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Abstract: This thesis focuses on ferrimagnetic Mn4N thin films and their gallium-doped

versions. Magnetooptical properties of several pure and gallium-doped Mn4N thin

films were examined using spectral magnetooptical Kerr effect (MOKE) measurements

and spectroscopic ellipsometry. Spectral dependencies of the diagonal permittivity

tensor elements were calculated from ellipsometry results and compared. MOKE

rotation and ellipticity spectra were also measured and compared. In the case of pure

Mn4N samples, MOKE spectra were compared with theoretical data from literature to

determine which proposed ferrimagnetic structures may be present in the samples.

The ferrimagnetic structure FIMA exhibited the best agreement with experimental

data. The possibility of the presence of mixed FIMA and ncFIM phases was also

explored. Temperature-dependent spectral MOKE measurements were used to study

compensation temperature. A shift of the compensation temperature from above to

below room temperature was observed between doped Mn4−xGaxN samples with

x = 0.11 and x = 0.20, agreeing with literature.
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Introduction

Ferrimagnetic materials usually consist of two antiferromagneticaly coupled sublat-

tices where, unlike in atiferromagnetic materials, the total magnetic moment does

not fully cancel out, leaving a non-zero net magnetic moment. Thanks to that, these

materials exhibit special properties interesting for industry applications. In the past,

ferrimagnetic materials have been used in magneto-optical recording, while more

recently, there has been a renewed interest in ferrimagnetic materials for use in high

density magnetic random access memories [1].

Mn4N is a ferrimagnetic material which, unlike most ferrimagnets, does not contain

any rare earths elements, making it more attractive for large scale applications. Fur-

thermore, Mn4N exhibits a large perpendicular magnetic anisotropy and ultrafast

response to external field [2], along with other desirable properties [1]. Additionally,

magnetic properties of Mn4N can be modified by doping with other magnetic as well

as non-magnetic elements [3].

Magnetic structure of bulk Mn4N is already known [3], however, there is still much

debate about the ferrimagnetic structures present in Mn4N thin films [2].

In this thesis, optical and magnetooptical methods were used to examine pure and

gallium doped Mn4N thin films. The measurements of pure Mn4N thin films were

compared with theoretical calculations using data from literature [2]. Interestingly

enough, we came to a different conclusion than that of the source article [2]. The

effect of used substrate on the magnetooptical properties of Mn4N thin films was also

observed and briefly discussed. In case of the gallium doped Mn4−xGaxN thin films,

we examined three samples with gallium content ranging from x = 0.11 to x = 0.27.

Special attention was given to compensation temperature and its change with the

gallium content. We observed a shift of the compensation temperature from above

room temperature to bellow room temperature with increasing gallium content in the

samples. In the case of one sample, we were able to put a high bound on the possible

values of its compensation temperature.

This thesis first introduces electromagnetic waves and a very useful plane wave

solution to the wave equation. In the second chapter, polarisation of light is introduced

along with Jones calculus, a formalism used to mathematically describe the polari-

sation of light and its interaction with optical elements. Important magneto-optical

observables are also introduced in this chapter. Chapter 3 focuses on the permittivity

tensor and how its elements relate to quantities measured by experimental methods

used in this thesis. Chapter 4 introduces magnetism and a basic categorisation of

magnetic materials with a special attention given to ferrimagnets as they are the focus

of this thesis. In chapter 5 experimental techniques used in this thesis are introduced,

while chapter 6 summarizes physical properties of Mn4N in pure and Ga doped form.

Chapter 7 presents obtained results on measured samples and discusses them within
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the context of current literature.
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Chapter 1

Electromagnetic waves

Throughout scientific history, it has been shown time and time again, that light

is a great probe for studying various material properties. Likewise in this thesis,

the experimental methods rely on the interaction of light with the studied sample

to provide useful information about its structure and behaviour. To describe the

interaction of light with matter (i.e. measured samples), one needs to first describe

the light itself. It is a well known fact, that light can be thought of as an oscillating

electromagnetic wave. This chapter will focus on the formal derivation of the wave

equation from the fundamental Maxwell equations and its special case solution - the

plane wave.

1.1 Wave equation
The Maxwell equations are a set of coupled partial differential equations that form

the fundamental building blocks of all of classical electromagnetism and optics. These

equations link the electric field intensity E, magnetic induction B, magnetic field H,

free charge density ρ and free current density j [4]

∇ × E + ∂B
∂t

= 0 , (1.1)

∇ · B = 0 , (1.2)

∇ × H − ∂D
∂t

= j , (1.3)

∇ · D = ρ . (1.4)

To derive the electromagnetic wave equation the constitutive relations

D = ε0εE , (1.5)

B = µ0µH , (1.6)

linking E and B with D and H along with the Ohms law

j = σE , (1.7)

are assumed to hold true. Standard notation is used here, where ε is the relative

permittivity tensor, ε0 is the permittivity of vacuum, µ is the relative permeability
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tensor, µ0 is the permeability of vacuum and σ is the conductivity tensor.

Relationships 1.5, 1.6 and 1.7 disregard any non-linear effects as they are negligible

for weak fields. Furthermore a static medium is assumed, making ε, µ and σ time-

independent. For most light-matter interactions, the magnetic field component is very

weak compared to the electric field component and can thus be neglected (µ ≈ 1).

Substituting 1.6 into 1.2 and 1.5 along with substituting 1.7 into 1.3 we get

1
µ0

∇ × E + ∂H
∂t

= 0 , (1.8)

∇H − εε0
∂E
∂t

− σE = 0 . (1.9)

Taking the curl of 1.8, the partial derivative of 1.9, combining the two equations and

using the vector identity

∇ × (∇ × A) = ∇(∇ · A) − ∆A

valid for an arbitrary vector A, yields the electromagnetic wave equation

∆E − ε0µ0ε
∂2E
∂t2

− µσ
∂E
∂t

− ∇(∇ · E) = 0 . (1.10)

1.2 Electromagnetic waves in a vacuum
For an electromagnetic wave travelling through a vacuum, we have σ = 0 and ρ = 0
as there can be no free currents or charges. From equations 1.4 and 1.5 we see that

ρ = 0 leads to the condition ∇ · E = 0. Also, for a vacuum it holds true that ε = 1.

Thus equation 1.10 simplifies to

∆E − µ0ε0
∂2E
∂t2

= 0 . (1.11)

Equation 1.11 has a simple and elegant solution in the form of a monochromatic,

time-harmonic plane wave

E(r, t) = E0 cos (ωt− k · r + δ) = Re
{︂
E0e

i(ωt−k·r+δ)
}︂

, (1.12)

where r, E0, k and δ stand for the position vector, wave amplitude, wave vector and

initial phase respectively. Furthermore, comparing relation 1.11 with the general wave

equation, we can also write down a relationship for the speed of light in a vacuum

c = 1/√µ0ε0. The plane wave solution is widely used for a large variety of problems

in optics. For the next chapter, it will be important to note that for a plane wave, k, E
and B are all perpendicular to each other, which can be easily derived by plugging

the plane wave solutions for B and E back into the Maxwell equations. Although the

plane wave solution was derived here for vacuum conditions, it is assumed to be a

valid solution for a significantly wider range of problems. In the next chapter of this

thesis, solution 1.12 will be used to describe the polarisation of light.
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Chapter 2

polarisation of light

The previous chapter showed, that light is an electromagnetic wave. Furthermore, in

most cases it is sufficient to think only about the electric field vector. It was then shown

that for special conditions, the light wave is a plane wave with planar wavefronts

perpendicular to the direction of travel. This chapter will take a look at how the way

the electric field vector oscillates in a given plane influences its interaction with matter

and how one can describe this behavior for a special case of totally polarised light.

Furthermore we will take a look at how an external magnetic field can influence this

interaction and derive an equation for the so called Kerr rotation fundamental for this

thesis.

2.1 What is polarisation
As described in the previous chapter, electromagnetic wave travelling through a

vacuum has the form of a plane wave 1.12. Assuming that the wave is travelling in

the z direction, the components of the electric field vector can without the loss of

generality be written as

Ex(z, t) = E0x cos (ωt− kz + δx) , (2.1)

Ey(z, t) = E0y cos (ωt− kz + δy) , (2.2)

Ez = 0 , (2.3)

where Ex(z, t), Ey(z, t) and δx, δy are amplitudes and phase offsets of the corre-

sponding field components respectively. We can therefore see that the electric field

oscillations can be represented as a linear combination of two plane waves with the

same frequency, where one of them is oscillating only along the x axis and the other

one only along the y axis. The relationship between Ex(z, t) and Ey(z, t) describes

the polarisation of light. In general, the electric field vector traces an ellipse in a

plane perpendicular to the wave vector at a given point [5]. We call the traced ellipse

the ellipse of polarisation. Lets note here that there are two often used special cases

of polarisation. When the electric field vector traces a line instead of the ellipse we

talk about linearly polarised light and when it traces a circle, we talk about circularly
polarised light. The ellipse of polarisation is determined by four parameters. These

parameters are defined when looking at the ellipse against the direction of the wave

vector k. They are as follows:
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Figure 2.1: Polarisation ellipse

• The azimuth θ - an oriented angle between the x axis and the major axis of the

ellipse. It can take values from −π/2 to π/2. Its values are positive, when the

orientation is counter-clockwise

• The ellipticity e - defined as e = b/a, where b and a are lengths of the semi-major

and semi-minor ellipse axis respectively. It is also useful to define the ellipticity

angle ϵ satisfying the relationship e = tan ϵ. Its values range from −π/4 to π/4.

