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Abstract: The fluorescence-detected transient absorption (F-PP) technique has
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numerous advantages. However, several aspects of these spectra remain unex-
plored. In this thesis, we investigated some of them, including the characteriza-
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Introduction
Spectroscopic methods are invaluable for studying various properties of molecules,
each providing slightly different information. Absorption measurements allow us
to determine the energy levels of a molecule, while fluorescence excitation spec-
tra show how different excitation frequencies contribute to fluorescence at a fixed
frequency (this is described by Parson [2007] in detail). Conversely, fluorescence
emission spectra involve fixing the excitation frequency and measuring fluores-
cence intensity at various frequencies. To determine the structure of vibration
levels, we can measure infrared spectra. We can use IR spectra catalogues and
further techniques to process the data to reveal which functional groups are rep-
resented in the sample and estimate which molecule it is. This already gives us
a good idea of our sample but does not allow us to capture fast processes taking
place in it.

To observe quick dynamics in excited states, we have to study the response
of higher order and find out change in linear spectra. For instance, the pump-
probe is a very often used transient absorption spectroscopy method. There, we
are isolating the 3rd-order response. At first, we let our sample interact with
the excitation pulse (pump), and then after waiting time T , we detect a change
in absorption of the probe pulse caused by system’s interaction with the pump
and subsequent dynamics. To obtain the change in absorption, we subtract the
unpumped spectrum for each time T from the pumped spectrum measured by the
probe. Spectral resolution is provided by detection using a spectrophotometer,
which records the intensity of the individual frequencies contained in the probe,
which has passed through the sample.

Molecules are excited by the pump, and absorption of the probe is reduced
due to the reduced ground state population. On the other hand, excited state
absorption appears. In waiting time T, populations of excited states are decaying
at some rate into the ground state, which reduces the difference between the
pumped and unpumped spectrum. Transport from one excited state into another
will be reflected as an increase in absorption of the first one and a decrease in
absorption of the other. Further description of experimental design and signal
characteristics of pump-probe could be found, for example, in my bachelor’s thesis
Charvátová [2022].

Fluorescence-detected pump-probe spectroscopy (F-PP) is a new method in-
troduced by Malý and Brixner [2021], which modifies the conventional pump-
probe technique. Instead of using a probe to measure the absorption change,
we let the pump and probe interact with the sample and observe the fluores-
cence. The sample interacts with the pump and after waiting time TP u, two
probe pulses with time delay TP r between them are used to determine the change
in the fluorescence excitation spectrum (see picture 1). The fluorescence signal
is then collected by a detector for a long time after the last pulse. Thus, we
lose information about the time dependence of the signal intensity and its spec-
tral properties. The time dependence can be obtained, for example, by using
time-correlated single photon counting.

Subsequently, we perform a (discrete) Fourier transform over the variable TP r,
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Figure 1: Fluorescence-detected pump-probe spectroscopy diagram (edited image
was taken from an article by Malý and Brixner [2021]). Sample (green rectangle)
interacts with one pump pulse (blue) and after time TP u with two probes (orange)
distant from each other TP r. We measure a change in fluorescence signal (red glow
in the picture) caused by various TP u and TP r. Fourier transform over time TP r

gives us the F-PP spectrum.

which gives us F-PP spectrum dependent on frequency ω (retrieved from the
Fourier transform) and on time TP u between pump and probe. Again, we must
subtract the unpumped spectrum from the pumped one to obtain the change.

This approach offers many advantages and options. It is convenient to use
this method for highly scattering samples, for which there is a problem with
scattering the pulses and losing signal in the pump-probe. Moreover, according
to Malý and Brixner [2021], F-PP is more sensitive, enabling us to use fewer
measuring points, which is beneficial for samples with low photostability. It is
also possible to combine this method with a microscope, as Fersch et al. [2023]
show, which provides images where each region has its own F-PP spectrum. This
allows us to examine complex organic structures without more significant damage
in detail.

In further advancing the F-PP method, this thesis aims to investigate the
following properties:

• reduction in the visibility of dynamics due to exciton-exciton annihilation
(see section 3.3 about incoherent mixing)

• behaviour of the signal for negative times T (the sample interacts at first
with probes and then with pump, see section 3.2)

• use of the signal from negative times to improve visibility of dynamics,
which is reduced due to exciton-exciton annihilation

• signal behaviour around zero - pulse overlap (section 3.4)
• effect of a pulse chirp on the spectrum (subsection 3.5.2)
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1. Theoretical introduction to
used methods
In this chapter, we will discuss the main methods we usually use to describe the
molecular system’s dynamics during its interaction with light.

1.1 Master equation
The evolution of the density matrix Ŵ (t) of the system can be described by the
Liouville von Neumann equation

∂Ŵ (t)
∂t

= − i

ℏ
[Ĥ, Ŵ (t)] − i

ℏ
[Ĥ⊥, Ŵ (t)] + i

ℏ
[ ˆ⃗µ · ˆ⃗

E, Ŵ (t)] (1.1)

We have used dipole approximation, which allows us to use the matter-field in-
teraction operator in a form ˆ⃗µ · ˆ⃗

E (this is derived, for example, in a book by
Valkunas et al. [2013]). This approximation is justifiable because our systems are
at most about ∼ 10 nm in size, and the wavelength of used light is on the order
of the hundreds of nanometres.

Ĥ is Hamiltonian for the whole system, including the molecular system, its
environment, further referred to as bath, and their interaction. System-bath
interaction is responsible for system’s dynamics and is crucial in the whole prob-
lematics. Properties of the bath, for example, determine absorption line shape,
as will be shown in section 1.4.

ˆ⃗µ denotes transition dipole moment operator, which mediates transition be-
tween initial and final state. For two level system, we have

ˆ⃗µ = µeg|e⟩⟨g| + µge|g⟩⟨e|, (1.2)
where µeg is oscillator strength of particular transition. This parameter deter-
mines how strong will be this transition and whether it is allowed or not (in this
case, µeg is really small).

We will use semiclassical description with classical coherent electric field.
Thus, equation 1.1 becomes

∂Ŵ (t)
∂t

= − i

ℏ
[Ĥ, Ŵ (t)] + i

ℏ
[ ˆ⃗µ, Ŵ (t)] · E⃗(t) (1.3)

1.2 Multiparticle basis
It is convenient to use exciton states (multiparticle basis) to describe a system
with N weakly interacting molecules. Consider each molecule as a two-level sys-
tem characterized by energies ϵi

g and ϵi
e. Here, there is one basis vector for the

situation when all molecules are in the ground state

|g⟩ = |g1g2...gN⟩ = ΠN
i=1|gi⟩. (1.4)

5



We have N states, where one molecule is excited |e1g2...gN⟩,|g1e2...gN⟩,... State,
where the i-th molecule is excited, corresponds to the eigenvector

|ei⟩ = |g1g2...ei..gN⟩ =
N∏︂

j(̸=i)
|gj⟩|ei⟩, (1.5)

with energy
Ei =

∑︂
j(̸=i)

ϵj
g + ϵi

e (1.6)

There are
(︂

N
k

)︂
unique k-excitonic states. Excitonic state, where l,...,m-th molecule

is excited, could be described as:

|g1g2...el...em...gN⟩ =
N∏︂

j(̸=l... ̸=m)
|gj⟩|el⟩...|em⟩ (1.7)

with energy
El...m =

∑︂
j(̸=l,... ̸=m)

ϵj
g + ϵl

e + ... + ϵm
e (1.8)

1.3 Perturbative approach to the interaction of
the molecular system with light

The Liouville-von Neumann equation (1.3) can be solved in the interaction picture
with respect to the Hamiltonian Ĥ of the entire system, including bath (this was
described in detail by Valkunas et al. [2013] or Malý [2012]):

d

dt
Ŵ (I)(t) = iǓ0

†(t)V̌Ǔ0(t)Ŵ (I)E(t), (1.9)

Ǔ0 is evolution superoperator - operator, which acts on space of linear operators.
It is defined as Ǔ0 = e−iĽt, where Ľ denotes another superoperator Ľ• = 1

ℏ [Ĥ, •].
There, • represents any operator. Consequently, Ǔ0

†(t) is Hermitian conjugate
of evolution superoperator. V̌ is a superoperator, which could be defined as
V̌• = i

ℏ [µ̂, •]. Ŵ (I) = Ǔ0(t)Ŵ is density matrix in interaction picture.
We can directly integrate the equation. The solution remains dependent on its

own. Iteratively, we can obtain any order of the response (the order is determined
by the number of interactions with the electric field). Subsequently, we need to
revert from the interaction picture by applying the evolution superoperator of the
system to the entire equation. Finally, the reduced density matrix is calculated by
tracing the equation through all degrees of freedom of the bath ρ̂(t) = trB

(︂
Ŵ (t)

)︂
.

In fluorescence-detected pump-probe, we observe a 4th-order response

ρ̂(4)(t) =
∫︂∫︂∫︂∫︂

dt4dt3dt2dt1R
(4)(t1, t2, t3, t4)E(t − t4)

E(t − t4 − t3)E(t − t4 − t3 − t2)E(t − t4 − t3 − t2 − t1)
(1.10)

where
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TP rTP u

t

E(t)

Figure 1.1: Pulses used in the experiment. We change time delay TP u between
pump (blue) and probe (orange) and TP r between probes during F-PP experi-
ment.

R(4)(t1, t2, t3, t4) = trB{Ǔ0(t4)V̌Ǔ0(t3)V̌Ǔ0(t2)V̌Ǔ0(t1)V̌ ρ̂0} (1.11)
is a response function of the system. Time-dependent reduced density matrix
could be thus shown as a convolution between electric field and the system’s
response function.

As was mentioned, superoperator V̌ mediates the matter-field interaction
V̌ ρ̂ = i

ℏ [µ̂, ρ̂]. We have four superoperators of this kind, each producing two
terms because of the commutator; thus, we get eight terms in total. Four of them
are unique, and the other four are corresponding hermitian conjugations. We will
later describe these terms using Feynman’s diagrams.

We can see that we have somehow lost the scalar product, which was included
in ⃗̂µ · E⃗(t). Formally, according to Schott et al. [2014], we can get rid of this
dependence on orientations of molecular transition dipole moments and electric
fields polarization by orientational averaging. However, we can also measure
under so-called magic angle between vectors of polarizations of pump and probe
electric intensity, which removes the dependence too. This is not necessary in our
simulations, because our transition dipole moments are almost parallel.

Now, we will describe the electric field we use in the equation 1.10. The sample
interacts with the electric field of all used pulses. E(t) can be, as is also mentioned
in supporting information of article by Malý and Brixner [2021], written as

E(t) = EP u
0 (t)eiΦP u−iωP u

0 t + EP r
0 (t − TP u)eiΦP r1−iωP r

0 (t−TP u) (1.12)
+ EP r

0 (t − TP u − TP r)eiΦP r2−iωP r
0 (t−TP u−TP r) + c.c.

There, Ei
0(t′) denotes time dependent envelope of particular pulse with mean

frequency ωi
0 and phase Φi. From there we can see that the centres of interacting

pulses arrive to the sample location as follows: pump in time t = 0, first probe
in time TP u and the second probe at TP u + TP r as is shown in the picture 1.1.
For sufficiently small values of TP u (depending on the pulse width), pulse overlap
occurs. Hence, within the perturbation theory, we can get interactions in the
wrong order that contribute to a very complicated signal shape around time zero.
We did not write any dependence on wave vectors of the incident lights k⃗. This is
because we observe the fluorescence signal, which is omnidirectional by its nature.
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Spatial dependence is, thus, not important for us now. By inserting the equation
1.1 into equation 1.10, we will receive many terms oscillating on frequencies

ω =
∑︂

i

±ωi. (1.13)

If the pulse frequencies are added with a positive sign, we get a fast oscillating
term, which will contribute very little to the signal after integration and can
therefore be neglected, as was described e.g. by Malý [2012]. This is called
rotating wave approximation (RWA).

In similar way, each term has a phase as

Φs =
∑︂

i

±Φi. (1.14)

In F-PP, we observe signals with phase

Φs = −ΦP u + ΦP u − ΦP r1 + ΦP r2. (1.15)

This option also corresponds to the subtraction of frequencies in equation 1.13 to
zero. By appropriately choosing the phases, we can select detected signals. We
can do a batch of measurements with different phases of the pulses and finally
sum the signals. Some pathways will be cancelled, and this leads to isolating the
desired signals. This method is called phase cycling and is often used. We will
discuss this further in the section 1.6.

