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Abstract: We develop a method to train a document embedding model with
an unlabeled dataset and low computational resources. Using teacher-student
training, we distill SBERT’s capacity to capture text structure and Paragraph
Vector’s ability to encode extended context into the resulting embedding model.
We test our method on Longformer, a Transformer model with sparse attention
that can process up to 4096 tokens. We explore several loss functions for the
distillation of knowledge from the two teachers (SBERT and Paragraph Vector)
to our student model (Longformer). Throughout experimentation, we show that
despite SBERT’s short maximum context, its distillation is more critical to the
student’s performance. However, the student model can benefit from both teach-
ers. Our method improves Longformer’s performance on eight downstream tasks,
including citation prediction, plagiarism detection, and similarity search. Our
method shows exceptional performance with few finetuning data available, where
the trained student model outperforms both teacher models. By showing consis-
tent performance of differently configured student models, we demonstrate our
method’s robustness to various changes and suggest areas for future work.
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Introduction
Text embeddings are the center point of Natural Language Processing (NLP) in
machine learning. They allow machine learning models to process and understand
pieces of text by representing them using a vector of numbers. While we are
able to train high-quality word and sentence embeddings, we struggle to create
similarly performant document embeddings. Document embeddings condense an
entire document into a single vector. These low-dimensional representations can
be used to train significantly smaller, purposely designed models that fulfill a
particular task, such as classification or regression. Thus, document embeddings
make any further computation more efficient. For tasks such as semantic search
or clustering, the increased efficiency of the embeddings is so crucial that the
tasks’ computation would be infeasible without it.

Training a document embedding model presents several challenges. Scaling
up the maximum context of Transformers, the most performant architecture of
sentence embedding models [Reimers and Gurevych, 2019, Gao et al., 2021], re-
quires a quadratic amount of memory in the number of processed tokens. Despite
relatively recent theoretical advancements, such as sparse attention [Child et al.,
2019], training a Transformer document embedding model still requires consider-
able computational resources. Furthermore, current approaches to training doc-
ument embedding models either use extremely large batches [Neelakantan et al.,
2022], which further increases the amount of computational resources necessary
or a complex training setup [Izacard et al., 2021]. Other approaches [Ostendorff
et al., 2022, Cohan et al., 2020] use datasets with an inherent structure, such as
Wikipedia articles connected via links or academic papers related via citations.
However, as there are only a limited amount of such data sources, these models
lack the universality of an embedding model trained on a mixture of document
formats. Finally, due to the complexity and cost of document annotation, there
are few high-quality labeled long document datasets. Consequently, researchers
settle for evaluation datasets with shorter documents or lower-quality automatic
annotation, making the results less reliable.

In this work, we tackle some of the challenges described above while coping
with the rest. We propose a training method that consumes a small amount of
resources and is not dependent on any structure within the training data. We
use an efficient Transformer with sparse attention that can encode texts up to
4096 tokens long with a single vector while having a significantly smaller mem-
ory footprint than a Transformer with full attention. While we do not create a
new dataset that would comply with our high standards, we evaluate our docu-
ment embedding model on several tasks covering multiple topics, task types, and
document lengths to make our results more reliable.

Our training method is centered around two embedding models, each having
a distinct quality: Sentence-BERT (SBERT ) [Reimers and Gurevych, 2019] and
Paragraph Vector [Le and Mikolov, 2014]. SBERT is a sentence embedding Trans-
former model that can capture its input’s structure very well thanks to its dense
architecture. On the other hand, Paragraph Vector is a much smaller document
embedding model that can embed documents of any length. We see SBERT’s
capacity to capture text structure and Paragraph Vector’s ability to encode ex-
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tended context as complementary and beneficial qualities. So, in this work, we
train a single model that incorporates both qualities. We use a teacher-student
approach, sometimes also called knowledge distillation, to train our model to
mimic SBERT’s and Paragraph Vector’s outputs. In this context, we label our
embedding model as student, while SBERT and Paragraph Vector as teachers.
We explore several loss functions for each teacher that force the student to dis-
till the given teacher’s knowledge and show that the student benefits from both
teachers’ qualities. We train the student model on a large dataset and evalu-
ate it on six classification tasks and two retrieval tasks. The results show that
our method performs consistently and significantly improves the students’ per-
formance over its base checkpoint. Our method is especially effective in scenarios
with few finetuning data available, where the trained student model outperforms
both teachers.