In this thesis, the ellipticity will be positive, when the ellipse is traced in the

clockwise sense (right handed polarisation) and negative, when the ellipse is

traced in the counter-clockwise sense (left handed polarisation).

• The amplitude E00 - defined simply as E00 =
√
a2 + b2

is related to the overall

wave intensity I ≈ E2
00.

• The absolute phase δ0 - an oriented angle between the electric field vector E
at t = 0 and the major axis of the ellipse. Here this angle is measured on the

projection of E(t = 0) to a circle with the diameter equal to the semi-major

axis of the ellipse [6].

Often when one is not interested in studying any interference phenomena, only the

azimuth and ellipticity are needed to describe the polarisation state.

It is important to note here, that in general, light can also be partially polarised or

completely unpolarised. This can happen in the case of polychromatic light and won’t

be explored further in this thesis.
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2.2 Describing polarised light
When describing polarised light and its transformation by optical elements, one can

use 4-component Stokes vectors and corresponding Muller matrices. However, when

dealing only with totally polarised light, it is more sensible to use Jones formalism

which offers a simpler description albeit at the cost of not being able to deal with

depolarisation and partially polarised light. In laboratory environment, the polarisation

state of light is usually easily controlled and thus Jones formalism is sufficient.

2.2.1 Jones vectors
The main building block of Jones calculus is the Jones vector - a vector from two-

dimensional complex vectorial space elegantly describing the polarisation of light.

Rewriting 2.1 and 2.2 as components of a two dimensional vector and introducing a

complex amplitude Ai = E0ie
iδi

we get

E(z, t) =
[︄
E0x cos (ωt− kz + δx)
E0y cos (ωt− kz + δy)

]︄
=
⎡⎣Re

{︂
Axe

i(ωt−kz)
}︂

Re
{︂
Aye

i(ωt−kz)
}︂⎤⎦ . (2.4)

The term ei(ωt−kz)
is same for both components and can therefore be omitted for the

discussion of polarisation. The Jones vector is than defined as

J =
[︄
E0xe

iδx

E0ye
iδy

]︄
=
[︄
Ax

Ay

]︄
(2.5)

Since the absolute value of intensity is often not important, the Jones vector is usually

normalised. If we now define a parameter α and phase difference δ

tanα = E0y/E0x , (2.6)

δ = δy − δx , (2.7)

we can rewrite relation 2.5 as

J =
[︄

cosα
sinα eiδ

]︄
. (2.8)

Because Jones vectors are vectors, they have to be expressed with regards to some basis.

In the previous text we have been working with the Cartesian basis of linear polarisa-

tion as it is perhaps the most intuitive approach. In general, however, Jones vectors

can be defined for an arbitrary basis consisting of two independent polarisations. In

practise there are two widely used polarisation basis of special importance:

• The Cartesian basis

Jx =
[︄
1
0

]︄
, Jy =

[︄
0
1

]︄
. (2.9)

• And the circular basis

JLCP = 1√
2

[︄
1

−i

]︄
, JRCP = 1√

2

[︄
1
i

]︄
, (2.10)

where indices LCP and RCP denote left handed and right handed circular

polarisation respectively.
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The Cartesian representation is useful because it provides a simple geometric

interpretation of the polarisation state, the circular representation is useful for systems

where the circular polarisations can propagate independently.

It will be important later, to be able to transform vectors and matrices into a new

basis rotated by an angle φ. Vector rotation is accomplished by using a rotation matrix

R(φ) defined as

R(φ) =
[︄
cosφ − sinφ
sinφ cosφ

]︄
. (2.11)

It than follows from linear algebra, that

v′ = R(φ)v , (2.12)

Q′ = R(φ)QR−1(φ) , (2.13)

where v is a vector, Q is matrix and v′
and Q′

is the same vector and matrix described

in the rotated basis.

2.2.2 Jones matrices
It has been estabilished, that light polarisation can be represented using Jones vectors,

but we still need a representation for various optical elements and their interaction

with polarised light. Here, Jones matrices are an ideal tool. Suppose we have a

light wave heading towards an optical element. We describe the polarisation state of

such light wave with a Jones vector using a coordinate system S(I)
, where the z axis

coincides with the wave vector. When impacting an optical element, part of the wave

reflects and a part is transmitted through the element as shown in figure 2.2.

Since in both cases the wave vector changed its direction in the interaction, we

need a new coordinate system S(R)
to describe the reflected wave and another system

S(T )
to describe the transmitted wave so that the z axes again coincide with the wave

vectors. To study how the polarisation changes in the interaction, it first needs to be

decided in which basis one wants to describe the Jones vectors. The most common

choice is a linear basis with one basis vector perpendicular and one parallel to the

plane of incidence. The corresponding polarisations are called s-polarisation and

p-polarisation respectively.

Now all that needs to be done is to find a matrix, such that when multiplied by the

initial Jones vector, we get a Jones vector describing the light polarisation after the

interaction. For example, for the reflected wave described by Jones vector J(R)
and

incident wave described by the Jones vector J(I)
, we need to find a Jones reflection

matrix Rsp, such that

J(R) = RspJ(I)
. (2.14)

Using the definition 2.5 for the Jones vector along with the aforementioned s, p-

polarisation basis, relationship 2.20 can be rewritten in terms of individual elements

as [︄
A(R)

s

A(R)
p

]︄
=
[︄
rss rsp

rps rpp

]︄
=
[︄
A(I)

s

A(I)
p

]︄
, (2.15)
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Figure 2.2: Interaction of light with an optical element

where the matrix elements satisfy

rss =
(︄
A(R)

s

A
(I)
s

)︄
A

(I)
p =0

, (2.16)

rsp =
(︄
A(R)

s

A
(I)
p

)︄
A

(I)
s =0

, (2.17)

rps =
(︄
A(R)

p

A
(I)
s

)︄
A

(I)
p =0

, (2.18)

rpp =
(︄
A(R)

p

A
(I)
p

)︄
A

(I)
s =0

. (2.19)

Similarly, for the trasmitted wave, we are looking for a transmission Jones matrix Tsp

such that

J(T ) = TspJ(I)
, (2.20)

or in terms of the individual elements with the help of relationship 2.5 and s, p-

polarisation basis [︄
A(T )

s

A(T )
p

]︄
=
[︄
tss tsp

tps tpp

]︄
=
[︄
A(I)

s

A(I)
p

]︄
, (2.21)
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where these elements again satisfy

tss =
(︄
A(T )

s

A
(I)
s

)︄
A

(I)
p =0

, (2.22)

tsp =
(︄
A(T )

s

A
(I)
p

)︄
A

(I)
s =0

, (2.23)

tps =
(︄
A(T )

p

A
(I)
s

)︄
A

(I)
p =0

, (2.24)

tpp =
(︄
A(T )

p

A
(I)
p

)︄
A

(I)
s =0

. (2.25)

In case of an optically isotropic sample, the matrices Tsp and Rsp are diagonal, indi-

cating no interaction between the s and p polarisations. The diagonal elements of

Tsp and Rsp are related to the sample structure and its optical properties. When the

sample is optically anisotropic, the off-diagonal elements of Tsp and Rsp become in

general non-zero [6].

Jones matrices can be used to describe changes in polarisation states due to interactions

with various optical elements. If light propagates through multiple optical elements

one can find the Jones matrix XF describing the cumulative effect of all the optical

elements simply by multiplying Jones matrices of the individual optical elements X1,

X2,..., XN , together

XF = XNXN−1...X1. (2.26)

Indices in equation 2.26 follow the order in which light interacts with the various

optical elements.

We will make use of this formalism in the following chapters when deriving the effects

of an experimental apparatus along with the sample on the light polarisation state.

2.2.3 Complex polarisation parameter
In the previous sections we have established that the polarisation state can be described

using just two parameters, either the azimuth ϕ and ellipticity angle ϵ, or phase

difference δ and the parameter α that were introduced in the relations 2.6 and 2.7.