For very short pulses, we can eliminate convolutions in equation 1.10 (ap-
proximating the pulse envelope with a delta function), which greatly simplifies
the calculation.

Fluorescence signal depends on population of first excited state n and its
radiative rate KF ln . We can calculate F-PP signal as

F-PP(t) = Tr

(︄∑︂
n

|n⟩KF ln⟨n|ρ(4)(t)
)︄

(1.16)

As is described by Mukamel [1995], we have a special diagram for each term
from the response function (see picture 1.2). Each row represents some state
of the system, which has been evolving for some time tx; between each of any
two neighbouring rows, there is interaction with one of the pulses depicted by
an arrow. If the arrow is on the left side, the interaction with the field also
comes from the left and vice versa. Interaction from the right has a negative
sign due to the commutator. Consequently, a diagram with an odd number of
interactions/arrows from the right will have a negative sign.

In the picture 1.2, arrows for pump interaction are blue. The time between
both interactions is τ = 0. In TP u after pump comes first probe (orange arrow),
after time TP r second probe pulse arrives. Only diagrams that end in an excited
state are part of the detected signal. Two wavy red arrows at the top of each
diagram represent fluorescence emission into the ground state in time t.
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Figure 1.2: Main Liouville pathways for F-PP in Feynman diagrams (taken from
Malý and Brixner [2021]) depict four types of contributions to the signal in the
perturbative description of the system’s interaction with the pump pulse (blue
arrows) and probes (orange arrows). Red arrows feature fluorescence signal. The
system is at the beginning in the ground state |g⟩⟨g|. The letter e denotes an
excited state of the system, and f is a higher excited state (two-excitonic state
or single-excitonic state of higher energy). We can see diagrams for ground-
state bleach (GSB), stimulated emission (SE), excited-state absorption (ESA and
ESA 2).

There are four special types of these diagrams, as mentioned above. The
first one, ground state bleach (GSB), is in the ground state in time TP u between
interaction with the pump and the first probe. Other diagrams have all excited
states during this waiting time. In the case of stimulated emission (SE), the
first probe stimulates emission from the excited state, which leads to coherence
between the ground and the excited state. There are two excited state absorption
diagrams. The first probe excites the system into a higher excited state f in both of
them. For ESA, the system is returned to the first excited state by its interaction
with the second probe. ESA 2 pathway ends in a higher excited state; therefore,
it could contribute with two photons instead of only one, as do other pathways
(see section 1.5). Furthermore, it is the only diagram with a positive sign.

The diagrams could be divided into two groups - self-population pathways,
where there is interaction with only one molecule and cross-population diagrams,
where the field interact with two different molecules.

1.4 Line-shape function
In order to get the F-PP spectrum, we need to calculate the response function in
equation 1.11. For this, we need to know the exact shape of evolution superop-
erator of the system, which we can obtain by solving the following Liouville von
Neumann equation:

∂Ŵ (t)
∂t

= − i

ℏ
[ĤS, Ŵ (t)] − i

ℏ
[ĤB, Ŵ (t)] − i

ℏ
[HS−B, Ŵ (t)] (1.17)

where HS−B is interaction between system (our molecule or molecular system
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with hamiltonian HS) and bath (environment of the system, here approximated
by harmonic oscillators).

Hamiltonian for two level system and its bath could be written as

H = ϵg|g⟩⟨g| + (ϵe + λ)|e⟩⟨e|⏞ ⏟⏟ ⏞
HS

+
N∑︂

n=1

ℏωn

2
(︂
p2

n + q2
n

)︂
⏞ ⏟⏟ ⏞

HB

−
N∑︂

n=1
ℏωndnqn|e⟩⟨e|⏞ ⏟⏟ ⏞

HS−B

(1.18)

λ is reorganization energy, corresponding to the difference between the absorption
energy and the energy difference of the e and g levels. This difference arises
because the motion of the nuclei is too slow compared to the absorption process.
Thus, the excitation occurs in a higher vibrational state corresponding to the
excited state (vertical absorption). The same situation occurs for relaxation,
which gives us the value of Stokes shift as 2λ. q and p are in order canonical
coordinate and momentum. d is distance of minima of potentials of ground and
excited states in configurational coordinate q.

As in the case of interaction with the field, we will use the interaction picture to
solve the equation. According to Mukamel [1995], after some approximations we
will obtain an expression for time dependent element of reduced density matrix
between excited and ground state, using evolution superoperator Ǔ0(t) of the
system defined above, as follows

ρeg(t) = ⟨e|Ǔ0(t)ρ̂(0)|g⟩ = e−g(t)−iωegtρeg(0). (1.19)
g(t) is so-called line shape function, which is defined as

g(t) = 1
ℏ2

∫︂ t

0
dτ
∫︂ τ

0
dτ ′C(τ − τ ′), (1.20)

where C(t) is correlation function of the bath

C(t) = trB

(︂
Û †

B(t)∆V̂ ÛB(t)∆V̂ ˆ︁ωeq

)︂
. (1.21)

ω̂eq is density matrix for bath in equilibrium and ÛB(t) = e
i
ℏ ĤB is its evolution

operator. ∆V̂ = ∑︁N
n=1 ℏωndnqn is part of the system-bath interaction Hamiltonian

belonging to the bath. The correlation function describes the complex behaviour
of the bath and how fast and how much the bath changes over time. Fortunately,
the correlation function could be obtained experimentally, as was described by
de Boeij et al. [1996]. For fast oscillations, as was mentioned by May and Kühn
[2023], the correlation function could be approximated as Γegδ(t), which gives us
g(t) = Γegt and Lorentz line shape Geg(ω) ∼ Γeg

Γ2
eg+(ω−ωeg)2 . Further, we will denote

the line shape of the excitation spectrum as Geg(ω).

1.5 Incoherent mixing
Exciton-exciton annihilation (EEA) denotes a phenomenon wherein two excitons
coexisting within a sample interact, resulting in the elimination of all but one as
described by Bruschi et al. [2023]. Excess energy released by the relaxation of
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at least one of the excitons to the ground state is used to excite the remaining
excited molecule into a higher excited state. According to Kasha [1950], the emit-
ting level of a given multiplicity is the lowest excited level of that multiplicity.
Consequently, the molecule in question will undergo radiationless de-excitation
(internal conversion) to reach the lowest excited state, followed by radiative re-
laxation, resulting in a detected fluorescence signal. The fluorescence response is
accumulated in the detector long after the final pulse. Therefore, the time delay
caused by the internal conversion rate does not affect the detected signal. Un-
less we use time-correlated single photon counting or another method to obtain
time-dependence of the events subsequent to the last interaction with the pulse,
exciton-exciton annihilation could be described only as an additional, nonradiant,
relaxation channel for the multi-excitonic states.

Unless fluorescence rate constant Krecomb is much quicker than the rate con-
stant of EEA Kannih, exciton-exciton annihilation cannot be neglected. For a
system where Krecomb ≫ Kannih, both excited molecules in a two-excitonic state
will relax radiatively and contribute with two photons to the signal. A decrease
in the signal due to exciton-exciton annihilation could be neglected. On the other
hand, for Kannih ≫ Krecomb for a vast majority of two-excitonic states, exciton-
exciton annihilation will nonradiatively deexcitate one of the molecules, so only
one of them contributes with one photon to the signal. Depending on the ratio
between Krecomb and Kannih, a two-excitonic state contributes on average with
1 ≤ N ≤ 2 photons.

Without EEA, ESA 2 pathways are eliminated with ESA and GSBc cross-
population pathways (pulses interact with two different molecules). Therefore,
only SE and GSBs self-populations (pulses interact with only one molecule) con-
tribute to the signal. The signal of a sample with two different, non-interacting
molecules A and B is, thus, the same as the sum of signals of those two molecules
(see figure A.5). Conversely, if EEA is non-negligible, each ESA 2 pathway con-
tributes with fewer than two photons; thus, the aforementioned cancellation of
cross-population pathways remains incomplete, allowing their contribution to the
signal. As a result, the EEA mixes signals from otherwise independent molecules
according to Malý and Mančal [2018] or Bolzonello et al. [2023].

Provided that each ESA 2 pathway contributes with exactly one photon,
ESA 2 and ESA pathways cancel each other. GSB signal is increased by cross-
population GSBc signal. Because of this, the GSB signal is much stronger than
the signal belonging to SE. Bolzonello et al. [2023] also calculated, that the ra-
tio between stimulated emission and ground state bleach signal decreases with
growing number of molecules N in the sample as

SE

GSB
= SE

GSBs + GSBc
= N

N + N(N − 1) = 1
N

. (1.22)

For each molecule we have one SE diagram, the same holds for self-population
GSBs. But there are N(N − 1) cross-population GSBc diagrams, because for
each of N molecules, we have N − 1 options to choose the second one to form the
diagram.

To study SE properly, we should eliminate the additional GSBc signal, which
gives us a strong, unwanted background. It is also justified to use only one
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exciton approach because two excitons’ states are hardly observable. In F-PP
spectroscopy, at most two excitons can be created because it is a 4-th order
response theory (two interactions are needed to create one exciton).

1.6 Phase cycling
To isolate the desired nonlinear signal, we can cancel other pathways by cyclically
changing the phases of used pulses (phase cycling) as was described in detail by
Tan [2008].

The phase of the signal field is the linear combination of the phases of incident
pulses. Thus, by changing them, we can change the phase of the signal field
(see equation 1.15). In F-PP and F-2DES (see Figure 1.3), we are interested
in pathways ending in populations, which means that there must be an equal
number of interactions from left and right, which gives us the condition

α + β + γ + δ = 0. (1.23)
There, the Greek symbol denotes the number of interactions with the respective
pulse. A negative sign means interaction from the right, positive from the left.
If we have one interaction with the first pump pulse from the left and one from
the right, we get α = 0.

From this, we can easily conclude that different pathways have different to-
tal phases ΦS = αΦP u1 + βΦP u2 + γΦP r1 + δΦP r2. The signal is composed of
responses with various (α, β, γ, δ). To isolate the signal with the desired sig-
nature (α, β, γ, δ), we will perform a discrete Fourier transform (our variables
will be phases). According to Tan [2008] and Malý et al. [2020] we can ob-
tain specific contribution I ′

F l(β, γ, TP u, TP r) from the total fluorescence signal
IF l(l · ∆Φ21, m · ∆Φ31, TP u, TP r) as

I ′
F l(β, γ, TP u, TP r) = (1.24)

= 1
LM

M−1∑︂
m=0

L−1∑︂
l=0

IF l(l · ∆Φ21, m · ∆Φ31, TP u, TP r)e−ilβ∆Φ21e−imγ∆Φ31

where ∆Φ21 = 2π
L

and ∆Φ31 = 2π
M

. So in the l-th step we have Φ2 − Φ1 = l · 2π
L

.
We can choose phase of the pump as Φ1 = 0, so Φ21 = Φ2.

For example, by using the following sequence (ΦP u1 , ΦP u2 , Φ1, Φ2) = (0, 0, 0, 0)
and (0, π, 0, 0) the 4-th order response will disappear, because we get 1 and -1
from the phase factor for different phases and the contributions cancel each other.
Also, the pathways describing second-order response for the interaction with the
pump pulse will cancel due to phase cycling. Only interaction with probes will
remain unchanged, and we will obtain the excitation spectrum.

1.7 Fluorescence-detected two-dimensional
electronic spectroscopy

Fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) is an-
other method using fluorescence signal. The main difference between F-PP and
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F-2DES is that for F-2DES, we have two pump pulses with time delay τ . For
F-PP the system interacted twice with the same pump (practically we set τ = 0).
Feynman diagrams are the same for F-2DES as for F-PP (see figure 1.2) with an
exception to mentioned τ , which takes on different values (not only τ = 0). In
the F-2DES experiment, we measure signal for not only different TP r and TP u,
but also for τ . The Fourier transform from time to frequency variable is now
performed for TP r and τ . Kühn et al. [2019] described that this provides us ex-
citation frequency axis, in the thesis denoted as ωτ , and probing frequency axis
(for 2DES detection frequency axis), further denoted as ωTP u

.

