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Study programme: Mathematics

Study branch: Mathematics for Information
Technologies

Prague 2024



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



I would like to express my gratitude to my supervisor, Vı́tězslav Kala, for his
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Introduction
In 1997, John H. Conway published a book called The Sensual (quadratic) form.
In this work, he introduces a new structure called the topograph. It is an infinite
graph that allows us to explore quadratic forms through the language of graphs.

The topograph’s vertices are known as lax superbases. A lax superbase is a set
of three lattice points {±u, ±v, ±w} in Z2, where each point u, v, w is determined
up to sign, and any two of them are linearly independent. Additionally, it satisfies
the equation ±u ± v ± w = 0 for some choice of signs. We connect vertices by
edges when two lax superbases have two points in common.

In their article Growth of values of binary quadratic forms and Conway rivers
from 2018, Kathryn Spalding and Alexander P. Veselov describe how we can use
continued fractions to describe paths in this topograph. They rely on the book
from Allen Hatcher Topology of Numbers to describe the paths in a graph called
the Farey tree.

In this thesis, we aim to connect these two works. We look at propositions
given by Veselov and Spalding in [1] on continued fractions and then provide
abstract definitions for the topograph and the Farey tree. Ultimately, we describe
how the paths in a topograph can be described using the continued fractions and
provide new illustrations.

In Chapter 1, we explore continued fractions. We prove what the continued
fraction of a negative real number and conjugates of quadratic irrationals look
like. The main results of this chapter are Proposition 1.16 and 1.17, which state
how the conjugates of quadratic irrationals with periodic continued fractions look
like for one and more elements in the pre-period. In Section 1.1, we recall some
definitions of continued fractions and quadratic irrationals, and we recall two
important theorems from Lagrange and Galois, which describe periodic continued
fractions. In Section 1.2, we prove some necessary lemmata which help us in
proving Propositions 1.16 and 1.17 found in Section 1.3.

In Chapter 2, we aim to construct the topograph introduced by Conway in
[2]. In Section 2.1, we recall some basic facts from graph theory. In Section
2.2, we introduce definitions given by Conway in [2], and we give new definitions
relating to the work with navigators. We also prove the fundamental Lemma 2.22
provided by Conway. In Section 2.3, we describe the algorithm given by Conway.
In Section 2.4, we provide the abstract definition of the topograph and prove its
fundamental properties. Lastly, in Section 2.5, we define Conway’s algorithm,
proving that this definition is equivalent to the abstract definition provided in
Section 2.4.

In Chapter 3, we focus on two structures introduced by Hatcher in [3] - the
Farey diagram and the Farey tree, which we describe and define in Sections 3.1
and 3.2 respectively. In Section 3.3, we explain and prove how we can connect
the Farey tree and the topograph, and lastly, in Section 3.4, we sketch a structure
with which we could prove the tree property of the topograph.

In the last Chapter 4, we explain how the paths in a topograph can be de-
scribed using continued fractions. In Section 4.1, we explain how we use matrices
to signify turning left and right in the Farey tree and the topograph. In Sec-
tion 4.2, we prove how a continued fraction determines a path in a topograph,
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which leads to an edge containing the number corresponding to the continued
fraction, and in Section 4.3, we provide some illustrations of paths determined by
a different continued fraction which properties are proved in Chapter 1.

This thesis takes primarily the three sources [1, 2, 3] and combines their
observations in one cohesive work while also providing different ways of working
with the topograph and more precise definitions of the topograph, Farey diagram
and the Farey tree.

In Chapter 1, we stick to the article [1]. We prove Lemmata 1.2, 1.12, 1.13,
1.14; and 1.15, which were provided in the article without proof. We also provide
more detailed proofs of Propositions 1.16 and 1.17.

In Chapter 2, we introduce crucial observations from [2], and we provide the
proof of Lemma 2.22, which Conway offers without proof. While the things in
the rest of the chapter are implicit in [2], they are our addition. We provide a
new way of looking at the topograph through matrices and sets of navigators.
We introduce the abstract definition and then prove the key properties of the
topograph.

In Chapter 3, we look at the works of Hatcher in [3] through the lens of [1].
We explain the construction of the graph given by Hatcher, provide more precise
definitions of the Farey tree and Farey diagram, and prove that the Farey tree is
related to the topograph.

In Chapter 4, we circle back to the article [1], where we properly define left
and right turns. We prove the observation in Propositions 4.9 and 4.10, which
were not proved in [1]. We then provide our own illustrations and examples in
the last Section 4.3.
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1. Continued fractions
The primary objective of the first chapter is to present our proofs of
Proposition 1.16 and Proposition 1.17. These propositions sheds light on the
structure of the continued fraction of a conjugate of a quadratic irrational. To
achieve this, we will examine negative continued fractions and continued fractions
of quadratic irrationals and their conjugates.

1.1 Preliminaries
To begin, we shall revisit the definitions of continued fractions. They are com-
monly used to represent real numbers through a sequence of natural numbers. In
this regard, we will use a particular definition of a continued fraction, although it
is worth noting that variations of this definition can also be found in some texts.

Definition 1.1. We define a finite continued fraction as

[c0, c1, . . . , ck] = c0 + 1
c1 + 1

···+ 1
ck

for ci ∈ R such that we never divide by 0.
An infinite continued fraction is defined as [c0, c1, . . . ] = limk→∞[c0, . . . , ck] if

the limit does exist.

We can see that, for example, the continued fraction [c0, c1, . . . , 0] is not de-
fined since the last fraction would be 1

0 .
Unless stated otherwise, we will use the following expression for continued

fractions of negative real numbers.

Lemma 1.2. For −ξ = η < 0 we have the continued fraction:

η = −[c0, c1, c2, . . . ] = [−c0, −c1, −c2, . . . ],

where [c0, c1, c2, . . . ] is the continued fraction of ξ.

Proof. From Definition 1.1 and arithmetic of limits of sequences we know that

−[c0, c1, c2, . . . ] = − lim
k→∞

[c0, c1, c2, . . . , ck] = lim
k→∞

−[c0, c1, c2, . . . , ck] =

= lim
k→∞

−

⎛⎜⎝c0 + 1
c1 + 1

···+ 1
ck

⎞⎟⎠ = lim
k→∞

−c0 + 1
−c1 + 1

···+ 1
−ck

=

= lim
k→∞

[−c0, −c1, −c2, . . . , −ck] = [−c0, −c1, −c2, . . . ].

It is worth noting that a particular type of continued fraction is known as
a periodic continued fraction. This property is utilized in Theorem 1.6, which
is pivotal in establishing a correlation between the periodicity of a continued
fraction of a given number and its rationality.
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Definition 1.3. If α is an irrational number and [c0, c1, c2, . . . ] is its infinite
continued fraction, then we say that α is periodic with period (ck, . . . , cl) if there
exist two non-negative integers k and l such that k ≤ l and ∀i ∈ {0, 1, . . . , l −
k}, ∀j ∈ N, ck+i = ck+i+jp, where p = l − k + 1 is the length of the period. We
denote it [c0, c1, . . . , ck−1, ck, ck+1, . . . , cl]. A continued fraction is called purely
periodic if k = 0.

Before introducing Lagrange’s Theorem 1.6, we must define a quadratic irra-
tional.

Definition 1.4. A quadratic irrational is a number α ∈ R that can be written as
α = A+

√
D

B
, where A, B, D ∈ Z for D, B ̸= 0 and D is non-negative and is not a

square.

As is customary, we shall denote the number field Q(
√

D), where D is not a
square, by K. Then, we can define the following function.

Definition 1.5. We will define conjugation for α = A+
√

D
B

as a Q-homomorphism

′ : K → K

A +
√

D

B
↦→ A −

√
D

B

We can now note some results from Lagrange and Galois.

Theorem 1.6 (Lagrange). Let ξ be irrational. Then its continued fraction ξ =
[a0, a1, . . . ], ai ∈ Z is periodic from a certain ak if and only if ξ is a quadratic
irrational number.

Proof. The proof of this theorem has been demonstrated in various ways. One
of the most common proofs can be found in Hardy and Wright’s book, ”An
Introduction to the Theory of Numbers” [4], in section 10.12, which starts on
page 143.

In addition, Galois proved a related theorem about purely periodic continued
fractions in [5]:

Theorem 1.7 (Galois). A quadratic irrational α = A+
√

D
B

has a purely periodic
continued fraction expansion α = [b1, . . . , bl], bi ∈ N if and only if its conjugate
α′ = A−

√
D

B
satisfies the inequality −1 < α′ < 0. Moreover, in that case α′ =

−[0, bl, . . . , b1].

Convention. We use rn = pn

qn
= [c0, . . . , cn], where pn, qn ∈ N, rn ∈ R for writing

finite continued fraction, ξ = [c0, c1, . . . ] to denote the infinite continued fraction
of a positive real number, η = −[c0, c1, . . . ] the continued fraction of a negative
real number and we will describe the elements of a continued fraction as follows:

α = [a0, a1, . . . , ak,⏞ ⏟⏟ ⏞
pre-period

b1, . . . , bl⏞ ⏟⏟ ⏞
period

].

We will also mention this definition of continued fractions used, for example,
in [6] and will be used in the proof of Lemma 1.11:
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Definition 1.8. We define a sequence {ci}, where ci is a non-negative integer,
for a real number ξ ∈ R as follows:

ξ0 := ξ,

ci := ⌊ξi⌋,

ξi+1 := 1
ξi − ci

, if ξi ̸= ci.

We call the sequence {c0, c1, . . . , cl} a finite continued fraction of ξ if it has a finite
length l and denote it as ξ = [c0, c1, . . . , cl]. We call the sequence {c0, c1, . . . }
an infinite continued fraction of ξ if it has an infinite length and denote it as
ξ = [c0, c1, . . . ].

Lemma 1.9. Definitions 1.8 and 1.1 are equivalent.

Proof. The proof can be found in [6] on page 17.

Lemma 1.10. Let c0 ∈ Z, ci ∈ N, then [c0, c1, . . . ] is defined.

Proof. It can be found in [6], Theorem 2.9. a), for ξ = [c0, c1, . . . ] ∈ R.

Lemma 1.11. For every ξ ∈ R \ Q there exist ci ∈ N, c0 ∈ N ∪ {0} such that
ξ = [c0, c1, . . . ] or ξ = −[c0, c1, . . . ].

Proof. We can use an alternative definition of the continued fractions from Defi-
nition 1.8, which, as we know from Lemma 1.9, is equivalent to Definition 1.1.

Let us suppose ξ > 0, then from the aforementioned definition we know that
there exist c0 ≥ 0, ci > 0 for i > 0 such that ξ = [c0, c1, . . . ]. If ξ < 0 then we
can apply Lemma 1.2 and we can find −ξ = [c0, c1, . . . ] and from the Lemma we
have ξ = −[c0, c1, . . . ].

1.2 Necessary lemmata
We want to examine the behaviour of quadratic irrationals that do not have a
completely periodic continued fraction. However, we must first establish some
significant observations that will aid us in demonstrating Proposition 1.16.

Lemma 1.12. Let ci ∈ Z, then if at least one of the sides is defined, we can
write:

1. [c0, . . . , ci−1, ci, 0, ci+1, ci+2, ci+3, . . . ] = [c0, . . . , ci−1, ci + ci+1, ci+2, ci+3, . . . ],

2. [c0, . . . , ci−1, ci, 0, 0, ci+1, ci+2, ci+3, . . . ] = [c0, . . . , ci−1, ci, ci+1, ci+2, ci+3, . . . ].

