
DOCTORAL THESIS

Eda Oktay

Mixed-Precision Computations in
Numerical Linear Algebra

Department of Numerical Mathematics

Supervisor of the doctoral thesis: Assist. Prof. Erin Claire Carson,
Ph.D.

Study programme: Mathematics
Study branch: Scientific and Technical

Calculations

Prague 2024

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague March 8, 2024 signature of the author

i

With this thesis, I come to the end of my studies at Charles University, and I
would like to thank those who helped me to finish this chapter of my life.

First, I would like to express my gratitude to my supervisor, Assist. Prof.
Erin Carson, for her patience, motivation, and kindness during these four years.
I am grateful that I was able to work with such an inspiration, and I will always
appreciate her guidance throughout my studies. Not only did I learn so much
from her about this field, but I was also motivated to become a researcher like
her.

Secondly, I am thankful to work with Prof. Martin Stoll. Exploring a new
field and research group at TU Chemnitz was a great pleasure. I will never forget
how he encouraged and motivated me, even when I was incredibly anxious.

Last but not least, I would like to thank Dr. Kathryn Lund for her contri-
butions to my thesis and for being there for me as a friend who supports and
motivates me. It is special to have someone who knows what you are going
through and helps you in the best way they can.

I would also like to thank Prof. Laura Grigori, Dr. Oleg Balabanov, and
Prof. Stefan Güttel for contributing to my studies. Collaborating with them and
learning so much about their fields was a great pleasure.

Finally, I am so happy to meet and spend time with the great people in the
Department of Numerical Mathematics at Charles University and the Department
of Mathematics at TU Chemnitz. I feel lucky to be in such a friendly environment.
For that, I thank my fellow doctoral students and the professors who created this
space. They made it much easier to work and motivate.

Everything aside, I dedicate this thesis to my loving parents, who never
stopped supporting and encouraging me during my studies and this chapter of
my life in the Czech Republic (and Germany). I will always be grateful for their
faith in me.

Thank you for everything.

The work presented in the thesis was supported by the Charles University Re-
search Program UNCE/SCI/023, PRIMUS project PRIMUS/19/SCI/11, ERC
Starting Grant 101075632, by the Charles University Grant Agency project -
202722, and the Exascale Computing Project (17-SC-20-SC), a collaborative ef-
fort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration.

ii

Title: Mixed-Precision Computations in Numerical Linear Algebra

Author: Eda Oktay

Department: Department of Numerical Mathematics

Supervisor: Assist. Prof. Erin Claire Carson, Ph.D., Department of Numerical
Mathematics

Abstract: Modern commercial hardware natively supports arithmetic in multi-
ple different precisions, including half (16-bit) precision in addition to the usual
single (32-bit) and double (64-bit). Using lower precision has clear performance
advantages; since we are moving, storing, and computing with fewer bits, we
can save on both time and energy. However, low precision is also subject to
greater roundoff errors and a smaller range of representable numbers, which can
cause algorithms to become unstable. This has motivated research into mixed-
precision algorithms for numerical linear algebra problems, where low and high
precisions are used selectively within an algorithm to improve performance while
maintaining the desired accuracy. The design of new mixed-precision algorithms
and techniques for numerical linear algebra is the topic of my thesis research.

Keywords: mixed-precision, Krylov subspace methods, iterative methods, least-
squares problems, block orthogonalization processes

iii

Contents

List of Abbreviations and Notation 3

List of publications 4

Introduction 5

1 Mixed-precision in numerical linear algebra 8
1.1 Numerical stability and floating point arithmetic 8
1.2 Modeling the cost of algorithms 9
1.3 Construction of a mixed-precision algorithm 9
1.4 Mixed-precision algorithms in numerical

linear algebra . 10

2 Iterative methods 14
2.1 Stationary methods . 14
2.2 Krylov subspace methods . 15
2.3 Hybrid iterative methods . 17

3 Orthogonalization processes 20

4 Using mixed-precision in low-synchronization reorthogonalized
block classical Gram-Schmidt 23
4.1 Mixed-precision BCGSI+LS (BCGSI+LS-MP) 25
4.2 Numerical experiments . 27
4.3 Conclusion and discussion . 30

5 BCGSI+P variants 32
5.1 Reorthogonalized Pythagorean variants of BCGS 32
5.2 Mixed-precision reorthogonalized Pythagorean variants 45
5.3 Numerical experiments . 46

6 Mixed-precision Rayleigh quotient iteration for total least
squares problems 50
6.1 Rayleigh quotient iteration with preconditioned conjugate gradient

method for TLS problems (RQI-PCGTLS) 52
6.2 Mixed precision RQI-PCGTLS (RQI-PCGTLS-MP) 54

6.2.1 Constraints on factorization precision 55
6.2.2 Performance modeling . 60

6.3 Numerical experiments . 61
6.3.1 Example 1: Random matrix 63
6.3.2 Example 2: The δ matrix 64
6.3.3 Example 3: The Björck matrix 65
6.3.4 Example 4: The Toeplitz matrix 66
6.3.5 Example 5: The Van Huffel matrix 66

6.4 Conclusion . 67

1

7 Mixed-precision GMRES-based iterative refinement with recy-
cling 71
7.1 Krylov subspace recycling . 74
7.2 Implementation and experimental setup 76
7.3 Numerical experiments . 78

7.3.1 Prolate matrices . 80
7.3.2 SuiteSparse matrices . 80
7.3.3 Random dense matrices 81

7.4 Conclusion and future work . 85

8 (F)GMRES-IR for (W)LSP 88
8.1 FGMRES-WLSIR . 89

9 Multistage mixed-precision iterative refinement 96
9.1 The MSIR algorithm . 100

9.1.1 Algorithm details . 106
9.1.2 Error bounds for different variants 108

9.2 Numerical experiments . 109
9.2.1 Random dense matrices 110
9.2.2 SuiteSparse Matrices . 117

9.3 Conclusions and future work . 120

Conclusion 124

2

List of Abbreviations and
Notation

∀y for all vectors y
R set of real numbers
Rn set of real vectors of length n
Rm×n set of real matrices of size m× n
(·, ·) Euclidean inner product
∥ · ∥ Euclidean norm
∥ · ∥∞ Infinity norm
∥ · ∥F Frobenius norm
span{· · · } subspace spanned by vectors
AT transpose of the matrix A
A−1 inverse of the matrix A
A† Moore-Penrose pseudoinverse of the matrix A
Ā computed matrix A in finite precision arithmetic
Â approximately computed matrix A
In identity matrix of size n× n
σ(A) singular values of A
σmin(A) minimum singular value of A
λ(A) eigenvalues of A
λmin(A) minimum eigenvalue of A
κ(·) condition number
κ2(·) condition number in Euclidean norm
κ∞(·) condition number in infinity norm
κF (·) condition number in Frobenius norm
rank(·) matrix rank
u machine epsilon
O computation complexity of an algorithm (bigO)
O(u) elements of order u
(F)GMRES (Flexible) Generalized Minimum Residual
GMRES-DR GMRES with deflated restarting
GMRES(m) Restarted GMRES with m restarts
GMRES-IR GMRES-based iterative refinement
GMRES-LSIR GMRES-IR for least squares problems
GCR Generalized conjugate residual algorithm
GCRO GCR with implicit inner orthogonalization
GCRO-DR GCRO with deflated restarting
GCROT Truncated GCRO
CG Conjugate Gradient
GEPP Gaussian Elimination with Partial Pivoting
SVD Singular Value Decomposition
(M)GS (Modified) Gram-Schmidt
(B)CGS (Block) Classical Gram-Schmidt
(B)CGS(I+) (B)CGS with reorthogonalization

3

List of publications
Journals

J2 Oktay, E., Carson, E. (2023). Mixed precision Rayleigh quotient iteration
for total least squares problems. Numerical Algorithms. https://doi.org/10.
1007/s11075-023-01665-z

J1 Oktay, E., Carson, E. (2022). Multistage mixed precision iterative refine-
ment. Numerical Linear Algebra With Applications, 29(4), e2434. https://
doi.org/10.1002/nla.2434

Peer-reviewed conference proceedings

P2 Oktay, E., Carson, E. (2023). Using Mixed Precision in Low-Synchroniza-
tion Reorthogonalized Block Classical Gram-Schmidt. PAMM, 23(1),
e202200060. https://doi.org/10.1002/pamm.202200060

P1 Oktay, E., Carson, E. (2022). Mixed precision GMRES-based iterative
refinement with recycling. In: Chleboun, J., Kůs, P., Papež, J., Rozložńık,
M., Segeth, K. and Š́ıstek, J. (eds.): Programs and Algorithms of Numerical
Mathematics. Proceedings of Seminar. Jablonec nad Nisou, June 19-24,
2022. Institute of Mathematics CAS, Prague, 2023. pp. 149-162

4

Introduction
Numerical linear algebra is the core of scientific computing. To solve real-life
problems, one needs to use matrix computations. However, with increasingly
complex and large problems, current hardware and algorithms have become in-
sufficient and the need for high-performance computing has risen. Advances in
modern computer architectures, such as GPU Tensor Cores, have offered sig-
nificant potential performance improvements. However, to take advantage of
such improvements, we must design algorithms and software that target these
high-performance architectures. This thesis aims to focus only on increasing the
software performance.

An efficient algorithm should find accurate solutions as fast as possible. To
enhance the efficiency of an algorithm one can use several modern techniques,
such as mixed-precision arithmetic. For many years, people have already been
using mixed-precision arithmetic to obtain speedups in numerical linear algebra
and beyond.

Mixed-precision hardware has recently become commercially available, and
more than 25% of the supercomputers in the TOP500 list (TOP500) now have
mixed-precision capabilities. Using lower precision in algorithms can be beneficial
in terms of reducing both computation and communication costs. According to
the recently developed mixed-precision benchmark, (HPL-MxP), multiple super-
computers today can already exceed exascale (1018 floating-point operations per
second) performance through the use of mixed-precision computations; see Kudo
et al. [2020]. There are many current efforts towards developing mixed-precision
numerical linear algebra algorithms, which can lead to speedups in real applica-
tions; see, e.g., Haidar et al. [2018]. These new algorithms are increasingly being
implemented in libraries, such as the Matrix Algebra on GPU and Multicore
Architectures (MAGMA) library (Tomov et al. [2010]).

Motivated by this, the aim of this thesis is to further the state of the art in
developing and analyzing mixed-precision variants of iterative methods. Itera-
tive methods for solving linear systems and least squares problems are useful in
practice when the coefficient matrix is large and sparse, or not explicitly stored
and/or when accuracy less than machine precision is sufficient. An iterative
method starts with an initial guess x0, then iteratively improves the solution to
the desired accuracy. One can use stationary methods (e.g., iterative refinement),
Krylov subspace methods, or some hybrid approach depending on the problem.
For detailed information about iterative methods, see Chapter 6 in Saad [2003].

Mixed-precision computation is useful beyond merely decreasing the total cost
of an algorithm via the use of lower precision. For example, in communication-
avoiding approaches, we can use higher precision in select parts of the algorithm
to regain stability. In this case, there is a trade-off between the computation cost
and stability of the algorithm. For detailed information and examples of this, see
Chapters 4 and 5.

A floating-point number is of the form,

y = ±m× βe−t

where β is the base, t is the precision, and e ∈ [emin, emax] is the exponent. The

5

Table 1: Various IEEE precisions and their units roundoff.
Precision Unit Roundoff

fp16 (half) 4.88 · 10−4

fp32 (single) 5.96 · 10−8

fp64 (double) 1.11 · 10−16

fp128 (quad) 9.63 · 10−35

number of bits in each part of a floating-point number depends on the desired
binary format. Table 1 shows the number of bits in a number in several precisions.

Using finite precision arithmetic restricts the representation of values in terms
of magnitude and precision. Thus when one converts a number to a different pre-
cision, it introduces round-off errors. The rounding errors may propagate in each
step of an algorithm or it can amplify at some point. This risk increases espe-
cially when we use a lower precision such as fp16 since they can cause underflow
or overflow. To reduce this risk, one should analyze rounding errors a prior. To
understand the perturbation behavior of an algorithm, one can analyze its nu-
merical stability. In numerical linear algebra, numerical stability can be defined
using forward and backward errors.

The organization of the thesis is as follows. Chapters 1-3 give the introductory
material while the core of the thesis consists of Chapters 4-9 which contain novel
results. Chapter 1 explains the motivation for using mixed-precision in numerical
linear algebra computations and how to use different precisions in an algorithm.
Chapter 2 gives background information on iterative methods and their classes
such as stationary iterative, Krylov subspace, and iterative refinement methods.
Chapter 3 explains the use of orthogonalization processes in iterative methods.
Chapter 4 includes the publication Oktay and Carson [2023b] which introduces
new low-synchronized and mixed-precision variants of the block Classical Gram-
Schmidt algorithm. Chapter 5 introduces reorthogonalized variants of the block
Classical Gram-Schmidt algorithm with the Pythagorean theorem. Chapter 6
includes the journal publication Oktay and Carson [2023a] which introduces an
iterative method combining stationary and Krylov subspace approaches (hybrid)
for solving total least squares problems in mixed-precision. Chapters 7-9 discuss
recently developed variants of GMRES-based iterative refinement algorithm for
various problems. Chapter 7 includes the publication Oktay and Carson [2022b]
introducing a variant with recycling while Chapter 8 introduces a variant for solv-
ing weighted least squares problems using FGMRES. Finally, Chapter 9 includes
the journal publication Oktay and Carson [2022a] introducing a multistage iter-
ative refinement algorithm using GMRES-based approach. Chapters including
publications are pre-copyedited, author-produced versions of the published arti-
cles following peer review due to format incompatibility of the published PDFs
and copyright reasons. The versions of record can be found in the footnotes under
each chapter title.

Bibliography
A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. Harnessing GPU tensor

cores for fast fp16 arithmetic to speed up mixed-precision iterative refinement

6

solvers. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 603–613, 2018. doi: 10.1109/SC.2018.
00050.

HPL-MxP. HPL-MxP mixed-precision benchmark. https://icl.bitbucket.
io/hpl-ai/, November 2019.

Shuhei Kudo, Keigo Nitadori, Takuya Ina, and Toshiyuki Imamura. Prompt
report on exa-scale HPL-AI benchmark. In 2020 IEEE Int. Conf. Cluster
Comput. (CLUSTER), pages 418–419. IEEE, 2020.

Eda Oktay and Erin Carson. Multistage mixed precision iterative refinement.
Numerical Linear Algebra with Applications, 29(4):e2434, 2022a.

Eda Oktay and Erin Carson. Mixed precision GMRES-based iterative refinement
with recycling. In Jan Chleboun, Pavel Kůs, Jan Papež, Miroslav Rozložńık,
Karel Segeth, and Jakub Š́ıstek, editors, Programs and Algorithms of Numerical
Mathematics, Proceedings of Seminar, pages 149–162. Institute of Mathematics
CAS, 2022b.

Eda Oktay and Erin Carson. Mixed precision Rayleigh quotient iteration for
total least squares problems. Numerical Algorithms, pages 1–22, 2023a. ISSN
1017-1398. doi: 10.1007/s11075-023-01665-z.

Eda Oktay and Erin Carson. Using mixed precision in low-synchronization
reorthogonalized block classical Gram-Schmidt. PAMM, 23(1):e202200060,
2023b.

Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear
algebra for hybrid GPU accelerated manycore systems. Parallel Computing, 36
(5-6):232–240, June 2010. ISSN 0167-8191. doi: 10.1016/j.parco.2009.12.005.

TOP500. TOP500. Online, June 2021. URL https://www.top500.org/.

7

https://icl.bitbucket.io/hpl-ai/
https://icl.bitbucket.io/hpl-ai/
https://www.top500.org/

1. Mixed-precision in numerical
linear algebra
To solve large and complex problems in computational science, supercomputers
and high-performance platforms are necessary. This need has become one of the
motivations for the emergence of exascale computers, performing 1018 floating
point operations per second (Bergman et al. [2008]). However, the current state-
of-the-art algorithms are unsuitable for such hardware systems to solve problems
efficiently since they were not designed for modern computer architecture. Thus,
adaptation and development of new high-performance algorithms has become the
key goal.

The increasing availability of half-precision, and even quarter-precision, in
hardware has brought attention to the aim of using them to reduce computa-
tion and communication costs in numerical linear algebra. However, using lower
precision may cause a loss of information and accuracy. The idea behind mixed-
precision algorithms is that different precisions can be used in different parts of
the algorithm to have both cheap and accurate algorithms. Section 1.3 outlines
how to construct an algorithm in mixed-precision.

It was shown in Haidar et al. [2018] that using NVIDIA GPU Tensor Cores can
provide up to 4× speed-up when mixed-precision iterative refinement algorithm
is used with fp16. Furthermore, mixed-precision iterative refinement algorithms
form the basis for the recently developed high-performance LINPACK – artificial
intelligence benchmark (HPL-MxP), on which today’s top supercomputers in the
TOP500 list in TOP500 exceed exascale performance. With this motivation,
there has been a growing interest in developing mixed-precision libraries, e.g.,
Abdelfattah et al. [2019a] and algorithms such as Higham and Pranesh [2021].

This chapter discusses how to devise a mixed-precision algorithm and the
crucial points for stability. To study the stability of an algorithm in finite precision
arithmetic, one needs to be familiar with floating point arithmetic. Section 1.1
describes the key ingredients of floating point arithmetic. Then, after discussing
how to model the cost of algorithms in Section 1.2, we explain how to construct
a mixed-precision algorithm in Section 1.3. Finally, Section 1.4 gives an overview
of the mixed-precision numerical algorithms in linear algebra.

1.1 Numerical stability and floating point arith-
metic

In an algorithm, due to round-off errors, the computed result can be seen as
the exact solution to a nearby problem containing slightly perturbed input data.
This perturbation is called the backward error. For a function f : Rn → Rn,
the backward error in the approximation y to f(x) is the smallest ∆x such that
y = f(x+ ∆x), i.e., (Higham [2002])

η(y) = min{ϵ : y = f(x+ ∆x), ∥∆x∥ ≤ ϵ∥x∥}.
Backward error analysis (Wilkinson [1963]) aims to derive a bound on the back-
ward error. If the backward error is small, then we say the algorithm is backward

8

stable. The forward error measures the difference between the computed and
the exact solution. As defined in Higham [2002], the relative forward error of
y ≈ f(x) can bounded in terms of the relative backward error η(y) by

∥y − f(x)∥
∥f∥

≤ cond(f, x)η(y) +O(η(y))2,

where
cond(f, x) = limϵ→0 sup

∥∆x∥≤ϵ∥x∥

∥f(x+ ∆x) − f(x)∥
ϵ∥f(x)∥

is the condition number, which measures the sensitivity of the solution to small
perturbations in the input data. In other words, as a rule of thumb,

forward error ≲ condition number × backward error.

Error analysis is important for determining how rounding errors propagate
in computations and identifying potential sources of amplification. Round-off
errors are inevitable consequences of using finite precision arithmetic. A floating-
point operation op between two real numbers a, b satisfies fl(a op b) = (a op
b)(1 + δ), |δ| ≤ u, where fl(.) is the computed value of an expression, u is the
working precision, and δ is the round-off error (Higham [2002]). Carrying through
a complete rounding error analysis of matrix computations according to this ba-
sic model in a way that allows insight into the numerical behavior is often a
complicated and highly technical task.

1.2 Modeling the cost of algorithms
The α − β − γ model in Chan et al. [2007] is used for estimating the cost of
algorithms. In this performance model, γ (seconds per flop) corresponds to the
cost of a floating-point operation (flop), α (seconds) is the latency cost of a mes-
sage, and β (seconds/word) is the inverse bandwidth cost. Using these elements,
the cost (seconds) of a computation that performs F flops and sends S messages
consisting of W words is γF +αS+βW . If computation can be overlapped with
communication, then the cost is max(γF, αS + βW) (Thakur et al. [2005]). For
the performance analysis given in Chapter 6 we use this performance model.

1.3 Construction of a mixed-precision
algorithm

There are various crucial points to be aware of when constructing a mixed-
precision algorithm. Each part of the algorithm should be analyzed in terms
of cost and required accuracy. Lower precisions can be used in the most costly
parts of an algorithm to reduce cost. However, the desired accuracy restricts
the precision choice. To find a suitable precision setting, one must analyze the
numerical stability of the algorithm.

For instance, the general iterative refinement (IR) approach is given in Al-
gorithm 1. In the standard approach, line 1 is usually solved using LU factors
of A ∈ Rn×n computed in precision uf , i.e., precision having unit roundoff uf .

9

However, since LU decomposition performs O(n3) operations, if A is large, the
cost of the IR algorithm will be dominated by LU factorization. Thus, it is de-
sirable that uf is a precision lower than the working precision u. On the other
hand, the residual r should be computed accurately since it affects the attainable
forward error. Thus, the precision to calculate residual, ur, should be at least u.
With the same idea, the linear system in line 4 can be solved in a different effec-
tive precision, us, which depends on the solver used and the precisions therein.
One obtains different mixed-precision IR schemes depending on which precision
is used in which part of the algorithm.

The standard iterative refinement algorithm proposed in Wilkinson [1963] uses
only two precisions: uf = us = u and ur = u2. The author analyzed this approach
in fixed-point arithmetic. Later, the analysis using floating-point arithmetic was
performed in Moler [1967]. After that, there have been several works on the error
analysis of uniform and mixed precision IR using different precision settings based
on componentwise or normwise errors, such as Stewart [1973], Higham [1997], and
Langou et al. [2006]. For more details on these analyses, see Carson and Higham
[2018]. The details of mixed precision IR are explained in Section 2.1.

Algorithm 1 General Iterative Refinement Scheme
Input: matrix An×n; right-hand side bn; maximum number of refinement steps

imax.
Output: Approximate solution xi+1 to Ax = b.

1: Solve Ax0 = b in precision uf , store in precision u
2: for i = 0 : imax − 1 do
3: Compute ri = b− Axi in precision ur, store in precision u
4: Solve Adi+1 = ri in precision us, store in precision u
5: Compute xi+1 = xi + di+1 in precision u
6: if converged then return xi+1. end if

1.4 Mixed-precision algorithms in numerical
linear algebra

With modern hardware and floating-point arithmetic, there has been a variety of
mixed-precision algorithms developed in recent years to improve performance of
classical algorithms in numerical linear algebra. In particular, advancements in
the development of mixed-precision precision BLAS operations (Li et al. [2002])
have enabled improved performance of algorithms via half precision GEMM
(HGEMM) operations while preserving accuracy of the overall algorithm (Haidar
et al. [2017]). For instance, using mixed-precision LU decomposition can accel-
erate the solution of linear systems in double precision (Haidar et al. [2018]).
Hardware support also plays an important role in achieving the desired perfor-
mance advantage. For example, Tensor Core units on NVIDIA GPUs, available
in multiple different precision formats, can perform a 4×4 matrix multiplication
in one cycle (Abdelfattah et al. [2019b]).

Mixed-precision can also be used to solve nonlinear equations efficiently. New-
ton’s method is one of the most popular approaches for solving such problems.

10

Performing the initial iterations in low precision and gradually increasing the
precision as the iterations converge can reduce the overall cost of the algorithm
while keeping the accuracy on the level of the higher precision. For the analysis
of mixed-precision Newton’s method, see Tisseur [2001]. As explained in Section
2.1, this played a crucial role in developing mixed-precision iterative refinement
schemes to solve linear systems since IR can be thought as a variation of the New-
ton’s method. There have been several mixed-precision IR schemes introduced
for solving linear systems effectively such as Langou et al. [2006] and Carson and
Higham [2017]. For more information on mixed-precision iterative (refinement)
approaches, see Chapter 2.

As explained above, direct methods such as LU and QR decompositions can
also be performed in mixed precision. For analysis of mixed-precision LU and
QR factorizations, see Higham [2002]. These decompositions can also be used
within an IR scheme as explained above (Buttari et al. [2007]). If the matrix is
symmetric positive definite, one can also perform a Cholesky decomposition in
mixed precision (Yamazaki et al. [2015]). On the other hand, although using half
precision will reduce cost of Cholesky significantly, it can suffer from overflow
during rounding due to limited representation of numbers in half precision. To
overcome overflow, the authors in Higham and Pranesh [2019] introduced scaling
and shifting for such cases.

For more detailed information on mixed-precision numerical linear algebra
algorithms, see the surveys Abdelfattah et al. [2020] and Higham and Mary [2022].

Bibliography
Ahmad Abdelfattah, Stanimire Tomov, and Jack Dongarra. Optimizing batch

HGEMM on small sizes using tensor cores. 2019-03 2019a.

Ahmad Abdelfattah, Stanimire Tomov, and Jack Dongarra. Fast batched matrix
multiplication for small sizes using half-precision arithmetic on GPUs. In 2019
IEEE international parallel and distributed processing symposium (IPDPS),
pages 111–122. IEEE, 2019b.

Ahmad Abdelfattah, Hartwig Anzt, Erik G Boman, Erin Carson, Terry Cojean,
Jack Dongarra, Mark Gates, Thomas Grützmacher, Nicholas J Higham, Sherry
Li, et al. A survey of numerical methods utilizing mixed precision arithmetic.
arXiv preprint arXiv:2007.06674, 2020.

Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William
Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller,
et al. Exascale computing study: Technology challenges in achieving exascale
systems. Defense Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), Tech. Rep, 15:181, 2008.

Alfredo Buttari, Jack Dongarra, Julie Langou, Julien Langou, Piotr Luszczek,
and Jakub Kurzak. Mixed precision iterative refinement techniques for the so-
lution of dense linear systems. The International Journal of High Performance
Computing Applications, 21(4):457–466, 2007.

11

Erin Carson and Nicholas J. Higham. A new analysis of iterative refinement
and its application to accurate solution of ill-conditioned sparse linear systems.
SIAM Journal on Scientific Computing, 39(6):A2834–A2856, 2017. doi: 10.
1137/17M1122918.

Erin Carson and Nicholas J. Higham. Accelerating the solution of linear sys-
tems by iterative refinement in three precisions. SIAM Journal on Scientific
Computing, 40(2):A817–A847, 2018. doi: 10.1137/17M1140819.

Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert Van De Geijn. Col-
lective communication: theory, practice, and experience. Concurrency and
Computation: Practice and Experience, 19(13):1749–1783, 2007.

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. Harnessing GPU tensor
cores for fast fp16 arithmetic to speed up mixed-precision iterative refinement
solvers. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 603–613, 2018. doi: 10.1109/SC.2018.
00050.

Azzam Haidar, Panruo Wu, Stanimire Tomov, and Jack Dongarra. Investigating
half precision arithmetic to accelerate dense linear system solvers. In Proceed-
ings of the 8th workshop on latest advances in scalable algorithms for large-scale
systems, pages 1–8, 2017.

Nicholas J Higham. Iterative refinement for linear systems and LAPACK. IMA
Journal of Numerical Analysis, 17(4):495–509, 1997.

Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

Nicholas J Higham and Theo Mary. Mixed precision algorithms in numerical
linear algebra. Acta Numerica, 31:347–414, 2022.

Nicholas J Higham and Srikara Pranesh. Simulating low precision floating-point
arithmetic, mims eprint 2019.4. Manchester Institute for Mathematical Sci-
ences, The University of Manchester, UK, 2019.

Nicholas J. Higham and Srikara Pranesh. Exploiting lower precision arithmetic in
solving symmetric positive definite linear systems and least squares problems.
SIAM Journal on Scientific Computing, 43(1):A258–A277, 2021. doi: 10.1137/
19M1298263.

HPL-MxP. HPL-MxP mixed-precision benchmark. https://icl.bitbucket.
io/hpl-ai/, November 2019.

Julie Langou, Julien Langou, Piotr Luszczek, Jakub Kurzak, Alfredo Buttari, and
Jack Dongarra. Exploiting the performance of 32 bit floating point arithmetic
in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems).
In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, pages
113–es, 2006.

Xiaoye S Li, James W Demmel, David H Bailey, Greg Henry, Yozo Hida, Jimmy
Iskandar, William Kahan, Suh Y Kang, Anil Kapur, Michael C Martin, et al.

12

https://icl.bitbucket.io/hpl-ai/
https://icl.bitbucket.io/hpl-ai/

Design, implementation and testing of extended and mixed precision BLAS.
ACM Transactions on Mathematical Software (TOMS), 28(2):152–205, 2002.

Cleve B Moler. Iterative refinement in floating point. Journal of the ACM
(JACM), 14(2):316–321, 1967.

Gilbert W Stewart. Introduction to matrix computations. Elsevier, 1973.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collec-
tive communication operations in MPICH. The International Journal of High
Performance Computing Applications, 19(1):49–66, 2005.

Françoise Tisseur. Newton’s method in floating point arithmetic and iterative re-
finement of generalized eigenvalue problems. SIAM Journal on Matrix Analysis
and Applications, 22(4):1038–1057, 2001.

TOP500. TOP500. Online, June 2021. URL https://www.top500.org/.

James Hardy Wilkinson. Rounding errors in algebraic processes. Prentice-Hall,
1963.

Ichitaro Yamazaki, Stanimire Tomov, and Jack Dongarra. Mixed-precision
Cholesky QR factorization and its case studies on multicore CPU with multiple
GPUs. SIAM Journal on Scientific Computing, 37(3):C307–C330, 2015.

13

https://www.top500.org/

2. Iterative methods
Although direct methods are robust for solving sparse linear systems, they suffer
from runtime and memory requirements and are hard to parallelize. To overcome
these problems, iterative approaches can be used. Iterative methods have a lower
memory requirement in addition to the reduced computation cost and time since
the solution can often be achieved in a few iterations.

This chapter discusses various iterative methods which we focus on in this
thesis. In Section 2.1, we discuss Richardson iteration and Newton’s method
with their connection to Rayleigh Quotient Iteration (RQI) (see, Section 6) and
iterative refinement algorithms (see, Sections 7, 8, and 9). We also give insights
into the motivation for using mixed precision in such methods. Then we define
Krylov subspace methods in Section 2.2 and explain why these methods can be
preferable over stationary methods. Lastly, we define “hybrid” iterative methods
in Section 2.3 in which a Krylov subspace method is used as the inner solver in
a stationary iterative method.

2.1 Stationary methods
Stationary methods are the simplest iterative methods for solving linear systems.
The basic principle of stationary iterative methods is that they convert the system
Ax = b to x = x+M−1(b−Ax) by splitting A = M −K so that the approximate
solution in each step can be found via xn+1 = Rxn + c, where R = M−1K is
called the iteration matrix, xn is the approximate solution at step n, and c is a
constant (Kelley [1995]).

One of the simplest stationary methods is using R = I − ωA, where ω is a
scalar parameter. In this case, M becomes proportional to the identity I and
hence the formula becomes xn+1 = xn + ω(b − Axn), which is called Richardson
iteration (Young [2014]).

Preconditioning is one of the common tools in iterative numerical linear alge-
bra used for decreasing the runtime of an algorithm. In this case, M is called the
preconditioner, and the preconditioned system becomes MAx = Mb. To solve
the preconditioned system, one can again use the “preconditioned” Richardson
iteration

xn+1 = xn +M(b− Axn).
Using the preconditioner, such as the LU factors of A, the solution can be refined
iteratively. Thus, this technique is also called iterative refinement (Wilkinson
[1963]). Using IR to solve the linear system can be cost-effective since, depending
on A, the solution can be refined in a few steps, reducing the computation cost,
especially when A is large.

The refinement can be accomplished, for instance, by means of Newton’s
algorithm, which computes the zero of a function f(x) according to the iterative
formula

xn+1 = xn − f(xn)
f ′(xn) .

Mixed-precision IR methods have a long history, dating back to Wilkinson
[1963]. The author gave fixed-point analysis of a two-precision variant that uses

14

high precision only in computing the residual. Later, Moler [1967] analyzed the
same approach using floating-point arithmetic. More recently, to reduce the com-
putation cost, researchers developed two-precision approaches in which low pre-
cision is used in the factorization step with Gaussian elimination with partial
pivoting (GEPP); see, e.g., Smoktunowicz et al. [2006], Arioli and Duff [2009],
Hogg and Scott [2010]. In Demmel et al. [2006], error bounds and stopping crite-
ria were derived for IR with two precisions. The working precision is used to find
the approximate solution, whereas a higher precision is used only to calculate the
residual. In their study, the working precision is doubled if the convergence is too
slow or the method is diverging. Parallel performance analysis of mixed-precision
IR techniques is also discussed in Haidar et al. [2018]. Further details about
mixed-precision in numerical methods are discussed in Abdelfattah et al. [2020].

On the other hand, due to the use of GEPP, if A is very ill-conditioned or badly
scaled, the IR process with repeated GEPP solves can fail, especially in the case
that GEPP is computed in lower precision. One of the methods that can overcome
this problem was introduced in Carson and Higham [2018]. The authors devised
an IR approach using three precisions and preconditioned GMRES to solve the
correction step in IR.

For stability analysis of methods such as IR variants, we can derive forward
and error bounds under a constraint on the conditioning of the coefficient matrix,
κ(A). For a non-singular square matrix, the condition number is defined as

κp(A) = ∥A∥p∥A−1∥p

with the associated norm p. The authors showed that as long as κ∞(A) ≤
u−1/2u−1

f and ur = u2, GMRES-IR provides accurate solutions with the forward
and (normwise) backward errors

∥x̂− x∥∞

∥x∥∞
≈ O(u) and ∥b− Ax̂∥∞

∥A∥∞∥x∥∞ + ∥b∥∞
≈ O(u),

respectively, while what we refer to as the standard IR (SIR) algorithm in Wilkin-
son [1963] is guaranteed to have this forward error only if κ∞(A) ≤ u−1

f and
ur = u2.

Newton’s method can also be used in solving eigenvalue problems, xα = Ax,
which is similar to solving least squares problems Ax ≈ b. In eigenvalue problems,
one seeks the eigenvalue α(x) of A corresponding to the eigenvector x. The
eigenvalue can be found iteratively using an inverse iteration, called Rayleigh
Quotient Iteration (RQI). In a few iterations, the Rayleigh quotient

ρ(x) = xTAx

xTx

can converge to the eigenvalue α(x). It is shown in Simoncini and Eldén [2002]
that inexact RQI is equivalent to performing an inexact Newton algorithm in the
unit sphere. Moreover, Tapia et al. [2018] discusses that one iteration of RQI can
be viewed as performing one Newton’s iteration with a normalization when the
function is defined as F (x, c) = (A− λc(x)I)x, where c ̸= 0 and

λc(x) = ρ(x) − c

2(xTx− 1).

15

2.2 Krylov subspace methods
One of the most important drawbacks of the stationary methods is the linear
convergence. To increase the speed, we can approximate the solution using a
polynomial approximation

xk = x0 + qk−1(A)r0,

such that qk−1 is a polynomial of degree k− 1, x0 and r0 = b−Ax0 are the initial
solution and residual, respectively, and qk−1(A)r0 ∈ Kk(A, r0). The space

Kk(A, r0) = span{r0, Ar0, A
2r0, . . . , A

k−1r0}

is called the Krylov subspace of order k.
Krylov subspace solvers are nonlinear methods for solving linear systems.

Contrary to stationary methods, Krylov solvers’ convergence rates are adapted
to the problem because of nonlinearity. Thus, they can provide faster than linear
convergence.

Since a basis for Kk(A, r0) can be ill-conditioned, we construct an orthogo-
nal basis Vk = [v1, · · · , vk] for the Krylov space Kk(A, v1) using the Lanzos or
Arnoldi process. Using projection processes one finds the approximate solution
efficiently since instead of dealing with a large dense matrix, one will work on an
upper Hessenberg matrix. More detailed information about Lanczos and Arnoldi
recurrences are given in Chapter 3.

Krylov subspace methods work by selecting approximate solutions from a
Krylov subspace. The search space is formed via nested Krylov subspaces, and
the solution is obtained from a sequence of projections onto the search space.
Depending on the algorithm and properties of the coefficient matrix A, Krylov
subspace methods may involve short recurrences (e.g., CG) or long recurrences
(e.g., GMRES).

Imposing the (Petrov-)Galerkin condition on the residual rk in the Krylov
space Kk along with the orthogonal basis Vk, Krylov subspace methods guar-
antee certain minimization properties. The Galerkin condition on the residual
corresponds to minimizing the error vector in the norm associated with symmet-
ric positive definite (SPD) coefficient matrix A over the approximation space,
i.e.,

b− Axk = rk ⊥ v, ∀v ∈ Kk.

This condition ensures convergence in exact arithmetic in Krylov subspace meth-
ods such as CG. If A is not SPD, the generalized version of the Galerkin condition,
namely the Petrov-Galerkin condition, minimizes the residual norm over the space
AKk by imposing the condition

b− Axk = rk ⊥ v, ∀v ∈ AKk.

This condition is therefore used in Krylov subspace methods for non-symmetric
coefficient matrices, such as GMRES. Thus, while CG minimizes the A-norm of
the error, GMRES minimizes the 2-norm of the residual.

As discussed in Section 1.2, the total cost of an algorithm consists of compu-
tation cost and communication cost. Computation cost can be calculated via the

16

number of floating point operations performed per second (FLOPs) and commu-
nication cost can be found via

number of words moved
bandwidth and number of messages × latency.

When compared in terms of time and energy, computation is cheaper than com-
munication. Therefore, to reduce runtime of an algorithm communication should
be minimized. There are several ways to reduce the communication cost of an
algorithm such as using communication-avoiding (i.e., s-step or block) methods.
In parallel computing, global reductions (i.e., MPI Allreduce operations), also
called synchronization points, are expensive in terms of communication. One
of the main ideas behind communication-avoiding algorithms, therefore, is to
reduce the number of global reductions in an algorithm. There have been vari-
ous communication-avoiding Krylov subspace methods introduced over time, e.g.,
Chronopoulos and Gear [1989] and Hoemmen [2010]. In communication-avoiding
Krylov subspace methods, one computes a block of s > 1 iterations at once,
which requires only one global reduction per s iterations. Such methods, and
block Krylov subspace methods in general, necessitate the use of a block orthog-
onalization process such as Block Classical Gram-Schmidt (BCGS). For detailed
information, see Chapters 3 and 4.

2.3 Hybrid iterative methods
Throughout this thesis, we refer to stationary iterative methods which use a
Krylov subspace method as an inner solver as hybrid iterative methods. We give
a brief motivation for such methods below.

SIR first computes the initial approximation x0̂ using Gaussian elimination
with partial pivoting (GEPP). It then saves the approximate factorization A ≈
L̂Û and uses these factors to solve for the correction term Ad̂ = (L̂Û)d̂ = r̂.
Using d̂, SIR finally refines the current solution x̂ = x̂+ d̂.

SIR has various drawbacks depending on the input matrix. If the matrix is
very ill-conditioned with respect to the precision in which the LU factorization
is computed or badly scaled, the IR process with repeated GEPP solves can fail.
Moreover, the error can grow with each refinement step if the matrix is extremely
ill-conditioned. To overcome these drawbacks, various IR variants have been
developed. For instance, the authors in Carson and Higham [2017] introduced an
example of a hybrid iterative method, GMRES-based IR (GMRES-IR).

To solve the correction step in IR, GMRES-IR uses preconditioned GMRES
as an inner solver. For the preconditioner, the algorithm computes LU factors of
the input matrix A ≈ L̂Û in the beginning. GMRES-IR is analyzed in Carson
and Higham [2018] with three precisions, (ur, u, uf), where ur is the precision to
compute the residual, u is the working precision, and uf is the LU factorization
precision. There are also studies involving a five-precision variant, GMRES-IR5
(Amestoy et al. [2021]). It is shown in Carson and Higham [2018] that GMRES-IR
can solve more ill-conditioned linear systems than SIR for a given set of precisions.
Constraints on the condition number for SIR and GMRES-IR to provide accurate
solutions in the accuracy of u are given in Tables 2.1 and 2.2, respectively.

17

Table 2.1: Bounds on κ∞(A) for the relative normwise and columnwise backward
and forward errors of SIR

uf u ur κ∞(A) Backward error
Normwise Componentwise Forward error

half single double 104 single single single
half double quad 104 double double double

single double quad 108 double double double

Table 2.2: Bounds on κ∞(A) for the relative normwise and columnwise backward
and forward errors of GMRES-IR

uf u ur κ∞(A) Backward error
Normwise Componentwise Forward error

half single double 108 single single single
half double quad 1012 double double double

single double quad 1016 double double double

Bibliography
Ahmad Abdelfattah, Hartwig Anzt, Erik G Boman, Erin Carson, Terry Cojean,

Jack Dongarra, Mark Gates, Thomas Grützmacher, Nicholas J Higham, Sherry
Li, et al. A survey of numerical methods utilizing mixed precision arithmetic.
arXiv preprint arXiv:2007.06674, 2020.