Significantly simplified, for a system of two molecules A and B with differ-
ent energies, we can divide the F-2DES diagram into four quadrants. One axis
shows with which molecule (A or B) the pump pulses interacted, and the second
axis with which molecule probes interacted (see figure 1.3). The contribution is
called self-population if all pulses interact with only one molecule. On the other
hand, cross-population contributions correspond to pathways, where pulses in-
teract with both A and B molecules. Of course, because the excitation spectrum
has some width, there are not only points but circles, whose intensity decreases
with increasing radius (as the intensity in the excitation spectrum decreases for
frequencies far from the mean frequency). Moreover, the shape of the peaks in
F-2DES is often elongated and change in time, as described by Bruschi et al.
[2022]. This is clearly visible in the simulated and experimentally obtained F-
2DES spectra by Kunsel et al. [2018].

For each time TP u, we have a different diagram (the amplitude of the circles
is evolving in time). To obtain some time-dependent curve, we must compare
corresponding points in all diagrams of different TP u. Because we are primarily
interested in, for example, the dynamics of a population of the excited state of
molecule A, not in particular frequencies, it is common to integrate signals from
the whole quadrant and determine the time evolution of this quantity.

F-PP spectrum could be obtained from F-2DES by integrating over variable
ωτ . We can see in figures A.2, A.1, A.3 and A.4 that the difference between
F-PP and F-2DES spectra is only excess term Geg(ωτ ) which gives us additional
information about interaction with pump pulses.

1.8 Sign convention
Like Malý and Brixner [2021], in the whole thesis, we are using the transient
absorption convention of negative signals, which corresponds to reduce in fluo-
rescence signal caused by the probe pulse. This means that GSB, SE and ESA
contributions have negative sign and ESA 2 has positive sign. This is opposite
to the sign convention used by the F-2DES community.
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Figure 1.3: Illustration of four basic contributions to F-2DES spectra. The first
row contains self-population contributions. In the first one, all pulses interact
with molecule A. On the contrary, the second diagram in the first row corre-
sponds to interaction with only molecule B. In the second row, cross-population
contributions can be found. In the first diagram in the second row, pumps in-
teract with molecule B and probes with molecule A. For the last picture, the
situation is opposite - pumps interact with molecule A and probes with molecule
B. F-PP spectra could be obtained by integration over ωτ , diagrams in the left
column corresponds thus to F-PP signal from molecule A, the right column con-
tributes to F-PP signal from molecule B.
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2. Computational methods

2.1 Numerical approach in Quantarhei
Part of the master thesis involved integrating the fluorescence-detected transient
absorption spectroscopy method into the Quantarhei library in Python program-
ming language, a tool designed by Mančal [2020] for simulating spectroscopic
experiments on molecular quantum systems.

All simulations presented in this work were performed in this new program,
which uses a numerical approach based on the direct solution of a special form of
the Liouville von Neumann equation:

∂ρ

∂t
= − i

ℏ
[Hs, ρ(t)] − Rρ(t) + i

ℏ
[ ˆ⃗µ · E⃗, ρ(t)], (2.1)

where R is relaxation tensor in Lindblad form (see Valkunas et al. [2013]). This
tensor was constructed from input data such as rates of all transitions and dephas-
ing constants. Nevertheless, Quantarhei enables the use of pre-defined Redfield
or Förster tensor.

The concept of a multiparticle basis is used (see section 1.2). Solving the equa-
tion 2.1, we obtain a time-dependent reduced density matrix ρ(t, TP r, TP u), with
which we can calculate fluorescence signal using equation 1.16. Consequently, to
obtain F-PP spectrum, we perform a discrete Fourier transform (TP r −→ ωP r)
and subtract unpumped spectrum. For further research, we will always take
signal on particular frequencies, so-called traces, to describe the dynamics (see
picture 2.1).

Similarly to Malý and Brixner [2021], we do not consider Stokes shift in our
calculations. This is alright, because we do not distinguish the frequency of the
F-PP signal.

In this numerical approach, we can easily choose any experimental setup we
want - for example, pulses with a finite length, which would, in the perturbative
approach presented in section 1.3, lead to a very lengthy calculation of convolu-
tions. But for these benefits, we pay some price. Choosing the right parameters
for the numerical calculation - such as the time step - is very important. So
we can obtain accurate results in the shortest computing time possible. We can
change the time step in dynamics computation, watch if the correct dynamics
change, and subsequently choose the longest step to obtain the correct dynamics
(the same as for some very short time steps).

Evolution matrix is propagated using function propagate, there we can set all
necessary things needed for the propagation, such as time axis, hamiltonian of
the system, relaxation tensor, electric field and of course also transition dipole
moment. In all simulations, we have used a Taylor expansion of the propagator
exponential into second order with time step in propagation dt = 0.5 fs, time
step for TP r: 4 fs and for TP u time step 5 fs. We have used a partially rotating
frame, which allowed us to use a larger time step. Exactly as described by Malý
and Brixner [2021], our second probe has additional phase −(1 − γ)ω0t, where
ω0 is the mean frequency of the pulse. We have set γ = 0.2. Meanwhile, γ = 1
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corresponds to the laboratory frame, and γ = 0 is a fully rotating frame. Because
of this, as Malý and Brixner [2021] state, the phase between the probes is γω0.
This decreases the frequency of the coherent oscillations by (1 − γ)ω0, and with
slower oscillations, we can make larger time steps.

Detail comparison between perturbative and non-perturbative approaches was
written by Malý [2012].
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Figure 2.1: F-PP spectrum for heterodimer of two-level molecules AB. For further
research, we will always take signal on particular frequencies, so-called traces, to
describe the dynamics. Here, there are highlighted traces for frequencies ϵA =
13500 cm−1 (blue) and ϵB = 12500 cm−1 (pink). Signal was multiplied by 105.

2.2 Pulse properties
In this thesis, we use only Gaussian pulses. The negative-frequency part of the
electric intensity of these pulses could be described as follows (leaving out the
spatial dependence):

E−(t) = Ae−4·log(2)( t−t0
F W HM )2

eiω0teiϕ (2.2)
where A is the amplitude, chosen in such a way that after integration, we get the
pulse energy. FWHM is an abbreviation for full weight half maximum, which is
a parameter of the Gaussian-shaped envelope — it says how wide the peak is in its
half height. The whole wave packet is moving through space with group velocity
vg, while individual waves forming the packet each have their phase velocity.

16



In the frequency domain, which we can obtain from the time domain using
the Fourier transform, we can write (for t0 = 0)

E(ω) = A′e− (ω−ω0)2
16log(2) (F W HM)2

eiϕ (2.3)
We have used for all pulses FWHM = 15 fs except for chirped pulses, which have
special properties.

To remove unwanted contributions, we have used 3 × 3 phase cycling (three
different phases for both probes) isolating signals with signature (−1, 1, −1, 1).
The simulated signal was processed using the equation 1.24 and the phase was
cyclically changed as follows

(ΦP r1, ΦP r2) = (0, 0) ;
(︂
0, 2

3π
)︂

;
(︂
0, 4

3π
)︂

;
(︂

2
3π, 0

)︂
;
(︂

2
3π, 2

3π
)︂

; (2.4)(︂
2
3π, 4

3π
)︂

;
(︂

4
3π, 0

)︂
;
(︂

4
3π, 2

3π
)︂

;
(︂

4
3π, 4

3π
)︂

(2.5)

2.3 Chirp
Because the refraction index is dependent on the frequency of radiation, the
laser beam that went through a material with refractive index n(ω) gets a time-
dependent phase (see, for example, book by Trebino [2000]). This phenomenon is
called group-velocity dispersion because the group-velocity differs with frequency
in this material. The colours separate, and the wave packed gets wider with the
time it spends in this dispersive medium.

As a wave, the electric intensity depends on time and space coordinates.

E−(r⃗, t) = A(r⃗, t)e−ik⃗0·r⃗+iω0t, (2.6)
where A(r⃗, t) is a slow envelope of the pulse with mean frequency ω0. The absolute
value of wave vector k⃗ depends on the frequency and refractive index (which is
frequency dependent too), according to Boyd et al. [2008], we can write

k(ω) =
√︂

ϵ(ω)ω

c
. (2.7)

After leaving the optical component with refractive index n(ω) and permittivity
ϵ(ω), where the light travelled the path d, it gained additional phase

Φ(ω) = k(ω)d. (2.8)
The wave vector could be approximated using the second order of the Taylor
series (neglecting any nonlinearities) as

k(ω) = k(ω0) + ∂

∂ω
k(ω)|ω=ω0(ω − ω0) + 1

2
∂2

∂ω2 k(ω)|ω=ω0(ω − ω0)2. (2.9)

Using the definition of group velocity, we get

k(ω) = k(ω0)+k1(ω−ω0)+
1
2k2(ω−ω0)2 = k(ω0)+

1
vg

(ω−ω0)+
1
2

∂

∂ω

(︄
1
vg

)︄
(ω−ω0)2.

(2.10)
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k2 is also called the group-velocity dispersion parameter (GVD).

Now, we will use the inverse Fourier transform to obtain electric intensity in
the time domain after it leaves the optical component.

E(t) = 1
2π

∫︂ +∞

−∞
E(ω)eiωtdω (2.11)

We are interested mainly in the change of FWHM of the pulse and the time-
dependent phase change. This means that we can ignore the terms which con-
tribute only to the amplitude or constant phase. We will include them in the
changed amplitude (see, for example, the third term in the second row of the
following calculation). From equations 2.10, 2.8 and 2.3 we can write (using
c0 = k0d, c1 = k1d, c2 = k2d and ∆2 = F W HM2

4log(2) ):

E(t) =
∫︂ +∞

−∞
˜︁Ae− (ω−ω0)2

4 ∆2
eic0+ic1(ω−ω0)+ 1

2 ic2(ω−ω0)2
eiωtdω =

=
∫︂ +∞

−∞
˜︁Ae

−ω2
(︂

∆2
4 − 1

2 ic2

)︂
+iω

(︂
−i ∆2

2 ω0+c1−c2ω0+t

)︂
+
(︂

− ∆2
4 ω2

0+ic0−ic1ω0+ 1
2 ic2ω2

0

)︂
dω =

= |R = ∆2

4 − 1
2ic2, B = −i

∆2

2 ω0 + c1 − c2ω0 + t| =

=
∫︂ +∞

−∞

≈
Ae−ω2ReiωBdω =

= |F−1[
≈
Ae−Rω2 ](B) =

≈
A

1√
2
√

R
e− B2

4R | =

= A′e−
t2+2t

(︂
−c2ω0+c1−i

∆2ω0
2

)︂
+
(︂

−c2ω0+c1−i
∆2ω0

2

)︂2

4R = A′′e−
t2+2t

(︂
−c2ω0+c1−i

∆2ω0
2

)︂
4R =

= A′′e
−

t2+2t

(︂
−c2ω0+c1−i

∆2ω0
2

)︂
4(∆2

4 − 1
2 ic2)

(︂
∆2
4 + 1

2 ic2

)︂
(∆2

4 + 1
2 ic2) =

= A′′e
−

t2 ∆2
4 +2t[ ∆2

4 (−c2ω0+c1)+ ∆2
4 ω0c2]−i ∆2

4 ω0t+ic2t(−c2ω0+c1)+ 1
2 ic2t2

4(∆4
16 + 1

4 c2
2) =

= A′′′e
−

[t−c1]2 ∆2
4 −i[ ∆2

4 ω0+c2
2ω0−c1c2]t− 1

2 ic2t2

4(∆4
16 + 1

4 c2
2) =

= A′′′e
−

[t−c1]2 ∆2
4

(∆4
4 +c2

2) eiω0te

−ic1c2t

(∆4
4 +c2

2) e

− 1
2 ic2t2

(∆4
4 +c2

2) =

≈ A′′′e− [t−c1]2

∆′2 eiω0te− 1
2 ic′

2t2

(2.12)

By comparison with the expected result

E(t) = E0e
− (t−t0)2

∆′2 eiω(t−t0)+iϕ(t), (2.13)
where for the linearly chirped pulse is

ϕ(t) = ϕ0 + 1
2c′

2(t − t0)2 (2.14)

we get FWHM in the time domain for chirped pulse
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∆′ =

⌜⃓⃓⎷(︄∆2 + 4c2
2

∆2

)︄
(2.15)

and GVD in time domain
c′

2 = c2
1(︂

∆4

4 + c2
2

)︂ . (2.16)

Expressed in original variables, we get

FWHM ′ = ∆′
√︂

4ln(2) =

=

⌜⃓⃓⎷(︄∆2 + 4c2
2

∆2

)︄√︂
4ln(2) =

=

⌜⃓⃓⃓
⎷
⎛⎝FWHM2

4ln(2) + 4c2
2

F W HM2

4ln(2)

⎞⎠√︂4ln(2) =

=

⌜⃓⃓⎷(︄FWHM2 + 64ln(2)2c2
2

FWHM2 )
)︄

(2.17)

c′
2 = c2

1(︂
F W HM4

64log(2)2 + c2
2

)︂ (2.18)

Time dependence of the frequency could be obtained as

ω(t) = d

dt

(︃
ω0(t − t0) + ϕ0 + 1

2c′
2(t − t0)2

)︃
= ω0 + c′

2(t − t0). (2.19)

This means that lower frequencies will arrive earlier than higher frequencies.