Proof. Our approach to proving this lemma will involve conducting simple mi-
croscopical work.

1. Let us set rk = [c0, . . . , ci, 0, ci+1, ci+2 . . . , ck] and
sk = [c0, . . . , ci + ci+1, ci+2 . . . , ck]. Then we want to prove that for every
t ≥ i + 1 : rt+1 = st−1.
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By utilizing the substitution βt = [ci+2, ci+3, . . . , ct] we effectively rewrite
[c0, . . . , ci, 0, ci+1, ci+2 . . . , ct] as [c0, . . . , ci−1, ci, 0, ci+1, βt]. We can conclude
that the following is true:

[ci, 0, ci+1, βt] = ci + 1
0 + 1

ci+1+ 1
βt

= ci + 1
1

ci+1+ 1
βt

= ci + ci+1 + 1
βt

=

= [ci + ci+1, βt],
therefore rt+1 = [c0, . . . , ci, 0, ci+1, βt] = [c0, . . . , ci + ci+1, βt] = st−1. More-
over, since this holds for every t ≥ i + 1, the limits of rk and sk are equal.

2. Using the same argument, if we rewrite [c0, . . . , ci, 0, 0, ci+1, ci+2 . . . ] as
[c0, . . . , ci−1, 0, 0, ci+1, βt] using the substitution βt = [ci+2, ci+3, . . . , ct], then
we can see that

[ci, 0, 0, ci+1, βt] = ci + 1
0 + 1

0+ 1
ci+1+ 1

βt

=

= ci + 1
1
1

ci+1+ 1
βt

= ci + 1
ci+1 + 1

βt

= [ci, ci+1, βt].

Remark. In the following text, we will be less formal, and we understand that
two continued fractions, as in Lemma 1.12, are equal if at least one of them is
defined.

It is easy to predict the behaviour of the conjugate of a quadratic irrational
with only two elements in the pre-period.
Lemma 1.13. Let α = [a0, a1, β], where β is a quadratic irrational, then α is
also a quadratic irrational and α′ = [a0, a1, β′].
Proof. We know that α is a quadratic irrational from Theorem 1.6 because if
β is a quadratic irrational, then it means it has a periodic continued fraction
[b0, b1, . . . , bl, . . . , bk], therefore, the continued fraction of α is also periodic, since
we can write it as [a0, a1, b0, b1, . . . , bl, . . . , bk] and from Theorem 1.6 it is also a
quadratic irrational. So, we know that α, β have well-defined conjugates.

From the definition, we can write α = a0 + 1
a1+ 1

β

. Then, since conjugation is

a Q-homomorphism, we have the property that (a + b)′ = a′ + b′ and
(︂

1
a

)︂′
= 1

a′

which translates to

α′ =
⎛⎝a0 + 1

a1 + 1
β

⎞⎠′

=

= a′
0 +

⎛⎝ 1
a1 + 1

β

⎞⎠′

= a′
0 + 1(︂

a1 + 1
β

)︂′ =

= a′
0 + 1

a′
1 +

(︂
1
β

)︂′ = a′
0 + 1

a′
1 + 1

β′
,
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but since a0, a1 ∈ Q then a′
0 = a0, a′

1 = a1 so

α′ = a0 + 1
a1 + 1

β′
= [a0, a1, β′],

as we wanted.

Remark. When writing proofs with continued fractions, we understand they can
be hard to follow. Therefore, we will use the following notation to help with
orientation in these proofs. We write

• [c0, c1, c2] ∗=
[︂
c0, c1 + 1

c2

]︂
,

•
[︂
c0, c1 + 1

c2

]︂ ·= [c0, c1, c2],

when we use these computation during our proofs.
The lemma below helps us understand negative continued fractions and how

we can modify them to have only the first element negative. As discussed in the
section after Definition 1.1, when referring to the continued fraction of a negative
value ξ, we will always mean the notation −[c0, c1, . . . ]; however, we will also
show that the following formulation is equally valid.

Lemma 1.14. Let ci ∈ N, then −[c0, c1, . . . ] = [−c0 − 1, 1, c1 − 1, c2, c3, . . . ].

Proof. Analogously to Lemma 1.12 we want to prove that for rk = [c0, c1, . . . , ck],
sk = [−c0 − 1, 1, c1 − 1, c2, c3, . . . , ck] for every t ≥ 2 : rt = st+1.

To proceed, we will substitute γt = [c2, c3, . . . , ct] from which we get

−[c0, c1, γt] = [−c0 − 1 + 1, −c1, −γt] ∗=
[︄
−c0 − 1 + 1, −c1 − 1

γt

]︄
=

=
[︄
−c0 − 1 + 1, −c1γt + 1

γt

]︄
∗=
[︄
−c0 − 1 + 1 − γt

c1γt + 1

]︄
=

=
[︄
−c0 − 1 + c1γt + 1 − γt

c1γt + 1

]︄
·=
[︄
−c0 − 1,

c1γt + 1
c1γt + 1 − γt

]︄
=

=
[︄
−c0 − 1, 1 + γt(c1 − 1) + 1

γt

]︄
=
[︄
−c0 − 1, 1, c1 − 1 + 1

γt

]︄
·=

·=
[︄
−c0 − 1, 1 + γt

c1γt + 1 − γt

]︄
·=
[︄
−c0 − 1, 1,

c1γt + 1 − γt

γt

]︄
=

= [−c0 − 1, 1, c1 − 1, γt] ,

and since this is true for every t ≥ 2 then the limits are equal.

The following observation simplifies the proof of Proposition 1.16. We recom-
mend reading it after its reference in the proposition to comprehend the need for
this particular formulation thoroughly.

Lemma 1.15. For γ = [c0, c1, . . . ], ci, ai, bi ∈ Z and a1 < bl we can write the
continued fractions

(i) [a0, a1, γ] = [a0 − 1, 1, −a1 − 1, −γ],
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(ii) [a1, −1, 1, bl − 1, γ] = [−bl + a1, −γ],

if at least one of the continued fractions in each point is defined.

Proof. In this proof, for simplicity, in both points, we consider the proof similar
to previous proofs - we understand that we are proving that the equations are
equal for every γt = [c0, c1, . . . , ct] for t ≥ 0. Then, the limits are equal.

(i) To prove this part, we add and subtract 1 from a0 and adjust the continued
fraction accordingly:

[a0, a1, γt] = [a0 − 1 + 1, a1, γt] ∗=
[︄
a0 − 1 + 1, a1 + 1

γt

]︄
=

=
⎡⎣a0 − 1,

a1 + 1
γt

a1 + 1 + 1
γt

⎤⎦ =
⎡⎣a0 − 1,

a1 + 1
γt

+ 1 − 1
a1 + 1 + 1

γt

⎤⎦ ·=

·=
[︄
a0 − 1, 1, −a1 − 1 − 1

γt

]︄
·= [a0 − 1, 1, −a1 − 1, −γt].

(ii) Our goal is to simplify the continued fraction to a single fraction, which we
can then split into a continued fraction with only two elements:

[a1, −1, 1, bl − 1, γt] ∗=
[︄
a1, −1, 1, bl − 1 + 1

γt

]︄
=
[︄
a1, −1, 1,

γtbl − γt + 1
γt

]︄
∗=

∗=
[︄
a1, −1,

γtbl + 1
γtbl − γt + 1

]︄
∗=
[︄
a1, −1 + γtbl − γt + 1

γtbl + 1

]︄
=

=
[︄
a1,

γt

−γtbl − 1

]︄
∗=
[︄
a1 + −γtbl − 1

γt

]︄

=
[︄

γt(a1 − bl) − 1
γt

]︄
=
[︄
a1 − bl − 1

γt

]︄
·=

·= [−bl + a1, −γt].

1.3 Continued fractions of conjugated quadratic
irrationals

Now, we can finally prove the central proposition of this chapter. We want to show
how to obtain the continued fraction of a quadratic irrational from its conjugate
when the conjugate is not purely periodic without using negative numbers in the
continued fraction. Firstly, in Proposition 1.16, we will prove it for a continued
fraction with at least two elements in the pre-period, and then, in Proposition
1.17, we will demonstrate what happens when the continued fraction has a pre-
period of length one.
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Proposition 1.16. Let α = [a0, a1, . . . , ak, b1, . . . , bl], ∀i, j ∈ N : ai, bj > 0, α
be the continued fraction expansion of a quadratic irrational with ak < bl, k ≥ 1.
Then the continued fraction expansion of its conjugate is

α′ = [a0, a1, . . . , ak−1 − 1, 1, bl − ak − 1, bl−1, bl−2, . . . , b1, bl].

If ak > bl, k ≥ 1, then

α′ = [a0, a1, . . . , ak−1, ak − bl − 1, 1, bl−1 − 1, bl−2, bl−3, . . . , b1, bl, bl−1].

Proof. Firstly, let us deal with the case ak < bl for k = 1.
From Lemma 1.13 we know that α′ = [a0, a1, β′] for β = [b1, . . . , bl] and from

Theorem 1.7 we have β′ = −[0, bl, . . . , b1]. That is, from Lemma 1.14, equal
to [−0 − 1, 1, bl − 1, bl−1, . . . , b1, bl]. We can manipulate the period by writing
[bl, . . . , b1] = [bl, bl−1, . . . , bl] and we will denote it as β̂ = [bl−1, . . . , bl].

By putting all these steps together we get

α′ = [a0, a1, −1, 1, bl − 1, bl−1, . . . , b1, bl] = [a0, a1, −1, 1, bl − 1, β̂].

Now we want to prove that [a0, a1, −1, 1, bl − 1, β̂] = [a0 − 1, 1, bl − a1 − 1, β̂].
Using Lemma 1.15, we firstly apply point (ii) and then (i), and we get:

[a0, a1, −1, 1, bl − 1, β̂] ii= [a0, −bl + a1, −β̂] i= [a0 − 1, 1, bl − a1 − 1, β̂].

For k > 1 we have α = [a0, a1, . . . , ak−1, ak, β] which we can express as
[a0, a1, . . . , ak−2, γ], where γ = [ak−1, ak, β]. From the previous case then γ′ is
equal to [ak−1 − 1, 1, bl − ak − 1, β] and adhering to Lemma 1.13

α′ = [a0, a1, . . . , ak−1, ak, β]′ = [a0, a1, . . . , ak−2, γ′] =
= [a0, a1, . . . , ak−1 − 1, 1, bl − ak − 1, β′].

By applying Galois’ Theorem 1.7 and adjusting the period in the same manner
as above, we get α′ = [a0, a1, . . . , ak−1 − 1, 1, bl − ak − 1, bl−1, . . . , b1, bl], which is
what we wanted.

For ak > bl, we consider α ≥ 0 since if it were not, we could write it as
−[a0, a1, . . . ] and proceed to work with positive values in the continued fraction.
We can use Lemma 1.12 and write

α = [a0, a1, . . . , ak, b1, . . . , bl] = [a0, a1, . . . , ak−1, ak − bl, 0, bl, b1 . . . , bl] =
= [a0, a1, . . . , ak − bl, 0, bl . . . , b1, bl−1].

