
BACHELOR THESIS

Jan Benda

Machine learning for recognition of simple
physical systems

Mathematical Institute of Charles University

Supervisor of the bachelor thesis: doc. RNDr. Michal Pavelka, Ph.D.

Study programme: Mathematical Modelling

Study branch: MMOP

Prague 2024

I declare that I carried out this bachelor thesis independently, and only with the cited
sources, literature and other professional sources. It has not been used to obtain another
or the same degree.

I understand that my work relates to the rights and obligations under the Act No. 121/2000
Sb., the Copyright Act, as amended, in particular the fact that the Charles University
has the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor, doc. Michal Pavelka, for his patient guidance and
advice.

ii

Title: Machine learning for recognition of simple physical systems

Author: Jan Benda

Institute: Mathematical Institute of Charles University

Supervisor: doc. RNDr. Michal Pavelka, Ph.D., Mathematical Institute of Charles
University

Abstract: The rise of machine learning, particularly through the use of neural net-
works, has begun to change how we solve problems, including understanding simple
physical systems. This thesis focuses on the Direct Poisson Neural Network (DPNN),
a network that uses the structure of Hamilton’s equations of motion to learn from data.
This method allows us to extract the Hamiltonian and Poisson bivector from the data,
helping to identify the type of physical systems. We explore how DPNN works with
noisy data and when data is limited, checking its ability to make predictions in chal-
lenging conditions. Moreover, we have implemented Energy Ehrenfest regularisation
to the model, which helps it recognise and simulate dissipative systems better.

Keywords: Machine Learning Hamiltonian Systems System Recognition Neural Net-
works

iii

Contents

List of Abbreviations 2

Introduction 3

1 Introduction to Deep Learning 4
1.1 Neural networks basics . 4
1.2 Training the model . 5

1.2.1 Training and Test set . 5
1.2.2 Gradient Descent . 6

1.3 Model capacity and regularisation 7
1.4 Coping with noise . 8

2 Hamiltonian Systems 10
2.1 Hamilton’s equations . 10
2.2 Poisson Brackets . 11

2.2.1 Properties of Poisson brackets 11
2.3 Non-canonical Poisson brackets . 12

2.3.1 Jacobiator . 13
2.4 3D Hamiltonian systems . 13

3 Direct Poisson Neural Network 15
3.1 The Architecture and workflow . 15

3.1.1 The workflow . 16
3.2 Demonstration . 17

4 Results and improvements 21
4.1 Robustness against noise . 21
4.2 Extrapolation . 23
4.3 RK4 movement loss . 24
4.4 Ehrenfest dissipation . 27

Conclusion 30

Bibliography 31

List of Figures 32

List of Tables 33

1

List of Abbreviations
DPNN Direct Poisson Neural Network

GD Gradient Descent

SGD Stochastic Gradient Descent

MSE Means Square Error

MLE Maximum Likelihood Estimator

WJ DPNN without Jacobi’s identity regularisation

SJ DPNN with soft Jacobi’s identity regularisation

IJ DPNN with implict Jacobi’s identity

FE Forward Euler Method

CN Cranck-Nicolson scheme

IMR Implicit Midpoint Rule

RK4 Runge-Kutta of fourth order

2

Introduction
With the rise of large language models such as GPT4, deep learning has been growing
in popularity in recent years. While achieving previously unimaginable results in high-
dimensional problems like image and text generation, translation, or speech synthesis,
it is worth exploring the potential of such models on problems, which we already have
solutions for, in our case recognition and simulation of Hamiltonian systems from
measured or calculated data.

One broad category of neural networks, that achieves this, is dubbed Physics-
Informed Neural Networks, or PINNs for short. The core idea behind PINNs is to
use plain Neural Networks, impose some physics-based constraints (e.g. conservation
laws) on them, and train them on measured or simulated data. Some PINNs go even
further and reflect the problem’s underlying structure in their architecture. If the net-
work is designed to reflect the structure of Hamilton’s equations of motion, we can
make it learn the Hamiltonian and recognise the underlying physical system based on
it.

That is essentially what Direct Poisson Neural Network (DPNN) developed by
Martin Šı́pka [2023] does. From the provided data it learns the Hamiltonian and Pois-
son bivector, from which we can identify the type of the system, its degeneracy, and
more.

In this thesis, we explained the inner workings of DPNN and reproduced the results
made by its authors. Then we explore its behaviour in settings, where there is either
some amount of noise present in the dataset or when there is not enough data and
the network needs to extrapolate. Finally, we have implemented Energy Ehrenfest
regularisation described in Pavelka et al. [2019], which made it possible to recognise
the presence of dissipation in the system.

3

1. Introduction to Deep Learning
This chapter covers basic parts and working principles of neural networks, which are
key in deep learning. We will look into how these networks are built, trained and
regulated to extract and process the information from provided data.

1.1 Neural networks basics
The core idea behind machine learning is fairly simple. Suppose have some data, let’s
say an image, and we would like to perform an operation on this data, e.g. count the
number of cats or identify the person in the picture. This abstract mapping is called
the ground truth. Since we can never have all the data in the world, all we can hope
for is to get a solid approximation of this ground truth function. This is where machine
learning models step in.

In this thesis we will be focusing only on one discipline of machine learning called
deep learning or neural networks. The building blocks of a neural network are units
called neurons or nodes. In their simplest form, each neuron takes in N input values
and produces one output value using the following formula

xout = σ

⎛⎜⎜⎜⎜⎜⎝ N∑︂
i=1

wixin
i + b

⎞⎟⎟⎟⎟⎟⎠ = σ(︂wTxin + b
)︂
, (1.1)

where w and b are some unspecified parameters called weights and bias and σ a non-
polynomial function called activation function. Concrete values w and b are sought
after in a process called model training and are specific for each neuron, while acti-
vation functions are given by the network architecture and do not change during the
training process.

In the simplest design of neural networks, neurons are organised into layers of fixed
width denoted D - each forwarding its output as an input to the next layer. The first and
the last layers are called the input and output layers respectively and the rest is called
hidden layers. The number of hidden layers is usually referred to as the depth of the
neural network and is L + 11. Mathematically, we will refer to the neural network as a
function Φ which can be written as a composition

Φ = AL ◦ σ ◦ AL−1 ◦ · · · ◦ A2 ◦ σ ◦ A1 , (1.2)

where Ai as an affine transformation on RD 2. Algebraically it was defined elementwise
in formula (1.1) as an argument of σ. Bold σ is just an elementwise generalisation of
σ

σ(x)i = σ(xi). (1.3)

This is a very powerful scheme according to the universal approximation theorem
discussed in e.g. Hornik et al. [1989], Cybenko [1989], ?. It, loosely speaking, states,
that any function f : Rm → Rn can be approximated arbitrarily well on K ⊂ Rm

by a sufficiently wide neural network of depth 2. In other words, if we happen to

1L is the number of affine transformations between layers.
2Input and output layers have typically lower dimensionality, which needs to be accounted for by

making A1 : RDin → RD and AL+1 : RD → RDout .

4

Figure 1.1: A neural network with a maximal width of 5 and a depth of 4. Each arrow
represents one weight parameter of the neuron it is pointing at.

find the right values for weights and biases of each neuron, we can approximate the
ground truth function we were looking for, thus solving the problem at hand with deep
learning.

