
MASTER THESIS

Bc. Jakub Herćık

Detection and Correction of Silent
Errors in Pipelined Krylov Subspace

Methods

Department of Numerical Mathematics

Supervisor of the master thesis: Erin Claire Carson, Ph.D.
Study programme: Mathematics

Study branch: Computational Mathematics

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to express my gratitude to my supervisor, Erin Claire Carson, Ph.D.,
for her invaluable guidance and help as well as to doc. RNDr. Petr Tichý, Ph.D.,
for being a consultant for this thesis.

ii

Title: Detection and Correction of Silent Errors in Pipelined Krylov Subspace
Methods

Author: Bc. Jakub Herćık

Department: Department of Numerical Mathematics

Supervisor: Erin Claire Carson, Ph.D., Department of Numerical Mathematics

Abstract: This thesis focuses on the problem of silent error detection in the
pipelined predict-and-recompute conjugate gradient (Pipe-PR-CG) algorithm, a
pipelined Krylov subspace method for solving linear systems with a symmetric
positive definite matrix. The theory of silent errors and conjugate gradient vari-
ants is introduced, and the structure of Pipe-PR-CG is subsequently utilized in
rounding error analysis to derive criteria for silent error detection based on bounds
of several quantities computed in finite precision arithmetic. The efficacy of the
criteria is then tested in a robust numerical experiment, and a fault-tolerant ver-
sion of the algorithm is introduced. Additionally, the sensitivity of Pipe-PR-CG
to silent errors is examined. Codes in the Python programming language which
were used for the main experiments and figures presented in this thesis are also
provided.

Keywords: fault tolerance, iterative methods, computer science, numerical math-
ematics, errors, algorithms, high-performance computing, matrix computations,
Krylov subspace methods

iii

Contents

Introduction 3

1 Theoretical background 4
1.1 Pipelining and basic parallel terminology 4
1.2 Finite precision arithmetic . 5
1.3 Silent errors . 7

2 Conjugate gradient and its variants 11
2.1 Krylov subspace methods . 11
2.2 Conjugate gradient . 11
2.3 Communication-hiding conjugate gradient

variants . 13
2.3.1 PR-CG . 14
2.3.2 M-CG . 16
2.3.3 ChG-CG . 18

2.4 Pipelined variants . 19
2.4.1 Pipe-PR-CG . 19
2.4.2 Other pipelined variants 22
2.4.3 Comparison of variants . 23

3 Effects of silent errors on Pipe-PR-CG 26
3.1 Sensitivity of convergence . 26
3.2 Other effects and error detection 35

4 Relations for the detection of silent errors in Pipe-PR-CG 37
4.1 ν-gap . 37

4.1.1 Derivation of bounds . 37
4.1.2 Numerical experiments . 41

4.2 w-gap . 44
4.2.1 Derivation of bounds . 44
4.2.2 Numerical experiments . 46

4.3 µ-gap . 51
4.3.1 Derivation of bounds . 52
4.3.2 Numerical experiments . 53

4.4 Summary of detection methods 63

5 Fault-tolerant Pipe-PR-CG 65
5.1 Detection testing . 65
5.2 Correction of silent errors . 76

5.2.1 Fault-tolerant Pipe-PR-CG algorithm 76
5.2.2 Adaptive threshold refinement 79

Conclusion 84

Bibliography 85

1

List of Figures 88

List of Tables 90

A Appendices 91
A.1 Initialization procedures . 91
A.2 Behavior of the relative µ-gap/bound difference for the matrix aft01 94

2

Introduction
As computational machines are becoming increasingly large and more complex,
and with that rises the probability of failure, the topic of error handling and fault-
tolerant algorithms is now more important than ever. Some errors are rather
simple to detect, since they, e.g., result in a crash of the computation. However,
there is another category of faults, so-called “silent errors”. These faults may
not be immediately easily apparent, but they can result in significantly altered
behavior of the used numerical method. One way of solving the problem of their
detection is to perform the computation multiple times, and compare the results.
However, this substantially increases the overall computational cost, in terms of
both time and energy. Therefore, it is desirable to possess an alternative, more
efficient approach.

This thesis examines the subject of silent error detection in the context of
pipelined Krylov subspace methods for the solution of linear systems. Pipelined
Krylov subspace methods are a class of algorithms designed to be computation-
ally efficient on massively parallel computer architectures. This is achieved by
a rearrangement of mathematical expressions in the given method, so that there
is less need for communication, i.e., data movement, and certain steps can be
overlapped. The focus of this work is a specific variant of the well-known conju-
gate gradient method, the pipelined predict-and-recompute conjugate gradient
algorithm, shortly, Pipe-PR-CG, first introduced in the article “Predict-and-
Recompute Conjugate Gradient Variants” by Tyler Chen and Erin Carson in
2020.

The ultimate goal of this thesis is to derive effective and reasonably inexpen-
sive methods for silent error detection in Pipe-PR-CG that can be subsequently
incorporated into a modified version of the algorithm which is automatically able
the detect and correct the silent faults. These detection methods are based on
the comparison of “gaps” between certain quantities which are equal in exact
arithmetic and the bounds on their values in finite precision.

The first two chapters contain a summary of the theoretical background con-
cerning the concepts of floating-point arithmetic, silent errors, and various conju-
gate gradient variants. The third chapter examines the sensitivity of Pipe-PR-CG
to silent errors. The fourth chapter then focuses on constructing several criteria
for the detection of silent errors in the Pipe-PR-CG algorithm. This involves a
mathematical derivation of the necessary relations as well as a demonstration of
how the derived expressions behave in the case of a bit flip occurrence. The work
is concluded by a numerical experiment investigating the detection performance
of the derived criteria for bit flips in all Pipe-PR-CG variables and, finally, a
statement of a fault-tolerant modification of the original algorithm. Presented
is also an adaptive version of the fault-tolerant algorithm able to dramatically
reduce the amount of falsely positive detections.

3

1. Theoretical background
This chapter focuses on providing theoretical background for various topics from
computer science. In the beginning, a short introduction to basic terminology of
parallel computing is given. Then, the concept of computer arithmetic and finite
precision computations is introduced. In the final part, we delve into the theory
and practical matters of silent errors.

1.1 Pipelining and basic parallel terminology
Before we proceed to issues of silent errors and Krylov subspace methods let us
explain some terminology of computational science, which is mentioned later in
this thesis. However, please note that these concepts are much more complex and
contain richness beyond the information presented here. For a gentle introduction
into this field please see, e.g., the “Introduction to Parallel Computing Tutorial”
[2] assembled by the Lawrence Livermore National Laboratory, which the next
paragraphs greatly draw from. It is also possible to find further references and
resources there. Now, let us present some terminology in the form of a list.

• A Task is a part of the overall computational work that is performed by
a processor. During parallel computation multiple tasks are concurrently
performed by multiple processors [2].

• Pipelining is a type of parallel computing, where our potentially partly
sequential work is divided into separate parts, each of which is computed
by a different computational unit. The input data go through the pipeline,
step by step, like in, e.g., a car assembly line [2]. The advantage of this is
that we are able to overlap the operations, and consequently process the
data faster.

• Distributed memory refers to a model of hardware organization, where phys-
ical memory is distributed among computational units. Each task can di-
rectly access only data present on the processor it runs on. If it needs data
stored in other processors’ memory, some form of communication must be
performed [2].

• Communication is the process of data exchange between tasks [2]. This
term can encompass both sequential communication (moving data between
levels in the memory hierarchy) and parallel communication (moving data
between distributed memory elements). Aside from the obvious “algebraic”
cost, each computation also involves some degree of communication costs.
This cost can dominate the overall runtime of the computation. Therefore,
it is highly desirable to limit the necessary amount of communication in an
algorithm, especially if we aim to run it in parallel [3].

• Synchronization is the real-time coordination of our parallel tasks. It often
involves slowdown of the overall computation, since there is generally the
need to wait for one or more tasks to reach some point in the computation
[2].

4

• Reduction is a type of collective (involving more than two tasks) parallel
communication, which combines data from different computational units
into some combined value on one specific unit using a certain operator
(e.g., sum, multiplication) [2] [4]. This work will involve the discussion
of reductions of inner products, i.e., summing local sums computed from
parts of the vectors distributed among multiple computational units into
the overall result.

1.2 Finite precision arithmetic
Every computation performed on a computer is subject to so called finite precision
arithmetic. It is a system designed to represent numbers and to calculate with
them. Ideally, we would be able to compute everything using infinite precision
arithmetic, i.e., the real numbers, however, that is not possible, since comput-
ers are finite machines able to work with no more than finite information [5].
Therefore, we ought to operate with some finite set F and every a ∈ R is to be
approximated by some â ∈ F [5]. There are several ways how to construct this
set. The one most commonly used is called floating-point arithmetic, where the
elements of the set F are expressed utilizing a base B ∈ N \ {1}, an exponent e,
and a mantissa m [6]. Taking an arbitrary number â ∈ F, we can represented it
as [5]:

â = ±Be × m,

where
m = d.d . . . d,

e = d . . . d,

for d ∈ {0, . . . , B − 1}.

This notation was used, e.g., in [7]. Having established how to construct sets
F, the next logical step could be to choose one of them, and make it a standard
as this would greatly increase software portability. The system currently mostly
used is called “the IEEE standard” [5].

Citing from “Scientific Computing: An Introduction using Maple and MAT-
LAB” [5]: “Since 1985 we have for computer hardware the ANSI/IEEE Standard
754 for Floating Point Numbers. It has been adopted by almost all computer
manufacturers. The base is B = 2.”

There exist several so called “precisions”, which differ by the number of bits
allocated for each element of F, respectively, for its exponent and mantissa. We
also need to reserve one bit for the sign of the number. The most commonly
used precisions are the following. Half precision - 16 bits, single precision - 32
bits, double precision - 64 bits and quadruple precision - 128 bits. The following
Table 1.1 summarizes the main characteristics of each of these formats [8][9].
The machine ϵ is defined as spacing of the elements of F between 1 and the base
B. The symbol âmax denotes the largest representable number in the specific
precision format [5].

5

Half Single Double Quadruple
precision precision precision precision

Total bits 16 32 64 128
Sign bits 1 1 1 1
Exponent bits 5 8 11 15
Mantissa bits 10 23 52 112
Machine ϵ 2−10 ≈ 2−23 ≈ 2−52 ≈ 2−112 ≈
(in decimal system) 9.77 × 10−4 1.19 × 10−7 2.22e × 10−16 1.93 × 10−34

âmax ≈ 105 ≈ 1038 ≈ 10308 ≈ 104932

Table 1.1: Characterizations of IEEE Standard precisions

We are going to be primarily interested in IEEE double precision, since it is
the system used in all numerical experiments included in this thesis. On top of
that, it is the most commonly used one in general [5].

In IEEE double precision, the first bit represents the sign, then there are 11
bits for the exponent, and the remaining 52 bits are utilized for the mantissa [5].
The value of some â ∈ F is then represented in the following way [5]:

• Normal numbers: In the case that 0 < e < 2047, we have
â = (−1)s × 2e−1023 × 1.m, where we prefix the mantissa m with a binary
point and an implicit 1 [5].

• Subnormal numbers: In the case that e = 0 but m ̸= 0, we have
â = (−1)s × 2e−1022 × 0.m, which is so-called “denormalized number”, as
the mantissa is not prefixed by an implicit 1 but 0 instead [5]. Moreover:

– For e = 0, m = 0, and s = 0, it is â = 0.
– For e = 0, m = 0, and s = 1, it is â = −0.

• Exceptions: In the case that e = 2047, we have [5]:

– If m = 0 and s = 0, then â = Inf.
– If m = 0 and s = 1, then â = -Inf.
– If m ̸= 0, then â = NaN (Not a Number).

• As was mentioned above, the machine epsilon, which is defined as spacing
of the elements of F between 1 and the base B is for IEEE double precision
ϵ = 2−52 ≈ 2.220446049250313 × 10−16 [5].

• The largest representable number is âmax ≈ 1.7976931348623157 × 10308. If
the result of an operation falls outside the interval [−âmax, âmax], we call
it an “overflow” [5]. Different programming languages and compilers react
to this differently, e.g., Matlab deems such a result as ±Inf, while Python
might raise an overflow error instead. This is going to be important later
in the thesis, as all included experiments are implemented in Python, and
we have to account for the occasional overflow errors.

6

• The smallest representable normalized number (in terms of proximity to
zero) is ±âmin ± 2−1022. Below this threshold, denormalized numbers are
used. They fall in the range [ϵ × âmin, âmin) and its negative counterpart
respectively. Numbers smaller in absolute value than ϵ × âmin are said to
be in the “underflow range”. Once a value gets into this range, it can no
longer be represented, and it is deemed as a zero instead [5].

Arithmetic operations also abide by certain rules. Having â, b̂ ∈ F and finite
precision arithmetic operator ⋆ (implementation of +, −, ×, /), the result of the
operation â ⋆ b̂ will most likely not be an element of F, as this set is rather sparse
in R. Instead, it holds that â ⋆ b̂ = (â ∗ b̂)(1 + e), where ∗ is the operator in
exact arithmetic and e is such that |e| < ϵ. We can also think of finite precision
operations as exact arithmetic operations applied to some ã, b̃ close to â and b̂
respectively [5]. This is a similar notion to backward error analysis where one aims
to find some perturbed data for which the outcome of an imprecise computation
is the precise result [10]. The difference between the exact result (â ∗ b̂) and the
finitely computed result â ⋆ b̂ is called the “rounding error” [5].

Finite precision arithmetic often has a negative impact on computations due to
these errors. For instance, given a symmetric positive definite matrix A ∈ Rn×n,
it should take the conjugate gradient method at most n iterations to converge.
In practice, however, it can take many more [10].

1.3 Silent errors
A key concept of this thesis are so-called “silent errors”, also known as “soft
faults” [11] or “silent data corruption” (SDC) [12]. This section presents the
concept of silent errors and tries to motivate why uncovering and fixing them is
important.

As was mentioned in the previous section, every computation is subject to
finite precision arithmetic, and therefore to rounding errors. However, there are
other problems which might arise, be it because of code implementation, hardware
defects, or some additional issues. Silent errors are faults that do not terminate
the computation or raise an error, but rather cause a change in some floating-
point number without any apparent indication of a problem [11].

Silent errors may be qualified in several ways from both the low-level point of
view (what is their hardware-wise cause) and the high-level point of view (in what
way they affect the logical values involved in a computation). At the high-level,
a distinction can be made based on whether the silent error permanently affects
only the result of the operation or the input quantities as well [13]. The following
explanation of this is adapted from the article “On Soft Errors in the Conjugate
Gradient Method: Sensitivity and Robust Numerical Detection” [13].

Let us assume there exist floating-point numbers a, b, c such that without any
silent error it holds that a + b = c. Now, let a get altered (a → ã) during this
operation by a silent error. This causes c to be altered as well, resulting in some
c̃ = ã + b. Silent errors then can be divided into two categories: persistent and
transient [13].

1. Transient silent errors are faults for which only the result c̃ stays altered
after the calculation is concluded, meaning, the input variable ã “reverts”

7

back to a. Therefore, the resulting variables stored in memory are a, b, c̃.
This can happen if the variable a is altered by the silent error while being
in transient memory, for instance, cache [13].

2. Persistent silent errors are faults for which, in the end, not only the result
c stays influenced but the input data a as well. In this case, the resulting
quantities after the calculation are ã, b, and c̃. This can happen if a is
altered while being in persistent memory, e.g, the main memory [13].

The experiments of this thesis assume the model of transient silent errors. The
same is done, e.g., in [12] and [13].

Generally speaking, the origin of a silent error need not be known for the
purpose of studying its impacts, as it provides no additional information to this
end [12]. In the article “Evaluating the Impact of SDC on the GMRES Iterative
Solver” [12] the authors argue for this approach as opposed to studying specifically
the impact of bit flips as one possible origin of silent errors.

A bit flip is an event when a value of a bit in the representation of a floating-
point number is reversed, i.e., 0 becomes 1 or 1 becomes 0. For instance, a bit
flip occurring in the first bit - the sign - results in a floating point number â
becoming −â. Although, as was mentioned above, a general approach to silent
errors as a category is possible, this thesis is concerned primarily with bit flips
(in the context of numerical linear algebra), since they are commonly studied [12]
and easy to model.

The impact of a bit flip may vary. A bit flip in the end of the mantissa may
have only negligible effects, whereas a flip of some dominant bit in the exponent
can destroy the entire computation. There are several possible situations a bit
flip may cause, including, but not necessarily limited to, the following [12]:

• termination of the computation, e.g., because of a floating-point overflow;

• stagnation, i.e., the stopping criteria are never reached;

• delay in convergence;

• convergence to an incorrect result, e.g., for an iterative solver, a bit flip in the
norm of the residual vector rk might result in the algorithm prematurely
reaching the stopping criteria with a result which does not truly satisfy
them;

• nothing of concern for the convergence.

As can be seen, these effects can impact the computation in a number of differ-
ent ways. If the algorithm is terminated or it stagnates we are at least given
an indication that something unexpected has happened (because of this, it is,
purely speaking, no longer a “silent” error). However, in the case of convergence
to an “incorrect” result, there are at first glance no signs that something went
wrong. This motivates why the topic of silent errors might be potentially crucial
in practice. Especially, as the supercomputers the modern parallel codes run on
are becoming rather complex and the number of their parts increases, the risk
of a hardware failure increases as well [11]. Moreover, the decrease of transistor
feature sizes makes individual components more prone to failure [12].

8

An interesting observation is the fact that bit flips “from 0 to 1” and “from
1 to 0” are not equally influential in terms of the relative perturbation of the
altered floating-point number [13]. Here, the term “relative perturbation” means
the ratio |x̃ − x|/|x|, where x is the original number and x̃ the changed number
after a bit flip.

The following Table 1.2 adapted from the article “On Soft Errors in the Conju-
gate Gradient Method: Sensitivity and Robust Numerical Detection” [13] depicts
values of relative perturbations and their respective bounds for all possible bit
flips in IEEE double precision. The bits are numbered from 1 to 64 with the order
being: the one sign bit, the twelve exponent bits (with decreasing “importance”),
and the fifty two mantissa bits (again, with decreasing “importance”). The con-
stant m is the value of the mantissa (before the bit flip), as it was presented in the
section concerning floating-point numbers. Therefore, if we let bi denote whether
the respective bit is 0 or 1, it holds that [13]

m =
64∑︂

i=13
bi212−i, bi ∈ {0, 1}.

Derivation of the values and their respective bounds (in red) presented in the
table can be found in [13], Appendix A.

bit flip i = 1 2 ≤ i ≤ 12 13 ≤ i ≤ 64

type (sign) (exponent) (mantissa)

0 flip−→ 1 2 2212−i 212−i

1+m
≤ 1

4

1 flip−→ 0 2 1
2 ≤ 1 − 2−212−i ≤ 1 |−212−i|

1+m
≤ 1

2

Table 1.2: Relative perturbations |x̃ − x|/|x| when the i-th bit is flipped in the
number x (x flip effect−−−−−→ x̃)

As can be observed from inspecting Table 1.2, the difference in the “type” of
the flip is potentially extremely significant for the exponent bits (2 ≤ i ≤ 12).
However, it is necessary to keep in mind that this is caused by the fact that the
change is being measured in the relative sense of the fraction |x̃ − x|/|x|. In the
case of a 1 → 0 flip, the original value x which is the denominator is larger than
the x̃, and thus the ratio is “controlled”. Whereas, for a 0 → 1 flip, it is the other
way around and it may be that the original value x is quite small compared to x̃.
Nonetheless, this variability makes it a potentially interesting quantitative factor
for future research.

The question now is: How can we recognize that a silent error has occurred?
The most straightforward approaches for detecting silent errors are so-called
double modular redundancy (DMR) and triple modular redundancy (TMR) [13].
These methods are based on the idea that we can perform the same computation
multiple times, either consecutively on the same hardware unit or simultaneously
on different hardware units, and then check whether the results are the same
[13]. There might be an objection that it is possible for the exact same silent er-
ror to happen multiple times, thus rendering this approach unreliable. However,

9

it can be argued that silent errors are relatively infrequent events, because, e.g.,
of multiple precautions build in the hardware to minimize the likelihood of them
[12]. Nevertheless, the crucial problem of redundancy approaches is their cost, as
they require either multiple computational units or twice/thrice the time. This is
especially limiting for large, massively parallel computers because of their energy
consumption [12].

Another possible idea for the detection of silent errors is to use information
about the numerical method to derive some detection criteria [11]. This approach
is called algorithm-based fault tolerance (ABFT) [11]. For instance, it is possible to
monitor residual norms or to set up bounds for some quantities [11]. In the fourth
chapter of this thesis, such bounds are derived for the Pipe-PR-CG algorithm
based primarily on monitoring differences between “predicted” and “recomputed”
values of two of its variables. Even though ABFT methods do not require the
amount of computational resources needed for the redundancy approaches, they
still require some. They may also cause delayed convergence if the algorithm is
modified to utilize them to correct the found errors during the computation [11].