This thesis is laid out as follows. We first describe the motivation behind
our method in Chapter 1. We then review all research we consider relevant
to embedding documents with Transformers in Chapter 2. Chapter 3 describes
our training method in detail and defines most of the terminology related to
our method. In Chapter 4, we go through all hyperparameters of our method,
test different variants, and select those performing the best on validation tasks.
Finally, in Chapter 5, we train a few student models with the best-performing
variants of our method on a large dataset and evaluate them on all evaluation
tasks. For classification tasks, we assess the student models with varying amounts
of available finetuning data and demonstrate their excellent performance when
the amount of data is limited.
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1. Document representation
Text embeddings are ubiquitous in Natural Language Processing, from word or
sub-word embeddings that allow machine learning models to process text to doc-
ument embeddings that dramatically speed up search over thousands of docu-
ments. Word or sub-word embeddings are usually tailored to the model that uses
them. Consequently, there is a clear goal that they should optimize. However,
there is no such objective for document embeddings as they are not tailored to a
single use case. On the other hand, document embeddings are usually expected
to perform well across a large range of tasks. In this chapter, we review the
different use cases of document embeddings and define the qualities of document
embeddings that we think make them useful. We identify two qualities we want
the embeddings produced by our model to have and thus lay the foundation of
the training method we introduce in Chapter3.

1.1 Use cases of document embeddings
Document embeddings are used mainly for their efficiency. By compressing the
entire text into a low-dimensional vector, document embeddings reduce the num-
ber of features for any subsequent operation. This enables the downstream models
to be smaller and, thus, more efficient. For example, to predict an academic pa-
per’s topic, Cohan et al. [2020] train only a linear Support Vector Machine. In
a different task, Le and Mikolov [2014] train a small neural network to predict
a review’s sentiment. The downstream model can be as simple as computing
a similarity between two vectors. This is particularly useful in retrieval tasks
as Neelakantan et al. [2022], Izacard et al. [2021] illustrate when they compute
cosine distance to search over millions of documents. Neelakantan et al. [2022]
use a similar approach to find relevant documents in question-answering tasks.
Finally, quickly computing the similarity between two documents is also helpful
for creating visualizations. For instance, Cohan et al. [2020], Dai et al. [2015]
use t-SNE [Van Der Maaten, 2014] to generate visualizations illustrating how
documents with similar topics cluster together.

As document embeddings are not tailored to a single use case, more down-
stream models can use the same document embedding to achieve different tasks.
For instance, Neelakantan et al. [2022], Cohan et al. [2020] use the same embed-
ding model for classification and retrieval tasks. In such setups, the processing of
the input text done by the embedding model is effectively reused multiple times.
For this reason, using an embedding model and a set of smaller adapter models
is significantly more efficient than several dedicated NLP models.

1.2 Desirable qualities of embeddings
Based on the use cases described in the previous section, the usefulness of docu-
ment embeddings stems from 3 properties. An ideal document embedding (1) rep-
resents the document’s text faithfully (2) with a single vector (3) of low dimen-
sion. The document embedding model must produce a single vector to clearly
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associate the given document with a set of features that describe the document
fully. This allows the downstream models to rely entirely just on the embedding.
The embedding must also be of low dimension to make the subsequent compu-
tation as efficient as possible. Finally, the embedding must faithfully represent
the document. Otherwise, all subsequent computations would inevitably produce
incorrect results.

In this section, we focus on faithful document representation, which we view
as a composition of two abstract qualities: structural and contextual. A document
embedding with structural quality (or structural document embedding) faithfully
models the relationships between word sequences. Based on these relationships,
the embedding can capture meaning even for documents with complex structures.
A contextual document embedding composes the meaning of all processed words,
capturing the overall theme or topic of the document. We view these qualities
as scales, so a document embedding may have high structural but low contextual
quality. Such embedding captures the relationships between words very well and
thus faithfully represents the meaning of sections with unambiguous context.
However, the embedding can easily misinterpret sections where the context is
necessary to disambiguate between several meanings.

Since each document embedding is produced by a model, we may attribute
similar qualities to the models themselves. In this sense, we speak of the model’s
structural or contextual capacity.

In the following subsections, we focus on each quality separately, describing
each in more detail. At the end of this section, we compare the two qualities and
outline our proposed training method described in Chapter 3.

1.2.1 Structural quality of document embeddings
Structural quality defines how well the embedding captures relationships within
the input text. The more complex the relationship is, the higher structural qual-
ity is needed to interpret the text correctly. For instance, we list exemplary
observations based on word relationships in a sentence: “Fabian likes playing the
guitar, but Rebecca does not.”:

Observation 1. “Fabian” likes something based on the words “Fabian likes”

Observation 2. A guitar can be played based on the words “playing the guitar”

Observation 3. The two sequences of words separated by a comma are in oppo-
sition based on the words “, but”

Observation 4. “Fabian” likes to play the guitar based on Observations 1 and 2.

The relationships get more and more complex as the number of participating
words increases (Observations 1-3) or as we layer the relationships (Observa-
tion 4). Therefore, an embedding would need an increasing level of structural
quality to capture Observations 1-4 correctly.