1.2 Training the model
To train the model we first need to get a dataset D to train on. That is a set of ordered
pairs of features xi and targets ti. Features will serve as an input to the neural network
whose output will be compared to the targets.

1.2.1 Training and Test set
One of the easiest ways to measure the performance of the model is to calculate the
mean square error between its predictions and the target values.

LMSE(θ) =
1

2|D|

∑︂
(x,t)∈D

∥Φ(θ, x) − t∥2 , (1.4)

where θ represents the parameters of the model described in the previous section.
The measure of error is commonly called a loss function and is denoted byL and plays
a crucial role in the process of training as we will see further in this chapter.

But this is not entirely correct. The model may learn to recognise the individual
data points from the data set it has been trained on, which typically results in poor
performance on data, which it yet has not seen. In this situation,LMSE would be useless
as a performance metric. For this reason, we have to split our datasetD into a training
set Dtrain to be used during training and test set Dtest to measure the generalisation
error. This leads to a trade-off between performance and our ability to quantify it. The

5

relative size of the test setDtest to the whole datasetD is usually taken from the range
of 20% − 40%.

1.2.2 Gradient Descent
The goal of the training process is to tweak parameters θ to minimise the loss function.
The simplest algorithm which achieves this, is called gradient descent (GD for short)
and works in the following way.

1. We initialise θ0 with uniformly randomly generated numbers

2. We iteratively calculate better approximations of the minimising parameters us-
ing the formula

θi+1 = θi − λ∇θLMSE(θi) , (1.5)

for a given number of iterations.

The variable λ is called learning rate and is used to control the speed of learning
and is typically chosen to be in range

[︂
10−2, 10−4

]︂
.

∇θLMSE(θi) is computed in a following way:

[∇θLMSE(θi)]l ≈
1

|Dtrain|

∑︂
(x,t)∈Dtrain

(Φ(θi, x) − t)T ∂Φ

∂θl
(θi, x) . (1.6)

Training of large neural networks with millions of weights is commonly done over
datasets with hundreds of thousands of samples. This yields a calculation of approxi-
mately 1011 gradients to produce one iteration of GD. Since datasets this big are bound
to contain a lot of redundancy, we do not need to use the whole Dtrain to have a good
approximation of the gradient.

A version of GD, called mini-batch GD or stochastic GD (SGD for short)3, splits
D into disjoint sets of equal size called mini-batches Bk. Each step in 1.5 will in this
case be taken using the approximation of the gradient

[∇θLMSE(θi)]l ≈
1
|Bk|

∑︂
(x,t)∈Bk

(Φ(θi, x) − t)T ∂Φ

∂θl
(θi, x) . (1.7)

After we use up the whole dataset, we create new mini-batches from it and repeat the
process. One iteration of this process is called an epoch.

In most cases, SGD converges faster than GD since it makes multiple steps per
epoch which corresponds to only one step of GD. Also by considering only a part of
Dtrain, the optimizer is less likely to get stuck in a local minimum, further enhancing
its robustness.

Other heuristics can be leveraged to further improve the capabilities of the opti-
miser. For example, ADAM4, which is one of the most used optimiser, employs be-
sides mini-batching also a learning momentum or automatic adjustment of the learning
rate.

Now that we know how to train a neural network, we will look at how to moderate
the training process using various regularisations.

3Technically SGD is a different algorithm - mini-batch GD with batch size 1, but in practice mini-
batch is usually referred to as SGD

4Proposed in Kingma and Ba [2014].

6

1.3 Model capacity and regularisation
Choosing the right model size is a complicated task. A model too small for the task
at hand will produce large generalisation errors no matter for how long has it been
trained.

On the other hand, oversized models will, loosely speaking, learn to recognise data
from train set based on ever-present noise. This again leads to poor performance in the
testing phase.

The predictive capabilities of a model are referred to as the capacity of a model. In
the first case, the model is said to have insufficient capacity which leads to under-fitting.
In the second case, the capacity is said to be excessive and the model has over-fitted.

Figure 1.2: The dependence of train and test loss on the number of epochs. Over-
parametrized model is learning at first, but then it starts to over-fit as the test loss starts
growing. Source: PhD [2019]

To control the capacity of the model there is a handful of regularisation techniques
at our disposal.

Early-Stopping

Early stopping is the easiest way to regularise the model. Test error is monitored during
training and if it does not decrease in some number of consecutive epochs usually
called patience, training is interrupted.

This prevents model over-fitting but may produce sub-optimal results since deter-
mining the right time to stop is sort of an arbitrary task usually with some heuristics
involved.

Dropout

When dropout is in use, a fraction p of neurons in the layer is randomly chosen and
has their output value artificially set to zero during the training phase. This essentially

7

turns them off and forces the neural not to rely on values of only a few neurons. Then,
during the inference, the output of each layer needs to be scaled by a factor of p since
all neurons are active now.

Networks trained in this way tend to be better at generalisation but at a cost of
greater training time.

L2 and L1 regularisation

Over-trained networks tend to be sensitive to small changes in the input, which is a
consequence of large values of weight parameters. To control their size we modify
the loss function by adding the L2 or L1 norm of the parameters with the aim of
”punishing” large parameter values.

LL2 =
1
2
L + λ

∑︂
i

θ2i , LL1 = L + λ
∑︂

i

|θi| , (1.8)

where θi are the weights and biases and λ serves to control the strength of the regular-
isation.

While L2 and L1 look similar, they differ in the behaviour they produce. Additional
gradient term produced by L2 regularisation for a given parameter is proportional to
its size. This makes it useful against outliers hidden in parameters.

L1, on the other hand, produces a gradient term of constant size same for every
parameter. Regularisation therefore does not weaken as values of parameters decrease
and can push them to zero. This makes L1 useful in situations when compressing the
model by cutting the connections is desirable.

Also, both L2 and L1 are not considered safe regularisation, since they both intro-
duce a bias towards 0 in the network output, especially for large values of λ.

In a way similar to L2 regularisation, it is possible to enforce almost any condition
on Φ. This can be helpful, especially in situations when we know that the function to
be approximated by the network possesses some property. We can let the network learn
this property from the provided dataset or ”help” it learn the property by incorporating
it into the loss function.

1.4 Coping with noise
Most of this section is based on the lecture given by RNDr. Milan Straka, PhD., namely
Straka [2023].

Every dataset contains some noise level, in the form of picture misclassification,
measurement errors, etc. If we know something about its nature, it is possible to en-
hance the robustness of the network at hand against this type of noise, by choosing the
right loss function.