The time delay between centres of Gaussians of two different frequencies in
chirped pulse

t1 − t2 = 1
vg1

− 1
vg2

= c2(ω2 − ω1) (2.20)

This looks like c2 = 1
c′

2
, which is not true. However, we have to be careful that

there is a difference between those two approaches. ω(t) gives us the average
frequency of the pulse in time t. On the other hand, from equation 2.20, we can
compute a time in which a given frequency has its maximum. ω(ti) = ϵA does not
necessarily mean that in time ti, frequency ϵA has its maximum in pulse spectrum
if we decompose the spectrum into different frequencies. We are interested in
the maximum of the particular frequencies, so we will start from the equation
2.20, based on the wanted time shift between ϵA and ϵB compute c2. From this
constant, we will compute c′

2, which directly appears in our code in the phase
definition (see equation 2.14). However, the difference between ω(t) and maxima
for particular frequencies from equation 2.20 is minimal. In the case we would
use equation 2.19, the time delay between ϵA = 13500 cm−1 and ϵB = 12500 cm−1

would change from 100 fs to 100.6 fs, which is under our detection resolution.
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3. Theoretical results

3.1 Used model
To examine the behaviour of F-PP spectra, we have used a model as basic as
possible - two two-level systems with different excited energies ϵA = 13500 cm−1

and ϵB = 12500 cm−1 creating weakly coupled heterodimer (see figure 3.1 and 3.2)
with energy transfer from the higher to the lower energy level with rate constant
KAB = 1

100 fs−1. All used parameters are summarized in section A.1.

For that heterodimer, we can write down all possible Liouville pathways (see
figures A.2,A.1, A.3, A.4). Each pulse can interact either with molecule A or
with molecule B. In our model, we use quick dephasing of the coherence between
the two excitons on the different molecules |A⟩⟨B| (see section A.1). Because of
this, we do not observe them in longer times. In this section, we will consider
only the pathways with populations in waiting time TP u before the pump and
probe. (The other pathways play a crucial role in the appearance of the spectra
near time zero, which will be further discussed in section 3.4.)

In the thesis, we consider relaxation to the ground state (with rate constant
Krecomb) to be much slower than all the other excitation dynamics. It thus doesn’t
have to be considered explicitly, allowing us to use only transport from molecule
A to molecule B with rate constant KAB and dephasing of the coherences as
dynamics in the waiting time TP u in Feynman diagrams.

Populations of |g⟩⟨g| and |B⟩⟨B| don’t thus evolve in time in comparison to
the rapid evolvement of population of |A⟩⟨A|, which is decaying with evolution
operator e−KABTP u . Consequently, the pathway containing transport from A to
B will evolve with the factor 1 − e−KABTP u .

For the system-bath interaction, we are using an approximation of quick oscil-
lations, where the bath’s correlation function is approximated with Γδ(t), which
gives us an evolution operator for coherence |g⟩⟨e| as eiωegt−Γegt and provides us
with Lorentz line-shape (see section 1.4). In the computations, we will denote
the line-shape for excitation spectra of molecule A as GAg (ω).

Energy transfer from A to B is very distinct in F-PP spectra. A signal on a
frequency corresponding to the transition from the ground state to the excited
state of molecule A is decreasing exponentially with the rate factor KAB. On the
other hand, the signal from molecule B is increasing at the same rate (see equation
3.1). If we include exciton-exciton annihilation (EEA), which is necessary unless
Kannih ≪ Krecomb, both A and B signals are increased by adding a constant signal
(according to equation 3.2). All simulations of F-PP spectra in this chapter are
for the above-mentioned system with EEA. Spectra for a system with negligible
EEA are presented in section A.6.
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F-PP ∼ −|µA|4GAg(ωTP r
) − |µA|2|µB|2GAg(ωTP r

)
− |µB|4GBg(ωTP r

) − |µA|2|µB|2GBg(ωTP r
)

− |µA|2|µB|2GBg(ωTP r
)
(︂
1 − e−KABTP u

)︂
− |µA|4GBg(ωTP r

)
− |µA|4GAg(ωTP r

)e−KABTP u − |µA|2|µB|2GBg(ωTP r
)e−KABTP u

− |µA|2|µB|2GAg(ωTP r
) − |µA|4GAg(ωTP r

)
(︂
1 − e−KABTP u

)︂
+ 2 · |µA|2|µB|2GBg(ωTP r

)e−KABTP u + 2 · |µA|2|µB|2GAg(ωTP r
)

+ 2 · |µA|4GAg(ωTP r
)
(︂
1 − e−KABTP u

)︂
=

= −2 · |µA|4GAg(ωTP r
)e−KABTP u

− 2 ·
(︂
|µB|4 + |µA|2|µB|2(1 − e−KABTP u)

)︂
GBg(ωTP r

) (3.1)

The same way for Krecomb ≪ Kannih, where ESA 2 pathways contribute with only
one photon each, we get

F − PP ∼ −
(︂
|µA|4 + |µA|2|µB|2 + |µA|4e−KABTP u

)︂
GAg(ωTP r

)

−
(︂
2 · |µB|4 + |µA|2|µB|2(2 − e−KABTP u)

)︂
GBg(ωTP r

) (3.2)

For TP u = 0 fs, the cross peaks in F-2DES will cancel each other (in the absence of
coupling) - see picture A.5 and equation 3.3. For weak coupling, ESA 2 pathways
are influenced by exciton-exciton annihilation; they contribute with only one
photon instead of two, the cancellation is incomplete, and cross peaks will appear
(see equation 3.4), which was mentioned, for example, by Malý and Mančal [2018].
The consequences are described in section 1.5 and section 3.3.

A diagonal peak depicting the transfer from A to B will appear in longer times

F-2DES ∼ −|µA|4GAg(ωTP r
)GAg(ωτ ) − |µA|2|µB|2GAg(ωTP r

)GBg(ωτ )
− |µB|4GBg(ωTP r

)GBg(ωτ ) − |µA|2|µB|2GBg(ωTP r
)GAg(ωτ )

− |µA|2|µB|2GBg(ωTP r
)
(︂
1 − e−KABTP u

)︂
GAg(ωτ ) − |µB|4GBg(ωTP r

)GBg(ωτ )
− |µA|4GAg(ωTP r

)e−KABTP uGAg(ωτ ) − |µA|2|µB|2GBg(ωTP r
)e−KABTP uGAg(ωτ )

− |µA|2|µB|2GAg(ωTP r
)GBg(ωτ ) − |µA|4GAg(ωTP r

)
(︂
1 − e−KABTP u

)︂
GAg(ωτ )

+ 2 · |µA|2|µB|2GBg(ωTP r
)e−KABTP uGAg(ωτ ) + 2 · |µA|2|µB|2GAg(ωTP r

)GBg(ωτ )
+ 2 · |µA|4GAg(ωTP r

)
(︂
1 − e−KABTP u

)︂
GAg(ωτ )

= − 2 · |µA|4e−KABTP uGAg(ωTP r
)GAg(ωτ )+

+ 0 · GAg(ωTP r
)GBg(ωτ )

− 2 · |µB|4GBg(ωTP r
)GBg(ωτ )

− 2|µA|2|µB|2
(︂
1 − e−KABTP u

)︂
GBg(ωTP r

)GAg(ωτ ) (3.3)
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For Krecomb ≪ Kannih we get

F-2DES ∼ − |µA|4
(︂
1 + e−KABTP u

)︂
GAg(ωTP r

)GAg(ωτ )+
− |µA|2|µB|2GAg(ωTP r

)GBg(ωτ )+
− 2 · |µB|4GBg(ωTP r

)GBg(ωτ )+
− |µA|2|µB|2

(︂
2 − e−KABTP u

)︂
GBg(ωTP r

)GAg(ωτ ) (3.4)
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Figure 3.1: Heterodimer AB with energies ϵA > ϵB, transition dipole moments µA

and µB, and with transmission rate constant from system A to system B KAB.
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3.2 Negative time signal
In negative waiting times, the system first interacts with both probes and then
with the pump. For Kannih ≪ Krecomb we can neglect the exciton-exciton annihi-
lation; the time evolution is then (according to figures A.7,A.6, A.8, A.9):

F-PP ∼
− |µA|4GAg(ωTP r

) − |µA|2|µB|2GBg(ωTP r
) − |µB|4GBg(ωTP r

)+
− |µA|2|µB|2GAg(ωTP r

) − |µA|2|µB|2GAg(ωTP r
)
(︂
1 − e−KAB |TP u|

)︂
+

− |µB|4GBg(ωTP r
) − |µA|4GAg(ωTP r

)e−KAB |TP u|+
− |µA|2|µB|2GAg(ωTP r

)e−KAB |TP u| − |µA|2|µB|2GBg(ωTP r
)+

− |µA|4GAg(ωTP r
)
(︂
1 − e−KAB |TP u|

)︂
+ 2 · |µA|2|µB|2GAg(ωTP r

)e−KAB |TP u|+

+ 2 · |µA|2|µB|2GBg(ωTP r
) + 2 · |µA|4GAg(ωTP r

)
(︂
1 − e−KAB |TP u|

)︂
=

=
(︂
−2 · |µA|2|µB|2 + 2

(︂
|µA|2|µB|2 − |µA|4

)︂
e−KAB |TP u|

)︂
GAg(ωTP r

)+
− 2 · |µB|4GBg(ωTP r

) (3.5)

For |µA| = |µB| = |µ|, we get

F-PP ∼ −2 · |µ|4GAg(ωTP r
) − 2 · |µ|4GBg(ωTP r

) (3.6)

Analogously for Krecomb ≪ Kannih, where ESA2 pathways contribute with only
one photon each, we get

F-PP ∼
(︂
−2 · |µA|2|µB|2 − |µA|4 +

(︂
|µA|2|µB|2 − |µA|4

)︂
e−KAB |TP u|

)︂
GAg(ωTP r

)

+
(︂
−|µA|2|µB|2 − 2 · |µB|4

)︂
GBg(ωTP r

) (3.7)

For |µA| = |µB| = |µ|, we get

F-PP ∼ −3 · |µ|4GAg(ωTP r
) − 3 · |µ|4GBg(ωTP r

) (3.8)

From this, it is easy to conclude that only if the oscillatory strengths of both
transitions are comparable, there is no time evolution in F-PP spectra in negative
times (when we neglect fluorescence rate). Moreover, the signal is the same for
both A and B. Nevertheless, in other cases, there is visible time dependence for
the signal from molecule A. If |µA| > |µB|, the second term in −2 · |µA|2|µB|2 −
|µA|4 + (|µA|2|µB|2 − |µA|4) e−KAB |TP u| is negative and with increasing |TP u| the
signal is (in absolute value) decreasing. This corresponds with our simulations in
graph 3.3. On the contrary, the second term is positive for |µA| < |µB|, and the
overall signal from A increases with |TP u| (see graph 3.4).
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F-2DES ∼
− |µA|2|µB|2GAg(ωTP r

)GBg(ωτ ) − |µA|4GAg(ωTP r
)GAg(ωτ )