10

2. Conjugate gradient and its
variants

2.1 Krylov subspace methods
The concept of Krylov subpaces dates back to 1931, when it was introduced by
a Russian naval officer and marine scientist Aleksei Nikolaevich Krylov with the
aim of analyzing oscillations of mechanical systems via minimal polynomials of
matrices [14]. Subsequently, 21 years later, a method utilizing Krylov subspaces
for the solution of linear systems with a symmetric positive definite matrix was
proposed by Hestenes and Stiefel in their article “Methods of Conjugate Gradients
for Solving Linear Systems” [15].

The definition of a Krylov subspace is as follows. Given a matrix A ∈ Rn×n, a
vector v ∈ Rn, and an integer k ≤ n, we define the k-dimensional Krylov subspace
of the matrix A and the vector v as Kk(A, v) := span{v, Av, A2v, . . . , Ak−1v} [10].
This notion can be naturally generalized to C.

Krylov subspace methods for solving linear algebraic systems are a special
case of so-called projection methods. These algorithms construct a sequence of
approximations {xk}n

k=0 (where k denotes the index of the current iteration as
well as dimension of spaces Ck, Sk described below) from the initial guess x0, such
that

xk ∈ x0 + Sk, rk ⊥ Ck.

The space Sk used for selecting a set of possible choices for the approximation is
called the Search space and the space Ck used for selecting the “best” approxi-
mation is called the Constraint space. Please note that the meaning of the term
“best” differs depending on the particular method. Many different methods can
be derived based on the selection of Ck and Sk [10].

However, the main focus of this thesis is the conjugate gradient method.

2.2 Conjugate gradient
As was previously mentioned, the original conjugate gradient method (from now
on also denoted as HS-CG) for solving linear systems with a symmetric positive
definite matrix was first formulated in 1952 by Hestenes and Stiefel in their article
[15]. There are several ways how to derive it, e.g., via minimization of a certain
quadratic functional or from the Lanczos algorithm [10]. Naturally, it is also a
projection method with Sk = Ck = Kk(A, r0), which minimizes the energy norm
of the error ||x−xk||A [10]. The norm is well-defined owing to A being symmetric
positive definite, and thus it can be easily proven that it satisfies the necessary
conditions to define an inner product. The procedure of the HS-CG algorithm
below is, including notation, formulated in the same way as in [1]. From now
on, vector variables are written in bold and matrices in bold uppercase. M
denotes a symmetric positive definite “preconditioner” matrix, which is used to
improve properties of the system. Using M, we can implicitly solve the system
L−TAL−1y = L−Tb, where y = Lx and L is the Cholesky factor of M, utilizing

11

just solutions of subsystems with M during the run, e.g., r̃k = M−1rk [1]. The
symbol ∼ denotes extra variables introduced by inclusion of the preconditioner.

A more extensive description of classical CG is beyond the scope of this thesis.
In case the reader is interested in this, further information can be found for
instance in the book “Krylov Subspace Methods: Principles and Analysis” by
Jorg Liesen and Zdeněk Strakoš [16], which contains deep analysis of CG and
demonstrates its relation to other mathematical concepts and methods.

The statement of the INITIALIZE() procedure for the following as well as for
all other algorithms can be found at the very end of this thesis in Appendix A.1.

Algorithm 1 Hestenes and Stiefel Conjugate Gradient: HS-CG (preconditioned)
1: procedure HS-CG(A, M, b, x0)
2: INITIALIZE()
3: for k = 1, 2, . . . do
4: xk = xk−1 + αk−1pk−1
5: rk = rk−1 − αk−1sk−1, r̃k = M−1rk
6: νk = ⟨r̃k, rk⟩
7: βk = νk/νk−1
8: pk = r̃k + βkpk−1
9: sk = Apk

10: µk = ⟨pk, sk⟩
11: αk = νk/µk

12: end for
13: end procedure

Taking a look at Algorithm 1, we can observe that the computation has to
be done largely sequentially, since each step directly depends on variables com-
puted in the previous ones. This causes trouble on parallel distributed memory
computers, where a communication bottleneck is created because of the inability
to overlap computation with expensive global reductions from inner products or
with at least some amount of communication from the matrix-vector multiplica-
tion [1]. Specifically, there are two so-called global synchronization points at the
inner products [17]. Citing from the article “The Numerical Stability Analysis of
Pipelined Conjugate Gradient Methods: Historical Context and Methodology”
[17]: “Computing each inner-product requires a global synchronization point; i.e.,
the computation can not proceed until all processors have finished their local com-
putation and communicated the result to other processors. It is well-known that
for large-scale sparse problems on large-scale machines, the cost of synchroniza-
tion between parallel processors can dominate the run-time.”

The structure of the HS-CG algorithm is illustrated in the diagram (Figure
2.1) below. As was mentioned, there are two global synchronization points - the
inner products - in each iteration. The diagram follows the order of operations in
the algorithm. First, there are vector updates (lines 4 and 5), then the first inner
product (line 6) and its subsequent utilization in a scalar update (line 7), after
that, a vector update (line 8) followed by a matrix-vector multiplication (line 9),
and finally the second inner product (line 10) and its usage in a scalar update
(line 11). For simplicity, neither this nor any other iteration diagrams in this
chapter take into account the preconditioning steps.

12

Matrixvector multiply

Inner product

Vector updates

Vector update

Inner product

Start of the iteration

End of the iteration

Scalar update

Scalar update

Figure 2.1: Iteration diagram of HS-CG

2.3 Communication-hiding conjugate gradient
variants

The high cost of communication in HS-CG motivates the search for mathemat-
ically equivalent CG variants better suited for implementation on parallel ma-
chines, as with less communication we might be able to speed up the overall
computation. One possibility is to rearrange the procedure in a way that re-
duces the necessary number of synchronization points to only one. However,
such communication-hiding variants may amplify the numerical problems which
already exist in HS-CG such as delayed convergence, or may worsen the maximal
attainable accuracy (the level at which the approximation error ||x − xk|| starts
to stagnate [10]) due to the sensitivity of CG to rounding errors [1].

On top of that, we would like to “pipeline” the inner product reductions and
matrix operations to occur concurrently, so that the global synchronization points
no longer cause a bottleneck. This is explored in Section 2.4. Nonetheless, once
we try to include pipelining, the above-mentioned issues can become even more
grave. In order to modify the recurrences, so that some computations can be
performed simultaneously, additional variables are added to the CG algorithm.
This can cause further amplification of the numerical rounding errors [1].

To better understand the resulting overall structure of iterations in the
communication-hiding and pipelined variants, it is possible to inspect Figure 2.2
(page 14) and Figure 2.3 (page 20). Although these diagrams are made to describe
structures of specific variants (PR-CG and Pipe-PR-CG), they reflect the general
idea behind communication hiding and pipelining as well.

13

2.3.1 PR-CG
Now we shall very closely follow the article “Predict-and-Recompute Conjugate
Gradient Variants” by Tyler Chen and Erin Carson [1] in their derivation of a
communication-hiding CG variant, which requires only one global synchroniza-
tion point per iteration. This is done by deriving a mathematically equivalent
expression for the variable νk (the 6th line in Algorithm 1), utilizing quantities
already computed in the previous iteration. This way we avoid the first compu-
tation of the inner product νk = ⟨r̃k, rk⟩. However, this change could lead to
a dramatic loss of accuracy as the value of νk could become negative [1], and
therefore we employ the new expression just as a “predicted” value, which is then
used instead of the original expression to compute the next few steps until it
is “recomputed” using the original above written inner product. This idea was
proposed by Gérard Meurant in his article “Multitasking the conjugate gradient
method on the CRAY X-MP/48” [18] in 1987 to stabilize the algorithm while
also retaining the potential for parallelism. Although even this alteration might
introduce some instability to the algorithm, it allows us to perform the iteration
more efficiently on distributed memory machines as there is less need for data
communication, since all the inner products occur at the same time [1]. More-
over, the maximal attainable accuracy is similar as for the original HS-CG. This
perhaps somehow surprising result is thoroughly analyzed in [1].

First, as it is done in [1], we realize that by substituting for the
rk = rk−1 − αk−1sk−1 and setting s̃k := M−1sk, the expression r̃k = M−1rk can
be rewritten as follows [1]:

r̃k = r̃k−1 − αk−1s̃k−1.

Then, we substitute for r̃k and rk to obtain the relation

νk = ⟨r̃k, rk⟩ = ⟨r̃k−1 − αk−1s̃k−1, rk−1 − αk−1sk−1⟩ =
⟨r̃k−1, rk−1⟩ − αk−1⟨r̃k−1, sk−1⟩ − αk−1⟨s̃k−1, rk−1⟩ + α2

k−1⟨s̃k−1, sk−1⟩

which can be simplified, as it holds that

⟨r̃k−1, sk−1⟩ = ⟨M−1rk−1, sk−1⟩ = ⟨rk−1, M−Tsk−1⟩ = ⟨s̃k−1, rk−1⟩,

since the preconditioner matrix M is required to be symmetric positive definite,
and therefore also M−1 = M−T. Thus

νk = ⟨r̃k−1, rk−1⟩ − 2αk−1⟨r̃k−1, sk−1⟩ + α2
k−1⟨s̃k−1, sk−1⟩.

Furthermore, by setting

σk := ⟨r̃k, sk⟩, γk := ⟨s̃k, sk⟩,

we can write the “predicted” value as

ν ′
k := νk−1 − 2αk−1σk−1 + α2

k−1γk−1.

The above inner products σk and γk can occur simultaneously as the “recomput-
ing” of νk and the computation of µk, provided we have already computed sk and
s̃k [1].

14

Synthesis of these ideas leads to a predict-and-recompute variant of CG in
Algorithm 2 below. Once again, the steps of the procedure are formulated and
ordered the same as in [1].

Algorithm 2 Predict-and-Recompute Conjugate Gradient:
PR-CG (preconditioned)

1: procedure PR-CG(A, M, b, x0)
2: INITIALIZE()
3: for k = 1, 2, . . . do
4: xk = xk−1 + αk−1pk−1
5: rk = rk−1 − αk−1sk−1, r̃k = r̃k−1 − αk−1s̃k−1
6: ν ′

k = νk−1 − 2αk−1σk−1 + α2
k−1γk−1

7: βk = ν ′
k/νk−1

8: pk = r̃k + βkpk−1
9: sk = Apk, s̃k = M−1sk

10: µk = ⟨pk, sk⟩, σk = ⟨r̃k, sk⟩, γk = ⟨s̃k, sk⟩, νk = ⟨r̃k, rk⟩
11: αk = νk/µk

12: end for
13: end procedure

Below is the iteration diagram of PR-CG. As can be seen, there is now only a
single synchronization point as all the inner products can occur simultaneously.
Although the diagram particularly follows PR-CG, the general idea of coupling
inner products together by changing dependencies through rearrangement applies
to all other communication-hiding variants as well.

Matrixvector multiply

Inner products

Vector updates

Vector update

Start of the iteration

End of the iteration

Scalar updates

Scalar update

Figure 2.2: Iteration diagram of PR-CG

15

Different versions of the algorithm can be obtained by expressing the “pre-
dicted” value of νk in a different way. However, this particular expression seems
to function a bit better than the alternatives (e.g., the M-CG described below),
both in this form as well as once we compare the pipelined variants of the algo-
rithms [1], which is what this thesis is mainly interested in. Other versions are
discussed and compared for instance in [1] and [17].

2.3.2 M-CG
Let us shortly mention here one of the variants. Specifically, the version of con-
jugate gradient derived by Meurant in [18]. It is a predict-and-recompute version
of the original HS-CG, similar to PR-CG. Their difference is that the version
proposed by Meurant (here called “M-CG”) employs a different expression for
the predicted value ν ′

k [1].
The algorithm was first introduced by Gérard Meurant in 1987 in the article

“Multitasking the conjugate gradient method on the CRAY X-MP/48” [18] with
the aim of increasing the level of parallelism in the conjugate gradient method,
so that it would be more fitting for implementation on the computer in question.
Let us now describe the way it is derived in the article from the standard HS-CG
as it is formulated in Algorithm 1.

First, let us realize that, in infinite precision, for integers i ̸= j it holds that
⟨ri, r̃j⟩ = 0 [18]. The reason for this is as follows. Without loss of generality,
let us assume that i > j, so that the “unpreconditioned” residual has greater
index. If not, we can utilize the symmetric property of the preconditioner matrix
M, and shift it to the other side of the inner product to receive the desired
situation. Next, we shall use line 9 of HS-CG as it is in Algorithm 1 to observe
that ⟨ri, r̃j⟩ = ⟨ri, pj − βkpj−1⟩. Now, we use the fact that for the conjugate
gradient method the residual vector ri is orthogonal to all vectors pj for j < i [10].
In our case, this condition is satisfied, so we have proven the desired orthogonal
property.

Next, from line 5 of Algorithm 1 we can observe that [18]

rk − rk−1 = −αk−1Apk−1. (2.1)

Multiplying this by M−1 yields [18]

r̃k − r̃k−1 = −αk−1M−1Apk−1. (2.2)

When we now multiply the respective hand sides of (2.1) and (2.2), by using the
proven orthogonal property, we obtain [18]

⟨rk, r̃k⟩ + ⟨rk−1, r̃k−1⟩ = α2
k−1⟨M−1Apk−1, Apk−1⟩.

Utilizing our notation, we can rewrite this as

νk = −νk−1 + α2
k−1γk−1, (2.3)

which can then be used for the predictor ν ′
k as Meurant did in [18]. We shall

call the algorithm utilizing this predict-and-recompute scheme M-CG (Meurant
Conjugate Gradient). The procedure is given below in Algorithm 3.

16

Alternatively, the algorithm can be derived in the following way. In the PR-
CG algorithm (line 6), we have that

ν ′
k = νk−1 − 2αk−1σk−1 + α2

k−1γk−1.

This expression can be rearranged to obtain the predictor value used in M-CG
[1]. First, let us rewrite it as [1]

ν ′
k = νk−1 − 2αk−1σk−1 + α2

k−1γk−1 = νk−1 − 2αk−1⟨r̃k−1, sk−1⟩ + α2
k−1γk−1.

Next, it holds that ⟨r̃k, sk⟩ = ⟨pk − βkpk−1, Apk⟩ = ⟨pk, sk⟩, owing to the ex-
pressions for pk and sk from lines 8 and 9 of PR-CG and the A-orthogonality
between vectors pk and pk−1 [1]. This allows us to rewrite the above expression
as [1]

ν ′
k = νk−1 − 2αk−1⟨pk−1, sk−1⟩ + α2

k−1γk−1 = νk−1 − 2αk−1µk−1 + α2
k−1γk−1.

We can further alter this using the relation αkµk = νk, which follows from
αk = νk/µk (line 5 of Algorithm 1), as [1]

ν ′
k = −νk−1 + α2

k−1γk−1,

and thus we arrive at the same expression as we have in (2.3). A formulation
of the M-CG algorithm can be found below, arranged in the same way as in [1].
As was previously stated, this procedure differs from PR-CG by using a different
expression for computing the predicted value of νk.

M-CG uses ν ′
k = −νk−1 + α2

k−1γk−1, while PR-CG utilizes the version
ν ′

k = νk−1−2αk−1σk−1+α2
k−1γk−1. More about M-CG can be found in the original

article “Multitasking the conjugate gradient method on the CRAY X-MP/48”
[18].

Algorithm 3 Meurant Conjugate Gradient: M-CG (preconditioned)
1: procedure M-CG(A, M, b, x0)
2: INITIALIZE()
3: for k = 1, 2, . . . do
4: xk = xk−1 + αk−1pk−1
5: rk = rk−1 − αk−1sk−1, r̃k = r̃k−1 − αk−1s̃k−1
6: ν ′

k = −νk−1 + α2
k−1γk−1

7: βk = ν ′
k/νk−1

8: pk = r̃k + βkpk−1
9: sk = Apk, s̃k = M−1sk

10: µk = ⟨pk, sk⟩, γk = ⟨s̃k, sk⟩, νk = ⟨r̃k, rk⟩
11: αk = νk/µk

12: end for
13: end procedure

In the article “Predict-and-Recompute Conjugate Gradient Variants” by Tyler
Chen and Erin Carson [1] and its Appendix C, the authors discuss numerical
differences between PR-CG and M-CG in finite precision arithmetic. If the reader
is interested in this topic, more information and further references can be found
there. For our purposes, it suffices to say that PR-CG seems to work a little bit
better then M-CG in practice [1], as was previously stated in the section dedicated
to PR-CG.

17

2.3.3 ChG-CG
Another communication-hiding variant worth at least a brief mention is the so-
called ChG-CG first introduced by Chronopoulos and Gear in 1989 in their article
“s-step iterative methods for symmetric linear systems” [19]. Once again, the
original two synchronization points of HS-CG are reduced to only one by clever
expression manipulation. The form of the ChC-CG algorithm presented here
is once again, for the sake of consistency, formulated in the same way as in the
article [1], Appendix D. It utilizes additional new variables (wk, ηk) not appearing
in the original article [19], to make the procedure more intelligible.

Let us now present how it is possible to derive ChC-CG from HS-CG. First,
we shall rewrite the expression for sk, so that it no longer utilizes a matrix-vector
multiplication. Using that pk = r̃k + βkpk−1 and introducing a new variable
wk := Ar̃k yields

sk = Apk = Ar̃k + βkApk−1 = wk + βksk−1.

Next, let us rewrite the expression for µk(= ⟨pk, sk⟩). Using this alternative
form of sk, evaluating the inner product, and utilizing the knowledge that due to
being symmetric positive definite, both the matrix A and the matrix M (repre-
sented by the preconditioning symbol ∼) can be shifted to the other side of inner
product gives us

µk = ⟨pk, sk⟩ = ⟨pk, Apk⟩ = ⟨r̃k + βkpk−1, Ar̃k + βkApk−1⟩ =
⟨r̃k, Ar̃k⟩ + ⟨r̃k, βkApk−1⟩ + ⟨βkpk−1, Ar̃k⟩ + β2

k⟨pk−1, Apk−1⟩ =
⟨r̃k, Ar̃k⟩ + 2⟨r̃k, βkApk−1⟩ + β2

k⟨pk−1, Apk−1⟩.

For the first term, we introduce yet another new variable ηk, denoting

⟨r̃k, Ar̃k⟩ = ⟨r̃k, wk⟩ =: ηk.

For the second term, we shall use the facts that rk = rk−1 − αk−1sk−1
= rk−1 − αk−1Apk−1 =⇒ Apk−1 = −(1/αk−1)(rk − rk−1) and that r̃k ⊥ rk−1
[18] which yields

2⟨r̃k, βkApk−1⟩ = −2 βk

αk−1
⟨r̃k, rk − rk−1⟩ = −2 βk

αk−1
νk.

Finally, for the third term we use that µk−1 = ⟨pk−1, sk−1⟩, αk = νk/µk, and
βk = νk/νk−1. These relations result in

β2
k⟨pk−1, Apk−1⟩ = β2

k⟨pk−1, sk−1⟩ = β2
kµk−1 = β2

k

νk−1

αk−1
= βk

νkνk−1

νk−1αk−1
= βk

αk−1
νk.

By combining these three rewritten expressions we obtain that

µk = ηk − (βk/αk−1)νk,

which at last allows us to state the procedure of ChC-CG below [1].
Even though the order of operations here is different than in PR-CG and M-

CG, the principle of grouping inner products together stays the same.

18

However, unlike in the case of the previous variants, this is not achieved by using
a predict-and-recompute scheme.

Algorithm 4 Chronopoulos and Gear Conjugate Gradient: ChG-CG
(preconditioned)

1: procedure CHG-CG(A, M, b, x0)
2: INITIALIZE()
3: for k = 1, 2, . . . do
4: xk = xk−1 + αk−1pk−1
5: rk = rk−1 − αk−1sk−1, r̃k = M−1rk
6: wk = Ar̃k
7: νk = ⟨r̃k, rk⟩, ηk = ⟨r̃k, wk⟩
8: βk = νk/νk−1
9: pk = r̃k + βkpk−1

10: sk = wk + βksk−1
11: µk = ηk − (βk/αk−1)νk

12: αk = νk/µk

13: end for
14: end procedure

2.4 Pipelined variants
So far, we have introduced several communication-hiding variants which reduce
the number of synchronization points to one. With that we are also a bit closer
to the goal of overlapping the most costly operations.

2.4.1 Pipe-PR-CG
Let us now derive the pipelined version of PR-CG. The problem we are facing is
that most of the inner products in step 10 of PR-CG are dependent on the sk
from the previous step. This hinders our ability to perform these computational
steps in parallel. Fortunately, we can once more rearrange the algorithm using
relations equivalent in exact arithmetic [1].

Once again, the following series of expression manipulations and ideas para-
phrases the article [1]. To begin with, we rewrite the current expression for sk
[1]

sk = Apk = Ar̃k + βkApk−1,

and set a new variable wk as wk := Ar̃k. Using this, we now have [1]

sk = wk + βksk−1.

Next, we define uk := As̃k, and utilize it to express an iterative relation for wk
[1]:

wk = Ar̃k = Ar̃k−1 − αk−1As̃k−1 = wk−1 − αk−1uk−1.