Let us suppose that our dataset is affected by additive Gaussian noise. i.e

t̃(x) ∼ N
(︂
t(x), σ2

)︂
. (1.9)

where t(x) represents the ground truth function. We will treat the neural network as a
maximum likelihood estimator (MLE) of the mean of the Gaussian. We assume σ2 to

8

be constant and all elements to be i.i.d. MLE then satisfies

θMLE = arg max
θ

∏︂
(xi,ti)∈D

1
√

2πσ2
e
−(ti−Φ(xi ,θ))2

2σ2 , (1.10)

= arg min
θ

− ln

⎛⎜⎜⎜⎜⎜⎜⎝ ∏︂
(xi,ti)∈D

1
√

2πσ2
e
−(ti−Φ(xi ,θ))2

2σ2

⎞⎟⎟⎟⎟⎟⎟⎠ , (1.11)

= arg min
θ

−
∑︂

(xi,ti)∈D

ln
(︄

1
√

2πσ2
e
−(ti−Φ(xi ,θ))2

2σ2

)︄
, (1.12)

= arg min
θ

−
∑︂

(xi,ti)∈D

(︄
ln

(︄
1

√
2πσ2

)︄
−

(ti − Φ(xi, θ))2

2σ2

)︄
, (1.13)

= arg min
θ

1
2|D|

∑︂
(xi,ti)∈D

(ti − Φ(xi, θ))2 . (1.14)

MLE is a consistent estimator. This in our setting means that if we choose a bigger
subset of D to calculate θ′MLE using 1.14, then the network Φ parametrized with θ′MLE
will make more accurate predictions onD.

Furthermore, it has also been shown by Rao and Cramér that out of all consistent
estimators, MLE produces the smallest means square error. This justifies the choice of
mean square error as a loss function in situations whereD contains Gaussian noise.

It is also regarded as a good practice to choose the appropriate activation function
for the last layer, such that the formula for calculating the gradients always takes the
form described in 1.6. This for Gaussian noise happens to be the identity transforma-
tion.

9

2. Hamiltonian Systems
If we come across a physical system whose behaviour we would like to predict, our
tool of choice would most likely be Newton’s equations of motion for their simplicity
and intuitiveness. They may work well with simple systems like a harmonic oscillator
or an object in free fall, but for more complex systems, like a double pendulum, the
mathematics becomes rather cumbersome.

To cope with this problem we may employ different approaches like Lagrange’s or
Hamilton’s equations of motion, which use more advanced mathematics, but make the
calculations more straightforward and most importantly offer richer theoretical insight
into the problem at hand.

2.1 Hamilton’s equations
Let us start with the principle of the least action.

δS = δ
∫︂ t1

t0
L(q̇(t),q(t), t)dt = 0 . (2.1)

Hamiltonian H is defined as the Legendre transform of the Lagrangian

H = piq̇i − L , (2.2)

where pi =
∂L
∂qi̇

By substituting one formula into the other we get

0 = δ
∫︂ t1

t0
piq̇i − Hdt , (2.3)

=

∫︂ t1

t0
δ(piq̇i) − δHdt , (2.4)

=

∫︂ t1

t0
q̇iδpi + piδq̇i −

∂H
∂pi
δpi −

∂H
∂qi δq

idt , (2.5)

=

∫︂ t1

t0
q̇iδpi − ṗiδq

i −
∂H
∂pi
δpi −

∂H
∂qi δq

idt , (2.6)

=

∫︂ t1

t0

(︄
q̇i −
∂H
∂pi

)︄
δpi −

(︄
ṗi +
∂H
∂qi

)︄
δqidt , (2.7)

where we used the integration by parts and the fact that δqi(t1) = δqi(t2) = 0 in the
third step, yields Hamilton’s equations

q̇i =
∂H
∂pi
, ṗi = −

∂H
∂qi
, (2.8)

which can be written in a more compact form using z = (q1, ..., qN , p1, ..., pN) ∈ R2N .

ż = LC∇H (2.9)

where ∇H =
(︂
∂H
∂q1
, ..., ∂ f

∂qN
, ∂ f
∂p1
, ..., ∂ f

∂pN

)︂
and LC ∈ R

2N×2N is a matrix representing canon-
ical Poisson bivector

LC =

(︄
0 IN×N

−IN×N 0

)︄
. (2.10)

10

2.2 Poisson Brackets
Suppose that we want to calculate the time derivative of function f .

d f
dt
=

∑︂
i

(︄
∂ f
∂qi

qi̇ +
∂ f
∂pi

pi̇
)︄
+
∂ f
∂t
, (2.11)

=
∑︂

i

(︄
∂ f
∂qi

∂H
∂pi
−
∂ f
∂pi

∂H
∂qi

)︄
+
∂ f
∂t
. (2.12)

By denoting

{ f , g}C =
∑︂

i

(︄
∂ f
∂qi

∂g
∂pi
−
∂ f
∂pi

∂g
∂qi

)︄
, (2.13)

supposing ∂ f
∂t = 0, we can shortly write

d f
dt
= { f ,H}C . (2.14)

The operation {◦, ◦}C is called a canonical Poisson bracket and as we have just
shown it naturally arises when we try to describe the rate of change of arbitrary vari-
ables.

2.2.1 Properties of Poisson brackets
There are four key properties of Poisson brackets. Let α, β ∈ R and f , g, h differen-
tiable functions on the phase space. The Poisson bracket needs to satisfy

1. Skew-symmetry
{ f , g}C = −{g, f }C (2.15)

2. Bilinearity

{ f + g, h + i}C = { f , h}C+{ f , i}C+{g, h}C+{g, i}C , {α f , βg}C = αβ{ f , g}C (2.16)

3. Leibnitz’s rule
{ f g, h}C = f {g, h}C + { f , h}Cg (2.17)

4. Jacobi’s identity {︁
f , {g, h}C

}︁
C +

{︁
h, { f , g}C

}︁
C +

{︁
g, {h, f }C

}︁
C = 0 (2.18)

These properties lead to a few interesting implications. For example, combining
2.14 and 2.15 yields

dH
dt
= {H,H}C = −{H,H}C = 0 .

In other words, the skew-symmetry of the Poisson bracket is sufficient to produce
the dynamics in which the total energy is conserved.

Another consequence of these properties allows us to construct new integrals of
motion from ones, we already know. Let f , g be the integrals of motion. Then

1. α f + βg ,

11

2. f g ,

3. { f , g}C

are also integrals of motion. For (1) and (2) can this be directly proven from 2.16 and
2.17 respectively. To prove (3) we will use 2.18 in the following way.

d{ f , g}C
dt

=
{︁
{ f , g}C,H

}︁
C , (2.19)

= −
{︁
H, { f , g}C

}︁
C , (2.20)

=
{︁
g, {H, f }C

}︁
C +

{︁
f , {g,H}C

}︁
C , (2.21)

= {g, 0}C + { f , 0}C , (2.22)
= 0 . (2.23)

2.3 Non-canonical Poisson brackets
So far we have been considering only canonical Poisson brackets. As the naming sug-
gests, there exist other, non-canonical bracket operations capable of producing various
dynamical systems. Let us, to properly motivate the general Poisson bracket, take a
closer look at the canonical Poisson bracket. The Poisson bracket can be reformulated
using the canonical Poisson bivector LC introduced in the last section.

{ f , g}C =∇ f TLC∇g . (2.24)

It is worthy of mention that this is a direct consequence of a famous relation be-
tween canonical coordinates{︂

qi, q j

}︂
C
= 0 ,

{︂
qi, p j

}︂
C
= δi j ,

{︂
pi, p j

}︂
C
= 0 . (2.25)

Now, to go from a canonical Poisson bracket to a generalised one we replace LC

with arbitrary skew-symmetric L(z) ∈ RN×N

{ f , g} =∇ f TL(z)∇g , (2.26)

and Hamilton’s equations become

ż = {z,H} = L(z)∇H . (2.27)

Note that at this point we have left the world of generalised coordinates and cotan-
gent bundles completely. In this new setting not only can L depend on x, we can even
have x ∈ RN for odd N, which was with canonical Hamiltonian systems impossible.
The only condition we are enforcing is that the Poisson bracket generated by L(x)
satisfies properties outlined in 2.15,2.16,2.17 and 2.18.