We now have a new continued fraction [a0, a1, . . . , ak − bl, 0, bl . . . , b1, bl−1] =
[a′

0, a′
1, , . . . , a′

k−1, a′
k, b′

1, . . . , b′
l] and we get a′

k = 0 < b′
l, and a′

k−1 = ak − bl so by
applying the result from the case for ak < bl we get

α = [a0, a1, . . . , ak − bl, 0, bl . . . , b1, bl−1] =
= [a0, a1, . . . , ak − bl − 1, 1, bl − 1, bl−2, bl−3, . . . , b1, bl, bl−1],

which concludes our proof.

Remark. We have not covered the case ak = bl because for this case we can rewrite
it as α = [a0, a1, . . . , ak, b1, . . . , bl] = [a0, a1, . . . , ak−1, bl, b1, . . . , bl−1].
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All that is left to do in this chapter is to prove Proposition 1.16 for k = 0.

Proposition 1.17. Let α = [a0, b1, . . . , bl]. Then for a0 < bl the conjugate α′ can
be given as the negative continued fraction expansion

α′ = −[bl − a0, bl−1, . . . , b1, bl].

For a0 > bl we have

α′ = [a0 − bl − 1, 1, bl − 1, bl−1, bl−2, . . . , b1, bl].

Proof. For a0 < bl we can write α = [a0, β] for β = [b1, . . . , bl] and β = [bl, . . . , b1].
Then, with the aid from Theorem 1.7 and Lemma 1.12

α′ = [a0, β′] 1.7= [a0, 0, −β] 1.12= [a0 − bl, −bl−1, . . . , −b1, −bl] =
= −[bl − a0, bl−1, . . . , b1, bl].

For a0 > bl we can again use the help of Lemma 1.12 and rewrite α = [a0 −
b1, 0, b1, . . . , bl] but here we have two elements in the pre-period of the continued
fraction which we have already covered in Proposition 1.16.

Remark. For the case a0 = bl, we would get the case of purely periodic continued
fraction, which is already covered in Theorem 1.7.
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2. Topograph
In his book “The Sensual (Quadratic) Form”, John H. Conway discusses a unique
graph called the “topograph,” which can be used to visualise binary integral
quadratic forms.

This chapter will in Section 2.3 explain how Conway created the topograph,
in Section 2.4 provide an abstract definition of the graph and its properties, and
then in Section 2.5 define the algorithm for constructing the topograph. Finally,
we will prove that the output generated by the algorithm is equivalent to the
abstract definition.

Before we begin, we will mention some basic properties of graphs, as we will
define the topograph as a graph.

2.1 Notions on graphs
We will start by setting the definition of a graph and its sets of edges and vertices:

Definition 2.1. A graph is a pair (V, E) where V is a set and E ⊆ {{u, v} | u, v ∈
V, u ̸= v}.

Definition 2.2. Let G = (V, E) be a graph. Then, the set V is called the vertex
set of G and is denoted by V (G). The set E is called the set of edges of G and
is denoted by E(G).

The following notation is used heavily in the following chapters, so let us
remember what being adjacent and neighbours mean in the language of graphs.
We will provide a similar definition for the language of lax bases and superbases
in Definition 2.23.

Definition 2.3. Let G = (V, E) be a graph. Vertex u ∈ V (G) and an edge
e ∈ E(G) are said to be adjacent (to each other) if v ∈ e.

Definition 2.4. Let G = (V, E) be a graph. Let u, v ∈ V (G) and e, f ∈ E(G).
The neighbors of v (in G) are the vertices u of G that satisfy {u, v} ∈ E(G).
The neighbors of e (in G) are the edges f of G that satisfy |e ∩ f | = 1.

In Lemma 2.26, we will prove that all the vertices of a topograph are of degree
3; for that purpose, let us define the degree of a vertex.

Definition 2.5. Let G = (V, E) be a graph. Let v ∈ V be a vertex. Then, the
degree of v is defined to be

deg v : = (the number of edges e ∈ E that contain v)
= (the number of neighbors of v)
= |u ∈ V | {u, v} ∈ E|
= |e ∈ E | v ∈ e|.

We will, slightly unorthodoxly, in this thesis, work more with paths on edges
rather than vertices and distance between edges.
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Definition 2.6. A walk in a graph G = (V, E) is a finite sequence
(g1, g2, . . . , gn) of edges in G such that ∀ 1 ≤ i, j ≤ n :

• gi ∈ E,

• gi, gi+1 are neighbours.

Accordingly we would define an infinite walk γ = (gi)i∈Z as well as a semi-
infinite walk γ = (gi)i∈N.

Definition 2.7. A path in graph G is a walk γ = (g1, g2, . . . , gn) such that for
all i, j ≤ n, i ̸= j : gi ̸= gj.

Definition 2.8. Let γ = (g1, g2, . . . , gn) be a walk in the graph G. Then we say
that the edge g1 is the root of this walk.

Lastly, we will provide definitions of a connected graph and a tree:

Definition 2.9. A graph G = (V, E) is connected if for every u, v ∈ V there
exists a path (g1, g2, . . . , gn) such that u ∈ g1, v ∈ gn.

Definition 2.10. A graph G = (V, E) is a tree if any two vertices in G can be
connected by exactly one path.

2.2 The lax bases and superbases
Before commencing the construction of the topograph, we must first introduce
several definitions. Our objective is to establish some bases that are flexible in
terms of their sign, which Conway refers to as lax bases. To begin with, we will
define primitive and lax vectors. Note that we work with vectors from Z2 in the
whole thesis.

Definition 2.11. A primitive vector is a vector v ∈ Z2 for which there does not
exist k ∈ Z \ {±1} such that ku = v for any vector u ∈ Z2.

Definition 2.12. A lax vector is defined as a set ±v = {+v, −v} for a primitive
vector v.

Having established what a lax vector is, we can now proceed to define a lax
base. The definition of a strict base is the same as that of a regular base, which
the reader might already be familiar with. However, for clarity in our discussion,
we will refer to it as a strict base.

Definition 2.13. A strict base is defined as an ordered pair (e1, e2) of vectors
whose integral linear combinations are all the lattice vectors.

Definition 2.14. A lax base is a set {±e1, ±e2} for a strict base (e1, e2).

Finally, we need to introduce superbases. We can imagine them as friends to
our defined lax bases. The superbase is a triple where two-thirds form a strict
base, and the last third is derived from the first two.

Definition 2.15. A strict superbase is an ordered triple (e1, e2, e3) for which
e1 + e2 + e3 = 0 and (e1, e2) is a strict base.
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Definition 2.16. A lax superbase is a set {±e1, ±e2, ±e3} where (e1, e2, e3) is a
strict superbase.

Working with bases and superbases can be quite challenging. To simplify the
process, we have developed a concept called the “set of navigators”. Although
the term “set of navigators” is not used in Conway’s text, we have adopted his
naming conventions that remind the reader of a pleasant afternoon hike.

Definition 2.17. A navigator of a lax base {±e1, ±e2} is a strict base (e1, e2)
such that {±e1, ±e2} is obtained form (e1, e2).

Definition 2.18. A navigator of a lax superbase {±e1, ±e2, ±e3} is a strict base
(e1, e2, e3) such that {±e1, ±e2, ±e3} is obtained form (e1, e2, e3).

Definition 2.19. Let us define the set of navigators for a lax base e (resp. lax
superbase v) as the set of all its navigators, which we denote Ne (resp. Nv).

Lastly, we work extensively with sets of lax bases and lax superbases, so we
have developed a notation for these two sets.

Definition 2.20. We will define L as the set of all the lax bases in Z2, S as the
set of all the lax superbases in Z2 and V as the set of all the lax vectors in Z2.

To determine the navigators of a lax superbase, we will prove the following
lemma.

Lemma 2.21. If (e1, e2, e3) is a strict superbase then also (e2, e1, e3), (e1, e3, e2),
(e2, e3, e1), (e3, e2, e1) and (e3, e1, e2) are strict superbases.

Proof. For an ordered triple (a, b, c) to be the superbase we need c = −a − b and
(a, b) to be a strict base.

We will only provide proof for (e3, e1, e2), but it holds for all variations.
If (e1, e2, e3) is a strict superbase, then we have e3 = −e1 − e2. For (e3, e1, e2),

we need to verify that e3+e1+e2 = −e1−e2+e1+e2 = 0 and that (e3, e1) is a strict
base. We can see that (e3, e1) generates Z since we can express e2 = −e1 − e3,
and we already know that (e1, e2) is a strict base.

All that is left to prove is that e3 and e1 are primitive vectors. e1 is already
primitive from (e1, e2) being a strict base. We see that e3 is primitive, we need
−e1 − e2 to be primitive. Since in the definition of a primitive vector, we allow it
to be divisible by −1, we can check that e1 +e2 is primitive. We know that e1 and
e2 form a strict base, so we can write e1 = (a, b), e2 = (c, d) for some a, b, c, d ∈ Z
and since we know that e1 and e3 form a base of Z2 we get that

det
(︄

a c
b d

)︄
= ±1.

From this, we have ad − cb = ±1, and we can write

ad − cb = ad − ab + ab − cb = a(d + b) − b(a + c) = ±1.

This implies that a+ c and b+d are coprime. If they were not, there would exist
k ̸= ±1 such that k|(a+c) and k|(b+d). Then we would get a+c = kx, b+d = ky
for some x, y ∈ Z and the equation would be equal to

akx − bky = k(ax − by) = ±1.
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But then k| ± 1 but for that k = ±1 which is in contradiction with our choice
of k. Therefore, the vector (a + c, b + d) is primitive, and this vector is equal to
e1 + e2, so e3 is indeed a primitive vector.

The definitions are new and might be somewhat difficult to comprehend. To
assist with understanding, the reader can take a look at the following examples:
Example. Let us take two vectors (1, 0) and (0, 1). Then the corresponding lax
vectors would be ±(1, 0) = {(1, 0), (−1, 0)} and ±(0, 1) = {(0, 1), (0, −1)}.

A strict base formed from (1, 0) and (0, 1) is ((1, 0), (0, 1)) and a corresponding
lax base would be {±(1, 0), ±(0, 1)} = {{(1, 0), (−1, 0)}, {(0, 1), (0, −1)}}.

A strict superbase for ((1, 0), (0, 1)) would be ((1, 0), (0, 1), (−1, −1)) for which
the lax superbase would be

{±(1, 0), ±(0, 1), ±(−1, −1)} = {±(1, 0), ±(0, 1), ±(1, 1)} =
= {{(1, 0), (−1, 0)}, {(0, 1), (0, −1)}, {(1, 1), (−1, −1)}}.

If we get the set of navigators for e = {±(1, 0), ±(0, 1)} we get

Ne = {((1, 0), (0, 1)), ((−1, 0), (0, −1)), ((−1, 0), (0, 1)), ((1, 0), (0, −1)),
((0, 1), (1, 0)), ((0, −1), (−1, 0)), ((0, −1), (1, 0)), ((0, 1), (−1, 0))}.

For the lax superbase v = {±(1, 0), ±(0, 1), ±(1, 1)} we have

Nv = {((1, 0), (0, 1), (−1, −1)), ((−1, 0), (0, −1), (1, 1))
((0, 1), (1, 0), (−1, −1)), ((0, −1), (−1, 0), (1, 1))
((1, 0), (−1, −1), (0, 1)), ((−1, 0), (1, 1), (0, −1))
((−1, −1), (1, 0), (0, 1)), ((1, 1), (−1, 0), (0, −1))
((0, 1), (−1, −1), (1, 0)), ((0, −1), (1, 1), (−1, 0))

((−1, −1), (0, 1), (1, 0)), ((1, 1), (0, −1), (−1, 0))}.