By these manipulations we have shifted where the matrix-vector product occurs,
and thus we do not need to compute it to directly express sk. Instead, we perform

19

a step uk = As̃k, which we can overlap in parallel with the inner products [1].
Nonetheless, to derive the complete Algorithm 5 we have to do two more things.

First, we must take care of the preconditioning steps. For this we define
w̃k := M−1wk in order to express s̃k as [1]

s̃k = M−1sk = M−1wk + βkM−1sk−1 = w̃k + βks̃k−1,

and similarly defining ũk := M−1uk we get [1]

w̃k = M−1wk = M−1wk−1 − αk−1M−1uk−1 = M−1wk = w̃k−1 − αk−1ũk−1.

Second, as was mentioned earlier, such a rearrangement as we have done for
the wk often induces lower accuracy and delays in convergence in finite preci-
sion arithmetic [1]. Therefore, we once again employ the predict-and-recompute
principle. The above derived expressions for the wk and the w̃k shall be used as
predictors, which are going to be recomputed later using the “original” expres-
sions wk = Ar̃k and w̃k = M−1wk. These recompute steps can be computed
concurrently with the inner products [1]. Combining the above variable manipu-
lations, we obtain Algorithm 5 [1].

Algorithm 5 Pipelined Predict-and-Recompute Conjugate Gradient:
Pipe-PR-CG (preconditioned)

1: procedure Pipe-PR-CG(A, M, b, x0)
2: INITIALIZE()
3: for k = 1, 2, . . . do
4: xk = xk−1 + αk−1pk−1
5: rk = rk−1 − αk−1sk−1, r̃k = r̃k−1 − αk−1s̃k−1
6: w′

k = wk−1 − αk−1uk−1, w̃′
k = w̃k−1 − αk−1ũk−1

7: ν ′
k = νk−1 − 2αk−1σk−1 + α2

k−1γk−1
8: βk = ν ′

k/νk−1
9: pk = r̃k + βkpk−1

10: sk = w′
k + βksk−1, s̃k = w̃′

k + βks̃k−1
11: uk = As̃k, ũk = M−1uk
12: wk = Ar̃k, w̃k = M−1wk
13: µk = ⟨pk, sk⟩, σk = ⟨r̃k, sk⟩, γk = ⟨s̃k, sk⟩, νk = ⟨r̃k, rk⟩
14: αk = νk/µk

15: end for
16: end procedure

Naturally, we can also derive an unpreconditioned variant of Pipe-PR-CG.
This merely requires omitting from Algorithm 5 all parts which involve computa-
tion with the preconditioner matrix M and rewriting “tilded” variables as their
unpreconditioned counterparts, e.g., r̃k to rk. The procedure is given below as
Algorithm 6. Please note that this is the version used in all numerical experiments
contained in this thesis. The reason for using an unpreconditioned variant is that
the experiments, as they are, already involve a rather extensive range of possible
combinations of various parameters and inputs. The choice of a preconditioner
matrix and scrutinizing the steps which it induces would introduce another layer
of complexity. Therefore, this exploration is left for future research.

20

Algorithm 6 Pipelined Predict-and-Recompute Conjugate Gradient:
Pipe-PR-CG (unpreconditioned)

1: procedure Pipe-PR-CG (unpreconditioned)(A, b, x0)
2: INITIALIZE()
3: for k = 1, 2, . . . do
4: xk = xk−1 + αk−1pk−1
5: rk = rk−1 − αk−1sk−1
6: w′

k = wk−1 − αk−1uk−1
7: ν ′

k = νk−1 − 2αk−1σk−1 + α2
k−1γk−1

8: βk = ν ′
k/νk−1

9: pk = rk + βkpk−1
10: sk = w′

k + βksk−1
11: uk = Ask
12: wk = Ark
13: µk = ⟨pk, sk⟩, σk = ⟨rk, sk⟩, γk = ⟨sk, sk⟩, νk = ⟨rk, rk⟩
14: αk = νk/µk

15: end for
16: end procedure

Since the inner products are no longer dependent on variables resulting from
the preceding matrix-vector multiplications, it is now possible to overlap these
operations if we compute in parallel. This idea is illustrated in Figure 2.3 which
depicts the iteration scheme of Pipe-PR-CG.

Matrixvector multiplies Inner products

Vector updates

Vector updates

Start of the iteration

End of the iteration

Scalar updates

Scalar update

Figure 2.3: Iteration diagram of Pipe-PR-CG

Even though the rearrangements leading to PR-CG and Pipe-PR-CG can help
us to hide communication and overlap some operations, they may also lead to
increased numerical instability [17]. This is illustrated later in Figures 2.4 and
2.5.

21

2.4.2 Other pipelined variants
In a similar manner to how we have derived Pipe-PR-CG, we can derive a
pipelined version of M-CG as it is formulated in Algorithm 3. The distinction
between PR-CG and M-CG is only a different relation for the predicted value ν ′

k,
which does not come up in the relations used to include pipelining. Therefore,
the resulting procedure (Algorithm 7 below) is going to be the same as for Pipe-
PR-CG with the only differences being the relation for ν ′

k in line 7 and omitted
σk, which we do not need [1].

Algorithm 7 Pipelined Meurant Conjugate Gradient: Pipe-M-CG
(preconditioned)

1: procedure Pipe-M-CG(A, M, b, x0)
2: INITIALIZE()
3: for k = 1, 2, . . . do
4: xk = xk−1 + αk−1pk−1
5: rk = rk−1 − αk−1sk−1, r̃k = r̃k−1 − αk−1s̃k−1
6: w′

k = wk−1 − αk−1uk−1, w̃′
k = w̃k−1 − αk−1ũk−1

7: ν ′
k = −νk−1 + α2

k−1γk−1
8: βk = ν ′

k/νk−1
9: pk = r̃k + βkpk−1

10: sk = w′
k + βksk−1, s̃k = w̃′

k + βks̃k−1
11: uk = As̃k, ũk = M−1uk
12: wk = Ar̃k, w̃k = M−1wk
13: µk = ⟨pk, sk⟩, γk = ⟨s̃k, sk⟩, νk = ⟨r̃k, rk⟩
14: αk = νk/µk

15: end for
16: end procedure

Another possibility is to derive a pipelined version of the Chronopoulos and
Gear Conjugate Gradient algorithm. This was originally done by Ghysels and
Vanroose in their article “Hiding global synchronization latency in the precondi-
tioned Conjugate Gradient algorithm” [20] in 2014. The main idea is the same
as for the previously mentioned pipelined variants: to rearrange the iteration so
that it is possible to overlap the inner products and the (sparse) matrix-vector
multiplication. To this end, we want to rewrite the expression for wk from line
6 of ChG-CG (Algorithm 4), since wk is needed for the computation of ηk in the
next line, thus causing a serial dependence.

The derivation of GV-CG could proceed in the following way [20]. First, we
realize the recurrences for rk and sk can be modified to obtain recurrences for
their preconditioned counterparts r̃k and s̃k, yielding:

r̃k = r̃k−1 − αk−1s̃k−1

s̃k = w̃k + βks̃k−1.

Let us now introduce a new variable uk := As̃k. The quantity wk can be then
rewritten as

wk = Ar̃k = Ar̃k−1 − αk−1As̃k−1 = wk−1 − αk−1uk−1.

22

Furthermore, using the expression for s̃k, we obtain

uk := As̃k = Aw̃k + βkAs̃k−1.

We have thus modified the algorithm so that the two inner products (line 7 in
Algorithm 8) can be computed simultaneously with the matrix-vector multiplica-
tion which is no longer required to be calculated prior to the inner products. For
the sake of clarity we can introduce another new variable for this: tk := Aw̃k.

The structure of Algorithm 8 is again of the same form as in the Appendix D
of [1].

Algorithm 8 Ghysels and Vanroos Conjugate Gradient: GV-CG
(preconditioned)

1: procedure GV-CG(A, M, b, x0)
2: INITIALIZE()
3: for k = 1, 2, . . . do
4: xk = xk−1 + αk−1pk−1
5: rk = rk−1 − αk−1sk−1, r̃k = r̃k−1 − αk−1s̃k−1
6: wk = wk−1 − αk−1uk−1, w̃k = M−1wk
7: νk = ⟨r̃k, rk⟩, ηk = ⟨r̃k, wk⟩
8: tk = Aw̃k
9: βk = νk/νk−1

10: pk = r̃k + βkpk−1
11: sk = wk + βksk−1, s̃k = w̃k + βks̃k−1
12: uk = tk + βkuk−1
13: µk = ηk − (βk/αk−1)νk

14: αk = νk/µk

15: end for
16: end procedure

More details about this algorithm can be found in [20]. Additional discussion
of ChG-CG and GV-CG as well as some other variants and historical background
can be found in [17].

2.4.3 Comparison of variants
Let us now investigate how some of the presented CG variants perform in com-
parison with each other. According to the theoretical understanding mentioned
earlier in this chapter, we would expect that the more a variant deviates from
HS-CG the worse its numerical properties become. The following figures illus-
trate this on a simple example. They show convergence and residual gap graphs
for the matrix bcsstm07 from [21] with the right-hand side b being all ones and
the initial guess x0 being all zeros. The computations were performed in IEEE
double precision. For reference, the convergence graphs contain a line at the level
of IEEE double precision machine epsilon ϵmach.

The most apparent conclusion we can make from the first pair of graphs in
Figure 2.4 is that GV-CG is significantly more numerically unstable than Pipe-
PR-CG. Another result is that even though the predict-and-recompute based

23

finite precision differs [17]. Specifically, the communication-hiding and pipelined
algorithms may be more prone to the negative effects of round-off errors.

Let us once again note here that the performance of Pipe-PR-CG is very
similar to that of Pipe-M-CG which, however, on average performs slightly worse
[1]. This and the numerical instability of GV-CG demonstrated by the figures
above are the reasons why Pipe-PR-CG is the primarily investigated pipelined
variant and the focus of experiments in this thesis.

25

3. Effects of silent errors on
Pipe-PR-CG

3.1 Sensitivity of convergence
In this section we shall investigate the sensitivity of Unpreconditioned Pipe-PR-
CG (Algorithm 6) to silent errors. This is done by investigating the results of
numerical experiments designed to analyze how significant is the impact of silent
errors on the convergence of the method. First, let us specify the setup and
what linear systems were involved in the main experiment. In the following text,
the symbol || · || denotes the standard Euclidean 2-norm || · ||2. Therefore, the
condition number κ(A) of a matrix A is defined as κ(A) = ||A||2 · ||A−1||2.

In all runs, the initial guess x0 was a vector of all zeros and the right-hand
side b was such that the vector of all ones e = (1, 1, · · · , 1, 1)T was the exact
solution of the system, i.e., b = Ae. No preconditioners were used. The stopping
criterion used was that it must hold that ||rk||/||b|| ≤ ϵtol for the computation to
conclude earlier than at the maximal allowed number of iterations, with ϵtol being
1e−10. This threshold can be chosen in many different ways. Here, an inspiration
was taken from the article “On Soft Errors in the Conjugate Gradient Method:
Sensitivity and Robust Numerical Detection” [13] where the authors utilized two
thresholds in their experiments, ϵtol = 1e−5 and ϵtol = 1e−10. Therefore, our
results were computed using the more strict of these, as was mentioned before.
The norm of the residual for the stopping criterion did not utilize the already
computed νk = ⟨rk, rk⟩ from line 13 of Algorithm 6, so that we can have “illus-
trative” results for the case of bit flip occurrence in the variable νk, without any
influence of the silent error on the norm ||rk|| itself.

Additionally, the code was written in such a way that each time an over-
flow warning occurs, an error is raised instead. This was done to suppress the
situations when the Python compiler does not terminate the computation right
away, but assigns the result to infinity instead. There were also pure overflow
errors, which stopped the computation immediately. All these erroneous cases
are counted as “did not converge”. In the aforementioned article [13], the same
methodology for overflows was used. This is the reason why there were some
non-convergent cases for the variable xk, even though it does not influence any
other variables, and therefore we would expect the runs with silent errors in it to
be always “convergent”.

The injection of silent errors into variables was implemented using the Python
module bitstring (version 4.1) [22]. Time-wise, the flips always happened after the
new value of a variable was computed, i.e., for example, first compute αk = νk/µk,
and then insert a bit flip into αk.

First, for each matrix, a run without any bit flip was performed to determine
the number of iterations φ needed to converge. A run “tainted” by a silent error
was then deemed as “converged” if it reached the stopping criteria within 1.5φ
iterations. The same approach for determining convergence was used in the article
[13].

The experiment was performed for each of the 14 variables in Unprecondi-

26

tioned Pipe-PRCG (xk, rk, w′
k, ν ′

k, βk, pk, sk, uk, wk, µk, σk, γk, νk, αk). There
were always 3 different variants of when the bit flip occurred: 0.3φ, 0.6φ, and
0.9φ iterations. This was performed for all 64 bits. In case of scalar variables,
one run was performed for each matrix from the dataset, bit number, and flip
iteration. For vector variables (xk, rk, w′

k, pk, sk, uk, wk) there was the question
of which index to flip the bit in. Generally, no “more important” index exists,
so instead of picking a specific one(s), it was chosen randomly. There were 20
trials for each bit, flip iteration, and matrix, so that the randomness in the index
choice could be included to a certain degree.

As for the matrix dataset, it consisted of sparse matrices from the SuiteSparse
Matrix Collection [21] [23]. Details about it may be found either on the webpage
“https://sparse.tamu.edu” [21] itself or in the original article “The University of
Florida sparse matrix collection” [23], where the authors describe it in detail. The
matrices used were selected to represent various sizes, condition numbers, singular
value distributions, structures, as well as problem backgrounds, e.g., from power
networks or acoustics. Naturally, all of them satisfy the necessary CG conditions
of being symmetric and positive definite. Specifically, the following matrices were
used:

• Matrix 1138 bus ∈ R1,138×1,138, κ(A) = 8.572646e + 06,

• Matrix bcsstm07 ∈ R420×420, κ(A) = 7.615188e + 03,

• Matrix bundle1 ∈ R10,581×10,581, κ(A) = 1.004238e + 03,

• Matrix wathen120 ∈ R36,441×36,441, κ(A) = 2.576962e + 03,

• Matrix bcsstk05 ∈ R153×153, κ(A) = 1.428114e + 04,

• Matrix gr 30 30 ∈ R900×900, κ(A) = 1.945739e + 02,

• Matrix nos7 ∈ R729×729, κ(A) = 2.374510e + 09,

• Matrix crystm01 ∈ R4,875×4,875, κ(A) = 2.283164e + 02,

• Matrix aft01 ∈ R8,205×8,205, κ(A) = 4.387086e + 18.

The displayed condition numbers are taken from the information presented in
[21]. As was previously stated, the right-hand side b of the problem Ax = b is
chosen such that the vector e = (1, 1, · · · , 1, 1)T is the exact solution. Thus, for
each matrix the right-hand side differed accordingly.

The output of the experiment is a series of graphs depicting what percentage of
runs are “convergent” for each of the 64 bits and each variable. The experiment
specifications described in the paragraphs above mean that graphs for scalar
variables show how many from 9 trials converged for each bit, as there were 9
matrices used as data. For vector variables there were 180 trials in total for each
bit (9 matrices and 20 runs for each bit). The results are presented below, first, as
averages over all variables in Figure 3.1 (combined in one big figure) and Figure
3.2 (three separate subfigures for each flip iteration option), and then for all of
the 14 variables separately from Figure 3.5 onward. The averages are calculated
with each variable having the same weight. Every graph includes thin vertical

27

lines, which separate the sign (1 bit), exponent (11 bits), and mantissa (52 bits).
Additionally, Figure 3.3 and Figure 3.4 depict how the behavior of the algorithm
may vary depending on the flip iteration and bit number.

Now, let us take a closer look at the overall outcome of the main sensitivity
experiment in Figure 3.1 and Figure 3.2. Some spikes in the curves might be
caused by the fact that bit flips “from 0 to 1” and “from 1 to 0” are not equally
significant [13], as was mentioned in the section about silent errors. A non-
convergent spike can be observed for the second bit, but this might be expected as
it is the most significant bit in terms of the absolute value of a number. Therefore,
it is most likely to cause an overflow error that inflates the non-convergent cases.
The small drops for the 8th bit for flip at 0.9φ and the 9th bit for flips at 0.3φ
and 0.6φ might be caused by these bits being significant for some value range our
variables often fall into.

Interesting is the fact that seemingly, the earlier a bit flip occurs the greater
is its effect on the overall convergence. Figure 3.3 contains convergence curves of
the relative residual ||rk||/||b|| for all three time-wise flip options when the 15th
bit is flipped in a computation for matrix 1138 bus. Dotted purple lines and the
solid black line denote when the flips occurred and where the 1.5φ termination
point is, respectively. Observing this, we can indeed see that in this case the
computation was more heavily influenced by an earlier flip. On the other hand,
flipping the 15th bit at a point when the method had almost converged did not
have a significant effect on the number of extra iterations necessary.

In general, it seems that silent errors in bits numbered around 25 and higher
have no influence on whether the convergence is heavily delayed or not. This is
an outcome that might be expected due to the somehow decreasing “significance”
of bits as we proceed to those with higher index. A special qualitatively different
case is the first bit - the sign, as it, unlike the other bits, does not influence the
absolute value of the number.

The concept of decreasing effect of a bit flip as the bit number rises is illus-
trated in Figure 3.4 which, as an exception in this chapter, has a fixed number
of iterations for each run in order to illustrate the behavior more clearly. We can
see there that for our data, in terms of both the relative residual and the relative
true residual, the computation is indeed impacted more significantly by flips in
the sign and exponent bits. The fact that the flip in the 11th bit is in this case
more influential than the one in the 6th bit may again be caused by whether it
is a “from 0 to 1” or “from 1 to 0” flip.

The individual results for each variable presented in Figures 3.5 - 3.18 gen-
erally display no significant divergence from the average. The only notable dif-
ference is that the scalar variables seem to be more sensitive to flips in the sign
bit. This can have multiple causes, such as that some of the scalar variables, e.g.,
γk, and νk are supposed to be always non-negative as they denote inner products
of two identical vectors, a property the flip in the sign bit can violate. Another
reason might be that sign flips in vector variables are somehow less influential,
because vectors have multiple indices. For instance, a reversed sign in αk - the
“step size” for updating xk, rk, and w′

k - leads to taking a step in the opposite
“direction”, whereas a sign flip in, e.g., sk changes the “direction” in only one
dimension. Even though this logic can be applied to flips in other bits as well,
the sign might posses some unique properties because of its qualitative difference

28

Figure 3.5: Bit flip sensitivity for xk

Figure 3.6: Bit flip sensitivity for rk

Figure 3.7: Bit flip sensitivity for w′
k

31

Figure 3.8: Bit flip sensitivity for ν ′
k

Figure 3.9: Bit flip sensitivity for βk

Figure 3.10: Bit flip sensitivity for pk

32

Figure 3.11: Bit flip sensitivity for sk

Figure 3.12: Bit flip sensitivity for uk

Figure 3.13: Bit flip sensitivity for wk

33

Figure 3.14: Bit flip sensitivity for µk

Figure 3.15: Bit flip sensitivity for σk

Figure 3.16: Bit flip sensitivity for γk

34

Figure 3.17: Bit flip sensitivity for νk

Figure 3.18: Bit flip sensitivity for αk

3.2 Other effects and error detection
As we have seen in the previous section, silent errors can have significant influence
on the convergence of the unpreconditioned Pipe-PR-CG algorithm. Naturally,
it can be surmised that other aspects of the procedure might be affected as
well. Consequently, some of the effects could be utilized to our ultimate goal
- the detection of silent errors. This is the idea of the algorithm-based fault
tolerance methods which were briefly described in first chapter of this thesis. The
fundamental concept of this approach is to derive some criteria of silent error
detection from the theoretical or practical knowledge we possess of the algorithm
[11]. In our case, we could try to utilize the predict-and-recompute principle
which allows us to hide some of the communication.

In Pipe-PR-CG, there are two variables whose value is first predicted using
an alternative relation and then recomputed. These are νk and wk. We might try
to investigate the “gaps” between their predicted version and their recomputed
version, i.e., |νk − ν ′

k| and ||wk − w′
k|| which are supposed to be zero in exact

arithmetic. Let us now shortly investigate the “cheaper” of these two to compute
- the ν-gap.

35

4. Relations for the detection of
silent errors in Pipe-PR-CG
In this chapter, we attempt to derive relations which can be effectively used
to detect silent errors in the Pipelined PR-CG algorithm. We present several
so-called “gaps”, and then employ rounding error analysis to obtain expressions
which bound these gaps from above. Subsequently, numerical experiments are
performed for each of these gap-bound pairs to judge how effectively they can
be utilized to detect silent errors. The idea is that a violation of the bound is a
potential indicator of a bit flip having occurred.

This is done for computations without any preconditioning. Therefore, from
this point onward, the name “Pipe-PR-CG” refers strictly to Unpreconditioned
Pipe-PR-CG. The reason for not including any preconditioner M is the same as
in the case of bit flip sensitivity experiments in the previous chapter. Although
preconditioning is widely used to improve properties of linear systems and to
speed up computations, it would also introduce another layer of complexity to
our experiments. For this reason, the generalization of the detection techniques
presented in this thesis to preconditioned systems is left for future research. All
computation were performed in IEEE double precision, as was the case in the
previous chapter.