It is evident that 2.16 and 2.17 are satisfied - they are consequences of the linearity
of derivatives and product rule. 2.15 also holds if L(x) is skew-symmetric

{ f , g} =∇ f TL(x)∇g =
(︂
∇ f TL(x)∇g

)︂T
=∇gTL(x)T∇ f = −∇gTL(x)∇ f = −{g, f } .

Only enforcing Jacobi’s identity (2.18) is not trivial.

12

2.3.1 Jacobiator
To arrive at a condition on L(x) equivalent to 2.18 we will plug 2.26 into 2.18. To make
derivation more clear let us focus just on the first bracket.

{ f , {g, h}} = d f k Lkld2gliLi j dh j + d f k Lkldgi
∂Li j

∂zl
dh j + d f k LkldgiLi jd2h jl , (2.28)

= d f k Lkld2gliLi j dh j + d f k Lkldgi
∂Li j

∂zl
dh j − d f k Lkld2hl jL jidgi , (2.29)

= Fg(f , h) + d f k Lkldgi
∂Li j

∂zl
dh j − Fh(f , g) , (2.30)

where Fg(f , h) = d f k Lkld2gliLi j dh j. Note that Fg(f , h) = Fg(h, f), since L is skew-
symmetric and Hess matrix d2gi j is symmetric. By plugging 2.30 into 2.18 the terms
with F f , Fg, Fh cancel out and we will be left with(︄

Lkl∂L
i j

∂zl
+ L jl∂L

ki

∂zl
+ Lil∂L

jk

∂zl

)︄
d f k dgi dh j = 0 . (2.31)

This has to hold for any choice of f , g, h and thus we arrive at

Ji jk = Lkl∂L
i j

∂zl
+ L jl∂L

ki

∂zl
+ Lil∂L

jk

∂zl
= 0 , (2.32)

where Ji jk is called the Jacobiator.
Note that for one-dimensional systems, where L : R2 → R2×2, is Jacobi’s identity

always satisfied, since

J111 = J222 = 0 (2.33)

J211 = J121 = J112 = L12∂L
21

∂z2
+ L12∂L

12

∂z2
= L12∂L

21

∂z2
− L12∂L

21

∂z2
= 0 (2.34)

J122 = J212 = J221 = L21∂L
21

∂z1
+ L21∂L

12

∂z1
= L21∂L

21

∂z1
− L21∂L

21

∂z1
= 0 , (2.35)

since L11 = L22 = 0 due to skew-symmetry of L.

2.4 3D Hamiltonian systems
Let us start with an observation.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0 −J1 J2

J1 0 −J3

−J2 J3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ · v =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝J1

J2

J3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ × v . (2.36)

If z ∈ R3 we have an alternative formulation of Hamiltonian dynamics. Since skew-
symmetry of L is guaranteed we need only to take care of Jacobi’s identity. In Mar-
tin Šı́pka [2023] it was rewritten as

J · (∇ × J) = 0 , (2.37)

13

The solution of this equation takes the form of

J = ϕ∇C (2.38)

for ϕ,C ∈ C1(R3). If we construct L in this manner using C and ϕ, it will automatically
fulfil Jacobi’s identity. C also has the following interesting property. ∀ f ∈ C1(R3)

{ f ,C} =∇ f L∇C =∇ f · ϕ∇C × ∇C = 0 . (2.39)

this makes it a so-called Casimir function. Their existence is a result of the degen-
eracy of the system, which, since skew-symmetric L ∈ R3×3 is always singular, is to be
expected. They are also an integral of motion as a result of 2.39 by choosing f = H.

In the following chapter, we will combine the information from the last two chap-
ters. This will finally bring us to the main topic of this thesis - Direct Poisson Neural
Networks.

14

3. Direct Poisson Neural Network
Direct Poisson Neural Network was developed by Martin Šı́pka [2023]1 with a goal to
learn the Poisson structure and Hamiltonian from provided data, which can be either
simulated or a result of numerical computation. In this chapter, we will explain the
inner workings of DPNN and show some of its results.

3.1 The Architecture and workflow
As mentioned in the first chapter, every neural network is trying to approximate some
complicated function. In our case, DPNN is trying to approximate ż ≈ Φ(z).

It comes in three flavours.

• Without Jacobi (WJ)

• Soft Jacobi (SJ)

• Implicit Jacobi (IJ)

Without Jacobi and Soft Jacobi

The first two, use the same architecture. They learn the Hamiltonian and the upper
triangle of L. They differ in the loss function used during the training phase.

LWJ(θ) =
∑︂
zn∈D

⃦⃦⃦⃦⃦zn+1 − zn

dt
−
Φθ(zn) + Φθ(zn+1)

2

⃦⃦⃦⃦⃦2

, (3.1)

LSJ(θ) = LWJ(θ) +
∑︂
zn∈D

∑︂
i jk

⃓⃓⃓
Ji jk(zn)

⃓⃓⃓2
. (3.2)

While both WJ and SJ have to learn Jacobi’s identity from data, the additional regu-
larisation in SJ makes it adapt it faster. The loss function for WJ by design resembles
the Cranck-Nicolson scheme, but any numerical scheme could be used in this place -
more on that in the next chapter.

Figure 3.1: The architecture of WJ and SJ networks. The diamonds represent the actual
neural networks, which get trained. The rest symbolises the computation process.

1Original authors’ code we based our thesis on, is at Pavelka [2023].

15

Figure 3.2: The architecture of IJ network. The diamonds represent the actual neural
networks, which get trained. The rest symbolises the computation process.

Implicit Jacobi

IJ on the other hand is instead of the upper triangle of L learning C and ϕ as mentioned
in section 2.4. Using the procedure described in this section we can produce L which
implicitly fulfills Jacobi’s identity, hence its name. This however makes it usable only
on three-dimensional systems.

Loss function for IJ is the same as for WJ, since there is no need to enforce Jacobi’s
identity anymore.

Functions H, L,C, ϕ are all represented as a neural network with a default width of
64 nodes and two fully connected layers with softplus activation function.

3.1.1 The workflow
First, the data to train on needs to be generated, since we do not have any measured
real-world data. They are generated in the simulation phase before the training. The
initial conditions are randomly sampled from a ball (by default 100 of them is taken)
from the phase space, whose radius is two times the Euclidean norm of the provided
initial conditions. Each trajectory is then numerically simulated using Runge-Kutta of
4th order2 and stored into the dataset. This dataset needs to be sufficiently dense in the
region of phase space, on which we want to make simulations using DPNN. We will
show later what happens if the simulated solution escapes the training region of phase
space.

These data are then split into training and test sets, the former of which is used for
training. All three flavours of DPNN are subsequently trained on the training set. The
whole dataset is used in each epoch. The number of epochs required to properly train
the network depends on the sample size. The bigger the sample the fewer epochs are
needed. Each network has a width of 64 neurons and 2 hidden layers by default

After training, the networks are used to simulate trajectories based on the differ-
ent randomly sampled initial conditions. DPNN provides an approximation of ż with

2The original authors used forward Euler or Implicit midpoint rule, which are of order 1 and 2
respectively. To evaluate the performance of DPNN we implemented a method of higher order.