− |µA|2|µB|2GBg(ωTP r
)GAg(ωτ ) − |µB|4GBg(ωTP r

)GBg(ωτ )
− |µA|2|µB|2GAg(ωTP r

)
(︂
1 − e−KAB |TP u|

)︂
GBg(ωτ ) − |µB|4GBg(ωTP r

)GBg(ωτ )
− |µA|4GAg(ωTP r

)e−KAB |TP u|GAg(ωτ ) − |µA|2|µB|2GAg(ωTP r
)e−KAB |TP u|GBg(ωτ )

− |µA|2|µB|2GBg(ωTP r
)GAg(ωτ ) − |µA|4GAg(ωTP r

)
(︂
1 − e−KAB |TP u|

)︂
GAg(ωτ )

+ 2 · |µA|2|µB|2GAg(ωTP r
)e−KAB |TP u|GBg(ωτ ) + 2 · |µA|2|µB|2GBg(ωTP r

)GAg(ωτ )
+ 2 · |µA|4GAg(ωTP r

)
(︂
1 − e−KAB |TP u|

)︂
GAg(ωτ ) =

= −2 · |µA|4e−KAB |TP u|GAg(ωTP r
)GAg(ωτ )+

− 2 · |µA|2|µB|2
(︂
1 − e−KAB |TP u|

)︂
GAg(ωTP r

)GBg(ωτ )+
+ 0 · GBg(ωTP r

)GAg(ωτ ) − 2 · |µB|4GBg(ωTP r
)GBg(ωτ ) (3.9)

For Krecomb ≪ Kannih again:

F-2DES ∼ − |µA|4
(︂
1 + e−KAB |TP u|

)︂
GAg(ωTP r

)GAg(ωτ )+

− |µA|2|µB|2
(︂
2 − e−KAB |TP u|

)︂
GAg(ωTP r

)GBg(ωτ )+
− |µA|2|µB|2GBg(ωTP r

)GAg(ωτ )+
− 2 · |µB|4GBg(ωTP r

)GBg(ωτ ) (3.10)

With or without EEA, F-2DES spectra in negative times are only Hermitian
conjugate of corresponding F-2DES spectra in positive times (see picture A.13).

Our goal was to find out how the F-PP signal behaves in negative times in
various conditions. For heterodimer AB with energy transfer from molecule A to
molecule B, there is visible dynamics in negative times, unless special situation
µA = µB applies. Then we have to distinguish between cases where µA > µB and
the signal from A is decreasing, the signal from B is constant and cases where
µA < µB. There, the signal from A is weak but increasing with |TP u| and the
signal from B is again constant. This holds for both cases, with or without EEA.

For F-2DES is the signal from negative times, regardless of µA and µB, Hermi-
tian conjugate of F-2DES spectrum in positive times for particular TP u. Again,
this is true regardless of whether we include EEA or not, but both for negative
and positive times, the situation must be, of course, the same.
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Figure 3.3: F-PP traces for frequencies ϵA and ϵB, µA = 2µB. We can see time
dependence for the signal from molecule A in negative times, because µA > µB,
signal from molecule A is (in absolute value) decreasing. Signal from molecule B
is constant.
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Figure 3.4: F-PP traces for frequencies ϵA and ϵB, µB = 2µA. Signal from
molecule A, although weak, is in negative times increasing with |TP u|. Signal
from molecule B is constant in negative times.
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3.3 Incoherent mixing
As was mentioned in section 1.5, exciton-exciton annihilation causes in F-PP
cancellation of ESA and ESA 2 pathways. Thus, cross-population GSB remains
intact, decreasing the ratio between SE and GSB to 1

N
. With an increasing

number of molecules, the dynamics became less and less visible, which could be
demonstrated by comparison of graph 3.5 for two molecules (A and B) and graph
3.6 for six molecules - three molecules A and three molecules B.

The idea of subtracting signal from negative times to obtain the right dynam-
ics as it would be without exciton-exciton annihilation was suggested at first by
Malý and Brixner [2021]. This concept is understandable and tempting because,
for many measurements (see, for example, chapter 4), the signal from negative
times seems to be constant, and also, the contribution of cross-population GSB
is time-independent. We can see now that the negative-time signal is constant in
time only for µA = µB. But there is still a chance that the dynamics would be in
such a form that it would be possible.

To confirm or refute this hypothesis, we need to find the correct constants C
and S, when we will subtract the signal from negative times multiplied by the
mentioned constant C from the signal from positive times multiplied by constant
S.

signalTP u>0,without EEA = S · signalTP u>0,with EEA − C · signalTP u<0,with EEA (3.11)

Now we will insert the results of the calculations 3.1, 3.2, 3.7 into the equation
3.11 and compare the terms.

F − PP ∼ −S ·
(︂
|µA|4 + |µA|2|µB|2 + |µA|4e−KABTP u

)︂
GAg(ωTP r

)

− S ·
(︂
2 · |µB|4 + |µA|2|µB|2(2 − e−KABTP u)

)︂
GBg(ωTP r

)

− C ·
(︂
−2 · |µA|2|µB|2 − |µA|4 +

(︂
|µA|2|µB|2 − |µA|4

)︂
e−KAB |TP u|

)︂
GAg(ωTP r

)

− C ·
(︂
−|µA|2|µB|2 − 2 · |µB|4

)︂
GBg(ωTP r

) =
= −2 · |µA|4e−KABTP uGAg(ωTP r

)
− 2 ·

(︂
|µB|4 + |µA|2|µB|2(1 − e−KABTP u)

)︂
GBg(ωTP r

) (3.12)

Because this must hold for each time TP u, we have to compare the coefficients
between terms with e−KABTP u and constant terms separately.

For signal from molecule A, we get:

C = 2µ2
A

µ2
A + µ2

B

(3.13)

S = 2 − 2 · µ2
B − µ2

A

µ2
A + µ2

B

. (3.14)

For µA = µB, we get C = 1 and S = 2.
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Solution for signal from molecule B is

C = 2 (µ2
A + µ2

B)
µ2

A + 2µ2
B

(3.15)

S = 2. (3.16)

And for µA = µB we get C = 4
3 and S = 2.

We can see that the coefficients S and C are different for traces for ϵA and
for ϵB (even for µA = µB when traces are constant in negative times). We must
subtract negative times from positive times for each frequency in the spectrum
separately. This does not make sense for more complex systems. Furthermore,
the spectrum is more or less continuous, depending on the resolution. Finally,
expressions for coefficients depend on the oscillatory strengths of participating
transitions, making it even more complicated.

We wanted to investigate if it is possible to obtain PP spectra (or F-PP
spectra without EEA) simply by subtracting F-PP spectra in negative times from
F-PP spectra in positive times with quick exciton-exciton annihilation. This
would significantly improve the visibility of dynamics, which is now worsened
due to incoherent mixing. In this section, we have shown that even for the
special situation µA = µB, it is almost impossible to subtract the signal from
negative times to obtain the signal from positive times without EEA. However,
the dynamics are still visible, and therefore, the advantages of F-PP still outweigh
its disadvantages.

−18
−17
−16
−15
−14
−13
−12
−11
−10
−9

−150 −100 −50 0 50 100 150

F-
PP

tr
ac

es
[a

.u
.·1

07 ]

time delay between pump and probe [fs]

12500 cm−1

13500 cm−1

Figure 3.5: F-PP traces for frequencies ϵA and ϵB, two molecules (one molecule
A and one molecule B, µA = µB). The signal from molecule A is decreasing in
time, and the signal from molecule B is increasing. Signal in negative times is
constant both for A and B.
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Figure 3.6: F-PP traces for frequencies ϵA and ϵB for six molecules (three
molecules A and three molecules B, µA = µB). Although the dynamics is less
visible due to EEA, the signal from molecule A is still decreasing in time, and the
signal from molecule B is increasing. Signal in negative times remains constant
both for A and B.
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3.4 Time zero
If the waiting time between the pump and the first of the probes is around zero,
we can see two more types of contribution to the signal in addition to the later
times. The first one is, naturally, pulse overlap. If T = 0, there is no restriction
on which pulse the system should interact first. This leads to pathways depicting
all possible combinations of the order of interactions, including, for example, one
where it interacts at first with the pump, then with both probes, and then again
with the pump.

Moreover, pathways with coherences in the waiting time, previously dampened
by quick dephasing, became visible. All main contributions for the overlapping
pump and probe are shown in picture 3.7. |1⟩ is either |A⟩ or |B⟩, |2⟩ is the
excited state of the other molecule than in |1⟩. x in |x⟩ could stand both for A
and B, independent of what molecule 1 is. Gyg(ω) then denotes absorption line
shape centred in the frequency of molecule y, which is complementary to x (if x
is A, then y is B and vice versa). Because of interaction with the bath, we have
a line broadening of molecules A and B’s absorption/excitation spectrum. From
the excitation spectrum in graph 3.2, we can see that the spectrum of both A
and B contains, for example, frequency 13000 cm−1. Because of this, coherences
such as |A⟩⟨13000| contribute to the spectrum.

The shape of the peak of the traces around TP u = 0 is complicated because
we need to perform the time convolutions in the perturbative picture used for the
interpretation of influence of the pulse spectra shape. Moreover, we can see that
it drastically changes if we neglect EEA (see graphs in section A.6). Besides, the
pulse’s shape heavily influences the peak’s shape in time zero. As was mentioned
by Malý and Brixner [2021], in fluorescence-detected pump-probe spectroscopy,
we are not able to remove the dependence of the pulse shape as is easily done by
division in pump-probe spectra. Thus, it is impossible to predict the resulting
shape easily based only on computations with delta pulses. As a result, many
scientists (for example, Paleček et al. [2019]) avoid time zero and start measuring
spectra for times after the pulse-overlap peak.

The purpose of this section was to show that behaviour around time zero is
complicated and reflects properties of not only the investigated system but also
of used pulses. We have shown that the peak in time zero is caused by pulse
overlap and oscillations; all possible contributions are summarised in figure 3.7.
Although it is hard to conclude the shape of the traces during pulse overlap, these
diagrams will be helpful in subsection 3.5.2.

30



| 2 ⟩

| 2 ⟩

| g ⟩

| 1 ⟩

| g ⟩

⟨ 2 |

⟨ g |

⟨ g |

⟨ g |

⟨ g |

τ = 0

T2 = 0

TP r

t

G2g(ω)

Pu

Pu

Pr1

Pr2

| 2 ⟩

| 2 ⟩

| g ⟩

| 1 ⟩

| g ⟩

⟨ 2 |

⟨ g |

⟨ g |

⟨ g |

⟨ g |

τ = 0

T1 = 0

TP r

t

G2g(ω)

Pu

Pr1

Pu
Pr2

| 2 ⟩

| 2 ⟩

| g ⟩

| 1 ⟩

| g ⟩

⟨ 2 |

⟨ g |

⟨ g |

⟨ g |

⟨ g |

τ = 0

T1 = 0

TP r

t

G2g(ω)

Pr1

Pu

Pu
Pr2

| 2 ⟩

| 2 ⟩

| 2 ⟩

| 2 ⟩

| g ⟩

⟨ 2 |

⟨ g |

⟨ 1 |

⟨ g |

⟨ g |

τ = 0

T2 = 0

TP r

t

G2g(ω)

Pu
Pu

Pr1

Pr2

| 2 ⟩

| 2 ⟩

| 2 ⟩

| 2 ⟩

| g ⟩

⟨ 2 |

⟨ g |

⟨ 1 |

⟨ g |

⟨ g |

τ = 0

T1 = 0

TP r

t

G2g(ω)

Pu
Pr1

Pu

Pr2

| 2 ⟩

| 2 ⟩

| 2 ⟩

| 2 ⟩

| g ⟩

⟨ 2 |

⟨ g |

⟨ 1 |

⟨ g |

⟨ g |

τ = 0

T2 = 0

TP r

t

G2g(ω)

Pr1

Pu

Pu

Pr2

| x ⟩

|12⟩

| 1 ⟩

| 1 ⟩

| g ⟩

⟨ x |

⟨ x |

⟨ x |

⟨ g |

⟨ g |

Gyg(ω)

Pu
Pu

Pr1

Pr2

τ = 0

T2 = 0

TP r

t | x ⟩

|12⟩

| 1 ⟩

| 1 ⟩

| g ⟩

⟨ x |

⟨ x |

⟨ x |

⟨ g |

⟨ g |

Gyg(ω)

Pu
Pr1

Pu

Pr2

τ = 0

Tx = 0

TP r

t | x ⟩

|12⟩

| 1 ⟩

| 1 ⟩

| g ⟩

⟨ x |

⟨ x |

⟨ x |

⟨ g |

⟨ g |

Gyg(ω)

Pr1

Pu

Pu

Pr2

τ = 0

T1 = 0

TP r

t

|12⟩

|12⟩

| 1 ⟩

| 1 ⟩

| g ⟩

⟨12|

⟨ x |

⟨ x |

⟨ g |

⟨ g |

Gyg(ω)

Pu
Pu

Pr1

Pr2

τ = 0

T2 = 0

TP r

t |12⟩

|12⟩

| 1 ⟩

| 1 ⟩

| g ⟩

⟨12|

⟨ x |

⟨ x |

⟨ g |

⟨ g |

Gyg(ω)

Pu
Pr1

Pu

Pr2

τ = 0

Tx = 0

TP r

t |12⟩

|12⟩

| 1 ⟩

| 1 ⟩

| g ⟩

⟨12|

⟨ x |

⟨ x |

⟨ g |

⟨ g |

Gyg(ω)

Pr1

Pu

Pu

Pr2

τ = 0

T1 = 0

TP r

t

Figure 3.7: Contributions to the signal for T = 0 fs.
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3.5 Chirped pulses and selective excitation

3.5.1 Selective excitation
To verify that our simulations are correct, we can test them on selective excitation,
the outcome of which could be easily deduced from Feynman diagrams.