These two sets of parameters are related by equations [5]

tan 2ϕ = tan 2α cos δ , (2.27)

sin 2ϵ = sin 2α sin δ . (2.28)

However, Jones vector has two complex components and so in general it can contain

information not only about the polarisation state itself, but also about the amplitude

and the absolute phase. As already mentioned, one is usually not interested in the

amplitude, and so the Jones vectors are often normalised. This leaves us with three

available parameters, one of them being the absolute phase of the wave. If the total

phase is not needed, we can divide the Jones vector by its first component. The resulting

Jones vector will have the first component equal to one. The second component will be

a complex number containing the whole information about the polarisation state. We

call this number χ the complex polarisation parameter. If we follow the aforementioned
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procedure, we get a definition for χ in the form of

χ = Ay

Ax

= tan (α)eiδ
. (2.29)

Suppose now, that we have a polarisation ellipse with azimuth ϕ = 0 and ellipticity

angle ϵ. Than from 2.27 and 2.28 it follows that δ = π/2 and α = ϵ. From there, we

can construct Jones vector J0,ϵ using 2.8 and rotate it by the azimuth ϕ to get

Jϕ,ϵ = R(ϕ)Jϵ,0 =
[︄
cosϕ − sinϕ
sinϕ cosϕ

]︄ [︄
cos ϵ
i sin ϵ

]︄
=
[︄
cos ϵ cosϕ− i sin ϵ sinϕ
cos ϵ sinϕ+ i sin ϵ cosϕ

]︄
. (2.30)

Using 2.5 and substituting 2.30 into 2.29 we get

χ = sinϕ cos ϵ+ i cosϕ sin ϵ
cosϕ cos ϵ− i sinϕ sin ϵ = tanϕ+ i tan ϵ

1 − i tanϕ tan ϵ . (2.31)

If we now assume small angles ϕ and ϵ, make use of the small angle approximation

tan x ≈ x and neglect the second order term in the denominator, we get

χ ≈ ϕ+ iϵ . (2.32)

It should be emphasised, that relation 2.32 was obtained with respect to the Cartesian
basis of linear polarisations.

2.3 Magnetooptical observables
The term magnetooptical observables refers to a set of parameters describing changes

in the polarisation state of light interacting with a magnetized sample in an external

magnetic field. This thesis will be concerned about two particular magnetooptical

observables - the Kerr rotation and the Kerr ellipticity. These parameters describe

the change in the light polarisation state induced after a reflection on the magnetised

sample known as the magnetooptical Kerr effect (MOKE). There is an analogous set of

parameters - the Faraday rotation and ellipticity, describing polarisation state changes

upon a transmission through the sample.

Before continuing further, lets briefly discuss the main geometrical configurations of

the magnetisation vector M relative to the sample surface and the plane of incidence

used in MOKE experiments. There are three main geometrical configurations: polar

geometry, longitudinal geometry and transverse geometry. In polar geometry, the

magnetisation vector is perpendicular to the sample surface. In the longitudinal
geometry, the magnetisation vector points along the the sample surface and is parallel

with the plane of incidence. In the transverse geometry, the magnetisation vector also

points along sample surface, but is now perpendicular to the plane of incidence. The

situation for these three geometries is illustrated in figure 2.3.

For different geometrical configurations, there are different criteria for the Jones

matrices describing the change of the polarisation state brought by the reflection on

the sample. The criteria stem from symmetry arguments brought by the symmetry

of the problem (i.e. the geometrical configuration). For the polar configuration with

light travelling perpendicular to the sample surface, which if of main interest for this
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Figure 2.3: Definitions of polar, longitudinal and transverse geometries for MOKE

measurements

thesis, the Jones matrix should be invariant with respect to any rotation of angle α
about the z axis. In matrix form, this means

Rsp = R(α)RspR(α) , (2.33)

where we use notation introduced in the previous sections. Equation 2.33 provides an

important relationship for the two diagonal and the two offdiagonal elements of the

reflection Jones matrix Rsp

rps = rsp , (2.34)

rss = −rpp (2.35)

However, for light traveling perpendicular to the sample surface, there is no physical

difference between s and p polarisations, therefore, we expect any quantity to be equal

for both s and p polarisations.

Lets now get back to the magnetooptical observables. Consider an s-polarised wave

reflecting on a magnetised material. As discussed before, for a magnetised material,

the off diagonal elements of the Jones reflection matrix Rsp will in general be non

zero. We can use 2.16 and 2.17 to express the ratio of the off-diagonal to the diagonal

elements of the reflection matrix for an incident s-polarised wave

rps

rss

=
(︄
A(R)

p

A
(R)
s

)︄
A

(I)
p =0

= χ(R)
s . (2.36)

Which can be further simplified assuming small angles θs ϵs analogously to 2.31. Using

this, we get

χ(R)
s ≈ θ(R)

s + iϵ(R)
s . (2.37)

Let‘s now define the complex magneto-optical Kerr angle ϕK,s and the real Kerr

rotation θK,s along with the Kerr ellipticity ϵK,s for an s-polarised wave as

ϕK,s := −rps

rss

= −χ(R)
s , (2.38)

ϕK,s ≈ θK,s − iϵK,s (2.39)

Comparing 2.38 and 2.39 with 2.37 the following relations can easily be deduced

θK,s = −θ(R)
s , (2.40)

ϵK,s = ϵ(R)
s . (2.41)
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For a p-polarised wave, the complex magneto-optical Kerr angle ϕK,p, the real Kerr

rotation θK,p and the Kerr ellipticity ϵK,p are defined analogously as

ϕK,p = rsp

rpp

, (2.42)

ϕK,p ≈ θK,p − iϵK,p , (2.43)

where the second relationship again only holds for small angles θK,p and ϵK,sp.

As discussed before in this section, for polar geometry with light propagating

perpendicularly to the sample surface, the relations 2.34 and 2.35 must hold. At the the

same time, since s and p polarisation cannot be clearly defined for normal incidence,

we expect any physical quantity, to be the same for both aforementioned polarisations.

This explains the opposite choice of signs in definitions 2.38 and 2.42.
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Chapter 3

Electromagnetic waves in anisotropic
media

This chapter looks in more detail at the permittivity tensor first introduced in chapter

1. We discuss the effect of symmetry on its general form, mainly in case of the polar

geometry, and briefly introduce the Lorentz and Drude dispersion models. After that,

this chapter describes electromagnetic waves propagating through an anisotropic

medium and derives important equations linking the off diagonal elements of the

permittivity tensor with the Kerr rotation angle and ellipticity derived in chapter 2.

3.1 Permittivity tensor
When using the electromagnetic theory of Maxwell, one describes the magnetoop-

tical effects in terms of the permittivity tensor of a given material. In this thesis,

the permittivity tensor was first mentioned in chapter 1, where it was used while

deriving the electromagnetic wave equation 1.10. Knowing the permittivity tensor

of a material constitutes a very powerful information, that can be used for a wide

variety of calculations and can hint at possible real-world applications. Its spectral

dependence also carries an important information about inner electronic structure of

the material. Furthermore, we can use it to calculate the reflection coefficients and in

turn, the Kerr angle. Importantly for special circumstances, this can be reversed and

the permittivity tensor can be computed from a measured Kerr angle.

In general, the permittivity tensor in a second-order tensor denoted as

ε =

⎡⎢⎣εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤⎥⎦ . (3.1)

3.1.1 Symmetry arguments
Lets first deduce a general form of the permittivity tensor for an isotropic magnetic

material inserted into a magnetic field. The field can be thought of as a small pertur-

bation of the system. The permittivity tensor can, in the Cartesian representation, be

therefore expressed as [7]

εij(M) = εij(0) + ∂εij

∂Mk

⃓⃓⃓⃓
⃓
Mk=0

Mk + ∂2εij

∂Mk∂Ml

⃓⃓⃓⃓
⃓
Mk=0,Ml=0

MkMl , (3.2)
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where M denotes the magnetisation of the material.

When working in special geometries, the general form of the permittivity tensor

3.1 simplifies, since it has to satisfy the Neumann theorem [8] for the symmetry of

the given problem. In case of polar geometry (see figure 2.3) one can imagine, that

the magnetisation vector M is generated by a current circulating around it in a loop

perpendicular to M. Thus the problem is invariant for any rotation of the Cartesian

coordinate system about the magnetisation vector and for any reflection over the

magnetisation vector. Therefore the permittivity tensor has to also be invariant to

such rotations and reflections. This leads to a form of the permittivity tensor for polar

geometry [6]

εp =

⎡⎢⎣ εxx εxy 0
−εxy εxx 0

0 0 εzz

⎤⎥⎦ , (3.3)

whose components satisfy

εxx(−M) = εxx(M) , (3.4)

εzz(−M) = εzz(M) , (3.5)

εxy(−M) = −εxy(M) . (3.6)

From these equations, we can see that the diagonal elements are even functions of M,

while the off-diagonal are odd. For M = 0, the permittivity tensor εp is diagonal.

It can be shown, that a restriction to linear magneto-optical effects (i.e. omitting the

quadratic term in 3.2) leads to εxx = εzz and relation 3.3 can be rewritten in a more

conventional form

εp =

⎡⎢⎣ ε1 iε2 0
−iε2 ε1 0

0 0 ε1

⎤⎥⎦ . (3.7)

3.1.2 The Lorentz model
One classical theory often used for calculating the permittivity tensor is based on

the Lorentz model describing an interaction of an optical electromagnetic wave with

harmonically bound electron with a finite relaxation time τ . Using the Lorentz model

one can derive the following equations for the permittivity tensor elements 3.3 for

an electromagnetic wave propagating along the z axis (in a positive sense) of the

Cartesian coordinate system in an external magnetic field BE = (0, 0,−Bz) [6]

εzz = 1 + ω2
p

1
ω2

0 − ω2 + iΓω , (3.8)

εxx = 1 + ω2
p

ω2
0 − ω2 + iΓω

(ω2
0 − ω2 + iΓω)2 − ω2

cω
2 , (3.9)

εxy = ω2
p

iωωc

(ω2
0 − ω2 + iΓω)2 − ω2

cω
2 , (3.10)

where ωc = −eBz/m is the cyclotron frequency, e is charge of the electron, m is mass

of the electron, ωp = Ne2/mε0 denotes the plasma frequency, ω is the frequency of

the propagating electromagnetic wave and Γ = 1/τ is a damping constant.