Embedding can reflect world relationships only if the model that produced
it compares the participating words to each other. Based on the number and
complexity of comparisons the model makes, we can derive its level of structural
capacity. A good example of a model with high structural capacity is Transformer
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[Vaswani et al., 2017]. Transformer’s self-attention layer allows each word to
exchange information with other words. Additionally, self-attention allows the
aggregation of several words into one. Its layered architecture lets Transformer
compare such aggregations on higher levels. An example of a model with low
structural capacity is Paragraph Vector [Le and Mikolov, 2014]. Paragraph Vector
compares words only in a single fully connected layer. Such architecture prevents
the model from understanding more complex relationships that build on other
relationships, such as Observation 4.

1.2.2 Contextual quality of document embeddings
The contextual quality of a document embedding defines how well the embedding
captures the overall meaning of longer texts. The longer the sequence, the higher
the contextual quality of an embedding correctly capturing its overall topic. For
instance, let us consider two documents: 1. a description of a typical commer-
cial turbo-jet airplane and 2. a recipe for spicy fried chicken wings. A document
embedding with high enough contextual quality would reflect the following sen-
tence’s meaning: “Left wing is too hot.” dramatically differs between the two
documents and would adjust the sentence’s contribution to the resulting docu-
ment embedding accordingly.

Provided the document’s text is cohesive and continuous, capturing its overall
meaning gets easier as the text’s length increases. Intuitively, the more words we
see, the more information we know about their common theme. As the theme be-
comes increasingly more refined, fewer meanings correspond to it. Consequently,
we judge a model’s contextual capacity based on the maximum length of an input
the model can process. This number is also commonly known as the maximum
context length of a model. An example of a model with good contextual capacity
is Paragraph Vector [Le and Mikolov, 2014], which can process, in theory, indefi-
nitely long sequences1. Additionally, Paragraph Vector stores a single vector per
document, which is iteratively compared to all words within it. This allows the
model to adjust individual words’ contribution to the document’s meaning. On
the other hand, Transformer [Vaswani et al., 2017] has a much smaller contextual
capacity as its memory requirements grow quadratically with the length of the
input, which, in practice, significantly shortens Transformer’s maximum context
length.

1.2.3 Combining structural and contextual qualities
Each quality describes a different aspect of faithful representation. Structural
quality is focused more on local relationships of words, while contextual quality
considers mainly the global picture. From a performance standpoint, structural
quality is oriented more toward precision, while contextual quality is oriented
more toward recall. In a way, the two qualities complement each other. Con-
textual quality brings in the overall document theme, while structural quality
provides the detailed meaning of a shorter sequence. We believe these two pieces
of information can be aligned to produce precise, unambiguous document embed-
ding that outperforms embeddings with just a single quality.

1Provided the vocabulary size stays constant.
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While we predict that a mix of both qualities is beneficial, one quality may be
more important than the other. Arguably, structural quality is more important
than contextual since, in extreme cases, it can model relationships so complex that
they span the entire document, substituting the role of contextual quality. On
the other hand, we can expect that, for a given input length, an embedding model
with high structural capacity will be larger than an embedding model with high
contextual capacity. The reason is that the number of total relationships found
in a document grows exponentially with the length of the document, whereas
the number of topics covered can grow only linearly. Therefore, a document
embedding model that relies solely on its structural capacity may be impractical.

Our method combines both qualities into a single embedding model. We aim
to find out how each quality contributes to the model’s performance and what
is their ideal ratio that leads to the best performance. We describe our training
method in detail in Chapter 3.
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2. Related Work
This chapter reviews the research we consider relevant to embedding long texts
using Transformers [Vaswani et al., 2017]. First, we summarize efforts that have
gone into making Transformers more efficient so that they can process long inputs.
These advancements are crucial to embedding documents, often much longer than
the standard 512 tokens. In the next section, we describe approaches to training
embedding models. We also compare our training method to the existing ones
and describe its benefits.

2.1 Efficient transformers
Though the Transformer architecture produces exceptional results on NLP tasks
[Devlin et al., 2019, Liu et al., 2019, Reimers and Gurevych, 2019], it has one
inherent disadvantage regarding longer texts. The self-attention layer, the prin-
cipal part of Transformer, consumes a quadratic amount of memory in the length
of the input. This significantly limits Transformer’s applicability in tasks that
require longer contexts, such as document retrieval or summarization.

Thanks to the popularity of the Transformer architecture, a large amount of
research is focused on making Transformers more efficient [Tay et al., 2022]. Most
of these efforts fall into one of the following categories:

1. Designing a new memory-efficient attention mechanism

2. Using a custom attention implementation

3. Combining a Transformer with another architecture

We review each category separately, though these approaches can be combined
[Child et al., 2019, Beltagy et al., 2020]. In the section dedicated to custom
implementation of self-attention, we also mention commonly used implementation
strategies that make Transformers more efficient in practice.