Convention. In the following chapter, we will adhere to the following notation:

• e, f, g, h, i will denote lax bases,

• u, v, w will denote lax superbases,

• e1, e2, . . . , f1, f2, . . . will denote primitive vectors and ±e1, ±e2, . . . will de-
note lax vectors,

• n, m, l will denote navigators.

Before we construct the topograph, we must first prove the following lemma
formulated by Conway in [2]. We will use it extensively in the upcoming sections.

Lemma 2.22 (On bases). Each lax superbase {±e1, ±e2, ±e3} contains exactly
three lax bases

{±e1, ±e2}, {±e1, ±e3}, {±e2, ±e3}

and each lax base {±e1, ±e2} is in exactly two lax superbases

{±e1, ±e2, ±(e1 + e2)}, {±e1, ±e2, ±(e1 − e2)}
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Proof. It is evident that

{±e1, ±e2}, {±e1, ±e3}, {±e2, ±e3} ⊂ {±e1, ±e2, ±e3},

we need to check that all {±e1, ±e2}, {±e1, ±e3}, {±e2, ±e3} are lax bases.
We need both vectors to generate all the lattice vectors from the defini-

tion. Since {±e1, ±e2, ±e3} is a lax superbase, then again from the definition
(e1, e2, e3) is a strict superbase, and (e1, e2) is a strict base, which induces a
lax base {±e1, ±e2}. From Lemma 2.21 we get strict superbases (e1, e3, e2) and
(e3, e2, e1) that, following the same pattern, give us lax bases {±e1, ±e3} and
{±e2, ±e3}.

For any other subset of {±e1, ±e2, ±e3}, we get only {±e1}, {±e2}, {±e3} and
the empty set, which are obviously (from the definition) not lax bases.

For the second part, we can see that {±e1, ±e2} ⊂ {±e1, ±e2, ±(e1 + e2)}
and {±e1, ±e2} ⊂ {±e1, ±e2, ±(e1 − e2)}. We need to check that they are both
superbases and that for any other superbase v, we get {±e1, ±e2} ⊈ v.

We have a lax base {±e1, ±e2} with the set of navigators

Ne = {(e1, e2), (−e1, −e2), (e1, −e2), (−e1, e2),
(e2, e1), (−e2, −e1), (e2, −e1), (−e2, e1)}.

we can generate strict superbases for them. For (e1, e2), we can obtain a strict
superbase as (e1, e2, −(e1 + e2)) to ensure that e1 + e2 − (e1 + e2) = 0 and we can
do that for all the other strict bases as well, and we will get these following eight
strict superbases:

(e1, e2, (−e1 − e2)), (−e1, −e2, (e1 + e2)), (e2, e1, (−e2 − e1)), (−e2, −e1, (e2 + e1)),
(e1, −e2, (−e1 + e2)), (−e1, e2, (e1 − e2)), (e2, −e1, (−e2 + e1)), (−e2, e1, (e2 − e1))

The first four superbases form the set of navigators for {±e1, ±e2 ± (e1 + e2)}
and the last four strict superbases form the set of navigators for the lax superbase
{±e1, ±e2 ± (e1 − e2)}.

Any other superbase v would have to take the shape of v = {±e1, ±e2, ±k}
for such vector k that e1 + e2 + k = 0 (and accordingly for other combinations
from the set of navigators) but we have already shown that all the possibilities
are taken into account in the part above.

The following definition sums up this lemma, whereby containing we mean
the same relation as in the lemma above.

Definition 2.23. Let e, f be lax bases and u, v lax superbases. Then if

• e is contained in u we say that e and u are adjacent.

• there exists a lax superbase w such that e and f are contained in w, then
we say that e and f are neighbours.

• there exists a lax base e such that e is in u and e is in v, then we say that
u, v are neighbours.

We will also note the following corollary and remark, which we will use in
the following text without further explanation. The corollary will be expanded
in Proposition 2.27.
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Corollary. Every subset of cardinality 2 of a lax superbase is a lax base.
Remark. Every lax (super)base is determined by its set of navigators.

It is evident, as each strict (super)base corresponds to a singular lax (su-
per)base, all encapsulated within the navigators.

2.3 How we get the topograph
Now, we can finally start constructing the topograph. For this, we can choose
any base of Z2; in this case, we will use (e1, e2). We find the corresponding lax
base {±e1, ±e2} for this strict base.

The initial step is to visualise Lemma 2.22 in the following graph,

• •

• •

• •

■

■

■

■

■

Figure 2.1: The visualisation of Lemma 2.22

where the dots • represent lax superbases, the squares ■ represent lax bases,
and edges connect two lax superbases if they are neighbours.

If we have the vectors e1, e2 we assign their lax bases and lax superbases to
the graph above. For better understanding, we will describe the whole process:

1. To begin with, we assign the lax base to the centre square:

2. Next, we know that the lax base {±e1, ±e2} is in two superbases
{±e1, ±e2, ±(e1 + e2)}, {±e1, ±e2, ±(e1 − e2)} so we assign them to the two
adjacent vertices.
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Figure 2.2: Topograph with one edge and two vertices denoted

3. To identify the remaining black squares that represent the edges, we need to
find the lax bases that belong to the lax superbase assigned to the adjacent
vertex. We then assign one of these bases to each edge. One of the bases
will be {±e1, ±e2}, already assigned to the first adjacent edge we marked.

Figure 2.3: Topograph with assigned lax bases and superbases

We can proceed similarly and construct an infinite graph.

2.4 Abstract definition of the topograph
A precise formulation is necessary to establish the properties of our topograph.
Therefore, we propose the following definition:

Definition 2.24. The topograph is a pair T = (V, E) where V is a set of all the
lax superbases in Z2 and E = {{v1, v2} | v1, v2 ∈ V, |v1 ∩ v2| = 2}.

The edges are defined according to Lemma 2.22 and Conway’s algorithm,
where we have established that two vertices are connected by an edge e if and
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only if they are both adjacent to e. That from Lemma 2.22 means that e is
contained in both vertices. Since edges are in Conway’s algorithm denoted by lax
bases (which are sets of cardinality 2) and vertices are denoted as lax superbases
(sets of cardinality 3), then we can conclude that their intersection has to be 2;
otherwise, the lax superbases are equal.

Theorem 2.25. A topograph is a tree.

Proof can be accessed and read in [2] on page 10, but we will sketch the proof
in Section 3.4.

This Theorem provides some interesting observations. Mainly, we know that
T is connected and that there is exactly one path between any two vertices.
Another important property is given in the upcoming lemma:

Lemma 2.26. Let T = (V, E) be a topograph. Then ∀v ∈ V : deg(v) = 3.

Proof. From Definition 2.24, we know that every vertex v1 is a set of three ele-
ments. We need to find all the other sets vi in V such that |v1 ∩ vi| = 2. We wish
to find exactly three.

Since v1 has three elements, it has three different subsets of cardinality 2.
Since a two-element subset of a lax superbase will always be a lax base, for every
one of those subsets from Lemma 2.22, we have precisely two lax superbases in
which this subset lies. One of them has to be v1, the other is neighbouring v1.
Since we have three different subsets, we get three different neighbouring vertices.

They are different because all the three lax vectors in the lax superbase have
to be different - the first two e1, e2 have to be different as they form the lax base
and the third one is equal to e1 + e2 which would be equal to e1 or e2 if and only
if the other was a linear combination of the first which is in contradiction with
them being basis vectors.

We understand that the topograph contains all the lax superbases as its ver-
tices, but we also want it to include all the lax bases. To achieve this, we define
a function that maps the edges of the topograph to the lax bases. We shall recall
that L denotes the set of all lax bases.

Proposition 2.27. Let T be a topograph. Then the mapping

φ : E → L
{v1, v2} ↦→ v1 ∩ v2

is a bijection.

Proof. Let e = {v1, v2} be an edge from E. Then, from the definition of the
topograph, the intersection of v1 and v2 is a set of cardinality 2; let us denote it
{±e1, ±e2} where (e1, e2) is a strict base. Then we can find vectors f, g distinct
from each other and from e1, e2 such that WLOG v1 = {±e1, ±e2, ±f} and v2 =
{±e1, ±e2, ±g}. Then φ(e) is a set of the cardinality two, which is a subset of a
lax superbase, which from Lemma 2.22 means that φ(e) is a lax base.

Furthermore, since f ̸= g, each lax base has exactly one corresponding edge
in the topograph under φ.

Remark. From this Proposition 2.27 we can see that the topograph contains all
the lax bases.
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2.5 Algorithmic construction of a topograph
This section will define Conway’s algorithm properly and demonstrate how it is
equivalent to our abstract definition of a topograph from Definition 2.24.

A crucial aspect of creating the topograph involves demonstrating that its
edges are produced utilising matrices from GL2(Z). To accomplish this, we will
rely on the following theorems. The proof for Theorem 2.28 can be found, with
minor modifications, in [7], specifically on page 78 in Theorem 2. Theorem 2.29
follows naturally from Theorem 2.28.
Theorem 2.28. SL2(Z) is generated by matrices(︄

1 1
0 1

)︄
,

(︄
0 1

−1 0

)︄
,

(︄
−1 0
0 −1

)︄
.

Theorem 2.29. GL2(Z) is generated by matrices(︄
1 1
0 1

)︄
,

(︄
0 1

−1 0

)︄
,

(︄
−1 0
0 −1

)︄
,

(︄
1 0
0 −1

)︄
.

Remark. In the following section, we will multiply navigators by matrices. We

understand that for a matrix M =
(︄

a b
c d

)︄
and a navigator of a lax base (e, f) =

((e1, e2), (f1, f2)) we have

M(e, f) =

⎛⎜⎝a b
c d
h i

⎞⎟⎠(︄e1 e2
f1 f2

)︄
=

⎛⎜⎝ae1 + bf1 ae2 + bf2
ce1 + df1 ce2 + df2
he1 + if1 he2 + if2

⎞⎟⎠ =

= ((ae1 + bf1, ae2 + bf2), (ce1 + df1, ce2 + df2), (he1 + if1, he2 + if2)) =
= (ae + bf, ce + df, he + if).

For a lax superbase, we get the matrix M =
(︄

a c e
b d f

)︄
and the navigator of a

lax superbase (u, v, w) = ((u1, u2), (v1, v2), (w1, w2)). Then

M(e, f) =
(︄

a c e
b d f

)︄⎛⎜⎝u1 u2
v1 v2
w1 w2

⎞⎟⎠ =
(︄

au1 + cv1 + ew1 au2 + cv2 + ew2
bu1 + dv1 + fw1 bu2 + dv2 + fw2

)︄
=

= ((au1 + cv1 + ew1, au2 + cv2 + ew2),
= ((bu1 + dv1 + fw1, bu2 + dv2 + fw2) =
= (au + cv + ew, bu + dv + fw).