Patrick Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent,
Theo Mary, and Bastien Vieublé. Five-precision GMRES-based iterative re-
finement. Technical Report 2021.5, April 2021. URL http://eprints.maths.
manchester.ac.uk/2807/.

Mario Arioli and Iain S Duff. Using FGMRES to obtain backward stability in
mixed precision. Electronic Transactions on Numerical Analysis, 33:31–44,
2009.

Erin Carson and Nicholas J. Higham. A new analysis of iterative refinement
and its application to accurate solution of ill-conditioned sparse linear systems.
SIAM Journal on Scientific Computing, 39(6):A2834–A2856, 2017. doi: 10.
1137/17M1122918.

Erin Carson and Nicholas J. Higham. Accelerating the solution of linear sys-
tems by iterative refinement in three precisions. SIAM Journal on Scientific
Computing, 40(2):A817–A847, 2018. doi: 10.1137/17M1140819.

A.T Chronopoulos and C.W Gear. On the efficient implementation of precon-
ditioned s-step conjugate gradient methods on multiprocessors with memory
hierarchy. Parallel Computing, 11(1):37–53, 1989. ISSN 0167-8191. doi:
https://doi.org/10.1016/0167-8191(89)90062-8.

James Demmel, Yozo Hida, William Kahan, Xiaoye S. Li, Sonil Mukherjee, and
E. Jason Riedy. Error bounds from extra-precise iterative refinement. ACM
Trans. Math. Softw., 32(2):325–351, June 2006. ISSN 0098-3500. doi: 10.1145/
1141885.1141894.

18

http://eprints.maths.manchester.ac.uk/2807/
http://eprints.maths.manchester.ac.uk/2807/

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. Harnessing GPU tensor
cores for fast fp16 arithmetic to speed up mixed-precision iterative refinement
solvers. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 603–613, 2018. doi: 10.1109/SC.2018.
00050.

Mark Hoemmen. Communication-avoiding Krylov subspace methods. University
of California, Berkeley, 2010.

Jonathan D Hogg and Jennifer A Scott. A fast and robust mixed-precision solver
for the solution of sparse symmetric linear systems. ACM Transactions on
Mathematical Software (TOMS), 37(2):1–24, 2010.

C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Society for
Industrial and Applied Mathematics, 1995. doi: 10.1137/1.9781611970944.

Cleve B Moler. Iterative refinement in floating point. Journal of the ACM
(JACM), 14(2):316–321, 1967.

Valeria Simoncini and Lars Eldén. Inexact Rayleigh quotient-type methods for
eigenvalue computations. BIT Numerical Mathematics, 42(1):159–182, 2002.

Alicja Smoktunowicz, Jesse Barlow, and Julien Langou. A note on the error
analysis of classical Gram-Schmidt. Numerische Mathematik, 105, 07 2006.
doi: 10.1007/s00211-006-0042-1.

Richard A. Tapia, J. E. Dennis, and Jan P. Schäfermeyer. Inverse, shifted inverse,
and Rayleigh quotient iteration as Newton’s method. SIAM Review, 60(1):3–
55, 2018. doi: 10.1137/15M1049956.

James Hardy Wilkinson. Rounding errors in algebraic processes. Prentice-Hall,
1963.

David M Young. Iterative solution of large linear systems. Elsevier, 2014.

19

3. Orthogonalization processes
As discussed in Section 2.2, Krylov subspace methods form an orthogonal Krylov
basis, Kk = Kk(A, r0) = span{r0, Ar0, A

2r0, . . . , A
k−1r0}, where r0 = b − Ax0 is

the initial residual. Using this basis together with the Petrov-Galerkin condition
guarantees certain minimization properties of the method.

Kk is generated by the Arnoldi or Lanczos methods or their variants. The
Arnoldi process with full orthogonalization computes the recurrence

AVm = VmHm + hm+1,mvm+1e
T
m = Vm+1H̄m,

where
H̄m =

[︄
Hm

hm+1e
T
m

]︄
is an upper Hessenberg matrix and Vm = [v1, v2, . . . , vm] has orthonormal basis
vectors as columns for m = 1,

In exact arithmetic, the Arnoldi vectors [v1, v2, . . . , vm] are orthogonal. There
are several orthogonalization methods that can be used in Arnoldi, such as House-
holder, Gram-Schmidt, and Givens rotations which differ in their cost and numer-
ical properties. The Gram-Schmidt process is the cheapest and easiest approach
to parallelize whereas Householder and Givens rotations better preserve orthogo-
nality, i.e., ∥I−Q̄T

Q̄∥2 < O(u), where A ≈ Q̄R̄ are computed QR factors in finite
precision, and u is unit round-off. In long-recurrence methods such as GMRES,
one needs to use an explicit orthogonalization scheme such as Gram-Schmidt to
orthonormalize the vectors generated.

The Gram-Schmidt process is the oldest method for A = QR, where QTQ = I
and R is an upper triangular matrix. The Classical Gram-Schmidt (CGS) process
in Algorithm 2 can be geometrically defined as using orthogonal projection of the
vectors onto a subspace generated by the previously computed orthogonal vectors.
The main drawback of the CGS algorithm is that the loss of orthogonality is
bounded by

∥I − Q̄
T
Q̄∥2 ≤ O(u)κn−1(A)

as long as O(u)κ(A) ≤ 1 Kielbasiński [1974] and thus, it is not stable, as explained
later below.

Algorithm 2 CGS
1: for j = 1: n do
2: for i = 1: j − 1 do
3: rij = qT

i aj

4: q′
j = aj −∑︁j−1

k=1 rkjqk

5: rjj = ∥q′
j∥2

6: qj = q′
j/rjj

To have a more stable algorithm, one can change the order of computations
in CGS and obtain a mathematically equivalent variant. The Modified Gram-
Schmidt (MGS) process is given in Algorithm 3. Contrary to CGS, which updates
all vectors at once and calculates the R-factor using the original input A, MGS

20

updates each vector once in each step and calculates the R-factor using the pre-
viously orthogonalized vectors. These differences make MGS more stable than
CGS with loss of orthogonality given by ∥I−Q̄

T
Q̄∥2 < O(u)κ2(A). In fact, Paige

et al. [2006] proved that the GMRES algorithm is backward stable if it is used
with MGS (MGS-GMRES).

Algorithm 3 Modified Gram-Schmidt
1: a(1)

k = ak

2: for k = 1: n do
3: rkk = ∥a(k)

k ∥2

4: qk = a
(k)
k /rkk

5: for j = k + 1: n do
6: rkj = qT

k a
(k)
j

7: a
(k+1)
j = a

(k)
j − rkjqk

Although CGS is preferable to MGS due to the fewer number of synchroniza-
tion points, one of the drawbacks of CGS is that in finite precision, orthogonality
can be easily lost (Giraud et al. [2005]). This loss is due to the accumulation of
minor round-off errors occurring in every step, resulting in Q no longer having
orthonormal columns and hence QR no longer giving the same matrix as A. In
Abdelmalek [1971], the authors show that using reorthogonalization in CGS, one
can obtain vectors that are orthogonal to the level of machine precision. This
idea was extended to the block setting in Barlow and Smoktunowicz [2013], in
which reorthogonalized BCGS (BCGS2) is introduced and analyzed.

Block Gram-Schmidt (BGS) algorithms are necessary for block and s-step
Krylov subspace methods. As a standalone orthogonalization scheme, the block
approach also has performance benefits. Instead of operating column by column,
which requires the use of BLAS1 operations (vector-vector operations), BGS uses
blocks of columns enabling the use of BLAS3 operations (matrix-matrix opera-
tions) which reduces communication cost and improves performance significantly
(Dongarra et al. [1990]).

There are several variants of BGS. To define a BGS algorithm, one needs an
orthogonalization method for interblock orthogonalization, and a non-block or-
thogonalization algorithm for intrablock orthogonalization (Hoemmen [2010]).
There are several choices for intrablock and interblock algorithms, and com-
binations of these methods will result in different numerical and performance
properties. For instance, one of the interblock methods Block MGS (BMGS)
or Block CGS (BCGS) can be used with an intrablock method such as CGS,
MGS, or CholeskyQR . The authors in Yamazaki et al. [2015] use mixed-precision
CholeskyQR and BMGS together to balance performance and accuracy.

Bibliography
Nabih N. Abdelmalek. Round off error analysis for Gram-Schmidt method and

solution of linear least squares problems. BIT Numerical Mathematics, 11:
345–367, 1971.

21

Jesse L Barlow and Alicja Smoktunowicz. Reorthogonalized block classical Gram–
Schmidt. Numerische Mathematik, 123(3):395–423, 2013.

J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Duff. A set of level 3
basic linear algebra subprograms. ACM Trans. Math. Softw., 16(1):1–17, 1990.
ISSN 0098-3500. doi: 10.1145/77626.79170.

Luc Giraud, Julien Langou, Miroslav Rozložńık, and Jasper Eshof. Rounding
error analysis of the classical Gram–Schmidt orthogonalization. Numerische
Mathematik, 101:87–100, 01 2005. doi: 10.1007/s00211-005-0615-4.

Mark Hoemmen. Communication-avoiding Krylov subspace methods. University
of California, Berkeley, 2010.

A Kielbasiński. Analiza numeryczna algorytmu ortogonalizacji Grama-Schmidta.
Mathematica Applicanda, 2(2), 1974.

Christopher C. Paige, Miroslav Rozložńık, and Zdeněk Strakoš. Modified Gram-
Schmidt (MGS), least squares, and backward stability of MGS-GMRES. SIAM
Journal on Matrix Analysis and Applications, 28(1):264–284, 2006. doi: 10.
1137/050630416.

Ichitaro Yamazaki, Stanimire Tomov, Jakub Kurzak, Jack Dongarra, and Jesse
Barlow. Mixed-precision block Gram Schmidt orthogonalization. In Proceedings
of the 6th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems, pages 1–8, 2015.

22

4. Using mixed-precision in
low-synchronization
reorthogonalized block classical
Gram-Schmidt1

Block Gram-Schmidt (BGS) algorithms are used for computing the QR factor-
ization of a given matrix X ∈ Rm×n, X = QR, where Q is an orthogonal matrix
and R is an upper triangular matrix. We assume X is partitioned into blocks
of size m × s, i.e., X = [X1, . . . , Xp], where Xi ∈ Rm×s, under the assumption
of n/s = p. The matrices Q and R are partitioned in a similar manner, i.e.,
Q = [Q1, . . . , Qp], where Qi ∈ Rm×s and Rj,k = Rj,k, where Rj,k ∈ Rs×s. BGS al-
gorithms are widely used in block Krylov subspace methods such as block GMRES
(Baker et al. [2006]), and in communication-avoiding Krylov subspace methods
such as CA-GMRES (Ballard et al. [2014]). Using a block approach in Krylov
subspace methods can improve performance by enabling the use of BLAS-3 op-
erations, improving convergence behavior, and/or reducing the communication
cost.

In parallel settings, the inner product and norm operations within BGS algo-
rithms require global reductions, i.e., synchronizations. This means that all com-
pute nodes of a machine need to synchronize and exchange information. In large-
scale settings, this can become a major computational bottleneck depending on
the particular BGS variant and particular parallel setting. BGS algorithms also
suffer from loss of orthogonality, i.e., the matrix Q is not exactly orthogonal when
computed in finite precision. The loss of orthogonality is defined as the quantity
∥I − Q̄T Q̄∥2, where Q̄ is the computed Q factor of X . The loss of orthogonality
plays an important role in the stability of Krylov subspace methods. For instance,
it was proved in Paige et al. [2006] that the level of orthogonality provided by the
modified Gram-Schmidt (MGS) algorithm, i.e., ∥I − Q̄T Q̄∥2 < O(u)κ(X), where
u is the unit round-off (for double precision, u ≈ 10−16), is sufficient to guarantee
a backward stable GMRES algorithm. This motivates us to find a BGS variant
that achieves at least O(u)κ(X) loss of orthogonality and simultaneously requires
a small number of global synchronizations.

One of the most common BGS variants is the block classical Gram-Schmidt
(BCGS) algorithm (Saad [2003]) given in Algorithm 4. Like all BGS variants,
BCGS uses a non-block orthogonalization algorithm referred to as IntraOrtho for
intrablock orthogonalization, such as Householder QR, CGS, MGS, or Cholesky
QR. Note that BCGS requires one synchronization in line 3 and potentially one
or more synchronizations in line 5, depending on what is used as the IntraOrtho.

1This chapter is a pre-copyedited, author-produced version of an article ac-
cepted for publication in Wiley: Proceedings in Applied Mathematics and Mechan-
ics following peer review. The version of record [Proceedings in Applied Math-
ematics and Mechanics, Oktay, E., Carson, E.: Using Mixed Precision in Low-
Synchronization Reorthogonalized Block Classical Gram-Schmidt, 2023] is available online at
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.202200060.

23

Algorithm 4 BCGS (Saad [2003])
1: [Q1, R11] = IntraOrtho(X1)
2: for k = 1: p− 1 do
3: R1:k,k+1 = QT

1:kXk+1
4: W = Xk+1 −Q1:kR1:k,k+1
5: [Qk+1, Rk+1,k+1]= IntraOrtho(W)

According to the conjecture in Kielbasiński [1974], the loss of orthogonality
in BCGS is bounded by ∥I − Q̄T Q̄∥2 < O(u)κn−1(X) as long as O(u)κ(X) <
1. Moreover, if the diagonal blocks of R are computed in a special way us-
ing Cholesky, the authors in Carson et al. [2021] proved that ∥I − Q̄T Q̄∥2 <
O(u)κ2(X) holds provided that O(u)κ2(X) < 1.

Reorthogonalized Variants (BCGSI+)
Round-off errors and cancellation causes BCGS to lose orthogonality which makes
the algorithm unstable. To overcome this problem, one can use reorthogonaliza-
tion.

To use reorthogonalization in the BCGS algorithm, instead of calculating the
final R in lines 3-5 of Algorithm 4, the orthogonalization is performed two times
and the resulting R factors are combined. This variant of BCGS (BCGSI+)
given in Algorithm 5 was analyzed by the authors in Barlow and Smoktunowicz
[2013]. The algorithm orthogonalizes for the first time in lines 4-6. Then using
the previously computed Q̂, the vectors are orthogonalized for the second time
in lines 7-9. The R factors are then combined in lines 10-11. Note that BCGSI+
requires twice as many synchronizations as BCGS.

Algorithm 5 BCGSI+ (Barlow and Smoktunowicz [2013])
1: Allocate memory for Q and R
2: [Q1, R11] = IntraOrtho(X1)
3: for k = 1: p− 1 do
4: R

(1)
1:k,k+1 = QT

1:kXk+1

5: W = Xk+1 −Q1:kR
(1)
1:k,k+1

6: [Q̂, R(1)
k+1,k+1]= IntraOrtho(W)

7: R
(2)
1:k,k+1 = QT

1:kQ̂

8: W = Q̂−Q1:kR
(2)
1:k,k+1

9: [Qk+1, R
(2)
k+1,k+1]= IntraOrtho(W)

10: R1:k,k+1 = R
(1)
1:k,k+1 +R

(2)
1:k,k+1R

(1)
k+1,k+1

11: Rk+1,k+1 = R
(2)
k+1,k+1R

(1)
k+1,k+1

The authors in Barlow and Smoktunowicz [2013] proved that if a method with
∥I − Q̄T Q̄∥2 ≤ O(u) is used as IntraOrtho and O(u)κ(X) < 1, then BCGSI+
has a loss of orthogonality bounded by ∥I − Q̄T Q̄∥2 ≤ O(u).

24

Low-Synchronization Variants (BCGSI+LS)
The goal of reducing the number of synchronizations required in Gram-Schmidt
algorithms motivated work into developing so-called “low-synchronization” vari-
ants of BGS and other orthogonalization routines, which require only a single
synchronization per block; see, e.g., Yamazaki et al. [2020].

The low-sync BCGSI+ algorithm (BCGSI+LS) given in Algorithm 6 was re-
cently introduced in Yamazaki et al. [2020] for use within GMRES. The BCGSI+
LS algorithm is a block generalization of the CGSI+LS algorithm in Świrydowicz
et al. [2021], which is based on computing a strictly lower triangular matrix one
block of rows at a time in a single global reduction, lagging the normalization step,
and merging it into this single reduction. The development of this approach was
based on the work of Ruhe (Ruhe [1983]); the authors of Świrydowicz et al. [2021]
observed that MGS/CGS could be interpreted as a variant of Gauss-Seidel/Gauss-
Jacobi iterations for solving the normal equations where the associated orthogonal
projector is given as

I −Q1:k−1T1:k−1,1:k−1Q
T
1:k−1, for T1:k−1,1:k−1 ≈ (QT

1:k−1Q1:k−1)−1.

For CGSI+LS, this T is computed iteratively via T1:k−1,1:k−1 ≈ I − L1:k−1,1:k−1 −
LT

1:k−1,1:k−1. According to Carson et al. [2022], the algorithm can also be thought
of as splitting T1:k−1,1:k−1 into two parts, I−L1:k−1,1:k−1 and a delayed reorthogo-
nalization step R1:k−1,k−1 = R1:k−2,k−1 − LT

k−1,1:k−2, the latter of which is applied
in the next iteration.

The block generalization of this idea leads to BCGSI+LS. We note in Algo-
rithm 6 that the block analogs of T and L above are not explicitly computed. We
also note that the resulting BCGSI+LS algorithm has no explicit IntraOrtho,
and lines 5, 8, and 18 are computed via Cholesky factorization. Asymptotically,
BCGSI+LS has only one synchronization point per block, which occurs in lines
5 and 7 in Algorithm 6.

A conjecture in Carson et al. [2022] states that if O(u)κ2(X) < 1, then the
loss of orthogonality of BCGSI+LS satisfies ∥I − Q̄

T
Q̄∥2 < O(u)κ2(X). Thus

although BCGSI+LS has the performance advantage that it only requires one
synchronization per block, such a significant loss of orthogonality may make it
unsuitable for use within GMRES. This motivates us to try to selectively use
higher precision in some parts of the BCGSI+LS algorithm to decrease the loss
of orthogonality while still maintaining a single synchronization per block.

4.1 Mixed-precision BCGSI+LS
(BCGSI+LS-MP)

Our mixed precision approach, which we call BCGSI+LS-MP, is given in Algo-
rithm 7. For a working precision u, we use the higher precision u2 in two aspects
of the algorithm: for computing the Cholesky factorizations in lines 5, 7/8, and
17/18, and in applying the corresponding inverses of the R factors in lines 9, 11,
15, and 20.

We note that BCGSI+LS-MP still has only one synchronization point per
block, which occurs in lines 5 and 7. Since we now use precision u2 in these lines,

25

Algorithm 6 BCGSI+LS (Yamazaki et al. [2020])
1: Allocate memory for Q and R
2: U = X1
3: for k = 2, . . . , p do
4: if k = 2 then
5:

[︂
RT

k−1,k−1Rk−1,k−1 P
]︂

= UT
[︂
U Xk

]︂
6: else if k > 2 then
7:

[︄
W Z
Ω Y

]︄
=
[︂
Q1:k−2 U

]︂T [︂
U Xk

]︂
8:

[︂
RT

k−1,k−1Rk−1,k−1 P
]︂

=
[︂
Ω Y

]︂
−W T

[︂
W Z

]︂
9: Rk−1,k = R−T

k−1,k−1P
10: if k = 2 then
11: Qk−1 = UR−1

k−1,k−1
12: else if k > 2 then
13: R1:k−2,k−1 = R1:k−2,k−1 +W
14: R1:k−2,k = Z
15: Qk−1 = (U − Q1:k−2W)R−1

k−1,k−1

16: U = Xk − Q1:k−1R1:k−1,k

17:

[︄
W
Ω

]︄
=
[︂
Q1:s−1 U

]︂T
U

18: RT
s,sRs,s = Ω −W TW

19: R1:s−1,s = R1:s−1,s +W
20: Qs = (U − Q1:s−1W)R−1

s,s

21: return Q = [Q1, . . . , Qs],R = (Rjk)

26

this means that we have doubled the size of the reduction; i.e., we have dou-
bled the bandwidth and computation costs. In the latency-bound regime, where
low-synchronization algorithms are most beneficial, this overhead may not be sig-
nificant, in particular, in cases where precisions u and u2 are both implemented
in hardware. The higher precision computations in lines 8, 9, 11, and 15 are all
local computations, and thus we expect the extra overhead to be insignificant.
We note that lines 17, 18, and 20 are only computed once at the very end of the
algorithm. Overall, the resulting overhead of using mixed precision will be highly
dependent on the particular problem size and machine parameters; a performance
study will be the subject of future work.

Algorithm 7 BCGSI+LS-MP
1: Allocate memory for Q and R
2: U = X1
3: for k = 2, . . . , p do
4: if k = 2 then
5:

[︂
RT

k−1,k−1Rk−1,k−1 P
]︂

= UT
[︂
U Xk

]︂
in precision u2

6: else if k > 2 then
7:

[︄
W Z
Ω Y

]︄
=
[︂
Q1:k−2 U

]︂T [︂
U Xk

]︂
in precision u2

8:
[︂
RT

k−1,k−1Rk−1,k−1 P
]︂

=
[︂
Ω Y

]︂
−W T

[︂
W Z

]︂
in precision u2

9: Rk−1,k = R−T
k−1,k−1P in precision u2

10: if k = 2 then
11: Qk−1 = UR−1

k−1,k−1 in precision u2

12: else if k > 2 then
13: R1:k−2,k−1 = R1:k−2,k−1 +W in precision u
14: R1:k−2,k = Z in precision u
15: Qk−1 = (U − Q1:k−2W)R−1

k−1,k−1 in precision u2

16: U = Xk − Q1:k−1R1:k−1,k in precision u

17:

[︄
W
Ω

]︄
=
[︂
Q1:s−1 U

]︂T
U in precision u2

18: RT
s,sRs,s = Ω −W TW in precision u2

19: R1:s−1,s = R1:s−1,s +W in precision u
20: Qs = (U − Q1:s−1W)R−1

s,s in precision u2

21: return Q = [Q1, . . . , Qs],R = (Rjk)

4.2 Numerical experiments
We now seek to demonstrate numerically, on a set of challenging test problems,
that our mixed precision approach BCGSI+LS-MP improves the loss of orthog-
onality relative to the uniform precision approach BCGSI+LS.

To illustrate the comparison of the methods in terms of the loss of orthogo-
nality, we performed numerical experiments in MATLAB using the block Gram-
Schmidt variants available at github.com/katlund/BlockStab with Läuchli, mo-
nomial, and glued matrices. Each of the matrices has dimensions [m, p, s], where
m is the number of rows, p is the number of block vectors, and s is the number

27

of columns per block vector. The widths of blocks are specified by the input
svec. For a detailed investigation of these matrices on BGS variants, see Carson
et al. [2022]. The experiments are performed on a computer with AMD Ryzen
5 4500U having 6 CPUs and 8 GB RAM with OS system Ubuntu 22.04 LTS. In
our numerical experiments, we used double precision in MATLAB for the work-
ing precision u, and quadruple precision for u2. We used the Advanpix toolbox
(Advanpix LLC.) to simulate quadruple precision.

Each plot shows the loss of orthogonality versus condition number for matrices
X of a given type. The dashed black line represents the O(u)κ(X) bound and
the black solid line represents the O(u)κ2(X) bound. The dashed black line
thus represents the loss of orthogonality bound for MGS, which is notable since
MGS-GMRES is known to be backward stable (Paige et al. [2006]). We can thus
conjecture that under certain constraints on the input matrix, an orthogonality
scheme that provides this level of orthogonality can be expected to result in a
backward stable GMRES implementation. The algorithm following the ◦ notation
in the legends indicates the algorithm that is used as the IntraOrtho (which in
our experiments, is always Householder QR).

The glued matrices introduced in Smoktunowicz et al. [2006] are m × n ma-
trices, where n = nglued× nbglued, nglued is the number of columns in a block,
and nbglued is the number of blocks that are glued together. For this study, we
use glued matrices with dimension [m, p, s] = [1000, 50, 4] with svec=1:12. From
Figure 4.1, we see that even when an unconditionally stable intrablock orthog-
onalization method is used, the loss of orthogonality in BCGS can exceed the
O(u)κ2(X) bound. On the other hand, when reorthogonalization is used, the loss
of orthogonality remains on the level O(u) (note that the red and purple markers
overlap). Whereas the loss of orthogonality for BCGSI+LS starts to deviate from
the level O(u) for larger condition numbers, for BCGSI+LS-MP it remains on
the level O(u).

The monomial test matrices are matrices X consisting of p block vectors
Xk = [vk|Avk| · · · |As−1vk], k = 1, . . . , p, where A is a diagonal m × m operator
with evenly distributed eigenvalues in (0.1, 10), and vk are normalized randomly
generated vectors from the uniform distribution. For this study, we use monomial
matrices with dimension [m, p, s] = [1000, 120, 2] with svec=2:2:12. We see
from Figure 4.2 that the behavior of BCGS and reorthogonalized variants are
the same as for the glued matrices: BCGS exceeds the O(u)κ2(X) bound, and
using reorthogonalization helps to decrease the loss of orthogonality to below
O(u)κ(X). Also similarly to the glued matrices, the loss of orthogonality in
BCGSI+LS deviates from O(u) (more significantly in this case), whereas for
BCGSI+LS-MP, it remains on the level O(u).

Our final, most interesting test case are Läuchli matrices (Läuchli [1961]) of
the form

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1
η

η
. . .

η

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , η ∈ (ϵ,
√
ϵ),

where η is drawn randomly from a scaled uniform distribution. For Läuchli
matrices, the columns are only barely independent, and the entries are either

28

10
0

10
5

10
10

10
15

10
-20

10
-10

10
0

10
10

10
20

Figure 4.1: The loss of orthogonal-
ity of BCGS (blue), BCGSI+ (red),
BCGSI+LS (yellow), and BCGSI+LS-
MP (purple) versus condition number
for glued matrices.

10
5

10
10

10
-15

10
-10

10
-5

10
0

10
5

Figure 4.2: The loss of orthogonal-
ity of BCGS (blue), BCGSI+ (red),
BCGSI+LS (yellow), and BCGSI+LS-
MP (purple) versus condition number
for monomial matrices.

zero or close to ϵ which causes a high cancellation rate. Because of its struc-
ture, Läuchli matrices are often used in numerical experiments for illuminat-
ing the effects of finite precision error in Gram-Schmidt algorithms. For this
study, we use Läuchli matrices with dimension [m, p, s] = [1000, 100, 5] with
svec=logspace(-1,-16,10). Figure 4.3 shows the loss of orthogonality for each
BCGS variant mentioned above. From the figure, we see that the loss of orthogo-
nality of BCGS is above the O(u)κ(X) bound. When reorthogonalization is used,
we observe that BCGSI+ stays on the level O(u) as expected. However, unlike
in previous test cases, the loss of orthogonality in BCGSI+LS is now significantly
worse. We see here that it exceeds the level O(u)κ(X), and the scaling behavior
is on par with O(u)κ2(X) (which is the bound that was conjectured in Carson
et al. [2022]). The use of mixed precision in BCGSI+LS-MP seems to remedy
this problem. The loss of orthogonality for BCGSI+LS-MP stays on the level
O(u) at least until κ(X) ≈ 1012.

4.3 Conclusion and discussion
Orthogonalization processes are the core of Krylov subspace algorithms. For
block Krylov subspace methods, block orthogonalization processes must be used
to improve the performance. There are several block Gram-Schmidt variants, and
each of these algorithms has different properties in terms of loss of orthogonality,
communication, and computation costs. Recent work has focused on developing
low-synchronized variants of (block) Gram-Schmidt algorithms, which require
only a single global synchronization per (block) column (Yamazaki et al. [2020]).
However, as our numerical experiments demonstrate, this reduced synchroniza-
tion can come at the cost of decreased stability in terms of loss of orthogonality.

We present a new block Gram-Schmidt variant called BCGSI+LS-MP, a vari-
ant of BCGSI+LS which uses higher precision in certain parts of the computa-
tion. Our numerical experiments demonstrate that this use of mixed precision

29

10
0

10
5

10
10

10
15

10
20

10
-20

10
-10

10
0

10
10

10
20

10
30

Figure 4.3: The loss of orthogonality of BCGS (blue), BCGSI+ (red), BCGSI+LS
(yellow), and BCGSI+LS-MP (purple) versus condition number for Läuchli ma-
trices.

can lead to a more stable algorithm than uniform precision BCGSI+LS while still
requiring only a single global synchronization per block. We expect that in the
latency-bound regime, where such low-synchronization algorithms are used, the
increased bandwidth and computation costs due to the use of higher precision
may be negligible.

We note that here we have only provided empirical results; a rigorous proof
of the loss of orthogonality in BCGSI+LS-MP remains future work. A first step
towards this will be to prove a bound on the loss of orthogonality for uniform
precision BCGSI+LS, which is currently missing in the literature. Furthermore,
this preliminary study is based on the numerical experiments performed in MAT-
LAB, which cannot give a good indication of resulting performance in large-scale
parallel settings. A thorough performance study measuring the overhead of the
use of higher precision within BCGSI+LS-MP is needed.

Bibliography
Advanpix LLC. Multiprecision computing toolbox for MATLAB. URL http:

//www.advanpix.com/.

Allison H Baker, John M Dennis, and Elizabeth R Jessup. On improving linear
solver performance: A block variant of GMRES. SIAM Journal on Scientific
Computing, 27(5):1608–1626, 2006.

G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz.
Communication lower bounds and optimal algorithms for numerical linear al-
gebra. Acta Numerica, 23:1–155, 2014. doi: 10.1017/S0962492914000038.

Jesse L Barlow and Alicja Smoktunowicz. Reorthogonalized block classical Gram–
Schmidt. Numerische Mathematik, 123(3):395–423, 2013.

Erin Carson, Kathryn Lund, and Miroslav Rozložńık. The stability of block

30

http://www.advanpix.com/
http://www.advanpix.com/

variants of classical Gram–Schmidt. SIAM Journal on Matrix Analysis and
Applications, 42(3):1365–1380, 2021. doi: 10.1137/21M1394424.

Erin Carson, Kathryn Lund, Miroslav Rozložńık, and Stephen Thomas. Block
Gram-Schmidt algorithms and their stability properties. Linear Algebra and
Its Applications, 638:150–195, 2022.

A Kielbasiński. Analiza numeryczna algorytmu ortogonalizacji Grama-Schmidta.
Mathematica Applicanda, 2(2), 1974.

Peter Läuchli. Jordan-elimination und ausgleichung nach kleinsten quadraten.
Numerische Mathematik, 3(1):226–240, 1961.

Christopher C. Paige, Miroslav Rozložńık, and Zdeněk Strakoš. Modified Gram-
Schmidt (MGS), least squares, and backward stability of MGS-GMRES. SIAM
Journal on Matrix Analysis and Applications, 28(1):264–284, 2006. doi: 10.
1137/050630416.

Axel Ruhe. Numerical aspects of Gram-Schmidt orthogonalization of vectors.
Linear algebra and its applications, 52:591–601, 1983.

Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

Alicja Smoktunowicz, Jesse Barlow, and Julien Langou. A note on the error
analysis of classical Gram-Schmidt. Numerische Mathematik, 105, 07 2006.
doi: 10.1007/s00211-006-0042-1.

Katarzyna Świrydowicz, Julien Langou, Shreyas Ananthan, Ulrike Yang, and
Stephen Thomas. Low synchronization Gram–Schmidt and generalized min-
imal residual algorithms. Numerical Linear Algebra with Applications, 28(2):
e2343, 2021.

Ichitaro Yamazaki, Stephen Thomas, Mark Hoemmen, Erik G Boman, Katarzyna
Świrydowicz, and James J Elliott. Low-synchronization orthogonalization
schemes for s-step and pipelined Krylov solvers in Trilinos. In Proceedings
of the 2020 SIAM Conference on Parallel Processing for Scientific Computing,
pages 118–128. SIAM, 2020.

31

5. BCGSI+P variants
In Smoktunowicz et al. [2006], the authors show that the upper triangular matrix
R resulting from the QR-decomposition of a tall skinny full-rank matrix A ∈
Rm×n with CGS satisfies

RT
j Rj = AT

j Aj + Ej, ∥Ej∥2 ≤ c(m, j)∥A∥2
2u with

c(m, j) =

⎧⎨⎩m+ 2 j = 1
3.5mj2 − 1.5mj + 16j j + 2, . . . , n,

where Aj, Rj, and Ej are the first j columns of A, R, and the error matrix
Ej, respectively. This relation holds only if the diagonals of R are computed
using a Cholesky-like formula with the help of the Pythagorean theorem. This
method is denoted as CGS-P. Similarly, in Carson et al. [2021], the authors intro-
duced two variants of a block vector analogy of CGS-P: BCGS-PIP (BCGS with
Pythagorean Inner Product) and BCGS-PIO (BCGS with Pythagorean Intra-
Orthogonalization). These are called BCGS-P variants.

The aim of BCGS-P variants is to reduce the loss of orthogonality BCGS has,
which is ∥I − Q̄

T
Q̄∥2 ≤ O(u)κn−1

2 (A), where Q̄ is the computed Q-factor. Using
the Pythagorean theorem under the assumption O(u)κ2

2(A) < 1, the authors
guarantee ∥I − Q̄

T
Q̄∥2 ≤ O(u)κ2

2(A).
In the reorthogonalized BCGS (BCGSI+) approach, the authors in Bar-

low and Smoktunowicz [2013] perform two BCGS steps consecutively and then
combine the resulting R-factors to guarantee ∥I − Q̄

T
Q̄∥2 ≤ O(u) as long as

O(u)κ2(A) < 1. As in the BCGS approach, the stability of an orthogonalization
process can be improved via reorthogonalization. To improve the stability of
BCGS-P variants, we introduce two more stable reorthogonalized BCGS-P vari-
ants in Section 5.1. In this section, we focus on improving only the BCGS-PIP
algorithm and call our new variants BCGS-PIP+ and BCGS-PIPI+.

In Section 5.2, we develop mixed-precision variants of BCGS-PIP+ and BCGS
-PIPI+. Although we cannot prove it theoretically, we show via numerical exper-
iments in Section 5.3 that there is often a numerical advantage to using mixed
precision. In particular, the mixed precision variants satisfy the loss of orthog-
onality bound for more ill-conditioned matrices than the corresponding uniform
precision variants.

5.1 Reorthogonalized Pythagorean variants of
BCGS

Let X ∈ Rm×s denote a block vector with block size s as a concatenation of s
column vectors. The QR factorization X = QR of the concatenation of p block
vectors

X =
[︂
X1 X2 · · · Xp

]︂
∈ Rm×ps

can be found using a BGS method, where Q ∈ Rm×ps is an orthonormal basis for
the column space of X and R ∈ Rps×ps is an upper triangular matrix. The goal

32

of block methods is to compute QR factors block-wise, i.e., s columns of Q are
computed in each iteration instead of one column.

Throughout this chapter, uppercase Roman letters (Rij, Sij, Tij) denote s× s
block entries of a ps × ps matrix, which will be denoted by uppercase Roman
script (R,S, T). A block column of such matrices will be written as

R1:k−1,k =

⎡⎢⎢⎢⎢⎣
R1,k

R2,k
...

Rk−1,k

⎤⎥⎥⎥⎥⎦ .

For simplicity, we also abbreviate ks× ks submatrices as Rk := R1:k,1:k.
Bold uppercase Roman letters (Qk, Xk, Uk) denote m× s block vectors, and

bold, uppercase Roman script (Q,X ,U) denotes an indexed concatenation of p
such vectors. Similar to above, m× ks submatrices are abbreviated as

Qk := Q1:k =
[︂
Q1 Q2 · · · Qk

]︂
.

BCGS-PIP is a variant of BCGS, where the block diagonal entries of the R
factor are computed via the block Pythagorean theorem given in Corollary 1.

Corollary 1 (Carson et al. [2021]). Let U ,V ,W ∈ Rm×s be block vectors such
that U = V + W and V ⊥ W , in the sense that the spaces spanned by the
columns of each block vector are perpendicular to each other. Suppose the QR
factorizations for each block vector are given as

U = QURU , V = QV RV , and W = QWRW .

Then
RT

URU = RT
V RV +RT

WRT
W .

All BGS variants use a non-block orthogonalization scheme within blocks,
such as Householder QR, CGS, MGS, or Cholesky QR. Throughout this chapter
we will refer to this scheme as an IntraOrtho. The BCGS-PIP approach is given
in Algorithm 8.

Algorithm 8 [Q,R] = BCGS-PIP(X , IntraOrtho) (Carson et al. [2021])
1: Allocate memory for Q, R
2: [Q1, R11] = IntraOrtho (X1)
3: for k = 2, . . . , p do

4:

[︄
R1:k−1,k

Pk

]︄
=
[︂
Qk−1 Xk

]︂T
Xk

5: Rkk = chol
(︂
Pk − RT

1:k−1,kR1:k−1,k

)︂
6: Vk = Xk − Qk−1R1:k−1,k

7: Qk = VkR
−1
kk

8: return Q = [Q1, . . . ,Qp], R = (Rij)

The stability of the orthogonalization processes can be determined via the
Cholesky residual ⃦⃦⃦

X T X − R̄T R̄
⃦⃦⃦

(5.1)

33

and the loss of orthogonality ⃦⃦⃦
I − Q̄T Q̄

⃦⃦⃦
. (5.2)

Using the block Pythagorean approach, BCGS-PIP keeps (5.1) close to machine
precision u. On the other hand, (5.2) can be quite high and there is a constraint on
the condition number of X : for O (u)κ2(X) ≤ 1, BCGS-PIP can only guarantee⃦⃦⃦

I − Q̄T Q̄
⃦⃦⃦

≤ O (u)κ2(X).

This bound shows that when κ(X) is close to u−1/2, BCGS-PIP may com-
pletely lose all orthogonality. To prevent the loss of orthogonality of the algo-
rithm, we can use reorthogonalization.

Reorthogonalization can be implemented in several ways. The easiest one is to
run BCGS-PIP twice in a row. Using this technique, we introduce Algorithm 9,
which we refer to as BCGS-PIP+.

Algorithm 9 [Q,R] = BCGS-PIP+(X , IntraOrtho)
1: [U ,S] = BCGS-PIP(X , IntraOrtho)
2: [Q, T] = BCGS-PIP(U , IntraOrtho)
3: R = T S;
4: return Q = [Q1, . . . ,Qp], R = (Rij)

Theorem 2 and Corollary 3 gives the loss of orthogonality and Cholesky resid-
ual bound for BSCG-PIP+, respectively.

Theorem 2. Let X ∈ Rm×ps with O (u)κ2(X) ≤ 1
2 and X = Q̄R̄, where Q̄

and R̄ are obtained via Algorithm 9. Assuming that for all X ∈ Rm×s, [Q̄, R̄] =
IntraOrtho (X) satisfy

R̄
T
R̄ = XT X + ∆E, ∥∆E∥ ≤ O (u) ∥X∥2 , and
Q̄R̄ = X + ∆D, ∥∆D∥ ≤ O (u)

(︂
∥X∥ +

⃦⃦⃦
Q̄
⃦⃦⃦ ⃦⃦⃦
R̄
⃦⃦⃦)︂
,

then Q̄ and R̄ satisfy⃦⃦⃦
I − Q̄T Q̄

⃦⃦⃦
≤ O (u) , and (5.3)

Q̄R̄ = X + ∆D, ∥∆D∥ ≤ O (u) ∥X ∥ . (5.4)

Proof. We first apply [Carson et al., 2021, Theorem 3.4] to line 1 and get⃦⃦⃦
I − ŪT Ū

⃦⃦⃦
≤ O (u)κ2(X), and (5.5)

Ū S̄ = X + ∆D1, ∥∆D1∥ ≤ O (u) ∥X ∥ . (5.6)

Applying it for the second time to line 2 gives⃦⃦⃦
I − Q̄T Q̄

⃦⃦⃦
≤ O (u)κ2(U), and (5.7)

Q̄T̄ = Ū + ∆D2, ∥∆D2∥ ≤ O (u)
⃦⃦⃦
Ū
⃦⃦⃦
. (5.8)

34

Using [Carson et al., 2021, Theorem 3.1], we can also derive
⃦⃦⃦
Ū
⃦⃦⃦

≤ 3. Using
the perturbation theory of singular values [Golub and Van Loan, 2013, Corol-
lary 8.6.2], (5.5) and the assumption O (u)κ2(X) ≤ 1

2 we can calculate a lower
bound on σmin(Ū):

σmin(Ū) ≥ 1√
2
,

which yields
κ(Ū) = σmax

σmin
≤ 3

√
2. (5.9)

Applying (5.9) to (5.7) automatically gives (5.3).
To prove (5.4), we first use [Carson et al., 2021, Theorem 3.1] to get

⃦⃦⃦
Q̄
⃦⃦⃦

≤ 3.
Then using this bound we write

Q̄R̄ = Q̄T̄ S̄ + ∆D3, ∥∆D3∥ ≤ O (u)
⃦⃦⃦
T̄
⃦⃦⃦ ⃦⃦⃦

S̄
⃦⃦⃦
. (5.10)

Plugging (5.6) and (5.8) in (5.10) yields

Q̄R̄ = (Ū + ∆D2)S̄ + ∆D3 = X + ∆D1 + ∆D2S̄ + ∆D3⏞ ⏟⏟ ⏞
=:∆D

,

where

∥∆D∥ ≤ ∥∆D1∥ + ∥∆D2∥
⃦⃦⃦
S̄
⃦⃦⃦

+ ∥∆D3∥

≤ O (u) ∥X ∥ + 3O (u)
⃦⃦⃦
S̄
⃦⃦⃦

+ O (u)
⃦⃦⃦
T̄
⃦⃦⃦ ⃦⃦⃦

S̄
⃦⃦⃦ (5.11)

when we use
⃦⃦⃦
Ū
⃦⃦⃦

≤ 3.
Lastly, we apply [Carson et al., 2021, Theorem 3.2] again with ∥U∥ = O (1)

to get

S̄T S̄ = X T X + ∆E1, ∥∆E1∥ ≤ O (u) ∥X ∥2 , and

T̄ T T̄ = ŪT Ū + ∆E2, ∥∆E2∥ ≤ O (u) ,

which with another application of [Golub and Van Loan, 2013, Corollary 8.6.2]
gives ⃦⃦⃦

S̄
⃦⃦⃦

≤ O (1) ∥X ∥ and
⃦⃦⃦
T̄
⃦⃦⃦

≤ O (1) . (5.12)

Substituting (5.12) into (5.11) proves (5.4) and concludes the proof.