Equations 3.8, 3.9 and 3.10 exhibit resonance behaviour for specific frequencies ω0,

because of this, such contributions to the permittivity spectra are called Lorentz
oscillators.
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3.1.3 The Drude model
The Drude model describes the free electron contribution to the permittivity. It

explains reasonably well a contribution of intraband transitions to the permittivity at

low energies. The interband transitions are explored in more detail in [6]. Permittivity

elements for the Drude model can be easily obtained from equations 3.8, 3.9 and 3.10

by assuming ω0 = 0

εzz = 1 +
ω2

p

−ω2 + iΓω , (3.11)

εxx = 1 +
ω2

p(−ω2 + iΓω)
(−ω2 + iΓω)2 − ω2

cω
2 (3.12)

εxy =
iω2

pωωc

(−ω2 + iΓω)2 − ω2
cω

2 . (3.13)

The Drude model contributions to the permittivity spectra often accompany Lorentz

oscillators to explain the behaviour at low energies.

3.2 Wave equation in an anisotropic medium
To describe light propagation in materials, it is useful to introduce a reduced wavevector
N̄, defined as the wavevector k divided by the magnitude of the wavevector in a

vacuum |k0| = ω/c

N̄ := c

ω
k =

(︂
Nx̄ix +Nȳiy +Nz̄iz

)︂
. (3.14)

The absolute value of the reduced wavevector is equal to the index of refraction⃓⃓⃓
N̄
⃓⃓⃓
= c

ω
|k| = c

ω

ωn

c
= n . (3.15)

When describing light propagation in an absorbing medium, it is very convenient to

use a complex index of refraction, with real and imaginary part n → n− ik. To avoid

confusion, lets emphasise that in this and later sections, k stands for the imaginary

part of the complex index of refraction and not the magnitude of the wavevector k.

One could now derive and solve the wave equation in an absorbing, anisotropic

medium without any additional constraints. However, for this thesis, it is sufficient to

work with the case of the electromagnetic wave propagating along the direction of

the magnetisation vector.

Suppose we have an electromagnetic wave propagating parallel with the z axis of the

Cartesian coordinate system and a magnetisation vector oriented in the -z direction.

The permittivity tensor is then given by 3.7 and the reduced wavevector simplifies to

N̄ =
(︂
0, 0, N̄ ziz

)︂
. (3.16)

One can then derive an equation for N̄ z in the form [6]⎡⎢⎢⎣ε1 − N̄
2
z −iε2 0

iε2 ε1 − N̄
2
z 0

0 0 ε1

⎤⎥⎥⎦
⎡⎢⎣ex

ey

ez

⎤⎥⎦ = 0 . (3.17)
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For this equation to have a non trivial solution, the determinant must be zero. Its

characteristic equation than leads to

N̄
2
z = ε1 ± ε2 . (3.18)

Recalling the definition of the reduced wavevector N̄ , we can see that ε1 ± ε2 are

squares of the complex refractive indices describing propagation of so called proper

modes in the medium

N+ =
√
ε1 + ε2 and N− =

√
ε1 − ε2 . (3.19)

The four values Nz solving 3.17 along with their proper modes are summarised in

table 3.1. Looking at table 3.1, one can notice, that the proper modes are right (RCP)

N̄ z1 = N+ N̄ z2 = −N+ N̄ z3 = N− N̄ z4 = −N−

e1 =
[︄
1
i

]︄
e2 =

[︄
1
i

]︄
e3 =

[︄
1

−i

]︄
e4 =

[︄
1

−i

]︄

Table 3.1: summary of solutions to equation 3.17

and left (LCP) circular polarisations introduced in 2.10.

The permittivity tensor elements are complex numbers

ε1 = ε′
1 − iε′′

1 and ε2 = ε′
2 − iε′′

2 . (3.20)

We can therefore rewrite relationship 3.18 using the complex refractive index N± =
n± − ik± as

(n± − ik±)2 = (ε′
1 − iε′′

1) ± (ε′
2 − iε′′

2) . (3.21)

However, calculating the values of n± and k± from 3.21 can be cumbersome, so in

practice one usually expresses the complex refractive indices N± as

N± ≈ N ± ∆N , (3.22)

where N is the complex refractive index of the optically isotropic medium and ∆N
represents the perturbation introduced by the magnetic ordering. Experience shows,

that errors introduced by 3.22 are below experimental accuracy [6]. Equations 3.18,

3.21 together with the fact, that

√
ε1 ≈ N lead to an important relationship

∆N ≈ ε2

2√
ε1

= iεxy

2√
εxx

(3.23)

3.2.1 Polar Kerr effect at normal light incidence
Lets now derive expressions for polar Kerr effect at normal incidence on the surface

of a very thick magnetic metal. Considering a reflection of the electromagnetic waves

at the interface between vacuum and the magnetic material, one can use Fresnel

reflection coefficients and arrive at the following relation [9]

r± = −N± − 1
N± + 1 , (3.24)
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where r± are reflection coefficients for the circular RCP and LCP polarisations

r+ = rss + irps and r− = rss − irps . (3.25)

Combining equations 2.38, 2.39, 3.24 and 3.25 we obtain

θK − iϵK ≈ i
r+ − r−

r+ + r−
= i

N+ −N−

N+N− − 1 , (3.26)

which with the help of equation 3.23 leads to

θK − iϵK ≈ iε2√
ε1(ε1 − 1) . (3.27)

Rewriting ε1 and ε2 in 3.27 in terms of their real and imaginary parts and considering√
ε1 ≈ n−ik, we can express the polar Kerr rotation and ellipticity at a single interface

as

θK ≈ Cε′′
2 −Dε′

2
C2 +D2 , (3.28)

ϵK ≈ Cϵ′
2 +Dϵ′′

2
C2 +D2 , (3.29)

where

C = n
(︂
n2 − 3k2 − 1

)︂
and D = k

(︂
3n2 − k2 − 1

)︂
. (3.30)

From equations 3.28 and 3.29 we can also express ε′
2 and ε′′

2 as

ε′
2 ≈ − (CθK −DϵK) , (3.31)

ε′′
2 ≈ − (CϵK +DθK) . (3.32)

Equations 3.31 and 3.32 are very powerful, because they allow us to calculate the

off-diagonal component of the permittivity tensor ε2 from experimentally measured

Kerr angle θK , Kerr ellipticity ϵK and optical constants of the material n and k.
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Chapter 4

Magnetism and magnetic materials

In this chapter, we will take a brief look at the classification of matter according to its

magnetic properties. Special attention will be given to ferrimagnets as the materials

studied in this thesis belong to this class. We will not focus in detail on the quantum

origins of magnetism, as it is beyond the scope of this thesis, but will use quantum

formalism when necessary. Namely the exchange interaction will be introduced as the

main driving force responsible for different magnetic microstructures. We will also

touch on hysteresis loops, how we can measure them with magneto-optic techniques

and discuss what they can tell us about the studied materials.

4.1 Categorisation of magnetic materials
There are multiple ways to categorise magnetic substances. In this thesis, magnetic

substances will be split into four groups based on their magnetic ordering. The four

groups are paramagnetic, ferromagnetic, antiferromagnetic and ferrimagnetic materi-

als. The aforementioned magnetic ordering types are depicted in figure 4.1, where the

arrows indicate magnetic moments of the crystal constituents. In case of ferromagnetic

ordering, magnetic moments are aligned and the material exhibits spontaneous mag-

netisation. In antiferromagnetic materials, the neighboring magnetic moments have

the same magnitude, but point in the opposite direction. Therefore the total magnetic

moment is zero and so such materials are not magnetic and cannot be permanently

magnetised by an external magnetic field. In paramagnetic materials, the magnetic

moments are randomly oriented again adding up to zero as in case of antiferromagnets.

However, contrary to antiferromagnets, in the presence of an external magnetic field

the magnetic moments align and the material becomes magnetic. When the field is

removed, paramagnetic materials lose their magnetisation. Finally, in ferrimagnetic

materials, the neighboring magnetic moments point in the opposite direction, but

since the magnitudes of the opposite pointing moments are not equal, they do not

completely cancel out and the bulk material exhibits often weak, but non zero mag-

netisation.

Let us also mention, that this categorisation is not exhaustive. For example one can

also introduce diamagnetism, superparamagnetism or the newly discovered altermag-

netism.
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Figure 4.1: Different magnetic ordering categories.