4.1 ν-gap
The first quantity for silent error detection we are going to investigate is the
ν-gap which was already mentioned at the end of the previous chapter. It is the
difference between the predicted value (ν ′

k) and the recomputed value of νk in
Pipe-PR-CG, i.e., |νk −ν ′

k|. Let us recall how these variables are defined. It holds
that

νk = ⟨rk, rk⟩,

and
ν ′

k = νk−1 − 2αk−1σk−1 + α2
k−1γk−1,

which are mathematically equivalent, i.e., they would be equal if the algorithm
was executed in exact arithmetic.

4.1.1 Derivation of bounds
As can be observed by investigating Figure 3.19 at the end of the previous chapter,
the ν-gap shows promising potential for silent error detection in Pipe-PR-CG.
However, an issue is how to determine when the value of the ν-gap signals a
potential silent error occurrence. One problem is that, as can be seen in Figure
3.19, the ν-gap can fluctuate. Moreover, even if a silent error influences the ν-
gap, nothing guarantees there will always be such a distinct outlier value as in the
aforementioned graph. Therefore, it is highly desirable to derive some quantity
which bounds the ν-gap from above, and then utilize this bound to determine if

37

the ν-gap indicates the possibility of a silent error occurring by checking whether
the ν-gap exceeded the bound. For the upcoming derivation, let us introduce a
new symbol ∆ν′

k
to denote the difference between νk and ν ′

k:

∆ν′
k

:= νk − ν ′
k = ⟨rk, rk⟩ − ν ′

k.

Therefore, the ν-gap can also be denoted by |∆ν′
k
|.

Now, let us demonstrate how the above-described bound can be obtained. The
explanation below follows the article [1], where a similar (slightly less tight) bound
was originally derived in the way which is presented here, albeit for a different
purpose. Compared to the article, some steps here are explained in more detail;
nonetheless, please note that most of the derivation is not an original work of this
thesis.

The bound is derived by performing a so-called “rounding error analysis”,
which is a tool to model how calculations in finite precision arithmetic differ
from their exact arithmetic counterparts. In this analysis, we shall work with
the standard model of arithmetic with floating-point numbers. Let the symbol
◦ denote one of the operations {+, −, ×, ÷}, ϵ the machine precision, a and b
arbitrary feasible real numbers, and fp(·) which operation is performed in finite
precision. Then, it holds that [1]:

|fp(a ◦ b) − a ◦ b| ≤ ϵ |a ◦ b|. (4.1)

Within this framework, it is possible to derive bounds on some of the standard
vector operations. Letting x, y ∈ Rn and a ∈ R, we have that (see, e.g., [1])

||fp(x + ay) − (x + ay)|| ≤ ϵ (||x|| + 2|a| ||y||), (4.2)

||fp(⟨x, y⟩) − ⟨x, y⟩|| ≤ ϵ n ||x|| ||y||, (4.3)

||fp(Ax) − Ax|| ≤ ϵ c ||A|| ||x||, (4.4)

where c is a constant depending on specific properties of the matrix A. For
instance, it is frequently taken as c = mn1/2, where m is the maximum number
of nonzeros over the rows of A [1].

Before we start the analysis itself, let us recall some of the relations from
Pipe-PR-CG which are going to be useful. Here, we introduce a new symbol δ
which denotes a round-off error introduced in a calculation, i.e., the difference
between the actual finitely computed result and the exact expression for the
variable denoted in the subscript of δ. It is either a scalar or a vector, depending
on the variable it is associated with, and it can be bounded by using a suitable
inequality from (4.1) - (4.4) [1]. Taking for instance δσk

as an example, it holds
that δσk

= σk − ⟨rk, sk⟩ ≤ ϵ n ||rk|| ||sk||. The above-mentioned relations we are
going to use to derive the ν-bound are given below [1]:

rk = rk−1 − αk−1sk−1 + δrk ,

ν ′
k = νk−1 − 2αk−1σk−1 + α2

k−1γk−1 + δν′
k
,

σk = ⟨rk, sk⟩ + δσk
, (4.5)

γk = ⟨sk, sk⟩ + δγk
,

νk = ⟨rk, rk⟩ + δνk
.

38

By using the expressions from (4.5) and basic arithmetic manipulations, we
can rewrite the equality for ∆ν′

k
as

∆ν′
k

= ⟨rk−1 − αk−1sk−1 + δrk , rk−1 − αk−1sk−1 + δrk⟩ − ν ′
k

= ⟨rk−1, rk−1⟩ − 2αk−1⟨rk−1, sk−1⟩ + α2
k−1⟨sk−1, sk−1⟩

+ 2⟨δrk , rk−1 − αk−1sk−1⟩ + ⟨δrk , δrk⟩ − ν ′
k

= νk−1 − δνk−1 − 2αk−1(σk−1 − δσk−1) + α2
k−1(γk−1 − δγk−1)

+ 2⟨δrk , rk⟩ − ⟨δrk , δrk⟩ − ν ′
k

= (νk−1 − 2αk−1σk−1 + α2
k−1γk−1) − (δνk−1 − 2αk−1δσk−1 + α2

k−1δγk−1)
+ 2⟨δrk , rk⟩ − ⟨δrk , δrk⟩ − ν ′

k

= ν ′
k − δν′

k
− (δνk−1 − 2αk−1δσk−1 + α2

k−1δγk−1) + 2⟨δrk , rk⟩ − ⟨δrk , δrk⟩ − ν ′
k

= 2⟨δrk , rk⟩ − ⟨δrk , δrk⟩ − (δνk−1 − 2αk−1δσk−1 + α2
k−1δγk−1) − δν′

k
.

Therefore, by taking the norm of both sides, we obtain

|∆ν′
k
| ≤ 2||δrk || ||rk|| + ||δrk ||2 + |δνk−1| + 2|αk−1||δσk−1| + |αk−1|2|δγk−1| + |δν′

k
|.

Before we derive bounds for each individual δ term on the right-hand side, let
us first introduce a useful relation. If we rewrite the expression for rk from (4.5)
we obtain that

sk−1 = 1
αk−1

(rk−1 − rk + δrk),

from which we can bound sk from above as

||sk−1|| ≤ 1
|αk−1|

(||rk−1|| + ||rk|| + ||δrk ||). (4.6)

Now, let us start by bounding δrk . The first inequality below is obtained by
using relations (4.5) and (4.2). Then, we use (4.6), and subsequently rewrite the
last term as O(ϵ2), owing to the initial inequality. This yields

||δrk|| ≤ ϵ (||rk−1|| + 2|αk−1| ||sk−1||)

≤ ϵ

(︄
||rk−1|| + 2|αk−1|

(︄
1

|αk−1|
(||rk−1|| + ||rk|| + ||δrk ||

)︄)︄
≤ ϵ (2||rk|| + 3||rk−1||) + 2 ϵ ||δrk ||
≤ 3 ϵ (||rk|| + ||rk−1||) + O(ϵ2). (4.7)

Next, the bound for δνk−1 can be obtained by a straightforward application of
(4.5) and (4.3) as

|δνk−1 | ≤ ϵ n ||rk−1||2. (4.8)
To bound δσk−1 , we once again utilize (4.5) and (4.3), then (4.6), and eventually
also (4.7) to rewrite the ϵ ||δrk || term as O(ϵ2). By doing this, we obtain

|δσk−1| ≤ ϵ n ||rk−1|| ||sk−1||

≤ ϵ n ||rk−1||
(︄

1
|αk−1|

(||rk−1|| + ||rk|| + ||δrk ||)
)︄

≤ ϵ n
1

|αk−1|
(||rk−1||2 + ||rk−1|| ||rk||) + O(ϵ2). (4.9)

39

To derive bounds for δγk−1 and δν′
k
, we first present an auxiliary alteration of (4.6)

by (4.7). This yields

||sk−1|| ≤ (1 + 3ϵ) 1
|αk−1|

(||rk−1|| + ||rk||) + O(ϵ2), (4.10)

which we can now use together with (4.5) and (4.3) to bound δγk−1 as

|δγk−1| ≤ ϵ n ||sk−1||2

≤ ϵ n
1

|αk−1|2
(||rk−1|| + ||rk||)2 + O(ϵ2). (4.11)

Lastly, to bound δν′
k

we first utilize (4.5) together with triple usage of (4.1) to
obtain the first inequality below. Then, we use (4.5) again and rewrite the δ terms
as O(ϵ2), owing to (4.8), (4.9), and (4.11). Finally, we substitute for ||sk−1|| from
(4.10), add some terms to O(ϵ2), and rewrite the expression:

|δν′
k
| ≤ 3 ϵ (|νk−1| + 2|αk−1||σk−1| + |αk−1|2|γk−1|)
≤ 3 ϵ (||rk−1||2 + 2|αk−1|||rk−1|| ||sk−1|| + |αk−1|2||sk−1||2) + O(ϵ2)
≤ 3 ϵ (||rk−1||2 + 2||rk−1||(||rk−1|| + ||rk||) + (||rk−1|| + ||rk||)2) + O(ϵ2)
= 3 ϵ (4||rk−1||2 + 4||rk−1|| ||rk|| + ||rk||2) + O(ϵ2). (4.12)

Now we can substitute (4.7), (4.8), (4.9), (4.11), and (4.12) into

|∆ν′
k
| ≤ 2||δrk || ||rk|| + ||δrk ||2 + |δνk−1| + 2|αk−1||δσk−1| + |αk−1|2|δγk−1| + |δν′

k
|,

which yields

|∆ν′
k
| ≤ 6 ϵ (||rk|| + ||rk−1||)||rk|| + O(ϵ2) + ϵ n ||rk−1||2

+ 2 ϵ n (||rk−1||2 + ||rk−1|| ||rk||) + ϵ n (||rk−1|| + ||rk||)2

+ 3 ϵ (4||rk−1||2 + 4||rk−1|| ||rk|| + ||rk||2) + O(ϵ2)
≤ ϵ ((12 + 4n)||rk−1||2 + (18 + 4n)||rk−1|| ||rk|| + (9 + n)||rk||2) + O(ϵ2)
≤ ϵ ((12 + 4n)||rk−1||2 + (9 + 2n)(||rk−1||2 + ||rk||2) + (9 + n)||rk||2)

+ O(ϵ2).

Finally, by dropping terms of order O(ϵ2), we can bound the ν-gap as

|νk − ν ′
k| = |∆ν′

k
| ≲ ϵ (21 + 6n)(||rk−1||2 + ||rk||2).

As was previously mentioned, a similar bound was derived in [1]. The derivation
presented here differs in the very last step, where a different algebraic manipula-
tion is utilized. This results in the bound being slightly tighter by having smaller
constants than the one in [1].

40

4.1.2 Numerical experiments
Now that we have derived the ν-bound, it can be investigated whether it is
violated if a bit flip occurs. This is the aim of the multi-graphs (Figure 4.1 -
Figure 4.4) presented below which depict the behavior of the ν-gap, |νk −ν ′

k|, and
the ν-bound, ϵ (21 + 6n)(||rk−1||2 + ||rk||2), when a bit is flipped in each variable.
The norms ||rk−1||2 and ||rk||2 were computed using the already calculated
νk = ⟨rk, rk⟩ and νk−1 = ⟨rk−1, rk−1⟩.

In case of vector variables (xk, rk, w′
k, pk, sk, uk, wk) the bit was always

flipped in the 100th position of the vector. Nonetheless, this choice does not
destroy diversity of the experiment, since the matrices, and the vector variables
as well, are of different sizes.

As for the data of the linear systems, the matrices used were a subsample of
those utilized for the sensitivity experiments in Chapter 3. Specifically, we used
the following from [21]:

• Matrix bundle1 ∈ R10,581×10,581, κ(A) = 1.004238e + 03,
||A|| = 6.428996e + 12,

• Matrix bcsstm07 ∈ R420×420, κ(A) = 7.615188e + 03,
||A|| = 2.510397e + 03,

• Matrix 1138 bus ∈ R1,138×1,138, κ(A) = 8.572646e + 06,
||A|| = 3.014879e + 04,

• Matrix nos7 ∈ R729×729, κ(A) = 2.374510e + 09,
||A|| = 9.864030e + 06.

For the matrices bundle1 and bcsstm07 (Figure 4.1 and Figure 4.2) the right-
hand side b was a vector of all ones, i.e., b = (1, · · · , 1)T =: e. For the matrices
1138 bus and nos7 (depicted in Figure 4.3 and Figure 4.4), it was b = Ae. The
right-hand sides differ in order to introduce an additional layer of variety into the
sample. The initial guess x0 was always vector of all zeros.

For each figure, the number of the flipped bit and the flip iteration are always
displayed at the top. The iteration range of each multi-graph was chosen to
reflect how many iterations are approximately needed to converge for the given
problem data. When the ν-gap exceeds the ν-bound, its marker symbol changes
to a square. The ν-gap can at times be zero. However, this is not displayed in the
figures for the sake of their simplicity. Finally, note that many more experimental
runs were performed in order to judge the behavior of the ν-gap and the ν-bound.
The four multi-graphs presented here are a representative sample. Nonetheless,
they include a varied range of different bit numbers, flip iterations, and problem
data.

Let us now comment on what we can deduce by investigating the figures.
Generally, it can be concluded that ν-gap/bound detection works well when the
silent error occurs in ν ′

k, σk, γk, or νk. It can also detect errors in the residual
rk, but not if the flip occurs in the first (sign) bit. This is only logical, as the
sign bit is irrelevant for the value of νk = ⟨rk, rk⟩, and therefore the ν-gap is not
influenced by flips in it.

We can also observe that the bound is violated even for flips in bits of higher
number. During the sensitivity experiments in the third chapter, it was discovered

41

that flips in bits of number 25 and higher usually do not destroy convergence,
as is illustrated by Figure 3.1. However, Figure 4.4 depicts that the ν-bound is,
for the four above-mentioned scalar variables, violated even for flips in the 35th
bit. This means that once we employ this criterion in practice, it may raise an
alarm even in the case of bit flips which have a negligible effect on convergence.
Another noteworthy fact is that for rk and ν ′

k, the bound is violated at the flip
iteration, whereas for σk and γk, the violation happens one iteration later. In
case of νk, the bound is violated both in the flip iteration and the following
iteration. Monitoring when our criteria raise an alarm that a silent error has
likely occurred is important for its correction. The idea for this correction is that
we keep variables from a number of previous iterations or make some checkpoints,
and if the flip is detected immediately we can roll back to a state which should
not yet be influenced by the error.

In conclusion, the ν-gap/bound criterion seems to be able to reliably detect
flips in ν ′

k, σk, γk, and νk, as well as in non-sign bits for rk. For other variables a
different detection method must be used.

Figure 4.1: ν-gap (red) and ν-bound (blue) graph, matrix bundle1

42

Figure 4.2: ν-gap (red) and ν-bound (blue) graph, matrix bcsstm07

Figure 4.3: ν-gap (red) and ν-bound (blue) graph, matrix 1138 bus

43

Figure 4.4: ν-gap (red) and ν-bound (blue) graph, matrix nos7

4.2 w-gap
In the previous section, we have investigated the efficacy of silent error detection
by the ν-gap. It proved to be a useful tool, but, ultimately, it seems to function
only for a specific subset of variables. Thus, if we aim to be able to detect
flips in all Pipe-PR-CG variables, it is necessary to derive additional detection
criteria. At the end of the third chapter, it was mentioned that there are two, first
predicted and then recomputed, variables whose gaps we could try to utilize. The
first of these was the ν-gap, which we have already thoroughly investigated. The
second one was the w-gap, i.e., the difference between the predicted value w′

k and
the recomputed value wk, which are equal in exact arithmetic. In this section
we shall investigate the possibility of using the w-gap for silent error detection in
Pipe-PR-CG.

4.2.1 Derivation of bounds
Let us now proceed to deriving a bound for the w-gap. We are going to utilize
the same rounding error analysis as we did for the ν-bound. First, we state some
relations for variables from Pipe-PR-CG which we shall use in the analysis. With
symbols δ once again denoting the rounding errors, it holds that [1]

44

rk = rk−1 − αk−1sk−1 + δrk ,

w′
k = wk−1 − αk−1uk−1 + δw′

k
, (4.13)

uk = Ask + δuk ,

wk = Ark + δwk .

Next, we are going to utilize these relations to rewrite the expression for the
difference ||wk − w′

k|| =: ∆w′
k
, so that we can attempt to bound its terms. This

is done in the following way [1]:

∆w′
k

= wk − w′
k

= Ark + δwk − (wk−1 − αk−1uk−1 + δw′
k
)

= Ark−1 − αk−1Ask−1 + Aδrk + δwk − (wk−1 − αk−1uk−1 + δw′
k
)

= (Ark−1 − wk−1) − αk−1(Ask−1 − uk−1) + Aδrk + δwk − δw′
k

= −δwk−1 + δwk + αk−1δuk−1 + Aδrk − δw′
k
.

Subsequently, we can take the norm of both sides to obtain the inequality

||∆w′
k
|| ≤ ||δwk−1|| + ||δwk || + |αk−1| ||δuk−1|| + ||A|| ||δrk|| + ||δw′

k
||. (4.14)

Up to this point, the analysis has followed the article [1], but from now on, we
proceed independently from it. As was the case for the ν-bound, we are now going
to bound individual terms from (4.14), starting with the first three of them, i.e.,
δwk−1 , δwk , and δuk−1 . This can be done by using relations from (4.13) together
with (4.4), yielding

||δwk || ≤ ϵ c ||A|| ||rk||, (4.15)

||δwk−1|| ≤ ϵ c ||A|| ||rk−1||, (4.16)

||δuk−1|| ≤ ϵ c ||A|| ||sk−1||, (4.17)

where c = mn1/2, for n being the problem dimension, and m being the maximum
number of nonzero elements over the rows of A [1].

Next, from (4.7) we have that:

||δrk || ≤ 3 ϵ (||rk|| + ||rk−1||) + O(ϵ2). (4.18)

Finally, we shall bound the term δw′
k
. This can be done by first utilizing (4.13)

and (4.2). Then, we use (4.13) again, this time to rewrite the variables inside
norms, and, subsequently, we employ the triangle inequality. Finally, we utilize
the relations (4.16) and (4.17) to rewrite ϵ ||δwk−1 || and ϵ ||δuk−1|| as O(ϵ2), and
use properties of the 2-norm to factor out ||A||:

||δw′
k
|| ≤ ϵ (||wk−1|| + 2|αk−1| ||uk−1||)

= ϵ (||Ark−1 + δwk−1 || + 2|αk−1| ||Ask−1 + δuk−1||)
≤ ϵ (||Ark−1|| + ||δwk−1 || + 2|αk−1| ||Ask−1|| + ||δuk−1||)
≤ ϵ ||A|| (||rk−1|| + 2|αk−1| ||sk−1||) + O(ϵ2). (4.19)

45

With each term bounded, we can now substitute from (4.15) - (4.19) into (4.14),
and then drop terms of order O(ϵ2) to obtain the final bound for ||∆w′

k
|| as

||∆w′
k
|| ≤ ϵ c ||A|| ||rk−1|| + ϵ c ||A|| ||rk|| + ϵ c |αk−1| ||A|| ||sk−1||

+ 3 ϵ ||A|| (||rk|| + ||rk−1||) + ϵ ||A|| (||rk−1|| + 2|αk−1| ||sk−1||) + O(ϵ2)
≲ ϵ ||A||

(︂
(c + 3)||rk|| + (c + 4)||rk−1|| + (c + 2) |αk−1| ||sk−1||

)︂
.

Unlike the ν-bound, this expression contains two terms, c and ||A||, which depend
on properties of the matrix A, and which need to be known prior to starting the
computation if we wish to utilize this bound for silent error detection. However,
this may not always be feasible a priori. Nonetheless, a reasonable estimation of
||A|| can be obtained from a few iterations of Pipe-PR-CG itself [24]. Let us also
note that an additional inner product is required in the algorithm to compute
the norm of the gap, ||wk − w′

k||.

4.2.2 Numerical experiments
With the w-bound derived, we can now test its efficacy for silent error detection
in Pipe-PR-CG as we did for the ν-bound. There is once again a series of multi-
graphs, this time depicting the behavior of the w-gap: ||wk − w′

k||, and the
w-bound: ϵ ||A|| ((c + 3)||rk|| + (c + 4)||rk−1|| + (c + 2) |αk−1| ||sk−1||), when a bit
flip occurs in each of the Pipe-PR-CG variables. The norms ||rk||, ||rk−1||, and
||sk−1|| were computed by taking square roots of |νk| and |γk|, with the absolute
value ensuring that the square roots can be taken even if the values of νk and γk

become negative because of the injected bit flip.
The setup of the experiment was the same as for testing the ν-gap/bound.