To describe travelling in the topograph between lax bases and superbases,
we can use matrices and sets of navigators. Let us consider a lax base e =
{±e1, ±e2} and its neighboring lax superbases u = {±e1, ±e2, ±(e1 + e2)} and
v = {±e1, ±e2, ±(e1 − e2)}. Then, we define a set of matrices

Gv =

⎧⎪⎨⎪⎩
⎛⎜⎝ 1 0

0 1
−1 −1

⎞⎟⎠ ,

⎛⎜⎝−1 0
0 1
1 −1

⎞⎟⎠ ,

⎛⎜⎝ 1 0
−1 −1
0 1

⎞⎟⎠ ,

⎛⎜⎝−1 0
1 −1
0 1

⎞⎟⎠ ,

⎛⎜⎝−1 −1
1 0
0 1

⎞⎟⎠ ,

⎛⎜⎝ 1 −1
−1 0
0 1

⎞⎟⎠
⎫⎪⎬⎪⎭ .
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Moreover, we want to prove the following:

Proposition 2.30. Let e be a lax base and u, v lax superbases. Then e is adjacent
to both of them if and only if {X · n | X ∈ Gv, n ∈ Ne} = Nu ∪ Nv

Proof. For brevity, in this proof, we will show the full expansion only for the first
two matrices; for the next four, we provide only the result of multiplying with
the strict base (e1, e2), and we denote it using an overline. The result will be
analogical to the expansion with the first two matrices.

Let us write e = {±e1, ±e2}, then through expansion we get that the set
{X · n | X ∈ Gv, n ∈ Ne} is equal to

{(e1, e2, −e1 − e2), (−e1, −e2, e1 + e2), (e2, e1, −e2 − e1), (−e2, −e1, e2 + e1),
(e1, −e2, −e1 + e2), (−e1, e2, e1 − e2), (e2, −e1, −e2 + e1), (−e2, e1, e2 − e1)
(e1, −e1 − e2, e2), (−e1, e1 − e2, e2)}, (−e1 − e2, e1, e2), (e1 − e2, −e1, e2) =

= {(e1, e2, −e1 − e2), (e1, −e1 − e2, e2), (−e1 − e2, e1, e2)} ∪
∪ {(e1, −e2, −e1 + e2), (−e1, e1 − e2, e2)}, (e1 − e2, −e1, e2)} =

= Nu ∪ Nv.

We can observe that if e is adjacent to u, v then WLOG from Lemma 2.22 u =
{±e1, ±e2, ±(e1 + e2)} and v = {±e1, ±e2, ±(e1 − e2)} and the set is indeed equal
to their sets of navigators. The other implication shows that if the equality holds
for e, then the sets of navigators have to belong to u = {±e1, ±e2, ±(e1 + e2)}
and v = {±e1, ±e2, ±(e1 −e2)} and again from Lemma 2.22 that means that they
are adjacent.

In the same way, we can define the adjacency relation between lax bases.

Proposition 2.31. Let v be a lax superbase and e, f, g lax bases. Then v is
adjacent to all of them if and only if {X · n | n ∈ Nv} = Ne ∪ Nf ∪ Ng, where

X =
(︄

1 0 0
0 1 0

)︄
.

Proof. We write v = {±e1, ±e2, ±(e1 + e2)} and through expansion, we get that
the set is equal to

{(e1, e2), (e1, −e1 − e2), (e2, −e1 − e2), (−e1, −e2), (−e1, e1 + e2), (−e2, e1 + e2),
(e2, e1), (e2, −e2 − e1), (e1, −e2 − e1), (−e2, −e1), (−e2, e2 + e1), (−e1, e2 + e1)} =

= {(e1, e2), (−e1, −e2), (e2, e1), (−e2, −e1)} ∪
∪ {(e1, −e1 − e2), (−e1, e1 + e2), (−e1, −e1 − e2), (−e2, e2 + e1)} ∪

∪ {(e2, −e1 − e2), (−e2, e1 + e2), (e1, −e2 − e1), (−e1, e2 + e1)} ∪
= Ne ∪ Nf ∪ Ng.

We can observe that if v is adjacent to e, f, g then WLOG from Lemma 2.22
e = {±e1, ±e2}, f = {±e1, ±(e1 + e2)} and g = {±e2, ±(e1 + e2)} and the set is
indeed equal to their sets of navigators. The other implication shows that if the
equality holds for v then the sets of navigators have to belong to e = {±e1, ±e2},
f = {±e1, ±(e1 + e2)} and g = {±e2, ±(e1 + e2)} and again from Lemma 2.22
that means that they are adjacent.
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We want to explain how to get between neighbouring lax bases. For that
purpose, let us denote the set

G = {XB | B ∈ Gv} =

=
{︄(︄

1 0
0 1

)︄
,

(︄
−1 0
0 1

)︄
,

(︄
1 0

−1 −1

)︄
,

(︄
−1 0
1 −1

)︄
,

(︄
−1 −1
1 0

)︄
,

(︄
1 −1

−1 0

)︄}︄

and prove the following lemma.

Lemma 2.32. e, f, g, h are neighbouring lax bases to i, if and only if

{X · n | X ∈ G, n ∈ Ni} = Ne ∪ Nf ∪ Ng ∪ Nh ∪ Ni

Proof. Once again, let us write i = {±e1, ±e2} then if we apply the matrices from
G to elements of Ni then we get that the set {X · n | X ∈ G, n ∈ Ni} is equal to{︄{︄(︄

1 0
0 1

)︄
· n | n ∈ Ni

}︄
∪
{︄(︄

−1 0
0 1

)︄
· n | n ∈ Ni

}︄}︄
∪

∪
{︄{︄(︄

−1 0
1 −1

)︄
· n | n ∈ Ni

}︄
∪
{︄(︄

1 0
−1 −1

)︄
· n | n ∈ Ni

}︄}︄
∪

∪
{︄{︄(︄

−1 −1
1 0

)︄
· n | n ∈ Ni

}︄
∪
{︄(︄

1 −1
−1 0

)︄
· n | n ∈ Ni

}︄}︄
=

= Ni ∪
{︂
N{±e1,±(e1+e2)} ∪ N{±e2,±(e1+e2)}

}︂
∪

∪
{︂
N{±e1,±(e1−e2)} ∪ N{±e2,±(e1−e2)}

}︂
,

and from Lemma 2.22 we know that the neighbouring edges to i = {±e1, ±e2} are
exactly {±e1, ±(e1 + e2)}, {±e2, ±(e1 + e2)}, {±e1, ±(e1 − e2)}, {±e2, ±(e1 − e2)}
from which the equivalence is obvious.

We can observe that transitioning between lax bases is similar to changing
basis vectors. As all change of basis matrices must be invertible, we are interested
in the group GL2(Z).

Lemma 2.33. G generates GL2(Z).

Proof. Firstly, we can see that all the matrices in G are in GL2(Z).
From Theorem 2.29 we know that all we need is for G to generate the matrices(︄

1 1
0 1

)︄
,

(︄
0 1

−1 0

)︄
,

(︄
−1 0
0 −1

)︄
,

(︄
1 0
0 −1

)︄
. (2.1)

By simple computations, we can see that(︄
0 1

−1 0

)︄
=
(︄

−1 −1
1 0

)︄(︄
−1 0
1 −1

)︄
.

Using this matrix, we can express(︄
−1 0
0 −1

)︄
=
(︄

0 1
−1 0

)︄(︄
0 1

−1 0

)︄
,
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and again, by applying the newly obtained matrices, we see that(︄
1 0
0 −1

)︄
=
(︄

1 0
−1 −1

)︄(︄
−1 0
1 −1

)︄(︄
−1 0
0 −1

)︄
,

and the last matrix is already can be obtained as(︄
1 1
0 1

)︄
=
(︄

1 0
0 −1

)︄(︄
1 0

−1 −1

)︄(︄
−1 −1
1 0

)︄(︄
−1 0
0 −1

)︄
.

In the upcoming lemma, we aim to demonstrate that it is possible to obtain
any lax base in L from another lax base in L solely by utilising matrices from
GL2(Z). We will do so by analysing the set of navigators, as we understand that
this set determines any lax base.

Lemma 2.34. Let e ∈ L, then for any lax base f ∈ L it holds that

∀n ∈ Nf ∀m ∈ Ne ∃M ∈ GL2(Z) : n = Mm.

Proof. Let us recall that a navigator n is a strict base, meaning it is a base of
Z2. We aim to switch from a basis given by the pair of vectors n to one given
by the pair of vectors m. Therefore, M must be a change of the basis matrix,
and hence, it has to be invertible with integer entries. Therefore, M must be an
element of GL2(Z).

Let us remind us that

Gv =

⎧⎪⎨⎪⎩
⎛⎜⎝ 1 0

0 1
−1 −1

⎞⎟⎠ ,

⎛⎜⎝−1 0
0 1
1 −1

⎞⎟⎠ ,

⎛⎜⎝ 1 0
−1 −1
0 1

⎞⎟⎠ ,

⎛⎜⎝−1 0
1 −1
0 1

⎞⎟⎠ ,

⎛⎜⎝−1 −1
1 0
0 1

⎞⎟⎠ ,

⎛⎜⎝ 1 −1
−1 0
0 1

⎞⎟⎠
⎫⎪⎬⎪⎭ .

Using our sets of matrices, we can now properly formulate the algorithm
described by Conway:

Definition 2.35 (Algorithmic construction). Let e = {±e1, ±e2} be a lax base, L
the set of all lax bases, and S the set of all the lax superbases. We define V0 = {},
L0 = {e} and for i ≥ 1 we recursively define

Vi+1 = {v ∈ S | ∃e ∈ Li : Nv ⊆ {X · n | n ∈ Ne, X ∈ Gv}},

Li+1 = {f ∈ L | ∃e ∈ Li : Nf ⊆ {X · n | X ∈ G, n ∈ Ne}}.

Then we set ˜︁V = ⋃︁
i Vi, ˜︁L = ⋃︁

i Li.

Our task is to demonstrate that the algorithm aligns with our abstract defi-
nition of the topograph. To do so, we will establish that ˜︁L equals the set of all
lax bases we represent as L. By virtue of Lemma 2.27, this set is bijective to
all edges. Following this, we will prove that ˜︁V corresponds to the set of all lax
superbases, which we defined as V in Definition 2.24.
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Theorem 2.36. Let T = (V, E) be a topograph and ˜︁V and ˜︁L from Definition
2.35. Then V = ˜︁V and φ(E) = ˜︁L.

Proof. We need to prove four inclusions: ˜︁L ⊆ L, ˜︁V ⊆ V, L ⊆ ˜︁L and V ⊆ ˜︁V .
Then the rest follows from Proposition 2.27, which tells us that φ(E) = L. The
first two inclusions come from Definition 2.35.

“L ⊆ ˜︁L” We want to prove that the algorithm outputs all the lax bases.
Lemma 2.34 tells us that any base f = {±f1, ±f2} ∈ L can be obtained from

the starting base e = {±e1, ±e2} using only matrices M ∈ GL2(Z). By looking
at the Definition 2.35, we can see that every element in ˜︁L is a product of matrices
from G and the initial base. For any f ∈ Li, we can obtain Nf as a subset of
{X · n | X ∈ G, n ∈ Ng}, where g ∈ Li−1. Through induction, we can prove that
Nf is a subset of {XiXi−1 . . . X0 · n | Xi ∈ G, n ∈ Ne}. Therefore, we can obtain
Nf as a subset {Mn | n ∈ Ne}, where M is generated by matrices in G.