4.2 Ferrimagnetism
As mentioned above, ferrimagnetic materials usually exhibit a net magnetisation

moment. Same as in the case of ferromagnetic materials, above a certain temperature

called the Currie temperature, the material loses its magnetic properties. This is

because as the temperature increases, the magnetic moments inside the material start

to decouple thanks to the increased thermal energy. Above the Currie temperature,

at any point in time, the individual magnetic moments point in essentially random

directions and so the net magnetisation is zero. Usually, with increasing temperature,

the total magnetisation of the material gets smaller and smaller until it dissapears

altogether at the Currie temperature. Same process also applies to ferrimagnetic

materials. However, in ferrimagnetic materials, there can exists another temperature,

where the magnetic moments cancel out called the compensation temperature. In

ferrimagnets, sublattices responsible for the opposing magnetic moments often exhibit

different temperature dependence. Thanks to this, there can exist a temperature below

the Currie temperature where the two opposing moments cancel out leaving the

material with zero net magnetisation. This phenomenon is ilustrated in figure 4.2.

From the same figure, we can also see that the direction of net magnetisation switches

at the compensation temperature.

4.2.1 Exchange interaction
The previous text of this chapter described the basic categorisation of magnetic ma-

terials based on their magnetic properties. However, it is still not clear why some

materials prefer to have the magnetisation of their sub-lattices oriented in parallel,

while others prefer an anti-parallel orientation. An answer lies in quantum mechanics,

namely the exchange interaction.

Exchange interaction is an interaction between identical particles. To illustrate the

mechanism of the interaction, consider a two electron system with no or very weak

spin orbit coupling. Disregarding the spin-orbit coupling, the system Hamiltonian

Ĥ is spin-independent. One can then separate the spacial ψ and spin χ part of the

wavefunction as

Ψ(r1, r2, s1, s2) = ψ(r1, r2)χ(s1, s2) , (4.1)
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Figure 4.2: Origins of the compensation temperature in ferrimagnets from different

magnetization temperature dependence M1, M2 of individual crystal sublattices.

where r1, r2 and s1, s2 describe the position and spin state of the two electrons respec-

tively. The orbital eigen functions satisfying

Ĥψ = Eψ (4.2)

are also spin-independent along with their energy states, thanks to the spin-independence

of the Hamiltonian. However, since electrons are fermions, Pauli‘s exclusion principle

needs to be satisfied and so the wavefunction 4.1 must be anti-symmetric. It is well

known, that a system consisting of two particles with spin 1/2 can have four possible

spin states χ, one anti-symmetric with with a total spin S = 0 called the singlet state
and three symmetric states with the total spin S = 1 called triplet states. From equation

4.1 and the Pauli‘s exclusion principle, it is clear that the spacial wavefunction ψ has

to be symmetric when the spin wavefunction χ is anti-symmetric or anti-symmetric

when χ is symmetric. Because of this, the orbital eigenfunctions of the Hamiltonian

have to be different for electrons with parallel spins (S = 1 and χ is symmetric so ψ
must be anti-symmetric) and for electrons with anti-parallel spins (S = 0 and χ is

anti-symmetric so ψ must be symmetric). Since the energy states depend on ψ (see

4.2), they also depend on the spin state of the two electrons. This energy dependence

is the origin of the exchange interaction. In practise, for multi-particle systems, this

effective interaction of the magnetic moments is approximately given by the following

Hamiltonian [10]

Ĥspin = −JijSi · Sj , (4.3)

where Si and Sj are the spin operators of the i-th and j-th particles and Jij is the

exchange integral defined as

Jij =
∫︂
d3rid

3rj

ψ∗
i (ri)ψj(ri)ψ∗

j (rj)ψi(rj)
|ri − rj|

. (4.4)

Equation 4.3 can be generalised as a sum over all neighbouring particles/atoms

Ĥspin = −
∑︂
i,j

JijSi · Sj . (4.5)
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The sign of J indicates magnetic ordering. When the exchange integral is positive

J > 0, neighbouring spins tend to align in parallel leading to a ferromagnetic structure.

When the exchange integral is negative J < 0 neighbouring spins tend to point in the

opposite direction leading to an anti-ferromagnetic or ferrimagnetic ordering.

4.3 Hysteresis loops
The magnetization value of the magnetically ordered materials depends on the history

of an applied external magnetic field. Such property is called hysteresis. By applying

an external magnetic field and measuring the material magnetisation M for different

field strengths we can construct a hysteresis loop depicted in figure 4.3. In this section,

for simplicity, we will describe hysteresis loop typical for a ferromagnetic material. In

ferromagnetic materials, the material is composed of a number of magnetic domains
with parallel magnetisation vectors. Magnetic moments of different domains generally

point in different directions resulting in hysterical behavior.

We start with a non-magnetised ferromagnetic material and no external magnetic field

(i.e magnetisation vectors of the domains are oriented randomly). When introduc-

ing and raising the external magnetic field, the domains inside the material start to

align with the magnetic field and total magnetisation increases. When all magnetic

moments of all the domains are aligned, the magnetisation can no longer increase

even for a stronger magnetic field. We have reached a magnetic saturation point

Msat. If we now start to lower the external magnetic field all the way to zero, we

notice the magnetisation decreasing, as the magnetic moments of the domains start to

partially point in different directions. However, even with no external magnetic field

present, there remains a nonzero magnetisation called the remanence magnetisation
Mr. Increasing the field in the opposite direction begins to reorient the domains and

the total magnetisation reaches 0 for the coercive field Hc. If we increase the field

further, the magnetisation again saturates at −Msat. The field strength needed to

reach the saturation point and the slope with witch the saturation point is reached

depends on the material and its magnetic structure.

Because the linear magneto-optic Kerr effect is directly proportional to the mag-

netisation of the measured sample, it can be used to construct hysteresis loops where

we have the Kerr rotation angle instead of the magnetisation on the y axis. However,

the Kerr rotation also exhibits spectral dependence so only the shape of the MOKE

hysteresis loop coincides with magnetisation hysteresis loop but not its magnitude.

4.4 Magnetic anisotropy
Some materials are easier or harder to magnetise depending on their crystallographic

orientation with respect to the external magnetic field. The axis along which the

material magnetises the easiest is called the easy axis. The remanence value of the

material when magnetised along this axis is grater than if it was magnetised along any

other axis. Perpendicular to this axis lies the hard axis. When magnetising along the

hard axis, the magnetic moments are less prone to orient along the external field. When

the external field is removed, the remaining remanence value is generally minimal.

The field value needed to reach saturation along the hard axis is called the anisotropy

field. The difference in hysteresis loops when measuring along the easy and hard axis

24



Figure 4.3: Hysteresis loop of a ferromagnetic material.

is illustrated in figure 4.4.

Figure 4.4: Hysteresis loops with external field along the easy and hard axis

As mentioned before, we can use MOKE measurements to construct hysteresis

loops. However, one has to keep in mind, that the measured MOKE hysteresis loop

is proportinal to the total magnetisation of the sample. When the sample consists of

multiple magnetic sublattices with different coercive field values, such is often the

case in ferrimagnetic materials, the measured hysteresis loop may appear anomalous.

The situation is ilustrated in figure 4.5 for two sublatices with opposite magnetisa-

tion vectors of unequal amplitudes (i.e - for a ferrimagnetic material). The different

contributions of individual sublattices can often be resolved and separated.
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Figure 4.5: Anomalous MOKE hysteresis loop as a sum of MOKE spectra of two

sublattices
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Chapter 5

Experimental techniques

This chapter focuses on experimental setups used to measure observable variables

introduced in previous chapters. Namely Spectroscopic ellipsometry and Magneto-
optical spectroscopy will be discussed for measuring parameters related to the diagonal

and off diagonal elements of the permittivity tensor respectively.

5.1 Spectroscopic ellipsometry
Spectroscopic ellipsometry is a non destructive optical technique for investigating

the optical response of materials. As opposed to single-wavelength ellipsometry,

spectroscopic ellipsometry employs a wide-range light source allowing its use for

reconstructing the diagonal permittivity tensor element function for a broad spectrum

of wavelengths. The experimental setup used for such measurements is schematically

depicted in figure 5.1. The light is generated by a light source S, it than passes through

a linear polariser P , before reflecting off of the sample. After reflecting from the

sample, the light continues first through a compensator C , than through an analyzer

A, after which it finally reaches the detector D.

Figure 5.1: Experimental spectroscopic ellipsometry setup: light source S, polariser P ,

compensator C , analyzer A, detector D

Using the orthogonal s and p polarisation basis introduced in the previous chapters,

the Jones transmission matrix for the linear polariser at angle ξ with respect to the x

axis can be described as

P =
[︄

cos2 ξ sin ξ cos ξ
sin ξ cos ξ sin2 ξ

]︄
. (5.1)
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The polarisation change stemming from the reflection off the sample is characterised

by the Jones reflection matrix Rsp defined in 2.15. Assuming optically isotropic sample,

the off-diagonal elements, as discussed before, disappear and one is left with

Rsp =
[︄
rss 0
0 rpp

]︄
. (5.2)

Next, the light passes through a compensator C . Transmission Jones matrix for an

unrotated compensator is

C =
[︄
eiΓ 0
0 1

]︄
, (5.3)

where Γ is the relative phase difference (retardance) induced by the compensator.