The bit flips in vector variables (xk, rk, w′
k, pk, sk, uk, wk) were always in the

100th index, the initial guess x0 was always a zero vector, and the right-hand side
b was a vector of all ones for matrices bundle1 and bcsstm07 (Figure 4.5, Figure
4.6, Figure 4.10, and Figure 4.11) and b = Ae for matrices 1138 bus and nos7
(Figure 4.7, Figure 4.8, and Figure 4.9). The first four figures (4.5 - 4.8) depict
the exact same systems, flip iterations, and bit numbers which were presented for
the ν-bound, so that the results can be compared. However, this time there are
also three additional graphs to further illustrate the behavior of the w-gap/bound
pair. As in the case of the ν-gap, the marker style of the w-gap changes to a
square if it violates the bound.

As for the ν-gap/bound, the presented experiments are only a subsample of
a wider test set. Additionally, let us once again repeat what matrices from [21]
were used in the experiment, since the norm ||A|| appears in the w-bound:

• Matrix bundle1 ∈ R10,581×10,581, κ(A) = 1.004238e + 03,
||A|| = 6.428996e + 12,

• Matrix bcsstm07 ∈ R420×420, κ(A) = 7.615188e + 03,
||A|| = 2.510397e + 03,

• Matrix 1138 bus ∈ R1,138×1,138, κ(A) = 8.572646e + 06,
||A|| = 3.014879e + 04,

46

• Matrix nos7 ∈ R729×729, κ(A) = 2.374510e + 09,
||A|| = 9.864030e + 06.

By inspecting the figures, we observe that the w-gap/bound seems to work
well for silent error detection in rk, w′

k, uk, and wk. A pleasant surprise is that
it is also able to detect flips of the sign bit in the residual vector - something
the ν-gap was not able to achieve. However, if we investigate Figure 4.8, we can
see that for bits of high number it is not as sensitive as the ν-gap, since there
is no change in the w-gap behavior after the flip. This was assessed not only
by investigating the graphical output, but by comparing the numerical values as
well. Nonetheless, as was recalled in the previous section, flips in the 35th bit do
not usually hinder convergence.

Moreover, when we test what happens if, for the same data, we flip not the
35th, but the 25th bit, it can be observed that in this case the w-gap reacts to
it. This is illustrated in Figure 4.9. As it might be a bit difficult to distinguish
whether the bound was violated here only by inspecting the graphs, let us add
that in this case the w-gap exceeded the w-bound for rk, w′

k, and wk. For uk,
the bound was not violated. On the other hand, for the experiment depicted in
Figure 4.10, which has, aside from the bit number, all data same as the run from
Figure 4.6, the bound was violated for all four above-mentioned variables, despite
the flipped bit being of a high number - 30. The reason for this may be that in
the former case the system matrix has a larger norm and condition number. This
indicates that the w-gap/bound criterion might not function properly for matrices
with properties which result in large norm ||A|| or the constant c. On the other
hand, in Figure 4.11 we can see that, although the matrix bundle1 has rather
large norm, the criterion still works well even for a bit of relatively high number.
It is also worth noting that for significant exponent bits, e.g., the 5th bit, the
gap and bound can start to act rather wildly, not only for the w-gap/bound,
but for the already discussed ν-gap/bound as well. Nonetheless, the bound still
seems to be violated only for variables where the methods are able to detect a
flip. Once again, depending on the variables, the bound is violated either at the
flip iteration or in the very next one. Namely, at the flip iteration for rk and w′

k,
in the next iteration for uk, and in both for wk.

In conclusion, the detection method based on monitoring violation of the w-
bound appears to be functional for rk, w′

k, uk, and wk. However, for rk and uk,
it may occasionally be slightly less reliable.

47

Figure 4.5: w-gap (red) and w-bound (blue) graph, matrix bundle1

Figure 4.6: w-gap (red) and w-bound (blue) graph, matrix bcsstm07

48

Figure 4.7: w-gap (red) and w-bound (blue) graph, matrix 1138 bus

Figure 4.8: w-gap (red) and w-bound (blue) graph, matrix nos7

49

Figure 4.9: w-gap (red) and w-bound (blue) graph, matrix nos7, additional
experiment

Figure 4.10: w-gap (red) and w-bound (blue) graph, matrix bcsstm07, additional
experiment

50

Figure 4.11: w-gap (red) and w-bound (blue) graph, matrix bundle1, additional
experiment

4.3 µ-gap
Having investigated both the ν-gap and the w-gap, it is apparent that there
are still some Pipe-PR-CG variables for which these two detection methods do
not work, these are xk, βk, pk, sk, µk, and αk. Therefore, it is necessary to
derive another criterion which is not based on monitoring a difference between
the predicted value and the recomputed value of some variable, as at this point
we have already utilized all two, respectively four, of them. Fortunately, there
are other quantities in the Pipe-PR-CG algorithm which should be equal in exact
arithmetic. These are µk and σk, which are defined as

µk = ⟨pk, sk⟩,

and
σk = ⟨rk, sk⟩,

respectively. Their equality in exact arithmetic holds, because, owing to the
relation pk = rk + βkpk−1 from Pipe-PR-CG, we can rewrite µk as

µk = ⟨pk, sk⟩ = ⟨rk + βkpk−1, sk⟩,

where the inner product ⟨pk−1, sk⟩ is equal to zero. This holds because in exact
arithmetic we have that sk = Apk, as it originally is in, e.g., HS-CG, and vectors
pi, and pj are A-orthogonal for i ̸= j.

Knowing this, we can define the µ-gap as |∆µ′
k
| := |µk − σk|, and try to derive

a bound for it as we did for the ν-gap and the w-gap.

51

4.3.1 Derivation of bounds
To derive a bound for the µ-gap, we once again utilize rounding error analysis.
This time, we are going to use the finite arithmetic relations [1]

pk = rk + βkpk−1 + δpk ,

µk = ⟨pk, sk⟩ + δµk
, (4.20)

σk = ⟨rk, sk⟩ + δσk
,

where δ once again denotes rounding errors. By utilizing the above expressions,
we can rewrite ∆µ′

k
as

∆µ′
k

= µk − σk = ⟨pk, sk⟩ − ⟨rk, sk⟩ + δµk
− δσk

= ⟨rk + βkpk−1 + δpk , sk⟩ − ⟨rk, sk⟩ + δµk
− δσk

= βk⟨pk−1, sk⟩ + ⟨δpk , sk⟩ + δµk
− δσk

,

which, by taking the norm of both sides, yields that

|∆µ′
k
| ≤ |βk| |⟨pk−1, sk⟩| + |⟨δpk , sk⟩| + |δµk

| + |δσk
|

≤ |βk| |⟨pk−1, sk⟩| + ||δpk || ||sk|| + |δµk
| + |δσk

|. (4.21)

Now, we shall bound some of the terms above. First, by using (4.3) and (4.20),
|δµk

| and |δσk
| can be bounded as

|δµk
| ≤ ϵ n (||pk|| ||sk||), (4.22)

|δσk
| ≤ ϵ n (||rk|| ||sk||), (4.23)

and, similarly, owing to (4.2) and (4.20), we can derive that

||δpk || ≤ ϵ (||rk|| + 2|βk| ||pk−1||). (4.24)

Unfortunately, to the author’s knowledge, there is no method of rewriting the
term ⟨pk−1, sk⟩ in a way which does not involve norms of pk−1, sk, or some other
variable, as this would greatly diminish tightness of the bound. Therefore, we
must keep it in the overall bound of the µ-gap as it is. Thus, by keeping this
term and substituting (4.22), (4.23), and (4.24) into (4.21) we obtain that

|∆µ′
k
| ≤ |βk| |⟨pk−1, sk⟩| + ϵ(||rk|| + 2|βk| ||pk−1||)||sk||

+ ϵ n (||pk|| ||sk||) + ϵ n (||rk|| ||sk||)

≤ |βk| |⟨pk−1, sk⟩| + ϵ ||sk||
(︂
||rk|| + 2|βk| ||pk−1|| + n (||pk|| + ||rk||)

)︂
.

For this expression, two additional inner products are needed in each iteration to
compute ⟨pk−1, sk⟩ and ||pk||. There is no need to compute the norm ||pk−1|| as
we can simply keep its value from the previous iteration (or initialization). For
future usage, let Bµ′

k
denote the derived bound.

52

4.3.2 Numerical experiments
With the µ-bound derived, it is now time to test its efficacy for silent error detec-
tion in Pipe-PR-CG. Once again, a series of multi-graphs is presented. However,
this time the experimental section has two halves. In the first part, we examine
figures depicting the µ-gap:

|∆µ′
k
| = |µk − σk|,

and the µ-bound:

Bµ′
k

:= |βk| |⟨pk−1, sk⟩| + ϵ ||sk||
(︂
||rk|| + 2|βk| ||pk−1|| + n (||pk|| + ||rk||)

)︂
.

In the second part, their relative difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, is examined. The

analyses and the conclusions are also divided, with the text concerning the first
part being below before the first set of figures, and the analysis of the second half
dividing the two figure types mentioned above; specifically, it is situated after
Figure 4.17.

The norms ||rk|| and ||sk|| in Bµ′
k

were again computed by taking square roots
of |νk| and |γk|. For |⟨pk−1, sk⟩| and ||pk|| additional inner products not appearing
in the Pipe-PR-CG algorithm had to be computed.

The setup for both of these parts was very similar to what was presented
for the ν-gap and the w-gap. For all runs the initial guess was a vector of all
zeros, flips for vectors variables (xk, rk, w′

k, pk, sk, uk, wk) always occurred in
the 100th index, and the system matrices were the same ones we had utilized
throughout this chapter, i.e.,

• Matrix bundle1 ∈ R10,581×10,581, κ(A) = 1.004238e + 03,
||A|| = 6.428996e + 12,

• Matrix bcsstm07 ∈ R420×420, κ(A) = 7.615188e + 03,
||A|| = 2.510397e + 03,

• Matrix 1138 bus ∈ R1,138×1,138, κ(A) = 8.572646e + 06,
||A|| = 3.014879e + 04,

• Matrix nos7 ∈ R729×729, κ(A) = 2.374510e + 09,
||A|| = 9.864030e + 06,

from the SuiteSparse matrix collection [21]. As for the right-hand side b, it was
b = e for Figures 4.12, 4.13, 4.17, 4.18, 4.19, 4.20, 4.24, and 4.25. For the other
graphs, i.e., Figures 4.14, 4.15, 4.16, 4.21, 4.22, and 4.23, it was b = Ae. This
information is mentioned in the analyses at points where it holds significance. Let
us also note that for all gap/bound figures so far, the subplots shared a common
y-axis, so that they could be easily compared. However, for Figure 4.12 this is
violated as it would, for most variables, disturb visibility of the curve behavior.

The exact same four run sample presented for the ν-gap and the w-gap based
methods is here included in Figures 4.12 to 4.15 for the µ-gap and the µ-bound
as separate quantities, and in Figures 4.19 to 4.22 for the relative µ-gap/bound
difference, |Bµ′

k
− ∆µ′

k
|/Bµ′

k
.

Now, let us comment on what can be deduced by investigating the first group
of multi-graphs depicting the µ-gap and the µ-bound side by side. As was done

53

before, if the bound is violated the gap marker turns into a square. However,
this time the square is in addition green in order to be easily visible, since for the
µ-gap it is always next to a cluster of other gap values.

The first thing we observe is that the µ-gap and bound are sensitive to flips
in almost all variables. Another interesting fact is that the µ-bound for many
variables seemingly vanishes after the flip. However, this is caused by it being very
close to the µ-gap. The similarity is in most cases so strong that even different
visualization styles than the one used here have trouble distinguishing the values.
It is also peculiar that neither the gap nor the bound return to their original level,
but instead the values are permanently affected by the flip. This was not the case
for the ν- and the w-gaps and bounds. The reason for the µ-bound blow-up is
the inner product |⟨pk−1, sk⟩|, as can be seen by inspecting Figure 4.17, which
shows curves for each inner product/norm in Bµ′

k
. The data of the run presented

in this figure are the same as for Figure 4.12.
As for in which variables the µ-gap/bound method is able to detect flips, it

seem to be that the only ones are pk, µk, and σk. Only in the case of pk in Figure
4.15 the flip was not detected, and the µ-gap and the µ-bound were influenced
rather moderately. However, this is the 35th bit whose alteration would most
likely not prevent convergence. Moreover, as can be seen by inspecting Figure
4.16, once we, for the same data, instead flip the 20th bit, the silent error is
detected. For all three above-mentioned variables, the bound is always violated
at the flip iteration. It is also interesting that the reason for this is that for these
variables the µ-gap “jumps” one iteration earlier than the µ-bound. For all other
variables this happens concurrently, either at the flip iteration or at the very next
one. As a final remark, let us also add that, as was the case for the ν-gap, the
µ-gap can sometimes be zero.

In conclusion, the µ-gap/bound criterion seems to be well applicable for silent
error detection in pk, µk, and σk. However, the quantities are sensitive to flips
for other variables as well.

54

Figure 4.12: µ-gap (red) and µ-bound (blue) graph, matrix bundle1

Figure 4.13: µ-gap (red) and µ-bound (blue) graph, matrix bcsstm07

55

Figure 4.14: µ-gap (red) and µ-bound (blue) graph, matrix 1138 bus

Figure 4.15: µ-gap (red) and µ-bound (blue) graph, matrix nos7

56

Figure 4.16: µ-gap (red) and µ-bound (blue) graph, matrix nos7

Figure 4.17: Blow-up of the µ-bound, matrix bundle1 : ||pk|| cyan, ||sk|| green,
||rk|| purple, |⟨pk−1, sk⟩| black

57

The problem we are now facing is that there are still some variables for which
we do not possess a detection method, namely xk, βk, sk, and αk. However, a
straightforward comparison of the gap values and the bound values is not the only
way the detection can be done. As was mentioned before, and as can be seen by
investigating Figures 4.12 - 4.16, the µ-gap and the µ-bound are influenced by
flips in almost all variables. On top of that, their values after the flip become
very close. Therefore, we could try to construct a detection method based on
the difference of the µ-gap and the µ-bound. However, it somehow surprisingly
turns out that their absolute difference, |Bµ′

k
− ∆µ′

k
|, steadily decreases despite

flips (with the exception of a single jump for pk, µk, and σk). This is illustrated
in Figure 4.18 which depicts the absolute difference of the µ-bound and the µ-gap
from Figure 4.13. Thus, we try to employ the relative difference, |Bµ′

k
−∆µ′

k
|/Bµ′

k
,

instead.
There are two reasons for “normalizing” the difference by the µ-bound and

not by the µ-gap. The first one is that the µ-gap can sometimes be zero. The
second one is that when no flips occur, the µ-bound is guaranteed to be larger
than the µ-gap. Therefore, the ratio is going to be “normalized” better.

Now, we shall investigate the multi-graphs (Figures 4.19 - 4.25) depicting
this relative µ-gap/bound difference. The cyan diamond markers show values in
the flip iteration and in the one iteration after, i.e., when we would like to be
able to detect the flip, so that we can roll back to a close previous state when
the variables were still unaffected. The first four figures (4.19 - 4.22) depict our
classical problems which we have encountered in the ν-gap and w-gap sections.
Then Figure 4.23 has the same data as the graph before it, i.e., b = Ae, but
the 20th bit is flipped instead of the 35th bit. Subsequently, Figure 4.24 depicts
flipping of the 20th bit for matrix nos7 again, but this time with a right-hand
side b = e. The figures are then concluded with a multi-graph of the 20th bit
flipped for 1138 bus with right-hand side b = e, which is, aside from the chosen
matrix, the same problem as in the figure before. (Note that in this case, the
flip is in the 2000th iteration instead of the 3000th as was usually done for this
matrix).

At first glance, we immediately observe that for all matrices other than nos7
the effect of the flip is quite significant for all variables besides νk. Either at the
iteration of the flip, one later, or both, there is a significant jump of the value. On
top of that, for the three variables (pk, µk, σk), where we were able to detect flips
just by the bound violation, the µ-gap/bound relative difference is greater than 1
at the flip iteration, a clear indication that a flip has occurred. Unfortunately, for
matrix nos7 this criterion does not seem to work particularly well for any vector
variable other than pk. Moreover, when the 35th bit is flipped (Figure 4.22) the
vector variables, including pk, are influenced by it only to a very limited degree.
For the 20th bit (Figures 4.23 and 4.24) the values are altered, but it can be
observed that the diamond markers still largely remain in the same value range
as when no bits were flipped. The only exceptions are the aforementioned pk
and, luckily, partly also sk. For sk we can observe that the diamond markers are,
in Figure 4.23, in the “no-flip range”, but in Figure 4.24 one of them is slightly
below it. This is a crucial observation, since we do not yet posses a detection
method for sk.

58

When it comes to this approach it is also important to investigate at what
level the values of the studied ratio |Bµ′

k
− ∆µ′

k
|/Bµ′

k
are when no flips occur,

because we need to set some threshold to determine whether to raise an alarm
that a silent error has likely appeared or not. If we set the threshold too close to
1 we might get a lot of false positive detections. On the other hand, setting it too
low might result in a lot of false negatives. For matrices bundle1 and bcsstm07
the values lie very close to 1. For the matrix 1138 bus (Figures 4.21 and 4.25) the
range is a bit more wide, but still quite close to 1. A potential problem is visible if
we investigate Figures 4.22 - 4.24, which depict runs for the matrix nos7. There,
the values are as low as 1e−4. This indicates that choosing a suitable value of the
threshold could be a rather complex and data dependent problem. The reason for
the values lying in such a wide range, as well as the detection being less reliable,
in case of the matrix nos7 is most likely its high condition number.

In conclusion, the greatest strength of the relative µ-gap/bound difference
approach is that it encompasses almost all of the Pipe-PR-CG variables, albeit
with some above-mentioned data-related exceptions. However, a disadvantage
is that, unlike in the case of the bound violation methods, there is nothing to
directly compare the values to, so we have to set some detection threshold.

Figure 4.18: Absolute µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|, matrix bcsstm07

59

Figure 4.19: Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix bundle1

Figure 4.20: Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix bcsstm07

60

Figure 4.21: Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix 1138 bus

Figure 4.22: Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix nos7

61

Figure 4.23: Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix nos7

Figure 4.24: Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix nos7

62

Figure 4.25: Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix 1138 bus

4.4 Summary of detection methods
Throughout this chapter, we have investigated four methods for silent error de-
tection in Pipe-PR-CG. Let us now summarize their efficacy in terms of whether
or not they have the potential to reliably detect bit flips in a given variable. This
is presented in Table 4.1 below, with rows representing each of the Pipe-PR-CG
variables. The columns correspond to the detection methods presented in this
chapter, i.e., violation of the ν-bound by the ν-gap, violation of the w-bound by
the w-gap, violation of the µ-bound by the µ-gap, and finally violation of some
preset thresholds by the ratio |Bµ′

k
− ∆µ′

k
|/Bµ′

k
.

The symbol ✓denotes that the method is able to reliably detect flips in the
variable, while ◦ denotes that the method is, for the given variable, somehow
functional, but either not in all cases or there are some specific circumstances
under which it is not able to detect the injected error, e.g., the ν-gap/bound
criterion not working for sign flips in the residual vector rk.

We can see from the table that the only variable which is not covered by any
of the detection methods is the solution vector xk. The reason for this is that
xk appears only in its own relation, and thus it does affect any other variable.
Therefore, for silent error detention in xk, a redundancy approach is unfortunately
needed. Besides that, we do not posses a robust detection method for flips in sk.
Nonetheless, in the worst case, the redundancy approach can be applied here
as well if it turns out that detection by the relative µ-gap/bound difference is
truly unreliable. For all other variables we should be able to detect silent errors
reasonably well.

63

Variable ν-gap/bound w-gap/bound µ-gap/bound |Bµ′
k

− ∆µ′
k
|/Bµ′

k

xk

rk ◦ ✓ ◦

w′
k ✓ ◦

ν ′
k ✓ ✓

βk ✓

pk ✓ ✓

sk ◦

uk ✓ ◦

wk ✓ ◦

µk ✓ ✓

σk ✓ ✓ ✓

γk ✓ ✓

νk ✓

αk ✓

Table 4.1: Efficacy of detection methods for each Pipe-PR-CG variable

As a final remark, let us add that if the computation of additional inner
products and constants necessary for the bounds would in some case be too
expensive, it is also possible to construct a set of detection criteria based just on
the values of the gaps alone. For instance, we could monitor a moving average
of gap value differences between iterations. Nonetheless, it is important to keep
in mind that for this approach to function we must somehow deal with iterations
where any of the gaps are zero. It would also require us to set some threshold to
determine when to raise an alarm that a silent error has likely occurred.

64

5. Fault-tolerant Pipe-PR-CG

5.1 Detection testing
In the previous chapter, we have derived several methods for silent error detec-
tion in Pipe-PR-CG. For each method we have presented a sample of numerical
experiments aimed at deducing for which variables the criterion works. Subse-
quently, the findings were summarized in Table 4.1. The conclusion was that for
each variable, excluding xk, we seem to possess a detection criterion which, to a
certain degree, works.

With this in hand, it is now time to test how well our criteria can detect
silent errors in practice. This section contains the results of a large numerical
experiment examining the performance of the criteria on a large sample of test
runs, both with and without bit flips. The experiment was performed for each of
the Pipe-PR-CG variables with the exception of xk, since none of the methods
work for this variable. It is also worth noting that the experiment was performed
for each of the variables separately, so that eventual outliers can be identified
more easily.