In experiments, we tend to use broad-spectrum pulses for probes. This means
for transform-limited pulses that the FWHM is about 15 fs in the time domain.
In reality, the pulse duration can sometimes be even 1 ps due to the chirp of
the pulse (see section 2.3 and subsection 3.5.2). On the other hand, if we want,
for example, to selectively excite with the pump only one of two molecules in the
dimer, the pump must be as narrow in the frequency domain as possible. Because
of the time-energy uncertainty relation (described, for example, by Busch [2002]),
FWHM in the time domain must be broader. We cannot afford to lose the time
distinction, therefore we should find some compromise.

In our computation, we have again used pulses with FWHM = 15 fs, and
even for that, the change in dynamics was clearly visible. The only change was,
thus, different excitation frequency. Until now, we have used the mean frequency
of the pulse 13000 cm−1, which is the average of energies ϵA = 13500 cm−1 and
ϵB = 12500 cm−1. For the selective excitation, we will now use a pump with a
mean frequency corresponding to the energy of the excited state of one of the
molecules.

When we selectively excite with pump molecule B only, in waiting time TP u

there is only |B⟩⟨B| population or ground state until the probe pulses arrive.
These populations do not, in our approximation, evolve in time. Consequently,
there will be no visible time evolution. The signal of molecule A will practically
disappear because the negative contribution of GSB and ESA to A signal is
cancelled with a positive contribution of ESA 2 for Krecomb ≪ Kannih (see equation
3.18). On the other hand, if we selectively excite molecule A, there will be visible
transport from A to B, which causes (in absolute value) a decrease of signal from
A and an increase of signal from B (see equations 3.26 and 3.28).

In the negative times, we can observe some dynamics, contrary to the F-
PP spectra for 13000 cm−1 pump frequency (and, of course, again µA = µB).
For the selective excitation of molecule B, the signal from molecule A should be
increasing, and the signal from molecule B is constant (see equations 3.22 and
3.24). For the ideal case of selective excitation of molecule B, we can observe the
dynamics only in negative times on frequency corresponding to molecule A, which
is obvious because in negative times are pump and probe reversed in time; probes
interact first, creating a population of A (probe pulse has broad-spectrum) which
is decaying with time |TP u|. In all other cases, there could be only a population
of molecule B in waiting time TP u or ground state.

For the selective excitation of molecule A, the F-PP signal of molecule A is in
negative times decreasing, the signal from B is constant (see equation 3.30) and
disappears in the absence of EEA (equation 3.32).

This is consistent with the simulations in the graphs 3.8 and 3.9.
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Coherences between A and B will also be strongly suppressed because to
obtain a coherence pathway that contributes to the signal, we need the pump to
interact once with molecule A and once with molecule B. This is, of course, only
possible if the frequencies of the other molecule absorption spectrum are included
in the pump spectrum.

It is important to note that the spectrum of the pulses we used for the sim-
ulation contained both absorption frequencies of molecules A and B (although
one was always weak). Because of this, we can still see faint signals from other
pathways. This causes, for example, slight time evolution in positive times for
selective excitation of molecule B in graph 3.8, which should be constant based
on our theoretical predictions. Although we are not supposed to see oscillations
in the spectra, they are present precisely because of the above-mentioned rea-
son. All these deviations from the calculations were significantly reduced when
choosing a pump with FWHM 30 fs as could be seen in graphs A.14 and A.15.

To complement the above considerations, we can write the results of the cal-
culations for selective excitation with a pump with frequency ϵB in positive times
(for the case where we neglect the EEA):

F-PP ∼ 0 · GAg(ωTP r
) − 2 · µ4

BGBg(ωTP r
) (3.17)

F-2DES ∼ 0 · GAg(ωTP r
)GBg(ωτ ) − 2 · µ4

BGBg(ωTP r
)GBg(ωτ ) (3.18)

For Kannih ≪ Krecomb, ωP u ∼ ϵB, TP u > 0 we get

F-PP ∼ −µ2
Aµ2

B · GAg(ωTP r
) − 2 · µ4

BGBg(ωTP r
) (3.19)

F-2DES ∼ −µ2
Aµ2

B · GAg(ωTP r
)GBg(ωτ ) − 2 · µ4

BGBg(ωTP r
)GBg(ωτ ) (3.20)

For the negative times TP u < 0, we get for ωP u ∼ ϵB and Krecomb ≪ Kannih:

F-PP ∼ − 2 · µ2
Aµ2

B

(︂
1 − e−KAB |TP u|

)︂
GAg(ωTP r

) − 2 · µ4
BGBg(ωTP r

) (3.21)

F-2DES ∼ − 2 · µ2
Aµ2

B

(︂
1 − e−KAB |TP u|

)︂
GAg(ωTP r

)GBg(ωτ )
− 2 · µ4

BGBg(ωTP r
)GBg(ωτ ) (3.22)

and for Kannih ≪ Krecomb, ωP u ∼ ϵB, TP u < 0:

F-PP ∼ − µ2
Aµ2

B

(︂
2 − e−KAB |TP u|

)︂
GAg(ωTP r

) − 2 · µ4
BGBg(ωTP r

) (3.23)

F-2DES ∼ − µ2
Aµ2

B

(︂
2 − e−KAB |TP u|

)︂
GAg(ωTP r

)GBg(ωτ )
− 2 · µ4

BGBg(ωTP r
)GBg(ωτ ) (3.24)

Now we will write results of the same calculations, now for selective excitation
with pump with frequency ϵA.

TP u > 0, ωP u ∼ ϵA, and Krecomb ≪ Kannih:

F-PP ∼ − 2 · µ4
Ae−KABTP uGAg(ωTP r

) − 2 · µ2
Aµ2

B

(︂
1 − e−KABTP u

)︂
GBg(ωTP r

)
(3.25)

F-2DES ∼ − 2 · µ4
Ae−KABTP uGAg(ωTP r

)Gag(ωτ )
− 2 · µ2

Aµ2
B

(︂
1 − e−KABTP u

)︂
GBg(ωTP r

)GAg(ωτ ) (3.26)
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TP u > 0, ωP u ∼ ϵA and Kannih ≪ Krecomb:

F-PP ∼ − µ4
A

(︂
1 + e−KABTP u

)︂
GAg(ωTP r

) − µ2
Aµ2

B

(︂
2 − e−KABTP u

)︂
GBg(ωTP r

)
(3.27)

F-2DES ∼ − µ4
a

(︂
1 + e−KABTP u

)︂
GAg(ωTP r

)GAg(ωτ )

− µ2
Aµ2

B

(︂
2 − e−KABTP u

)︂
GBg(ωTP r

)GAg(ωτ ) (3.28)

TP u < 0, ωP u ∼ ϵA and Krecomb ≪ Kannih:

F-PP ∼ −2 · µ4
ae−KAB |TP u|GAg(ωTP r

) − 0 · GBg(ωTP r
) (3.29)

F-2DES ∼ −2 · µ4
Ae−kAB |TP u|GAg(ωTP r

)GAg(ωτ ) − 0 · GBg(ωTP r
)GAg(ωτ ) (3.30)

TP u < 0, ωP u ∼ ϵA and Kannih ≪ Krecomb:

F-PP ∼ − µ4
A

(︂
1 + e−KAB |TP u|

)︂
GAg(ωTP r

) − µ2
Aµ2

BGbg(ωTP r
) (3.31)

F-2DES ∼ − µ4
A

(︂
1 + e−KAB |TP u|

)︂
GAg(ωTP r

)GAg(ωτ )
− µ2

Aµ2
BGAg(ωTP r

)GAg(ωτ ) (3.32)

In this section, we wanted to verify that our program in Quantarhei and,
thus, our simulations are correct. We have predicted F-PP dynamics for selective
excitation with a pump of only one molecule, A or B, and compared them to the
simulations. The agreement is sufficiently satisfactory to say that the calculations
and simulations are correct.
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Figure 3.8: F-PP traces for frequencies ϵA and ϵB, pump frequency 12500 cm−1

(selective excitation of molecule B). For positive times, the signal from molecule
A is decreasing and signal from B is increasing. Even for µA = µB, molecule A’s
signal is not constant in negative times, it is increasing with |TP u|.
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Figure 3.9: F-PP traces for frequencies ϵA and ϵB, pump frequency 13500 cm−1

(selective excitation of molecule A). For positive times, the signal from molecule
A is decreasing and signal from B is increasing. Even for µA = µB, signal from
molecule A is not constant in negative times, it is decreasing with increasing
|TP u|, signal from B is again constant.

35



3.5.2 Chirped pulses
Chirped pulses find frequent application in spectroscopy laboratories, as eluci-
dated by Nuernberger et al. [2007], among others. Therefore, it would be bene-
ficial to find out how the chirped probes influence F-PP spectra. Furthermore,
chirp represents an inherent characteristic of all pulses in laboratory settings,
stemming from their path through various optical components in the aperture.
The refractive index of these components varies with the frequency of light, caus-
ing a positive chirp (see section 2.3). This means the pulse frequency increases
with time (longer wavelengths arrive earlier). In our simulations, we produce a
chirped pulse using a time-dependent phase shift (equation 2.14), which gives us
a linearly time-dependent frequency (equation 2.19).

For 100 fs time delay between maxima of frequencies ϵB = 12500 cm−1 and
ϵA = 13500 cm−1 we have set these parameters:

c2 = 530.9 fs2·rad−1

c′
2 = 0.00187 fs−2·rad

FWHM ′ = 197 fs

To check, that the program and above-mentioned parameters are correct, we
can analyse time dependence of excited state populations after excitation with
chirped pulse. In graph 3.12 we can see excited state populations time evolution
for heterodimer AB, which interact with two positively chirped pulses (defined
as above, with centres in t = 0 fs and t = 10 fs). At first, we can observe rise of
population |B⟩⟨B|, reaching half of its first local maximum at t ≈ −50 fs, which
corresponds to time, when frequency ϵB reaches its maximum in pulse. Later we
can see increase in the population of |A⟩⟨A|, which reaches half of its maximum
for t ≈ 50 fs. After reaching its global maximum in t ≈ 100 fs, it starts decreasing
due to energy transfer to molecule B, which excited state population is on the
contrary increasing. We can see that not only times when population of excited
state of A respective B reaches half of its first maximum, but also times in which
they have its first local or global maximum are distant from each other 100 fs,
which is the time difference we set between maxima of frequencies ϵA and ϵB.
This is strong evidence that calculations in section 2.3 are correct.

