models and various settings. The second one is a web application that
allows generating covers by the fine-tuned Czech-GPT2-Oscar model which is
small enough to run locally. On top of that, it provides an interactive demo
of the N-gram-based framework for lyrics generation. All code and data are
in the attachments of this thesis, as well as in a GitHub repository1, where we
describe the structure of the codebase in a readme file. The state dictionary of the
best fine-tuned Czech-GPT2-Oscar model (OGPT2-WSK) is also attached to the
thesis as well as downloadable together with the best-performing CSTinyLlama
model (BTL-WSKR) from Lindat’s CLARIAH-CZ2.

7.1 Command line interface

7.1.1 Implementation
The whole pipeline is implemented in Python. We are using the Huggingface
Transformers library for large language models fine-tuning and inference through
PyTorch. We are using RhymeTagger for rhyme detection, Lindat Translator for
machine translation, and a range of other libraries and tools for smaller tasks.

7.1.2 Usage
In this section, we will describe the options of the command line interface. The
program can be run by the following command:

python covermaker.py --arg1 value1 --arg2 value2 --arg3 value3 ...

The arguments are:

• model, default: OSCAR_GPT2, type: string

– Name of the model. Options: OSCAR GPT2, BUT GPT2, TINYL-
LAMA, BUT TINYLLAMA

• model_path, default: ./trained_models, type: string

– Path to the state dict of the fine-tuned model.

• input_section, default: let it go,let it go ..., type: string

– Input section in English, lines divided by comma ‘,’ and sections
divided by semicolon ‘;’, e.g. “let it go,let it go,can’t hold it back
anymore,let it go,let it go,turn away and slam the door”

1https://github.com/stepankovab/Generation-of-Czech-Lyrics-to-Cover-Songs
2http://hdl.handle.net/11234/1-5507
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• prompt_type, default: 5, type: int

– Prompt type the model was fine-tuned on. Submit a number. Op-
tions: syllables = 1, syllables ends = 2, keywords = 3, keywords ends
= 4, syllables keywords = 5, syllables keywords ends = 6, syllables un-
rhymed = 7, syllables unrhymed ends = 8, syllables keywords rhymes
= 13

• from_dataset, default: False, type: bool

– Take test data from Bilingual human-translated lyrics dataset.

• from_structures, default: False, type: bool

– Take test data from the pre-made song structures.

• dataset_path, default: ./../Data, type: string

– Path to the test data.

• test_set_size, default: 0, type: int

– Number of samples taken from the test dataset, 0 means all.

• generation_method, default: whole, type: string

– The method of generating a section the model was finetuned on, or
fewshot. Options: whole, lines, fewshot.

• nshot, default: 10, type: int

– Number of examples when using few-shot as generation method.

• rhymer, default: 1, type: string

– The rhyme detector to be used. Options: RhymeFinder = 1, Rhyme-
Tagger = 2, Same-word RhymeTagger = 3.

• choose_best, default: 10, type: int

– Choose best postprocessing technique - the number of generated out-
puts to choose the best from.

• postprocess_stopwords, default: False, type: bool

– Posrprocess each output by trying to correct the length by remov-
ing/adding stopwords.

• results_path, default: ./results_dicts, type: string

– Path to folder to save the results when taking test data from dataset.

When the program is called without the default arguments (i.e. python
covermaker.py), a cover of the first chorus of the song ‘Let it go’ from Frozen is
generated by the OGPT2-WSK model with the postprocessing method of choos-
ing the best out of 10 generated covers.
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7.2 Web application

7.2.1 Implementation
As part of this work, we provide a web application based on the ASP.NET frame-
work coded in Csharp. The application is used to visualize our work. It contains
two GET endpoints, http://localhost:5000/Generator/RewriteLyricsGPT2
for generating a Czech cover of an English song by a fine-tuned GPT2 small
model and the http://localhost:5000/Generator/CustomLyrics for visualiz-
ing the N-gram generation approach. In the first part, the same Python scripts
are being called as in the CLI application described in section 7.1. The second
part is implemented purely as a component of the ASP.NET application.

7.2.2 Usage
As stated above, the web application offers two kinds of models for cover song
generation. To use the Ngram-based framework, nothing needs to be done. To
use the GPT2-based framework, the path to Python, the path to the folder with
the Python scripts and the path to the OGPT2-WSK model has to be set in the
config.json file.

After starting the ‘webapplication.exe’, copy the generated URL into your
favourite web browser. For generating lyrics by our GPT2 small model, fill in the
text field in the ‘From English to Czech using GPT2 small model’ and click the
‘Generate Lyrics’ button (see Figure 7.1). To use the N-gram based framework,
add lines to the structure by clicking the ‘Add new line’ button and describe the
desired structure. Provide prompt for start of generation. Then, click on the
‘Generate Lyrics’ button (see Figure 7.2). An example of an output generated by
the N-gram-based framework can be seen in Figure 7.3. There is also the option
of generating a specific line again, as shown in Figure 7.4.