16

which, using the numerical method of choice3, the next step in each trajectory is calcu-
lated. Apart from network-generated trajectories, grand truth trajectories are simulated
using a solver to later serve as a comparison to DPNN’s results in error tally.

3.2 Demonstration
In this section, we will demonstrate DPNN’s capabilities to learn and simulate. All
systems in this thesis were implemented by the author, except for Free rigid body,
which was implemented by Martin Šı́pka [2023].

Coupled harmonic oscillator

As the first system, we chose a coupled harmonic oscillator with the following Hamil-
tonian.

H =
p2

1

2
+

p2
2

2
+

q2
1

4
+ q2

2 +
(q1 − q2)2

2
. (3.3)

As we have shown in Chapter 2, in one-dimensional systems every skew-symmetric
L satisfies Jacobi’s identity, which makes soft Jacobi regularisation pointless. Hence
the two-particle system.

To train and simulate canonical systems we implemented two additional classes
Canonical and GeneralNeural in RigidBody.py. In theory, by changing the H pa-
rameter, Canonical can numerically solve any canonical system. GeneralNeural on
the other hand serves to produce ”neural solutions” of the system. It common numer-
ical methods to simulate trajectories from trained Hamiltonian and Poisson bivector
networks. Results from these two classes will be indicated by the ’CANN’ label in the
figures. Our version of code can be found at Our GitHub repository, commit a8022974.

After a short experimentation period, a network of width 32 and 4 hidden layers
was used. With 5 epochs of training, we obtained results depicted in graphs below

Figure 3.3: Plot of generated trajectories.
The initial conditions were z = (2, 0, 0, 0)

Figure 3.4: Tally plot of log10 of errors ob-
tained from sampling after training.

3So far forward Euler which is also a default choice, Crank-Nicholson scheme and implicit midpoint
rule have been implemented.

4Benda [2024]

17

https://github.com/JanBenda123/direct-Poisson-neural-networks

From 3.6, we can observe that the trajectory produced by SJ follows the grand truth
(GT in the graph) trajectory more closely, hinting that SJ indeed learns faster, at least
as far as the number of epochs is concerned. This is further illustrated in the tally plot
of error sizes in 3.7.

But as far as training time is concerned the benefit of the Jacobiator regularisation
is questionable because these five epochs SJ took approximately 50% longer than WJ.
The reason is that the calculation of Jacobiator regularisation includes calculations of
the gradient of L using Pytorch’s autograd, which is computationally intensive.

Let us now focus on the evolution of learned Hamiltonians along simulated trajec-
tories. We can see that they do not coincide. This is not wrong since

ż = L ·∇H , (3.4)

=
L

C1
·∇(C1H +C2) . (3.5)

= L̃ ·∇H̃ . (3.6)

An affine transformation of Hamiltonian may therefore produce the same dynamics, as
long as it was compensated by appropriately scaling L.

Figure 3.5: Hamiltonian evolution along trajectories

If we were to plot the train and test loss we may conclude that the model could
have continued learning, further decreasing the overall error to the point where the
trajectories in 3.6 would be indistinguishable. The network learned the dynamics of
a two-particle harmonic oscillator fairly fast in comparison with other systems as we
will see later.

Free rigid body rotation

As a second demo, we chose an already implemented system describing the rotation
of a free rigid body. The purpose of this demo is to demonstrate the usefulness of IJ,
which can unfortunately be used only on 3-dimensional non-canonical systems. The
dynamics of the free rigid body are governed by the following equation of motion.

18

ṁ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0 −m3 m2

m3 0 −m1

−m2 m1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·∇H , H =
m2

1

2I1
+

m2
2

2I2
+

m2
3

2I3
. (3.7)

Again, networks of width 32 with 4 hidden layers were used. This time, 50 epochs
were used, because non-linearity of 3.7 complicates the learning process and also
sparser sampling was used.

Figure 3.6: Plot of generated trajectories.
The initial conditions were m = (10, 3, 4)

.

Figure 3.7: Log-plot of the evolution of
train and test loss of WJ. IJ and SJ con-
verged even quicker in the beginning.

We can observe that SJ and IJ trajectories follow the grand truth trajectory more
closely than WJ. This is even better illustrated in the tally plot 3.8. It is apparent from
the tally, that IJ performs even better than both SJ and WJ. It also took the least time to
train - only 10 minutes, while SJ and WJ took 30 minutes and 15 minutes respectively.
We think that the short training time of IJ is a consequence of its simpler structure.

Figure 3.8: Tally plot of log10 of errors obtained from sampling after training. IJ tends
to produce the smallest errors, followed by SJ and finally WJ.

19

Besides synthesising new data from those already measured, it is also possible to
extract information about the underlying Hamiltonian and Poisson bivector, which may
be useful for further analysis of the system. If we take a look at the plot of a slice of
Hamiltonian along the mz axis (Figure3.9) we can see that it looks like a surface of a
paraboloid, which is concise with 3.7.

Figure 3.9: Plot of the Hamiltonian along the mz axis.

Paraboloid is upside-down and shifted but that is again due to the degrees of free-
dom discussed in the demo with harmonic oscillator.

20

4. Results and improvements
In the last Chapter, we have introduced the Direct Poisson Neural Network, explained
its three modes and their inner workings and demonstrated its generative capabilities
on two physical systems. In this chapter we are going to experiment with it, by putting
it in different settings, suggest some improvements here and there, and by the end show
how to make it recognise systems with dissipation.

4.1 Robustness against noise
DPNN is intended to be eventually trained on datasets obtained by sets of measure-
ment, which will inevitably contain some level of noise. This section is dedicated to
the exploration of its effects on training and simulation.

During the dataset generation, we added Gaussian noise ε ∼ N(0, σ2) to each gen-
eralised coordinate just before we save it to the dataset1. To produce any meaningful
results we should control the relative size of the noise to values of data points. For this
reason, we decided to go with a one-dimensional harmonic oscillator as our system for
this demo with the following Hamiltonian

H =
p2

2
+

q2

2
.

Trajectories in the phase space produced by this Hamiltonian are circular. Thus we
have direct control over the size of z along the trajectory since ∥z∥ = ∥z0∥.

Observation

We run the simulation for five different values of σ. The training dataset consisted
of 20 randomly sampled trajectories, each 1000 steps long. Network width and depth
were the same as in demonstrations in chapter three.

As is to be expected, the higher the σ was the worse the predictions were. Instead
of an error tally, we will use a median of errors calculated from simulated trajectories.
Also, introducing noise to the dataset had a huge effect on when the network stopped
learning. This can be observed at loss function ”convergence”. Eventually, it stops
decreasing and starts fluctuating around a certain value as can be seen in 4.3.

σ/∥z0∥ 0 0.02 0.05 0.10 0.20 0.50
WJ (med. error) 1,0·10−4 2,4·10−2 3,3·10−2 3,4·10−1 2,1·10−1 2,3
SJ (med. error) 4,5·10−4 7,9·10−2 1,9·10−2 6,6·10−2 9,3·10−1 9,4·10−1

Table 4.1: Median errors for different levels of noise.