At first glance, based on the Feynman diagrams, it looks like there will be only
shift for traces of different frequencies. To predict, how would the traces behave,
we can at first deduce from figures 3.10 and 3.11 the direction of the shift for
particular frequencies. For the chirped probe (see picture 3.10), TB denotes time
delay between the centre of the pump and the maxima of lower energy frequency
ϵB in the probe (red colour on the picture), T0 is time delay between centres of
the pump and probe, and finally, TA states for time delay between the centre
of the pump and the maxima of higher energy frequency ϵA in the probe. The
pulse overlap of the pump and probe for the examined frequency occurs, when
Tx = 0 fs.

We can deduce from the figure that

T0 = TB + 1
2∆T = TA − 1

2∆T, (3.33)
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where ∆T is time delay between frequencies ϵA and ϵB in the chirped probe. The
time delay between pulse overlap of centres of pulses (T0 = 0) and of energies ϵB

(TB = 0) is +1
2∆T , for energy ϵA (TA = 0), it is −1

2∆T . So the trace of lower
energy will be shifted to the right and for higher energy to the left for the chirped
probe. This partially corresponds with simulation in graph 3.13, nevertheless, the
shift is only about −20 fs and +20 fs instead of −50 fs and +50 fs as calculated
above. We will discuss this later.

For the chirped pump, the situation is quite the opposite (again, consistent
with graph 3.15, except that the shift is smaller than predicted).

However, for the chirped pump and probe, the time delay between the pump
and probe is the same for different frequencies. There should not be any shift in
time zero for any of the traces, which, again, is in accordance with the simulation
(see graph 3.14).

Nevertheless, the situation is not that simple; as we can see from the graphs
(3.13,3.15, 3.14), there are also oscillations. Compared with the traces for non-
chirped pulses, these waves are stretched in time. We will now explain why. See
second row in the table 3.7 of Feynman diagrams depicting the pulse overlap.
There is coherence |2⟩⟨1| in the waiting time |TP u|. This pathway will contribute
to the trace of either A or B if and only if 2 corresponds to the exact frequency
13500 cm−1 or 12500 cm−1. In this row, the first diagram from the left significantly
contributes only if the T2 time delay between the maxima of frequency 2 in the
pump and probe is zero. This means that these oscillations have their centre in
±1

2∆T . If 1=2, we get a non-oscillating signal, which even more contributes to
the peak.

In the table, there are diagrams that contribute to the signal for T2 = 0 for
both 1 and 2 molecules, but there are, on the contrary, contributions to the time
T1 = 0 again for both 1 and 2. This means that for both traces A and B, there
is some peak for ±1

2∆T .
Fascinating is the second diagram in the second row. There is again coher-

ence |2⟩⟨1|, now it will contribute to the signal from 2 if T1 = 0. We will see
this contribution even if 1 is neither A nor B. This gives us an oscillating signal
for each frequency in the excitation spectrum of A or B with the centre in T1=0.
Because of this, the main shifted peak with the centre in ±1

2∆T is widened,
as well as the oscillation peak from coherence contribution. Because frequency
13000 cm−1 is represented in the pulse spectrum with the largest amplitude - as
it is mean frequency, contributions including this frequency will be strongly in-
fluencing the signal and reducing the shift of traces (because T0 = 0 corresponds
to zero shift of time-zero gap). This phenomenon is further enhanced by the
fact that frequencies between 12500 and 13500 cm−1, which reduce the shift of
zero-time peak, contribute strongly to the excitation spectrum of heterodimer AB
(see figure 3.2). On the other hand, excitation spectrum is rapidly decreasing for
frequencies lower than 12500 cm−1 or higher than 13500 cm−1. Moreover, these
frequencies have also a weak amplitude in our Gaussian-shaped pulses. This sug-
gests that the contribution of frequencies 12500 cm−1 < ω < 13500 cm−1, which
reduce time-shift from zero for traces, is higher than contributions of frequencies
ω < 12500 cm−1 or ω > 13500 cm−1, which enlarge the shift.

We can see that more than half of possible Feynman diagrams in figure 3.7
contribute to this shift for correct frequencies (not only the one mentioned).
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Figure 3.10: Time delays between pump and chirped probe for maxima of different
frequencies. TB is the time delay between maximal amplitude of frequency ϵB in
pump and probe. TA corresponds to frequency ϵA and T0 is time delay between
pulse centres of pump and probe (corresponds to frequency 13000 cm−1).
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Figure 3.11: Time delays between probe and chirped pump for maxima of different
frequencies.

In this section, we wanted to investigate the effect of a pulse chirp on the
F-PP spectrum. We have implemented the pulse chirp into the Quantarhei and
verified its correctness by calculating the dynamics of excited state populations
of heterodimer AB, which corresponds with the expectations. Further, we have
shown that the pulse chirp does not change the dynamics of F-PP spectra at later
times. Around zero, in the case of a chirped probe, there is a shift of traces to the
right for lower frequencies and to the left for higher frequencies. For the pump
chirp, the situation is opposite. The distance of zero-time peaks for frequencies
ϵA and ϵB is lower than the distance of their maxima in chirped pulse due to
contributions of other frequencies.
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Figure 3.12: Dynamics of heterodimer AB after excitation with a chirped pulse.
Frequency ϵB arrives first, increasing the population of |B⟩⟨B|. Later, population
|A⟩⟨A| increases (reaches its maximum in t = 100 fs). Nevertheless, after a while,
it starts decreasing due to energy transfer to molecule B.
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Figure 3.13: F-PP traces for frequencies ϵA and ϵB for chirped probe. The signal
from molecule A is shifted to negative times; on the contrary, the signal from
B is shifted to the right to positive times. A peak around zero for a particular
frequency is broadened. Except for the behaviour around time zero, the dynamics
is similar to the situation without chirp - in positive times, the signal from A
decreases, and the signal from molecule B increases. In negative times, the signal
remains constant (for longer times, see graph A.25).
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pump. There is no shift of time zero for any of the traces.
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Figure 3.15: F-PP traces for frequencies ϵA and ϵB, chirped pump. The signal
from molecule A is shifted to the right and the signal from B to the left (opposite
situation to the one with chirped probe in graph 3.13). A peak around zero for
a particular frequency is broadened. Except for the behaviour around time zero,
the dynamics is similar to the situation without chirp - in positive times, the
signal from A decreases, and the signal from molecule B increases. In negative
times, the signal remains constant.
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4. Comparison to experimental
data
The results were compared to experimental data obtained from the article by
Malý and Brixner [2021]. For the measurement, Malý et al. used a squarine
heterodimer sample (see picture 4.1), which has two prominent absorption peaks
at 1.73 eV (13953.4 cm−1) and 1.88 eV (15163.2 cm−1). Like in our model, there
is an energy transfer from the higher to the lower energy state, with a transition
rate constant KSQA→SQB ≈ 30 fs.

In accordance with our computation, experimental data show a decrease in
signal from the higher energy level, and in addition to that, signal from the lower
energy level increases with the time delay between pump and probe. For the
negative time, the signal is relatively constant for both energies. This suggests
that the oscillator strength of SQA is almost the same as that of SQB. The data
were measured with chirp-compensated, near-transform-limited pulses. In the
data (see graph 4.2), there is a little but visible displacement from zero, which
could be caused by an almost negligible chirp of pulses but could also be only a
mere accident caused by a limited accuracy of real-life measurement.
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Figure 4.1: Squaraine heterodimer with two prominent absorption peaks at 1.73
eV (13953.4 cm−1) corresponding to SQB and 1.88 eV (15163.2 cm−1) related
to SQA. There is also a photophysically inactive spacer which provides weak
coupling of SQA and SQB. Figure provided by Malý and Brixner [2021].
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Figure 4.2: F-PP traces for frequencies ϵSQA and ϵSQB, measurement of squaraine
heterodimer provided by Malý and Brixner [2021]. The signal from SQA is de-
creasing in time due to energy transfer from SQA to SQB. The signal from SQB
is thus increasing with TP u. In negative times, the signal of both molecules is
almost constant.
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Brixner [2021].
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5. Summary
The main aim of this work was to get acquainted with the fluorescence-detected
transient absorption spectroscopy method and to investigate the behaviour of its
spectra under different conditions.

Foremost, we successfully implemented this method into Quantarhei, a molec-
ular open quantum systems simulator developed by Mančal [2020]. This simulator
enables the creation of complex molecules and offers many possibilities, such as
a predefined Förster or Redfield relaxation tensor. It is now possible to simulate
F-PP spectra even for such complicated structures as light-harvesting complex
II (LHC II, described, for example, by Kühlbrandt [1994]) in interaction with
pulses with parameters which we can choose to fit our investigated situation or
experiment best. This option could be helpful for further research.

One of our primary concerns was the problem of incoherent mixing, where
because of exciton-exciton annihilation, the ground-state bleach signal increases
compared to the signal of stimulated emission. The ratio between SE and GSB
decreases as 1

N
(see equation 1.22) which reduces the visibility of dynamics as

shown by Bolzonello et al. [2023] (see section 1.5 and section 3.3). Because of
this, we have investigated the behaviour of F-PP spectra in negative times and
the possibility of subtracting them from F-PP spectra in positive times to remove
the consequences of incoherent mixing.

By writing out all unique Feynman diagrams for heterodimer of two-level
molecules A and B and summing their contributions, we have calculated the
signal dynamics from molecules A and B both in positive and negative times.
For positive times, the sample interacts at first with the pump, and after the
time TP u, twin probe pulses measure a change in the excitation spectrum. The
dynamics of the signal is straightforward (see graph 3.5 or equations 3.1 and
3.2); the signal from molecule A is decreasing with increasing time delay between
pump and probe TP u. On the contrary, the signal from B is increasing, which
corresponds to the energy transfer from the molecule A to the molecule B.

In negative times, the situation is more complicated. The system first inter-
acts with probes and, consequently, with the pump. The fluorescence response
depends heavily on a mutual relation between the oscillatory strengths of the
transition from the ground state to the excited state of molecule A and molecule
B. For µA > µB, the signal from molecule A is decreasing (see graph 3.3 and equa-
tions 3.5 and 3.7). On the contrary, for µA < µB, the signal from the molecule A
increases with rate KAB. The signal from molecule B is constant for both cases
(see graph 3.4). For special condition µA = µB, traces for both A and B are
constant in negative waiting time TP u.

Consequently, we have tried to find the coefficients with which we must multi-
ply the F-PP spectrum with EEA in positive times and the F-PP spectrum with
EEA in negative times to obtain by their subtraction the F-PP spectrum without
EEA in positive times. The coefficients are different for trace from molecule A
(see equations 3.14) and for B (equations 3.16) even for µA = µB, which provides
constant F-PP spectrum in negative times. The subtraction would have to be
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done separately for each trace corresponding to a different frequency. Moreover,
the coefficients depend on µA and µB. This makes the subtraction complicated
even for the most straightforward system, like a heterodimer of two two-level
molecules we used. This suggests that it would not be possible to convert F-
PP spectra with EEA to F-PP spectra without EEA (which correspond to PP
spectra), even for other molecules.

Subsequently, we have analysed F-PP spectra behaviour during pulse overlap
(TP u = 0). Although the spectral shape around time zero is very complicated
because it is influenced not only by the system but also by the shape of the
pulses, we can draw some conclusions. We have written out all possible Feynman
diagrams (see figure 3.7), which were used for further research.

To verify that our simulations are correct, we have compared them with our
theoretical results for a model situation of selective excitation. In this, we se-
lectively excited only one molecule (A or B) with the pump and consequently
observed its F-PP spectra. For selective excitation of molecule B, we can see
dynamics only in negative times, where the signal from molecule A is increasing
with |TP u| (see graph 3.8 equations 3.18,3.20,3.22 and 3.24). If we selectively
excite only molecule A with the pump, there is still visible dynamics. The signal
from A decreases with |TP u| both in positive and negative times (see graph 3.9
equations 3.26,3.28,3.30 and 3.32). The signal from B is constant in negative
and increases in positive times. We can see reduced oscillations, especially for
excitation with a narrower pump pulse (FWHM = 30 fs, see graphs A.14 and
A.15). All this is in accordance with theoretical predictions.