Moreover, Lemma 2.33 yields that G generates GL2(Z). Since the topograph
is a tree, there exists exactly one path between any two edges, which we can
describe as a product of matrices from G. The final matrix will be called M , in
GL2(Z) from Lemma 2.33. Therefore using Lemma 2.34 we can get any lax base
in ˜︁L.

“V ⊆ ˜︁V ” We will prove that the algorithm outputs all the lax superbases.
Vi consists of all the lax superbases adjacent to the lax bases in Li−1 based on

its definition. This conclusion is derived from Proposition 2.31. We know that
every lax base e is present in some Li. However, we need to prove that every
element u ∈ V can be obtained from some Lj.

One can observe this by referring to Lemma 2.22. It states that each lax
superbase is connected to precisely three lax bases, and every lax base is connected
to precisely two lax superbases. Thus, for any vertex v ∈ V , there are three
adjacent lax bases: e ∈ Lk, f ∈ Ll, g ∈ Lm and Proposition 2.31 implies that v
belongs to Vmin{k,l,m}+1.

We have now proved that every lax base is in ˜︁L and every lax superbase
is in ˜︁V .

The remaining two inequities follow the definition where we only allow ele-
ments of Li and Vi to be elements of L and V respectively.
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3. Farey tree
In this chapter, we will explain what a Farey diagram is and how it produces the
Farey tree and provide more precise definitions of both structures. Our work on
the Farey diagram is mainly based on Hatcher’s Topology of Numbers [3]. He
devotes the entire first chapter to the Farey diagram. Additionally, we will define
the Farey tree and prove that it is isomorphic to our topograph, to which we have
dedicated the previous chapter.

Please note that this chapter is less formal than the previous two as we work
with two structures that were only explained intuitively in the source materials.

3.1 Farey diagram
Convention. We will introduce a new set which we will call Q∗ = Q ∪

{︂
1
0

}︂
. We

understand the elements of Q∗ as a
b

∈ Q∗, such that b ≥ 0 and gcd(a, b) = 1.
The following definition is established to aid in a better understanding of the

construction of the Farey diagram.

Definition 3.1. We define the Farey sequence of order n, denoted Fn, as the
sequence of rational numbers of the form a

b
, where a and b are positive integers

such that 1 ≤ a ≤ b ≤ n and gcd(a, b) = 1 (in other words a
b

is in reduced form).
We write the Farey sequence in increasing order, starting from 0

1 and ending
with 1

1 .

We will also define a modified Farey sequence, visualised in Figure 3.1.

Definition 3.2. Let Fn = (a1, a2, . . . , am) be a Farey sequence of order m. A
modified Farey sequence of order n is the following sequence

˜︁Fn :=
(︂
a1, a2, . . . , am−1, am, a−1

m−1, . . . , a−1
2 , a−1

1 ,

−a−1
2 , . . . , −a−1

m−1, −am, −am−1, . . . , −a2
)︂

.

We can now start constructing the Farey diagram. We will be working with
one of its versions used by Hatcher in [3]. He visualises it as a disk with inscribed
arcs, where we start by splitting the disk in half and then iteratively split all the
existing sections in half and connect them using an arc until we get a diagram
resembling 3.1 (let us note that we will always only draw a part of the diagram
as it is infinite). We assign fractions to each node on a given diagram during each
iteration.

At the start, when we split the disk in half, we assign the fractions 1
0 , 0

1 . In
the second iteration we assign fractions 1

1 , −1
1 .

Now, we will explain what happens in the top right quarter of the circle.
We assign fractions from a set Fn for every other iteration, excluding those

previously assigned in Fn−1. We want to assign these fractions in ascending order
to the nodes from 0

1 to 1
0 . To do this, we follow the mediant rule.

Definition 3.3. We define addition under the mediant rule as a
c

⊕ b
d

= a+b
c+d

.
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Lemma 3.4. The mediant rule states that if we have three fractions in the Farey
sequence, which follow one after another, a

c
< e

f
< b

d
, then e

f
= a+b

c+d
.

Proof. For example, the proof of this can be accessed in [8].

Then we mirror the new sequence on the other three arcs between 1
0 , 0

1 , 1
1 , −1

1
with the elements from ˜︁Fn \ ˜︁Fn−1.

The mediant rule translates to the diagram as if we have two adjacent fractions
a
c

and b
d

on the diagram; we can find a new point in between them, and connect
it with arcs. We assign the value a+b

c+d
to this new point. Note that the fraction 1

0
acts as −1

0 when added on the lower side of the diagram.
Ultimately, we can get a part of the Farey diagram; for example, [3] provides

us with beautiful pictures just as Figure 3.1.

Figure 3.1: Farey Diagram by Allen Hatcher from [3], page 20

More observations about this visualisation of the Farey diagram can be found
in Section 3.4.

We will formally define the Farey diagram as follows:

Definition 3.5. We define the Farey diagram as a graph D = (V, E), where
V = Q∗ and E =

{︂{︂
a
c
, b

d

}︂
, ad − bc = ±1

}︂
.

The provided illustration in Figure 3.1 shows how we can draw part of the
graph on a disk (inside a circle). Understand that the circle is not a part of the
graph but that the arcs converge towards the circle.
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3.2 Farey tree
The section about the Farey tree will explain how we can find the Farey tree
when we know what the Farey diagram looks like.

Hatcher draws the so-called dual tree superimposed inside the Farey diagram,
as he visualises in Figure 3.2. Here, every closed part of the diagram contains
precisely one vertex, and every edge crosses exactly one arc.

Figure 3.2: Farey tree by Allen Hatcher from [3], page 88

We will understand this graph as a tree with a root edge that crosses the arc
between (1

0 and 0
1 and with edges with the distance n from this root edge as sets

of elements from the n-th modified Farey sequence.
Before formally defining this tree, we will prove the following theorem, which

will help us establish the relationship between vertices in the Farey tree:

Theorem 3.6 (Cauchy). Let a
c

< b
d

be neighboring elements of the Farey sequence
Fn. Then cb − ad = 1.

Proof. We know that a
c

is in the reduced form, so gcd(a, c) = 1 and also
gcd(−a, c) = 1. Since −a, c are integers, we get them from Bézout’s identity that
there exists x0, y0 ∈ Z such that they solve the equation cx − ay = 1. Also it
holds for all the possible pairs that (x, y) = (x0 + ra, y0 + rc) for r ∈ Z. By the
right choice of r, we can find such a pair for which

0 < n − c ≤ y < n. (3.1)
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Therefore gcd(x, y) = 1. Consider the fraction x
y
. We want to show that it

equals b
d
.

We can see that x
y

> a
c

from the following inequality:

x

y
− a

c
= xc − ay

yc
= 1

yc
> 0.

Now x
y

is in the reduced form and y < n, so it can either be bigger than one or
it could belong to the Farey sequence. We must show that it is not bigger than
b
d
.

Let us prove this by contradiction: Let us have x
y

> b
d
, then xd − yb ≥ 1 and

the same holds for cb − ad ≥ 1 we get the following equation:

x

y
− b

d
+ b

d
− a

c
= xd − by

yd
+ cb − ad

cd
≥ 1

yd
+ 1

cd
= c + y

cyd
.

At the same time
x

y
− b

d
+ b

d
− a

c
= x

y
− a

c
= 1

yc.

So we get that

1
yc

≥ c + y

cyd
= 1

yc

c + y

d

1 ≥ c + y

d

d ≥ c + y
3.1
≥ n,

which contradicts that b
d

∈ Fn so x
y

= b
d
.

Remark. Theorem 3.6 provides properties for only one-quarter of the diagram.
It is evident that on the right side of the diagram, we obtain this equality, while
on the other side, we get cb − ad = −1. However, this issue will not affect us
since we will use this Theorem when we define edges and vertices which we do
for unordered sets.

For the purpose of formulating Definition 3.8 we will prove the following ob-
servation:

Proposition 3.7. Let a
c
, b

d
∈ Fn, n ∈ N, then a+c

b+d
is in the reduced form.

Proof. From Theorem 3.6 we know that cb − ad = 1. We can then write

cb − ad = cb + ab − ab − ad = b(a + c) − a(b + d) = 1.

If there existed k ∈ N \ {±1} such that kx = (a + c) and ky = (b + d) then we
would have bkx − aky = k(bx − ay) = 1 then k would have to be ±1 which is in
contradiction with our choice of k.

Now, we can provide the abstract definition of the Farey tree:
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Definition 3.8. The Farey tree is defined as F = (V, E) where

V =
{︄{︄

a

c
,

b

d
,
a

c
⊕ b

d

}︄ ⃓⃓⃓ (︄a

c
,

b

d
,
a

c
⊕ b

d
∈ Q∗

)︄
∧ (ad − bc = ±1)

}︄
,

E =
{︂
{v1, v2}

⃓⃓⃓
v1, v2 ∈ V, |v1 ∩ v2| = 2

}︂
.

As we can see, we assign every edge to the two fractions connected by the arc.
The edge intersects, and the vertices add to this pair a third fraction, which we
get using the mediant rule.

3.3 Linking the topograph and the Farey tree
In Chapter 4, we aim to demonstrate how continued fractions can be used to
determine paths in the topograph. However, to achieve this goal, we must first
establish where we can find fractions on the topograph. To do so, we want to
establish a connection between the Farey tree and topograph. This section will
explain how we can easily connect lax vectors and fractions from Q∗ and then
extend this connection to both graphs.

Let us recall the Definition 2.24 which states that a topograph is a pair
T = (V, E), where V is a set of all the lax superbases in Z2 and
E = {{v1, v2} | v1, v2 ∈ V, |v1 ∩ v2| = 2}.

Let us also remind the reader that in Definition 2.20, we have set V as being
the set of all the lax vectors in Z2.

Definition 3.9. We will define a function

τ : Q∗ → V
a

b
↦→ ±(a, b).

Lemma 3.10. The function τ is well-defined and is a bijection.

Proof. We know that all the elements a
b

∈ Q∗ have gcd(a, b) = 1. On the other
hand a lax vector is derived from a primitive vector u = (a, b) for which we
know that we cannot find such k ∈ Z \ {±1} and v = (e, f) ∈ Z2 such that
u = kv, but that is equivalent to saying that (a, b) ̸= (ke, kf) which is equivalent
to gcd(a, b) ̸= k therefore gcd(a, b) = 1.

Due to the lax notation, we can only obtain lax vectors in the form of (a, b)
and (−a, b), where b ≥ 0.

We understand that every lax vector has one corresponding fraction from Q∗.
That is because, for a lax vector ±(u, v), we have only one of its elements, such
that v > 0, which we need for u

v
to be in Q∗. Similarly, we obtain exactly one lax

vector for every element of Q∗.

From this lemma, we can also map lax bases and superbases onto sets of
fractions. As an example, we provide how applying τ can look on parts of the
graphs: on the left side, we can see a part of the Farey tree, and on the right
side, we can see the Farey tree where every fraction a

b
is assigned the value τ

(︂
a
b

)︂
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which, as we can see, is equal to a part of the topograph containing the edge
{±(1, 0), ±(0, 1)}:

• • • •

{︂
1
0 , 0

1 , 1
1

}︂
{±(1, 0), ±(0, 1), ±(1, 1)}

{︂
1
0 , 0

1 , −1
1

}︂
{±(1, 0), ±(0, 1), ±(−1, 1)}

• • • •

{ 1
0 , 1

1} { 0
1 , 1

1}

{ 1
0 , 0

1}

{±(1,0),±(1,1)} {±(0,1),±(1,1)}

{±(1,0),±(0,1)}τ

{ 1
0 , −1

1 } { 0
1 , −1

1 } {±(1,0),±(−1,1)} {±(0,1),±(−1,1)}

Figure 3.3: Applying τ on the Farey tree

We can then apply τ to the entire Farey tree and want it to be equal to the
topograph.