Figure 7.1: Web application. To generate a Czech cover of an English song using
the OGPT2-WSK, write the English lyrics into the textbox, lines divided by
commas (‘,’)
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Figure 7.2: Web application. To generate Czech lyrics to a given structure by
the framework using the N-gram language model, add lines to the structure by
clicking the ‘Add new line’ button and describe the desired structure. Provide
prompt for start of generation.

Figure 7.3: An example of a described structure and a generated output.
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Figure 7.4: In case the model generates an inadequate line, there is the option
of generating only that line again, while also providing the option to adjust the
number of syllables, or a word the line should rhyme with.
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Conclusion
In this work, we aimed to explore the automatic generation of Czech lyrics fol-
lowing the same melody as the English original of the song. In other words, we
aimed to create Czech cover versions.

First, we thoroughly researched the problem. Then we created two datasets,
one consisting of Czech and English paired and aligned lyrics, and the second one
consisting purely of Czech song lyrics. The data for both datasets were parsed,
filtered and automatically annotated (adding information such as syllable counts,
rhyme scheme and keywords).

We experimented with generative decoder-based models, trying different ap-
proaches to leveraging the outputs. The models were fine-tuned on the song
sections with various information provided via prompting. We also tried few-
shotting techniques. At inference, we extracted the structure from the source
English lyrics and used it to prompt the language model to generate the Czech
cover. In the end, we evaluated and compared the performances of the proposed
models with the random baseline, machine translations and the official Czech
adaptations of the English songs. These were evaluated by metrics, both adapted
from different publications and our own. The best-performing models were also
evaluated manually by human evaluators. Additionally, we attached a web ap-
plication that visualizes the results of our work.

Our experiments have consistently shown that fine-tuning smaller generative
language models leads to superior results compared to using few-shot learning
on a larger generative language model. While acknowledging the potential for
improved performance with fine-tuning larger models, it is clear that fine-tuning
smaller models is advantageous given our resources, as these smaller but special-
ized models are more usable than the general larger ones.

Language models can learn to rhyme on their own. When outputs of a certain
length are desired, the model has to get explicit syllable counts on the input.
The same applies when we want the outputs to have a specific meaning. In that
case, providing keywords significantly improves the performance. In comparison,
the results of the models with, and without the provided rhyme scheme both
yield comparable results. This shows that models can learn to rhyme based on
observations of rhyming texts only, without any explicit reinforcement.

Fine-tuning language models on whole song sections yields overall better re-
sults than fine-tuning the models to generate sections line by line. Fine-tuning
a language model to generate a song section line by line supports the rhyme of
the lyrics, but negatively impacts the sense and naturalness of the lyrics, as the
models can not learn from the wider context. Generating whole lyric sections lets
the model learn the structure without forgetting the underlying naturalness of
the language, both in the flow of the ideas throughout the section or for example
in the aforementioned rhyme scheme adherence. The manual evaluation results
show that naturalness plays a crucial role when assessing the overall quality of the
lyrics, therefore putting the more naturally sounding models (generating whole
sections) way above the less naturally sounding models (generating sections line
by line). For some people, naturalness is so important that the naturalness of a
machine translation even outweighs the singability of song lyrics.
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Our research reveals the subjectivity in individual preferences when evaluat-
ing covers. Human evaluators can be divided into two groups: one favours raw
machine translation, while the other favours our fine-tuned language model’s out-
puts and human-translated song lyrics. The question arises: is it even possible to
accurately and objectively measure the quality of a cover? While for example, the
musical film industry prefers the highly singable song adaptation due to having to
lip-sync with the pre-recorded material, others could prefer more of a translation
approach underlining the meaning and naturalness of a language. It is unclear
whether the ideal set of metrics for measuring the quality of song covers even
exists.

Finally, we can conclude that while human-translated song lyrics are singable
and widely used in pop culture, they are not translations but merely adaptations.
This means that there is a lot of room for improvement not only to get on the
level of human-translated lyrics but also to surpass them.

Future work
We demonstrated the possibility of generating Czech covers of English songs
through the extraction of relevant lyric characteristics and fine-tuning of gen-
erative large language models. Our method has shown promising performance
compared to baseline approaches. However, it is important to acknowledge that
our generated covers still fall short of the quality achieved by human-written cov-
ers. Despite this gap, our approach represents a significant step forward in the
development of automated cover generation methods.

For future work, our results indicate that although this is not a traditional
translation task, we should not overlook the potential of Machine Translation.
Therefore, it is essential to explore the performance of machine translation mod-
els specifically trained for this task. Additionally, investigating the effectiveness
of larger generative models would be valuable. An intriguing avenue for research
would be to combine these two approaches, integrating the injection of meaning
vectors into the large language models instead of only providing keywords. Fur-
thermore, inventing a reliable metric for measuring the naturalness of generated
lyrics would be beneficial.
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