Corollary 3. Let X ∈ Rm×ps with O (u)κ2(X) ≤ 1
2 and X = Q̄R̄, where Q̄

and R̄ are obtained via Algorithm 9. Assuming that for all X ∈ Rm×s, [Q̄, R̄] =
IntraOrtho (X) satisfy

R̄
T
R̄ = XT X + ∆E, ∥∆E∥ ≤ O (u) ∥X∥2 , and
Q̄R̄ = X + ∆D, ∥∆D∥ ≤ O (u)

(︂
∥X∥ +

⃦⃦⃦
Q̄
⃦⃦⃦ ⃦⃦⃦
R̄
⃦⃦⃦)︂
,

then R̄ satisfies

R̄T R̄ = X T X + ∆R, ∥∆R∥ ≤ O (u) ∥X ∥2 . (5.13)

35

We can prove Corollary 3 directly via applying [Carson et al., 2021, Theo-
rem 3.2] twice.

One drawback to Algorithm 9 is the use of two for-loops (one in each BCGS-
PIP implementation) which results in additional synchronization points. As men-
tioned in Chapter 4, each synchronization point can cause an increase in the com-
munication cost of the overall algorithm. To reduce this cost, we can combine
the for-loops without an additional synchronization point. We denote this new
variant given in Algorithm 10 as BCGS-PIPI+.

Algorithm 10 [Q,R] = BCGS-PIPI+(X , IntraOrtho)
1: Allocate memory for Q, R
2: [Q1, R11] = IntraOrtho (X1) ▷ S11 = R11, U1 = Q1, T11 = I

3: for k = 2, . . . , p do

4:

[︄
S1:k−1,k

Ωk

]︄
=
[︂
Qk−1 Xk

]︂T
Xk ▷ First BCGS-PIP step

5: Skk = chol
(︂
Ωk − ST

1:k−1,kS1:k−1,k

)︂
6: Vk = Xk − Qk−1S1:k−1,k

7: Uk = VkS
−1
kk

8:

[︄
T1:k−1,k

Pk

]︄
=
[︂
Qk−1 Uk

]︂T
Uk ▷ Second BCGS-PIP step

9: Tkk = chol
(︂
Pk − T T

1:k−1,kT1:k−1,k

)︂
10: Wk = Uk − Qk−1T1:k−1,k

11: Qk = WkT
−1
kk

12: R1:k−1,k = S1:k−1,k + T1:k−1,kSkk ▷ Finalize R entries

13: Rkk = TkkSkk

14: return Q = [Q1, . . . ,Qp], R = (Rij)

While we reduce the communication cost via combining for-loops, we cannot
use the results from Carson et al. [2021] immediately anymore to prove the sta-
bility of BCGS-PIPI+. We provide Lemmas 4 and 5 to prepare what we need to
prove stability.

Lemma 4. Suppose O (u)κ2(X) ≤ 1
2 and Q̄ ∈ Rm×ps is such that

⃦⃦⃦
I − Q̄T Q̄

⃦⃦⃦
≤

O(u)
1−O(u)κ2(X) . Then ⃦⃦⃦

Q̄
⃦⃦⃦

≤ 1 + O (u) .

Proof. The triangle inequality gives
⃦⃦⃦
Q̄
⃦⃦⃦2

≤ 1 − O (u)κ2(X) + O (u)
1 − O (u)κ2(X) .

Using the assumption on O (u)κ2(X), we have
⃦⃦⃦
Q̄
⃦⃦⃦2

≤ 2
(︃1

2 + O (u)
)︃

≤ 1 + O (u) .

Taking the square root and approximating it by a first-order Taylor expansion
around 1 achieves the desired result.

36

Lemma 5. Assume O (u)κ2(X) ≤ 1
2 . Fix k ∈ {2, . . . , p} and suppose Q̄k−1 ∈

Rm×ps computed by Algorithm 10 satisfies the following:

X k−1 + ∆X k−1 = Q̄k−1R̄k−1, ∥∆X k−1∥ ≤ O (u) ∥X k−1∥ , and (5.14)⃦⃦⃦
I − Q̄T

k−1Q̄k−1

⃦⃦⃦
≤ O (u)

1 − O (u)κ2(X k−1) . (5.15)

Then for the computed quantities S̄1:k−1,k, S̄kk, V̄ k, and Ū k from Algorithm 10,
it holds that

S̄
T

kkS̄kk = XT
k Xk − XT

k Q̄k−1Q̄
T

k−1Xk + ∆Skk, and (5.16)

Ū kS̄kk = Xk − Q̄k−1Q̄
T

k−1Xk + ∆Uk, (5.17)

where

∥∆Skk∥ ≤ O (u) ∥Xk∥2 , (5.18)⃦⃦⃦
S̄kk

⃦⃦⃦
≤ O (1) ∥Xk∥ , (5.19)⃦⃦⃦

S̄
−1
kk

⃦⃦⃦2
≤ 1
σ2

min(X k) − O (u) ∥X k∥2 (5.20)

∥∆Uk∥ ≤ O (u) ∥Xk∥
(︂
1 +

⃦⃦⃦
Ū k

⃦⃦⃦)︂
, and (5.21)⃦⃦⃦

Ū k

⃦⃦⃦
≤ 1.7. (5.22)

Proof. Line 4 of Algorithm 10 with Lemma 4 gives

S̄1:k−1,k = Q̄T

k−1Xk + ∆Sk, ∥∆Sk∥ ≤ O (u) ∥Xk∥ ; (5.23)
Ω̄k = XT

k Xk + ∆Ωk, ∥∆Ωk∥ ≤ O (u) ∥Xk∥2 ; (5.24)⃦⃦⃦
S̄1:k−1,k

⃦⃦⃦
≤ (1 + O (u)) ∥Xk∥ ; and (5.25)⃦⃦⃦

Ω̄k

⃦⃦⃦
≤ (1 + O (u)) ∥Xk∥2 . (5.26)

Applying [Higham, 2002, Theorem 10.3] to S̄kk yields

S̄
T

kkS̄kk = Ω̄k − S̄T

1:k−1,kS̄1:k−1,k + ∆Fk + ∆Ck (5.27)

with
∥∆Fk∥ ≤ O (u) ∥Xk∥2 and ∥∆Ck∥ ≤ O (u) ∥Xk∥2 , (5.28)

where ∆Fk denotes the floating-point error from the sum and product of Ω̄k −
S̄T

1:k−1,kS̄1:k−1,k, while ∆Ck is the Cholesky error.
Substituting (5.23)-(5.25) into (5.27) gives (5.16) with

∆Skk := ∆Ωk + ∆Fk + ∆Ck − XT
k Q̄k−1∆Sk − ∆ST

k Q̄T

k−1Xk,

after dropping O (u2) terms. From Lemma 4 and bounds (5.23), (5.24), and
(5.28), we can derive (5.18) and (5.19).

For the bound (5.20), we rewrite (5.16) as

S̄
T

kkS̄kk = XT
k (I − Q̄k−1Q̄

T

k−1)(I − Q̄k−1Q̄
T

k−1)Xk + ∆ ˜︁Sk, (5.29)

37

where ∆ ˜︁Sk := XT
k Q̄k−1Q̄

T

k−1(I − Q̄k−1Q̄
T

k−1)Xk + ∆Skk satisfies⃦⃦⃦
∆ ˜︁Sk

⃦⃦⃦
≤ ∥Xk∥2

⃦⃦⃦
Q̄k−1

⃦⃦⃦2 ⃦⃦⃦
I − Q̄k−1Q̄

T

k−1

⃦⃦⃦
+ O (u) ∥Xk∥2 ≤ O (u) ∥Xk∥2 (5.30)

via Lemma 4 and the assumption (5.15).
Using (5.29) and (5.30) we can write

σ2
min(S̄kk) ≥ σ2

min((I − Q̄k−1Q̄
T

k−1)Xk) −
⃦⃦⃦
∆ ˜︁Sk

⃦⃦⃦
≥ σ2

min((I − Q̄k−1Q̄
T

k−1)Xk) − O (u) ∥Xk∥2 . (5.31)

To bound σ2
min((I − Q̄k−1Q̄

T

k−1)Xk), we first use the assumption (5.14) to obtain

(I − Q̄k−1Q̄
T

k−1)Xk = Xk − Q̄k−1R̄k−1R̄
−1
k−1Q̄

T

k−1Xk

=
[︂
X k−1 + ∆X k−1 Xk

]︂
Y T ,

(5.32)

where Y :=
[︂
−(R̄−1

k−1Q̄
T

k−1Xk)T Is

]︂
∈ Rsk×s, and Is is the s × s identity ma-

trix. Using (5.32), (5.14), and perturbation theory of singular values [Golub and
Van Loan, 2013, Corollary 8.6.2], we can write

σ2
min((I − Q̄k−1Q̄

T

k−1)Xk) = min
y∈Rsk\0

⎛⎜⎝
⃦⃦⃦
(I − Q̄k−1Q̄

T

k−1)Xky
⃦⃦⃦2

∥y∥2

⎞⎟⎠
= min

y∈Rsk\0

⎛⎜⎝
⃦⃦⃦[︂

X k−1 + ∆X k−1 Xk

]︂
Y T y

⃦⃦⃦2

∥y∥2

⎞⎟⎠
= min

y∈Rsk\0

⎛⎜⎝
⃦⃦⃦[︂

X k−1 + ∆X k−1 Xk

]︂
Y T y

⃦⃦⃦2

∥Y T y∥2

⃦⃦⃦
Y T y

⃦⃦⃦2

∥y∥2

⎞⎟⎠ .
(5.33)

We can bound (5.33) from below by

min
y∈Rsk\0

⎛⎜⎝
⃦⃦⃦[︂

X k−1 + ∆X k−1 Xk

]︂
(Y T y)

⃦⃦⃦2

∥Y T y∥2

⎞⎟⎠ min
y∈Rsk\0

⎛⎜⎝
⃦⃦⃦
Y T y

⃦⃦⃦2

∥y∥2

⎞⎟⎠ ,
while

σ2
min

(︂[︂
X k−1 + ∆X k−1 Xk

]︂)︂
≥ (σmin(X k) − ∥∆X k−1∥)2

≥ σ2
min(X k) − 2 ∥X k∥ ∥∆X k−1∥

≥ σ2
min(X k) − O (u) ∥X k∥ ∥X k−1∥

≥ σ2
min(X k) − O (u) ∥X k∥2 .

(5.34)

Finally, using (5.34) and (5.31) with
⃦⃦⃦
S̄

−1
kk

⃦⃦⃦
= 1/σmin(S̄kk) we get (5.20).

To prove (5.21) we first use line 6 of Algorithm 10. Substitution of (5.23)
gives

V̄ k = Xk − Q̄k−1Q̄
T

k−1Xk + ∆Vk, ∥∆Vk∥ ≤ O (u) ∥Xk∥ . (5.35)

38

Using similar logic as in pp. 1376 of Carson et al. [2021] (using [Higham, 2002,
Theorem 8.5 & Lemma 6.6]) and applying (5.19) we get

Ū kS̄kk = V̄ k + ∆Gk, ∥∆Gk∥ ≤ O (u)
⃦⃦⃦
Ū k

⃦⃦⃦
∥Xk∥ . (5.36)

Substituting (5.35) into (5.36) gives (5.17), with

∆Uk := ∆Gk + ∆Vk,

which satisfies (5.21).
For (5.22) we first multiply Ū kS̄kk with its transpose and obtain

(Ū kS̄kk)T (Ū kS̄kk) = XT
k Xk − 2XT

k Q̄k−1Q̄
T

k−1Xk

+ XT
k Q̄k−1Q̄

T

k−1Q̄k−1Q̄
T

k−1Xk + ∆Hk

= XT
k Xk − XT

k Q̄k−1Q̄
T

k−1Xk

+ XT
k Q̄k−1(I − Q̄T

k−1Q̄k−1)Q̄T

k−1Xk + ∆Hk,

(5.37)

where

∆Hk := XT
k ∆Uk +

(︂
∆Uk

)︂T
Xk + XT

k Q̄k−1Q̄
T

k−1∆Uk +
(︂
∆Uk

)︂T
Q̄k−1Q̄

T

k−1Xk,

after dropping O (u2) terms. Applying Lemma 4 and (5.21) leads to

∥∆Hk∥ ≤ O (u) ∥Xk∥2
(︂
1 +

⃦⃦⃦
Ū k

⃦⃦⃦)︂
.

Substituting (5.16) into (5.37) gives

(Ū kS̄kk)T (Ū kS̄kk) = S̄
T

kkS̄kk + XT
k Q̄k−1(I − Q̄T

k−1Q̄k−1)Q̄T

k−1Xk + ∆Hk − ∆Skk,

and then multiplying by S−T
kk on the left and S−1

kk on the right, leads to

Ū
T

k Ū k = I + S̄
−T

kk XT
k Q̄k−1(I − Q̄T

k−1Q̄k−1)Q̄T

k−1XkS̄
−1
kk + S̄

−T

kk (∆Hk − ∆Skk)S̄−1
kk .

(5.38)
Using the assumption

O (u)κ2(X k) ≤ O (u)κ2(X) ≤ 1/2,

applying (5.15) together with (5.20), and taking norms gives us⃦⃦⃦
Ū k

⃦⃦⃦2
=
⃦⃦⃦
Ū

T

k Ū k

⃦⃦⃦
≤ 1 + O (u)

⃦⃦⃦
S̄

−1
kk

⃦⃦⃦2
∥Xk∥2 + O (u)

⃦⃦⃦
S̄

−1
kk

⃦⃦⃦2
∥Xk∥2

(︂
1 +

⃦⃦⃦
Ū k

⃦⃦⃦)︂
≤ 1 + O (u)κ2(X k)

(︂
2 +

⃦⃦⃦
Ū k

⃦⃦⃦)︂
≤ 1 + 1

2
⃦⃦⃦
Ū k

⃦⃦⃦
.

(5.39)

Finally, we solve the quadratic inequality (5.39) to get
⃦⃦⃦
Ū k

⃦⃦⃦
≤ 1+

√
33

4 ≤ 1.7.

39

Using the proven intermediate terms in Lemma 5, we prove a bound for the
loss of orthogonality of Algorithm 10 in Theorem 6. Notice that, one of the most
crucial differences between BCGS-PIP+ and BCGS-PIPI+ is the loss of orthog-
onality condition on the IntraOrtho in BCGS-PIPI+. This condition limits the
choice of IntraOrtho in BCGS-PIPI+ (Householder QR (Higham [2002]), TSQR
(Mori et al. [2012]), or Cholesky QR2 (Yamamoto et al. [2015])) while no such
condition exists in BCGS-PIP+.

Theorem 6. Assume that O (u)κ2(X) ≤ 1
2 and that for all X ∈ Rm×s with

O (u)κ2(X) ≤ 1
2 , [Q̄, R̄] = IntraOrtho (X) satisfy

R̄
T
R̄ = XT X + ∆E, ∥∆E∥ ≤ O (u) ∥X∥2

Q̄R̄ = X + ∆D, ∥∆D∥ ≤ O (u) ∥X∥ and⃦⃦⃦
I − Q̄

T
Q̄
⃦⃦⃦

≤ O (u)
1 − O (u)κ2(X) .

Assume also that for k ∈ {2, . . . , p}

X k−1 + ∆X k−1 = Q̄k−1R̄k−1, ∥∆X k−1∥ ≤ O (u) ∥X k−1∥ .

Then for all k ∈ {1, . . . , p}, Q̄k computed by Algorithm 10 satisfies
⃦⃦⃦
I − Q̄T

k Q̄k

⃦⃦⃦
≤ O (u)

1 − O (u)κ2(X k) ≤ O (u) . (5.40)

Proof. O (u)κ2(X) ≤ 1
2 implies that for all k ∈ {1, . . . , p}, O (u)κ2(X k) ≤ 1

2 .
Then for the base case, the assumptions on IntraOrtho directly yield⃦⃦⃦

I − Q̄T

1 Q̄1

⃦⃦⃦
=
⃦⃦⃦
I − Q̄

T

1 Q̄1

⃦⃦⃦
≤ O (u)

1 − O (u)κ2(X1) = O (u)
1 − O (u)κ2(X 1) .

Suppose that (5.40) holds for all j ∈ {1, . . . , k − 1}. We will look at I − Q̄T

k Q̄k

block-by-block:

I − Q̄T

k Q̄k =
⎡⎣I − Q̄T

k−1Q̄k−1 Q̄T

k−1Q̄k

Q̄
T

k Q̄k−1 I − Q̄
T

k Q̄k

⎤⎦ , (5.41)

where Q̄k =
[︂
Q̄k−1 Q̄k

]︂
.

We can directly prove the upper left block via the induction hypothesis. For
the off-diagonal blocks, using standard floating-point bounds, Lemmas 4 and 5
give

T̄ 1:k−1,k = Q̄T

k−1Ū k + ∆Tk, ∥∆Tk∥ ≤ O (u) (5.42)

P̄ k = Ū
T

k Ū k + ∆Pk, ∥∆Pk∥ ≤ O (u) (5.43)⃦⃦⃦
T̄ 1:k−1,k

⃦⃦⃦
≤ O (1) (5.44)⃦⃦⃦

P̄ k

⃦⃦⃦
≤ O (1) .

As in Lemma 5, using [Higham, 2002, Theorem 10.3] on T̄ kk we get

T̄
T

kkT̄ kk = P̄ k − T̄ T

1:k−1,kT̄ 1:k−1,k + ∆Fk + ∆Ck (5.45)

40

with
∥∆Fk∥ ≤ O (u) and ∥∆Ck∥ ≤ O (u) ,

and ⃦⃦⃦
T̄ kk

⃦⃦⃦
≤ O (1) , (5.46)

where ∆Fk denotes the floating-point error from the sum and product of P̄ k −
T̄ T

1:k−1,kT̄ 1:k−1,k, and ∆Ck is the Cholesky error.
Then, substituting (5.42) and (5.43) into (5.45) gives

T̄
T

kkT̄ kk = Ū
T

k (I − Q̄k−1Q̄
T

k−1)(I − Q̄k−1Q̄
T

k−1)Ū k + ∆ ˜︁Tk

⃦⃦⃦
∆ ˜︁Tk

⃦⃦⃦
≤ O (u) .

(5.47)
To bound

⃦⃦⃦
T̄

−1
kk

⃦⃦⃦
we use (5.47) and thus have

σ2
min(T̄ kk) ≥ σ2

min

(︂
(I − Q̄k−1Q̄

T

k−1)Ū k

)︂
−
⃦⃦⃦
∆ ˜︁Tk

⃦⃦⃦
. (5.48)

Together with (5.35) and (5.36), we can write

Ū k =
(︂
(I − Q̄k−1Q̄

T

k−1)Xk + ∆˜︂Uk

)︂
S̄

−1
kk . (5.49)

Multiplying (5.49) by I − Q̄k−1Q̄
T

k−1 on the left leads to

(I − Q̄k−1Q̄
T

k−1)Ū k = Ū k − Q̄k−1(I − Q̄T

k−1Q̄k−1)Q̄T

k−1XkS̄
−1
kk

− Q̄k−1Q̄
T

k−1∆˜︂UkS̄
−1
kk .

(5.50)

Define ∆Ek := Q̄k−1(I − Q̄T

k−1Q̄k−1)Q̄T

k−1XkS̄
−1
kk + Q̄k−1Q̄

T

k−1∆˜︂UkS̄
−1
kk . Using

(5.20) and the assumption O (u)κ2(X) ≤ 1
2 , we can write

∥Xk∥
⃦⃦⃦
S̄

−1
kk

⃦⃦⃦
≤
√︃

∥X k∥2
⃦⃦⃦
S̄

−1
kk

⃦⃦⃦2
≤

⌜⃓⃓⎷ κ2(X k)
1 − O (u)κ2(X k) ≤

√
2κ(X k).

Using the induction hypothesis and Lemma 4, we can get

∥∆Ek∥ ≤ O (u) ∥Xk∥
⃦⃦⃦
S̄

−1
kk

⃦⃦⃦
≤ O (u)κ(X k). (5.51)

Using (5.38), (5.39), (5.50), and (5.51), we write the following bounds:

σ2
min(Ū k) ≥ 1 −

⃦⃦⃦
S̄

−T

kk XT
k Q̄k−1(I − Q̄T

k−1Q̄k−1)Q̄T

k−1XkS̄
−1
kk

⃦⃦⃦
−
⃦⃦⃦
S̄

−T

kk (∆Hk − ∆Skk)S̄−1
kk

⃦⃦⃦
≥ 1 − O (u)κ2(X k),

and

σ2
min((I − Q̄k−1Q̄

T

k−1)Ū k) ≥
(︂
σmin(Ū k) − ∥∆Ek∥

)︂2

≥ σ2
min(Ū k) − 2 ∥∆Ek∥

⃦⃦⃦
Ū k

⃦⃦⃦
≥ 1 − O (u)κ2(X k).

(5.52)

41

Substituting (5.52) and (5.47) into (5.48), and using
⃦⃦⃦
T̄

−1
kk

⃦⃦⃦2
= 1/σ2

min(T̄ kk), we
have

⃦⃦⃦
T̄

−1
kk

⃦⃦⃦
=
√︃⃦⃦⃦

T̄
−1
kk

⃦⃦⃦2
≤
√︄

1
1 − O (u)κ2(X k) ≤ 1

1 − O (u)κ2(X k) . (5.53)

As in the derivation of (5.36), line 11 together with Lemma 4 and (5.46) leads to

Q̄kT̄ kk = W̄ k + ∆Gk, ∥∆Gk∥ ≤ O (u)
⃦⃦⃦
Q̄k

⃦⃦⃦ ⃦⃦⃦
T̄ kk

⃦⃦⃦
≤ O (u) , (5.54)

after dropping O (u2) terms. Multiplying (5.54) by Q̄T

k−1 on the left leads to

Q̄T

k−1Q̄kT̄ kk = Q̄T

k−1W̄ k + Q̄T

k−1∆Gk. (5.55)

Next, substituting

W̄ k = Ū k − Q̄k−1T̄ 1:k−1,k + ∆Wk, ∥∆Wk∥ ≤ O (u) and
⃦⃦⃦
W̄ k

⃦⃦⃦
≤ O (1) (5.56)

into (5.55), multiplying both sides by T̄−1
kk along with (5.42) yields

Q̄T

k−1Q̄k = (I − Q̄T

k−1Q̄k−1)T1:k−1,kT̄
−1
kk +

(︂
∆Tk + Q̄T

k−1(∆Gk + ∆Wk)
)︂
T̄

−1
kk .

Finally, the induction hypothesis (5.40), Lemmas 4 and 5, and (5.42), (5.53),
(5.54), and (5.56) gives the bound

⃦⃦⃦
Q̄T

k−1Q̄k

⃦⃦⃦
≤ O (u)

1 − O (u)κ2(X k−1) · 1
1 − O (u)κ2(X k) + O (u)

1 − O (u)κ2(X k)

≤ O (u)
1 − O (u)κ2(X k) .

(5.57)

For the bottom right entry, we can write

T̄
T

kk(I − Q̄
T

k Q̄k)T̄ kk = T̄
T

kkT̄ kk − T̄
T

kkQ̄
T

k Q̄kT̄ kk

= P̄ k − T̄ T

1:k−1,kT̄ 1:k−1,k + ∆Fk + ∆Ck

− (W̄ k − ∆Gk)T (W̄ k − ∆Gk)

= P̄ k − T̄ T

1:k−1,kT̄ 1:k−1,k − W̄
T

k W̄ k

− W̄
T

k ∆Gk − (∆Gk)T W̄ k + ∆Fk + ∆Ck⏞ ⏟⏟ ⏞
=:∆Hk

,

(5.58)

where we eliminated O (u2) terms and combined (5.45) and (5.54). Then substi-
tuting (5.43) and (5.56) into (5.58) gives

T̄
T

kk(I − Q̄
T

k Q̄k)T̄ kk = −T̄ T

1:k−1,kT̄ 1:k−1,k + Ū
T

k Q̄k−1T̄ 1:k−1,k + T̄ T

1:k−1,kQ̄T

k−1Ū k

− T̄ T

1:k−1,kQ̄T

k−1Q̄k−1T̄ 1:k−1,k − ∆Jk − ∆Hk,

(5.59)

42

where ∆Jk :=
(︂
Ū k −Q̄k−1T̄ 1:k−1,k

)︂T
∆Wk −

(︂
∆Wk

)︂T(︂
Ū k −Q̄k−1T̄ 1:k−1,k

)︂
. Sub-

stituting (5.42) into (5.59) leads to

T̄
T

kk(I − Q̄
T

k Q̄k)T̄ kk = T̄ T

1:k−1,k

(︂
I − Q̄T

k−1Q̄k−1
)︂
T̄ 1:k−1,k

−
(︂
∆Tk

)︂T
T̄ 1:k−1,k − T̄ T

1:k−1,k∆Tk − ∆Jk − ∆Hk.

Next, we multiply (5.60) by T̄
−T

kk on the left and T̄
−1
kk on the right, take norms,

and get ⃦⃦⃦
I − Q̄

T

k Q̄k

⃦⃦⃦
≤ O (u)

1 − O (u)κ2(X k) (5.60)

after the application of previously derived bounds and the induction hypothesis.
Lastly, using (5.41) together with [Garcia and Horn, 2017, P.15.50], the in-

duction hypothesis and bounds (5.57) and (5.60), we get

⃦⃦⃦
I − Q̄T

k Q̄k

⃦⃦⃦
=

⃦⃦⃦⃦
⃦⃦
⎡⎣I − Q̄T

k−1Q̄k−1 Q̄T

k−1Q̄k

Q̄
T

k Q̄k−1 I − Q̄
T

k Q̄k

⎤⎦⃦⃦⃦⃦⃦⃦
≤

⃦⃦⃦⃦
⃦⃦
⎡⎣⃦⃦⃦I − Q̄T

k−1Q̄k−1

⃦⃦⃦ ⃦⃦⃦
Q̄T

k−1Q̄k

⃦⃦⃦
⃦⃦⃦
Q̄

T

k Q̄k−1

⃦⃦⃦ ⃦⃦⃦
I − Q̄

T

k Q̄k

⃦⃦⃦⎤⎦
⃦⃦⃦⃦
⃦⃦

≤

⃦⃦⃦⃦
⃦⃦
⎡⎣⃦⃦⃦I − Q̄T

k−1Q̄k−1

⃦⃦⃦ ⃦⃦⃦
Q̄T

k−1Q̄k

⃦⃦⃦
⃦⃦⃦
Q̄

T

k Q̄k−1

⃦⃦⃦ ⃦⃦⃦
I − Q̄

T

k Q̄k

⃦⃦⃦⎤⎦
⃦⃦⃦⃦
⃦⃦

F

≤
⃦⃦⃦
I − Q̄T

k−1Q̄k−1

⃦⃦⃦
+ 2

⃦⃦⃦
Q̄T

k−1Q̄k

⃦⃦⃦
+
⃦⃦⃦
I − Q̄

T

k Q̄k

⃦⃦⃦
≤ O (u)

1 − O (u)κ2(X k) .

(5.61)

With the assumption O (u)κ(X) ≤ 1
2 we conclude the proof.

Next, we prove the standard residual for Algorithm 10 in Theorem 7.

Theorem 7. Assume that O (u)κ2(X) ≤ 1
2 and that for all X ∈ Rm×s with

O (u)κ2(X) ≤ 1
2 , [Q̄, R̄] = IntraOrtho (X) satisfy

Q̄R̄ = X + ∆D, ∥∆D∥ ≤ O (u) ∥X∥ and
⃦⃦⃦
I − Q̄

T
Q̄
⃦⃦⃦

≤ O (u)
1 − O (u)κ2(X) .

Then for all k ∈ {1, . . . , p},

X k + ∆X k = Q̄kR̄k, ∥∆X k∥ ≤ O (u) ∥X k∥ .

Proof. Using the assumption on IntraOrtho, we have for the base case,

X 1 + ∆X 1 = Q̄1R̄1, ∥∆X 1∥ ≤ O (u) ∥X 1∥ .

Now, assume that for all j ∈ {1, . . . , k − 1}, we have

X k−1 + ∆X k−1 = Q̄k−1R̄k−1, ∥∆X k−1∥ ≤ O (u) ∥X k−1∥ . (5.62)

43

Then we can write

∆X k :=
[︂
∆X k−1 ∆Xk

]︂
= Q̄kR̄k − X k =

[︂
Q̄k−1R̄k−1 − X k−1 Q̄k−1R̄1:k−1,k + Q̄kR̄kk − Xk

]︂
.

(5.63)

We can directly prove the first element of (5.63) using the induction hypothesis.
For the second element, we will work on Q̄k−1R̄1:k−1,k and Q̄kR̄kk separately.
Using (5.25), (5.44), and Lemma 5 we can write

R̄1:k−1,k = S̄1:k−1,k + T̄ 1:k−1,kS̄kk + ∆Rk,

∥∆Rk∥ ≤ O (u) (
⃦⃦⃦
S̄1:k−1,k

⃦⃦⃦
+
⃦⃦⃦
T̄ 1:k−1,k

⃦⃦⃦ ⃦⃦⃦
S̄kk

⃦⃦⃦
) ≤ O (u) ∥Xk∥ .

Combining with (5.23), we have

Q̄k−1R̄1:k−1,k = Q̄k−1
(︂
S̄1:k−1,k + T̄ 1:k−1,kS̄kk + ∆Rk

)︂
= Q̄k−1

(︂
Q̄T

k−1Xk + ∆Sk + T̄ 1:k−1,kS̄kk + ∆Rk

)︂
= Q̄k−1Q̄

T

k−1Xk + Q̄k−1T̄ 1:k−1,kS̄kk + Q̄k−1 (∆Sk + ∆Rk) ,
(5.64)

with ⃦⃦⃦
Q̄k−1 (∆Sk + ∆Rk)

⃦⃦⃦
≤ O (u) ∥Xk∥ .

Using line 13 of Algorithm 10 along with the bounds (5.19), and (5.46) gives

R̄kk = T̄ kkS̄kk + ∆Rkk, ∥∆Rkk∥ ≤ O (u) ∥Xk∥ . (5.65)

Substituting (5.35), (5.36), (5.54), and (5.56) into (5.65), we can write

Q̄kR̄kk = Q̄k

(︂
T̄ kkS̄kk + ∆Rkk

)︂
= Q̄kT̄ kkS̄kk + Q̄k∆Rkk

=
(︂
W̄ k + ∆Gk

)︂
S̄kk + Q̄k∆Rkk

=
(︂
Ū k − Q̄k−1T̄ 1:k−1,k + ∆Wk + ∆Gk

)︂
S̄kk + Q̄k∆Rkk

= Ū kS̄kk − Q̄k−1T̄ 1:k−1,kS̄kk + (∆Wk + ∆Gk) S̄kk + Q̄k∆Rkk

= Xk − Q̄k−1Q̄
T

k−1Xk + ∆Vk + ∆Gk − Q̄k−1T̄ 1:k−1,kS̄kk

+ (∆Wk + ∆Gk) S̄kk + Q̄k∆Rkk,

(5.66)

with ⃦⃦⃦
∆Vk + ∆Gk + (∆Wk + ∆Gk) S̄kk + Q̄k∆Rkk

⃦⃦⃦
≤ O (u) ∥Xk∥ .

Using (5.64), (5.66), and the induction hypothesis concludes the proof.

The Cholesky residual bound is given in Corollary 8 whose proof follows di-
rectly from Theorems 6 and 7.

44

Corollary 8. Assume that O (u)κ2(X) ≤ 1
2 and for all k ∈ {1, . . . , p}, Q̄k

computed by Algorithm 10 satisfies
⃦⃦⃦
I − Q̄T

k Q̄k

⃦⃦⃦
≤ O (u)

1 − O (u)κ2(X k) and (5.67)

X k + ∆X k = Q̄kR̄k, ∥∆X k∥ ≤ O (u) ∥X k∥ . (5.68)

Then for all k ∈ {1, . . . , p},

R̄T

k R̄k = X T
k X k + ∆Rk, ∥∆Rk∥ ≤ O (u) ∥X k∥2 .

Proof. Using (5.68) gives

R̄T

k Q̄T

k Q̄kR̄k = X T
k X k + ∆Ek, ∥∆Ek∥ ≤ O (u) ∥X k∥2 ,

where ∆Ek = X T
k ∆X k + (∆X k)T X k + (∆X k)2. Rearranging terms along with

the assumption (5.67) leads to

R̄T

k R̄k = X T
k X k+∆Ek + R̄T

k (I − Q̄T

k Q̄k)R̄k⏞ ⏟⏟ ⏞
=:∆Rk

, ∥∆Rk∥ ≤ O (u)
(︃

∥X k∥2 +
⃦⃦⃦
R̄k

⃦⃦⃦2
)︃
.

(5.69)
We then multiply (5.68) by Q̄T

k on the left and rearrange terms to get

R̄k = (I − Q̄T

k Q̄k)R̄k + Q̄T

k X k + Q̄T

k ∆X k.

Lastly, with the assumptions of this lemma together with Lemma 4, we can write
the bound ⃦⃦⃦

R̄k

⃦⃦⃦
≤ 1 + O (u)

1 − O (u) ∥X k∥ ≤ O (1) ∥X k∥ .

Substitution into (5.69) completes the proof.

5.2 Mixed-precision reorthogonalized Pythago-
rean variants

For both BCGS-PIP+ and BCGS-PIPI+, the range of matrices to which the
bound on the loss of orthogonality applies is limited by κ(X). For instance,
using double precision can guarantee stability only when κ(X) ≤ O (108). To
extend the applicability of Algorithms 9 and 10, we examine the effects of using
higher precision in certain parts of these algorithms, in a similar manner to what
is done in Oktay and Carson [2023]. Our goal is to improve the accuracy of
these algorithms using a higher precision without increasing communication cost
significantly. We call these new variants BCGS-PIPI+MP and BCGS-PIP+MP,
respectively. We use double precision to store the data and solution and u2 preci-
sion in the Cholesky factorization, the application of the corresponding inverses
of R factors, and the inner products. We use precision u to perform the in-
trablock orthogonalization. Note again that precision u throughout this section
corresponds to a precision having unit roundoff u.

45

To illustrate the use of higher precision in the new variants, BCGS-PIP+MP

and BCGS-PIPI+MP are introduced in Algorithms 11 and 12, respectively. We
obtain BCGS-PIP+MP via applying BCGS-PIPMP twice as in Algorithm 9 and
performing line 3 in precision u. Note that the inner products in line 4 in Algo-
rithm 8 and lines 4 and 8 in Algorithm 10 are split across two steps to handle
different precisions. However we still regard these steps as one synchronization
point.

Algorithm 11 [Q,R] =BCGS-PIPMP(X , IntraOrtho)
1: Allocate memory for Q, R
2: [Q1, R11] = IntraOrtho (X1) in precision u
3: for k = 2, . . . , p do
4: R1:k−1,k = QT

k−1Xk in precision u
5: Pk = XT

k Xk in precision u2

6: Rkk = chol
(︂
Pk − RT

1:k−1,kR1:k−1,k

)︂
in precision u2, store in precision u

7: Vk = Xk − Qk−1R1:k−1,k in precision u, store in precision u2

8: Qk = VkR
−1
kk in precision u2, store in precision u

9: return Q = [Q1, . . . ,Qp], R = (Rij)

Algorithm 12 [Q,R] = BCGS-PIPI+MP(X , IntraOrtho)
1: Allocate memory for Q, R
2: [Q1, R11] = IntraOrtho (X1) in precision u
3: for k = 2, . . . , p do
4: S1:k−1,k = QT

k−1Xk in precision u
5: Ωk = XT

k Xk in precision u2

6: Skk = chol
(︂
Ωk − ST

1:k−1,kS1:k−1,k

)︂
in precision u2

7: Vk = Xk − Qk−1S1:k−1,k in precision u, store in precision u2

8: Uk = VkS
−1
kk in precision u2, store in precision u

9: T1:k−1,k = QT
k−1Uk in precision u

10: Pk = UT
k Uk in precision u2

11: Tkk = chol
(︂
Pk − T T

1:k−1,kT1:k−1,k

)︂
in precision u2

12: Wk = Uk − Qk−1T1:k−1,k in precision u, store in precision u2

13: Qk = WkT
−1
kk in precision u2, store in precision u

14: R1:k−1,k = S1:k−1,k + T1:k−1,kSkk in precision u
15: Rkk = TkkSkk in precision u

16: return Q = [Q1, . . . ,Qp], R = (Rij)

We note that doubling the precision implies doubling the computation cost
and the amount of data moved, which causes additional overhead. However, this
overhead is highly dependent on the problem size and can be considered as a
trade-off. Moreover, it can also be negligible in particular cases, such as latency-
bound regimes and when both precisions are implemented in hardware. In such
regimes, due to the high cost of communication, low-synchronization algorithms
are beneficial and overhead can be insignificant. We also note that when higher
precision computations are performed locally, such as line 7 in Algorithm 10, the
extra overhead can be insignificant.

46

5.3 Numerical experiments
We perform several numerical experiments to study the stability of BCGS-PIP,
BCGS-PIP+, BCGS-PIPI+, and their mixed-precision variants using three clas-
ses of matrices available in the BlockStab code suite1, namely glued, monomial,
and default. Each matrix class is created with dimensional inputs m, p, s, where
m denotes the number of rows, p is the number of block vectors, and s is the
number of columns in each block vector. The glued matrices are widely used in
numerical experiments for CGS and its variants since they cause CGS to break
down (Smoktunowicz et al. [2006]). The monomial matrices consist of p block
vectors Xk =

[︂
vk Avk · · · As−1vk

]︂
, k ∈ {1, . . . , p}, where each vk is randomly

generated from the uniform distribution and normalized, and A is an m × m
diagonal operator having evenly distributed eigenvalues in (0.1, 10). Lastly, the
default matrices are constructed as X t = UΣtVT , where U ∈ Rm×ps is orthonor-
mal, V ∈ Rps×ps is unitary, and Σt ∈ Rps×ps is diagonal with entries drawn from
the logarithmic interval 10[−t,0]. For our experiments, we set m = 100, p = 10,
and s = 2 for glued and default matrices, and m = 2000, p = 120, s = 10 for
the monomial matrices.

To illustrate the stability of algorithms, we plot the loss of orthogonality given
in (5.2) and the relative Cholesky residual (calculated via (5.1) divided by ∥X ∥2)
of each algorithm versus the condition number of the matrix. To examine the
effect of the IntraOrtho on each variant, we use Householder QR (HouseQR) and
Cholesky (CholQR), where a variant of Cholesky factorization is used to bypass
MATLAB’s built-in chol function for halting the computation when a matrix
loses numerical positive definiteness.