However, in general, the compensator fast axis is rotated by an angle φ relative to

the x axis. We get the Jones transmission matrix for the rotated compensator C′
by

rotating the coordinate system by an angle φ with the use of 2.13 and 2.11

C′ = R(α)CR−1(α) =
[︄
cosφ − sinφ
sinφ cosφ

]︄ [︄
eiΓ 0
0 1

]︄ [︄
cosφ sinφ

− sinφ cosφ

]︄
=

= sin(2φ)
2

[︄
cot (φ)eiΓ − 1 eiΓ + cotφ

eiΓ − 1 tan (φ)eiΓ + cotφ

]︄
. (5.4)

The analyser is another linear polariser oriented at an angle β measured from the

x axis. Its Jones transmission matrix is the same as for the first linear polariser 5.1

except with the angle β

A =
[︄

cos2 β sin β cos β
sin β cos β sin2 β

]︄
. (5.5)

The effect of the whole setup including the sample on the polarisation state can in

accordance with 2.26 be described by

XF = AC′(φ)RspP . (5.6)

Assuming the polarisation state of the light generated by the light source S can be

described by the Jones vector JIN , the polarisation state of the light entering the

detector can than be described by the Jones vector JOUT where

JOUT = XF JIN . (5.7)

The intensity of light entering the detector can be determined by

I = (JOUT )+(JOUT ) , (5.8)

where the
+

indicates a Hermitonian transpose. This experimental technique utilises

a rotating compensator and fixed polarisers, as seen above. Thanks to that, the setup

is able to obtain the ellipsometric parameters Ψ and ∆ related to the ratio ρ between

rpp and rss coefficients

ρ = rpp

rss

= tan (Ψ)ei∆
. (5.9)

The ellipsometric parameters Ψ and ∆ can be extracted from the intensity 5.7. The

exact procedure is quite complicated and can be found in [11].

From spectral measurements of the ellipsometric parameters, optical properties of

the sample can be determined. Namely, one can calculate the refraction index n
and the extinction coefficient k. From these parameters, the diagonal element of the

permittivity tensor ε1 can be calculated as shown in previous sections.
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Figure 5.2: Experimental setup for MOKE measurements in polar geometry: light

source S, polariser P , phase plate F , analyzer A, detector D, magnetisation M

5.2 Magneto-optical spectroscopy
The experimental setup for magneto-optical (MO) spectroscopy is very similar to the

spectroscopic ellipsometry setup. The main difference between the two is the presence

of an external magnetic field in the case of magneto-optical spectroscopy. Also, in

the case of magneto-optical spectroscopy, the analyzer is able to be rotated during

the measurement - rotating analyzer. In practice magneto-optical spectroscopy is

often performed for small angles of incidence (up to 5◦
), because of that it can with

very good accuracy be considered to be at normal incidence, which greatly simplifies

calculations (see previous chapters). The experimental setup is schematically depicted

in figure 5.2.

Similarly to spectroscopic ellipsometry, the light is generated by a light source S.

It first passes through a polariser P , whose Johns matrix P is given by 5.1 and then

reflects off of the sample. In the case of magneto-optical spectroscopy, however, the

sample isotropy is disturbed by the external magnetic field and so the Jones reflection

matrix of the sample is no longer diagonal. The reflection matrix Rsp is, in the case of

MO spectroscopy in polar configuration, given by

Rsp =
[︄
rss rsp

rsp −rss

]︄
=
[︄

1 −ϕK

ϕK −1 ,

]︄
(5.10)

where we used equation 2.15, relationships 2.34 and 2.35 valid for polar geometry and

the definition of the complex Kerr angle 2.38 along with relationship 2.36.

After reflecting off the sample, the light propagates through a phase plate F . Phase

plate is just a different name for an optical compensator and so the Jones matrix

of the phase plate is accordingly given by 5.3, where Γ is again the induced phase

difference. Finally, the light passes through an analyzer A represented by the Jones

matrix introduced in 5.5. With the help of relationship 2.26, we can write an equation

linking the Jones vector describing the polarisation state of the light entering the

detector JOUT with the Jones vector describing the polarisation state of the light

generated by the light source JIN

JOUT = AFRspPJIN . (5.11)
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Solving 5.11 with the help of 5.8 ,while assuming that the polariser P defines the

incident wave as p-polarised, (α = 90◦
) yields

I = sin2 β + |ϕK |2 cos2 β + sin 2β Re
{︂
ϕKe

iΓ
}︂

. (5.12)

The value of ϕK is usually very small, which was used already when deriving 2.39,

so the second order term |ϕK |2 in 5.12 can be neglected. Minding that and using 2.39

along with the Euler formula, we can rewrite 5.12 as

I ≈ sin2 β + (θK cos Γ + ϵK sin Γ) sin (2β) . (5.13)

If we measure the intensity as a function of the angle β, we can use equation 5.13 to

fit the measured data and obtain either the Kerr rotation angle θK or the ellipticity

angle ϵK depending on the used phase plate (Γ = 0◦
for Kerr rotation and Γ = 90◦

for

ellipticity). To subtract optical contributions of non-magnetic origin, we perform the

measurement for a magnetic field H and −H. Because the Kerr effect is odd in B⃗, but

the background stays roughly the same, we can largely reduce it by using θK(H) =
[θK(H) − θK(−H)] /2. By background we mainly mean parasitic contributions from

from used optical elements (this procedure also removes the quadratic MO Kerr effect).

As mentioned above, theoretically ellipticity could be extracted from intensity

spectrum measured with a phase plate satisfying Γ = 90◦
. In reality, however, no

phase plate can deliver constant retardance throughout a broad spectrum. To obtain

ellipticity data, one first measures the Kerr rotation angle θK (which is easy, since to

obtain Γ = 0 we just remove the phase plate from the experimental setup) and then

performs another measurement with a phase plate of known retardance Γ (including

its spectral dependence) and fits the obtained data as a function of β with a constant

parameter (θK cos Γ + ϵK sin Γ). Since θK is known, ϵK can be easily extracted from

the fit result.
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Chapter 6

Physical properties of Mn4N

This chapter discusses the crystal and magnetic structure of bulk Mn4N and proposed

magnetic structure of Mn4N thin films along with other properties. It also mentions

doping of Mn4N with various elements, with a special focus on gallium.

6.1 Structural and magnetic properties of bulk Mn4N
Mn4N is a transition metal nitride with antiperovskite structure depicted in figure

6.1. It is a ferrimagnet with antiferromagnetically coupled sub-lattices with the cor-

ner magnetic moment about 4 times stronger than the three antiparallel face center

moments [12]. Mn4N has a relatively high Curie temperature of ≈ 740 K [13].

It has long been known, that bulk Mn4N exhibits (111) magnetic anisotropy [13].

In case of Mn4N thin films a perpendicular magnetic anisotropy (PMA) is observed as

a result of tensile distortion [14] and so the magnetic anisotropy shifts from (111) to

(001). Authors of [14] also conclude, that the PMA can be somewhat controlled by the

ratio of the perpendicular lattice constant to the in-plane lattice constant (c/a) which

can be influenced by the used substrate.

The saturation magnetisation of Mn4N thin films depends on the method of growth,

growth parameters, used substrate and thickness, but usually lies somewhere between

50 kA/m and 200 kA/m [3].

Figure 6.1: Crystal structure of bulk Mn4N
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6.2 Possible ferrimagnetic structures of Mn4N thin
films

Currently there are three main possible ferrimagnetic structures that could theoreti-

cally be present in Mn4N thin films. These proposed structures are depicted in figure

6.2. Bulk Mn4N has a ferrimagnetic structure depicted in figure 6.2(b) [3]. For thin

films, all ferimagnetic structures from figure 6.2 are currently being considered. The

author of [2] concludes from comparing theoretical calculations with measured MOKE

spectra, that FIMb phase with a mix of ncFIM phase (see figure 6.2) maight be present

in Mn4N thin films.

Figure 6.2: Proposed ferrimagnetic structures ncFIM, FIMA and FIMB for Mn4N thin

films. Reprinted from [2] and used with the permission of the author.

6.3 Doping of Mn4N
Doping Mn4N with other elements can drastically change its magnetic properties. In

the past, researchers tried using elements such as Ni, Cr, Fe, In and Sn as replacements

for some or all the Mn atoms in Mn4N with the aim of shifting the compensation

point to various temperatures [3]. Such research proves, that it is possible to tune the

compensation temperature this way. Recently, nonmagnetic Ga was also tried as a

doping element for Mn4N thin films [15]. Authors of this study conclude, that there is

evidence for ferrimagnetic to ferromagnetic transition at higher Ga concentrations.

Gallium in Ga doped M4N occupies the corner positions for low concentrations [16] and

appears to occupy the face center positions for higher concentrations (Mn3.5Ga0.5N)

[15].
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Chapter 7

Experimental results

7.1 Investigated samples
The studied samples were provided by Trinity College Dublin, along with the informa-

tion about their structure summarised in figure 7.1. For this thesis, the layer of interest

is the Mn4N layer. For samples 1 and 2, the Mn4N layer consist of pure Mn4N, for

samples 3,4 and 5, the Mn4N layer consists of gallium doped Mn4−xGaxN with x =0.11,

0.20 and 0.27 respectively. As can be seen, the main difference between samples 1 and

2 is the substrate.