Proposition 3.11. Let F = (V, E) be the Farey tree. Then τ(F ) = (τ(V ), τ(E))
is the topograph.

Proof. From Lemma 3.10, we can see that if we apply τ to the set of all vertices
of F , we get all the lax superbases. Therefore τ(V ) = V (T ). We must also
understand that the mediant rule acts on F as the relationships between lax
bases act on T . If we have a vertex

{︂
e1
e2

, f1
f2

, e1+f1
e2+f2

}︂
in F , then if we apply τ we get

a lax base {±(e1, e2), ±(f1, f2), ±(e1 + f1, e2 + f2)}. We can see that the mediant
rule gives the same property as the rule for lax bases, which tells us that for some
choice of signs, we need to be able to sum everything to a zero, which is the same
as summing under the mediant rule. From Lemma 2.22 we know that for lax
vectors ±(e1, e2), ±(f1, f2) we can get another lax base that they are contained
in and that is {±(e1, e2), ±(f1, f2), ±(e1 − f1, e2 − f2)}. Nevertheless, here we can
see that this would be the image of a set

{︂
e1
e2

, f1
f2

, e1−f1
e2−f2

}︂
where f1

f2
⊕ e1−f1

e2−f2
= e1

e2
so

it is a vertex in F .
We need to prove that the sets of edges will still be equal. For that, we will

recall the definitions. We have set:

E(F ) =
{︂
{v1, v2}

⃓⃓⃓
v1, v2 ∈ V (F ), |v1 ∩ v2| = 2

}︂
,

E(T ) = {{v′
1, v′

2} | v′
1, v′

2 ∈ V (T ), |v′
1 ∩ v′

2| = 2}.

From this, we can see that

τ(E) =
{︂
{τ(v1), τ(v2)}

⃓⃓⃓
τ(v1), τ(v2) ∈ τ(V ), |v1 ∩ v2| = 2

}︂
=

= {{v′
1, v′

2} | v′
1, v′

2 ∈ V (T ), |v′
1 ∩ v′

2| = 2} = E(T ).
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Remark. We can also see that if T = (V, E) is the topograph, then τ−1(T ) =
(τ−1(V ), τ−1(E)) is the Farey tree.

3.4 A couple of observations
In this section, we will very informally sketch interesting observations about the
Farey diagram seen in Figure 3.1, which can show us that the topograph is a tree.
It would be an interesting topic for another work.

We get the Farey diagram by splitting a disk in half using arcs and then
iteratively splitting the areas under the existing arcs using two new arcs.

We can define the arcs as follows, which will help us to define triangles in the
diagram:

Definition 3.12. An arc is a set of two fractions such that there exists a modified
Farey sequence in which these fractions are adjacent. We denote it as A =

{︂
p
q
, r

s

}︂
.

This is equal to the fact that pq − rs = ±1.

A Farey triangle is a section in the Farey diagram bound by exactly three
arcs; more formally, we define it as follows.

Definition 3.13. A Farey triangle is a set of three arcs {A, B, C} such that there
exists n for which A ⊆ ˜︁Fn, B, C ⊆ ˜︁Fn+1 and |A ∩ B| = |A ∩ C| = |C ∩ B| = 1
and |A ∩ B ∩ C| = 0.

Observation. Two Farey triangles T1, T2 are adjacent if and only if |T1 ∩ T2| = 1.
Every Farey triangle can be assigned a set of fractions such that every fraction

in this set is at the end of some of the arcs; we can define it as follows.

Definition 3.14. The set of fractions of a Farey triangle is a set A ∪ B ∪ C.

Observation. For every Farey triangle, its set of fractions has three elements.
As mentioned in Section 3.2, we can get the dual-tree of the Farey diagram

as the Farey tree, visible in Figure 3.2. We could prove other observations about
this tree.
Observation. The vertices of the Farey tree correspond to the Farey triangles.
More precisely, they are equal to the sets of fractions of these Farey triangles.
Observation. Two Farey triangles T1, T2 are adjacent if and only if an edge con-
nects the vertices corresponding to them in the Farey tree.
Observation. We can see that the Farey tree is indeed a tree.

As we have explained in Proposition 3.11, we can map the Farey tree to the
topograph, from which we could finally provide the proof of Theorem 2.25.
Observation. The topograph is a tree.
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4. Walks and paths

4.1 Turning left and turning right
As promised, let us discuss how to represent continued fractions in a topograph.
Our primary focus will be the Farey tree F . According to Proposition 3.11, we
can assign values to F and get the topograph. In this chapter, we will talk about
walks in the Farey tree, but we understand that under the power of τ , it also
holds for the topograph.

Before anything, we will assign matrices to the edges of the Farey tree.

Definition 4.1. For an edge e = (v1, v2) in the Farey tree F we assign unimodular
matrix

Ae =
(︄

a b
c d

)︄
,

where a
c
, b

d
are in v1 ∩ v2.

We can represent this in Figure 3.2 as a matrix containing the two fractions
connected by the arc that intersects our edge.

We will also often work with addition over sets using the mediant rule. For
this purpose, we introduce the following definition.

Definition 4.2. We define the mediant sum of a set H = {h1, h2, . . . , hk},
hi ∈ Q∗ as

⊕∑︂
H = h1 ⊕ h2 ⊕ · · · ⊕ hk,

where we understand ⊕ to be addition under the mediant rule.

Remark. The mediant sum is associative. We can see that for a set of cardinality
3: (︃

a

b
⊕ c

d

)︃
⊕ e

f
= a + c

b + d
⊕ e

f
= a + c + e

b + d + f
= a

b
⊕
(︄

c

d
⊕ e

f

)︄
(4.1)

In the following section, we will work with the orientation of the graph.

Definition 4.3. Let F = (V, E) be the Farey tree. Then we say that it is oriented
if every edge is an ordered pair (v1, v2) such that

⃓⃓⃓∑︁⊕ v1

⃓⃓⃓
≥
⃓⃓⃓∑︁⊕ v2

⃓⃓⃓
.

We can add a helpful remark to avoid confusion with left and right orientation,
which can be problematic for the reader (or the author).
Remark. This is left, and this is right.

The graph can be drawn in different ways. To better understand our work,
we will consider the graph drawn as shown in Figure 3.2, paying special attention
to the left and right orientation. Formally we will define turning left and right as
follows.

Definition 4.4. We understand that path {g1, g2} = {(u, v), (v, w)} turns left on
the vertex v =

{︂
a
c
, b

d
, a+b

c+d

}︂
and the path {g1, g3} = {(u, v), (v, y)} turns right if∑︁⊕ |v ∩ w| >

∑︁⊕ |v ∩ y|.
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We can then also express left and right turns as matrix multiplications.
Definition 4.5. Let e be an edge in the Farey tree with the assigned matrix

Ae =
(︄

a b
c d

)︄
then the edge f on its right side has the assigned matrix

Af = AeR =
(︄

a + b b
c + d d

)︄
and the edge g on its left side has the matrix

Ag = AeL =
(︄

a a + b
c c + d

)︄
where

R =
(︄

1 0
1 1

)︄
, L =

(︄
1 1
0 1

)︄
.

From Definition 4.4, we can see that a walk in our topograph can be described
as matrix multiplication.

For an oriented edge, which will be our root (v0, v1), we can then assign a
matrix A(v0,v1), and the walk then can be described as a mix of right and left
turns in the graph. Let us demonstrate in an example:
Example. In Figure 4.1, we have a part of the Farey tree with matrices assigned to
its edges, and we have coloured and changed the structure of the edges contained
on a walk γ.

We can see that the root of this walk is
(︂

1
0 , 1

1

)︂
and the corresponding matrix

is Ag0 =
(︄

1 1
0 1

)︄
.

We also see that the walk meanders in the following manner - right, left, left,

left, and it ends on the edge
(︂

2
1 , 7

4

)︂
with corresponding matrix Ag4 =

(︄
2 7
1 4

)︄
. As

explained in the Definition 4.5 we can write that Ag4 = Ag0RL3 = LRL3, since
Ag0 = L. Now, if we look at the continued fraction of 7

4 , we see that it is [1, 1, 3].
Is it a coincidence?

4.2 The paths and walks on continued fractions
In this section, we will finally prove that the continued fraction shows the path for
the corresponding number. We will recall the definition of continued polynomials
and two well-known propositions from the course of Number Theory. Their proofs
and further observations can be found in [6].

We will then prove Proposition 4.9, which gives us the algorithm described in
Example 4.1 for rational numbers, and then we will generalise it for real numbers.

In this section, when we work with continued fractions we take as the root
of the walk the root

(︂{︂
1
0 , 0

1 , 1
1

}︂
,
{︂

1
0 , 0

1 , −1
1

}︂)︂
which has the corresponding matrix(︄

1 0
0 1

)︄
. We will leave it out as it does not change the result of matrix multipli-

cations.
We will recall a definition and two propositions, which can be found in [6], on

pages 15 and 16, alongside their proofs.
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•
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• •

•

• • • •

•

•

•

•

(︄
3 4

2 3

)︄
(︄

4 1

3 1

)︄

(︄
7 5

4 3

)︄

(︄
2 7

1 4

)︄

(︄
5 3

3 2

)︄

(︄
2 5

1 3

)︄

(︄
9 7

5 4

)︄ (︄
2 9

1 5

)︄

(︄
3 1

2 1

)︄
(︄

2 3

1 2

)︄

(︄
3 2

1 1

)︄ (︄
1 3

0 1

)︄

(︄
2 1

1 1

)︄

(︄
1 2

0 1

)︄
(︄

1 1

0 1

)︄
(︄

1 0

1 1

)︄

(︄
1 0

0 1

)︄

Figure 4.1: Path of 7
4
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Definition 4.6. The n-th continued polynomial in variables x1, . . . , xn is defined
recurrently: K−1 := 0, K0 := 1,

Kn(x1, . . . , xn) := xn · Kn−1(x1 . . . , xn−1) + Kn−2(x1, . . . , xn−2)

for n ≥ 1.

Proposition 4.7. For a0 ∈ R, ai ∈ R+ it holds

[a0, a1, . . . , an] = a0 + 1
a1 + 1

...+ 1
an

= Kn+1(a0, . . . , an)
Kn(a1, . . . , an) .

Proposition 4.8. For n ≥ 1(︄
Kn+1(a0, . . . , an) Kn(a0, . . . , an−1)
Kn(a1, . . . , an) Kn−1(a1, . . . , an−1)

)︄
=
(︄

a0 1
1 0

)︄(︄
a1 1
1 0

)︄
. . .

(︄
an 1
1 0

)︄
.

Now, let us prove the following proposition describing what we saw in the
example above. It can be counter intuitive to see that for n even we get a matrix
with switched columns, but it can be nicely seen in the example. On every vertex,
if we turn left, we can see that the new fraction, not yet seen on the last edge,
appears on the right side of the matrix, and when we turn right, it appears on
the left side. It can also be visible from the matrix multiplications.