We use the Advanpix Toolbox (Advanpix LLC.) to simulate quadruple preci-
sion in our mixed-precision experiments. All numerical tests are run in MATLAB
2022a on a Lenovo ThinkPad E15 Gen 2 with 8GB memory and AMD Ryzen 5
4500U CPU with Radeon Graphics.

Figure 5.1 shows the stability of the reorthogonalized variants in compari-
son to BCGS-PIP. We see that BCGS-PIP only satisfies a O (u)κ2(X) loss of
orthogonality bound for the set of glued matrices while the reorthogonalized
variants satisfy O (u) when κ(X) ≤ 108, regardless of the choice of IntraOrtho.
After this point, we observe breakdowns in both variants that use HouseQR and
CholQR, which was expected due to the theoretical bounds proved in Theorems 2
and 6. Note that missing points in both plots for large condition numbers (af-
ter the provable bound) emerged due to NaN being computed during Cholesky
factorization.

1The version of the codes used in this study can be found at
https://github.com/katlund/BlockStab/releases/tag/v2.2024-beta.

47

10
0

10
10

10
20

5(X)

10
-20

10
-10

10
0

10
10

10
20

Loss of Orthogonality

kI ! 7QT 7Qk
(1) BCGS-PIP/HouseQR
(2) BCGS-PIP/CholQR
(3) BCGS-PIP+/HouseQR
(4) BCGS-PIP+/CholQR
(5) BCGS-PIPI+/HouseQR
(6) BCGS-PIPI+/CholQR
O(")5(X)
O(")52(X)

10
0

10
10

10
20

5(X)

10
-20

10
-10

10
0

10
10

10
20

Relative Cholesky Residual

kX TX ! 7RT 7Rk=kXk2
(1) BCGS-PIP/HouseQR
(2) BCGS-PIP/CholQR
(3) BCGS-PIP+/HouseQR
(4) BCGS-PIP+/CholQR
(5) BCGS-PIPI+/HouseQR
(6) BCGS-PIPI+/CholQR
O(")5(X)
O(")52(X)

Figure 5.1: Loss of orthogonality and relative Cholesky residual plots for glued
matrices.

Figure 5.2 shows the effect of the constraint on the loss of orthogonality
of IntraOrtho. Since there is no assumption on the loss of orthogonality of
the IntraOrtho in Theorem 2, we observe that Cholesky works well within the
given theoretical bound for BCGS-PIP+ while we observe a breakdown before the
proved theoretical bound for BCGS-PIPI+ due to the restriction in Theorem 6.

10
5

10
10

5(X)

10
-20

10
-10

10
0

10
10

10
20

10
30

10
40

Loss of Orthogonality

kI ! 7QT 7Qk
(1) BCGS-PIP+/HouseQR
(2) BCGS-PIP+/CholQR
(3) BCGS-PIPI+/HouseQR
(4) BCGS-PIPI+/CholQR
O(")5(X)
O(")52(X)

10
5

10
10

5(X)

10
-20

10
0

10
20

10
40

10
60

10
80

10
100

Relative Cholesky Residual

kX TX ! 7RT 7Rk=kXk2

(1) BCGS-PIP+/HouseQR
(2) BCGS-PIP+/CholQR
(3) BCGS-PIPI+/HouseQR
(4) BCGS-PIPI+/CholQR
O(")5(X)
O(")52(X)

Figure 5.2: Loss of orthogonality and relative Cholesky residual plots for mono-
mial matrices.

Figure 5.3 shows the effects of simulated mixed precision for the reorthogo-
nalized variants, denoted by the superscript MP. From the figure, we see that
after κ(X) ≈ 108, BCGS-PIP+ has stability problems and the relative Cholesky
residuals of BCGS-PIPI+ with Cholesky and BCGS-PIP+ with Householder QR
become NaN. Using simulated mixed precision overcomes NaN for both methods.
However, the loss of orthogonality of BCGS-PIPI+MP remains O (u) whereas
BCGS-PIP+MP is still not completely below this bound.

48

10
0

10
10

10
20

5(X)

10
-20

10
-10

10
0

10
10

10
20

Loss of Orthogonality

kI ! 7QT 7Qk
(1) BCGS-PIP+/HouseQR
(2) BCGS-PIP+/CholQR
(3) BCGS-PIPI+/HouseQR
(4) BCGS-PIPI+/CholQR
(5) BCGS-PIP+MP/HouseQR
(6) BCGS-PIP+MP/CholQR
(7) BCGS-PIPI+MP/HouseQR
(8) BCGS-PIPI+MP/CholQR
O(")5(X)
O(")52(X)

10
0

10
10

10
20

5(X)

10
-20

10
-10

10
0

10
10

10
20

Relative Cholesky Residual

kX TX ! 7RT 7Rk=kXk2
(1) BCGS-PIP+/HouseQR
(2) BCGS-PIP+/CholQR
(3) BCGS-PIPI+/HouseQR
(4) BCGS-PIPI+/CholQR
(5) BCGS-PIP+MP/HouseQR
(6) BCGS-PIP+MP/CholQR
(7) BCGS-PIPI+MP/HouseQR
(8) BCGS-PIPI+MP/CholQR
O(")5(X)
O(")52(X)

Figure 5.3: Loss of orthogonality and relative Cholesky residual plots for glued
matrices.

Bibliography
Advanpix LLC. Multiprecision computing toolbox for MATLAB. URL http:

//www.advanpix.com/.

Jesse L Barlow and Alicja Smoktunowicz. Reorthogonalized block classical Gram–
Schmidt. Numerische Mathematik, 123(3):395–423, 2013.

Erin Carson, Kathryn Lund, and Miroslav Rozložńık. The stability of block
variants of classical Gram–Schmidt. SIAM Journal on Matrix Analysis and
Applications, 42(3):1365–1380, 2021. doi: 10.1137/21M1394424.

Stephan Ramon Garcia and Roger A. Horn. A Second Course in Linear Algebra,
2017.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, 4
edition, 2013. ISBN 978-1-4214-0794-4.

Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

D. Mori, Y. Yamamoto, and S. L. Zhang. Backward error analysis of the AllRe-
duce algorithm for householder QR decomposition. Jpn. J. Ind. Appl. Math.,
29(1):111–130, 2012. doi: 10.1007/s13160-011-0053-x.

Eda Oktay and Erin Carson. Using mixed precision in low-synchronization re-
orthogonalized block classical Gram-Schmidt. PAMM, 23(1):e202200060, 2023.

Alicja Smoktunowicz, Jesse Barlow, and Julien Langou. A note on the error
analysis of classical Gram-Schmidt. Numerische Mathematik, 105, 07 2006.
doi: 10.1007/s00211-006-0042-1.

Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, and T. Fukaya. Roundoff error
analysis of the Cholesky QR2 algorithm. Electron. Trans. Numer. Anal., 44:
306–326, 2015.

49

http://www.advanpix.com/
http://www.advanpix.com/

6. Mixed-precision Rayleigh
quotient iteration for total least
squares problems1

The standard least squares (LS) problem involves solving minx∥b− Ax∥2, where
A ∈ Rm×n with m ≥ n and rank(A) = n. Using the QR factorization

A = QR̄ = [Q1 Q2]
[︄
R
0

]︄
,

where Q ∈ Rm×m is orthogonal and R ∈ Rn×n is upper triangular, the solution to
the LS problem is given by x = U−1QT

1 b and the residual by ∥b−Ax∥2 = ∥QT
2 b∥2.

The LS problem can also be solved via the normal equations, ATAx = AT b, which
are equivalent to the augmented system[︄

I A
AT 0

]︄ [︄
r
x

]︄
=
[︄
b
0

]︄
.

Using mixed precision hardware can provide significant performance bene-
fits in numerical linear algebra computations by reducing both computation and
communication costs, which has motivated a flurry of recent work in this area;
see, e.g., the surveys Abdelfattah et al. [2021], Higham and Mary [2022]. There
are various existing mixed precision approaches to solving least squares problems,
namely those based on performing iterative refinement on the augmented system.
The augmented system formulation is originally due to Björck (Björck [1967]),
who showed that iterative refinement for linear systems could be applied, using
extra precision in the residual computation and making use of the QR factoriza-
tion of A to solve a linear system with the augmented matrix in each iteration.
For error bounds and implementation with BLAS operations, see Demmel et al.
[2009]. Later, the authors in Carson et al. [2020] showed that GMRES-based
iterative refinement can also be used, in which preconditioned GMRES is used as
the solver within each refinement step. The QR factors of A, computed in poten-
tially low precision, are used to construct a left preconditioner for the augmented
matrix. This method is called GMRES-LSIR.

An alternative approach is to use mixed precision iterative refinement on
the normal equations (Higham and Pranesh [2021]). Since ATA is symmetric
positive definite, the Cholesky factor of this matrix, again potentially computed
in lower precision (see also Yamazaki et al. [2015]), can be used to construct a
preconditioner.

Although the LS problem is commonly encountered in applications, it may
not be a realistic approach in some cases. Since LS problems are based on the
standard linear model, Ax = b + r, with a random error vector r, it is assumed

1This chapter is a pre-copyedited, author-produced version of an article accepted
for publication in Springer: Numerical Algorithms following peer review. The ver-
sion of record [Numerical Algorithms, Oktay, E., Carson, E.: Mixed Precision Rayleigh
Quotient Iteration for Total Least Squares Problems, (2023)] is available online at
https://link.springer.com/article/10.1007/s11075-023-01665-z.

50

that the only error is in the right-hand side, b. However, especially in statistics,
the matrix A may also affected by sampling and modeling errors. The errors-in-
variables model represents errors in both A and b and is denoted as (A+ E)x =
b+ r, where E and r are a random error matrix and vector, respectively.

The first numerically stable algorithm for solving the errors-in-variables model
was introduced in Golub and Loan [1980]. The algorithm solves the minimization
problem minE,r∥[E, r]∥F subject to (A+E)x = b+ r. Once a suitable (E, r) pair
is found, any solution x to the system (A+E)x = b+ r is then considered to be
a solution to the total least squares (TLS) problem.

The exact solution to the TLS problem is given by the singular value de-
composition (SVD), [A, b] = UΣV T , where U is m × (n + 1) with orthonormal
columns, Σ = diag(σ1, · · · , σn+1), and V = [v1, · · · , vn+1] is an (n + 1) × (n + 1)
orthogonal matrix. Assume that the singular values of the matrix [A, b] are σ1 ≥
σ2 ≥ · · · ≥ σn+1 ≥ 0 and the singular values of A are σ′

1 ≥ σ′
2 ≥ · · · ≥ σ′

n ≥ 0. If
σn+1 = 0, then [E, r] = 0. Otherwise, minrank(A+E,b+r)<n+1∥[E, r]∥F = σn+1 and
the TLS solution is

xT LS = − 1
vn+1,n+1

[v1,n+1, · · · , vn,n+1]T .

However, computing the SVD explicitly has a high computational cost and is
thus not the preferred approach in practice.

In Golub and Loan [1980], the authors show that the approximate condition
number for the TLS problem is

κT LS(A, b) = σ′
1

σ′
n − σn+1

= κ(A) σ′
n

σ′
n − σn+1

,

where κ(A) denotes the 2-norm condition number of A. As stated in Björck et al.
[2000], when 1 − σn+1/σ

′
n ≪ 1, κT LS(A, b) can be much greater than κ(A). Thus

the TLS problem can be very sensitive to perturbations in the data.
To reduce the computational cost of solving the TLS problem, an iterative

approach can be used. There are various iterative approaches to solving the
TLS problem, such as inverse iteration. However, inverse iteration convergence
depends on the ratio ∥σn−p − µ∥/∥σn−p+1 − µ∥, where p is the dimension of the
desired right singular subspace of [A, b] and µ is a shift for the iteration. If this
ratio is not sufficiently small, the inverse iteration may converge very slowly.
To overcome slow convergence, Chebyshev polynomials can be used, and thus,
the method becomes (inverse) Chebyshev iteration. For detailed information,
see Van Huffel [1991]. TLS problems can also have multiple right-hand sides.
In this case, the block Golub-Kahan bidiagonalization procedure proposed in
Hnětynková et al. [2013] can also be used to solve the problem.

In this work, we focus on the use of Rayleigh quotient iteration (RQI) to
solve the TLS problem, which is the approach advocated by Björck et al. (Björck
et al. [2000]) for large-scale problems. We introduce a mixed precision variant
of the RQI-PCGTLS algorithm developed in Björck et al. [2000]. Our approach
potentially decreases the computational cost of RQI-PCGTLS by using up to
three different precisions in the algorithm. Using the ideas in Björck et al. [2000]
and Connolly and Higham [2022], we discuss the convergence and accuracy of
our algorithm. We derive two theoretical constraints on the precision that can be

51

used for the construction of the preconditioner for within the inner solver. Our
numerical experiments suggest that our approach can attain the same accuracy as
RQI-PCGTLS, potentially with a convergence delay. Our performance modeling
shows, however, that we can achieve up to 4× speedup in the ideal case. Thus
despite a delay in convergence, the mixed precision approach may still provide a
faster time-to-solution with less computational cost.

We begin the next section by providing background information related to
the existing RQI-based method, RQI-PCGTLS. In Section 6.2, we introduce our
mixed precision approach, RQI-PCGTLS-MP, and present our analysis and per-
formance modeling. In Section 6.3, we perform numerical experiments on several
small-scale matrices that are widely used in the literature for TLS problems. We
finally provide our concluding remarks in Section 6.4.

6.1 Rayleigh quotient iteration with precondi-
tioned conjugate gradient method for TLS
problems (RQI-PCGTLS)

Rayleigh quotient iteration is equivalent to inverse iteration with a shift ρ, where

ρ(x) = xTBx

xTx

is called the computed Rayleigh quotient of the matrix B ∈ Rm×m. The aim of
RQI is to use the Rayleigh quotient to estimate the eigenvalue ρ(x) corresponding
to a given eigenvector x of B. The computed eigenvalue is iteratively improved
within the algorithm to increase the rate of convergence of inverse iteration at
each step. The general scheme of RQI is given in Algorithm 13.

Algorithm 13 RQI
Input: Given x0 with ∥x0∥2 = 1

1: ρ0 = (x0)TBx0
2: for k = 1,2,. . . do
3: Solve (B − ρk−1I)ω = xk−1
4: xk = ω/∥ω∥2
5: ρk = (xk)TBxk

To deal with large sparse systems, Björck presented an approach using RQI
to solve TLS problems in Björck [1997]. This approach solves the eigenvalue
problem [︄

ATA AT b
bTA bT b

]︄ [︄
x

−1

]︄
= λ

[︄
x

−1

]︄
(6.1)

to find x = xT LS, where λ = σ2
n+1. The problem can also be written as[︄
AT

bT

]︄
(−r) = λ

[︄
x

−1

]︄
,

where r = b− Ax is the residual. The algorithm uses Newton’s method to solve[︄
f(x, λ)
g(x, λ)

]︄
=
[︄
−AT r − λx
−bT r + λ

]︄
=
[︄
0
0

]︄
. (6.2)

52

The RQI algorithm for the augmented matrix in (6.1) is given in Algorithm
14. For the augmented matrix, if RQI converges to the TLS solution in n steps,
the Rayleigh quotient ρ will be an estimate for σ2

n+1. To ensure the convergence
of RQI, the algorithm does one inverse iteration before starting RQI in lines
1-5 (Szyld [1988]). Within iteration loop k, the Rayleigh quotient ρk = σ2

k =
(rT

k rk)/(xT
k xk+1) is computed in line 8. The next approximation xk+1 is computed

by solving the system [︄
Jk AT b
bTA ηk

]︄ [︄
xk+1
−1

]︄
= βk

[︄
xk

−1

]︄
,

where Jk = ATA − ρkI, ηk = bT b − ρk, and βk is the scaling factor at the k-th
iteration. According to Björck et al. [2000], if Jk is positive definite, the solution
can be obtained by block Gaussian elimination, which leads to[︄

Jk AT b
0 τk

]︄ [︄
xk+1
−1

]︄
= βk

[︄
xk

−(zk)Txk − 1

]︄
,

where Jkzk = AT b, and τk = bT (b− Azk) − ρk.
We can also compute τk using fk and gk in each iteration using the formulas

Jkωk = −fk, zk = xk + ωk, τk = (zk)Tfk − gk. (6.3)

The new way of computing τk can be used to express (6.2) with fk and gk, i.e.,[︄
fk

gk

]︄
=
[︄
−AT rk − ρkxk

−bT rk + ρk

]︄
,

where rk = b− Axk is the residual.

Algorithm 14 RQI for TLS (Björck et al. [2000])
1: x0 = xLS

2: r0 = b− Ax0
3: σ2

0 = rT
0 r0/(xT

0 x0 + 1)
4: Solve ATAu0 = x0
5: x1 = x0 + σ2

0u0
6: for k=1,2,. . . do
7: rk = b− Axk

8: σ2
k = rT

k rk/(1 + xT
k xk)

9: fk = −AT rk − σ2
kx

10: gk = −bT rk + σ2
k

11: Solve (ATA− σ2
kI)ωk = −fk

12: zk = xk + ωk

13: βk = (zT
k fk − gk)/(zT

k xk + 1)
14: Solve (ATA− σ2

kI)uk = xk

15: xk+1 = zk + βkuk

Performing one Rayleigh quotient iteration requires solving two linear systems
(lines 11 and 14). Since the coefficient matrix ATA−σ2I is symmetric and positive
definite, the conjugate gradient method can be applied to the problem. In Björck

53

et al. [2000], the RQI algorithm is used with a preconditioned conjugate gradient
algorithm called PCGTLS to approximately solve these two systems using a fixed
number of steps with the Cholesky factor of ATA used as the preconditioner.
Björck et al. call this approach RQI-PCGTLS (Björck et al. [2000]). Note that
we need to form ATA and compute its Cholesky factor R only once. The PCGTLS
algorithm is given in Algorithm 15. The algorithm performs k + 1 PCG steps
in the k-th Rayleigh quotient iteration; the number of PCG steps is discussed
further in Björck et al. [2000].

Algorithm 15 l-step PCGTLS for (ATA− σ2I)ω = f (Björck et al. [2000])
1: Initialize ω0 = 0, p0 = s0 = R−Tf , η0 = ∥s0∥2

2
2: for j = 0, 1, . . . , l, while δj ̸= 0 do
3: qj = R−1pj

4: δj = ∥pj∥2
2 − σ2∥qj∥2

2
5: αj = ηj/δj

6: ωj+1 = ωj + αjqj

7: qj = R−T qj

8: sj+1 = sj − αj(pj − σ2qj)
9: ηj+1 = ∥sj+1∥2

2
10: βj = ηj+1/ηj

11: pj+1 = sj+1 + βjpj

In Algorithm 15, the Cholesky factor R of ATA is assumed to be computed
exactly and used to explicitly form the preconditioned matrix C̃ = I−σ2R−TR−1.
Thus, the matrix A is never used in PCGTLS except in forming the right-hand
side vector f , which reduces the computational cost of the algorithm significantly.
Therefore, forming the matrix ATA and computing its Cholesky factor can be
considered the most expensive parts of RQI-PCGTLS. This is especially true if
A is not skinny, i.e., if n is close to m, since forming ATA has cost O(n2m), and
Cholesky factorization has cost O(n3).

6.2 Mixed precision RQI-PCGTLS
(RQI-PCGTLS-MP)

One can use several techniques to reduce the computational cost of an algo-
rithm. A popular approach, motivated by the recent emergence of commercially-
available low-precision hardware, is the development of mixed precision algo-
rithms, in which lower precision is used for the computationally dominant parts.
However, one must use lower precision with caution, since this can cause loss of
accuracy, convergence delay, and make the algorithm more susceptible to overflow
and underflow.

Our goal is thus to use different precisions in different parts of the algorithm
to safely balance accuracy, stability, and cost. In Freitag and Spence [2007],
the authors state that the inverse iteration need not be performed exactly to be
convergent. We therefore expect that mixed precision can be used within the RQI-
PCGTLS algorithm. Moreover, assume that RQI solves the eigenvalue problem
(A−ΘI)ω = z for the eigenpair (Θ, ω) where z is an approximate eigenvector. The

54

authors in Simoncini and Eldén [2002] proved that this is mathematically equiv-
alent to Newton’s method on the unit sphere, i.e., solving Π(A − ΘI)Πd = −r,
where d is a correction with z∗d = 0, Π = I − zz∗, and r = ΠAz = Az − Θz, if
a Galerkin method is used to solve both systems. Thus, motivated by the mixed
precision inexact Newton method introduced in Kelley [2022], we developed a
mixed precision variant of RQI-PCGTLS, which we call RQI-PCGTLS-MP. We
note that we expect that the analyses of RQI in Freitag and Spence [2007], Si-
moncini and Eldén [2002] and Newton in Higham and Mary [2022], Kelley [2022],
Tisseur [2001] can be extended to give a complete analysis of RQI-PCGTLS-MP;
we leave this as future work.

Our mixed precision approach, RQI-PCGTLS-MP, is presented in Algorithm
16. RQI-PCGTLS-MP uses three different precisions (denoted in the algorithm
by prec.): u is the working precision to store data and solutions in the RQI-
PCGTLS-MP algorithm, up is the working precision in the PCGTLS algorithm,
and uq is the precision for computing the QR factors of A. Throughout this work,
we assume that u ≥ up ≥ uq.

The authors of Björck et al. [2000] noted that one could use the R-factor from
the QR decomposition of A instead of the Cholesky factor of ATA. Since A is
rectangular, the QR decomposition of the matrix can be written

A = [Q1 Q2]
[︄
R
0

]︄
.

From Björck [1996], we know that if A is of full rank, the R-factor in the QR
decomposition of A is equal to the Cholesky factor of ATA. However, the use of
the Cholesky factor of ATA results in a squaring of κ(A), which is undesirable
from a numerical perspective, especially if we hope to use low precision for this
computation. Thus to enable the use of lower precision for more ill-conditioned
systems, we use the R-factor from the Householder QR factorization of A instead
of the Cholesky factorization of ATA within RQI-PCGTLS-MP. We note that we
have, however, observed experimentally that in some cases using the Cholesky
factor of ATA over the R-factor of A may be better in terms of RQI convergence
rate. Determining the mechanism for these observations is left as future work.

To terminate the Rayleigh quotient iterations in Algorithm 16, we use the
termination criteria given in Björck et al. [2000]. The authors in Björck et al.
[2000] discuss that the convergence is directly related to the behavior of the
normalized residual norm,

ψk =
(︄

∥fk∥2
2 + g2

k

∥xk∥2
2 + 1

)︄1/2

. (6.4)

The method is converging in exact arithmetic as long as ψk+1 ≤ ψk. Hence, when
ψk+1 > ψk, we terminate the iterations.

Assuming exact arithmetic, there are several necessary conditions for the RQI-
PCGTLS-MP algorithm (and thus also the RQI-PCGTLS algorithm) to converge.
The first condition guarantees that the TLS problem has a unique solution, xT LS,
under exact arithmetic. If σ′

n > σn+1, then xT LS is unique (Björck [1996]). The
second condition is based on the assumptions required for the PCGTLS algorithm.
If ATA−σ2

kI is symmetric and positive definite for all σk, then PCGTLS converges
to an approximate solution in exact arithmetic (Björck et al. [2000]).

55

Algorithm 16 RQI-PCGTLS-MP
1: x0 = xLS

2: r0 = b− Ax0 prec. u
(2mn+m ops)

3: σ2
0 = rT

0 r0/(1 + xT
0 x0) prec. u

(2m+ 2n− 2 ops)
4: Compute A = Q[R 0]T prec. uq

(2mn2 − 2n3/3 ops)
5: Solve ATAu0 = x0 prec. u

(2n2 ops)
6: x1 = x0 + σ2

0u0 prec. u
(2n ops)

7: for k = 1,2,. . . do
8: rk = b− Axk prec. u

(2mn+m ops)
9: σ2

k = rT
k rk/(1 + xT

k xk) prec. u
(2m+ 2n− 2 ops)

10: fk = −AT rk − σ2
kxk prec. u

(2mn+ 2n ops)
11: gk = −bT rk + σ2

k prec. u
(2m− 1 ops)

12: Solve (ATA− σ2
kI)ωk = −fk via PCGTLS (≤ k + 1 iterations) prec. up

(2n2 + 14n− 3 ops per PCGTLS iteration +n2 + 2n− 1 ops)
13: zk = xk + ωk prec. u

(n ops)
14: βk = (zT

k fk − gk)/(zT
k xk + 1) prec. u

(4n− 2 ops)
15: Solve (ATA− σ2

kI)uk = xk via PCGTLS (≤ k + 1 iterations) prec. up

(2n2 + 14n− 3 ops per PCGTLS iteration +n2 + 2n− 1 ops)
16: xk+1 = zk + βkuk prec. u

(2n ops)

56

6.2.1 Constraints on factorization precision
In the case of very large A, the QR factorization (or Cholesky factorization) to
construct the preconditioner is expected to be the most expensive part of the
computation. Thus, we want to use as low a precision as possible for uq. There
are two potential sources from which a constraint on uq arises.

First, we want the computed R̂ factor to be nonsingular, since we will use it
as a preconditioner. Note that here and in the remainder of the paper we use
hats to denote quantities computed in finite precision. The precision required to
guarantee the nonsingularity of R̂ can be found in, e.g., [Higham, 2002, Theorem
19.4]. Suppose the Householder QR factorization of A is computed in precision
uq so that A + ∆A = Q̃1R̂, where R̂ ∈ Rn×n and Q̃1 ∈ Rm×n has orthonormal
columns. If

uq <
1

cmn3/2κ(A) ,

for a small integer constant c, then R̂ is guaranteed to be non-singular. We note
that a probabilistic approach to rounding error analysis can loosen this bound
by reducing the dimensional factors by their square roots. In the probabilistic
model, the rounding errors γ1, γ2, . . . satisfying fl(x op y) = (x op y)(1+δ) with
|δ| ≤ u and op = +,−, ∗, / are mean independent random variables of mean zero.
The analysis in [Connolly and Higham, 2022, Theorem 4.4] proves that under
the probabilistic model of rounding errors, applying the matrix concentration
equality given in [Connolly and Higham, 2022, Theorem 3.2] results in a bound
on the error of Householder QR in which dimensional factors may be replaced by
their square roots, thus giving the constraint

uq <
1

cm1/2n3/4κ(A) .

As a rough heuristic, this means that we must have

uq ≲ κ(A)−1. (6.5)

A similar constraint can be obtained for the case where the Cholesky factoriza-
tion of fl(ATA) is used to construct the preconditioner. From Wilkinson’s result
on Cholesky factorization in Wilkinson [1971], we say the Cholesky factorization
of fl(ATA) succeeds in precision uq if

uq ≤ 1
20n3/2κ(A)2 ,

or as a rough heuristic,
uq ≲ κ(A)−2.

Further, using the results in Demmel [1989] and Higham and Pranesh [2021], if
we introduce the scaled matrix H given by

H = D−1fl(ATA)D−1,

where D is a diagonal matrix with the square root of the diagonal elements of
ATA on the diagonal, we can say that if

uq <
λmin(H)

(2λmin(H) + n)(n+ 1) ,

57

where λmin(H) is the minimum eigenvalue ofH, then the Cholesky factorization of
fl(ATA) with two-sided diagonal scaling, run on fl(ATA) computed in precision
uq, will succeed.

Note that this result assumes that we can apply this scaling without incurring
additional rounding error. For a dynamic approach to scaling and shifting for low-
precision Cholesky factorization along with a complete analysis, see Higham and
Pranesh [2021]. In our numerical experiment involving Cholesky factorization in
Section 6.3, we will apply a two-sided scaling for equilibration before Cholesky
factorization to avoid overflow and underflow, which may result from rounding
higher precision numbers to a lower precision.

Our second constraint on uq will come from the requirement that the precon-
ditioned system constructed using the computed R̂ must remain positive definite.
Assume we are computing R via Householder QR factorization. Then we have

A+∆A = Q1R̂ with ∥∆A∥F ≤ γ̃q
mn∥A∥F , where γ̃q

mn = cmnuq

1 − cmnuq

(6.6)

for some constant c, where the subscript F denotes the Frobenius norm. Note
that if A = Q1R, we have

∥Q̃1 −Q1∥F ≤
√
mγ̃q

mn; (6.7)

see, e.g., [Carson et al., 2020, Equation (2.3)].
When we take the inexactness of R̂ due to computation in precision uq into

account in determining the preconditioned coefficient matrix Ĉ, we have

Ĉ = R̂
−T (ATA− σ2I)R̂−1

= R̂
−T
ATAR̂

−1
− σ2R̂

−T
R̂

−1

= (Q̃T

1 − R̂
−T ∆AT)(Q̃1 − ∆AR̂−1) − σ2R̂

−T
R̂

−1

≈ I − Q̃
T

1 ∆AR̂−1
− R̂

−T ∆AT Q̃1 − σ2R̂
−T
R̂

−1
. (6.8)

We must now investigate the last term on the right-hand side above. We can
write (using a first order approximation)

σ2R̂
−T
R̂

−1 = σ2
(︃

(R̂T
−RT) +RT

)︃−1 (︂
(R̂ −R) +R

)︂−1

= σ2
(︃
RT

(︃
I −R−T (RT − R̂

T)
)︃)︃−1 (︂

R
(︂
I −R−1(R − R̂)

)︂)︂−1

≈ σ2
(︃
R−T +R−T (RT − R̂

T)R−T
)︃ (︂

R−1 +R−1(R − R̂)R−1
)︂

≈ σ2
(︃
R−TR−1 +R−TR−1(R − R̂)R−1 +R−T (RT − R̂

T)R−TR−1
)︃
.

Using that
R̂ −R = (Q̃1 −Q1)TA+ Q̃

T

1 ∆A,
the above becomes

σ2R̂
−T
R̂

−1
≈ σ2

(︃
R−TR−1 +R−TR−1

(︂
(Q̃1 −Q1)TA+ Q̃

T

1 ∆A
)︂
R−1

+R−T
(︂
AT (Q̃1 −Q1) + ∆AT Q̃1

)︂
R−TR−1

)︃
.

58

Substituting this into (6.8), we have

Ĉ ≈ I − σ2R−TR−1 − Q̃
T

1 ∆AR̂−1
− R̂

−T ∆AT Q̃1

+ σ2R−TR−1
(︂
(Q̃1 −Q1)TA+ Q̃

T

1 ∆A
)︂
R−1

+ σ2R−T
(︂
AT (Q̃1 −Q1) + ∆AT Q̃1

)︂
R−TR−1

≡ C̃ + ∆,

where C̃ is the preconditioned system with exact R, i.e., C̃ = I − σ2R−TR−1.
We now want to bound the norm of ∆. Using the definition of ∆ above, along

with (6.6) and (6.7), and ignoring terms of order O(u2
q), we have

∥∆∥2 ≤ 2∥∆A∥2∥R̂
−1

∥2 + 2σ2∥R̂
−1

∥3
2

(︂
∥Q̃1 −Q1∥2∥A∥2 + ∥∆A∥2

)︂
≤ γ̃q

mnκF (A) + σ2∥A−1∥3
2 ·

√
mγ̃q

mn∥A∥2

≤
(︂
1 + σ2∥A−1∥2

2

)︂√
mγ̃q

mnκF (A),

where κF (A) denotes the Frobenius norm condition number. Assuming that
σ = σn+1, we have σ ≤ 1/∥A−1∥2, and thus

∥∆∥2 ≤
√
mγ̃q

mnκF (A).

Using eigenvalue perturbation theory, we can say how far the eigenvalues of
Ĉ are from C̃ for the case σ = σn+1. From (4.4) in Björck et al. [2000], we know
that in this case the eigenvalues of C̃ lie in the interval[︄

1 −
σ2

n+1
(σ′

n)2 , 1
]︄
,

and so we expect the exact preconditioner to work very well unless σ2
n+1 ≈ (σ′

n)2,
in which case the condition number may be large and thus fast convergence of
CG is not guaranteed.

For Ĉ with inexact R̂, we know the eigenvalues must lie in the interval[︄
1 −

σ2
n+1

(σ′
n)2 − ∥∆∥2, 1 + ∥∆∥2

]︄
.

This tells us two things. First, for the computed R̂, we expect the preconditioner
to work well unless

σ2
n+1 ≈ (1 + ∥∆∥2)(σ′

n)2.

Second, we must have that

1 −
σ2

n+1
(σ′

n)2 − ∥∆∥2 > 0,

which implies

∥∆∥2 < 1 −
σ2

n+1
(σ′

n)2 ,

or else we cannot guarantee the positive definiteness of the preconditioned system.

59

As a rough heuristic, this means that we want

uqκF (A) ≲ 1 −
σ2

n+1
(σ′

n)2 .

In other words, we must have

uq ≲ κF (A)−1
(︄

1 −
σ2

n+1
(σ′

n)2

)︄
. (6.9)

Note that this means that for TLS problems, in contrast to standard least
squares problems, our choice of precision should depend not only on A but also
on the right-hand side b.

To compare the bounds given in (6.5) and (6.9), we need to look at σ2
n+1/(σ′

n)2.
When σn+1 is close to zero, i.e., b is almost in the column space of A, σ2

n+1/(σ′
n)2

is very small, and thus the two constraints become very close to each other.
Otherwise, if σ2

n+1/(σ′
n)2 is close to 1, then the constraint on uq in (6.9) is much

tighter. In this case, we need to use a higher precision for uq.

6.2.2 Performance modeling
To evaluate to what extent the computational cost can be reduced by using the
mixed precision variant with Householder QR factorization, we construct a per-
formance model which takes as input the size (m,n) of A (with m ≥ n) and the
number r of the Rayleigh quotient iterations performed by RQI-PCGTLS and
RQI-PCGTLS-MP. The model assumes that PCGTLS performs exactly k + 1
iterations in the k-th Rayleigh quotient iteration. We also note that our perfor-
mance model is based on computational complexity and thus essentially assumes
an ideal model in which data movement is not dominant; this may not be realistic
in practice.

Using the operation counts in Table 6.1, we calculate the cost of each line in
Algorithm 16. Then we multiply them by a constant depending on the chosen
precision. For unit roundoff of different precisions, see Table 1. Since the default
working precision is fp64, we use 1 for double, 0.5 for single, and 0.25 as the
constant for half precision. For instance, line 2 in Algorithm 16, r = b − Ax,
performs one matrix-vector product and a vector update. Therefore this line
requires 2mn−m+ 2m = 2mn+m operations. Since we use double precision for
u in our experiments, the cost of this line becomes 1× (2mn+m) = 2mn+m. In
the end, the total operation count for the RQI-PCGTLS-MP algorithm depends
on the size of A, the precision setting, and the number r of Rayleigh quotient
iterations performed and can be written as

cost(m,n, r, c, cp, cq) = c(2mn+ 3m+ 4n+ 2n2 − 2 + r(4mn+ 5m+ 11n− 5))
+ cp(2r(n2 + 2n− 1) + (r2 + 3r)(2n2 + 14n− 3))

+ cq

(︄
2mn2 − 2n3

3

)︄
,

where (c, cp, cq) are the constants used for (u, up, uq), respectively. For the RQI-
PCGTLS algorithm, we use the same cost function with (c, cp, cq) = (1, 1, 1).

60

Table 6.1: Cost and places of each operation used in RQI-PCGTLS-MP. In the
table, we use the abbreviations QR decomp (QR decomposition), Subs (Substitu-
tions), MatVec (Matrix-Vector multiplication Ab), VecMul (Inner product bT c),
VecUpdate (Vector update λb+ c).

operation cost lines in Algorithm 16 lines in Algorithm 15
QR decomp of Am×n 2mn2 − 2n3/3 4 -

Forward/Backward Subs with Rn×n n2 5 1, 3, 7
MatVec with Am×n, bn×1 2mn−m 2, 8, 10 -
VecMul with bn×1, cn×1 2n− 1 3, 9, 11, 14 1, 4, 9

VecUpdate with bn×1, cn×1, λ ∈ R 2n 2, 6, 8, 10, 13, 16 6, 8, 11

Then we calculate the speedup of RQI-PCGTLS-MP as

speedup = cost of RQI-PCGTLS-MP
cost of RQI-PCGTLS .

Figure 6.1 illustrates the speedups one can obtain using the (u, up, uq) =
(double, single, half) setting with several values of r. Using this mixed precision
setting can provide up to ×4 speedup in the best-case scenario, which comes
from the use of half precision (fp16) for the dominant part of the computation.
From the figure, we observe that even for a tall-skinny matrix, our mixed precision
approach can perform more than 2 times faster than the RQI-PCGTLS algorithm.
We also see that we get a greater speedup the larger n grows. The best-case
scenario is obtained when both m and n are large. In these cases, we can obtain
4× modeled speedup even with 2000 Rayleigh quotient iterations. One should
note that r depends on the matrix. Thus for a large-scale matrix, r may be
larger than 2000. However, the speedup will never drop below 1 as long as u is
not higher than the precision RQI-PCGTLS uses.

6.3 Numerical experiments
In this section, we present the numerical results comparing RQI-PCGTLS and
RQI-PCGTLS-MP for solving TLS problems that are commonly used in the lit-
erature. To illustrate the comparison of the methods in terms of relative error, we
perform numerical experiments in MATLAB with various matrices. The experi-
ments are performed on a computer with AMD Ryzen 5 4500U having 6 CPUs and
8 GB RAM with OS system Ubuntu 22.04 LTS. Our RQI-PCGTLS-MP algorithm
and associated functions are available at https://github.com/edoktay/rqipc-
gtlsmp, which includes scripts for generating the data and plots in this work.

Recall that in the k-th Rayleigh quotient iteration, both algorithms perform at
most k+ 1 PCGTLS iterations in each of lines 12 and 15 of Algorithm 16. Recall
also that we terminate both RQI-PCGTLS and RQI-PCGTLS-MP algorithms
when the normalized residual norm increases, i.e., ψk+1 > ψk, where ψk is defined
in (6.4). For a detailed explanation, see Section 6.2.

Each experiment contains a random error matrix and vector. For reproducibil-
ity of random arrays for the experiments (except Example 1 in Section 6.3.1), we
use the MATLAB command rng(1) each time we run the algorithm.

Each plot shows the relative error versus the number of Rayleigh quotient
iterations performed. Dashed lines represent the relative error rerrx in the ap-

61

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

2.126

2.126

2.126

2.126

2.125

2.119

2.071

1.967

2.646

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3.577

3.577

3.577

3.575

3.562

3.44

3.952

3.952

3.951

3.95

3.931

3.689

3.995

3.995

3.995

3.993

3.964

4

3.999

3.999

3.996

4

4

4

4

4

4

0

0.5

1

1.5

2

2.5

3

3.5

4

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

1.588

1.588

1.588

1.589

1.593

1.628

1.799

1.953

2.798

2.142

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3.136

3.136

3.135

3.131

3.091

3.883

3.883

3.882

3.873

3.784

3.036

3.988

3.988

3.987

3.977

3.834

3.999

3.999

3.998

3.982

4

4

3.998

4

4

4

0

0.5

1

1.5

2

2.5

3

3.5

4

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

1.327

1.328

1.328

1.329

1.343

1.458

1.801

1.969

2.662

2.662

2.661

2.654

2.591

2.292

2.023

0

2.443

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3.777

3.776

3.773

3.742

3.476

3.976

3.976

3.972

3.934

3.501

3.998

3.997

3.993

3.936

4

3.999

3.993

4

3.999

4

0

0.5

1

1.5

2

2.5

3

3.5

4

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

1.072

1.072

1.073

1.084

1.178

1.595

1.933

1.993

1.599

1.599

1.603

1.636

1.8

1.963

1.995

0

2.838

2.239

2.018

0

0

2.225

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3.142

3.138

3.102

3.884

3.875

3.797

3.253

3.987

3.978

3.89

3.132

3.998

3.988

3.858

3.999

3.985

3.998

0

0.5

1

1.5

2

2.5

3

3.5

4

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

1.037

1.037

1.039

1.061

1.236

1.733

1.964

1.996

1.333

1.334

1.347

1.455

1.794

1.971

1.997

0

2.665

2.659

2.599

2.313

2.052

2.003

0

0

2.607

2.06

0

0

0

2.494

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3.774

3.745

3.498

3.972

3.937

3.638

3.994

3.957

3.535

3.996

3.941

3.994

0

0.5

1

1.5

2

2.5

3

3.5

4

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

1.018

1.019

1.023

1.067

1.356

1.843

1.982

1.998

1.177

1.18

1.213

1.441

1.856

1.983

1.998

0

2.153

2.149

2.117

2.037

2.004

2

0

0

2.936

2.194

2.014

0

0

0

2.151

0

0

0

0

2.906

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3.575

3.483

3.937

3.809

3.075

3.979

3.843

3.983

3.785

3.976

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 6.1: Modeled speedup for A ∈ Rm×n (for m ≥ n) with (u, up, uq) = (dou-
ble, single, half) and various numbers r of Rayleigh quotient iterations performed
by RQI-PCGTLS and RQI-PCGTLS-MP.