Figure 7.1: Structure of the provided samples. *Gallium doped Mn4N

7.2 Ellipsometric measurements
All samples were characterised using spectroscopic ellipsometry described more closely

in section 5.1. All measurements were done at room temperature using Mueller matrix

ellispometer J.A.Woollam RC2 with dual rotating-compensator. Proprietary Software

CompleteEASE by J.A. Woollam was used both to control the measurement setup and

to extract optical information from measured ellipsometric angles. CompleteEASE
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enables a user to define a multilayered sample structure and assign optical properties

of materials to individual layers using its library of tabulated data. Making use of the

known sample structure shown in figure 7.1, we created the appropriate layers in Com-

pleteEASE with assigned thicknesses and optical properties. Lorentz oscillators were

then used to parametrise optical dispersion (spectral dependence of optical properties)

of the unknown Mn4N layer by fitting the experimental spectra of ellipsometric angles.

The obtained data of the real and imaginary diagonal permittivity tensor elements

are plotted in figure 7.2. It is important to note here, that this procedure is only an

approximation of the real sample, since it considers only perfectly planar interfaces

between layers. The real sample structure may differ from the clear layers illustrated in

figure 7.1, mainly by the layer transitions (including the transition of the top layer and

air) not being completely smooth, as shown in the figure, but rather having a certain

roughness influencing the samples interaction with light and as a result the measured

ellipsometric angles. Although the CompleteEASE software allows for including layer

roughnesses in the analysis procedure, this requires at least approximate information

about the individual layer roughnesses and often does not offer more satisfactory

results. Because of this, it was not used during the analysis process. Still the obtained

optical properties should not deviate largely from their real values.

Looking at figure 7.2, we can clearly see that the spectra for the two samples of non-

doped Mn4N (samples 1 and 2) look very similar. To better resolve differences between

measured spectra, we plot numerically calculated second derivatives in figure 7.3.

Looking at the second derivative of the imaginary part Im{ε1}, there is a spectro-

scopic structure located near 2.2 eV in case of the the two non-doped samples. This

feature is not visible in the spectra of the doped samples suggesting an existence of an

electron transition with such energy linked to the corner Mn atoms. As these atoms

are being substituted by the Ga atoms, this spectral feature seems to be suppressed, or

shifted to lower energies for the doped samples.

The slight observed difference between spectra of the two non-doped samples could

be explained by their different substrates. The substrates STO and MgO have different

lattice constants (i.e different lengths between atoms in their crystal structure) leading

to a different lattice mismatch between the substrate and the Mn4N layer. The lattice

mismatch of Mn4N and MgO is about -7.6 %, while for Mn4N and STO, the lattice

mismatch is only about -0.4 % [17]. This mismatch influences the growth of the Mn4N

layer and causes strain in the sample influencing its optical properties.

In case of the Ga doped samples (samples 3, 4 and 5) we observe different spectral

dependencies for each sample, with the samples 3 and 4 being more similar to each

other compared to sample 5. This is especially noticeable in the spectra of the real

part Re{ε1}. In the spectra of the imaginary part Im{ε1} of sample 3, there appears to

be a wide peak at about 3 eV. This bump appears to shift to lower energies in case of

sample 4 and is no longer visible in spectra belonging to sample 5 (which might mean

it was overlaid by Drude contribution of free electrons). This bump might suggest

the presence of a Lorentz oscillator being influenced by the concentration of gallium

atoms in the sample. Similar behavior can be seen in the second derivative of the

imaginary part Im{ε1}, where a local minimum starting at approximately 3.3 eV in

case of sample 3 appears to shift to about 2.6 eV for sample 4 and is not visible at all for

sample 5. Analogously in the second derivative of the real part Re{ε1}, there appears

to be a local maxima at around 4.5 eV in case of sample 3 shifting to about 3.3 eV for

sample 4 and to approximately 1.9 eV for sample 5.
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Figure 7.2: Real and imaginary part of the diagonal permittivity tensor elements

ε1 obtained by fitting the spectroscopic ellipsometry measurements with Lorentz

oscillators using the CompleteEASE software
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Figure 7.3: Second derivative of the real and imaginary part of the diagonal permittivity

tensor elements ε1 from figure 7.2.
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7.3 Kerr rotation and ellipticity
To study magnetic properties and potentially obtain information about the off-diagonal

permittivity tensor components, Kerr rotation and Kerr ellipticity spectra of the stud-

ied samples at room temperature were measured. Magneto-optical spectroscopy,

explained in section 5.2, was used to measure the experimental data and a custom

python script was then used to calculate the Kerr rotation and ellipticity spectra for

measured energies from 1.3 to 6 eV. As discussed in section 5.2 the Kerr spectra were

measured for an external field B = +1 T and B = −1 T and then subtracted and

divided by 2 to get rid of the parasitic background effects. The obtained Kerr rotation

and ellipticity spectra can be seen in figure 7.4. The measured spectra for the non-

doped samples are again very similar with differences likely caused by the different

substrate and thus strain in the samples. Kerr rotation spectra for both non-doped

samples show a clear peak between 2 and 3 eV agreeing nicely with a spectral feature

observed at similar energies in the second derivative of the imaginary part Im{ε1}.

As for the Ga doped samples, we can see that for samples 3 and 4, the measured Kerr

rotation and ellipticity angles are very small. This is likely caused by the relative

proximity of the compensation temperature of these samples to room temperature. As

can be seen from figure 4.2, near the compensation temperature, net magnetisation is

comparatively small. Furthermore, the field needed to reach magnetic saturation of

these samples at room temperature may be larger than the 1 T used, further lowering

the observed MOKE magnitude. As for sample 5, the magnitude of the measured MOKE

spectrum is comparatively greater, likely as a result of the compensation temperature

shifting further away from the room temperature. Furthermore, the measured Kerr

rotation spectra for sample 5 does not cross zero unlike other samples.

It is important to note the sign reversal between the measured spectra for samples 3

and 4. This observation agrees nicely, with the observed sign reversal between Ga con-

centrations of x = 0.1 and x = 0.3 in literature [15]. The sign reversal between these

two samples indicates that the compensation temperature is greater then the room

temperature for one of the samples and lower then the room temperature for the other

sample. Since pure Mn4N has a compensation temperature of around 500 K [18], noting

that the MOKE sign is the same for pure Mn4N (samples 1 and 2) and for Mn3.89Ga0.11N

(sample 3), we can conclude that Mn3.89Ga0.11N has a compensation temperature above

room temperature, while Mn3.80Ga020N (sample 4) and Mn3.73Ga0.27N (sample 5) have

compensation temperatures below the room temperature.
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Figure 7.4: Obtained Kerr rotation and ellipticity spectra of the studied samples

7.3.1 Comparison of measured and theoretically calculated MOKE
spectra for pure Mn4N films

For the two non-doped samples, theoretical Kerr rotation and ellipticity spectra for

proposed ferrimagnetic phases ncFIM, FIMA and FIMB from figure 6.2 were calculated.

Material data for the Mn4N layer obtained by DFT calculations (i.e the individual

ferrimagnetic phases) were adapted from [2]. Yeh matrix formalism was then used

to simulate MOKE spectra for our samples respecting the known sample structure

from figure 7.1. These simulations were done separately for each phase and assumed

the Mn4N layer to be made entirely out of one of these ferrimagnetic phases. The

calculated MOKE spectra for individual phases for sample 2 are shown in figure 7.5.

The calculated MOKE spectra for sample 1 are slightly different because of the different

substrate. However, as the difference is small, they are not plotted separately in this

thesis. Note that the theoretical simulations of the material parameters [2] used for
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the theoretical MOKE calculations were performed for temperature of 0 K and an

infinite perfect crystal lattice. The experimental MOKE measurements were done

at room temperature on thin film samples. As a result, the spectral characteristics

visible in 7.5 get smeared greatly by thermal fluctuations and crystal imperfections.

Comparing figures 7.4 and 7.5 the best agreement can be found for FIMA (note that

we are compering only spectral dependencies and disregard the magnitude or the sign

as they can be influenced by the way the experiment is performed). However, it may

be possible to obtain even better agreement by mixing the FIMA and the ncFIM phase

together. An attempt at this is illustrated in figure 7.6. Here we obtained the mixed

spectrum M simply by adding the two phases together while moderating them by

parameters A, B and total amplitude parameter K as

M = K(A · FIMA +B ∗ ·ncFIM) . (7.1)

The "optimal" values of A and B were found by manually moderating them and

judging the agreement between theoretical and measured spectra by eye as analytical

fitting would not offer satisfactory results due to numerical instability. This is because

we would have to account for the temperature and crystal imperfection smearing

of the theoretical data and because more importance is assigned to some spectral

characteristics like where the spectra cross zero. The "optimal" values of A and be B
used in figure 7.6 were determined as A = 1.69, B = 2.58 in case of sample 1 and

A = 1.53, B = 2.92 in case of sample 2. The absolute values of these parameters are

not important, as the spectrum is additionally scaled by a total amplitude parameter

K (in this case K = −0.02 was used for both samples). What is important is the ratio

of the two parameters A and B mimicking the theoretical ratio of the two phases

in the samples. Calculating this, we get A/B = 0.66 for sample 1 and A/B = 0.52
for sample 2. Interestingly enough, although the ncFIM phase does not offer great

agreement with experimental data on its own, when mixed with some FIMA phase,

the agreement with experiment might be even better than the pure FIMA phase.