Notice that the intrinsic model error2 gets quickly dominated by error introduced
by noise in the dataset, which may be orders of magnitude larger. This decreases the
quality of simulated trajectories as can be seen in 4.2.

1In the next step, the values without the added perturbation are used
2An inference error a model makes, when trained on noise-free dataset

21

Figure 4.1: Stagnation of loss for SJ
withσ = 0, 02. Loss values remain rel-
atively high in comparison with noise-
free demos in Chapter 3.

Figure 4.2: Position variable evolu-
tion. The training was done on a noised
dataset with σ = 0, 02. If there is no
noise present, trajectories look identi-
cal.

The results were even less precise for the rigid body system with noise. With
the same setting as in the demo in chapter 3, only with σ = 0, 05, error medians
jumped from values ∼ 10−3 to values close to one. In other words a perturbation of
a relative size of 0, 05/∥z0∥ ≐ 4 · 10−3 produced a simulation error of relative size
0, 9/∥z0∥ ≐ 8 · 10−2

Compensating for the noise

Unfortunately, we were not able to significantly decrease the effect of the noise. DPNN
already uses a MSE loss and identity as the last layer activation, which, as we discussed
in the first chapter, should be the first thing to try.

Surprisingly, increasing the sample size had a negligible effect. Using a sample
size 5 times larger with σ = 0, 02 produced median errors 2, 6 · 10−2 and 4, 4 · 10−2

for WJ and SJ respectively, which are comparable with values in the corresponding
column in the table 4.1.

Using dropout cut down the error median roughly by a factor of 10. In the setting
of the harmonic oscillator, the best results were obtained for the dropout rate p = 0, 3.

Lastly, feeding the average of neighbouring data points instead of the data points
themselves into the network, would decrease the noise in the dataset. However, we
were not able to implement and test this feature due to the complexity of the existing
codebase.

Summary

DPNN is, as we have just shown, very susceptible to noise in the dataset. Even small
fluctuations propagate and degrade the quality of simulated data. Finally, we have
proposed some means of bolstering the network against the noise, enhancing its per-
formance on real-world datasets.

22

4.2 Extrapolation
So far, we have simulated systems on regions of phase space, on which the neural
network had plenty of data points to train on. As we move further from this region,
which we will refer to as the training region in this section, the approximations of the
Hamiltonian and Poisson bivector get worse and worse - until they become basically a
random guess. Let us now explore this behaviour.

For this demo, we decided to use a simple pendulum system with Hamiltonian

H =
p2

2
− cos q .

Unlike Hamiltonians, which we have considered so far, this one is not convex and
therefore some of its trajectories are not bounded. If pinit > 2, the pendulum will make
a full rotation around its axis, always increasing in q variable Therefore it does not
stay in any part of the phase space but rather wander off to infinity in the direction of q
coordinate.

The baseline configuration for this section was (pinit; qinit) = (2, 5; 0), 30 epochs of
training, dataset size of 20 trajectories - each 500 steps long. Time step dt was taken to
be as 0.01. Each trajectory in the dataset was therefore 5 time units long. Trajectories
produced by the network were twice as long with the same time step.

To evaluate the error growth we plotted the mean square error between network
prediction and the grand truth. The red vertical line marks the point when the simula-
tion left the training region.

Figure 4.3: Log of MSE between the grand truth and simulated trajectories.

Within the training region, the errors for both SJ and WJ remain relatively small,
upon crossing the boundary the error remains smaller than 1 for roughly one unit of
time and then starts growing exponentially.

Improving the extrapolation

In order to improve the performance of the network outside of the training region we
tried adding quadratic features to the Hamiltonian network.

23

Feature addition is a mapping, that creates new features, which are then used as a
network input3. In our case, the quadratic feature map would be

(p, q) ↦−→ (p, q, p2, q2, pq) .

In the setting of neural network feature engineering is an uncommon practice, but in
our case, it is justified since Hamiltonians tend to be asymptotically quadratic.

Using quadratic features improved the performance on the training region
by roughly an order of magnitude. But outside of it, it did not make any difference.

Letting the network train for more epochs had the same effect and only took longer.

Figure 4.4: MSE log plot comparison
for toggled quadratic features.

Figure 4.5: MSE log plot comparison
for long training time (120 epochs).

Taking a larger sample size, on the other hand, did have a significant effect on the
extrapolation. Doubling the training dataset size lowered the prediction error almost
by a factor of 103. This, in combination with quadratic features, which reduced the
error on the training region, produced the best result thus far in terms of extrapolation
for DPNN, depicted in 4.6.

4.3 RK4 movement loss
There are in total 3 places in the run of the program, where a numerical scheme is used.
First in dataset generation - here RK4 was used. Then in the loss function and lastly
during simulation from learned networks. Here RK4 was also used. In this section,
we will examine the effects of basing the loss function on different numerical schemes,
namely IMR and RK4, and how this choice will influence the learning process.

CN-based loss function was already introduced in chapter 3 as 3.1. IMR-based
loss, which was also already implemented by Martin Šı́pka [2023] takes the form

LWJ,IMR(θ) =
∑︂
zn∈D

⃦⃦⃦⃦⃦zn+1 − zn

dt
− Φθ

(︃zn + zn+1

2

)︃⃦⃦⃦⃦⃦2

. (4.1)

RK4 loss was implemented by ourselves as

LWJ,RK4(θ) =
∑︂
zn∈D

⃦⃦⃦⃦⃦zn+1 − zn

dt
−

k1 + 2k2 + 2k3 + k4

6

⃦⃦⃦⃦⃦2

, (4.2)

3Input layer must be appropriately adjusted.

24

Figure 4.6: MSE log plot comparison between the base case and network trained on
larger sample size with quadratic features toggled.

where

k1 = Φθ(zn) k2 = Φθ
(︂
zn + dt · k1

2

)︂
k3 = Φθ

(︂
zn + dt · k2

2

)︂
k4 = Φθ(zn + dt · k3) .

Both CN and IMR are schemes of second order. Also, IMR is a symplectic inte-
grator. This means that it preserves the phase space volume when used in simulations.
Furthermore, while total energy is not conserved, its value tends to fluctuate around
its true value as the trajectory evolves. These are the properties guaranteed when it
is used to simulate symplectic systems, such as Hamiltonian systems. But there is no
reason for it to have similar desired properties when it is used as a loss function. (As
for example in Hairer et al. [2006])

On the other hand, we think that using fourth-order Runge-Kutta-based loss may
have some. One iteration requires evaluating Φθ at four different locations, which
introduces three more points into the calculation of the loss. We think that should
effectively quadruple the dataset size.

We believe that the order of method, the loss was based on, does not affect the
speed of convergence of the loss. However, we think that it influences the minimal
achievable loss, which, in the best case scenario, will align with the local error of the
scheme.

Observations

We used a double pendulum system with l1 = l2 = m1 = m2 = g = 1 to test our
hypotheses. The following Hamiltonian was used.

H =
1
2

p2
1 + 2p2

2 − 2p1 p2 cos(q1 − q2)

1 + sin2(q1 − q2)
− 2 cos(q1) − cos(q2) (4.3)

The double pendulum system is chaotic. This means that any arbitrarily small per-
turbation of initial conditions or along the trajectory will eventually cause a divergence

25

from the exact solution. To numerically solve this system, more precise numerical
schemes should be used. This makes it a good candidate to test method precision on.