62

proximate solution, i.e., ∥xk − x∥2/∥x∥2, whereas solid lines represent the rela-
tive error rerrs in the Rayleigh quotient after k Rayleigh quotient iterations,
i.e., |σ(k)

n+1 − σn+1|/|σn+1|. The quantity rerrs is calculated with σn+1 since the
Rayleigh quotient iteratively approaches σ2

n+1. Thus, rerrs calculates the con-
vergence of σ(k)

n+1 to σn+1. Red lines show errors in RQI-PCGTLS-MP and blue
lines in RQI-PCGTLS. We used the Advanpix toolbox (Advanpix LLC.) to sim-
ulate quadruple precision for the computation of the plotted quantities, which is
not included in the performance analysis.

In our numerical experiments, we used double precision in MATLAB for
the RQI working precision u to be able to compare with RQI-PCGTLS (per-
formed in double precision). For each problem, we evaluate the constraints
on uq given in (6.5) and (6.9), and show that half precision satisfies both con-
straints for each of the tested problems. To simulate half precision, we use the
chop library and associated functions from Higham and Pranesh [2019], available
at https://github.com/higham/chop and https://github.com/SrikaraPra-
nesh/LowPrecision Simulation.

Although we do not provide a constraint on up, we found that using a preci-
sion less than fp32 in RQI-PCGTLS-MP when u is fp64 gives rerrx and rerrs
much greater than the fp64 unit round-off. Thus, RQI-PCGTLS-MP fails to
converge to x and σ2

n+1. Although single precision for up was sufficient for all
included examples, we give an example where lower than single precision for up

does not work well in Section 6.3.3. We also note that, although not shown for
each experiment, we have also tested the use of Cholesky factorization instead of
Householder QR to compute the preconditioner for PCG. In many cases, the use
of Cholesky resulted in a greater number of Rayleigh quotient iterations required
for convergence for RQI-PCGTLS and/or RQI-PCGTLS-MP. An exception to
this is discussed in Section 6.3.5.

6.3.1 Example 1: Random matrix
We first test our algorithm on a random matrix A of dimension (m,n) = (100, 60)
having uniformly distributed random elements. We generated the matrices using
the MATLAB command rand(m,n). A vector of ones is used for the right-hand
side vector b. The error matrix E and vector e are added to the left and right-
hand sides, respectively. The final system can be written as (A + E)x = b + e,
where E = ϵ·rand(m,n) and e = ϵ·rand(m,1). For this example, we use the
MATLAB command rng(0) for reproducibility and ϵ is chosen as 10−6.

For the random matrix, using constraints (6.5) and (6.9), we obtain the bounds
uq < 2 × 10−2 and uq < 4 × 10−3, respectively. Thus, half precision is guaran-
teed to work. The left plot in Figure 6.2 shows the relative error behavior
of RQI-PCGTLS and RQI-PCGTLS-MP. We see that RQI-PCGTLS performs 8
Rayleigh quotient iterations, whereas RQI-PCGTLS-MP performs 13 before the
stopping criterion is satisfied. The mixed precision variant performing more iter-
ations than the uniform precision variant is expected, since we may have a worse
preconditioner and thus a worse solution produced by the inner PCG solve for a
fixed number of iterations.

It can be more illustrative to look at the point at which the rate of im-
provement of the algorithm slows down significantly. For rerrs, we see that

63

RQI-PCGTLS improvement starts to slow down at the fourth iteration, and for
the RQI-PCGTLS-MP algorithm, it takes six iterations. Importantly, note that
the limiting accuracy for both rerrs and rerrx is similar for both RQI-PCGTLS
and RQI-PCGTLS-MP.

2 4 6 8 10 12
10

-20

10
-15

10
-10

10
-5

10
0

1 2 3 4 5 6 7 8 9 10

10
-15

10
-10

10
-5

10
0

Figure 6.2: Relative errors versus Rayleigh quotient iterations for the random
(left) and δ (right) matrices.

6.3.2 Example 2: The δ matrix
We now test our algorithm on the system (A+E)x = b+ e where A is a matrix
used in Diao and Sun [2018], which we call the δ matrix. The system Ax = b is
constructed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ 0 0 0
0 0 0 0
0 δ 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
.
.
.
x9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
.
.
.
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The error matrix E = ϵĒ · A, and error vector e = ϵē · b are constructed with
ϵ = 10−1, δ = 10−2, and a uniformly distributed random matrix and vector with
entries in the interval (−1, 1), Ē and ē, respectively. For this example, since
ψk+1 ≈ ψk from the tenth iteration onward, we slightly modify the stopping
criterion and use ψk+1 ≥ ψk for this test case.

For the δ matrix, using constraints (6.5) and (6.9), we obtain the bounds
uq < 9 × 10−3 and uq < 1 × 10−3, respectively. Thus, half precision is guaranteed
to work in this case as well.

The right plot in Figure 6.2 shows the relative error behavior of RQI-PCGTLS
and RQI-PCGTLS-MP for the δ matrix. Here, RQI-PCGTLS performs 7 Ray-

64

leigh quotient iterations before the stopping criterion is met, whereas RQI-PC-
GTLS-MP performs 10. When we look at the point where the rate of improvement
in rerrs sufficiently slows down, we see that RQI-PCGTLS-MP requires only one
iteration more to have approximately the same error as RQI-PCGTLS. Again,
another important observation from the plot is that although the mixed precision
variant performs more iterations, both RQI-PCGTLS variants reached a similar
limiting accuracy. This again shows that using mixed precision does not cause a
loss of accuracy for this problem.

6.3.3 Example 3: The Björck matrix
Next, we use the matrix A that is used to test the convergence properties of
RQI-PCGTLS in Björck et al. [2000], which we call the Björck matrix. The TLS
problem is defined as (A+ E)x = b+ e, where

A = Y

[︄
D
0

]︄
ZT ∈ Rm×n,

b = Ax with (m,n) = (30, 15), x = (1, 1/2, . . . , 1/n), D = diag(1, 2−1, . . . , 2−n+1),
and Y, Z are random orthogonal matrices generated using the MATLAB com-
mand RandOrthMat(). The error matrix E = ϵ·rand(m,n) and vector e =
ϵ·rand(m,1) are generated with ϵ = 0.05.

For the Björck matrix, using constraints (6.5) and (6.9), we obtain the bounds
uq < 4 × 10−2 and uq < 5 × 10−3, respectively. Thus, half precision is guaranteed
to work.

In the left plot in Figure 6.3, which uses the usual precision settings, we
see similar behavior as in the previous examples. Therefore, we again conclude
that while RQI-PCGTLS-MP can result in a convergence delay, both algorithms
eventually converge to a similar level. The right plot shows the same experiment,
but with up set to half instead of single. In this case, while the relative error in the
approximate solution given in the dashed line is around 10−14 for RQI-PCGTLS,
it is only around 10−4 with RQI-PCGTLS-MP.

2 4 6 8 10 12
10

-15

10
-10

10
-5

10
0

1 2 3 4 5 6 7 8
10

-15

10
-10

10
-5

10
0

Figure 6.3: Relative errors versus Rayleigh quotient iterations for the Björck
matrix using single precision (left) and half precision (right) for up.

65

1 2 3 4 5 6 7 8 9
10

-20

10
-15

10
-10

10
-5

10
0

Figure 6.4: Relative errors versus Rayleigh quotient iterations for the Toeplitz
matrix.

6.3.4 Example 4: The Toeplitz matrix
The matrix A is constructed as A = T̄ +E, where E is a random Toeplitz matrix
and T̄ ∈ Rn×(n−2ω) is the lower Toeplitz matrix having elements

ti,1 =

⎧⎨⎩ 1√
2πα2 e

[−(ω−i+1)2

2α2] i = 1, 2, . . . , 2ω + 1,
0 otherwise,

in the first row and

t1,j =

⎧⎨⎩t1,1 if j = 1,
0 otherwise

in the first column. This matrix comes from an application in signal restora-
tion (Trussell [1983]). The matrices T̄ and E are constructed using the built-in
MATLAB function toeplitz() with the input of the first column of T̄ . The
right-hand side vector is constructed as b = b̄+ e, where b̄ is a vector of ones, and
e is a random vector. For this test, we use n = 100, ω = 2, and α = 1.25. We
scale E and e with a scaling factor of 0.001.

For the Toeplitz matrix, using constraints (6.5) and (6.9), we obtain the
bounds uq ≲ 1 and uq ≲ 10−2, respectively. Thus, half precision is guaranteed to
work here.

Even though Figure 6.4 shows that rerrs oscillates after the third iteration
for both uniform and mixed precision variants, the oscillations are negligible
since they happened after the error reaching the level indicated by the working
precision, u ≈ 10−16. We also see that, as in previous examples, both variants
converge to a similar level although mixed precision may result in slightly delayed
convergence.

6.3.5 Example 5: The Van Huffel matrix
Finally, we test the matrix with n = 100 from Van Huffel and Vandewalle [1991],
which is used to illustrate the difference between LS and TLS solutions. We

66

define the TLS problem by (A+ E)x = b+ e, where Ax = b is given as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n− 1 −1 · · · −1
−1 n− 1 · · · −1
.
.
.

−1 −1 · · · n− 1
−1 −1 · · · −1
−1 −1 · · · −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

n×n−2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
.
.
.

xn−3
xn−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
.
.
.

−1
n− 1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and E = ϵ·rand(n,n-2), e = ϵ·rand(n,1) are the error matrix and vector gen-
erated with ϵ = 10−6, respectively.

For the Van Huffel matrix, using constraints (6.5) and (6.9), we obtain the
bounds uq < 2 × 10−1 and uq < 5 × 10−3, respectively. Thus, half precision is
guaranteed to work.

We see exceptional behavior on the RQI-PCGTLS-MP algorithm for this ex-
ample in the left plot of Figure 6.5. Here, we observe that using mixed-precision
causes the algorithm to perform over 5× more Rayleigh quotient iterations than
RQI-PCGTLS if the QR factorization of A is used as a preconditioner in PCGTLS
(although at the end, they again both converge to a similar level). For the compar-
ison of RQI-PCGTLS and our mixed precision variant with this matrix, we also
tried using the Cholesky factorization as a preconditioner within both variants.
For low-precision Cholesky factorization with two-sided diagonal scaling, we use
the cgir3.m function available in https://github.com/SrikaraPranesh/Multi
precision NLA kernels. In our experiments, we see that for this example, using

the Cholesky factor of ATA is ultimately better than using the QR factorization
within RQI-PCGTLS-MP; from the plot on the right, the mixed precision variant
with the Cholesky factorization performs only 3 and 6 more iterations to converge
to a similar level as RQI-PCGTLS for rerrs and rerrx, respectively. Thus it
is clear that for some matrices, Cholesky factorization makes a better precon-
ditioner than QR factorization within RQI-PCGTLS-MP. A full explanation for
this behavior is left as future work.

6.4 Conclusion
In this paper, we present a mixed precision variant of RQI-PCGTLS called RQI-
PCGTLS-MP. Our algorithm allows the use of up to three different precisions in
different parts of the algorithm. To allow the use of lower precision for more ill-
conditioned systems, we advocate for the use of the Householder QR factorization
of A instead of the Cholesky factorization of ATA to construct a low-precision
preconditioner for PCGTLS. We derive constraints on the precision with which
the QR factorization can be computed. Interestingly, in contrast with the stan-
dard least squares case, the factorization precision we can use depends not only
on A but on the right-hand side b in the total least squares setting.

The numerical experiments we performed show that using mixed precision in-
creases the number of Rayleigh quotient iterations performed; however, since we

67

5 10 15 20 25 30 35
10

-20

10
-15

10
-10

10
-5

10
0

5 10 15 20 25 30 35
10

-20

10
-15

10
-10

10
-5

10
0

Figure 6.5: Relative errors versus Rayleigh quotient iterations for the Van Huffel
matrix with QR (left) and Cholesky factorization with two-sided diagonal scaling
(right).

are using half precision in the QR factorization and single precision in PCGTLS,
the computation cost is reduced per iteration. Thus, from the performance model
we constructed, we see that we can compensate for the additional Rayleigh quo-
tient iterations up to 4× depending on the size of the matrix and how many
Rayleigh quotient iterations are performed. Furthermore, our experiments indi-
cate that the use of low precision does not impact the final attainable accuracy
of the TLS solution.

Our future work involves a complete mathematical analysis, which we suspect
can be done by adapting the results on inexact Newton in Higham and Mary
[2022], Tisseur [2001], Kelley [2022] and inexact RQI in Freitag and Spence [2007],
Simoncini and Eldén [2002]. With the complete analysis, we will be able to prove
our observations on the attainable accuracy and provide a theoretical explanation
of different convergence delays on different systems. Furthermore, it would be of
great interest to compare the practical run-time of both algorithms on large-scale
matrices in a high-performance setting with hardware that supports half precision
computation.

Bibliography
Ahmad Abdelfattah, Hartwig Anzt, Erik Boman, Erin Carson, Terry Co-

jean, Jack Dongarra, Alyson Fox, Mark Gates, Nicholas Higham, Xiaoye Li,
Jennifer Loe, Piotr Luszczek, Srikara Pranesh, Siva Rajamanickam, Tobias
Ribizel, Barry Smith, Kasia Swirydowicz, Stephen Thomas, Stanimire To-
mov, and Ulrike Yang. A survey of numerical linear algebra methods uti-
lizing mixed-precision arithmetic. The International Journal of High Per-
formance Computing Applications, page 109434202110033, 03 2021. doi:
10.1177/10943420211003313.

Advanpix LLC. Multiprecision computing toolbox for MATLAB. URL http:
//www.advanpix.com/.

68

http://www.advanpix.com/
http://www.advanpix.com/

Åke Björck. Iterative refinement of linear least squares solutions i. BIT Numerical
Mathematics, 7(4):257–278, 1967.

Åke Björck. Newton and Rayleigh quotient methods for total least squares prob-
lems. In Recent Advances in Total Least Squares Techniques and Errors–in–
Variables Modeling: Proceedings of the Second International Workshop on Total
Least Squares and Errors–in–Variables Modeling, pages 149–160, 1997.

Åke Björck, Pinar Heggernes, and Pontus Matstoms. Methods for large scale total
least squares problems. SIAM journal on matrix analysis and applications, 22
(2):413–429, 2000.

Åke Björck. Numerical Methods for Least Squares Problems. Society for Industrial
and Applied Mathematics, 1996. doi: 10.1137/1.9781611971484.

Erin Carson, Nicholas J. Higham, and Srikara Pranesh. Three-precision GMRES-
based iterative refinement for least squares problems. SIAM Journal on Scien-
tific Computing, 42(6):A4063–A4083, 2020. doi: 10.1137/20M1316822.

Michael P. Connolly and Nicholas J. Higham. Probabilistic rounding error anal-
ysis of Householder QR factorization. Technical Report 2022.5, February
2022. URL http://eprints.maths.manchester.ac.uk/2865/. Revised Au-
gust 2022.

James Demmel. On floating point errors in Cholesky. University of Tennessee.
Computer Science Department, 1989.

James Demmel, Yozo Hida, E Jason Riedy, and Xiaoye S Li. Extra-precise itera-
tive refinement for overdetermined least squares problems. ACM Transactions
on Mathematical Software (TOMS), 35(4):1–32, 2009.

Huai-An Diao and Yang Sun. Mixed and componentwise condition numbers for
a linear function of the solution of the total least squares problem. Linear
Algebra and its Applications, 544:1–29, 2018. ISSN 0024-3795. doi: https:
//doi.org/10.1016/j.laa.2018.01.008.

Melina A Freitag and Alastair Spence. Convergence theory for inexact inverse
iteration applied to the generalised nonsymmetric eigenproblem. Electronic
Transactions on Numerical Analysis, 28:40–64, 2007.

Gene H. Golub and Charles F. Van Loan. An analysis of the total least squares
problem. SIAM Journal on Numerical Analysis, 17(6):883–893, 1980. ISSN
00361429.

Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

Nicholas J Higham and Theo Mary. Mixed precision algorithms in numerical
linear algebra. Acta Numerica, 31:347–414, 2022.

Nicholas J Higham and Srikara Pranesh. Simulating low precision floating-point
arithmetic, mims eprint 2019.4. Manchester Institute for Mathematical Sci-
ences, The University of Manchester, UK, 2019.

69

http://eprints.maths.manchester.ac.uk/2865/

Nicholas J. Higham and Srikara Pranesh. Exploiting lower precision arithmetic in
solving symmetric positive definite linear systems and least squares problems.
SIAM Journal on Scientific Computing, 43(1):A258–A277, 2021. doi: 10.1137/
19M1298263.

Iveta Hnětynková, Martin Plesinger, and Zdenek Strakoš. The core problem
within a linear approximation problem AX ≈ B with multiple right-hand sides.
SIAM Journal on Matrix Analysis and Applications, 34(3):917–931, 2013.

CT Kelley. Newton’s method in mixed precision. SIAM Review, 64(1):191–211,
2022.

Valeria Simoncini and Lars Eldén. Inexact Rayleigh quotient-type methods for
eigenvalue computations. BIT Numerical Mathematics, 42(1):159–182, 2002.

Daniel B Szyld. Criteria for combining inverse and Rayleigh quotient iteration.
SIAM Journal on Numerical Analysis, 25(6):1369–1375, 1988.

Françoise Tisseur. Newton’s method in floating point arithmetic and iterative re-
finement of generalized eigenvalue problems. SIAM Journal on Matrix Analysis
and Applications, 22(4):1038–1057, 2001.

H Trussell. Convergence criteria for iterative restoration methods. IEEE Trans-
actions on acoustics, speech, and signal processing, 31(1):129–136, 1983.

Sabine Van Huffel. Iterative algorithms for computing the singular subspace of
a matrix associated with its smallest singular values. Linear algebra and its
applications, 154:675–709, 1991.

Sabine Van Huffel and Joos Vandewalle. The total least squares problem: compu-
tational aspects and analysis. SIAM, 1991.

J. H. Wilkinson. Modern error analysis. SIAM Review, 13(4):548–568, 1971.
ISSN 00361445.

Ichitaro Yamazaki, Stanimire Tomov, and Jack Dongarra. Mixed-precision
Cholesky QR factorization and its case studies on multicore CPU with multiple
GPUs. SIAM Journal on Scientific Computing, 37(3):C307–C330, 2015.

70

7. Mixed-precision GMRES-
based iterative refinement with
recycling1

Iterative refinement (IR) a commonly-used approach for solving nonsingular lin-
ear systems Ax = b, where A ∈ Rn×n, x, b ∈ Rn (Wilkinson [1963]). In each
refinement step i, the approximate solution xi+1 ∈ Rn is updated by adding a
correction term obtained from the previously computed approximate solution xi.
The initial approximate solution x0 is usually computed by Gaussian elimination
with partial pivoting (GEPP). The computed L and U factors of A are then
reused to solve the correction equation Adi+1 = ri, where ri = b − Axi is the
residual. Finally, the original approximate solution is refined by the correction
term, xi+1 = xi + di+1, and the process continues iteratively until the desired
accuracy is achieved.

Recently, mixed precision hardware has become commonplace in supercom-
puting architecture. This has inspired the development of a new mixed precision
benchmark for supercomputers, called HPL-AI, which is based on mixed preci-
sion iterative refinement and on which today’s top supercomputers exceed exas-
cale performance; see, e.g., HPL-MxP, Kudo et al. [2020], TOP500. Algorithm 1
shows a general IR scheme in a mixed precision setting. The authors in Carson
and Higham [2018] used three hardware precisions in the algorithm: uf is used
for LU factorization, ur for residual calculation, and u (the working precision)
for the remaining computations. The authors also introduce a fourth quantity,
us, which is the effectively precision of the solve (taking on the values of u or ur

depending on the particular solver used in line 4). We assume throughout this
work that uf ≥ u ≥ ur.

For a given combination of precisions and choice of solver, it is well-understood
under which conditions Algorithm 1 will converge and what the limiting ac-
curacy will be. The constraint for convergence is usually stated via a con-
straint on the infinity-norm condition number of the matrix A; see, e.g., Car-
son and Higham [2018]. In the case that the computed LU factors are used to
solve for the correction in line 4, often referred to as “standard IR” (SIR), then
κ∞(A) = ∥A∥∞∥A−1∥∞ must be less than u−1

f in order for convergence to be
guaranteed.

To relax this constraint on condition number, the authors of Carson and
Higham [2017] and Carson and Higham [2018] devised a mixed precision GMRES-
based iterative refinement scheme (GMRES-IR), given in Algorithm 17. In GM-
RES-IR, the correction equation is solved via left-preconditioned GMRES, where
the computed LU factors of A are used as preconditioners. This results in a

1This chapter is a pre-copyedited, author-produced version of an article accepted for publi-
cation in Institute of Mathematics of the Czech Academy of Sciences: Programs and Algorithms
of Numerical Mathematics, Programs and Algorithms of Numerical Mathematics. Proceedings
of Seminar following peer review. The version of record [Institute of Mathematics of the Czech
Academy of Sciences: Programs and Algorithms of Numerical Mathematics. Proceedings of
Seminar, Oktay, E., Carson, E.: Mixed precision GMRES-based iterative refinement with re-
cycling] is available online at https://dml.cz/handle/10338.dmlcz/703196.

71

looser constraint on condition number in order to guarantee the convergence
of forward and backward errors; in the case that the preconditioned matrix is
applied to a vector in each iteration of GMRES in double the working precision,
we require κ∞(A) ≤ u−1/2u−1

f , and in the case that a uniform precision is used
within GMRES, we require κ∞(A) ≤ u−1/3u

−2/3
f ; see Amestoy et al. [2021]. If

these constraints are met, we are guaranteed that the preconditioned GMRES
method will converge to a backward stable solution after n iterations and that
the iterative refinement scheme will converge to its limiting accuracy. We note
that in order to guarantee backward stability, all existing analyses (e.g., Carson
and Higham [2017, 2018], Amestoy et al. [2021]) assume that unrestarted GMRES
is used within GMRES-IR.

Algorithm 17 GMRES-IR (Carson and Higham [2017])
Input: matrix An×n; right-hand side bn; maximum number of refinement steps

imax; GMRES convergence tolerance τ .
Output: Approximate solution x̂ to Ax = b.

1: Compute LU factorization A = LU in precision uf

2: Solve Ax0 = b by substitution in precision uf , store in precision u
3: for i = 0: imax − 1 do
4: Compute ri = b− Axi in precision ur, store in precision u
5: Scale ri = ri/∥ri∥∞
6: Solve U−1L−1Adi+1 = U−1L−1ri by GMRES in working precision u, with

matrix-vector products with Ã = U−1L−1A computed at precision u2; store
in precision u

7: Compute xi+1 = xi + di+1 in precision u
8: if converged then return xi+1. end if

We also note that existing analyses are unable to say anything about how fast
GMRES will convergence in each refinement step, only that it will do so within
n iterations. However, if indeed n iterations are required to converge in each
GMRES solve, this can make GMRES-IR more expensive than simply computing
the LU factorization in higher precision and using SIR. Unfortunately, GMRES
convergence is incredibly difficult to predict. In fact, for any set of prescribed
eigenvalues, one can construct a linear system for which GMRES will stagnate
entirely until the nth iteration (Greenbaum et al. [1996]). The situation is better
understood at least in the case of normal matrices, see, e.g., Liesen and Tichỳ
[2004]. The worst-case scenario in the case of normal A is when eigenvalues
are clustered near the origin, which can cause complete stagnation of GMRES
(Liesen and Tichỳ [2004]). After the preconditioning step in GMRES-IR, all
eigenvalues of the preconditioned matrix (U−1L−1A) ideally become 1 in the
absence of finite precision error in computing LU and within GMRES. However,
in practice, since we have inexact LU factors, if A has a cluster of eigenvalues
near the origin, this imperfect preconditioner may fail to shift some of them away
from the origin, which can cause GMRES to stagnate. For instance, when random
dense matrices having geometrically distributed singular values are used in the
multistage iterative refinement algorithm devised in Oktay and Carson [2022], the
authors showed that for relatively large condition numbers relative to precision
uf , GMRES tends to perform n iterations in each refinement step.

72

Figure 7.1 shows the eigenvalue distribution of a double-precision 100 × 100
random dense matrix having geometrically distributed singular values with condi-
tion number κ2(A) = 1012, generated in MATLAB via the command gallery(’-
randsvd’,100,1e12,3). In the unpreconditioned case (upper left), it is seen
that the eigenvalues are clustered around the origin, which is a known difficult
case for GMRES. When double-precision LU factors are used for preconditioning
(upper right), it is observed that the eigenvalues of the preconditioned system
are now clustered around 1. On the other hand, using half-precision LU factors
as preconditioners (lower plot) causes a cluster of eigenvalues to remain near the
origin, indicating that GMRES convergence will likely be slow (we note that these
are nonnormal matrices and so the theory of Liesen and Tichỳ [2004] does not
apply, but our experimental evidence indicates that this is the case).

It is thus clear even in the case that low-precision LU factors can theoretically
be used within GMRES-IR, they may not be the best choice from a performance
perspective. In this scenario, we are left with two options: either increase the pre-
cision in which the LU factors are computed, or seek to improve the convergence
behavior of GMRES through other means. It is the latter approach that we take
in this work, in particular, we investigate the use of Krylov subspace recycling.

In Section 7.1, we give a background on the use of recycling in Krylov sub-
space methods. In Section 7.2 we detail our implementation and experimental
setup. Extensive numerical experiments that demonstrate the potential benefit
of recycling within GMRES-based iterative refinement are presented in Section
7.3. We outline future work and open problems in Section 7.4.

7.1 Krylov subspace recycling
One way to speed up the convergence of the GMRES solver is using recycling
(Parks et al. [2006], Soodhalter et al. [2020]). The idea of recycling is that if
we have a sequence of linear systems (Ax1 = b1, Ax2 = b2, . . .) to solve and
they all use the same (or a similar) coefficient matrix A, then we can reuse
the Krylov subspace information generated in solving Ax1 = b1 to speed up
converge of the method in solving Ax2 = b2, etc. This is exactly the situation we
have in GMRES-IR: within the iterative refinement loop, we call GMRES on the
matrix A many times, and only the right-hand side changes between refinement
steps. Thus we can use Krylov subspace recycling within GMRES across iterative
refinement steps, and theoretically the convergence of GMRES should improve
as the refinement proceeds.

GMRES-DR (Morgan [2002]) is a truncated and restarted solver developed
for solving single nonsymmetric linear systems. The method deflates small eigen-
values for the new subspace to improve the convergence of restarted GMRES. At
the end of each cycle of GMRES-DR, the desired number k of harmonic Ritz val-
ues are computed, and an approximate invariant subspace associated with these
values is recycled. One of the disadvantages of GMRES-DR is that it is not an
adaptive method.

Another truncated solver used for recycling is called GCROT (De Sturler
[1999]). The difference between GCROT and GMRES-DR is that GCROT is
a truncated minimum residual method. In other words, it recycles a subspace
that minimizes the loss of orthogonality with Krylov subspace from the previ-

73

-2 -1.5 -1 -0.5 0 0.5 1

-0.1

-0.05

0

0.05

0.1

-2 -1.5 -1 -0.5 0 0.5 1

-3

-2

-1

0

1

2

3
10

-6

-2 -1.5 -1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 7.1: Eigenvalue distribution of a double-precision random dense matrix
with κ2(A) = 1012 without preconditioner (top left), with a double-precision LU
preconditioner (top right), and with a half-precision LU preconditioner (bottom).

ous system. Like GMRES-DR, this method is also not able to be adapted for
recycling.

Non-adaptive methods compute the recycling space periodically and replace
it by starting from the beginning. If A changes continuously, this is a problem
since non-adaptive methods cannot adapt to gradual changes in matrices. To
use truncation with adaptive recycling, the authors in Parks et al. [2006] modi-
fied GCROT and combined it with GMRES-DR to obtain a cheaper and more
effective adaptive truncated recycling method called GCRO-DR. In this method,
the residual minimization and orthogonalization are performed over the recycled
subspace. This allows the algorithm to obtain sufficiently good approximations
by continuously updating the approximation to the invariant subspace, and thus
it requires fewer iterations per system.

The GCRO-DR algorithm uses the deflated restarting idea in GMRES-DR in
the same manner as GCROT. First, using the k harmonic Ritz vectors ˜︁Yk cor-
responding to the k smallest harmonic Ritz values, matrices Uk, Ck ∈ Cm×k are
constructed such that A(i+1)Uk = Ck and CH

k Ck = Ik hold. After finding the op-
timal solution over range(Uk) and computing the residual, GCRO-DR constructs
the Arnoldi relation by generating a Krylov subspace of dimension m − k + 1
with (I −CkC

H
k)A. After completing the Arnoldi process, the algorithm solves a

minimization problem at the end of each cycle, which reduces to an (m+ 1) ×m
least-squares problem. After solving the least-squares problem and computing
the residual, a generalized eigenvalue problem is solved, and harmonic Ritz vec-

74

tors are recovered. Since harmonic Ritz vectors are constructed differently than
in GMRES-DR, GCRO-DR is suitable for solving individual linear systems and
sequences of them. The GCRO-DR algorithm is given in Algorithm 18.

Algorithm 18 GCRO-DR (Parks et al. [2006])
Input: matrix An×n; right-hand side bn; the maximum size m of the subspace;

the desired number k of harmonic Ritz vectors; initial guess x0; GMRES
convergence tolerance τ .

Output: Approximate solution xi to Ax = b.
1: if ˜︁Yk is known then
2: Compute the reduced QR factorization A˜︂Yk = QR.
3: Compute Ck = Q and Uk = ˜︁YkR

−1.
4: Compute x1 = x0 + UkC

H
k r0 and r1 = r0 − CkC

H
k r0.

5: else
6: Compute v1 = r0/∥r0∥2 and c = ∥r0∥2e1.
7: Perform m steps of GMRES, solving min∥c−Hmy∥2 for y and generating
Vm+1 and Hm.

8: Compute x1 = x0 + Vmy and r1 = Vm+1(c−Hmy).
9: Compute the k eigenvectors ˜︁zj of (Hm + h2

m+1,mH
−H
m eme

H
m)˜︁zj = ˜︁θj ˜︁zj asso-

ciated with the smallest magnitude eigenvalues ˜︁θj and store in Pk.
10: Compute ˜︁Yk = VmPk.
11: Compute the reduced QR factorization HmPk = QR.
12: Compute Ck = Vm+1Q and Uk = ˜︁YkR

−1.
13: while ∥ri∥2 > τ do
14: Perform m−k Arnoldi steps with (I−CkC

H
k)A, letting v1 = ri−1/∥ri−1∥2

and generating Vm−k+1, Hm−k, and Bm−k.
15: Compute ˜︁Uk = UkDk.

16: Define ˆ︁Vm = [˜︁Uk Vm−k], ˆ︂Wm+1 = [Ck Vm−k+1], andGm =
[︄
Dk Bm−k

0 Hm−k

]︄
.

17: Solve min∥ˆ︂WH
m+1ri−1 −Gmy∥2 for y.

18: Compute xi = xi−1 + ˆ︁Vmy and ri = ri−1 − ˆ︂Wm+1Gmy.
19: Compute the k eigenvectors ˜︁zi of GH

mGm˜︁zi = ˜︁θiG
H
m
ˆ︂WH

m+1
ˆ︁Vm˜︁zi associated

with the smallest magnitude eigenvalues ˜︁θi and store in Pk.
20: Compute ˜︁Yk = vmPk.
21: Compute the reduced QR factorization GmPk = QR.
22: Compute Ck = Wm+1Q and Uk = ˜︁YkR

−1.
23: Update ˜︁Yk = Uk for the next system.

The use of recycling may also be favorable from a performance perspec-
tive. In line 14 of Algorithm 18, GCRO-DR performs only m − k Arnoldi
steps implying that it performs m − k matrix-vector multiplications per cycle,
whereas GMRES(m) performs m matrix-vector multiplications. It is also men-
tioned in Parks et al. [2006] that since GCRO-DR stores Uk and Ck, it performs
2kn(1+k) fewer operations during the Arnoldi process. On the other hand, since
we are using k eigenvectors, GCRO-DR(m, k) requires storing k more vectors than
GMRES(m). Moreover, after the first cycle, in line 2, GCRO-DR requires com-
puting the QR factorization of A ˜︁Yk before the GCROT step. Although choosing

75

the number k can be considered a trade-off between memory and performance,
performing 2kn(1 + k) fewer operations in the Arnoldi stage can provide a per-
formance improvement.

7.2 Implementation and experimental setup
In an effort to reduce the overall computational cost of the GMRES solves within
GMRES-IR, we develop a recycled GMRES-based iterative refinement algorithm,
called RGMRES-IR, presented in Algorithm 19. The algorithm starts with com-
puting the LU factors of A and computing the initial approximate solution in the
same manner as GMRES-IR. Instead of preconditioned GMRES however, the
algorithm uses preconditioned GCRO-DR(m, k) to solve the correction equation.
Similar to GMRES-IR, our presentation of RGMRES-IR in Algorithm 19 also
uses an extra u2 precision in preconditioning, although in practice one could use
a uniform precision within GCRO-DR(m, k).

Algorithm 19 GMRES-based Iterative Refinement with Recycling
(RGMRES-IR)
Input: matrix An×n; right-hand side bn; maximum number of refinement steps

imax; GMRES convergence tolerance τ ; the maximum size m of the subspace;
the desired number k of harmonic Ritz vectors.

Output: Approximate solution xi+1 to Ax = b.
1: Compute LU factorization A ≈ LU in precision uf

2: Solve Ax0 = b by substitution in precision uf , store in precision u
3: for i = 0 : imax − 1 do
4: Compute ri = b− Axi in precision ur, store in precision u
5: Scale ri = ri/∥ri∥∞
6: Solve U−1L−1Adi+1 = U−1L−1ri by GCRO-DR(m, k) with tolerance τ in

precision u, with matrix-vector products with ˜︁A = U−1L−1A computed in
precision u2, store in precision u.

7: Compute xi+1 = xi + ∥ri∥∞di+1 in precision u
8: if converged then return xi+1. end if

In the RGMRES-IR algorithm, as in GMRES-IR, we use three precisions: uf

is the factorization precision in which the factorization of A is computed, u is the
working precision in which the input data A and b and the solution x are stored,
and ur is the precision used to compute the residuals. Again we note that we as-
sume ur ≤ u ≤ uf . For the implementation, we adapted the MATLAB implemen-
tations of the GMRES-IR method developed in Carson and Higham [2018], and
the GCRO-DR method developed in Parks et al. [2006]. To simulate half-precision
floating-point arithmetic, we use the chop library and associated functions from
Higham and Pranesh [2019], available at https://github.com/higham/chop and
https://github.com/SrikaraPranesh/LowPrecision Simulation. For single
and double precision, we use the MATLAB built-in data types and to simulate
quadruple precision we use the Advanpix multiprecision computing toolbox Ad-
vanpix LLC..

Using different precision settings results in different constraints on the condi-
tion number to guarantee convergence of the forward and backward errors. Al-

76

though our experiments here use three different precisions, two precisions (only
computing residuals in higher precision) or fixed (uniform) precision can also be
used in the RGMRES-IR algorithm. We also restrict ourselves to IEEE precisions
(see Table 1), although we note that one could also use formats like bfloat16 (Intel
Corporation [2018]). Table 7.1 summarizes the error bounds for GMRES-IR with
various choices of precisions. For convergence of GMRES-IR, κ∞(A) should be
less than the values shown in the fourth column. For detailed information about
GMRES-IR, see Carson and Higham [2018].

Table 7.1: Choices of IEEE standard precisions for three-precision GMRES-IR
presented in Carson and Higham [2018], and their convergence conditions.

uf u ur κ∞(A) Backward error
Normwise Componentwise Forward error

half half single 104 half half half
half single double 108 single single single
half double quad 1012 double double double

single single double 108 single single single
single double quad 1016 double double double

We experiment with three categories of test matrices. We will first test our
algorithm on random dense matrices of dimension n = 100 having geometri-
cally distributed singular values. We generated the matrices using the MATLAB
command gallery(’randsvd’,n,kappa(i),3), where kappa is the array of the
desired 2-norm condition numbers κ2(A) ={104, 105, 106, 107, 108, 109, 1010,
1011, 1012, 1013}, and 3 stands for the mode for singular value distribution of
the matrices. Mode 3 corresponds to the matrix having geometrically distributed
singular values. For reproducibility, we use the MATLAB command rng(1) each
time we run the algorithm. We will present the numerical results in Section 7.3.3.

As shown in Figure 7.1, these matrices have eigenvalues clustered around the
origin, which can be a difficult case for GMRES convergence. This class of artifi-
cial problems thus represents a good use case for the RGMRES-IR algorithm. We
note however that the recycling approach can improve the convergence of GM-
RES even when the eigenvalues are not clustered around the origin. To illustrate
this, we also test our algorithm on real matrices. All matrices shown in Table 7.2
are taken from the SuiteSparse Collection (Davis and Hu [2011]). The numerical
results are shown in Section 7.3.2.

Besides the matrices mentioned above, we also test our algorithm on prolate
(symmetric, ill-conditioned Toeplitz matrices whose eigenvalues are distinct, lie
in the interval (0, 1), and tend to cluster around 0 and 1) matrices (Varah [1993])
of dimension n = 100. We generated the matrices using the MATLAB command

Table 7.2: Matrices from Davis and Hu [2011] used for numerical experiments
and their properties.

Name Size nnz κ∞(A) Group Kind
orsirr 1 1030 1030 9.96E+04 HB Computational Fluid Dynamics Problem
comsol 1500 1500 3.42E+06 Langemyr Structural Problem

circuit204 1020 1020 9.03E+09 Yzhou Circuit Simulation Problem

77

Table 7.3: Prolate matrices used for numerical experiments and their properties.
α κ∞(A) κ2(A)

0.475 1.21E+06 3.60E+05
0.47 2.63E+07 7.60E+06
0.467 1.68E+08 4.79E+07
0.455 2.91E+11 8.04E+10
0.45 6.64E+12 1.82E+12

0.4468 4.98E+13 1.35E+13
0.44 3.41E+15 9.07E+14
0.434 3.44E+16 8.84E+15

gallery(’prolate’,n,alpha), where alpha is the array of the desired param-
eters α ={0.475, 0.47, 0.467, 0.455, 0.45, 0.4468, 0.44, 0.434}. When α < 0.5 is
chosen to be small, it becomes difficult for GMRES-IR to solve the system since
the eigenvalues skewed more towards zero. The properties of prolate matrices
used in this study are shown in Table 7.3. The numerical results are shown in
Section 7.3.1.

For a fair comparison between GMRES-IR and RGMRES-IR, GMRES-IR is
used with restart value m, which is the maximum size of the recycled space used
in RGMRES-IR. Since the first refinement step of RGMRES-IR does not have a
recycled subspace, it is the same as the first step of GMRES-IR. We thus expect
a decrease in the number of GMRES iterations per refinement step starting from
the second refinement step.

The experiments are performed on a computer with Intel Core i7-9750H hav-
ing 12 CPUs and 16 GB RAM with OS system Ubuntu 20.04.1. Our RGMRES-IR
algorithm and associated functions are available through the repository https://
github.com/edoktay/rgmresir, which includes scripts for generating the data
and plots in this work.

7.3 Numerical experiments
In this section, we present the numerical results comparing GMRES-IR and
RGMRES-IR for solving Ax = b. To ensure that we fully exhibit the behavior of
the methods, we set imax = 10000, which is large enough to allow all approaches
that eventually converge sufficient time to do so. The GMRES convergence tol-
erance τ , which appears both in Algorithms 17 and 19, dictates the stopping
criterion for the inner GMRES iterations. The algorithm is considered converged
if the relative (preconditioned) residual norm drops below τ . In tests here with
single working precision, we use τ = 10−4. For double working precision, we use
τ = 10−8. The results are compared in two different metrics: The number of GM-
RES iterations per refinement step and the total number of GMRES iterations.
The number of steps and iterations are shown in tables.