However, it is important to interpret these results purely as a suggestion that the

coexistence of the two phases may give rise to a better agreement with measured data.

The described procedure offers only qualitative and not 100 % conclusive results.
For both the pure FIMA phase and the mix of phases FIMA and ncFIM, the theoretical

and experimental Kerr rotation spectra are roughly in agreement only between about

1.6 and 4.2 eV. For lower and higher energies, the agreement is considerably worse. In

the case of low energies the disagreement is expected, as explained in source literature

[2], due to intraband transitions, which are not considered in the DFT calculations of

material parameters. In the case of high energies, it is unclear what causes the observed

discrepancy. Furthermore, the Kerr ellipticity spectra is roughly in agreement only in

terms of the overall shape, however, experimental spectra seems to be shifted upwards

(to larger angles) compared to the theoretical spectra. This can not be accounted

for by simple total amplitude scaling as the theoretical spectra crosses 0 but the

experimental spectra does not. None of the three proposed ferrimagnetic phases lead

to purely positive ellipticity spectra and it is unclear what causes the observed shift in

experimental data.
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Figure 7.5: Theoretically simulated spectra for individual ferrimagnetic phases and

sample structure analogous to sample 2.
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Figure 7.6: Comparison of experimentally measured and theoretically calculated MOKE

spectra for pure FIMA phase and a mix phases ncFIM and FIMA with amplitudes

adjusted to best match experimental data.
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7.3.2 Kerr rotation dependence on temperature
Sample 4 was additionally measured using a modified magneto-optical setup coupled

with a superconducting magnet (PPMS by Quantum Design), allowing for measure-

ments at various temperatures and an external field of up to 9 T. The measurement

setup was analogous to that in figure 5.2 with an additional window that the light

had to pass through before and after reflecting from the sample placed in a cryostat.

This introduces an unwanted Farraday rotation contribution from the window as it is

not far enough to be fully shielded from the magnetic field. This Farraday rotation

was determined by colleagues measuring other samples using the same setup and

subtracted from the obtained results. The obtained Kerr rotation spectra for a range of

temperatures from 20 to 300 K with subtracted Farraday contribution from the window
can be found in figure 7.7. A zoomed in look at the measured spectra for temperatures

between 20 and 80 K can be found in figure 7.8. Looking at figure 7.8, we can see that

for the lowest temperatures, only noise is being measured. We would expect this noise

to oscillate around 0, but instead the whole spectrum is shifted by about 5 mdeg. This

is likely due to measurement error resulting for example from a non-perfect homing

of the rotating analyzer in the measurement setup. However, we can see that the

spectral characteristics clearly visible for high temperatures are still recognisable for

lower temperatures all the way down to 40 K (see figures 7.7 and 7.8). This cannot be

explained as a measurement error and since the spectra do not appear to change sign,

we can estimate an upper bound on the compensation temperature of sample 4 of 40

K.

Comparing the spectra for T = 300 K from figure 7.7 and Kerr rotation spectra of

sample 4 from 7.9, there does not appear to be a great agreement between the two.

However, this is not too surprising, considering both spectra were measured at differ-

ent field strengths (9 T vs 1 T). A ferrimagnetic material might respond differently to

different external magnetic field strength as the individual sublattices may interact

with the field differently.

Unfortunately there was not enough measurement time left to measure Kerr spectra

temperature dependence for other samples.
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Figure 7.7: Spectral Kerr rotation measurements at temperatures ranging from 20 to

300 K with an external 9 T magnetic field.

Figure 7.8: Spectral Kerr rotation measurements at temperatures ranging from 20 to

80K, zoomed in for easier discussion

7.3.3 MOKE hysteresis loops
For the two non-doped samples, MOKE spectra were measured for multiple external

field strengths and hysteresis loops were constructed from the results. The measure-

ments were performed at room temperature, with field strengths ranging from -1

T to 1 T. The obtained loops along with Kerr rotation spectra for all measured field

values can be found in figure 7.9. The data in this figure has dynamically subtracted

background (i.e the background subtraction was done independently for all pairs of

data measured at field strengths of ±x T). To form the hysteresis loops, the one branch

obtained from the mentioned background subtraction is duplicated and flipped to
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complete the loop. From these measurements, we find the coercivity of our samples at

room temperature to be Hc = 0.51 T in case of sample 1 and Hc = 0.48 T in case of

sample 2. The measurements for sample 2 are less noisy because a better spectrometer

was used. We can see, that the MOKE spectra do not cross zero at the same energy

for all measured fields in the in UV region. This is likely a result of measurement

error and parasitic Faraday rotation from the polarisers in the measurement setup.

The magnitude of Faraday rotation if larger for higher energies, explaining, why the

discrepancy in where the spectra measured for different fields cross zero is larger for

higher energies. The measured hysteresis loop for sample 1 does not completely close,

this is not physical and is again the result of measurement error.

Normalised hysteresis loops for multiple energies are plotted in figure 7.10, normalisa-

tion is necessary to get rid of the spectral dependence of Kerr rotation. Since the shape

of the loops does not change with energy, we can conclude that the Kerr rotation in

this part of the spectrum is dominated by only one sublattice of Mn4N. This is also

inline with the shape of the hysteresis loop resembling a ferromagnetic material with

no apparent sign of mixing contributions from multiple sublattices as shown in 4.5.

(a) Sample 1 (b) Sample 2

Figure 7.9: Kerr rotation spectra and hysteresis loops constructed from measurements

at different field strengths. The hysteresis loops are plotted for 2.5 eV, as indicated by

the red vertical lines.
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(a) Sample 1 (b) Sample 2

Figure 7.10: Normalised hysteresis loops plotted for multiple energies from 1.8 to 3.2

eV
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Conclusion

Two samples with pure Mn4N thin layer and three samples with Ga doped Mn4−xGaxN

thin layer were analysed using spectroscopic ellipsometry and magneto-optical spec-

troscopy measurements.

From spectroscopic ellipsometry data, diagonal permittivity tensor element spectra

were calculated. The obtained spectra of the imaginary part showed a spectral charac-

teristic structure around 2.2 eV present in non-doped samples which disappeared in the

case of the Ga doped samples, hinting at the presence of an electron transition of such

energy linked to the corner Mn atoms which are being replaced by Ga atoms in the

doping process. In the spectra of the imaginary part of the doped samples, a possible

presence of a Lorentz oscillator at about 3 eV was discussed. This oscillator appears to

shift to lower energies with higher Ga concentrations. Similar spectral characteristics

shifting to lower energies with increased gallium concentrations were also observed

in the spectra of the real part of the diagonal permittivity tensor elements.

From magneto-optical spectroscopy measurements, Kerr rotation and ellipticity spec-

tra were calculated for all 5 measured samples. In the case of the two non-doped

samples a significant peak between 2 and 4 eV was observed. For samples with Ga

concentrations of x=0.11 and x=0.20, the obtained spectra were of far lower magnitude

than for other samples. It was hypothesised that this might be caused by a relative

proximity to the compensation temperature or the used external field not being strong

enough to reach magnetic saturation. Between these two samples a sign reversal of

the obtained Kerr rotation spectra was observed. The cause of this was determined

to be the compensation temperature shifting from above room temperature for Ga

concentration of x=0.11 to below room temperature for Ga concentration of 0.20. This

result agrees nicely with [15].

Kerr rotation and ellipticity spectra of the two non-doped samples were compared

with theoretical calculations based on material parameters taken from [2]. For the

three proposed ferrimagmnetic phases, best agreement between experimental and

theoretical spectra was observed for the FIMA phase. It was also hypothesised, that a

coexistence of the ncFIM and FIMA phase might offer even better agreement between

theory and experiment.

For the sample with Ga concentration of x=0.20, Kerr rotation spectra at temperatures

ranging from 20 to 300 K were measured. From these measurements a high bound on

the compensation temperature of this sample was determined at 40 K.

For the two non-doped samples, hysteresis loops were constructed from Kerr rotation

data measured for multiple external magnetic field values. A coercivity values of

Hc = 0.51 T in case of sample 1 and Hc = 0.48 T in case of sample 2 were determined.

Furthermore, from the constant shape of the hysteresis loops for energies from 1.86

to 3.12 eV, it was determined that this part of the spectrum is dominated by only one

sublattice of the ferrimagnetic Mn4N.
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As always, more measurements are needed. In the future we plan on finishing

the temperature resolved Kerr rotation measurements for all available samples. This

should allow us to better judge how the compensation temperature changes with

gallium content and determine the usefullness of Ga doping in reaching near room

temperature compensation temperature. Furthermore,we plan to measure MOKE

hysteresis loops for the gallium doped samples at different temperatures to better

understand how Ga doping changes the magnetic structure of Mn4N.
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