All the runs were made with the inital condition (q1, q2, p1, p2) = (1.56,−1.56, 0, 0)
- the pendulum started in an almost upright position. The dataset size was chosen to
be 50 trajectories, 500 steps each. Network width and depth were the same as in
demonstrations in chapter three and were trained for 60 epochs.

Training DPNN on a double pendulum system took much longer than on systems
considered so far. Also, the performance of SJ was far better than that of WJ, which
even after 60 epochs of training quite often produced diverging trajectories. Therefore
comparisons were made only on SJ.

Figure 4.7: Comparison of the loss
convergence between CN, IMR and
RK4 based SJ.

Figure 4.8: Comparison of trajec-
tory divergence between CN, IMR and
RK4 based SJ.

As we can see in figure 4.9, while CN and IMR-based losses seem to start to stag-
nate, RK4 loss keeps decreasing, indicating, that it could have been trained longer.
This might be a consequence of both the method order limitation and the artificial
sample size multiplication described earlier. Trajectories generated by IMR-based SJ
tended to diverge faster than those generated by RK4 and CN-based SJ. As can be seen
in 4.10.

Training the network with CN and IMR-based losses on datasets four times as big
improved the convergence of losses and decreased the divergence from the grand truth
solution, to the point, where they become comparable with RK4-based SJ4. While this
does not prove nor disprove our hypothesis, it hints at its plausibility.

Summary

We introduced RK4-based loss and compared it with CN and IMR-based losses. It
seems that using RK4-based loss has the same effect as using CN or IMR-based losses
with quadruple sample size, and only takes approximately 50 % more time per epoch to
compute. One way to test this hypothesis would be to implement higher-order Runge-
Kutta methods, like the DOPRI method, which is of fifth order and uses 7 different
evaluations of the right-hand side function.

4Atl least at the beginning of the training process

26

Figure 4.9: Comparison of the loss
convergence between CN, IMR and
RK4-based SJ. CN and IMR-based SJ
used quadruple dataset size.

Figure 4.10: Comparison of trajec-
tory divergence between CN, IMR and
RK4 based SJ. CN and IMR-based SJ
used quadruple dataset size.

4.4 Ehrenfest dissipation
Every real-world physical system exhibits some sort of dissipative behaviour, be it
external or internal friction, radiation, etc. Each dissipative mechanism works uniquely
and as far as we are aware, there is no singular description, that would describe them
all. in this demo, we have decided to use Energetic Ehrenfest Regularisation described
in Pavelka et al. [2019] and implement it within the rigid body system framework. The
regularisation is given by

ṁ = L∇H +
τ

2
LHHL∇H , (4.4)

where τ is a parameter of regularisation dubbed relaxation time and HH is Hessian
matrix of the Hamiltonian.

It can be shown easily that

Ḣ =∇HTṁ =∇HTL∇H +
τ

2
∇HTLHHL∇H = {H,H} −

τ

2
ṁTHHṁ < 0 . (4.5)

This only holds if H is a convex function, which for free rigid body rotation it is. The
regularisation is therefore dissipative.

Moreover, we can show that the Energetic Ehrenfest regularisation preserves the
Casimir functions of the original dynamics.

dC
dt
=∇C · ż =∇C

(︃
L∇H +

τ

2
LHHL∇H

)︃
= 0 , (4.6)

since by definition of Casimir function L∇C = 0.
Since for the rigid body system the Casimir function is C =

⃦⃦⃦
m2

⃦⃦⃦
,5 we should see

that no matter with which initial conditions the system starts, it will end up rotation
around the axis with the highest moment of inertia.

Implementation and training

The regularised version of Hamilton’s equations was implemented in a similar fash-
ion as the non-regularised version in Chapter 3, with the addition of a new trainable

5Which can be easily verified by plugging it into the formula above

27

parameter τ.
The Hessian of H was computed using Pytorch’s autograd, which also supports the

calculation of Hessians. It is a very expensive operation that makes the evaluation of Φ
take much longer. For this reason, we chose to use IMR-based loss, since it does only
one Φ evaluation per sample.

All arguments had to be chosen carefully. We wanted to capture the whole dissi-
pation process in the simulation while making sure that the network gets trained suf-
ficiently well in a reasonable amount of time. This was achieved with m = (10, 3, 4),
I = diag(1, 2, 16) and τ = 0.01. The architecture of H, L, C, ϕ networks had to
be changed to have only 2 hidden layers and a width of 64 neurons. The number of
epochs was 50. To have a good sample coverage, we chose sample size = 500 but set
the length of sample trajectories to be 100 steps. The simulation trajectory was 1000
steps long, dt was 0.02 in both cases.

Figure 4.11: Solutions produced by
trained models. Only mx is plotted.

Figure 4.12: Solutions produced by
trained models. Only mz is plotted.

After 6 hours of training, we obtained following results. As it was said in previous
section, the rigid body eventually started rotating around the axis with the highest mo-
ment of inertia as can be seen in 4.11 and 4.12. According to 4.13, the best results were
obtained by SJ, than by WJ and lastly by IJ, apparently has not learnt the dynamics at
all.

Figure 4.13: Tally plot of errors for RB
with dissipation

Figure 4.14: The plot of mx produced
by trained model without the dissipa-
tion regularisation.

The learnt values of τ were −8.6 · 10−3, 7.2 · 10−3 and −1.1 · 10−2 for WJ, SJ and
IJ respectively. While at least WJ and SJ have reproduced the dynamics correctly, they

28

both failed in learning the τ parameter. The reason for this is, that H and L have some-
how learnt to mimic the dissipative behaviour. By training H and L networks with the
regularisation enabled, disabling it for the simulation, we produce trajectories, which
look as if there was dissipation involved. But this cannot be, because in all cases L is
skew-symmetric and, as we have discussed in Chapter 2, this implies that the energy is
conserved. A similar phenomenon has been described in Martin Šı́pka [2023], where
the authors were training plain DPNN on data capturing similar dissipative behaviour.

As to why IJ had such a trouble learning the dissipative dynamics, we do not have
any explanation. We suspect that it may have something to do with the stability of the
learning process. Some choices of arguments lead to a divergence of the loss values
or a stagnation of validation error, suggesting that the network is no longer learning.
Changing the architecture of ϕ and C networks, using L2 regularisation on L and H or
tweaking the relative learning rate for τ parameter may stabilise the learning process,
but due to the approaching deadline of submission of this thesis we were not able to
test these options.

Conclusion

We obtained mixed results from implementing the Energy Ehrenfest regularisation.
While SJ and WJ could successfully reproduce the behaviour of the system, they were
not able to learn the value of the regularisation parameter τ. Introducing the regular-
isation also lead to distortions in learnt Hamiltonian an Poisson bivector. IJ was not
able to learn any of the dynamics at all, which we suspect is due to the instability of
learning process. To stabilise it we suggested some options.

29

Conclusion
In conclusion, this thesis has demonstrated the potential of neural networks for recog-
nising physical systems.

We were able to train the Direct Poisson Neural Network on both canonical and
non-canonical Hamiltonian systems and retrieve some information about the govern-
ing equations of dynamics, namely the Hamiltonian and Poisson bivector. Then, based
on some initial conditions, we used this network to generate new data, which approxi-
mately followed the same dynamics as the data, which it was trained on.