In this study, m ≤ n is chosen such that the number of GMRES itera-
tions in the first step of the iterative refinement method is smaller than m. To
reduce the total number of GMRES steps in RGMRES-IR even further than
the results presented in this study, one can also test RGMRES-IR with vari-
ous m ≤ n values. However, one should note that there may be a trade-off

78

between the total number of GMRES iterations and the number of refinement
steps. For RGMRES-IR, the optimal number k < m of harmonic Ritz vec-
tors is chosen for each group of matrices with the desired precision settings
after several experiments on various (m, k) scenarios. The optimum k differs
for each matrix. The least total number of GMRES iterations is obtained for
k = (the number of GMRES iterations in the first refinement step) − 1 since, in
this case, we are recycling the whole generated subspace, which is expensive. That
is why one should choose a k value as small as possible to reduce computational
cost while benefiting from recycling. Figure 7.2 shows the change in the total
GMRES iterations according to the given k values for two matrices. From the
plots, one can easily find the knee, i.e., find the optimum k value that uses the
smallest number of GMRES iterations.

2 5 10 20 30 40 50 60 7074 79

60

80

100

120

140

160

2 5 10 12 15

15

20

25

30

35

40

45

Figure 7.2: Total GMRES iterations for various k for a randsvd matrix with
κ2(A) = 1013 (left) and a prolate matrix with α = 0.434 (right) for (uf , u, ur) =
(single, double, quad).

For simplicity, b is chosen to be the vector of ones for all matrices, and the
precisions are chosen such that u ≤ u2

f , and ur ≤ u2. For each random dense
matrix and each matrix in Table 7.2 and Table 7.3, Ax = b is solved by using
precisions (uf , u, ur) = (single, double, quad), (uf , u, ur) = (half, single, double),
and (uf , u, ur) = (half, double, quad).

In the tables we will present, the first number shows the total number of GM-
RES iterations. The numbers in the parentheses indicate the number of GMRES
iterations performed in each refinement step. For instance, 5 (2,3) implies that
at the first step of GMRES-IR, 2 GMRES iterations are performed, respectively,
while for the second step, 3 GMRES iterations are performed, which gives a total
of 5 GMRES iterations.

Since all of the numerical experiments in this study were performed in MAT-
LAB, it does not include performance analysis. Performance results for mixed
precision GMRES-based iterative refinement with restarting were recently pre-
sented in Lindquist et al. [2022].

7.3.1 Prolate matrices
For the prolate matrices generated as described in Section 7.2 with alpha parame-
ters α ={0.475, 0.47, 0.467, 0.455, 0.45, 0.4468, 0.44, 0.434}, RGMRES-IR is used

79

with precisions (uf , u, ur) = (single, double, quad) and (uf , u, ur) = (half, single,
double). Tables 7.4 and 7.5 show the number of GMRES iterations performed by
GMRES-IR and RGMRES-IR with different precision settings.

Table 7.4 shows the data for experiments with (uf , u, ur) = (single, double,
quad). In the table, we can see that for α > 0.46, recycling does not affect the
performance of GMRES for (m, k) = (16, 4) since only a small number of GMRES
iterations are performed in each step. As α decreases, however, the convergence
of GMRES slows down; hence recycling starts to more significantly decrease the
total number of GMRES iterations.

Table 7.4: Number of GMRES-IR and RGMRES-IR refinement steps and the
number of GMRES iterations for each refinement step for prolate matrices with
various α values, using precisions (uf , u, ur) = (single, double, quad) and (m, k)
= (16,4).

α GMRES-IR (16) RGMRES-IR (16,4)
0.475 5 (2,3) 5 (2,3)
0.47 5 (2,3) 5 (2,3)
0.467 7 (3,4) 7 (3,4)
0.455 13 (6,7) 8 (6,2)
0.45 15 (7,8) 11 (7,4)

0.4468 25 (7,9,9) 15 (7,4,4)
0.44 34 (10,12,12) 19 (10,5,4)
0.434 41 (13,14,14) 25 (13,6,6)

In the case of (uf , u, ur) = (half, single, double), presented in Table 7.5, we
can see that GMRES-IR diverges for α < 0.45 with and without recycling. How-
ever, when α = 0.45, we see that RGMRES-IR diverges although GMRES-IR
converges. This is because of the multiple periods of stagnation in the second
refinement step due to recycling. GMRES cannot converge in the first 16−5 = 11
iterations in the second step, causing an infinite restart which results in diver-
gence. However, for cases where both GMRES-IR and RGMRES-IR convergence,
RGMRES-IR always requires fewer total GMRES iterations. For α = 0.455,
GMRES restarts in the second refinement step of GMRES-IR, while, because of
recycling, RGMRES-IR converges without restarting, which decreases the com-
putational cost.

7.3.2 SuiteSparse matrices
For matrices in Table 7.2, Tables 7.6 and 7.7 compare the performance of GMRES-
IR and RGMRES-IR for precisions (uf , u, ur) = (half, single, double) and (uf , u,
ur) = (half, double, quad), respectively. In the (uf , u, ur) = (half, single, double)
scenario, for the orsirr 1 matrix, GMRES already converges quite quickly, and
so recycling does not have an effect. For the matrices comsol and circuit204,
however, RGMRES-IR reduces the total number of GMRES iterations required
by 35% and 28%, respectively. RGMRES-IR has a benefit for all matrices when
using (uf , u, ur) = (half, double, quad).

80

Table 7.5: Number of GMRES-IR and RGMRES-IR refinement steps with the
number of GMRES iterations for each refinement step for prolate matrices with
various α values, using precisions (uf , u, ur) = (half,single,double) and (m, k) =
(16,5).

α GMRES-IR (16) RGMRES-IR (16,5)
0.475 12 (6,6) 8 (6,2)
0.47 16 (8,8) 10 (8,2)
0.467 19 (9,10) 11 (9,2)
0.455 50 (15,25,10) 19 (15,4)
0.45 89 (14,43,32) -

0.4468 - -
0.44 - -
0.434 - -

Table 7.6: Number of GMRES-IR and RGMRES-IR refinement steps with the
number of GMRES iterations for each refinement step for real matrices, using
precisions (uf , u, ur) = (half,single,double) and (m, k) = (40,6).

Matrix GMRES-IR (40) RGMRES-IR(40,6)
orsirr 1 12 (6,6) 12 (6,6)
comsol 46 (22,24) 30 (22,8)

circuit204 40 (12,14,14) 29 (12,9,8)

Table 7.7: Number of GMRES-IR and RGMRES-IR refinement steps with the
number of GMRES iterations for each refinement step for real matrices, using
precisions (uf , u, ur) = (half, double, quad) and (m, k) = (40,10).

Matrix GMRES-IR (40) RGMRES-IR(40,10)
orsirr 1 22 (11,11) 20 (11,9)
comsol 52 (25,27) 34 (25,9)

circuit204 59 (18,20,21) 47 (18,14,15)

7.3.3 Random dense matrices
For the random dense matrices with geometrically distributed singular values
described in Section 7.2, we compared methods using precisions (uf , u, ur) =
(single, double, quad), (uf , u, ur) = (half, single, double), and (uf , u, ur) = (half,
double, quad).

SGMRES-IR versus RSGMRES-IR

In practice, it is common that implementations use a uniform precision within
GMRES (i.e., applying the preconditioned matrix to a vector in precision u rather
than u2. This is beneficial from a performance perspective (in particular if pre-
cision u2 must be implemented in software). The cost is that the constraint
on condition numbers for which the refinement scheme is guaranteed to con-
verge becomes tighter. To illustrate the benefit of recycling in this scenario, we
first compare what we call SGMRES-IR (which is GMRES-IR but with a uni-
form precision within GMRES) to the recycled version, RSGMRES-IR. For a fair

81

comparison, restarted SGMRES-IR (SGMRES-IR(m)) is compared with recycled
SGMRES-IR (RSGMRES-IR(m, k)).

Table 7.8 shows the number of GMRES iterations performed by SGMRES-IR
and RSGMRES-IR in the (uf , u, ur) = (single, double, quad) setting. From the
table, we observe that recycling reduces the number of GMRES iterations in this
case as well. The reason why SGMRES-IR does not converge for κ2(A) ≥ 1014 is
that in the first refinement step, restarted SGMRES does not converge (restarting
an infinite number of times). For RSGMRES-IR, in the first GCRO-DR call, the
recycling after the first restart cycle helps, allowing GCRO-DR to converge. We
note that this is another benefit of the recycling approach, as it can improve the
reliability of restarted GMRES, which is almost always used in practice.

Table 7.8: Number of SGMRES-IR and RSGMRES-IR refinement steps with the
number of GMRES iterations for each refinement step for precisions (uf , u, ur) =
(single, double, quad) and (m, k) = (80,18). For κ2(A) = 1015, RSGMRES-IR
required 2093 (139, 60, 59, 60, 59, 59, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 48,
46, 46, 51, 60, 48, 48, 48, 51, 48, 48, 48, 58, 48, 48, 48, 48, 48, 48, 61) iterations.

κ∞(A) κ2(A) SGMRES-IR (80) RSGMRES-IR (80,18)
6 · 109 109 64 (19,23,22) 34 (19,8,7)
6 · 1010 1010 120 (39,40,41) 65 (39,13,13)
6 · 1011 1011 160 (52,54,54) 94 (52,21,21)
6 · 1012 1012 196 (65,65,66) 163 (65,32,32,34)
5 · 1013 1013 301 (75,75,75,76) 199 (75,41,41,42)
5 · 1014 1014 - 493 (131,51,51,52,52,52,52,52)
5 · 1015 1015 - 2093*

GMRES-IR versus RGMRES-IR

We now return to our usual setting and compare GMRES-IR and RGMRES-IR
for random dense matrices with condition numbers κ2(A) = {104, 105, 106, 107,
108, 109, 1010, 1011, 1012, 1013, 1014, 1014}. Results using precisions (uf , u, ur) =
(single, double, quad), (uf , u, ur) = (half, single, double), and (uf , u, ur) = (half,
double, quad) are displayed in Tables 7.9-7.11, respectively.

Table 7.9 shows the numerical experiments with (uf , u, ur) = (single, dou-
ble, quad). In the table, we can see that for relatively well-conditioned matrices
(κ∞(A) < 108) since the total number of GMRES iterations is small, using recy-
cling does not change the total number of GMRES iterations. When the condition
number increases, however, the number of GMRES iterations drops significantly.
For κ2(A) ≥ 1014, GMRES-IR does not converge for the same reason SGMRES-
IR did not as described above; namely, that GMRES with the restart parameter
80 does not converge. As before, the recycling between restart cycles fixed this,
and RGMRES-IR is still able to converge in this case.

In Table 7.10 we present the experiments for (uf , u, ur) = (half, single, double).
For κ∞(A) > 105, recycling reduces the total number of GMRES iterations. This
is also the case in Table 7.11, which shows results for precisions (uf , u, ur) = (half,
double, quad). This is a known difficult case for GMRES, and thus is a clear case
where we can see significant benefit of recycling. We see the most significant

82

Table 7.9: Number of GMRES-IR and RGMRES-IR refinement steps with the
number of GMRES iterations for each refinement step for random dense matrices
having geometrically distributed singular values (mode 3) with various condi-
tion numbers, using precisions (uf , u, ur) = (single, double, quad) and (m, k) =
(80,18).

κ∞(A) κ2(A) GMRES-IR (80) RGMRES-IR (80, 18)
9 · 104 104 4 (2,2) 4 (2,2)
8 · 105 105 6 (3,3) 6 (3,3)
7 · 106 106 8 (4,4) 8 (4,4)
7 · 107 107 11 (5,6) 11 (5,6)
7 · 108 108 22 (10,12) 22 (10,12)
6 · 109 109 67 (19,24,24) 36 (19,8,9)
6 · 1010 1010 80 (39,41) 53 (39,14)
6 · 1011 1011 107 (52,55) 75 (52,23)
6 · 1012 1012 132 (65,67) 99 (65,34)
5 · 1013 1013 151 (75,76) 117 (75,42)
5 · 1014 1014 - 184 (131,53)
5 · 1015 1015 - 325 (139,62,124)

improvement for the matrix with κ∞(A) = 1013, in which RGMRES-IR requires
over 16× fewer GMRES iterations than GMRES-IR. We note that GMRES-IR is
only guaranteed to converge up to κ2(A) < 1012 for this combination of precisions;
see Table 7.1.

Table 7.10: Number of GMRES-IR and RGMRES-IR refinement steps with the
number of GMRES iterations for each refinement step for random dense matrices
having geometrically distributed singular values (mode 3) with various condition
numbers, using precisions (uf , u, ur) = (half, single, double) and (m, k) = (90,30).

κ∞(A) κ2(A) GMRES-IR (90) RGMRES-IR (90, 30)
9 · 104 104 20 (9,11) 20 (9,11)
8 · 105 105 70 (32,38) 44 (32,12)
7 · 106 106 129 (64,65) 77 (64,13)
7 · 107 107 164 (82,82) 107 (82,25)

The reason that RGMRES-IR outperforms GMRES-IR is different than in the
previous cases (caused by stagnation caused by restarting), and is almost acci-
dental in this case. We investigate this more closely in Figure 7.3. In the left plot,
we see the convergence trajectory of GMRES(100). In the first restart cycle, the
residual decreases from 106 to 103 after 100 GMRES iterations. GMRES restarts
and performs two more iterations, at which point it converges to a relative resid-
ual of 10−8 (absolute residual of around 10−2. Hence, the first refinement step of
GMRES-IR does 100 + 2 = 102 iterations. The right plot shows the residual tra-
jectory for GCRO-DR. The first restart cycle is the same as in GMRES, however,
once the method restarts, the residual stagnates just above the level required
to declare convergence. After m − k = 70 more iterations, GCRO-DR restarts
again, and this time, the residual drops significantly lower. So while GCRO-DR
requires more iterations (172) to converge to the specified tolerance, when it does

83

Table 7.11: Number of GMRES-IR and RGMRES-IR refinement steps with the
number of GMRES iterations for each refinement step for random dense matrices
having geometrically distributed singular values (mode 3) with various condition
numbers, using precisions (uf , u, ur) = (half, double, quad) and (m, k) = (100,30).
For 1013, GMRES-IR did 3954 (102, 105, 98, 98, 88, 81, 85, 84, 81, 84, 83, 84, 89,
90, 87, 88, 89, 91, 83, 83, 87, 88, 91, 84, 89, 88, 83, 82, 89, 92, 88, 97, 83, 84, 90,
83, 84, 83, 90, 83, 94, 83, 82, 85, 99) iterations.

κ∞(A) κ2(A) GMRES-IR (100) RGMRES-IR (100,30)
9 · 104 104 33 (16,17) 33 (16,17)
8 · 105 105 85 (41,44) 71 (41,15,15)
7 · 106 106 134 (66,68) 85 (66,19)
7 · 107 107 167 (83,84) 113 (83,30)
7 · 108 108 193 (96,97) 138 (96,42)
6 · 109 109 200 (100,100) 151 (100,51)
6 · 1010 1010 200 (100,100) 158 (100,58)
6 · 1011 1011 200 (100,100) 165 (100,65)
6 · 1012 1012 200 (100,100) 170 (100,70)
5 · 1013 1013 3954* 241 (171,70)

converge, it converges to a solution with a smaller residual. This phenomenon
can in turn reduce the total number of refinement steps required. It is possible
that we could reduce the overall number of GMRES iterations within GMRES-IR
(and also RGMRES-IR) by making the GMRES convergence tolerance τ smaller.
We did not experiment with changing the GMRES tolerance within GMRES-IR
or RGMRES-IR, but this tradeoff would be interesting to explore in the future.

1 100 172

7.4e-08

0.028

1835

1.91e+06

1 100 172

7.4e-08

0.028

1835

1.91e+06

Figure 7.3: Residual trajectory of GMRES (left) and GCRO-DR (right), used
within GMRES-IR and RGMRES-IR, respectively, for a randsvd matrix with
κ2(A) = 1013 and precisions (uf , u, ur) = (half, double, quad).

We stress that the convergence guarantees for GMRES-IR for various pre-
cisions stated in Carson and Higham [2017, 2018], Amestoy et al. [2021] hold
only for the case of unrestarted GMRES, i.e., m = n. When m < n, there is
no guarantee that GMRES converges to a backward stable solution and thus
no guarantee that GMRES-IR will converge. Choosing a restart parameter m
that allows for convergence is a difficult problem, and a full theory regarding

84

Table 7.12: Number of GMRES-IR and RGMRES-IR refinement steps with the
number of GMRES iterations for each refinement step for random dense matrices
having geometrically distributed singular values (mode 3) with various condition
numbers, using precisions (uf , u, ur) = (half, double, quad) and (m, k) = (90,40).

κ∞(A) κ2(A) GMRES-IR (90) RGMRES-IR (90,40)
9 · 104 104 33 (16,17) 33 (16,17)
8 · 105 105 85 (41,44) 50 (41,9)
7 · 106 106 134 (66,68) 81 (66,15)
7 · 107 107 167 (83,84) 100 (83,17)
7 · 108 108 - 149 (119,30)
6 · 109 109 - 179 (134,45)
6 · 1010 1010 - 470 (388,41,41)
6 · 1011 1011 - -
6 · 1012 1012 - -
5 · 1013 1013 - -

the behavior of restarted GMRES is lacking. The behavior of restarted GMRES
is often unintuitive; whereas one would think that a larger restart parameter is
likely to be better than a smaller one as it is closer to unrestarted GMRES, this is
not always the case. In Embree [2003], the author gave examples where a larger
restart parameter causes complete stagnation, whereas a smaller one results in
fast convergence.

Whereas in Table 7.12 we now illustrates the behavior for the same problems
and same precisions (uf , u, ur) = (half, double, quad) for the case m < n. It
is seen from the table that both methods converge for κ∞(A) < 108. After
this point, GMRES-IR does not converge, whereas RGMRES-IR does. This
serves as an example where the convergence guarantees given in Carson and
Higham [2017, 2018] do not hold for GMRES-IR with restarted GMRES; for
unrestarted GMRES, convergence is guaranteed up to κ∞(A) ≤ 1012 for this
precision setting. Here, GMRES-IR does not converge because of the stagnation
caused by restarting in the first refinement step. Aided by the recycling between
restart cycles, RGMRES-IR does converge up to κ2(A) = 1011, although the
large number of GMRES iterations required in the first refinement step makes
this approach impractical.

7.4 Conclusion and future work
With the emergence of mixed precision hardware, mixed precision iterative re-
finement algorithms are the focus of significant renewed interest. A promising
approach is the class of GMRES-based refinement schemes, which can enable
the accurate solution of extremely ill-conditioned matrices. However, for some
matrices, GMRES convergence can be very slow, even when (low-precision) pre-
conditioners are applied. This makes the GMRES-based approaches unattractive
from a performance perspective. In this work, incorporate Krylov subspace re-
cycling into the mixed precision GMRES-based iterative refinement algorithm in
order to reduce the total number of GMRES iterations required. We call our
algorithm RGMRES-IR. Instead of preconditioned GMRES, RGMRES-IR uses

85

a preconditioned GCRO-DR algorithm to solve for the approximate solution up-
date in each refinement step. Our detailed numerical experiments on random
dense matrices, prolate matrices, and matrices from SuiteSparse (Davis and Hu
[2011]) show the potential benefit of the recycling approach. Even in cases where
the number of GMRES iterations does not preclude the use of GMRES-based
iterative refinement, recycling can have a benefit. In particular, it can improve
the reliability of restarted GMRES, which is used in most practical scenarios.

One major caveat for GMRES-based iterative refinement schemes is that the
analysis and convergence criteria discussed in the literature all rely on the use
of unrestarted GMRES. When restarted GMRES is used, we can not give such
concrete guarantees, as restarted GMRES may not converge even in infinite pre-
cision. A greater understanding of the theoretical behavior of restarted GMRES
(and GCRO-DR) both in infinite and finite precision would be of great interest.

Another potential future direction is the exploration of the potential for the
use of mixed precision within GCRO-DR. In this work, within GCRO-DR we
only used extra precision in applying the preconditioned matrix to a vector, as is
done in GMRES-IR. There may however, be further potential for the use of low
precision within GCRO-DR, for example, in computation of harmonic Ritz pairs.

Bibliography
Advanpix LLC. Multiprecision computing toolbox for MATLAB. URL http:

//www.advanpix.com/.

Patrick Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent,
Theo Mary, and Bastien Vieublé. Five-precision GMRES-based iterative re-
finement. Technical Report 2021.5, April 2021. URL http://eprints.maths.
manchester.ac.uk/2807/.

Erin Carson and Nicholas J. Higham. A new analysis of iterative refinement
and its application to accurate solution of ill-conditioned sparse linear systems.
SIAM Journal on Scientific Computing, 39(6):A2834–A2856, 2017. doi: 10.
1137/17M1122918.

Erin Carson and Nicholas J. Higham. Accelerating the solution of linear sys-
tems by iterative refinement in three precisions. SIAM Journal on Scientific
Computing, 40(2):A817–A847, 2018. doi: 10.1137/17M1140819.

Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix
Collection. ACM Transactions on Mathematical Software, 38(1), 2011. doi:
10.1145/2049662.2049663.

Eric De Sturler. Truncation strategies for optimal Krylov subspace methods.
SIAM Journal on Numerical Analysis, 36(3):864–889, 1999.

Mark Embree. The tortoise and the hare restart GMRES. SIAM Review, 45(2):
259–266, 2003.

Anne Greenbaum, Vlastimil Pták, and Zdeněk Strakoš. Any nonincreasing con-
vergence curve is possible for GMRES. SIAM journal on matrix analysis and
applications, 17(3):465–469, 1996.

86

http://www.advanpix.com/
http://www.advanpix.com/
http://eprints.maths.manchester.ac.uk/2807/
http://eprints.maths.manchester.ac.uk/2807/

Nicholas J Higham and Srikara Pranesh. Simulating low precision floating-point
arithmetic, mims eprint 2019.4. Manchester Institute for Mathematical Sci-
ences, The University of Manchester, UK, 2019.

HPL-MxP. HPL-MxP mixed-precision benchmark. https://icl.bitbucket.
io/hpl-ai/, November 2019.

Intel Corporation. Bfloat16 – hardware numerics definition. Technical Report
338302-001US, Revision 1.0, Intel, November 2018.

Shuhei Kudo, Keigo Nitadori, Takuya Ina, and Toshiyuki Imamura. Prompt
report on exa-scale HPL-AI benchmark. In 2020 IEEE Int. Conf. Cluster
Comput. (CLUSTER), pages 418–419. IEEE, 2020.

Jörg Liesen and Petr Tichỳ. The worst-case GMRES for normal matrices. BIT
Numerical mathematics, 44:79–98, 2004.

Neil Lindquist, Piotr Luszczek, and Jack Dongarra. Accelerating restarted GM-
RES with mixed precision arithmetic. IEEE Transactions on Parallel and Dis-
tributed Systems, 33(4):1027–1037, 2022. doi: 10.1109/TPDS.2021.3090757.

Ronald B Morgan. GMRES with deflated restarting. SIAM Journal on Scientific
Computing, 24(1):20–37, 2002.

Eda Oktay and Erin Carson. Multistage mixed precision iterative refinement.
Numerical Linear Algebra with Applications, 29(4):e2434, 2022.

Michael L. Parks, Eric de Sturler, Greg Mackey, Duane D. Johnson, and Spandan
Maiti. Recycling Krylov subspaces for sequences of linear systems. SIAM Jour-
nal on Scientific Computing, 28(5):1651–1674, 2006. doi: 10.1137/040607277.

Kirk M. Soodhalter, Eric de Sturler, and Misha Kilmer. A survey of subspace
recycling iterative methods, 2020.

TOP500. TOP500. Online, June 2021. URL https://www.top500.org/.

J.M. Varah. The prolate matrix. Linear Algebra and its Applications, 187:269–
278, 1993. ISSN 0024-3795. doi: 10.1016/0024-3795(93)90142-B.

James Hardy Wilkinson. Rounding errors in algebraic processes. Prentice-Hall,
1963.

87

https://icl.bitbucket.io/hpl-ai/
https://icl.bitbucket.io/hpl-ai/
https://www.top500.org/

8. (F)GMRES-IR for (W)LSP
Iterative refinement can also be used to improve the accuracy of solutions to the
least squares (LS) problems minx∥b − Ax∥2, where A ∈ Rm×n. If m > n, the
system is called overdetermined; if m < n, it is underdetermined.

If m ≥ n and rank(A) = n, then the system can be solved by QR factorization
of A or via the normal equations ATAx = AT b (Björck [1996]). Details of various
IR schemes for LS problems are discussed in Björck [1996], Higham [2002]. To
use the SIR method in LS problems, one performs iterative refinement on the
(m+ n) × (m+ n) augmented system[︄

Im×m A
AT 0

]︄
⏞ ⏟⏟ ⏞˜︁A

[︄
r
x

]︄
⏞⏟⏟⏞

x̃

=
[︄
b
0

]︄
⏞⏟⏟⏞

b̃

or ˜︁Ax̃ = b̃

via QR factorization. We call this approach LS-IR (Björck [1967])
The LS-IR algorithm of Björck does not form the augmented system explicitly,

but instead performs solves using the QR factors of A. However, as stated above,
QR factorization is very expensive and dominates the computation cost of the LS-
IR algorithm. Thus, we can use multiple precisions in LS-IR to further reduce
the computation cost. Namely, we can perform the QR factorization in some
potentially lower precision uf .

Analogous to SIR for linear systems, we can see that as long as κ∞(Ã) ≲ u−1
f ,

where uf is the unit round-off of the precision used for the QR factorization, the
backward error of LS-IR is O(u) and the forward error is

∥x̃− x̂∥∞

∥x̃∥∞
≈ urcond(Ã, x̃) + u,

where ur and u are the unit round-offs of the residual precision and working
precision used in LS-IR to store data and solutions, respectively. Based on this
relation, we observe that if uf is chosen to be fp16, LS-IR converges only for
κ∞(Ã) ≲ 4.88 · 104, which restricts the range of problems that can be solved.

To use low precision for worse-conditioned systems, the authors in Carson
et al. [2020] devised a GMRES-based iterative refinement algorithm analogous to
the GMRES-IR approach in Carson and Higham [2017], called GMRES-LSIR, to
solve least squares problems. GMRES-LSIR solves the augmented system (8.2)
using GMRES preconditioned by a preconditioner M computed using the QR
factors of A:

M =
[︄
αI Q1U

UTQT
1 0

]︄
,

where A = Q1U is the thin QR factorization of A. As long as κ∞(A) ≤ u−1/2u−1
f ,

and assuming ur = u2, GMRES-LSIR provides O(u) backward and forward error.
Furthermore, using the left preconditioner M , the conditioning of the precondi-
tioned augmented matrix can be bounded by

κ∞(M−1Ã) ≲ (1 + 2m
√
nγ̃f

mnκ∞(A))2,

88

where
γ̃f

mn = cmn

1 −mnuf

,

and c is a small constant. This bound shows that even when κ∞(A) ≫ u−1
f , M

will reduce the condition number of the augmented system when constructed in
precision uf .

In some scientific applications, such as electrical networks and interior point
methods for constrained optimization, the standard least squares problem be-
comes insufficient since it cannot fully model a problem having a perturbed co-
efficient matrix. In such cases, a “weight” matrix D can be used to perturb the
system and model it using the weighted least squares (WLS) problem

min
x

∥D1/2(Ax− b)∥2, (8.1)

where A ∈ Rm×n with m ≥ n and D1/2 is a diagonal matrix of weights. In some
applications, the weights can vary significantly and result in stiff problems, which
makes it impossible to transform into a stable standard least squares problem
([Björck, 1996, Sec. 4.1.1]).

WLS problems can be solved via the normal equations

ATDAx = ATDb.

or the corresponding augmented system[︄
αD−1 A
AT 0

]︄ [︄
α−1y
x

]︄
=
[︄
b
0

]︄
, (8.2)

where y = D(b− Ax), α is the scaling factor for stability.
An exact solution to WLS problems can be found using Householder QR fac-

torization with row and column pivoting. For more details and error analysis, see
Morell [1969] and Cox and Higham [1998], respectively. However, QR factoriza-
tion can be expensive, especially when the matrix is large.

In Section 8.1, we introduce a GMRES-LSIR variant using flexible GMRES
(FGMRES) instead of the GMRES algorithm for solving weighted least squares
problems. For more detailed information on the algorithm, see Carson and Oktay
[2024].

8.1 FGMRES-WLSIR
Motivated by its success, we want to solve WLS problems using GMRES-LSIR.
For WLS problems, we need to construct an effective and inexpensive precondi-
tioner M for the weighted augmented system so that κ∞(M−1Ã) is small enough
for GMRES to be backward stable in the given precision. Furthermore, we need
to have a forward error of less than one for GMRES-LSIR to converge.

Using this roadmap, we focus on two preconditioners for GMRES-LSIR to
solve WLS problems: A left preconditioner

Ml =
⎡⎣αD−1 QR̂

R̂
T
QT 0

⎤⎦ , (8.3)

89

which is the direct extension of the M in Carson et al. [2020], except with a
D−1 instead of I in the (1, 1) block and a block diagonal split preconditioner in
Rozložńık [2018]:

Mb =
[︄
αD−1 0

0 Ĉ

]︄
, (8.4)

where Ĉ ≈ α−1ATDA is a symmetric positive definite approximation to the Schur
complement.

Using the analysis in Carson et al. [2020], we can derive a bound for the
conditioning of the preconditioned augmented system with Ml. For the bound,
let ˜︁E = ˜︁A−Ml =

[︄
0 −E

−ET 0

]︄
,

where the error term E is defined as

A+ E = Q ˆ︁R, (8.5)

produced from the finite precision computation of the QR factorization in preci-
sion uf ([Higham, 2002, Theorem 19.4]). Then we can write

M−1
l

˜︁A = M−1
l (Ml + ˜︁E) = I +M−1

l
˜︁E and˜︁A−1Ml = (Ml + ˜︁E)−1Ml ≈ I −M−1

l
˜︁E,

where the inverse of the preconditioner is

M−1
l =

⎡⎣ 1
α

(︂
D −DQ(QTDQ)−1QTD

)︂
DQ(QTDQ)−1 ˆ︁R−Tˆ︁R−1(QTDQ)−1QTD −α ˆ︁R−1(QTDQ)−1 ˆ︁R−T

⎤⎦ .
Using the equation above, we can find bound the condition number of the pre-
conditioned matrix as

κ∞(M−1
l

˜︁A) = ∥M−1
l

˜︁A∥∞∥ ˜︁A−1Ml∥∞ ≲ (1 + ∥M−1
l
˜︁E∥∞)2. (8.6)

To bound ∥M−1
l
˜︁E∥∞, we write

M−1
l
˜︁E =

⎡⎣−DQ(QTDQ)−1 ˆ︁R−TET − 1
α

(︂
D −DQ(QTDQ)−1QTD

)︂
E

α ˆ︁R−1(QTDQ)−1 ˆ︁R−TET − ˆ︁R−1(QTDQ)−1QTDE

⎤⎦ ,
where (QDQ)−1QTD is called the “scaled” or “weighted” pseudoinverse (Stewart
[1989]). To give an (over)estimate on this bound, let QD = D1/2Q. Then we have

∥(QTDQ)−1QTD∥2 = ∥(QT
DQD)−1QT

DD
1/2∥2

≤ ∥Q†
D∥2∥D1/2∥2

≤ ∥Q†∥2∥D−1/2∥2∥D1/2∥2

= κ
1/2
2 (D). (8.7)

As an alternative, we can let

∥(QTDQ)−1QTD∥2 ≡ ρ,

90

and then argue that this ρ is hopefully of reasonable size since it is independent
of D, using the results of Stewart [1989], in which the author shows that this
quantity is bounded and is independent of D. In this study we will use this
relation for simplicity.

Now, using Carson et al. [2020], we obtain

∥M−1
l
˜︁E∥∞ ≤ max(∥(M−1

l
˜︁E)(1, 1)∥∞ + ∥(M−1

l
˜︁E)(1, 2)∥∞,

, ∥(M−1
l
˜︁E)(2, 1)∥∞ + ∥(M−1

l
˜︁E)(2, 2)∥∞)

≤
√
mmax

(︂
∥(M−1

l
˜︁E)(1, 1)∥F , ∥(M−1

l
˜︁E)(2, 1)∥F

)︂
+

√
nmax

(︂
∥(M−1

l
˜︁E)(1, 2)∥F , ∥(M−1

l
˜︁E)(2, 2)∥F

)︂
, (8.8)

where (M−1
l
˜︁E)(i, j) denotes the (i, j)-block of M−1

l
˜︁E.

Using |α| ≈ ∥A†∥−1
2 and ignoring terms of order u2

f ,

∥(M−1
l
˜︁E)(1, 1)∥F = ∥DQ(QTDQ)−1 ˆ︁R−TET ∥F ≤ ρ∥A†∥2∥ET ∥F

∥(M−1
l
˜︁E)(1, 2)∥F =

⃦⃦⃦⃦ 1
α
D
(︂
I −Q(QTDQ)−1QTD

)︂
E
⃦⃦⃦⃦

F
≤ ρ∥D∥2∥A†∥2∥E∥F

∥(M−1
l
˜︁E)(2, 2)∥F = ∥ ˆ︁R−1(QTDQ)−1QTDE∥F ≤ ρ∥A†∥2∥E∥F

∥(M−1
l
˜︁E)(2, 1)∥F = ∥α ˆ︁R−1(QTDQ)−1 ˆ︁R−TET ∥F

= ∥α ˆ︁R−1(QTDQ)−1QTD(QTD)† ˆ︁R−TET ∥F

≤ ρ∥D−1∥2∥A†∥2∥ET ∥F .

Plugging them into (8.8), and letting θ ≡ max(1, ∥D∥2, ∥D−1∥2), we get

∥M−1
l
˜︁E∥∞ ≤ (

√
m+

√
n)ρθ∥A†∥2∥E∥F .

Assuming that we have a standard QR factorization, ∥E∥F ≤ γ̃f
mn∥A∥F , and

thus

∥M−1
l
˜︁E∥∞ ≤ (

√
m+

√
n)ρθ∥A†∥2∥E∥F (8.9)

≤ 2m
√
nρθγ̃f

mnκ∞(A). (8.10)

Note that in the case that we use a standard QR factorization and D = I (and
thus ρ = 1), we recover the same bound as in [Carson et al., 2020, Section 3.1].
Finally, plugging into (8.6), we obtain

κ∞(M−1
l

˜︁A) ≲
(︂
1 + 2m

√
nρθγ̃f

mnκ∞(A)
)︂2
. (8.11)

The D dependence in the bound limits the applicability of the algorithm since,
in real applications, D can be very ill-conditioned. Using the split preconditioner
Mb and its analysis in Rozložńık [2018], we can derive a similar bound as follows.
The preconditioned system with split preconditioner can be written as

M
−1/2
b ÃM

−1/2
b =

[︄(αD−1)−1/2 0
0 Ĉ

−1/2

]︄ [︄
αD−1 A
AT 0

]︄ [︄(αD−1)−1/2 0
0 Ĉ

−1/2

]︄

=
⎡⎣(αD−1)−1/2(αD−1)(αD−1)−1/2 (αD−1)−1/2AT Ĉ

−1/2

Ĉ
−1/2

AT (αD−1)−1/2 0

⎤⎦
=
⎡⎣ I Â

Â
T 0

⎤⎦ ,
91

where
Â = 1√

α
D1/2AT Ĉ

−1/2
.

There is no applicable analysis of the forward and backward errors in split pre-
conditioned GMRES in the literature. However, there is an existing analysis
of these quantities for a general split preconditioned flexible GMRES method
(FGMRES). Thus, to be able to use split preconditioners and discuss their effects
on the stability of this general approach, we use FGMRES instead of GMRES in
GMRES-LSIR. Our new variant to solve WLSP is, therefore, called FGMRES-
WLSIR.

As explained above, since Ĉ is spectrally equivalent to the matrix α−1ATDA,
there exist positive constants 0 < γ̂ ≤ δ̂ such that

γ̂(Ĉy, y) ≤ (BT (αD−1)−1Ay, y) ≤ δ̂(Ĉy, y) ∀y ∈ Rn.

Using [Rozložńık, 2018, Proposition 3.4], the spectrum of the preconditioned ma-
trix can be written as

sp(M−1/2
b ÃM

−1/2
b) = 1

2

(︃
1 ±

√︂
1 + 4σ2

k(Â)
)︃

for k = 1, . . . , n− r,

where rank(Â) = n− r and 0 < σn−r(Â) ≤ · · · ≤ σ1(Â) are the singular values of
Â.

We assume that the Schur complement is computed exactly and we consider
the left-preconditioned matrix

M−1
b Ã =

[︄
I α−1ATD

α−1A(ATDA)−1 0

]︄
,

which is a nonsymmetric diagonalizable matrix with three distinct eigenvalues{︂
1, 1

2(1 ±
√

5)
}︂

. This makes the block diagonal preconditioner a suitable choice
for FGMRES since the method can converge in a small number of iterations.
However, our experiments show that κ∞(M−1

b Ã) can be very large, often larger
than κ∞(Ã), when A is ill-conditioned. An ill-conditioned preconditioned matrix
makes the preconditioner unsuitable for proving the backward stability of FGM-
RES although we show that in practice, the split preconditioner improves the
condition number of the preconditioned matrix.

Using the analysis in Rozložńık [2018], we can obtain the bound

κ∞(M−1/2
b ÃM

−1/2
b) ≤

|1 +
√︂

1 + 4σ2
1(Â)|

|1 −
√︂

1 + 4σ2
n−r(Â)|

(n+m), (8.12)

where 0 < σn−r(Â) ≤ . . . ≤ σ1(Â), are the singular values of Â.
Although the bound on Mb is also dependent on D, we can reduce its impact

numerically via computing D1/2A in high precision and using R factor (from
lower precision QR factorization) of it as Ĉ, which makes the preconditioner
advantageous numerically. However, the forward error of FGMRES also depends
on the conditioning of the right preconditioner M−1/2

b

∥x− x̄k∥
∥x∥

≲ κ∞(M−1/2
b ÃM

−1/2
b)κ∞(M−1/2

b)O(u),

92

Table 8.1: Properties of matrices from the SuiteSparse collection.
Name m n κ2(A) #nnz

ash958 958 292 3.2014 1916
robot24c1_mat5 404 302 3.33 × 1011 15118

whereas in the case of any left preconditioner Ml, FGMRES has a forward error

∥x− x̄k∥
∥x∥

≲ κ∞(M−1
l Ã)O(u).

These bounds show that even though M
−1/2
b ÃM

−1/2
b is well-conditioned, M−1/2

b

can be still ill-conditioned. We thus need to analyze κ∞(M−1/2
b) as well for the

block split preconditioned FGMRES-WLSIR.
To observe the effect of preconditioning, we perform numerical experiments

in MATLAB using sparse matrices from the SuiteSparse collection in Davis and
Hu [2011] and random sparse matrices generated in MATLAB. The properties
of the two sparse matrices from the collection are given in Table 8.1. Code for
our FGMRES-WLSIR and associated functions can be found in the repository
https://github.com/edoktay/fgmreswlsir.

For our experiments, we set the weight matrix D such that each row i of the
matrix A has max |A(i, j)| = 1. The scaling factor α = 2−1/2σn, where σn is the
smallest singular value of A. We compute QR factorizations in half, single, and
double precision and construct the corresponding preconditioners M . We then
measure the infinity-norm condition number of the preconditioned system M−1Ã.

In each figure, the condition number of the preconditioned systems is repre-
sented as colored lines. Each color shows half (red), single (green), and double
(blue) precisions used for computing QR factorizations for the preconditioners.
The dashed black line gives the condition number of the unpreconditioned aug-
mented system and the dotted black line gives the inverse of the unit round-off
for the FGMRES-WLSIR working precision, u. The figures show that the conver-
gence of FGMRES-WLSIR is guaranteed only when the colored solid lines remain
below the dashed line. Numerically, this shows the cases when κ∞(M−1Ã) ≤ u−1.
Only in this case can we guarantee that the forward error of FGMRES is less than
1 and thus FGMRES-WLSIR converges.

To examine the effect of preconditioners on the conditioning of the aug-
mented system, we also construct Table 8.2 using random dense matrices A′

with a randomly generated solution vector b. We prescale the rows of A′ so
that they have drastically different sizes. We use 7 different scalings A = SA′

where S is a diagonal matrix created by diag(logspace(1, j, 100) where
j ∈ [4, 6, 8, 10, 12, 14, 16] to create different matrices with different condition num-
bers. We then set the solution vector b using randn(m,1), where A ∈ Rm×n. From
Table 8.2, we see that for the chosen matrices, Ml is not able to decrease the con-
dition number sufficiently, whereas Mb works well. We finally observe from the
last column that even though M1/2

b is ill-conditioned since the preconditioned sys-
tem is very well conditioned, FGMRES-WLSIR still converges due to the forward
error constraint in (8).