Finally, we were interested in how a pulse chirp affects the F-PP spectrum.
From the Feynman diagrams, we have concluded that there will be a shift in time
for traces dependent on their frequency and whether the pump or probe is chirped.
We will now describe the situation for probe chirp. For the chirped pump, the
situation will be quite the opposite. Traces corresponding to frequencies higher
than the mean frequency of the chirped probe (for example, ϵA) will be shifted
to the left to negative times. On the contrary, traces for lower frequencies (for
example, ϵB) will shift to the right to positive times. As could be concluded from
Feynman diagrams for pulse overlap (see figure 3.7), around time zero, various
coherence contributions influence the spectrum, which leads to an extension of
the zero-time peak and oscillation. Further, the influence of Feynman diagrams
with other frequencies in the excitation spectrum leads to a reduction of a shift
for traces that was predicted by Feynman diagrams for longer times. We thought
the shift would be precisely the time delay between a particular frequency and
the middle of the pulse chirp (for our calculations, 50 fs). Nevertheless, the shift
is reduced, as could be seen in graphs 3.13 and 3.15. This is due to the influence
of pathways, which describes interaction with a pulse with frequencies between
ϵB and ϵA.

All theoretical predictions were calculated using a perturbation approach with
an approximation of delta pulses. In the meantime, all simulations were obtained
by numerical solution of the Liouville von Neumann equation with Gaussian-
shaped pulses. Despite the different approaches, the primary behaviour of the
dynamics is the same in both results.
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Additionally, we have compared our results with experimentally measured
data by Malý and Brixner [2021]. In the experiment, squaraine heterodimer
molecules (see figure 4.1) were used as a sample. This molecule is very similar
to our model system. It has two main absorption peaks, and the heterodimer is
weakly coupled, which leads to energy transport from SQA to SQB molecule in
the dimer. Identical properties of the simulations and experimental F-PP spectra
further prove our calculations’ accuracy (see graphs 3.5 and 4.2).

For these reasons, we believe that both computations were correct and that
the implementation of F-PP in Quantarhei could be used for further research
without any problems.
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Conclusion
In this thesis, we have investigated various properties of the F-PP signal and
implemented this method in the Quantarhei simulator. Theoretical computations
agreed with simulations, which were obtained using different approaches. Some
of the properties were successfully compared with the experiment.

In F-PP spectra for an exemplary heterodimer, the energy transfer dynamics
is present for negative waiting times between pump and probe, and it disappears
only for a special choice of oscillatory strengths. Therefore, we can conclude that
the dynamics will be visible even for more complicated systems. Furthermore,
the presented evidence illustrates that it is, in general, not possible to use the
negative-waiting-time data to suppress incoherent mixing and highlight excited-
state dynamics.

Finally, our computations suggest that pulse chirp does not change dynamics
in longer times. Thus, it is not necessary to use chirp-compensated pulses to
obtain results consistent with theory, of course, excluding pulse overlap.

The next step in this research could be to experimentally verify our conclusions
about negative time behaviour for different oscillatory strengths of participating
transitions and pulse chirp influence on F-PP spectra. For this, it would be ideal
to use squaraine heterodimer again because of its useful properties and similarities
to our theoretical model.

Another improvement would be modifying the program for the simulations of
F-PP and F-2DES spectra so that some calculations can be performed parallelly.
This would allow us to calculate spectra for more complex systems, such as the
previously mentioned LHC II, in a reasonable time.
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Kateřina Charvátová. Optimization of the signal from pigment triplet states in
photosystem i. Bachelor thesis, Charles University, MFF UK, 2022.

Wim P de Boeij, Maxim S Pshenichnikov, and Douwe A Wiersma. System- bath
correlation function probed by conventional and time-gated stimulated photon
echo. The Journal of Physical Chemistry, 100(29):11806–11823, 1996.
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List of Abbreviations
F-PP . . . . fluorescence-detected pump-probe spectroscopy
PP . . . . . . . pump-probe spectroscopy
F-2DES . .fluorescence-detected two-dimensional electronic spectroscopy
2DES . . . . two-dimensional electronic spectroscopy
GSB . . . . . ground state bleach (type of contribution to the signal)
SE . . . . . . . stimulated emission (type of contribution to the signal)
ESA . . . . . excited state absorption (type of contribution to the signal)
ESA 2 . . . excited state absorption, which ends in higher excited state
EEA . . . . . exciton-exciton annihilation
RWA . . . . rotating wave approximation
a.u. . . . . . . arbitrary units
SQA . . . . . squaraine molecule A in squaraine heterodimer
SQB . . . . . squaraine molecule B in squaraine heterodimer
GVD . . . . group-velocity dispersion
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A. Attachments

A.1 Parameters used in simulations

ϵA = 13500 cm−1 frequency of energy transition between ground state and
excited state of molecule A

ϵB = 12500 cm−1 frequency of energy transition between ground state and
excited state of molecule B

KAB = 1
100 fs−1 rate constant of the energy transfer from molecule A to

molecule B

Γpd = 1
20 fs−1 rate constant of dephasing of the coherences

Γ′
AB = 1

10 fs−1 additional rate constant of dephasing of the coherences
between excited states of molecules A and B

Kannih = 1
20 fs−1 rate constant of exciton-exciton annihilation (for the

case when we neglect EEA, it was set extremely small:
10−34 s−1)

Krecomb = 1 ns−1 fluorescence rate constant

FWHM = 15 fs full width half maximum for pump and probe pulses

ω0=13000 cm−1 mean frequency of the pulses

c2 = 530.9 fs2·rad−1 pulse chirp parameter

c′
2 = 0.00187 fs−2·rad pulse chirp parameter

FWHM ′ = 197 fs full width half maximum for chirped pump and probe
pulses
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A.2 Feynman diagrams for heterodimer AB for
positive times
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Figure A.1: Stimulated emission Liouville pathways for heterodimer (left col-
umn), corresponding FPP and F-2DES spectra equations (middle), F-2DES spec-
tra visualization (right column).
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Figure A.2: Ground state bleach Liouville pathways for heterodimer (left col-
umn), corresponding FPP and F-2DES spectra equations (middle), F-2DES spec-
tra visualization (right column).
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Figure A.3: Excited state absorption Liouville pathways for heterodimer (left
column), corresponding FPP and F-2DES spectra equations (middle), F-2DES
spectra visualization (right column).
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Figure A.4: Excited state absorption 2 Liouville pathways for heterodimer (left
column), corresponding FPP and F-2DES spectra equations (middle), F-2DES
spectra visualization (right column).
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Figure A.5: F-2DES signal from all pathways for TP u ≥ 0 fs, without EEA.
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A.3 Feynman diagrams for heterodimer AB for
negative times
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Figure A.6: Stimulated emission Liouville pathways for heterodimer (left col-
umn), corresponding FPP and F-2DES spectra equations (middle), F-2DES spec-
tra visualization (right column) for negative time delay between pump and probe.
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Figure A.7: Ground state bleach Liouville pathways for heterodimer (left col-
umn), corresponding FPP and F-2DES spectra equations (middle), F-2DES spec-
tra visualization (right column) for negative time delay between pump and probe.
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Figure A.8: Excited state absorption Liouville pathways for heterodimer (left
column), corresponding FPP and F-2DES spectra equations (middle), F-2DES
spectra visualization (right column) for negative time delay between pump and
probe.
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Figure A.9: Excited state absorption 2 Liouville pathways for heterodimer (left
column), corresponding FPP and F-2DES spectra equations (middle), F-2DES
spectra visualization (right column) for negative time TP u < 0.
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Figure A.10: F-2DES signal from all pathways for TP u ≤ 0 fs, without EEA.
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Figure A.11: Oscillation Liouville pathways for heterodimer (left column), corre-
sponding FPP and F-2DES spectra equations (middle), F-2DES spectra visual-
ization (right column) for negative time delay between pump and probe.
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Figure A.12: Oscillation Liouville pathways for heterodimer (left column), corre-
sponding FPP and F-2DES spectra equations (middle), F-2DES spectra visual-
ization (right column) for negative time delay between pump and probe.
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A.4 Comparison of F-2DES spectra for positive
and negative times
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Figure A.13: 2-DES signal for time TP u < 0 fs and TP u > 0 fs, with and without
exciton-exciton annihilation (EEA).
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A.5 Traces of F-PP spectra for selective excita-
tion with narrower pump spectrum
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Figure A.14: F-PP traces for frequencies ϵA and ϵB, pump frequency 12500 cm−1,
FWHM = 30 fs. The signal from A is increasing in negative times, and the
signal from B is constant in positive and negative times, as is a signal from A in
positive times. Oscillations are suppressed.
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Figure A.15: F-PP traces for frequencies ϵA and ϵB, pump frequency 13500 cm−1,
FWHM = 30 fs. In positive times, we can see a decrease in signal from A and
an increase in signal from B, corresponding to the energy transfer from A to B.
In negative times, the signal from molecule B is constant, and the signal from
molecule A is decreasing. Oscillations are suppressed.
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A.6 Traces of F-PP spectra for heterodimer AB
with negligible exciton-exciton annihilation
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Figure A.16: F-PP traces for frequencies ϵA and ϵB, µA = 2µB, negligible EEA.
We can see time dependence for the signal from molecule A in negative times,
because µA > µB, signal from molecule A is (in absolute value) decreasing. Signal
from molecule B is constant.
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Figure A.17: F-PP traces for frequencies ϵA and ϵB, µB = 2µA, negligible EEA.
Signal from molecule A, although weak, is in negative times increasing with |TP u|.
Signal from molecule B is constant in negative times.

69



−16

−14

−12

−10

−8

−6

−4

−2

−150 −100 −50 0 50 100 150

F-
PP

tr
ac

es
[a

.u
.·1

07 ]

time delay between pump and probe [fs]

12500 cm−1

13500 cm−1

Figure A.18: F-PP traces for frequencies ϵA and ϵB, two molecules (one molecule
A and one molecule B, µA = µB), negligible EEA. The signal from molecule A
is decreasing in time, and the signal from molecule B is increasing. Signal in
negative times is constant both for A and B.
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Figure A.19: F-PP traces for frequencies ϵA and ϵB for six molecules (three
molecules A and three molecules B, µA = µB). Because EEA is negligible, the
dynamics is as visible as for two molecules. However, the signal is three times
stronger because there are six molecules instead of two.
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Figure A.20: F-PP traces for frequencies ϵA and ϵB, pump frequency 12500 cm−1

(selective excitation of molecule B), negligible EEA. For positive times, the signal
from molecule A is decreasing and signal from B is increasing. Even for µA = µB,
molecule A’s signal is not constant in negative times, it is increasing with |TP u|.
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Figure A.21: F-PP traces for frequencies ϵA and ϵB, pump frequency 13500 cm−1

(selective excitation of molecule A), negligible EEA. For positive times, the signal
from molecule A is decreasing and signal from B is increasing. Even for µA = µB,
signal from molecule A is not constant in negative times, it is decreasing with
increasing |TP u|, signal from B is again constant.
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Figure A.22: F-PP traces for frequencies ϵA and ϵB for chirped probe, negligible
EEA. The signal from molecule A is shifted to negative times; on the contrary,
the signal from B is shifted to the right to positive times. A peak around zero
for a particular frequency is broadened. Except for the behaviour around time
zero, the dynamics is similar to the situation without chirp - in positive times, the
signal from A decreases, and the signal from molecule B increases. In negative
times, the signal remains constant.
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Figure A.23: F-PP traces for frequencies ϵA and ϵB, chirped probe and chirped
pump, negligible EEA. There is no shift of time zero for any of the traces.
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Figure A.24: F-PP traces for frequencies ϵA and ϵB, chirped pump, negligible
EEA. The signal from molecule A is shifted right and the signal from B to the
left (opposite to the situation with chirped probe in graph A.22). A peak around
zero for a particular frequency is broadened. Except for the behaviour around
time zero, the dynamics is similar to the situation without chirp - in positive
times, the signal from A decreases, and the signal from molecule B increases. In
negative times, the signal remains constant.
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A.7 Traces for F-PP spectra with chirped pulse
in longer times
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Figure A.25: F-PP traces for frequencies ϵA and ϵB, chirped probe, with EEA.
The signal from molecule A is shifted to the left and the signal from B to the
right. Except for the behaviour around time zero, the dynamics is similar to the
situation without chirp - in positive times, the signal from A decreases, and the
signal from molecule B increases. In negative times, the signal remains constant.
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