For all variables, the testing was done using eight matrices from [21], which
were utilized in the third chapter. We have decided to exclude from this list the
matrix aft01, since the relative µ-gap/bound difference, |Bµ′

k
−∆µ′

k
|/Bµ′

k
, criterion

does not work for it. A figure illustrating this, along with a short note, can be
found in Appendix A.2. The other three criteria are sometimes able to detect flips
in some of “their” variables for this matrix, but even then the detection is not as
all-encompassing as for the other matrices. The reason for this behavior is most
likely the quite high condition number of the matrix (κ(A) = 4.387086e+18). On
top of this, the positive definiteness of the matrix is borderline. As a consequence,
it was decided not to use it in the experiment. However, this does not necessarily
mean that the methods are not functional, since the properties of the matrix
aft01 are truly extreme.

Therefore, as was mentioned, there were eight matrices used in the experiment:

• 1138 bus ∈ R1,138×1,138, κ(A) = 8.572646e + 06,

• bcsstm07 ∈ R420×420, κ(A) = 7.615188e + 03,

• bundle1 ∈ R10,581×10,581, κ(A) = 1.004238e + 03,

• wathen120 ∈ R36,441×36,441, κ(A) = 2.576962e + 03,

• bcsstk05 ∈ R153×153, κ(A) = 1.428114e + 04,

• gr 30 30 ∈ R900×900, κ(A) = 1.945739e + 02,

• nos7 ∈ R729×729, κ(A) = 2.374510e + 09,

• crystm01 ∈ R4,875×4,875, κ(A) = 2.283164e + 02.

For each variable and each of these matrices, 800 runs with a single bit flip and
200 without a bit flip were performed. The bit number was chosen randomly

65

from 1 to 64. For vectors, the flip occurred in a random index from [1, n], where
n is the problem dimension. The flip iteration τ was chosen randomly from 0.1φ
to 0.9φ, where φ is the number of iterations needed to converge for the given
matrix and right-hand side when no flips occur. This was computed before each
tainted run. The stopping criterion was always, for both untainted as well as
tainted runs, such that it must hold that ||rk||/||b|| < 1e−10. The right-hand
side b was a random vector from a uniform distribution over [0, 1). A run tainted
by a bit flip was deemed as convergent if it reached the stopping criteria within
1.5φ iterations. The initial guess x0 was always a vector of all zeros. Runs with
an overflow error were not counted, because such errors are no longer silent. For
this reason, the total number of runs recorded for each matrix is slightly lower
than the above-stated 1000 performed. When possible, the norms appearing in
the code were calculated using the already computed quantities, such as νk for
||rk|| or γk for ||sk||. The only exception was the norm ||rk|| used for the stopping
criterion which was not computed utilizing νk, so that the convergence can be
evaluated more independently from the detection criteria.

Let us now recall what our four detection methods are. The following list
summarizes this, with the three “absolute” bound violation criteria coming first,
followed by the relative µ-gap/bound difference being lower than some preset
threshold. If any of the inequalities

• |νk − ν ′
k| > ϵ (21 + 6n)(||rk−1||2 + ||rk||2),

• ||wk − w′
k|| > ϵ ||A||

(︂
(c + 3)||rk|| + (c + 4)||rk−1|| + (c + 2) |αk−1| ||sk−1||

)︂
,

• |∆µ′
k
| := |µk − σk|

> |βk| |⟨pk−1, sk⟩| + ϵ ||sk||
(︂
||rk|| + 2|βk| ||pk−1|| + n (||pk|| + ||rk||)

)︂
=: Bµ′

k
,

• |Bµ′
k

− ∆µ′
k
|/Bµ′

k
< threshold,

held, an alarm was raised. Let us from now on call these four criteria work-
ing together a detection set. In the experiment, there were two detection sets
with a different threshold for the relative µ-gap/bound difference criterion, so
that it can be evaluated how the detection behavior changes with the threshold.
The threshold values were chosen based on experiments from the fourth chapter.
Specifically, the levels 5e−1 and 1e−4 were chosen, as they seemed to be close to
the lower limit of values of the relative µ-gap/bound difference, |Bµ′

k
− ∆µ′

k
|/Bµ′

k
,

for matrices 1138 bus and nos7 when no flips occur, see, e.g., Figure 4.25 and Fig-
ure 4.24. The two detection sets with different thresholds for the fourth relative
µ-gap/bound difference-based criterion were both evaluated simultaneously dur-
ing each run. Therefore, we can directly compare how they perform for identical
data.

The sequence of steps in the experiment was following:

1. For untainted runs, a right-hand side vector b is generated, then the com-
putation is performed and it is noted whether an alarm was raised. The two
detection sets using the two different thresholds for the |Bµ′

k
− ∆µ′

k
|/Bµ′

k

criterion are both checked during the run and they each posses their own
alarm.

66

2. For tainted runs, a right-hand side vector b is generated, and subsequently
an untainted computation is performed to obtain the number of iterations φ
needed to converge. Afterwards, the flip iteration τ , bit number, and vector
flip index are generated. Then, a tainted run is performed with these inputs.
As was the case for the untainted runs, both detection sets are monitored
during the computation. Once again, this is done so that they can be better
compared against each other, since they examine the same data. If during
the run one of the two detection sets raises its alarm, it is noted at what
iteration ρi, i ∈ {1, 2}, that first was. Later alarms are not taken into
account. Besides the first alarm iterations, it is also monitored whether the
run converged within the 1.5φ iterations or not.

Once the computation concluded and the information about alarms and the
number of iterations needed to converge was final, the run (or rather “runs” as
we evaluate both detection sets simultaneously during the run) was sorted into
one of these six categories:

• true positive (tp): Bit flip occurred, did prevent convergence, and an alarm
was raised.

• special positive (sp): Bit flip occurred, did not prevent convergence, and an
alarm was raised.

• false positive (fp): An alarm was raised when no flip occurred.

• true negative (tn): If for run with no flips no alarm was raise.

• special negative (sn): If there was a flip which did not prevent convergence
and no alarm was raised.

• false negative (fn): A bit flip occurred, did prevent convergence, and no
alarm was raised.

The same categorization was used in the article [11]. As was mentioned above, if
in a tainted run any of the four criteria within the detection sets raised an alarm
it was noted at what iteration (ρ1 for the first detection set and ρ2 for the second
detection set) this first occurred. The values ρi were initialized as ∞. Thus, if the
detection set did not raise an alarm during the run its ρi value remained so after
the computation had concluded. To classify runs, we compared the flip iteration
τ and ρi, receiving the following options:

1. If ρi < τ , we count this as false positive,

2. If ρi ∈ {τ, τ + 1}, we count this as true/special positive based on whether
the run converged,

3. If ρi > τ + 1, we count this as false/special negative based on whether the
run converged.

Runs without a bit flip were categorized either as true negative or false positive
based on whether or not an alarm was raised.

67

The output of the experiment is presented below in Tables 5.2 - 5.14, which
contain results for all 13 variables separately, as well as in Table 5.1, which
contains the sum of all runs over the individual variables. The rows of these tables
correspond to runs for a specific matrix and threshold. The columns contain
primarily the sorting of the runs into the six above-mentioned categories. Besides
this, the tables for individual variables also contain in the columns information
about the lowest numbered bit for each matrix whose run was classified as special
negative (snbit), so that the interesting aspect of an undetected bit flip which does
not destroy convergence can be examined. On top of that, it is also noted what
was the highest bit for which an overflow error occurred (ovbit). At the bottom
of each variable table, a row containing sums of run categories and extrema of the
snbit and ovbit values over all matrices is presented. For the combined Table 5.1,
only the sums of the six categories are shown, as taking a maximum/minimum of
the above bit numbers over all variables does not, in the author’s opinion, make
much sense.

With the setup explained, let us now examine the outcomes. The most crucial
result is that we were generally able to detect an overwhelming majority of bit
flips which would ruin convergence. Important also is the fact that there was no
variable which would stick out as seriously problematic for our detection methods.
Moreover, the number of false positive runs was (for both thresholds) very close
for all variables.

However, there were differences in the overall number of detected errors which
would not destroy convergence (sp/sn). The one variable which stands out in this
is sk. In Table 5.7 we observe that the number of special negative runs was for
sk considerably larger than for any other variable. This was most likely caused
by the fact that for sk only the relative µ-gap/bound difference criterion works,
and even then, it is not fully reliable, as was mentioned at the end of the fourth
chapter. Nonetheless, a majority of the undetected flips were special negative,
thus they did not destroy convergence, and it can be seen that the number of
false negatives is for sk quite acceptable. The largest number of false negatives
was noted for βk, but it was still rather small. This variable shows some unique
behavior as is mentioned in paragraphs below. Notable also is the fact that in
the case of scalar variables for which one of the gap/bound detection methods
works (ν ′

k, µk, σk, γk, and νk) we were able to detect a large portion of the
convergence-preserving silent errors.

For most matrices, there were no or almost no false positives. The notable
outliers are nos7 and 1138 bus. Interestingly, these two matrices along with
bcsstk05 and bcsstm07 are all in the upper half of our sample when it comes to
condition number. This leads to the likely conclusion that the threshold value
should be ideally chosen proportional to the condition number of the problem
matrix. Let us also note that the false positive detections are caused only by the
criterion utilizing the relative difference of the µ-gap and the µ-bound. The three
bound violation criteria raise the alarm only when a bit flip truly occurs.

When it comes to the two parameters snbit and ovbit, it is interesting to
observe that in most cases their values correspond to whether the variable is a
scalar or a vector. The highest bit number resulting in overflows was generally
large for vectors and small for scalars. On the other hand, for vectors, the smallest
bit number causing a special negative case was generally lower than for scalars.

68

However, there are some exceptions to this. For instance, for βk (Table 5.5), the
special negative runs occurred even for bits of a very low number. On the other
hand, when it comes to the highest numbered bit which caused an overflow error,
rk (Table 5.2) stands out as a vector for which this was exceptionally low.

In conclusion, our detection criteria were able to detect silent errors reasonably
well, and for the vast majority of the non-detected bit flips the algorithm managed
to recover and converge within our set iteration range.

matrix threshold tp sp fp tn sn fn
1138 bus 5e−1 1532 4125 2681 1652 2844 2

1e−4 1732 4509 0 2600 3989 6
bcsstm07 5e−1 939 6342 2 2600 2960 3

1e−4 940 5710 0 2600 3593 3
bundle1 5e−1 833 5213 0 2600 4088 1

1e−4 833 4554 0 2600 4747 1
wathen120 5e−1 771 5331 0 2600 4113 2

1e−4 771 4769 0 2600 4675 2
bcsstk05 5e−1 2991 4793 348 2324 2314 5

1e−4 2999 4186 0 2600 2980 10
gr 30 30 5e−1 964 6479 0 2600 2783 2

1e−4 964 5900 0 2600 3362 2
nos7 5e−1 0 0 12823 0 0 0

1e−4 1381 2881 3843 1229 3485 4
crystm01 5e−1 799 5896 0 2600 3564 1

1e−4 799 5292 0 2600 4168 1∑︁
5e−1 8829 38179 15854 16976 22666 16
1e−4 10419 37801 3843 19429 30999 29