With these numerical experiments, we conclude that since the conditioning
of the weight matrix is highly problem-dependent, we cannot generalize which

93

10
0

10
5

10
10

10
15

10
0

10
10

10
20

10
30

10
0

10
5

10
10

10
15

10
0

10
10

10
20

10
30

Figure 8.1: Measured condition number of the preconditioners (left) and pre-
conditioned systems (right) using ash958 matrix as A where Ml and Mb are
constructed using QR factorizations in various precisions, versus the condition
number of the weight matrix D. The working precision for FGMRES-WLSIR is
assumed to be double precision.

10
0

10
5

10
10

10
15

10
10

10
20

10
30

10
0

10
5

10
10

10
15

10
0

10
20

10
40

10
60

Figure 8.2: Measured condition number of the preconditioners (left) and precon-
ditioned systems (right) using robot24c1 mat5 matrix as A, where Ml and Mb are
constructed using QR factorizations in various precisions, versus the condition
number of the weight matrix D. The working precision for FGMRES-WLSIR is
assumed to be double precision.

preconditioner is more useful for FGMRES-WLSIR. Although our numerical ex-
periments show that using the block split preconditioner in half-precision may
be used in more ill-conditioned systems, in real applications, D might be worse-
conditioned.

Because of the D dependence of both preconditioners and right preconditioner
dependence of split preconditioned FGMRES, this work can be studied further.
Further studies can focus either on the choice of a preconditioner or another
iterative approach other than FGMRES. In any case, the optimal algorithm needs
to have the error bound of the preconditioner being independent from the weight
matrix.

94

Table 8.2: Condition numbers of Ã, right preconditioner, and preconditioned
augmented matrices.

κ2(A) κ∞(Ã) κ∞(M−1
l Ã) κ∞(M−1/2

b ÃM
−1/2
b) κ∞(M1/2

b)
1.47e+02 1.73e+05 1.16e+02 5.79e+01 3.60e+02
1.91e+02 8.04e+08 1.14e+05 4.03e+01 3.08e+04
2.47e+02 5.06e+12 1.50e+08 3.02e+01 2.48e+06
3.21e+02 3.81e+16 4.36e+11 2.62e+01 2.16e+08
4.22e+02 2.97e+20 5.24e+14 2.30e+01 1.87e+10
5.61e+02 2.26e+24 1.12e+18 2.05e+01 1.63e+12
7.59e+02 1.67e+28 1.16e+22 1.86e+01 1.36e+14

Bibliography
Åke Björck. Iterative refinement of linear least squares solutions i. BIT Numerical

Mathematics, 7(4):257–278, 1967.

Åke Björck. Numerical Methods for Least Squares Problems. Society for Industrial
and Applied Mathematics, 1996. doi: 10.1137/1.9781611971484.

Erin Carson and Nicholas J. Higham. A new analysis of iterative refinement
and its application to accurate solution of ill-conditioned sparse linear systems.
SIAM Journal on Scientific Computing, 39(6):A2834–A2856, 2017. doi: 10.
1137/17M1122918.

Erin Carson and Eda Oktay. Mixed precision FGMRES-based iterative refinement
for weighted least squares. arXiv preprint arXiv:2401.03755, 2024.

Erin Carson, Nicholas J. Higham, and Srikara Pranesh. Three-precision GMRES-
based iterative refinement for least squares problems. SIAM Journal on Scien-
tific Computing, 42(6):A4063–A4083, 2020. doi: 10.1137/20M1316822.

Anthony J. Cox and Nicholas J. Higham. Stability of Householder QR factor-
ization for weighted least squares problems. In D. F. Griffiths, D. J. Higham,
and G. A. Watson, editors, Numerical Analysis 1997, Proceedings of the 17th
Dundee Biennial Conference, volume 380 of Pitman Research Notes in Mathe-
matics, pages 57–73. Addison Wesley Longman, Harlow, Essex, UK, 1998.

Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix col-
lection. ACM Trans. Math. Softw., 38(1), dec 2011. ISSN 0098-3500. doi:
10.1145/2049662.2049663.

Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

A.J.M. Morell, editor. On applying Householder’s method to linear least squares
problems, 1969. North-Holland, Amsterdam. pp. 122-126.

Miroslav Rozložńık. Saddle-point problems and their iterative solution. Springer,
2018.

Gilbert W Stewart. On scaled projections and pseudoinverses. Linear Algebra
and its Applications, 112:189–193, 1989.

95

9. Multistage mixed-precision
iterative refinement1

Iterative refinement (IR) is frequently used in solving linear systems Ax = b,
where A ∈ Rn×n, x, b ∈ Rn, to improve the accuracy of a computed approximate
solution x̂ ∈ Rn. Typically, one computes an initial approximate solution x̂0 ∈ Rn

using Gaussian elimination with partial pivoting (GEPP), saving the approximate
factorization A ≈ L̂Û , where L̂ ∈ Rn×n is a lower triangular matrix with unit
diagonal, and Û ∈ Rn×n is an upper triangular matrix. After computing the
residual r̂ = b − Ax̂ ∈ Rn (potentially in higher precision), one reuses L̂ and Û

to solve the system Ad̂ = r̂, where d̂ ∈ Rn. The original approximate solution is
subsequently refined by adding the corrective term, x̂ = x̂+d̂. This process can be
repeated until either the desired accuracy is reached or the iterative refinement
process converges to an approximate solution. Iterative refinement algorithms
that exploit multiple different precisions have seen renewed attention recently
due to the emergence of mixed precision hardware, and form the basis for the
recently developed HPL-AI benchmark, on which today’s top supercomputers
exceed exascale performance; see e.g., HPL-MxP, Kudo et al. [2020], TOP500.

Algorithm 1 shows a general mixed precision iterative refinement scheme. Fol-
lowing the work of Carson and Higham [2018], there are four different precisions
specified: uf denotes the factorization precision, u denotes the working precision,
ur denotes the precision for the residual computation, and us denotes the effective
precision with which the correction equation is solved. This final precision, us,
is not a hardware precision but will rather depend on the particular solver used
in line 4 and the particular precision(s) used within the solver (which may be
different from u, uf , and ur). It is assumed that uf ≥ u ≥ ur.

The choice of precisions u, uf , and ur, and the choice of a solver to use in
line 4 defines different variants of iterative refinement. We refer to any variant
that solves the correction equation in line 4 using triangular solves with the com-
puted LU factors as “standard iterative refinement” (SIR). For SIR, the effective
precision of the correction solve is limited by the precision with which the factor-
ization is computed, and thus we have us = uf . The most commonly-used SIR
variant is what we call “traditional” iterative refinement, in which uf = u and
ur = u2. For instance, if the working precision is single, i.e., u = 5.96 · 10−8, then
for ur = u2 ≈ 10−16, double precision is used. Traditional iterative refinement
was used already by Wilkinson in 1948 (Wilkinson [1948]), and was analyzed in
fixed point arithmetic by Wilkinson in 1963 (Wilkinson [1963]) and in floating
point arithmetic by Moler in 1967 (Moler [1967]). There have also been analyses
of fixed precision iterative refinement, in which uf = u = ur (Jankowski and
Woźniakowski [1977]), as well as low precision factorization iterative refinement,
in which u2

f = u = ur (Langou et al. [2006]). Motivated by the trend of low
1This chapter is a pre-copyedited, author-produced version of an article accepted

for publication in Wiley, Numerical Linear Algebra with Applications following peer
review. The version of record [Numerical Linear Algebra with Applications, Oktay,
E., Carson, E.: Multistage mixed-precision iterative refinement] is available online at
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.2434.

96

and mixed precision capabilities in hardware, the authors in Carson and Higham
[2018] developed and analyzed a three-precision iterative refinement scheme, in
which uf , u, and ur may differ, which generalizes (and in some cases, improves
the bounds for) many existing variants. For references to analyses of variants of
iterative refinement, see [Carson and Higham, 2018, Table 1.1].

If A is very ill conditioned or badly scaled, SIR can fail, i.e., the error is
not eventually bounded by a small multiple of machine precision. In extreme
cases of ill conditioning, the error can grow with each refinement step. In Car-
son and Higham [2017] and Carson and Higham [2018], the authors developed a
mixed precision GMRES-based iterative refinement scheme (GMRES-IR), shown
in Algorithm 17. The only difference with SIR is the way in which the cor-
rection equation is solved. The idea is that instead of using the LU factors to
solve for the correction in each step, one can instead use these factors as (left)
preconditioners for a preconditioned GMRES method which solves for the cor-
rection. In this way, the effective solve precision becomes us = u, and more
ill-conditioned problems can be handled relative to SIR. The GMRES-based re-
finement approaches have seen much success in practice. Current GMRES-based
iterative refinement variants are implemented in the MAGMA library (2.5.0) and
in the NVIDIA cuSOLVER library. GMRES-IR also forms the basis for the new
HPL-AI benchmark, used to rank computers in the TOP500 list (HPL-MxP). Ex-
periments detailing the performance benefits of three-precision GMRES-IR and
SIR can be found in Haidar et al. [2018].

Although GMRES-IR can succeed where SIR fails, each step of GMRES-
IR is potentially more expensive than each step of SIR (albeit still potentially
less expensive than running the entire process in double the working precision).
Whereas each SIR refinement step involves only two triangular solves in precision
u, each GMRES-IR step involves two triangular solves in precision u2 in each
GMRES iteration (in addition to a matrix-vector product in precision u2 as well
as multiple vector operations in precision u). The convergence behavior of each
GMRES solve thus plays a large role, and it is important for the performance of
GMRES-IR that each call to GMRES converges relatively quickly. It is addition-
ally a performance concern that each GMRES iteration requires computations in
higher precision; in order to obtain the needed bound on backward error of the
GMRES solve, the authors in Carson and Higham [2017, 2018] required that the
preconditioned system U−1L−1A (not formed explicitly) is applied to a vector in
precision u2.

The authors of Carson and Higham [2017, 2018] suggested that this required
use of extra precision was likely to be overly strict in many practical scenarios.
Indeed, most practical implementations of GMRES-based iterative refinement do
not use this extra precision (Amestoy et al. [2021]). This motivated Amestoy et
al. (Amestoy et al. [2021]) to develop an extension of the GMRES-IR algorithm,
called GMRES-IR5. The authors in Amestoy et al. [2021] revisit the proof of
backward stability for GMRES from Paige et al. [2006] and develop a bound
on the backward error for a mixed precision GMRES algorithm, where ug ≥ u
is the working precision used within GMRES and up is the precision in which
the preconditioned matrix is applied to a vector. This enables a five-precision
GMRES-IR scheme, where u, uf , ur, ug, and up may take on different values. A
particular improvement over the GMRES-IR scheme of Carson and Higham [2017,

97

Table 9.1: Asymptotic computational complexity of operations in each refinement
step for SIR, SGMRES-IR, and GMRES-IR.

Once per IR solve
(all variants) O(n3) in precision uf (LU fact.)

SIR step O(n2) in precision uf (tri. solves)

SGMRES-IR step
(k GMRES iterations)

O(nk2) in precision u (orthog.)
O(nnz · k) in precision u (SpMV)
O(n2k) in precision u (precond.)

GMRES-IR step
(k GMRES iterations)

O(nk2) in precision u (orthog.)
O(nnz · k) in precision u2 (SpMV)
O(n2k) in precision u2 (precond.)

Once per refinement step
(all variants)

O(nnz) in precision ur (residual comp.)
O(n) in precision u (sol. update)

2018] is that the analysis provides bounds on forward and backward errors for a
variant of GMRES-IR in which the entire GMRES iteration is carried out in a
uniform precision, i.e., the analysis does not require that extra precision is used
in applying the preconditioned matrix to a vector. This particular variant of the
algorithm is thus less expensive than the former GMRES-IR in terms of both
time and memory. The drawback is that it is only theoretically applicable to a
smaller set of problems due to a tighter constraint on condition number. We call
the particular instance of GMRES-IR5 where u = ug = up “SGMRES-IR” (for
“simpler”), shown in Algorithm 20. To make more precise the relative costs of
each step of SIR, SGMRES-IR, and GMRES-IR, we list their costs in terms of
asymptotic computational complexity in Table 9.1. We discuss the constraints
on condition number under which each variant converges later in Section 9.1.2.

Algorithm 20 SGMRES-IR (a particular variant of GMRES-IR5 (Amestoy et al.
[2021]))
Input: matrix An×n; right-hand side bn; maximum number of refinement steps

imax; GMRES convergence tolerance τ .
Output: Approximate solution xi+1 to Ax = b.

1: Compute LU factorization A = LU in precision uf .
2: Solve Ax0 = b by substitution in precision uf , store in precision u.
3: for i = 0: imax − 1 do
4: Compute ri = b− Axi in precision ur, store in precision u.
5: Solve U−1L−1Adi+1 = U−1L−1ri by GMRES in working precision u, with

matrix-vector products with Ã = U−1L−1A computed at precision u; store in
precision u.

6: Compute xi+1 = xi + di+1 in precision u.
7: if converged then return xi+1. end if

In terms of both cost and range of condition numbers to which the algorithm
can be applied, we expect SGMRES-IR to be, in general, somewhere between SIR
and GMRES-IR. For example, if we use single precision for uf , double precision
for u, and quadruple precision for ur, SIR is guaranteed to converge to the level of
double precision in both forward and backward errors as long as the infinity-norm

98

condition number of the matrix A, κ∞(A) = ∥A∥∞∥A−1∥∞, is less than 2 · 107.
For SGMRES-IR, this constraint becomes κ∞(A) ≤ 1010. GMRES-IR, on the
other hand, only requires κ∞(A) ≤ 2 ·1015. Thus going from SIR to SGMRES-IR
to GMRES-IR, we expect that these algorithms will be increasingly expensive but
also expect that they will converge for increasingly ill-conditioned matrices. We
note this may not always be the case. For some precision combinations, SGMRES-
IR has a tighter constraint on condition number than SIR (see Amestoy et al.
[2021]), although this may be an artifact of the analysis. Also, the metric of
relative “cost” is difficult to determine a priori, in particular between SGMRES-
IR and GMRES-IR, since it depends on the number of GMRES iterations required
in each refinement step.

It is thus difficult to choose a priori which particular variant of iterative re-
finement is the most appropriate for a particular problem. Even if the matrix
condition number meets the constraint for convergence for the chosen iterative
refinement algorithm, the convergence rate may be unacceptably slow, or each
step may require so many GMRES iterations that it becomes impractical. Fur-
ther, as our experiments show, the condition number constraints in the literature
are can be too tight, meaning that for some problems a given refinement scheme
converges even when the analysis indicates that it may not. This could lead users
to select a more expensive iterative refinement variant than is actually needed in
practice.

In this work, we aim to solve this problem through the development of a mul-
tistage, three-precision iterative refinement scheme, which we abbreviate MSIR.
Our approach automatically switches between solvers and precisions if slow con-
vergence (of the refinement scheme itself or of the inner GMRES solves) is de-
tected using stopping criteria adapted from the work in Demmel et al. [2006].
Two novel aspects of our approach are (1) we attempt to use “stronger” solvers
before resorting to increasing the precision of the factorization, and (2) when
executing a GMRES-based refinement algorithm, we modify the stopping criteria
to also restrict the number of GMRES iterations per refinement step.

Table 9.1 shows why first switching the solver may be more favorable from
a performance perspective; whereas increasing the precision and recomputing
the factorization will cost O(n3) flops in precision u2

f , where uf is the current
factorization precision, using the existing factorization and performing k total
GMRES iterations may be faster, requiring O(n2k) flops in precision u. This
motivates point (2) above. If the number of GMRES iterations k is too large,
then one (S)GMRES-IR refinement step at least as expensive as recomputing the
factorization in a higher precision (u for SGMRES-IR or u2 for GMRES-IR).

Our approach may serve to improve existing multistage iterative refinement
implementations. For example, the MAGMA library (Tomov et al. [2010]) cur-
rently uses a variant of SGMRES-IR and if convergence is not detected after
the specified maximum number of iterations, the factorization is recomputed in
a higher precision and the refinement restarts. Our numerical experiments con-
firm that it may be beneficial to first try a different solver before resorting to
recomputing the factorization.

In Section 9.1, we present the MSIR algorithm and give a motivating numerical
example. We then give details of the stopping criteria used and summarize the
analysis for each algorithm variant from Carson and Higham [2018] and Amestoy

99

et al. [2021]. In Section 9.2 we present more thorough numerical experiments on
both random dense matrices and matrices from the SuiteSparse collection (Davis
and Hu [2011]). We conclude and discuss future extensions in Section 9.3.

9.1 The MSIR algorithm
In order to balance reliability and cost, we develop a multistage iterative refine-
ment algorithm (MSIR), presented in Algorithm 21. The algorithm starts with
three-precision SIR (as in Carson and Higham [2018]) and, using the stopping cri-
teria developed in Demmel et al. [2006], switches to SGMRES-IR if the algorithm
is not converging at an acceptable rate (or not converging at all). Then, using
the same stopping criteria along with an additional constraint on the number
of GMRES iterations per refinement step, the algorithm may choose to switch a
second time to the GMRES-IR algorithm (which uses higher precision in applying
the preconditioned matrix to a vector within GMRES). If convergence is still not
achieved or is too slow, then as a fail-safe, we increase the factorization precision
uf (and the other precisions if necessary to satisfy uf ≥ u, ur ≤ u2), recompute
the LU factorization, and begin the process again with SIR. We enforce ur ≤ u2

in order to guarantee the convergence of the forward error to the level of the
working precision, but this strategy for increasing precisions could be modified in
practice. For instance, if the initial setting is (uf , u, ur) = (half, single, double),
we would double only uf and use (uf , u, ur) = (single, single, double), and then if
we need to increase precisions again, we would use (uf , u, ur) = (double, double,
quad).

Before explaining the details of the algorithm, we begin with a brief mo-
tivating example illustrating how MSIR works. We restrict ourselves to IEEE
precisions and use initial precisions (uf , u, ur) = (single, double, quad) and test
random dense matrices of size 100×100 generated using the MATLAB command
gallery(’randsvd’,n,kappa(i),2), where kappa is the array of the desired
2-norm condition numbers. Here we test 2-norm condition numbers 101, 105,
and 1016. We set b to be a vector of normally distributed numbers generated
by the MATLAB command randn. For reproducibility, we use the MATLAB
command rng(1) to seed the random number generator before generating each
linear system. The GMRES convergence tolerance τ ∈ R+, which also appears
in Algorithms 17 and 20, dictates the stopping criterion for the inner GMRES
iterations. The algorithm is considered to be converged if the relative (precon-
ditioned) residual norm drops below τ . In all tests here we use τ = 10−6. The
particular criteria by which we switch between solvers is discussed in detail in
Section 9.1.1.

Figures 9.1, 9.2, and 9.3 show results for condition numbers 101, 105, and 1016,
respectively. The red, blue, and green lines in the figures show the behavior of
the forward error ferr (red), normwise relative backward error nbe (blue), and
componentwise relative backward error cbe (green). The dotted black line shows
the value of the initial working precision u. If there is a switch in MSIR, the
step at which it happened is marked with a star. For instance, if MSIR uses
both SGMRES-IR and GMRES-IR, then there are two stars: the first one marks
the switch from SIR to SGMRES-IR and the second one marks the switch from
SGMRES-IR to GMRES-IR.

100

Algorithm 21 Multistage Iterative Refinement (MSIR)
Input: n × n matrix A; right-hand-side b; maximum number of refinement steps of each type

imax; GMRES convergence tolerance τ ; stopping criteria parameter ρthresh; maximum GM-
RES iterations kmax ∈ N+; initial factorization precision uf ; initial working precision u;
initial residual precision ur.

Output: Approximate solution xi+1 to Ax = b, boolean cged.
1: Compute LU factorization A = LU in precision uf .
2: Solve Ax0 = b by substitution in precision uf , store in precision u.
3: Initialize: d0 = ∞; alg = SIR; iter = 0; i = 0; cged = 0; ρmax = 0.
4: while not cged do
5: Compute ri = b − Axi in precision ur, store in precision u.
6: Scale ri = ri/∥ri∥∞.
7: if alg = SIR then
8: iter = iter +1
9: Compute di+1 = U−1(L−1ri) in precision uf ; store in precision u.

10: if di+1 contains Inf or NaN then alg = SGMRES-IR; iter = 0; break. end if
11: Compute xi+1 = xi + ∥ri∥∞di+1 in precision u.
12: z = ∥di+1∥∞/∥xi∥∞; v = ∥di+1∥∞/∥di∥∞; ρmax = max(ρmax, v); ϕi = z/(1 − ρmax)
13: if z ≤ u or v ≥ ρthresh or iter > imax or ϕi ≤

√
nu then

14: if not converged then
15: alg = SGMRES-IR; iter = 0.
16: if ϕi > ϕ0 then xi+1 = x0 end if
17: else
18: cged = 1
19: else if alg = SGMRES-IR then
20: iter = iter +1
21: Solve U−1L−1Adi+1 = U−1L−1ri by GMRES in precision u with matrix-vector

products with Ã = U−1L−1A computed at precision u, store in precision u.
22: Compute xi+1 = xi + ∥ri∥∞di+1 in precision u.
23: z = ∥di+1∥∞/∥xi∥∞; v = ∥di+1∥∞/∥di∥∞; ρmax = max(ρmax, v); ϕi = z/(1 − ρmax)
24: if z ≤ u or v ≥ ρthresh or iter > imax or kGMRES > kmax or ϕi ≤

√
nu then

25: if not converged then
26: alg = GMRES-IR; iter = 0.
27: if ϕi > ϕ0 then xi+1 = x0 end if
28: else
29: cged = 1
30: else if alg = GMRES-IR then
31: iter = iter +1
32: Solve U−1L−1Adi+1 = U−1L−1ri by GMRES in precision u with matrix-vector

products with Ã = U−1L−1A computed at precision u2, store di+1 in precision u.
33: Compute xi+1 = xi + ∥ri∥∞di+1 in precision u.
34: z = ∥di+1∥∞/∥xi∥∞; v = ∥di+1∥∞/∥di∥∞; ρmax = max(ρmax, v); ϕi = z/(1 − ρmax)
35: if z ≤ u or v ≥ ρthresh or iter > imax or kGMRES > kmax or ϕi ≤

√
nu then

36: if not converged then
37: uf = u2

f ; alg = SIR; iter = 0.
38: Compute LU factorization A = LU in precision uf .
39: if uf < u then u = uf end if
40: if ur > u2 then ur = u2 end if
41: if ϕi > ϕ0 then xi+1 = x0 end if
42: else
43: cged = 1
44: i = i + 1

101

For figures in this study, forward error is calculated as ∥x̂− x∥∞/∥x∥∞. The
normwise relative backward error for x̂ is calculated as

∥b− Ax̂∥
∥A∥∥x̂∥ + ∥b∥

,

whereas for the computation of the componentwise relative backward error,

max
i

|b− Ax̂|i
(|A||x̂| + |b|)i

is used.
The number of refinement steps performed by SIR, SGMRES-IR, GMRES-IR,

and MSIR for these matrices are presented in Table 9.2. For SIR, the number in
each row gives the number of refinement steps. For SGMRES-IR and GMRES-
IR, the number of parenthetical elements gives the total number of refinement
steps, and element i in the list gives the number of GMRES iterations performed
in refinement step i. For example, (3, 4) indicates that 2 refinement steps were
performed, the first of which took 3 GMRES iterations and the second of which
took 4. For the MSIR column, the data for SIR, SGMRES-IR, and GMRES-IR is
comma-separated. For example, 2, (2) indicates that 2 SIR steps were performed,
the algorithm then switched to SGMRES-IR, and performed 1 SGMRES-IR step
which required 2 GMRES iterations. Since there is no second set of parentheses,
this indicates that there was no switch to GMRES-IR. In all columns, a dash
denotes that the algorithm diverged or made no progress; to enable a fair com-
parison, in our experiments we set imax to be a very high value (here imax = 2000)
in order to allow all approaches that eventually converge sufficient time to do so.

Table 9.2: Number of SIR, SGMRES-IR, GMRES-IR, and MSIR steps with the
number of GMRES iterations for each SGMRES-IR and GMRES-IR step for
initial precisions (uf , u, ur) = (single, double, quad).
κ∞(A) κ2(A) SIR SGMRES-IR GMRES-IR MSIR
2 · 102 101 2 (2) (2) 2
2 · 106 105 5 (2,3) (2) 2, (2)
2 · 1017 1016 - (3,3,3,4,4,4,4,8,100,100,50,12,12,5,4,5,4,4,4,4) (3,4) 2, (3,3), (3,4)

From Figure 9.1, we can see that for well-conditioned matrices, SIR quickly
converges to the solution. When the condition number increases closer to u−1

f =
(5.96 · 108)−1 ≈ 1.7 · 107 as in Figure 9.2, however, SIR convergence begins to
slow down, and MSIR switches to SGMRES-IR, which then converges in one
step. When the matrix becomes very ill conditioned as in Figure 9.3, then SIR
diverges, SGMRES-IR converges very slowly, and thus MSIR makes the second
switch to GMRES-IR.

This illustrates the benefit of the multistage approach. In the case that the
problem is well conditioned enough that SIR suffices, MSIR will only use SIR.
For the κ2(A) = 101 case, MSIR behaves exactly the same as SIR, and is thus less
expensive than SGMRES-IR and GMRES-IR since a single GMRES iteration is
more expensive than an SIR step. In the extremely ill-conditioned case, both SIR
and SGMRES-IR fail to converge or convergence is too slow. MSIR however does
converge quickly, although at roughly double the cost of GMRES-IR. This is the

102

0 1 2

10
-15

10
-10

10
-5

0 1 2

10
-15

10
-10

10
-5

0 1 2

10
-15

10
-10

10
-5

0 1 2

10
-15

10
-10

10
-5

Figure 9.1: Convergence of errors for a 100 × 100 random dense matrix with
κ2(A) = 101 using SIR (top left), SGMRES-IR (top right), GMRES-IR (bot-
tom left), and MSIR (bottom right), with initial precisions (uf , u, ur) = (single,
double, quad). Note that for SGMRES-IR and GMRES-IR, the forward error is
measured as 0 (in double precision) after one refinement step.

103

0 1 2 3 4 5
10

-20

10
-15

10
-10

10
-5

10
0

0 1 2 3 4 5
10

-20

10
-15

10
-10

10
-5

10
0

0 1 2 3 4 5
10

-20

10
-15

10
-10

10
-5

10
0

0 1 2 3 4 5
10

-20

10
-15

10
-10

10
-5

10
0

Figure 9.2: Convergence of errors for a 100 × 100 random dense matrix with
κ2(A) = 105 using SIR (top left), SGMRES-IR (top right), GMRES-IR (bottom
left), and MSIR (bottom right), with initial precisions (uf , u, ur) = (single, dou-
ble, quad).

104

0 5 10 15 20

10
-15

10
-10

10
-5

10
0

0 5 10 15 20
10

-20

10
-15

10
-10

10
-5

10
0

0 5 10 15 20
10

-20

10
-15

10
-10

10
-5

10
0

0 5 10 15 20
10

-20

10
-15

10
-10

10
-5

10
0

Figure 9.3: Convergence of errors for a 100 × 100 random dense matrix with
κ2(A) = 1016 using SIR (top left), SGMRES-IR (top right), GMRES-IR (bottom
left), and MSIR (bottom right), with initial precisions (uf , u, ur) = (single, dou-
ble, quad).

105

inherent tradeoff. Compared to GMRES-IR, we expect MSIR to be less expensive
when the problem is well or reasonably well conditioned and thus only SIR or
SGMRES-IR are used (see a comparison of costs in Table 9.1). For cases where
the problem is extremely ill conditioned relative to the working precision and
GMRES-IR converges, we expect MSIR to be a constant factor more expensive
than GMRES-IR. Compared to SIR and SGMRES-IR, the benefit is clear: when
SIR and/or SGMRES-IR converges reasonably quickly, MSIR will also converge
at roughly the same cost, but MSIR can converge for problems where SIR and
SGMRES-IR may not.

9.1.1 Algorithm details
We now discuss the MSIR algorithm (Algorithm 21) in more detail. The algorithm
uses i to denote the global number of refinement steps of any type. The iter
variable counts the number of refinement steps of the current refinement variant;
e.g., it will first count the number of SIR steps, and is then reset to 0 if the
algorithm switches to SGMRES-IR. Unlike the single-stage algorithms, here the
input parameter imax specifies the maximum number of refinement steps of each
type, meaning, e.g., we will perform up to imax SIR steps before switching to
SGMRES-IR.

Stopping criteria and convergence detection

In Demmel et al. [2006], Demmel et al. analyze an iterative refinement scheme in
which extra precision is used in select computations and provide reliable normwise
and componentwise error bounds for the computed solution as well as stopping
criteria. They devise a new approach that adaptively changes the precision with
which the approximate solution is stored based on monitoring the convergence;
if consecutive corrections to the approximate solution are not decreasing at a
sufficient rate, the precision of the approximate solution is increased. This has
the effect of improving the componentwise accuracy.

Following this strategy for monitoring the behavior of iterative refinement
from Demmel et al. [2006], the MSIR algorithm will switch to the next variant if
any of the following conditions applies:

1. ∥di+1∥∞
∥xi∥∞

≤ u (the correction di+1 changes solution xi too little),

2. ∥di+1∥∞
∥di∥∞

≥ ρthresh (convergence slows down sufficiently),

3. iter ≥ imax (too many iterations of a particular variant have been per-
formed), and,

4. kGMRES ≥ kmax (too many GMRES iterations are performed in one step of
SGMRES-IR or GMRES-IR)

where di is the correction of the solution xi, ρthresh ∈ R+ is a threshold for conver-
gence and ρthresh < 1, imax ∈ N+ is the maximum number of iterations, kmax ∈ N+

is the maximum number of GMRES iterations performed per SGMRES-IR step,
and u is the working precision.

106

As is explained in Demmel et al. [2006], the analyses of Bowdler in 1966
(Bowdler et al. [1966]) and Moler in 1967 (Moler [1967]) showed that ∥di+1∥∞
should decrease by a factor of at most ρ = O(uf)κ∞(A) at each step, and thus the
solution xi+1 should converge like a geometric sum, meaning that ∑︁∞

j=i+1 ∥di∥∞ ≤
∥di+1∥∞/(1 − ρ). This geometric convergence will end when rounding errors
become significant. So if we have ∥di+1∥∞/∥di∥∞ ≥ ρthresh, it either means that
(1) convergence has slowed down due to rounding errors, or (2) convergence is slow
from the beginning as the quantity ρ is close to 1 (meaning that the problem is
too ill conditioned with respect to the precision uf). In the case that ∥di+1∥∞ >
∥di∥∞, this indicates that the iterative refinement process is diverging, again
because the problem is too ill conditioned with respect to the precision uf .

We reiterate that the fourth condition above only applies to the switch from
SGMRES-IR to GMRES-IR, or GMRES-IR to SIR with increased precision(s).
We note that as in line 10 in Algorithm 21, in case SIR produces a correction di+1
containing Inf or NaN, we immediately switch to SGMRES-IR without perform-
ing the solution update. This situation can arise as a result of performing the
triangular solves in low precision. We have implemented a simple scaling to help
avoid this situation, although in certain scenarios it may still occur; see further
details in Section 9.1.1. We note that this is less of a concern for GMRES-based
approaches, since within GMRES the triangular solves are performed in either
precision u (SGMRES-IR) or u2 (GMRES-IR).

Moreover, the convergence detection in lines 14, 25, and 36 in Algorithm 21
can be performed using the normwise relative error estimate discussed in Demmel
et al. [2006],

max

⎧⎨⎩
∥di+1∥∞
∥xi∥∞

1 − ρmax

, γu

⎫⎬⎭ ≈ ∥xi − x∥∞

∥x∥∞
, (9.1)

where γ = max(10,
√
n), n is the size of the matrix A, and ρmax := maxj≤i

∥dj+1∥∞
∥dj∥∞

is the maximum ratio of successive corrections. The quantity (∥di+1∥∞/∥xi∥∞)/
(1−ρmax) is stored in Algorithm 21 as the quantity ϕi. If the condition in lines 14,
25, and 36 is triggered, one could then test for convergence by checking whether
both ϕi ≤

√
nu and ϕi ≥ 0, and if so, declare convergence (note that ϕi < 0

indicates divergence). If convergence is not detected, we must also decide whether
to keep the current approximate solution or reset the approximate solution to x0,
since this will be input to the next stage. We test if ϕi > ϕ0, and if so, we reset
the initial solution. We note that other measures, such as for the componentwise
error, could also be used to detect convergence.

We note that the criteria used to determine whether the current algorithm
should quit iterating are one iteration behind; in other words, we can only detect
convergence (or non-convergence) in step i after computing the correction term in
step i+1. For this reason, the MSIR algorithm will generally compute at least two
steps of a particular variant before deciding to switch. The two cases where fewer
than 2 steps of a variant will occur are 1) when the computed update contains Infs
or NaNs (as in line 10 in Algorithm 21), in which case we switch without updating
the current solution, and 2) when, for SGMRES-IR and GMRES-IR, the number
of GMRES iterations exceeds kmax, since this is detectable immediately in the
current step.

In Demmel et al. [2006], to determine ρthresh, the authors define ‘cautious’ and

107

‘aggressive’ settings. Cautious settings produce maximally reliable error bounds
for well-conditioned problems, whereas aggressive ones will lead to more steps
on the hardest problems and usually, but not always, give error bounds within
a factor of 100 of the true error. For cautious mode, the authors suggest ρthresh

should be set to 0.5, which was used by Wilkinson (Wilkinson [1963]), and for
aggressive mode, 0.9. In our experiments we always use the cautious setting, but
we note that ρthresh, imax, and kmax should be set according to the relative costs
of the different refinement schemes in practice.

Scaling

Because of the smaller range of half precision, simply rounding higher precision
quantities to a lower precision can cause overflow, underflow, or the introduction
of subnormal numbers. In Higham and Pranesh [2019], the authors develop a new
algorithm for converting single and double precision quantities to half precision.
This algorithm involves performing a two-sided scaling for equilibration and then
an additional scaling is performed to make full use of the range of half precision
before finally rounding to half precision. In our algorithm, when half precision is
used for the factorization, we first attempt an LU factorization without scaling.
We then test whether the resulting L and U factors contain Inf or NaN; if so
(marked with a * in the tables in Section 9.2), we retry the LU factorization in
line 1 using the two-sided scaling algorithm of Higham and Pranesh [2019]. In all
cases, regardless of what precision is used for the factorization, after computing
x0 in line 2 we test whether the initial solution contains Inf or NaN; if so, we
simply use the zero vector as the initial approximate solution and proceed.

We also incorporate scaling in each refinement step. After computing the
residual ri, we scale the result to obtain ri = ri/∥ri∥∞ (line 5 in Algorithm
21). This scaling is then undone when we update the approximate solution, via
xi+1 = xi + ∥ri∥∞di+1 (lines 11, 22, and 33 in Algorithm 21). As long as 1/∥A∥∞
does not underflow and ∥A−1∥∞ does not overflow, then this scaling avoids the
largest element of di+1 overflowing or underflowing.

9.1.2 Error bounds for different variants
There are various scenarios on the usage of precisions which will yield different er-
ror bounds and different constraints on condition number. Besides three-precision
variants, two precisions or a fixed precision can be used in the algorithms discussed
in this study. We summarize the convergence criteria for the precision combina-
tions used in our approach and refer the reader to Carson and Higham [2018] and
Amestoy et al. [2021] for more general bounds. In particular, we assume that
uf ≥ u and ur ≤ u2. We also restrict ourselves to IEEE precisions (see Table 1),
although we note that alternative formats like bfloat16 (Intel Corporation [2018])
could also be used.

Under the assumptions that uf ≥ u and ur ≤ u2, for SIR, both the rela-
tive forward and backward errors are guaranteed to converge to the level of the
working precision when κ∞(A) < u−1

f . For SGMRES-IR and GMRES-IR, the
constraints for convergence of forward and backward errors differ. Summarizing
the analysis in Amestoy et al. [2021], for our particular SGMRES-IR variant,
the constraint on convergence of the backward error is κ∞(A) < u−1/3u

−1/3
f and

108

Table 9.3: Constraints on κ∞(A) for which the relative forward and normwise
backward errors are guarantee to converge to the level u for a given combination
of precisions for the different variants of IR.

uf u ur SIR SGMRES-IR GMRES-IR
half single double 2 · 103 4 · 104 8 · 106

single single double 2 · 107 2 · 107 7 · 1010

half double quad 2 · 103 3 · 107 2 · 1011

single double quad 2 · 107 1 · 1010 2 · 1015

double double quad 9 · 1015 9 · 1015 9 · 1023

the constraint on the convergence of the forward error is κ∞(A) < u−1/3u
−2/3
f .

It is interesting to note that, as an artifact of the analysis, the constraint for
convergence of the backward error for this variant is more strict than that for
the forward error. However, since the backward error is bounded by the forward
error, the constraint for both backward and forward error to converge to the level
u can be given as κ∞(A) < u−1/3u

−2/3
f .

In Carson and Higham [2018], the constraint for convergence of the backward
error to level u in GMRES-IR given as is κ∞(A) < u−1. However, the authors in
Amestoy et al. [2021] point out that this bound relies on assumptions that may be
overly optimistic, and revise this to the tighter constraint κ∞(A) < u−1/2u

−1/2
f .

The constraint for the convergence of the forward error to this level in GMRES-
IR given in Carson and Higham [2018] is κ∞(A) < u−1/2u−1

f . Thus the tighter
constraint for the convergence of backward error in Amestoy et al. [2021] is again
more strict than the constraint for the convergence of the forward error, and
since the backward error is bounded by the forward error, we can take κ∞(A) <
u−1/2u−1

f to be the constraint for the convergence of both backward and forward
error to level u in GMRES-IR.

In Table 9.3 we quantify these constraints on κ∞(A) required for convergence
of the normwise relative backward and forward errors to the level of the work-
ing precision for various precision combinations. To compute the constraints on
κ∞(A), we have used the unit roundoff values in Table 1.

9.2 Numerical experiments
In this section we present numerical experiments performed in MATLAB on a
number of synthetic and real-world matrices from SuiteSparse (Davis and Hu
[2011]) for MSIR and single-stage iterative refinement variants in three precisions.
The problems we test are small and are meant to demonstrate the numerical be-
havior of the algorithms. Performance results for SIR and GMRES-based variants
for larger problems on modern GPUs can be found in, e.g., Haidar et al. [2018].

For quadruple precision, we use the Advanpix multiprecision computing tool-
box for MATLAB (Advanpix LLC.). To simulate half precision floating point
arithmetic, we use the chop library and associated functions from Higham and
Pranesh [2019], available in the repositories https://github.com/higham/chop
and https://github.com/SrikaraPranesh/LowPrecision Simulation. For
single and double precision we use the built-in MATLAB datatypes. All exper-
iments were performed on a computer with an Intel Core i7-9750H processor

109

with 12 CPUs and 16 GB RAM with OS system Ubuntu 20.04.1 using MAT-
LAB 2020a. Our MSIR algorithm and associated functions are available through
the repository https://github.com/edoktay/msir, which includes scripts for
generating the data and plots in this work.

In all experiments, we use imax = 2000 and ρthresh = 0.5. We have chosen
to use a very high value for imax in both MSIR and single-stage algorithms as
it allows us to see the true convergence behavior of each algorithm (and the
benefits of MSIR in cases where convergence for single-stage algorithms happens
eventually but is very slow). Of course, in practice, one would use a much smaller
value.

For the GMRES convergence tolerance, we use τ = 10−6 when the working
precision is single and τ = 10−10 when the working precision is double. We
set kmax = 0.1n. For purposes of discerning the actual attainable accuracy of
MSIR, in the experiments we explicitly compute and plot the computed forward
and backward errors and use these as stopping criteria rather than the error
estimate given by (9.1). For a fair numerical comparison, we also apply the
scalings discussed in Section 9.1.1 in SIR, SGMRES-IR, and GMRES-IR.

For each variant, we compare the number of refinement steps required for
forward and backward errors to reach the level of accuracy corresponding to the
initial working precision. For GMRES-based approaches and MSIR, the number
of GMRES iterations per step is given parenthetically (see the explanation in
Section 9.1). For the MSIR results, a semicolon indicates a precision switch: the
factorization precision is doubled (and other precisions increased if necessary to
ensure uf ≥ u and ur ≤ u2) and the algorithm restarts with SIR. A dash (-)
in the tables indicates that forward and/or backward errors are not decreasing.
Select convergence plots for MSIR are presented in figures while the number of
steps and iterations for all variants are shown in tables.