In the last chapter we saw, that the noise drastically worsens the predictive capabil-
ities and training dynamics of DPNN. We were able to partially mitigate this problem,
by introducing dropout layers into the architecture. Then we discussed, how the pre-
dictions get exponentially worse, when a simulated trajectory left the training region
of phase space. Increasing the dataset size along with the use of quadratic features
for Hamiltonian network decreased the prediction error. Thirdly, we explored how
different choices of the loss function influence the training process. RK4 based loss
has trained faster than IMR based and Crank-Nicolson based losses. Lastly we im-
plemented the Energy Ehrenfest dissipation for a free rigid body system. While the
networks were able to decently reproduce the dynamics, they were not able to learn
the parameter τ correctly.

30

Bibliography
Jan Benda. direct-poisson-neural-networks. https://github.com/JanBenda123/
direct-Poisson-neural-networks, 2024. [Software]. Available at https:
//github.com/JanBenda123/direct-Poisson-neural-networks. Commit
a802297.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals, and Systems, 2(4):303–314, 1989.

Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical In-
tegration, volume 31. Springer, 2006. ISBN 978-3-540-30663-4. doi:
10.1007/3-540-30666-8. URL https://link.springer.com/book/10.1007/
3-540-30666-8.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359–366, 1989.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization.
arXiv: Optimization and Control, 2014.

Oğul Esen Miroslav Grmela Martin Šı́pka, Michal Pavelka. Direct poisson neural net-
works: learning non-symplectic mechanical systems. Journal of Physics A: Math-
ematical and Theoretical, 56(49):1–25, 2023. URL https://arxiv.org/pdf/
2305.05540.

Michal Pavelka, Václav Klika, and Miroslav Grmela. Ehrenfest regularization of
hamiltonian systems. Physica D: Nonlinear Phenomena, 399:193–210, 2019.
ISSN 0167-2789. doi: https://doi.org/10.1016/j.physd.2019.06.006. URL https:
//www.sciencedirect.com/science/article/pii/S0167278918305232.

Šı́pka Pavelka. direct-poisson-neural-networks. https://github.com/enaipi/
direct-Poisson-neural-networks, 2023. [Software]. Available at https://
github.com/enaipi/direct-Poisson-neural-networks. Commit 72f1117.

Jason Brownlee PhD. Line plots of loss on train and test datasets while training show-
ing an overfit model, 2019. URL https://machinelearningmastery.com/
how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping/.

Milan Straka. Machine learning for greenhorns [lecture slides]. https://ufal.mff.
cuni.cz/˜straka/courses/npfl129/2223/slides/?03#1, 2023.

31

https://github.com/JanBenda123/direct-Poisson-neural-networks
https://github.com/JanBenda123/direct-Poisson-neural-networks
https://github.com/JanBenda123/direct-Poisson-neural-networks
https://github.com/JanBenda123/direct-Poisson-neural-networks
https://link.springer.com/book/10.1007/3-540-30666-8
https://link.springer.com/book/10.1007/3-540-30666-8
https://arxiv.org/pdf/2305.05540
https://arxiv.org/pdf/2305.05540
https://www.sciencedirect.com/science/article/pii/S0167278918305232
https://www.sciencedirect.com/science/article/pii/S0167278918305232
https://github.com/enaipi/direct-Poisson-neural-networks
https://github.com/enaipi/direct-Poisson-neural-networks
https://github.com/enaipi/direct-Poisson-neural-networks
https://github.com/enaipi/direct-Poisson-neural-networks
https://machinelearningmastery.com/how-to-stop-training-deep-neural- networks-at-the-right-time-using-early-stopping/
https://machinelearningmastery.com/how-to-stop-training-deep-neural- networks-at-the-right-time-using-early-stopping/
https://ufal.mff.cuni.cz/~straka/courses/npfl129/2223/slides/?03#1
https://ufal.mff.cuni.cz/~straka/courses/npfl129/2223/slides/?03#1

List of Figures

1.1 A neural network with a maximal width of 5 and a depth of 4. Each
arrow represents one weight parameter of the neuron it is pointing at. . 5

1.2 The dependence of train and test loss on the number of epochs. Over-
parametrized model is learning at first, but then it starts to over-fit as
the test loss starts growing. Source: PhD [2019] 7

3.1 The architecture of WJ and SJ networks. The diamonds represent the
actual neural networks, which get trained. The rest symbolises the
computation process. 15

3.2 The architecture of IJ network. The diamonds represent the actual neu-
ral networks, which get trained. The rest symbolises the computation
process. 16

3.3 Plot of generated trajectories. The initial conditions were z = (2, 0, 0, 0) 17
3.4 Tally plot of log10 of errors obtained from sampling after training. . . 17
3.5 Hamiltonian evolution along trajectories 18
3.6 Plot of generated trajectories. The initial conditions were m = (10, 3, 4) 19
3.7 Log-plot of the evolution of train and test loss of WJ. IJ and SJ con-

verged even quicker in the beginning. 19
3.8 Tally plot of log10 of errors obtained from sampling after training. IJ

tends to produce the smallest errors, followed by SJ and finally WJ. . 19
3.9 Plot of the Hamiltonian along the mz axis. 20

4.1 Stagnation of loss for SJ with σ = 0, 02. Loss values remain relatively
high in comparison with noise-free demos in Chapter 3. 22

4.2 Position variable evolution. The training was done on a noised dataset
with σ = 0, 02. If there is no noise present, trajectories look identical. 22

4.3 Log of MSE between the grand truth and simulated trajectories. . . . 23
4.4 MSE log plot comparison for toggled quadratic features. 24
4.5 MSE log plot comparison for long training time (120 epochs). 24
4.6 MSE log plot comparison between the base case and network trained

on larger sample size with quadratic features toggled. 25
4.7 Comparison of the loss convergence between CN, IMR and RK4 based

SJ. 26
4.8 Comparison of trajectory divergence between CN, IMR and RK4 based

SJ. 26
4.9 Comparison of the loss convergence between CN, IMR and RK4-based

SJ. CN and IMR-based SJ used quadruple dataset size. 27
4.10 Comparison of trajectory divergence between CN, IMR and RK4 based

SJ. CN and IMR-based SJ used quadruple dataset size. 27
4.11 Solutions produced by trained models. Only mx is plotted. 28
4.12 Solutions produced by trained models. Only mz is plotted. 28
4.13 Tally plot of errors for RB with dissipation 28
4.14 The plot of mx produced by trained model without the dissipation reg-

ularisation. 28

32

List of Tables

4.1 Median errors for different levels of noise. 21

33

	List of Abbreviations
	Introduction
	Introduction to Deep Learning
	Neural networks basics
	Training the model
	Training and Test set
	Gradient Descent

	Model capacity and regularisation
	Coping with noise

	Hamiltonian Systems
	Hamilton's equations
	Poisson Brackets
	Properties of Poisson brackets

	Non-canonical Poisson brackets
	Jacobiator

	3D Hamiltonian systems

	Direct Poisson Neural Network
	The Architecture and workflow
	The workflow

	Demonstration

	Results and improvements
	Robustness against noise
	Extrapolation
	RK4 movement loss
	Ehrenfest dissipation

	Conclusion
	Bibliography
	List of Figures
	List of Tables