Proposition 4.9. Let ξ = [c0, c1, . . . , cn] = a
c

for ci ∈ Z, then we have a fraction
b
d

= [c0, . . . , cn−1] such that
(︄

a b
c d

)︄
= Lc0Rc1Lc2 . . . Rcn for n odd and

(︄
b a
d c

)︄
=

Lc0Rc1Lc2 . . . Lcn for n even.

Proof. From Proposition 4.7 we see that(︄
a b
c d

)︄
=
(︄

Kn+1(c0, . . . , cn) Kn(c0, . . . , cn−1)
Kn(c1, . . . , cn) Kn−1(c1, . . . , cn−1)

)︄
,

which we know from Proposition 4.8 to be equal to(︄
c0 1
1 0

)︄(︄
c1 1
1 0

)︄
. . .

(︄
cn 1
1 0

)︄
. (4.2)

But we want it to be equal to(︄
1 c0
0 1

)︄(︄
1 0
c1 1

)︄
. . .

(︄
1 0
cn 1

)︄
(4.3)

if n is even and (︄
1 c0
0 1

)︄(︄
1 0
c1 1

)︄
. . .

(︄
1 cn

0 1

)︄
(4.4)

if n is odd.
But that comes from the equality(︄

ci 1
1 0

)︄(︄
cj 1
1 0

)︄
=
(︄

1 ci

0 1

)︄(︄
1 0
cj 1

)︄
=
(︄

cicj + 1 ci

cj 1

)︄
.
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We can see that we can group (4.2) into pairs and (4.3) as well, and they will be

equal. For (4.4) we have to multiply both sides of the equation by
(︄

1 cn

0 1

)︄
. We

get (︄(︄
c0 1
1 0

)︄(︄
c1 1
1 0

)︄
. . .

(︄
cn−1 1

1 0

)︄)︄(︄
1 cn

0 1

)︄
=

=
(︄

Kn(c0, . . . , cn−1) Kn−1(c0, . . . , cn−2)
Kn−1(c1, . . . , cn−1) Kn−2(c1, . . . , cn−2)

)︄(︄
1 cn

0 1

)︄
=

=
(︄

Kn(c0, . . . , cn−1) cn (Kn(c0, . . . , cn−1)) + Kn−1(c0, . . . , cn−2)
Kn−1(c1, . . . , cn−1) cn (Kn−1(c1, . . . , cn−1)) + Kn−2(c1, . . . , cn−2)

)︄
=

=
(︄

Kn(c0, . . . , cn−1) Kn+1(c0, . . . , cn)
Kn−1(c1, . . . , cn−1) Kn(c1, . . . , cn)

)︄
=

=
(︄

b a
d c

)︄
.

The following proposition explains that for any ξ ∈ R, the path given by its
continued fraction converges to ξ. We use the fact that if we get the matrix(︄

a b
c d

)︄
then we understand the fraction a

c
as

(︂
1 0

)︂(︄a b
c d

)︄(︄
1
0

)︄
(︂

0 1
)︂(︄a b

c d

)︄(︄
1
0

)︄ , (4.5)

where we understand that if we have the fraction with matrices (a)
(c) , then it is

equal to a
c
.

Proposition 4.10. Let ξ ∈ R have the continued fraction [c0, c1 . . . ], ci ∈ N.
Then

lim
k→∞

(︂
1 0

)︂
(Lc0Rc1 . . . Rc2k)

(︄
1
0

)︄
(︂

0 1
)︂

(Lc0Rc1 . . . Rc2k)
(︄

1
0

)︄ =

= lim
k→∞

(︂
1 0

)︂
(Lc0Rc1 . . . Lc2k+1)

(︄
0
1

)︄
(︂

0 1
)︂

(Lc0Rc1 . . . Lc2k+1)
(︄

0
1

)︄ = ξ.

Proof. From the basics of limits of sequences, we know that if {an} → A, then
for a subsequence, we get {ank

} → A. So that means that limk→∞[c0, . . . , c2k] =
limk→∞[c0, . . . , c2k+1] = limk→∞[c0, . . . , ck] = ξ.
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We can see that for every n we get

pn

qn

= [c0, . . . , cn] =

(︂
1 0

)︂
(Lc0Rc1 . . . Rc2n)

(︄
1
0

)︄
(︂

0 1
)︂

(Lc0Rc1 . . . Rc2n)
(︄

1
0

)︄ ,

and f

pn

qn

= [c0, . . . , cn] =

(︂
1 0

)︂
(Lc0Rc1 . . . Lc2n+1)

(︄
0
1

)︄
(︂

0 1
)︂

(Lc0Rc1 . . . Lc2n+1)
(︄

0
1

)︄ .

This means that we can write the limits in the proposition as

lim
k→∞

[c0, . . . , c2k] = lim
k→∞

[c0, . . . , c2k+1]

but that is from the properties of subsequences equal to limk→∞[c0, . . . , ck] = ξ.
That concludes our proof.

4.3 Special cases of walks and paths for contin-
ued fractions

In Chapter 1, we discussed continued fractions and made some observations about
them. Proposition 1.16 and Proposition 1.17 were particularly noteworthy. In
the following section, we will provide visual representations of the paths that are
represented by continued fractions using the topograph and the Farey tree.

4.3.1 Negative continued fractions
First, we will explore the implications of negative integers in a continued fraction.
We will consider the negative continued fraction 0 > η = −ξ = −[c0, c1, . . . ] =
[−c0, −c1, . . . ]. Then, we will demonstrate the resulting walk as described in
Proposition 4.9 as (L−1)c0(R−1)c1 . . . , where

L−1 =
(︄

1 −1
0 1

)︄
, R−1 =

(︄
1 0

−1 1

)︄
.

L R

L−1 R−1

Figure 4.2: Turns from the root
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In Figure 4.2, we can see the outcomes when starting with different matrices
L, R, L−1, and R−1 from the root, which is represented by the identity matrix.
According to Definition 4.5, matrices L and L−1 turn left, while matrices R and
R−1 turn right on their respective parts of the Farey tree.

In Lemma 1.14 we proved that −[c0, c1, . . . ] = [−c0 − 1, 1, c1 − 1, c2, c3, . . . ].
What it says in the language of walks in the topograph is that we can go in the
wrong direction and then come back, as illustrated by the equation
(L−1)c0(R−1)c1(L−1)c2 · · · = (L−1)c0+1RLc1−1Rc2 . . . which can be visible in the
Figures 4.3 and 4.4 on the example of −13

5 = −[2, 1, 1, 2] = [−3, 1, 0, 1, 2].

L−2

R−1

L−2

R−2 R−2 L−1

Figure 4.3: The walk of −[2, 1, 1, 2]

L−3L−3

R

L−3

L2 L2 R

Figure 4.4: The walk of [−3, 1, 0, 1, 2]

4.3.2 Continued fractions of quadratic irrationals
We can use three findings from Chapter 1 to study periodic continued fractions
for quadratic irrationals: Theorem 1.7, Proposition 1.16, and Proposition 1.17.

Theorem 1.7 states that for a quadratic irrational α with continued fraction
[b1, . . . , bl], we have α′ = −[0, bl, . . . , b1]. This means that the paths determined
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by such continued fractions are Lb1Rb2 . . . and R−b1L−b2 . . . .
For example, for 2+

√
10

3 the continued fraction is [1, 1, 2], for 2−
√

10
3 it is from

Theorem 1.7 [0, −2, −1, −1].
Figure 4.5 visualises this and shows two semi-infinite paths connected by the

edge corresponding to the identity matrix.

L2

L2

R1

L1

R−2

R−2

L−1

R−1

Figure 4.5: Path for 2+
√

10
3 and 2−

√
10

3

Proposition 1.17 tells us that if we have a continued fraction α = [a0, b1, . . . , bl],
then the continued fraction of its conjugate α′ is
[a0 − bl − 1, 1, bl − 1, bl−1, bl−2, . . . , b1, bl]. To give an example, we can consider the
continued fraction of

√
3, which is [1, 1, 2], and for −

√
3, it is −[1, 2, 1]. Figure 4.6

illustrates this as two semi-infinite paths connected by the edge corresponding to
the identity matrix.

The last case is the one mentioned in Proposition 1.16 which states that for
α = [a0, a1, . . . , ak, b1, . . . , bl], k ≥ 1 we get for ak < bl

α′ = [a0, a1, . . . , ak−1 − 1, 1, bl − ak − 1, bl−1, bl−2, . . . , b1, bl]

and for ak > bl we get

α′ = [a0, a1, . . . , ak−1, ak − bl − 1, 1, bl−1 − 1, bl−2, bl−3, . . . , b1, bl, bl−1].

We can show examples if we take the numbers 4387+
√

37
2764 and 4387−

√
37

2764 with the
continued fractions [1, 1, 1, 2, 3, 2, 1, 2, 3] and [1, 1, 1, 2, 2, 3, 1, 3, 2] respectively. In
Figure 4.7, we can see that both paths given by these continued fractions begin
on the same path given by the red arrow
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L2

L2

R1

L1

L−1

R−2

R−2

L−1

Figure 4.6: Paths for
√

3 and −
√

3

Moreover, their paths diverge at the vertex denoted by a bullet •. For 4387+
√

37
2764

we can continue to follow the path continuing on the left denoted by

❘

which leads to the periodic part denoted by the arrow

Similarly, we can watch the path for 4387−
√

37
2764 diverge in the other direction -

going right from the bullet.

We can use this knowledge to study Conway Rivers, which has been the initial
desire behind this thesis. We can use the observations made in this chapter to
assign different quadratic forms to the topograph, which is explained very well in
The Sensual (quadratic) form [2] from page 8. In this topograph with reassigned
values, called topograph of Q, we can find paths called Conway rivers that always
balance on the edges containing one positive and one negative value. For every
quadratic form, we can find a quadratic irrational such that (α, 1) and (α′, 1)
are the roots of this quadratic form, and then the paths for α, α′ diverge at the
Conway river of the given quadratic form.

Working with our example illustrated in Figure 4.7 if we assigned the quadratic
form

Q(x, y) = x2 −
(︃4387

1382

)︃
xy +

(︃6963
2764

)︃
y2

to the topograph, Figure 4.7 would show the Conway river of this quadratic form
as the path that intersects the bullet and moves away from it. That is because(︂

4387±
√

37
2764 , 1

)︂
are the roots of this quadratic form.
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•

L3 L2

R2L3
R1

R2

L3 ❘

L1
L3

❘

R2
❘

R2
❘

L3
❘

R2 ❘

R2
❘

L3❘ L3

L3

R2

R2

L1

R1

L1

Figure 4.7: The continued fractions of 4387±
√

37
2764
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Conclusion
In this thesis, we have explained how continued fractions can be used to draw
paths in the topograph. To define our illustrations accurately, we proved several
properties of continued fractions and formally defined the topograph. Addition-
ally, we defined the structure of the Farey tree, which introduces fractions into
the topograph. We also proved how continued fractions determine paths in both
graphs.

Despite completing this thesis, there are still many properties we would be
interested in studying. We would focus on Theorem 2.25, which states that the
topograph is a tree, using our Definition 2.24 and expand the observations in
Section 3.4. We would also work on properly defining how quadratic forms can
be illustrated in the topograph and study the properties of Conway rivers, which
are mentioned in the last section of our work.
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