Again, the red, blue, and green lines in the figures show the behavior of
the forward error ferr (red), normwise relative backward error nbe (blue), and
componentwise relative backward error cbe (green). The dotted black line shows
the value of the initial working precision u. Switches in MSIR are denoted by
stars. A magenta star indicates a switch from SIR to SGMRES-IR, a yellow start
indicates a switch from SGMRES-IR to GMRES-IR, and a cyan star indicates
switch from GMRES-IR to SIR with increased precision(s).

9.2.1 Random dense matrices
We first test our algorithm on random dense matrices of dimension n = 100
generated in MATLAB via the command gallery(’randsvd’,n,kappa(i),2)
(Section 9.2.1) and the command gallery(’randsvd’,n,kappa(i),3) (Section
9.2.1), where kappa is the array of the desired 2-norm condition numbers κ2(A) =
{101, 102, 104, 105, 107, 109, 1011, 1014}, and 2 and 3 stand for the modes which
dictate the singular value distribution. Mode 2 generates matrices with one singu-
lar value equal to 1/κ2(A) and the rest of the singular values equal to 1. Mode 3
generates matrices with geometrically distributed singular values. Mode 3 repre-
sents a difficult case for GMRES-based iterative refinement methods. It is known
that a cluster of singular values near zero causes stagnation of GMRES, and a low
precision preconditioner may fail to effectively shift this cluster away from the

110

origin. We test the algorithms using initial precision combinations (uf , u, ur) =
(single, double, quad), (uf , u, ur) = (half, single, double), and (uf , u, ur) = (half,
double, quad). For simplicity, b is chosen to be a vector of normally distributed
numbers generated by the MATLAB command randn for all experiments in this
section. For reproducibility, we use the MATLAB command rng(1) before gen-
erating each linear system.

Random dense matrices with one small singular value

Table 9.4 shows the convergence behavior of SIR, SGMRES-IR, GMRES-IR, and
MSIR for matrices generated via the MATLAB command gallery(’randsvd’,n
,kappa(i),2) using initial precisions (uf , u, ur) = (single, double, quad). From
Table 9.4, we can see that SIR no longer converges once κ∞(A) exceeds 1011. As
κ(A) increases, the convergence rate of SIR slows down. At the extreme case
of κ2(A) = 109, SIR requires 205 steps to converge! In this case, MSIR thus
demonstrates a significant improvement over SIR. Even in cases where only 5
SIR steps are required, notice that the MSIR algorithm deems this too slow and
begins switching to SGMRES-IR after 2 SIR steps. SGMRES-IR converges in
just a few refinement steps with a small numbers of GMRES iterations per step
except for the most ill-conditioned problem. For the most ill-conditioned matrix,
SGMRES-IR alone requires 7 steps to converge. MSIR in this case switches
twice: from SIR to SGMRES-IR, and then finally to GMRES-IR. The same is
observed when κ2(A) = 1011. We plot the convergence trajectories of MSIR for
the κ2(A) = 104 and κ2(A) = 1014 problems in Figure 9.4.

Table 9.4: Number of SIR, SGMRES-IR, GMRES-IR, and MSIR steps with the
number of GMRES iterations for each SGMRES-IR and GMRES-IR step for
random dense matrices (mode 2) with various condition numbers κ∞(A), κ2(A),
using initial precisions (uf , u, ur) = (single, double, quad).

κ∞(A) κ2(A) SIR SGMRES-IR GMRES-IR MSIR
2 · 102 101 2 (2) (2) 2
2 · 103 102 3 (2) (2) 2, (2)
2 · 105 104 5 (2,3) (2) 2, (2)
2 · 106 105 5 (2,3) (2) 2, (2)
2 · 108 107 19 (2,3) (2,3) 2, (2,3)
2 · 1010 109 205 (2,2) (2,3) 2, (2,3)
2 · 1012 1011 - (3,3,4) (3,4) 2, (3,3), (3)
2 · 1015 1014 - (3,3,3,4,4,4,4) (3,4) 2, (3,3), (3,4)

In Table 9.5, we show data for experiments with (uf , u, ur) = (half, single,
double). In this case, as predicted in Table 9.3, SIR fails to converge once
κ∞(A) > 2 · 105. Moreover, it is seen that MSIR switches to SGMRES-IR even
for relatively well-conditioned matrices for which SIR still converges (i.e., for
κ2(A) = 102). Although this switch is technically not necessary, we argue that
the difference in cost versus SIR will be a constant factor (SIR requires 3 LU
solves in precision uf whereas here SGMRES-IR requires 2 LU solves in precision
uf and 3 in precision u; see Table 9.1). SGMRES-IR works well up to condition
number κ∞(A) = 2 · 106, and thus MSIR only performs one switch in these cases.

111

0 1 2 3 4 5 6
10

-20

10
-15

10
-10

10
-5

10
0

0 1 2 3 4 5 6
10

-20

10
-15

10
-10

10
-5

10
0

Figure 9.4: Convergence of errors in MSIR for random dense matrices (mode 2)
with κ2(A) = 104 (left), and κ2(A) = 1014 (right) for initial precisions (uf , u, ur)
= (single, double, quad); see also Table 9.4.

It is interesting to notice that the theory from Amestoy et al. [2021] says that
we can only expect SGMRES-IR to converge as long as κ∞(A) < 4 · 104; see also
Table 9.3. However, as this and other experiments in this work show, SGMRES-
IR as well as GMRES-IR actually often perform beyond the limits given by the
analysis. This confirms our motivation for the multistage MSIR approach; we
cannot rely entirely on the existing theoretical bounds to determine whether or
not an algorithm will be effective.

For the condition number κ∞(A) = 2 · 108, SGMRES-IR convergence even-
tually slows down, and as a result MSIR switches a second time to GMRES-IR.
Beyond this limit, for κ∞(A) = 2 · 108, GMRES-IR still converges (despite that
the theory only guarantees that GMRES-IR will work up to condition number
8 · 106). Starting at κ∞(A) = 2 · 1010, GMRES convergence slows down signif-
icantly (requiring n iterations per refinement step), and thus MSIR switches to
precisions (uf , u, ur) = (single, single, double) and starts again with SIR. We show
plots of MSIR convergence behavior for the cases κ2(A) ∈ {101, 102, 107, 1014} in
Figure 9.5.

Table 9.5: Number of SIR, SGMRES-IR, GMRES-IR, and MSIR steps with the
number of GMRES iterations for each SGMRES-IR and GMRES-IR step for
random dense matrices (mode 2) with various condition numbers κ∞(A), κ2(A),
using initial precisions (uf , u, ur) = (half, single, double).
κ∞(A) κ2(A) SIR SGMRES-IR GMRES-IR MSIR
2 · 102 101 3 (3) (3) 3
2 · 103 102 3 (3) (3) 2, (3)
2 · 105 104 19 (3,4) (3,4) 2, (3,4)
2 · 106 105 - (3,4) (3,4) 2, (3,4)
2 · 108 107 - (5,12,9,17,5,5,5) (5,5) 2, (5,10), (10)
2 · 1010 109 - - (100,100,100,22,11,3) 2, (5,9), (10); 2, (2,2,2), (2,3,3)
2 · 1012 1011 - - (100,63,10) 2, (10), (10); 2, (2,2), (2)
2 · 1015 1014 - - (100,63,10) 2, (10), (10); 2, (2,2), (2)

Finally, in Table 9.6, we test initial precisions (uf , u, ur) = (half, double,
quad). Except for SIR, which again fails to converge once κ∞(A) > 2 · 105,
all algorithms converge for κ∞(A) < 1016. Even in cases where SIR converges,

112

0 1 2 3 4 5 6 7 8 9
10

-10

10
-8

10
-6

10
-4

10
-2

0 1 2 3 4 5 6 7 8 9
10

-10

10
-8

10
-6

10
-4

10
-2

0 1 2 3 4 5 6 7 8 9
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

0 1 2 3 4 5 6 7 8 9
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 9.5: Convergence of errors in MSIR for random dense matrices (mode 2)
with κ2(A) = 101 (top left), κ2(A) = 102 (top right), κ2(A) = 107 (bottom left),
and κ2(A) = 1014 (bottom right) for initial precisions (uf , u, ur) = (half, single,
double); see also Table 9.5.

the SIR convergence is slow enough that MSIR always switches to SGMRES-
IR. MSIR only performs the second switch to GMRES-IR for the two most ill-
conditioned problems (although this switch is actually unnecessary at least for
κ2(A) = 1011; see also the convergence trajectory in the bottom left plot in Figure
9.6). Again, this emphasizes the need for a multistage, adaptive approach; if
we were to go by the theoretical bounds, we would not expect SGMRES-IR to
work beyond κ∞(A) = 3 · 107, but here it works well even for a matrix with a
condition number five orders of magnitude greater. For the most ill-conditioned
case, MSIR also performed a precision switch from (uf , u, ur) = (half, double,
quad) to (uf , u, ur) = (single, double, quad) since GMRES-IR required too many
GMRES iterations. We plot convergence trajectories for MSIR for the problems
with κ2(A) ∈ {101, 109, 1011, 1014} in Figure 9.6.

Random dense matrices with geometrically distributed singular values

We now test the convergence behavior of the IR variants for matrices gener-
ated via the MATLAB command gallery(’randsvd’,n,kappa(i),3). As men-
tioned, we expect that these are more challenging problems for the GMRES-based
iterative refinement schemes since they contain clusters of eigenvalues close to the
origin which may fail to be effectively shifted away from the origin by a low pre-
cision preconditioner.

113

Table 9.6: Number of SIR, SGMRES-IR, GMRES-IR, and MSIR steps with the
number of GMRES iterations for each SGMRES-IR and GMRES-IR step for
random dense matrices (mode 2) with various condition numbers κ∞(A), κ2(A),
using initial precisions (uf , u, ur) = (half, double, quad).
κ∞(A) κ2(A) SIR SGMRES-IR GMRES-IR MSIR
2 · 102 101 7 (5,5) (5,5) 2, (5)
2 · 103 102 9 (5,5) (5,5) 2, (5)
2 · 105 104 47 (5,6) (5,6) 2, (5,6)
2 · 106 105 - (5,6) (5,6) 2, (5,6)
2 · 108 107 - (6,7) (6,7) 2, (6,7)
2 · 1010 109 - (7,8) (7,8) 2, (7,8)
2 · 1012 1011 - (8,8,9) (8,9) 2, (8,8), (9)
2 · 1015 1014 - (100,100,100,25,10,10) (100,32,10) 2, (10), (10); 3, (4,4,4)

0 2 4 6 8 10
10

-20

10
-15

10
-10

10
-5

10
0

0 2 4 6 8 10
10

-20

10
-15

10
-10

10
-5

10
0

0 2 4 6 8 10
10

-20

10
-15

10
-10

10
-5

10
0

0 2 4 6 8 10
10

-20

10
-15

10
-10

10
-5

10
0

Figure 9.6: Convergence of errors in MSIR for random dense matrices (mode 2)
with κ2(A) = 101 (top left), κ2(A) = 109 (top right), κ2(A) = 1011 (bottom left),
and κ2(A) = 1014 (bottom right) for initial precisions (uf , u, ur) = (half, double,
quad); see also Table 9.6.

In Table 9.7 we test initial precisions (uf , u, ur) = (single, double, quad).
Here, SIR fails to converge once κ∞(A) exceeds 109. Once κ∞(A) exceeds 109,
the number of GMRES iterations required per SGMRES-IR and GMRES-IR
step begins to increase dramatically. This is expected since there is a cluster of
eigenvalues remaining close to the origin even after low precision preconditioning.
Notice that in these cases, MSIR performs the second switch to GMRES-IR after
just one SGMRES-IR step and then performs a precision switch from (uf , u, ur)

114

= (single, double, quad) to (uf , u, ur) = (double, double, quad) after just one
GMRES-IR step, since the number of GMRES iterations per refinement step for
both SGMRES-IR and GMRES-IR exceeds our specified value of kmax = 0.1n.
We show plots for κ2(A) ∈ {101, 104, 109, 1014} in Figure 9.7.

Table 9.7: Number of SIR, SGMRES-IR, GMRES-IR, and MSIR steps with the
number of GMRES iterations for each SGMRES-IR and GMRES-IR step for
random dense matrices having geometrically distributed singular values (mode 3)
with various condition numbers κ∞(A), κ2(A), using initial precisions (uf , u, ur)
= (single, double, quad).
κ∞(A) κ2(A) SIR SGMRES-IR GMRES-IR MSIR
2 · 102 101 2 (2) (2) 2

103 102 2 (2) (2) 2
9 · 104 104 3 (3) (3) 2, (3)
8 · 105 105 4 (4) (4) 2, (4)
7 · 107 107 13 (7,7) (7,7) 2, (6,7)
6 · 109 109 - (22,23,25) (22,26) 2, (10), (10); 2
6 · 1011 1011 - (53,54,55) (53,55) 2, (10), (10); 2, (2)
5 · 1014 1014 - (84,84,84,85,85) (84,88) 2, (10), (10); 2, (3,3,3)

0 1 2 3 4 5 6 7 8 9

10
-15

10
-10

10
-5

0 1 2 3 4 5 6 7 8 9
10

-20

10
-15

10
-10

10
-5

0 1 2 3 4 5 6 7 8 9
10

-20

10
-15

10
-10

10
-5

10
0

10
5

0 1 2 3 4 5 6 7 8 9
10

-20

10
-15

10
-10

10
-5

10
0

Figure 9.7: Convergence of errors in MSIR for random dense matrices having
geometrically distributed singular values (mode 3) with κ2(A) = 101 (top left),
κ2(A) = 104 (top right), κ2(A) = 109 (bottom left), and κ2(A) = 1014 (bottom
right) for initial precisions (uf , u, ur) = (single, double, quad); see also Table 9.7.

The story for initial precisions (uf , u, ur) = (half, single, double), shown in

115

Table 9.8, is similar. Once the condition number exceeds around
√
u, the num-

ber of GMRES iterations required per refinement step increases significantly for
both SGMRES-IR and GMRES-IR. Again, this means that MSIR switches from
SGMRES-IR to GMRES-IR and then performs a precision switch (to (uf , u, ur)
= (single, single, double)) since kmax is exceeded. When κ∞ exceeds 109, how-
ever, using single precision for the factorization is not enough to combat the slow
GMRES convergence, and thus a second precision switch occurs, switching to
(uf , u, ur) = (double, double, quad). For the most ill-conditioned problem for
which SGMRES-IR converges, MSIR does significantly fewer GMRES iterations
in total than SGMRES-IR (although we use higher precision for uf (single), the
computational cost will still less considering the total number of GMRES steps
performed in SGMRES-IR). Notice also that for κ2(A) ≥ 105, MSIR performs no
SIR steps at the initial precision setting (uf , u, ur) = (half, single, double) since
an Inf or NaN is detected in the first correction term. We plot MSIR convergence
for κ2(A) ∈ {101, 104, 107, 1014} in Figure 9.8.

Table 9.8: Number of SIR, SGMRES-IR, GMRES-IR, and MSIR steps with
the number of GMRES iterations for each SGMRES-IR and GMRES-IR step
for random dense matrices having geometrically distributed singular values
(mode 3) with various condition numbers κ∞(A), κ2(A), using initial preci-
sions (uf , u, ur) = (half, single, double). For κ2(A) = 1011, GMRES-IR used
(100,100,100,100,100,100,100,100,100,100,99,95,100,97) iterations.
κ∞(A) κ2(A) SIR SGMRES-IR GMRES-IR MSIR
2 · 102 101 3 (3) (3) 2, (3)

103 102 4 (4) (4) 2, (4)
9 · 104 104 856 (13,14) (13,14) 2, (10), (10)
8 · 105 105 - (38,40) (38,41) 0, (10), (10); 3
7 · 107 107 - (100,100,100,100,100,83) (100,100) 0, (10), (10); 2, (5,5,5)
6 · 109 109 - - (100,100,100,100) 0, (10), (10);1, (10), (10); 1
6 · 1011 1011 - - (100,. . .) see caption. 0, (10), (10); 1, (10), (10); 1
5 · 1014 1014 - - - 0, (10), (10); 1, (10), (10); 2

In Table 9.9 we show results for initial precisions (uf , u, ur) = (half, double,
quad). Here the increase in the number of GMRES iterations per GMRES-based
refinement step as κ(A) increases is also dramatic. One interesting thing to notice
here and even moreso in the previous examples with mode 3 matrices is that, in
cases where both SGMRES-IR and GMRES-IR converge, the extra precision used
in GMRES-IR does not help improve the convergence rate of GMRES (nearly the
same number of GMRES iterations per refinement step are required). The aspect
that improves is the number of refinement steps. This is likely related to the GM-
RES convergence trajectories for this class of problems; the residual will nearly
stagnate (or at least not make much progress) for a number of iterations and then
convergence will happen suddenly. The difference is likely that when this conver-
gence does happen, the extra precision in GMRES-IR results in the approximate
solution being found to greater accuracy than in the uniform precision iterations
in SGMRES-IR.

As a result of this slow convergence of GMRES, MSIR does a precision switch
from (uf , u, ur) = (half, double, quad) to (uf , u, ur) = (single, double, quad)
for matrices with condition number κ2(A) ≥ 104. For matrices with condition
number κ2(A) ≥ 109, MSIR does a precision switch a second time, from (uf , u, ur)

116

0 1 2 3 4 5 6 7
10

-10

10
-8

10
-6

10
-4

10
-2

0 1 2 3 4 5 6 7
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

0 1 2 3 4 5 6 7
10

-10

10
-5

10
0

0 1 2 3 4 5 6 7
10

-20

10
-15

10
-10

10
-5

10
0

Figure 9.8: Convergence of errors in MSIR for random dense matrices having
geometrically distributed singular values (mode 3) with κ2(A) = 101 (top left),
κ2(A) = 104 (top right), κ2(A) = 107 (bottom left), and κ2(A) = 1014 (bottom
right) for initial precisions (uf , u, ur) = (half, single, double); see also Table 9.8.

= (single, double, quad) to (uf , u, ur) = (double, double, quad). Even though
this means that MSIR computes 3 LU factorizations, one in half, one in single,
and one in double, this is still likely to be much faster than SGMRES-IR, which
does a total of 1841 O(n2) triangular solves in double precision, or GMRES-IR,
which does a total of 927 O(n2) triangular solves in quadruple precision. We
show MSIR convergence for κ2(A) ∈ {101, 104, 105, 1011} in Figure 9.9.

Table 9.9: Number of SIR, SGMRES-IR, GMRES-IR, and MSIR steps with
the number of GMRES iterations for each SGMRES-IR and GMRES-IR step
for random dense matrices having geometrically distributed singular values
(mode 3) with various condition numbers κ∞(A), κ2(A), using initial preci-
sions (uf , u, ur) = (half, double, quad). For κ2(A) = 1014, SGMRES-IR used
(100,100,100,100,100,85,96,93,90,84,94,92,90,81,95,84,89,82,90,96) iterations.
κ∞(A) κ2(A) SIR SGMRES-IR GMRES-IR MSIR
2 · 102 101 7 (5,5) (5,5) 2, (5)

103 102 9 (6,6) (6,6) 2, (6,6)
9 · 104 104 - (19,20) (19,20) 2, (10), (10); 2
8 · 105 105 - (43,46) (43,46) 0, (10), (10); 3, (3)
7 · 107 107 - (83,85) (83,85) 0, (10), (10); 2, (6,7)
6 · 109 109 - (100,100) (100,100) 0, (10), (10); 2, (10), (10); 2
6 · 1011 1011 - (100,100,100) (100,100) 0, (10), (10); 3, (10), (10); 2, (2)
5 · 1014 1014 - (100,. . .) (100,100,100,91,84,88,83,96,85,100) 0, (10), (10); 2, (10), (10); 2, (3,3,3)

117

0 2 4 6 8 10
10

-20

10
-15

10
-10

10
-5

10
0

0 2 4 6 8 10
10

-20

10
-15

10
-10

10
-5

10
0

0 2 4 6 8 10
10

-20

10
-15

10
-10

10
-5

10
0

0 2 4 6 8 10
10

-20

10
-15

10
-10

10
-5

10
0

Figure 9.9: Convergence of errors in MSIR for random dense matrices having
geometrically distributed singular values (mode 3) with κ2(A) = 101 (top left),
κ2(A) = 104 (top right), κ2(A) = 105 (bottom left), and κ2(A) = 1011 (bottom
right) for initial precisions (uf , u, ur) = (half, double, quad).

9.2.2 SuiteSparse Matrices
We now test a subset of matrices taken from the SuiteSparse Collection (Davis
and Hu [2011]) whose properties are listed in Table 9.10. As before, we test SIR,
SGMRES-IR, GMRES-IR, and MSIR with initial precisions (uf , u, ur) = (single,
double, quad), (uf , u, ur) = (half, single, double), and (uf , u, ur) = (half, double,
quad). For these problems, we always set the right-hand side b to be the vector of
ones. Tables 9.11-9.13 show the convergence behavior of the different algorithmic
variants. For each precision combination, we show a few interesting convergence
trajectories in Figures 9.10-9.12.

In Table 9.11 for initial precisions (uf , u, ur) = (single, double, quad), it is
observed that SIR converges for all matrices except ww 36 pmec 36 (the most
ill-conditioned one). Since SIR converges in few steps, MSIR does not switch
to SGMRES-IR. For ww 36 pmec 36, however, MSIR detects nonconvergence of
SIR and switches to SGMRES-IR, which then converges in 3 steps.

In Table 9.12 for initial precisions (uf , u, ur) = (half, single, double), it is
seen that SIR converges for the matrices with κ∞(A) < 106. It is also ob-
served that SGMRES-IR fails to converge for the extremely ill-conditioned matrix
ww 36 pmec 36. MSIR switches to GMRES-IR for the two most ill-conditioned
matrices, although for the steam3 case, the second switch is not technically neces-
sary. It is not clear why for the steam3 matrix, MSIR performs two SGMRES-IR

118

Table 9.10: Matrices from Davis and Hu [2011] used for numerical experiments
and their properties.

Name Size Nnz κ∞ Group Kind
cage6 93 785 2.34E+01 vanHeukelum Directed Weighted Graph
tols90 90 1746 3.14E+04 Bai Computational Fluid Dynamics Problem
bfwa62 62 450 1.54E+03 Bai Electromagnetics Problem
cage5 37 233 2.91E+01 vanHeukelum Directed Weighted Graph
d dyn 87 230 8.71E+06 Grund Chemical Process Simulation Problem
d ss 53 144 6.02E+08 Grund Chemical Process Simulation Problem

Hamrle1 32 98 5.51E+05 Hamrle Circuit Simulation Problem
ww 36 pmec 36 66 1194 4.283E+11 Rommes Eigenvalue/Model Reduction Problem

steam3 80 314 7.64E+10 HB Computational Fluid Dynamics Problem

Table 9.11: Number of SIR, SGMRES-IR, GMRES-IR, and MSIR steps with the
number of GMRES iterations for each SGMRES-IR and GMRES-IR step for real
matrices with initial precisions (uf , u, ur) = (single, double, quad).

Matrix SIR SGMRES-IR GMRES-IR MSIR
cage6 2 (2) (2) 2
tols90 2 (2) (2) 2
bfwa62 2 (2) (2) 2
cage5 2 (2) (2) 2

Hamrle1 2 (2) (2) 2
d ss 2 (2) (2) 2

d dyn 2 (2) (2) 2
ww 36 pmec 36 - (2,3,3) (2,3,3) 2, (2,3,3)

steam3 2 (2) (2) 2

0 1 2 3 4 5

10
-15

10
-10

10
-5

0 1 2 3 4 5
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Figure 9.10: Convergence of errors in MSIR for cage6 (left) and ww 36 pmec 36
(right) using initial precisions (uf , u, ur) = (single, double, quad).

steps and one GMRES-IR step when SGMRES-IR alone only requires one step.
For ww 36 pmec 36, MSIR also switches from (uf , u, ur) = (half, single, double)
to (uf , u, ur) = (single, single, double) since GMRES-IR required too many GM-
RES iterations. It is lastly seen that for steam3, scaling is performed due to
the resulting L and U factors containing Inf or NaN when the factorization is
performed in half precision, as explained in Section 9.1.1.

In Table 9.13, using initial precisions (uf , u, ur) = (half, double, quad), we

119

Table 9.12: Number of SIR, SGMRES-IR, GMRES-IR, and MSIR steps with the
number of GMRES iterations for each SGMRES-IR and GMRES-IR step for real
matrices with initial precisions (uf , u, ur) = (half, single, double). Cases where
scaling was required prior to LU factorization are marked with a *.

Matrix SIR SGMRES-IR GMRES-IR MSIR
cage6 2 (3) (3) 2
tols90 2 (2) (2) 2
bfwa62 4 (3) (3) 2, (3)
cage5 2 (3) (3) 2

Hamrle1 2 (2) (2) 2
d ss - (3,3) (3,3) 0, (3,3)

d dyn - (2,2) (2,2) 0, (2,2)
ww 36 pmec 36 - - (66,66,7) 0, (7), (7); 2, (2,2,3,3), (2)

steam3* - (2) (2) 2, (2,2), (2)

0 1 2 3 4 5 6 7 8 9

10
-8

10
-6

10
-4

10
-2

0 1 2 3 4 5 6 7 8 9
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

0 1 2 3 4 5 6 7 8 9

10
-15

10
-10

10
-5

10
0

10
5

0 1 2 3 4 5 6 7 8 9
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 9.11: Convergence of errors in MSIR for cage5 (top left), bwfa62 (top
right), steam3 (bottom left), and ww 36 pmec 36 (bottom right) using initial
precisions (uf , u, ur) = (half, single, double).

see that MSIR is able to converge for all test problems and switches at least
to SGMRES-IR in every case due to slow convergence of SIR. For the matrix
ww 36 pmec 36, MSIR makes the second switch to GMRES-IR and then does a
precision switch from (uf , u, ur) = (half, double, quad) to (uf , u, ur) = (single,
double, quad) after one step due to the constraint on the number of GMRES
iterations per step. As in the (uf , u, ur) = (half, single, double) case, due to the
use of half precision in the factorization process, scaling is required for steam3.

120

Overall, we note that for these real-world sparse problems, to an even greater
extent than in the dense test cases, SGMRES-IR and GMRES-IR often still
perform well for matrices with condition numbers greatly exceeding constraints
given in Table 9.3. We again stress that this motivates our multistage approach,
since the theoretical analysis cannot necessarily give indication of which algorithm
variant will be the best choice.

Table 9.13: Number of SIR, SGMRES-IR, GMRES-IR, and MSIR steps with the
number of GMRES iterations for each SGMRES-IR and GMRES-IR step for real
matrices with initial precisions (uf , u, ur) = (half, double, quad). Cases where
scaling was required prior to LU factorization are marked with a *.

Matrix SIR SGMRES-IR GMRES-IR MSIR
cage6 5 (4,4) (4,4) 2, (4)
tols90 5 (3,3) (3,3) 2, (3)
bfwa62 9 (4,5) (4,5) 3, (4)
cage5 5 (4,4) (4,4) 2, (3)

Hamrle1 5 (3,3) (3,3) 2, (3)
d ss - (4,5) (4,5) 0, (4,5)

d dyn - (4,4) (4,4) 0, (4,4)
ww 36 pmec 36 - (8,8) (8,9) 0, (7), (7); 2, (3)

steam3* - (3,3) (3,3) 2, (3,3,3)

0 1 2 3 4 5

10
-15

10
-10

10
-5

10
0

0 1 2 3 4 5
10

-20

10
-15

10
-10

10
-5

10
0

Figure 9.12: Convergence of errors in MSIR for cage6 (left) and ww 36 pmec 36
(right) using initial precisions (uf , u, ur) = (half, double, quad).

9.3 Conclusions and future work
Mixed precision iterative refinement, and in particular, GMRES-based iterative
refinement, has seen great use recently due to the emergence of mixed precision
hardware. The freedom to choose different precision combinations as well as a
particular solver leads to an explosion of potential iterative refinement variants,
each of which has different performance costs and different condition number con-
straints under which convergence is guaranteed. In practice, particular iterative
refinement variants often work well for problems beyond what is indicated by the

121

analysis, making it difficult for a user to select a priori the least expensive variant
that will converge. Motivated by improving usability and reliability, we have de-
veloped a multistage mixed precision iterative refinement approach, called MSIR.
For a given combination of precisions, MSIR switches between three different it-
erative refinement variants distinguished by the way in which they solve for the
correction to the approximate solution in order of increasing cost, according to
stopping criteria adapted from Demmel et al. [2006]. Then, only if necessary, it
increases the precision(s), refactorizes the matrix in a higher precision, and begins
again. We discuss details of the algorithm and perform extensive numerical ex-
periments on both random dense matrices and matrices from SuiteSparse (Davis
and Hu [2011]) using a variety of initial precision combinations. Our experi-
ments confirm that the algorithmic variants often outperform what is dictated by
the theoretical condition number constraints and demonstrate the benefit of the
multistage approach; in particular, our experiments show that there can be an
advantage to first trying other solvers before resorting to increasing the precision
and refactorizing.

There are a number of potential extensions to the work presented here. First,
while we have only tested IEEE precisions, it is also worthwhile to perform exper-
iments using non-IEEE floating point formats such as bfloat16 (Intel Corporation
[2018]). We also plan to extend the multistage approach to least squares problems,
which can be accomplished by combining the error bounds derived in Demmel
et al. [2009] and the three-precision iterative refinement schemes for least squares
problems in Carson et al. [2020]. Finally, while we have roughly used the num-
ber of triangular solves in a given precision as a metric for discussing probable
performance characteristics, this may not be a good indication of performance in
practice. Thorough high-performance experiments on modern GPUs are needed
to appropriately gauge the overhead of the MSIR approach and the algorithm’s
suitability in practice.

Bibliography
Advanpix LLC. Multiprecision computing toolbox for MATLAB. URL http:

//www.advanpix.com/.

Patrick Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent,
Theo Mary, and Bastien Vieublé. Five-precision GMRES-based iterative re-
finement. Technical Report 2021.5, April 2021. URL http://eprints.maths.
manchester.ac.uk/2807/.

J Bowdler, Hilary, RS Martin, Gwendoline Peters, and JH Wilkinson. Solution
of real and complex systems of linear equations. Numerische Mathematik, 8
(3):217–234, 1966.

Erin Carson and Nicholas J. Higham. A new analysis of iterative refinement
and its application to accurate solution of ill-conditioned sparse linear systems.
SIAM Journal on Scientific Computing, 39(6):A2834–A2856, 2017. doi: 10.
1137/17M1122918.

122

http://www.advanpix.com/
http://www.advanpix.com/
http://eprints.maths.manchester.ac.uk/2807/
http://eprints.maths.manchester.ac.uk/2807/

Erin Carson and Nicholas J. Higham. Accelerating the solution of linear sys-
tems by iterative refinement in three precisions. SIAM Journal on Scientific
Computing, 40(2):A817–A847, 2018. doi: 10.1137/17M1140819.

Erin Carson, Nicholas J. Higham, and Srikara Pranesh. Three-precision GMRES-
based iterative refinement for least squares problems. SIAM Journal on Scien-
tific Computing, 42(6):A4063–A4083, 2020. doi: 10.1137/20M1316822.

Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix
Collection. ACM Transactions on Mathematical Software, 38(1), 2011. doi:
10.1145/2049662.2049663.

James Demmel, Yozo Hida, William Kahan, Xiaoye S. Li, Sonil Mukherjee, and
E. Jason Riedy. Error bounds from extra-precise iterative refinement. ACM
Trans. Math. Softw., 32(2):325–351, June 2006. ISSN 0098-3500. doi: 10.1145/
1141885.1141894.

James Demmel, Yozo Hida, E Jason Riedy, and Xiaoye S Li. Extra-precise itera-
tive refinement for overdetermined least squares problems. ACM Transactions
on Mathematical Software (TOMS), 35(4):1–32, 2009.

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. Harnessing GPU tensor
cores for fast fp16 arithmetic to speed up mixed-precision iterative refinement
solvers. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 603–613, 2018. doi: 10.1109/SC.2018.
00050.

Nicholas J Higham and Srikara Pranesh. Simulating low precision floating-point
arithmetic, mims eprint 2019.4. Manchester Institute for Mathematical Sci-
ences, The University of Manchester, UK, 2019.

HPL-MxP. HPL-MxP mixed-precision benchmark. https://icl.bitbucket.
io/hpl-ai/, November 2019.

Intel Corporation. Bfloat16 – hardware numerics definition. Technical Report
338302-001US, Revision 1.0, Intel, November 2018.

M Jankowski and H Woźniakowski. Iterative refinement implies numerical sta-
bility. BIT Numerical Mathematics, 17(3):303–311, 1977.

Shuhei Kudo, Keigo Nitadori, Takuya Ina, and Toshiyuki Imamura. Prompt
report on exa-scale HPL-AI benchmark. In 2020 IEEE Int. Conf. Cluster
Comput. (CLUSTER), pages 418–419. IEEE, 2020.

Julie Langou, Julien Langou, Piotr Luszczek, Jakub Kurzak, Alfredo Buttari, and
Jack Dongarra. Exploiting the performance of 32 bit floating point arithmetic
in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems).
In SC’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
pages 50–50. IEEE, 2006.

Cleve B Moler. Iterative refinement in floating point. Journal of the ACM
(JACM), 14(2):316–321, 1967.

123

https://icl.bitbucket.io/hpl-ai/
https://icl.bitbucket.io/hpl-ai/

Christopher C. Paige, Miroslav Rozložńık, and Zdeněk Strakoš. Modified Gram-
Schmidt (MGS), least squares, and backward stability of MGS-GMRES. SIAM
Journal on Matrix Analysis and Applications, 28(1):264–284, 2006. doi: 10.
1137/050630416.

Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear
algebra for hybrid GPU accelerated manycore systems. Parallel Computing, 36
(5-6):232–240, June 2010. ISSN 0167-8191. doi: 10.1016/j.parco.2009.12.005.

TOP500. TOP500. Online, June 2021. URL https://www.top500.org/.

James Hardy Wilkinson. Progress report on the automatic computing engine.
Technical Report MA/17/1024, Mathematics Division, Department of Scien-
tific and Industrial Research, National Physical Laboratory, Teddington, UK,
1948.

James Hardy Wilkinson. Rounding errors in algebraic processes. Prentice-Hall,
1963.

124

https://www.top500.org/

Conclusion
High-performance computations in numerical linear algebra have become neces-
sary for solving extremely large problems coming from computational and data
science applications. Using mixed-precision is beneficial in such computations.
Combining the performance advantages of using low precision and accuracy of
high precision, the communication and computation cost of algorithms can be re-
duced significantly, resulting in low energy consumption and improved runtimes.
However, there are still many open questions for different algorithms and their
finite precision analysis. With this motivation, this thesis focuses on developing
new mixed-precision algorithms and analyzing their performance and errors.

Orthogonalization processes are the core of Krylov subspace methods. The
stability of these iterative approaches is directly related to the loss of orthogonal-
ity in the orthogonalization processes. However, preserving orthogonality is not
easy. In general, the rate of the loss of orthogonality is related to the condition-
ing of the input matrix with various strict assumptions on the condition number.
To relax these assumptions, techniques such as reorthogonalization can be used.
On the other hand, having a stable method be expensive since orthogonaliza-
tion processes can dominate the cost of Krylov subspace methods. One can thus
reduce the cost of these processes using lower precisions in certain parts of the
algorithm. We introduced and analyzed a mixed-precision variant of the reorthog-
onalized low-synchronization block CGS orthogonalization process to reduce the
computational cost of the uniform precision procedure. While reorthogonaliza-
tion maintains stability, low-synchronization reduces the communication cost,
and mixed-precision increases performance by reducing the computation cost of
the algorithm (Chapter 4).

Another technique to reduce loss of orthogonality is using the Pythagorean
theorem. However, although such techniques can relax the constraints on the
condition number, the loss of orthogonality might still not be low enough to
guarantee the stability of the Krylov subspace method. For this reason, we in-
troduce two new reorthogonalized BCGSI+P variants to improve stability using
the Pythagorean theorem twice (Chapter 5). Using reorthogonalization and the
Pythagorean theorem together, we obtain algorithms that better preserve or-
thogonality than the current state-of-the-art block orthogonalization processes.
Using mixed-precision in a similar way as in the low-synchronization variant, we
increased the range of applicability of the block Gram-Schmidt processes while
preserving orthogonality.

To increase the range of applicability of stationary iterative solvers, we can use
a hybrid approach which uses a preconditioned Krylov subspace method as the
inner solver. We focus on using variants of Newton’s approach, such as RQI, with
a Krylov subspace method, such as the PCG algorithm. To solve large-scale total
least squares problems, for instance, RQI can be used as the main iterative solver.
To cheaply solve linear systems inside the RQI algorithm, PCG can be used under
several assumptions. However, the resulting algorithm is still expensive due to
the QR factorization. We therefore introduced a mixed-precision variant of this
approach to reduce the computation cost while maintaining accuracy (Chapter
6).

125

Another variant of Newton’s method is the iterative refinement algorithm. As
RQI, IR algorithms require a linear solver in each outer iteration. To increase the
range of problems that can be solved, a Krylov subspace method, such as precon-
ditioned GMRES, can be used to solve the linear systems as in RQI-PCGTLS;
this approach is called GMRES-IR. GMRES-IR can be much more expensive than
SIR depending on the number of iterations performed. We introduced recycling
in GMRES to reduce the GMRES iteration count and thus the cost of the overall
algorithm (Chapter 7).

GMRES-IR can also be used to solve least squares problems by working with
an augmented system; this approach is called GMRES-LSIR. Using the idea
of GMRES-LSIR with different preconditioners, we showed that weighted least
squares problems can also be solved using a GMRES-based method in mixed-
precision (Chapter 8).

In some cases, standard IR can fail depending on the conditioning of the ma-
trix and the precisions used. However, using GMRES-IR can be more expensive
since one GMRES-IR iteration is more expensive than one SIR iteration. To
benefit from both approaches and their variants, we proposed a multistage IR
approach to reduce the computation cost while improving applicability. We start
with SIR and then switch to GMRES-IR variants if slow convergence or diver-
gence is detected. If necessary, we increase the precision and start from SIR once
again to achieve the desired accuracy (Chapter 9).

Mixed-precision is still a popular tool in scientific computing. Combining it
with other tools, such as randomization, can improve performance even more.
There are still many open questions in using multiple precisions in numerical lin-
ear algebra computations. One of the most important concerns of mixed-precision
algorithms is stability. The backward stability of mixed-precision randomized or
communication-avoiding approaches may not be guaranteed. Another open field
comes from the use of extremely low precision formats. For instance, with the
emergence of fp8-supporting hardware, stability remains a major problem.

Mixed-precision is not only used in solving linear problems. There are new
variants for nonlinear problems, such as inverse problems or matrix functions.
With this motivation, mixed precision variants of more expensive solvers, such
as rational Krylov subspace methods, can be investigated. However, as stated
above, stability will be the main concern of all these new developments.

126

	List of Abbreviations and Notation
	List of publications
	Introduction
	Mixed-precision in numerical linear algebra
	Numerical stability and floating point arithmetic
	Modeling the cost of algorithms
	Construction of a mixed-precision algorithm
	Mixed-precision algorithms in numerical linear algebra

	Iterative methods
	Stationary methods
	Krylov subspace methods
	Hybrid iterative methods

	Orthogonalization processes
	Using mixed-precision in low-synchronization reorthogonalized block classical Gram-Schmidt
	Mixed-precision BCGSI+LS (BCGSI+LS-MP)
	Numerical experiments
	Conclusion and discussion

	BCGSI+P variants
	Reorthogonalized Pythagorean variants of BCGS
	Mixed-precision reorthogonalized Pythagorean variants
	Numerical experiments

	Mixed-precision Rayleigh quotient iteration for total least squares problems
	Rayleigh quotient iteration with preconditioned conjugate gradient method for TLS problems (RQI-PCGTLS)
	Mixed precision RQI-PCGTLS (RQI-PCGTLS-MP)
	Constraints on factorization precision
	Performance modeling

	Numerical experiments
	Example 1: Random matrix
	Example 2: The δ matrix
	Example 3: The Björck matrix
	Example 4: The Toeplitz matrix
	Example 5: The Van Huffel matrix

	Conclusion

	Mixed-precision GMRES-based iterative refinement with recycling
	Krylov subspace recycling
	Implementation and experimental setup
	Numerical experiments
	Prolate matrices
	SuiteSparse matrices
	Random dense matrices

	Conclusion and future work

	(F)GMRES-IR for (W)LSP
	FGMRES-WLSIR

	Multistage mixed-precision iterative refinement
	The MSIR algorithm
	Algorithm details
	Error bounds for different variants

	Numerical experiments
	Random dense matrices
	SuiteSparse Matrices

	Conclusions and future work

	Conclusion