Table 5.1: Detection performance, sum over all variables

69

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 76 274 217 134 290 0 29 2

1e−4 88 354 0 200 349 0 29 2
bcsstm07 5e−1 15 457 0 200 319 0 31 2

1e−4 15 453 0 200 323 0 31 2
bundle1 5e−1 16 336 0 200 441 0 15 2

1e−4 16 333 0 200 444 0 15 2
wathen120 5e−1 8 393 0 200 386 0 28 2

1e−4 8 393 0 200 386 0 28 2
bcsstk05 5e−1 218 328 22 181 240 0 42 2

1e−4 218 318 0 200 253 0 42 2
gr 30 30 5e−1 23 507 0 200 263 0 39 2

1e−4 23 507 0 200 263 0 39 2
nos7 5e−1 0 0 985 0 0 0 - 2

1e−4 63 233 307 87 295 0 12 2
crystm01 5e−1 11 417 0 200 361 0 32 2

1e−4 11 417 0 200 361 0 32 2∑︁
or extrema 5e−1 367 2712 1224 1315 2300 0 15 2

1e−4 442 3008 307 1487 2674 0 12 2

Table 5.2: Detection performance, bit flip in rk

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 102 233 199 123 327 1 27 5

1e−4 106 287 0 200 391 1 27 5
bcsstm07 5e−1 30 459 0 200 299 1 33 4

1e−4 30 445 0 200 313 1 29 4
bundle1 5e−1 38 294 0 200 435 0 24 9

1e−4 38 270 0 200 459 0 22 9
wathen120 5e−1 7 428 0 200 353 1 30 9

1e−4 7 428 0 200 353 1 30 9
bcsstk05 5e−1 225 330 27 183 211 0 42 5

1e−4 230 300 0 200 246 0 39 5
gr 30 30 5e−1 38 472 0 200 272 0 40 4

1e−4 38 470 0 200 274 0 40 4
nos7 5e−1 0 0 988 0 0 0 - 3

1e−4 66 173 304 85 360 0 1 3
crystm01 5e−1 25 411 0 200 354 0 33 2

1e−4 25 411 0 200 354 0 33 2∑︁
or extrema 5e−1 465 2627 1214 1306 2251 3 24 9

1e−4 540 2784 304 1485 2750 3 1 9

Table 5.3: Detection performance, bit flip in w′
k

70

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 95 428 204 125 139 0 50 3

1e−4 106 513 0 200 172 0 49 3
bcsstm07 5e−1 50 584 0 200 154 0 51 3

1e−4 50 569 0 200 169 0 51 3
bundle1 5e−1 45 538 0 200 206 0 47 3

1e−4 45 518 0 200 226 0 46 3
wathen120 5e−1 40 524 0 200 224 0 46 3

1e−4 40 506 0 200 242 0 45 3
bcsstk05 5e−1 197 462 19 184 127 0 52 3

1e−4 197 448 0 200 144 0 51 3
gr 30 30 5e−1 50 553 0 200 181 0 51 2

1e−4 50 529 0 200 205 0 50 2
nos7 5e−1 0 0 988 0 0 0 - 3

1e−4 92 390 293 80 133 0 45 3
crystm01 5e−1 46 550 0 200 192 0 49 2

1e−4 46 532 0 200 210 0 48 2∑︁
or extrema 5e−1 523 3639 1211 1309 1223 0 46 3

1e−4 626 4005 293 1480 1501 0 45 3

Table 5.4: Detection performance, bit flip in ν ′
k

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 99 395 208 121 163 1 2 3

1e−4 112 289 0 200 385 1 2 3
bcsstm07 5e−1 45 540 0 200 205 1 2 2

1e−4 45 364 0 200 381 1 2 2
bundle1 5e−1 40 478 0 200 264 1 2 3

1e−4 40 310 0 200 432 1 2 3
wathen120 5e−1 26 470 0 200 293 0 3 2

1e−4 26 297 0 200 466 0 3 2
bcsstk05 5e−1 205 384 28 177 186 5 2 3

1e−4 200 240 0 200 335 10 2 3
gr 30 30 5e−1 38 542 0 200 205 0 3 2

1e−4 38 379 0 200 368 0 3 2
nos7 5e−1 0 0 989 0 0 0 - 3

1e−4 93 207 294 91 302 2 2 3
crystm01 5e−1 18 511 0 200 262 0 3 2

1e−4 18 349 0 200 424 0 3 2∑︁
or extrema 5e−1 471 3320 1225 1298 1578 8 2 3

1e−4 572 2435 294 1491 3093 15 2 3

Table 5.5: Detection performance, bit flip in βk

71

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 73 282 214 125 297 0 28 2

1e−4 79 337 0 200 375 0 27 2
bcsstm07 5e−1 16 479 0 200 294 0 34 2

1e−4 16 460 0 200 313 0 30 2
bundle1 5e−1 2 368 0 200 411 0 25 8

1e−4 2 347 0 200 432 0 19 8
wathen120 5e−1 9 354 0 200 425 0 26 2

1e−4 9 342 0 200 437 0 23 2
bcsstk05 5e−1 170 392 27 178 222 0 42 3

1e−4 170 374 0 200 245 0 39 3
gr 30 30 5e−1 7 517 0 200 265 0 38 2

1e−4 7 497 0 200 285 0 36 2
nos7 5e−1 0 0 986 0 0 0 - 3

1e−4 59 179 290 96 362 0 20 3
crystm01 5e−1 4 420 0 200 365 0 32 2

1e−4 4 405 0 200 380 0 30 2∑︁
or extrema 5e−1 281 2812 1227 1303 2279 0 25 8

1e−4 346 2941 290 1496 2829 0 19 8

Table 5.6: Detection performance, bit flip in pk

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 144 212 215 131 279 0 31 4

1e−4 158 121 0 200 498 4 18 4
bcsstm07 5e−1 27 453 0 200 300 1 29 4

1e−4 27 289 0 200 464 1 18 4
bundle1 5e−1 35 308 0 200 426 0 26 8

1e−4 35 136 0 200 598 0 1 8
wathen120 5e−1 3 354 0 200 427 0 24 9

1e−4 3 191 0 200 590 0 14 9
bcsstk05 5e−1 241 326 30 173 212 0 43 4

1e−4 241 160 0 200 381 0 28 4
gr 30 30 5e−1 22 477 0 200 293 0 40 3

1e−4 22 320 0 200 450 0 23 3
nos7 5e−1 0 0 983 0 0 0 - 5

1e−4 106 56 274 106 439 2 4 5
crystm01 5e−1 30 373 0 200 390 0 32 2

1e−4 30 202 0 200 561 0 19 2∑︁
or extrema 5e−1 502 2503 1228 1304 2327 1 24 9

1e−4 622 1475 274 1506 3981 7 4 9

Table 5.7: Detection performance, bit flip in sk

72

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 79 221 218 122 337 0 27 4

1e−4 87 279 0 200 411 0 26 4
bcsstm07 5e−1 55 422 2 200 307 0 34 4

1e−4 56 414 0 200 316 0 34 4
bundle1 5e−1 20 308 0 200 442 0 24 7

1e−4 20 292 0 200 458 0 18 7
wathen120 5e−1 11 380 0 200 385 0 31 8

1e−4 11 380 0 200 385 0 31 8
bcsstk05 5e−1 240 308 26 181 218 0 43 5

1e−4 241 292 0 200 240 0 40 5
gr 30 30 5e−1 44 467 0 200 272 1 42 4

1e−4 44 466 0 200 273 1 40 4
nos7 5e−1 0 0 978 0 0 0 - 4

1e−4 41 122 298 97 420 0 1 4
crystm01 5e−1 37 422 0 200 335 0 31 2

1e−4 37 421 0 200 336 0 31 2∑︁
or extrema 5e−1 486 2528 1224 1303 2296 1 24 8

1e−4 537 2666 298 1497 2839 1 1 8

Table 5.8: Detection performance, bit flip in uk

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 88 274 202 130 297 0 29 3

1e−4 99 331 0 200 361 0 29 3
bcsstm07 5e−1 29 472 0 200 289 0 31 4

1e−4 29 461 0 200 300 0 31 4
bundle1 5e−1 39 289 0 200 430 0 23 9

1e−4 39 272 0 200 447 0 21 9
wathen120 5e−1 3 385 0 200 393 0 29 9

1e−4 3 385 0 200 393 0 29 9
bcsstk05 5e−1 245 298 33 174 219 0 44 4

1e−4 246 274 0 200 249 0 43 4
gr 30 30 5e−1 39 485 0 200 271 0 39 4

1e−4 39 482 0 200 274 0 39 4
nos7 5e−1 0 0 988 0 0 0 - 4

1e−4 70 181 294 96 347 0 6 4
crystm01 5e−1 20 427 0 200 343 0 34 2

1e−4 20 427 0 200 343 0 34 2∑︁
or extrema 5e−1 463 2630 1223 1304 2242 0 23 9

1e−4 545 2813 294 1496 2714 0 6 9

Table 5.9: Detection performance, bit flip in wk

73

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 144 378 199 122 141 0 50 4

1e−4 173 430 0 200 181 0 49 4
bcsstm07 5e−1 129 493 0 200 160 0 52 4

1e−4 129 479 0 200 174 0 50 4
bundle1 5e−1 91 482 0 200 210 0 49 4

1e−4 91 470 0 200 222 0 48 4
wathen120 5e−1 126 425 0 200 231 0 47 4

1e−4 126 416 0 200 240 0 46 4
bcsstk05 5e−1 262 409 28 178 112 0 54 4

1e−4 265 394 0 200 130 0 52 4
gr 30 30 5e−1 117 508 0 200 159 0 53 4

1e−4 117 496 0 200 171 0 52 4
nos7 5e−1 0 0 986 0 0 0 - 4

1e−4 143 260 287 104 192 0 43 4
crystm01 5e−1 110 519 0 200 160 0 51 3

1e−4 110 505 0 200 174 0 49 3∑︁
or extrema 5e−1 979 3214 1213 1300 1173 0 47 4

1e−4 1154 3450 287 1504 1484 0 43 4

Table 5.10: Detection performance, bit flip in µk

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 162 361 206 127 133 0 50 3

1e−4 185 436 0 200 168 0 49 3
bcsstm07 5e−1 118 502 0 200 167 0 52 3

1e−4 118 493 0 200 176 0 52 3
bundle1 5e−1 141 462 0 200 192 0 49 3

1e−4 141 441 0 200 213 0 48 3
wathen120 5e−1 134 427 0 200 228 0 47 3

1e−4 134 416 0 200 239 0 46 3
bcsstk05 5e−1 250 409 27 180 119 0 53 3

1e−4 252 398 0 200 135 0 52 3
gr 30 30 5e−1 178 472 0 200 130 1 53 3

1e−4 178 459 0 200 143 1 52 3
nos7 5e−1 0 0 984 0 0 0 - 3

1e−4 144 332 295 100 113 0 47 3
crystm01 5e−1 136 458 0 200 193 0 50 2

1e−4 136 438 0 200 213 0 49 2∑︁
or extrema 5e−1 1119 3091 1217 1307 1162 1 47 3

1e−4 1288 3413 295 1500 1400 1 46 3

Table 5.11: Detection performance, bit flip in σk

74

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 169 372 210 128 114 0 51 3

1e−4 195 445 0 200 153 0 51 3
bcsstm07 5e−1 139 515 0 200 140 0 52 3

1e−4 139 498 0 200 157 0 52 3
bundle1 5e−1 132 459 0 200 195 0 48 3

1e−4 132 444 0 200 210 0 48 3
wathen120 5e−1 128 428 0 200 233 0 47 3

1e−4 128 418 0 200 243 0 46 3
bcsstk05 5e−1 248 408 34 177 121 0 54 3

1e−4 249 406 0 200 133 0 54 3
gr 30 30 5e−1 153 507 0 200 124 0 53 3

1e−4 153 483 0 200 148 0 51 3
nos7 5e−1 0 0 983 0 0 0 - 3

1e−4 165 307 313 100 98 0 51 3
crystm01 5e−1 125 497 0 200 163 0 50 2

1e−4 125 473 0 200 187 0 49 2∑︁
or extrema 5e−1 1094 3186 1227 1305 1090 0 47 3

1e−4 1286 3474 313 1500 1329 0 46 3

Table 5.12: Detection performance, bit flip in γk

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 155 333 197 130 170 0 50 3

1e−4 181 410 0 200 194 0 49 3
bcsstm07 5e−1 174 462 0 200 152 0 51 3

1e−4 174 462 0 200 152 0 51 3
bundle1 5e−1 139 413 0 200 228 0 46 3

1e−4 139 413 0 200 228 0 46 3
wathen120 5e−1 143 393 0 200 249 1 45 4

1e−4 143 393 0 200 249 1 45 4
bcsstk05 5e−1 261 361 29 175 157 0 52 3

1e−4 261 361 0 200 161 0 52 3
gr 30 30 5e−1 144 479 0 200 165 0 51 3

1e−4 144 479 0 200 165 0 51 3
nos7 5e−1 0 0 983 0 0 0 - 3

1e−4 178 285 299 96 135 0 48 2
crystm01 5e−1 142 423 0 200 223 1 48 3

1e−4 142 423 0 200 223 1 48 3∑︁
or extrema 5e−1 1158 2864 1219 1305 1344 2 45 4

1e−4 1362 3226 299 1496 1507 2 45 4

Table 5.13: Detection performance, bit flip in νk

75

matrix threshold tp sp fp tn sn fn snbit ovbit
1138 bus 5e−1 146 362 192 134 157 0 46 2

1e−4 163 277 0 200 351 0 31 2
bcsstm07 5e−1 112 504 0 200 174 0 44 2

1e−4 112 323 0 200 355 0 34 2
bundle1 5e−1 95 478 0 200 208 0 44 2

1e−4 95 308 0 200 378 0 31 2
wathen120 5e−1 133 370 0 200 286 0 41 2

1e−4 133 204 0 200 452 0 27 2
bcsstk05 5e−1 229 378 18 183 170 0 49 2

1e−4 229 221 0 200 328 0 33 2
gr 30 30 5e−1 111 493 0 200 183 0 50 2

1e−4 111 333 0 200 343 0 36 2
nos7 5e−1 0 0 992 0 0 0 - 2

1e−4 161 156 295 91 289 0 27 2
crystm01 5e−1 95 468 0 200 223 0 47 4

1e−4 95 289 0 200 402 0 33 4∑︁
or extrema 5e−1 921 3053 1202 1317 1401 0 41 4

1e−4 1099 2111 295 1491 2898 0 27 4

Table 5.14: Detection performance, bit flip in αk

5.2 Correction of silent errors

5.2.1 Fault-tolerant Pipe-PR-CG algorithm
The experiment presented in the previous section has demonstrated that the
combination of our detection methods is able to reliably detect majority of silent
errors which would destroy convergence of the Pipe-PR-CG algorithm. The prob-
lem at hand is now how to correct these errors. The approach we present here is
to perform a so-called rollback when the alarm is raised. Rolling back essentially
means to “return” the computation to an uncorrupted state before the detected
silent error has occurred. Therefore, in our case, to recover the computation we
have to “return” two iterations back, since our detection methods raise the alarm
either at the iteration when the error has occurred or one iteration later. This re-
covery approach was previously proposed in other studies investigating detection
and correction of silent errors, e.g., in [11].

Below in Algorithm 10 is a statement of the Fault-Tolerant Pipelined Predict-
and-Recompute Conjugate Gradient algorithm (FT-Pipe-PR-CG). Most of the
first half of the loop (line 4 and lines 9 to 18) is a standard unpreconditioned
Pipe-PR-CG routine, while the second half (lines 19 to 30) is newly added to
incorporate into the algorithm the detection and correction of silent faults. In-
cluded in lines 5 to 8 is also an utilization of the redundancy detection approach
for xk, so that we can uncover any silent errors in it, since, as was mentioned at
the end of the fourth chapter, none of our detection methods work for xk. Inputs
of the algorithm include, aside from the standard problem data A, b, and x0,
the constants ||A||, n, ϵ, and c, necessary for evaluation of the bounds, and the

76

threshold value T used in the |Bµ′
k

− ∆µ′
k
|/Bµ′

k
criterion.

As for the implementation of our detection methods, first the gaps (lines 19
to 21) and bounds (lines 22 to 24) are computed, and then in line 25 it is checked
whether an occurrence of a silent error is not indicated by any of the criteria.
If the alarm is raised we call a Recover() procedure (given in Algorithm 9) to
perform the two iteration rollback and we mark the iteration k+2 as “corrected”,
because otherwise, if the detection was falsely positive, the alarm would be raised
again indefinitely every two iterations. Although, it may theoretically happen
that another silent fault appears in an iteration we have marked as corrected,
the probability of this is generally rather low, since silent errors are a rare event
[12]. However, in cases where there is an extremely large number of false positive
detections, this may be a problem. We propose a way to remedy this later.

In fault-tolerant Pipe-PR-CG it is necessary to compute three additional inner
products, ⟨wk − w′

k, wk − w′
k⟩, ⟨pk−1, sk⟩, and ⟨pk, pk⟩, which do not appear in

the basic Pipe-PR-CG algorithm, for the sake of our detection criteria. Nonethe-
less, it is possible to couple their computation with the other inner products in line
17 of Algorithm 10, and, aside from ⟨wk − w′

k, wk − w′
k⟩, there is no serial depen-

dence on the matrix-vector multiplications. Therefore, the communication-hiding
and pipelining properties of Pipe-PR-CG are, to a certain degree, preserved. Note
that the procedure stated below is presented merely as a pseudocode. A practical
implementation of it would ideally include an effective utilization of the already
calculated variables for the computation of norms in lines 22 to 24.

As was already mentioned, the recover procedure is stated in Algorithm 9. It
implements a two iteration rollback. At that point the data should be without
any silent errors. We recover not only the data of index k which will be used in
the next iteration, but variables with index k − 1 as well. The reason for this is
that the indicated silent error could have occurred either at iteration k or k − 1,
because our detection criteria may raise the alarm one iteration after the error
has appeared. Therefore, by recovering variables of index k − 1 as well we ensure
that they are uncorrupted, and hence can be safely utilized to recover at iteration
k + 1 if needed.

Algorithm 9 Recover procedure of FT-Pipe-PR-CG
1: procedure Recover(·)
2: xk = xk−2, xk−1 = xk−3
3: rk = rk−2, rk−1 = rk−3
4: w′

k = w′
k−2, w′

k−1 = w′
k−3

5: ν ′
k = ν ′

k−2, ν ′
k−1 = ν ′

k−3
6: βk = βk−2, βk−1 = βk−3
7: pk = pk−2, pk−1 = pk−3
8: sk = sk−2, sk−1 = sk−3
9: uk = uk−2, uk−1 = uk−3

10: wk = wk−2, wk−1 = wk−3
11: µk = µk−2, µk−1 = µk−3
12: σk = σk−2, σk−1 = σk−3
13: γk = γk−2, γk−1 = γk−3
14: νk = νk−2, νk−1 = νk−3
15: αk = αk−2, αk−1 = αk−3
16: end procedure

77

Algorithm 10 Fault-Tolerant Pipelined Predict-and-Recompute Conjugate
Gradient: FT-Pipe-PR-CG

1: procedure FT-Pipe-PR-CG(A, b, x0, ||A||, n, ϵ, c, T)
2: INITIALIZE()
3: for k = 1, 2, . . . do
4: xk = xk−1 + αk−1pk−1

5: x̃k = xk−1 + αk−1pk−1

6: if xk ̸= x̃k

7: Go To 4
8: end if
9: rk = rk−1 − αk−1sk−1

10: w′
k = wk−1 − αk−1uk−1

11: ν ′
k = νk−1 − 2αk−1σk−1 + α2

k−1γk−1

12: βk = ν ′
k/νk−1

13: pk = rk + βkpk−1

14: sk = w′
k + βksk−1

15: uk = Ask

16: wk = Ark

17: µk = ⟨pk, sk⟩, σk = ⟨rk, sk⟩, γk = ⟨sk, sk⟩, νk = ⟨rk, rk⟩
18: αk = νk/µk

19: ∆ν′
k

= |νk − ν ′
k|

20: ∆w′
k

= ||wk − w′
k||

21: ∆µ′
k

= |µk − σk|
22: Bν′

k
= ϵ (21 + 6n)(||rk−1||2 + ||rk||2)

23: Bw′
k

= ϵ ||A|| ((c + 3)||rk|| + (c + 4)||rk−1|| + (c + 2) |αk−1| ||sk−1||)
24: Bµ′

k
= |βk| |⟨pk−1, sk⟩|+ϵ ||sk||(||rk||+2|βk| ||pk−1||+n (||pk||+ ||rk||))

25: if ∆ν′
k

> Bν′
k

or ∆w′
k

> Bw′
k

or ∆µ′
k

> Bµ′
k

or |Bµ′
k

− ∆µ′
k
|/Bµ′

k
< T

26: if k is not marked as corrected
27: Recover()
28: Mark k + 2 as corrected
29: end if
30: end if
31: end for
32: end procedure

The advantage of the rollback correction approach is that the algorithm is able
to universally recover from any detected silent error, no matter what variable it
occurred in. The disadvantage is that we need to allocate extra memory for
storing the variables from iterations k − 2 and k − 3.

78

5.2.2 Adaptive threshold refinement
The fault-tolerant Pipe-PR-CG as it is presented in Algorithm 10 should be able
to reliably detect and correct the majority of silent errors significant for conver-
gence. However, in the previous section (e.g., in Table 5.1) we have observed
that for some matrices there were many runs which resulted in a false positive
detection. Moreover, the experiment was categorizing the runs based only on the
first raising of the alarm. Hence, in some problematic cases there may potentially
be a large number of false positive detections during the computation. As a re-
sult of this, we would be performing many extra iterations owing to the rollback
recovery. However, we have also seen that the number of false positives decreases
with the value of the threshold parameter. This is a fact we could try to utilize.

The idea we propose here is to adapt the value of the threshold T during the
run of the algorithm to reflect how many times the alarm was raised. As was
mentioned, silent errors are rather rare events, so if the alarm is raised many times
we can safely assume that in most cases we did not truly detect a fault. In such
a situation it may be beneficial to lower the value of the threshold T to reduce
the number of false positive detections by the relative µ-gap/bound difference
criterion. This concept is presented below in the adaptive fault-tolerant Pipe-
PR-CG, shortly, AFT-Pipe-PR-CG (Algorithm 11), implemented in such a way
that we multiply T by an adaptation parameter a ∈ (0, 1) each time the alarm is
raised by the |Bµ′

k
− ∆µ′

k
|/Bµ′

k
criterion. Note that it is also possible to increase

the threshold when there is a large number of iterations without any alarm. But
in that case, it is necessary to set some upper limit for T .

Not only does the adaptive algorithm potentially greatly reduce the number
of false positive detections, it also allows us to eliminate the iteration marking.
In FT-Pipe-PR-CG, if the alarm was raised at some iteration k we have marked
iteration k + 2 as corrected, so that the procedure cannot get stuck in a loop.
However, this can be caused only by the relative µ-gap/bound difference criterion.
As was mentioned earlier, the three bound violation criteria raise the alarm only
when a silent error truly occurs, i.e., they do not cause false positive detections.
Thus, the procedure cannot get stuck because one of these criteria will indefinitely
force a recovery in some iteration. The relative µ-gap/bound difference criterion
could do this, but now, each time this method raises the alarm the threshold is
lowered. Therefore, sooner or later it will hold that T < |Bµ′

k
− ∆µ′

k
|/Bµ′

k
, and

the procedure will continue.
Figures 5.1 and 5.2 show the process of threshold adaptation for the matrix

nos7 and right-hand side b = e. The adaptivity parameter a was in the presented
runs set to 0.5 and 0.1, respectively. The initial threshold value was 5e−1, the
higher value used in the detection performance experiment earlier in this chapter.
Next to the variable names, it is noted how many recoveries, i.e., also detections,
there were in total during the computation. This number also includes alarms
raised after the bit flip by criteria other than the threshold violation by the relative
µ-gap/bound difference. Therefore, for some variables, e.g., w′

k, the number of
threshold adaptations was one less than the number of total detections indicated
in the figures. A violation of the threshold by the |Bµ′

k
−∆µ′

k
|/Bµ′

k
ratio in the flip

iteration or one iteration later is denoted by the diamond marker turning dark
blue.

In the above-mentioned figures, we observe that AFT-Pipe-PR-CG seems to

79

be able to suitably adapt the threshold, so that the number of false positive
detections is reduced, but at the same time the reliability of the detection is not
destroyed. Moreover, this holds not only for the more “conservative” choice of
the parameter a, but for the more “aggressive” variant a = 0.1 as well. Notable
also is that the ratio |Bµ′

k
− ∆µ′

k
|/Bµ′

k
no longer “jumps down” at the bit flip

iteration as was the case for the figures in the fourth chapter, e.g., in Figure 4.24.
This is because of the recovery procedure.

Algorithm 11 Adaptive Fault-Tolerant Pipelined Predict-and-Recompute
Conjugate Gradient: AFT-Pipe-PR-CG

1: procedure AFT-Pipe-PR-CG(A, b, x0, ||A||, n, ϵ, c, T , a)
2: INITIALIZE()
3: for k = 1, 2, . . . do
4: xk = xk−1 + αk−1pk−1

5: x̃k = xk−1 + αk−1pk−1

6: if xk ̸= x̃k

7: Go To 4
8: end if
9: rk = rk−1 − αk−1sk−1

10: w′
k = wk−1 − αk−1uk−1

11: ν ′
k = νk−1 − 2αk−1σk−1 + α2

k−1γk−1

12: βk = ν ′
k/νk−1

13: pk = rk + βkpk−1

14: sk = w′
k + βksk−1

15: uk = Ask

16: wk = Ark

17: µk = ⟨pk, sk⟩, σk = ⟨rk, sk⟩, γk = ⟨sk, sk⟩, νk = ⟨rk, rk⟩
18: αk = νk/µk

19: ∆ν′
k

= |νk − ν ′
k|

20: ∆w′
k

= ||wk − w′
k||

21: ∆µ′
k

= |µk − σk|
22: Bν′

k
= ϵ (21 + 6n)(||rk−1||2 + ||rk||2)

23: Bw′
k

= ϵ ||A|| ((c + 3)||rk|| + (c + 4)||rk−1|| + (c + 2) |αk−1| ||sk−1||)
24: Bµ′

k
= |βk| |⟨pk−1, sk⟩|+ϵ ||sk||(||rk||+2|βk| ||pk−1||+n (||pk||+ ||rk||))

25: if ∆ν′
k

> Bν′
k

or ∆w′
k

> Bw′
k

or ∆µ′
k

> Bµ′
k

or |Bµ′
k

− ∆µ′
k
|/Bµ′

k
< T

26: Recover()
27: if |Bµ′

k
− ∆µ′

k
|/Bµ′

k
< T

28: T = a · T

29: end if
30: end if
31: end for
32: end procedure

80

Figure 5.1: Adaptive threshold T for a = 0.5 (red) and the relative
µ-gap/bound difference, |Bµ′

k
− ∆µ′

k
|/Bµ′

k
, (black), matrix nos7

Figure 5.2: Adaptive threshold T for a = 0.1 (green) and the relative
µ-gap/bound difference, |Bµ′

k
− ∆µ′

k
|/Bµ′

k
, (black), matrix nos7

81

Although it seems from the figures above that the adaptive threshold refine-
ment works quite well, it is certainly appropriate to test it more thoroughly. For
this purpose, one final numerical experiment was performed. In it, we have in-
vestigated the detection reliability of AFT-Pipe-PR-CG and the average number
of alarms raised during its runs. The setup of this experiment was very similar to
that of the detection experiment at the beginning of this chapter. The choice of
the random problem parameters such as right-hand side or flip iteration was the
same. Identical also were the convergence criterion, the initial guess, and that
the already calculated variables were utilized for computation of the norms in the
detection criteria. The initial value of the threshold was set to 5e−1. For each of
the Pipe-PR-CG variables, excluding xk, 500 tainted runs were performed, i.e.,
there were 6500 runs in total for each matrix and choice of a. We have decided
to include in the experiment only the matrices 1138 bus and nos7, since for the
other matrices from our sample almost no false positives were indicated in the
large detection experiment (see, e.g., Table 5.1).

Please note that runs for the two chosen adaptation parameters a were per-
formed separately, unlike in the case of the experiment in the previous section
where the two threshold settings were tested on the same data. The reason for
this is that it would be rather difficult to deal with situations when one detection
set using the first parameter a does not raise the alarm, but the other detection set
using the second parameter a does, and thus it also wants to perform a rollback.
Nonetheless, the main purpose of this experiment was not a straight comparison
of the two choices of a, but rather to investigate whether the introduction of the
adaptive threshold refinement causes additional false negative detections, as well
as to get a notion of how many alarms there are in average in each run. Addition-
ally, we also obtain information about the number of extra iterations performed
due to the recoveries as this is twice the number of alarms.

Let us now explain the specifics of the experiment and how the runs were
classified. As we have done before, first an untainted run to obtain the number
of iterations needed to converge for the given right-hand side b was performed.
Then, we executed a tainted run of AFT-Pipe-PR-CG during which it was noted
whether the bit flip was detected and corrected (positive cases) or whether the
alarm was not raised (special/false negative cases based on the number of iter-
ations to converge) either in the flip iteration or in the following iteration. It
was also counted how many alarms, and therefore recoveries, were done during
each run. The average number of alarms is presented in Table 5.15 alongside
the run categorization. The positive cases were no longer sorted, since successful
detection leads to only two additional iterations, and thus the method always
converged within the given limit.

Investigating Table 5.15, we observe that the introduction of the adaptive
threshold refinement did not increase the number of false negative detections,
which remains at the same level as it was for the static threshold approach.
Moreover, by utilizing the adaptive strategy, we were able to restrict the number
of false positive detections to only a handful per run. This is especially impressive
for the matrix nos7, because of its rather high condition number and the large
number of false positive detections observed for it in the detection performance
experiment (see Table 5.1). Interesting also may be that the number of average
alarms is for the matrix 1138 bus very close to one. Nonetheless, this number

82

also includes the negative detections for which there were no alarms at the flip
iterations. In conclusion, this experiment has demonstrated that the AFT-Pipe-
PR-CG algorithm is strongly reliable and that it can, in combination with a
suitable parameter a, effectively reduce the number of extra iterations performed
due to recovery.

matrix a positive sn fn #alarms
1138 bus 0.5 4192 2232 4 1.057

0.1 4310 2117 2 1.010
nos7 0.5 3579 2846 1 13.655

0.1 3487 2942 1 4.784

Table 5.15: Performance of AFT-Pipe-PRCG

As a final remark, let us note that the threshold for the relative difference
of the µ-gap and the µ-bound may also be set based on estimation of the con-
dition number of the matrix A. In the detection experiment we have observed
that the higher the condition number of the matrix is, the more likely is a false
positive alarm. As was already mentioned, the norm ||A|| can be reasonably
estimated within few iterations of the Pipe-PR-CG algorithm. Additionally, it is
also possible to estimate the condition number [24], and thus, we could use this
information for setting the threshold value. However, this investigation is left for
future research.

83

Conclusion
This thesis has explored the problem of the detection and correction of silent
errors in the Pipe-PR-CG algorithm. To this end, we have first summarized
fundamental information regarding silent errors and various conjugate gradient
variants. Subsequently, in the third chapter, we have scrutinized the sensitivity
of Pipe-PR-CG to silent errors. The conclusion of this investigation was that
bit flips influence the convergence of the method more heavily when they occur
early in the computation. Additionally, it was observed that there exists a strong
correlation between the number of the flipped bit and the effect the fault has on
convergence.

After this, we have shifted our focus to the derivation of methods which would
be able to cheaply and reliably detect silent errors in Pipe-PR-CG. By utilizing
rounding error analysis, we have managed to bound the values of three so-called
“gaps” between variables which are equal in exact arithmetic. We have then
shown that the violation of these bounds by the computed gaps can be used
to detect silent errors in many, but not all, of the Pipe-PR-CG variables. In
order to detect faults in the variables not covered by the three bound violation
criteria, a fourth criterion, based on monitoring the relative difference between
the µ-gap and the µ-bound, has been constructed. All of these methods are
able to detect silent errors either immediately in the iteration in which they
occur or one iteration later. In the main experiment of the fifth chapter, it was
demonstrated that the union of the four derived criteria is able to reliably detect
the vast majority of silent errors which, if left uncorrected, would significantly
impact convergence of the method. In cases when the injected errors remained
undetected, the algorithm has almost always managed to recover and reach the
stopping criterion without serious delay.

In the final part of this work, we have incorporated the derived detection
methods along with a simple recovery procedure into the Pipe-PR-CG algorithm.
By this, we have constructed a fault-tolerant variant of Pipe-PR-CG, the FT-
Pipe-PR-CG method. The recovery in case of an indicated error was performed
by returning the computation to a state when the data were still uncorrupted,
i.e., two iterations back. However, it was noted that for some matrices the fault-
tolerant algorithm could be significantly slowed down by many extra iterations
due to recovery caused by a large number false positive detections. To remedy
this downside of FT-Pipe-PR-CG we have proposed the idea of adaptive threshold
refinement based on the number of detection alarms during the computation. The
resulting adaptive fault-tolerant algorithm, AFT-Pipe-PR-CG, has demonstrated
a particular ability to quickly adjust itself to the problem, and consequently,
to tremendously limit the number of false positive alarms. Moreover, this was
accomplished without negatively impacting the high detection reliability.

The main contribution of this thesis is the mathematical derivation of the
criteria for silent error detection in Pipe-PR-CG and the creation of AFT-Pipe-
PR-CG, a fast yet reliable fault-tolerant algorithm. For future research remains
the issue of modifying the presented detection criteria for use in preconditioned
systems as well as an efficient implementation of the fault-tolerant algorithms for
massively parallel machines.

84

Bibliography
[1] Tyler Chen and Erin Carson. Predict-and-recompute conjugate gradient

variants. SIAM Journal on Scientific Computing, 42(5):A3084–A3108, 2020.
URL https://epubs.siam.org/doi/10.1137/19M1276856.

[2] Lawrence Livermore National Laboratory. Introduction to paral-
lel computing tutorial. URL https://hpc.llnl.gov/documentation/
tutorials/introduction-parallel-computing-tutorial. (Last ac-
cessed on 2023/11/16).

[3] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Minimizing
communication in numerical linear algebra. SIAM Journal on Matrix Anal-
ysis and Applications, 32(3):866–901, 2011. doi: 10.1137/090769156. URL
https://doi.org/10.1137/090769156.

[4] Angskun T. Bosilca G. et al. Pješivac-Grbović, J. Performance analysis
of mpi collective operations. Cluster Computing, 10:127–143, 2007. URL
https://doi.org/10.1007/s10586-007-0012-0.

[5] Walter Gander, Martin J. Gander, and Felix Kwok. Scientific Computing -
An Introduction using Maple and MATLAB. First Edition. Springer Pub-
lishing, New York, 2014. ISBN 978-3-319-04325-8.

[6] David Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Comput. Surv., 23(1):5–48, mar 1991. ISSN 0360-
0300. doi: 10.1145/103162.103163. URL https://doi.org/10.1145/
103162.103163.

[7] Jakub Herćık. Comparison of iterative matrix methods for informa-
tion retrieval, 2022. URL http://hdl.handle.net/20.500.11956/173946.
Charles University, Faculty of Mathematics and Physics, Department of Nu-
merical Mathematics.

[8] Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of
IEEE 754-2008), pages 1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229.
URL https://ieeexplore.ieee.org/document/8766229.

[9] Erin Carson and Nicholas J. Higham. Accelerating the solution of linear
systems by iterative refinement in three precisions. SIAM Journal on Scien-
tific Computing, 40(2):A817–A847, 2018. doi: 10.1137/17M1140819. URL
https://doi.org/10.1137/17M1140819.

[10] Erik Jurjen Duintjer Tebbens, Iveta Hnětynková, Martin Plešinger, Zdeněk
Strakoš, and Petr Tichý. Analýza metod pro maticové výpočty : základńı
metody. Matfyzpress, Praha, 2012. ISBN 978-80-7378-201-6.

[11] G. Meurant. Detection and correction of silent errors in the conjugate gra-
dient algorithm. Numerical Algorithms, 92:869–891, 2023. URL https:
//doi.org/10.1007/s11075-022-01380-1.

85

https://epubs.siam.org/doi/10.1137/19M1276856
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://doi.org/10.1137/090769156
https://doi.org/10.1007/s10586-007-0012-0
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
http://hdl.handle.net/20.500.11956/173946
https://ieeexplore.ieee.org/document/8766229
https://doi.org/10.1137/17M1140819
https://doi.org/10.1007/s11075-022-01380-1
https://doi.org/10.1007/s11075-022-01380-1

[12] James Elliott, Mark Hoemmen, and Frank Mueller. Evaluating the impact
of SDC on the GMRES iterative solver. pages 1193–1202, 2014. doi: 10.
1109/IPDPS.2014.123. URL https://ieeexplore.ieee.org/document/
6877347.

[13] Emmanuel Agullo, Siegfried Cools, Emrullah Fatih Yetkin, Luc Giraud,
Nick Schenkels, and Wim Vanroose. On soft errors in the conjugate gra-
dient method: Sensitivity and robust numerical detection. SIAM Journal on
Scientific Computing, 42(6):C336–C358, 2020. URL https://epubs.siam.
org/doi/10.1137/18M122858X.

[14] J. Liesen and P. Tichý. Convergence analysis of krylov subspace methods.
Mitteilungen der Gesellschaft für Angewandte Mathematik und Mechanik, 27
(2):153–173, 2004. URL https://onlinelibrary.wiley.com/doi/epdf/
10.1002/gamm.201490008.

[15] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solv-
ing linear systems. Journal of Research of the National Bureau of Stan-
dards, 49(6), 1952. URL https://nvlpubs.nist.gov/nistpubs/jres/
049/jresv49n6p409_a1b.pdf.

[16] Zdeněk Strakoš and Jorg Liesen. Krylov Subspace Methods: Principles and
Analysis. Oxford University Press, 2015. ISBN 978-0198739043.

[17] Erin Carson, Miroslav Rozložńık, Zdeněk Strakoš, Petr Tichý, and Miroslav
Tůma. The numerical stability analysis of pipelined conjugate gradient meth-
ods: Historical context and methodology. SIAM Journal on Scientific Com-
puting, 40(5):A3549–A3580, 2018. URL https://epubs.siam.org/doi/10.
1137/16M1103361.

[18] Gérard Meurant. Multitasking the conjugate gradient method on the
cray x-mp/48. Parallel Computing, 5:267–280, 1987. URL https://www.
sciencedirect.com/science/article/abs/pii/0167819187900378.

[19] A.T. Chronopoulos and C.W. Gear. s-step iterative methods for symmetric
linear systems. Journal of Computational and Applied Mathematics, 25(2):
153–168, 1989. ISSN 0377-0427. doi: https://doi.org/10.1016/0377-0427(89)
90045-9. URL https://www.sciencedirect.com/science/article/pii/
0377042789900459.

[20] P. Ghysels and W. Vanroose. Hiding global synchronization latency in the
preconditioned conjugate gradient algorithm. Parallel Computing, 40(7):
224–238, 2014. URL https://doi.org/10.1016/j.parco.2013.06.001.

[21] The university of Florida. Suitesparse matrix collection. URL https://
sparse.tamu.edu. (Last accessed on 2023/11/25).

[22] Scott Griffiths. Python module bitstring. URL https://pypi.org/
project/bitstring/. (Version 4.1).

86

https://ieeexplore.ieee.org/document/6877347
https://ieeexplore.ieee.org/document/6877347
https://epubs.siam.org/doi/10.1137/18M122858X
https://epubs.siam.org/doi/10.1137/18M122858X
https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.201490008
https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.201490008
https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_a1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_a1b.pdf
https://epubs.siam.org/doi/10.1137/16M1103361
https://epubs.siam.org/doi/10.1137/16M1103361
https://www.sciencedirect.com/science/article/abs/pii/0167819187900378
https://www.sciencedirect.com/science/article/abs/pii/0167819187900378
https://www.sciencedirect.com/science/article/pii/0377042789900459
https://www.sciencedirect.com/science/article/pii/0377042789900459
https://doi.org/10.1016/j.parco.2013.06.001
https://sparse.tamu.edu
https://sparse.tamu.edu
https://pypi.org/project/bitstring/
https://pypi.org/project/bitstring/

[23] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1), dec 2011. ISSN 0098-3500.
doi: 10.1145/2049662.2049663. URL https://doi.org/10.1145/2049662.
2049663.

[24] G. Meurant and P. Tichý. Approximating the extreme ritz values and upper
bounds for the a-norm of the error in cg. Numerical Algorithms, 82:937–968,
2019. doi: https://doi.org/10.1007/s11075-018-0634-8. URL https://doi.
org/10.1007/s11075-018-0634-8.

87

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/s11075-018-0634-8
https://doi.org/10.1007/s11075-018-0634-8

List of Figures

2.1 Iteration diagram of HS-CG . 13
2.2 Iteration diagram of PR-CG . 15
2.3 Iteration diagram of Pipe-PR-CG 21
2.4 Norms of relative residual and relative true residual compared . . 24
2.5 Norms of the residual gap compared 24

3.1 Bit flip sensitivity: averages from all variables together 29
3.2 Bit flip sensitivity: averages from all variables side by side 29
3.3 Convergence curves of the relative residual ||rk||/||b|| when the

15th bit of βk is flipped for the matrix 1138 bus. The purple dotted
lines denote where the flips have occurred. 30

3.4 Residual convergence curves when various bits of σk are flipped in
the 100th iteration for the matrix bundle1 30

3.5 Bit flip sensitivity for xk . 31
3.6 Bit flip sensitivity for rk . 31
3.7 Bit flip sensitivity for w′

k . 31
3.8 Bit flip sensitivity for ν ′

k . 32
3.9 Bit flip sensitivity for βk . 32
3.10 Bit flip sensitivity for pk . 32
3.11 Bit flip sensitivity for sk . 33
3.12 Bit flip sensitivity for uk . 33
3.13 Bit flip sensitivity for wk . 33
3.14 Bit flip sensitivity for µk . 34
3.15 Bit flip sensitivity for σk . 34
3.16 Bit flip sensitivity for γk . 34
3.17 Bit flip sensitivity for νk . 35
3.18 Bit flip sensitivity for αk . 35
3.19 The ν-gap (|νk −ν ′

k|) when the 15th bit of γk is flipped in the 100th
iteration for the matrix bcsstm07 36

4.1 ν-gap (red) and ν-bound (blue) graph, matrix bundle1 42
4.2 ν-gap (red) and ν-bound (blue) graph, matrix bcsstm07 43
4.3 ν-gap (red) and ν-bound (blue) graph, matrix 1138 bus 43
4.4 ν-gap (red) and ν-bound (blue) graph, matrix nos7 44
4.5 w-gap (red) and w-bound (blue) graph, matrix bundle1 48
4.6 w-gap (red) and w-bound (blue) graph, matrix bcsstm07 48
4.7 w-gap (red) and w-bound (blue) graph, matrix 1138 bus 49
4.8 w-gap (red) and w-bound (blue) graph, matrix nos7 49
4.9 w-gap (red) and w-bound (blue) graph, matrix nos7, additional

experiment . 50
4.10 w-gap (red) and w-bound (blue) graph, matrix bcsstm07, addi-

tional experiment . 50
4.11 w-gap (red) and w-bound (blue) graph, matrix bundle1, additional

experiment . 51
4.12 µ-gap (red) and µ-bound (blue) graph, matrix bundle1 55

88

4.13 µ-gap (red) and µ-bound (blue) graph, matrix bcsstm07 55
4.14 µ-gap (red) and µ-bound (blue) graph, matrix 1138 bus 56
4.15 µ-gap (red) and µ-bound (blue) graph, matrix nos7 56
4.16 µ-gap (red) and µ-bound (blue) graph, matrix nos7 57
4.17 Blow-up of the µ-bound, matrix bundle1 : ||pk|| cyan, ||sk|| green,

||rk|| purple, |⟨pk−1, sk⟩| black . 57
4.18 Absolute µ-gap/bound difference, |Bµ′

k
− ∆µ′

k
|, matrix bcsstm07 . 59

4.19 Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix bundle1 60

4.20 Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix bcsstm07 60

4.21 Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix 1138 bus 61

4.22 Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix nos7 . 61

4.23 Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix nos7 . 62

4.24 Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix nos7 . 62

4.25 Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix 1138 bus 63

5.1 Adaptive threshold T for a = 0.5 (red) and the relative
µ-gap/bound difference, |Bµ′

k
− ∆µ′

k
|/Bµ′

k
, (black), matrix nos7 . 81

5.2 Adaptive threshold T for a = 0.1 (green) and the relative
µ-gap/bound difference, |Bµ′

k
− ∆µ′

k
|/Bµ′

k
, (black), matrix nos7 . 81

A.1 Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix aft01 . 94

89

List of Tables

1.1 Characterizations of IEEE Standard precisions 6
1.2 Relative perturbations |x̃ − x|/|x| when the i-th bit is flipped in

the number x (x flip effect−−−−−→ x̃) . 9

4.1 Efficacy of detection methods for each Pipe-PR-CG variable . . . 64

5.1 Detection performance, sum over all variables 69
5.2 Detection performance, bit flip in rk 70
5.3 Detection performance, bit flip in w′

k 70
5.4 Detection performance, bit flip in ν ′

k 71
5.5 Detection performance, bit flip in βk 71
5.6 Detection performance, bit flip in pk 72
5.7 Detection performance, bit flip in sk 72
5.8 Detection performance, bit flip in uk 73
5.9 Detection performance, bit flip in wk 73
5.10 Detection performance, bit flip in µk 74
5.11 Detection performance, bit flip in σk 74
5.12 Detection performance, bit flip in γk 75
5.13 Detection performance, bit flip in νk 75
5.14 Detection performance, bit flip in αk 76
5.15 Performance of AFT-Pipe-PRCG 83

90

A. Appendices

A.1 Initialization procedures
This appendix contains initialization procedures for all CG variants mentioned
in the thesis. The initializations are adapted from a general all-encompassing
initialization procedure presented in Appendix D of [1].

Algorithm A.1 Initialize (HS-CG and ChG-CG)
1: procedure Initialize(A, M, b, x0)
2: r0 = b − Ax0
3: ν0 = ⟨r̃0, r0⟩
4: p0 = r̃0
5: s0 = Ap0
6: α0 = ν0/⟨p0, s0⟩
7: end procedure

Algorithm A.2 Initialize (PR-CG)
1: procedure Initialize(A, M, b, x0)
2: r0 = b − Ax0, r̃0 = M−1r0
3: p0 = r̃0
4: s0 = Ap0, s̃0 = M−1s0
5: σ0 = ⟨r̃0, s0⟩
6: γ0 = ⟨s̃0, s0⟩
7: ν0 = ⟨r̃0, r0⟩
8: α0 = ν0/⟨p0, s0⟩
9: end procedure

Algorithm A.3 Initialize (M-CG)
1: procedure Initialize(A, M, b, x0)
2: r0 = b − Ax0, r̃0 = M−1r0
3: p0 = r̃0
4: s0 = Ap0, s̃0 = M−1s0
5: γ0 = ⟨s̃0, s0⟩
6: ν0 = ⟨r̃0, r0⟩
7: α0 = ν0/⟨p0, s0⟩
8: end procedure

91

Algorithm A.4 Initialize (Pipe-PR-CG)
1: procedure Initialize(A, M, b, x0)
2: r0 = b − Ax0, r̃0 = M−1r0
3: p0 = r̃0
4: s0 = Ap0, s̃0 = M−1s0
5: u0 = As̃0, ũ0 = M−1u0
6: w0 = Ar̃0, w̃0 = M−1w0
7: σ0 = ⟨r̃0, s0⟩
8: γ0 = ⟨s̃0, s0⟩
9: ν0 = ⟨r̃0, r0⟩

10: α0 = ν0/⟨p0, s0⟩
11: end procedure

Algorithm A.5 Initialize (Unpreconditioned Pipe-PR-CG)
1: procedure Initialize(A, b, x0)
2: r0 = b − Ax0
3: p0 = r0
4: s0 = Ap0
5: u0 = As0
6: w0 = Ar0
7: σ0 = ⟨r0, s0⟩
8: γ0 = ⟨s0, s0⟩
9: ν0 = ⟨r0, r0⟩

10: α0 = ν0/⟨p0, s0⟩
11: end procedure

Algorithm A.6 Initialize (Pipe-M-CG)
1: procedure Initialize(A, M, b, x0)
2: r0 = b − Ax0, r̃0 = M−1r0
3: p0 = r̃0
4: s0 = Ap0, s̃0 = M−1s0
5: u0 = As̃0, ũ0 = M−1u0
6: w0 = Ar̃0, w̃0 = M−1w0
7: γ0 = ⟨s̃0, s0⟩
8: ν0 = ⟨r̃0, r0⟩
9: α0 = ν0/⟨p0, s0⟩

10: end procedure

92

Algorithm A.7 Initialize (GV-CG)
1: procedure Initialize(A, M, b, x0)
2: r0 = b − Ax0, r̃0 = M−1r0
3: w0 = Ar̃0
4: ν0 = ⟨r̃0, r0⟩
5: p0 = r̃0
6: s0 = Ap0, s̃0 = M−1s0
7: u0 = As̃0
8: α0 = ν0/⟨p0, s0⟩
9: end procedure

Algorithm A.8 Initialize (FT-Pipe-PR-CG and AFT-Pipe-PR-CG)
1: procedure Initialize(A, b, x0)
2: x0 = x0
3: r0 = b − Ax0
4: p0 = r0
5: s0 = Ap0
6: u0 = As0
7: w0 = Ar0
8: w′

0 = w0
9: σ0 = ⟨r0, s0⟩

10: γ0 = ⟨s0, s0⟩
11: ν0 = ⟨r0, r0⟩
12: ν ′

0 = ν0
13: µ0 = ⟨p0, s0⟩
14: α0 = ν0/µ0
15: β0 = 1
16: Copy above variables into their versions with index −1 and −2,

e.g., x0 to x−1 and x−2.
17: ||r0|| = √

ν0
18: ||s0|| = √

γ0
19: ||p0|| = ||p0||
20: end procedure

Note that lines 17 to 19 in Algorithm A.8 are necessary for the computation
of Bν′

1
, Bw′

1
, and Bµ′

1
.

93

A.2 Behavior of the relative µ-gap/bound dif-
ference for the matrix aft01

All runs for this matrix would for both detection sets (union of the four detection
criteria with some set threshold) end up as false positive, since the thresholds
would be violated immediately at the start of the computation before any bit
flip. However, lowering the threshold would not result in a successful detection,
because the values of the relative µ-gap/bound difference at the flip iteration and
one iteration later are at the same level as when there are no flips at all.

Figure A.1: Relative µ-gap/bound difference, |Bµ′
k

− ∆µ′
k
|/Bµ′

k
, matrix aft01

94

	Introduction
	Theoretical background
	Pipelining and basic parallel terminology
	Finite precision arithmetic
	Silent errors

	Conjugate gradient and its variants
	Krylov subspace methods
	Conjugate gradient
	Communication-hiding conjugate gradient variants
	PR-CG
	M-CG
	ChG-CG

	Pipelined variants
	Pipe-PR-CG
	Other pipelined variants
	Comparison of variants

	Effects of silent errors on Pipe-PR-CG
	Sensitivity of convergence
	Other effects and error detection

	Relations for the detection of silent errors in Pipe-PR-CG
	ν-gap
	Derivation of bounds
	Numerical experiments

	w-gap
	Derivation of bounds
	Numerical experiments

	µ-gap
	Derivation of bounds
	Numerical experiments

	Summary of detection methods

	Fault-tolerant Pipe-PR-CG
	Detection testing
	Correction of silent errors
	Fault-tolerant Pipe-PR-CG algorithm
	Adaptive threshold refinement

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Appendices
	Initialization procedures
	Behavior of the relative µ-gap/bound difference for the matrix aft01