2.1.1 Efficient self-attention mechanisms
The classical scaled dot-product self-attention [Vaswani et al., 2017] is the most
resource-intensive component of Transformer. The core of the problem is the
multiplication of the N × d query matrix and N × d key matrix, where N is
the input length, and d is the dimensionality of the self-attention layer. Efficient
attention mechanisms approximate this multiplication, avoiding computing and
storing the N × N resulting matrix.

Sparse attention

Sparse attention approximates full attention by ignoring dot products between
some query and key vectors. Though it may seem like a crude approximation,
research shows that the full attention focuses mainly on a few query-key vector
combinations. For instance, Kovaleva et al. [2019] show that full attentions ex-
hibit only a few repeated patterns, and by disabling some attention heads, we
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can increase the model’s performance. These findings suggest that full atten-
tion is over-parametrized, and its pruning may be beneficial. Moreover, Child
et al. [2019] show that we can increase the model’s efficiency without sacrificing
performance by approximating full attention using such sparse patterns.

Sparse attentions typically compose several attention patterns. One of these
patterns is often full attention limited only to a neighborhood of considered to-
ken. This pattern corresponds to the findings of Clark et al. [2019], who found
that full attention mainly focuses on previous and next tokens. Another sparse
attention pattern is usually dedicated to enabling a broader exchange of informa-
tion between tokens. In Sparse Transformer [Child et al., 2019], distant tokens
are connected by several pre-selected tokens uniformly distributed throughout
the input. In Longformer [Beltagy et al., 2020], every token can attend to every
kth distant token to increase its field of vision. BigBird [Zaheer et al., 2020] com-
putes dot products between randomly chosen pairs of key-query vectors. These
serve as connecting nodes for other tokens exchanging information. The last typ-
ical sparse attention pattern is global attention, computed only on a few tokens.
Though such an attention pattern is costly, it is essential for tasks that require
a representation of the whole input [Beltagy et al., 2020]. In Longformer, some
significant input tokens, such as the [CLS] token, attend to all other tokens and
vice-versa. BigBird computes global attention also on a few extra tokens added
to the input.

Sparse attention patterns do not have to be fixed but can also change through-
out the training. Sukhbaatar et al. [2019] train a Transformer that learns optimal
attention span. In their experiments, most heads learn to attend only to a few
neighboring tokens, which makes the model more efficient. Reformer [Kitaev
et al., 2020] computes the full self-attention only between close key and query
tokens while letting the model decide which two tokens are “close” and which are
not. That enables the model to learn optimal attention patterns between tokens
to a certain degree.

Low-rank approximations and kernel methods

Besides using sparse attention, there are other techniques that make self-attention
more efficient in memory and time. Wang et al. [2020] show that the attention
matrix A := softmax(QKT

d
) is low rank and can be approximated in fewer dimen-

sions. By projecting the N × d-dimensional key and value matrices into k × d
matrices, where k ≪ N , they avoid the expensive N × N matrix multiplication.
The authors show that the empirical performance of their model is on par with
the standard transformer models such as RoBERTa [Liu et al., 2019] or BERT
[Devlin et al., 2019].

In another effort, Choromanski et al. [2020] look at the standard softmax self-
attention through the lens of kernels. The authors use feature engineering and
kernels to approximate the elements of the previously mentioned attention matrix
A as dot products of query and key feature vectors. Self-attention can then be
approximated as a multiplication of four matrices: the projected query and key
matrices, the normalization matrix substituting the division by d, and the value
matrix. That allows the matrix multiplications to be reordered, multiplying the
projected key and the value matrix first and then multiplying by the projected
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query matrix. Such reordering saves time and space by a factor of O(N), making
the self-attention linear in input length.

2.1.2 Implementation enhancements
Transformer models can be made more efficient through a purposeful implemen-
tation. As modern hardware gets faster and has more memory, implementation
enhancements can render theoretical advancements such as sparse attention un-
necessary. For example, Xiong et al. [2023] train a 70B model on sequences up
to 32K tokens with full self-attention. Nevertheless, the necessary hardware to
train such models is still unavailable to many; therefore, there is still the need
to use theoretical advancements together with an optimized implementation. For
instance, Jiang et al. [2023] trained an efficient transformer with sparse attention
and optimized implementation. The resulting model beats competitive models
with twice as many parameters in several benchmarks.

Optimized self-attention implementation

Efficient self-attention implementations view the operation as a whole rather than
a series of matrix multiplications. That enables optimizations that would not be
otherwise possible. The result is a single GPU kernel that accepts the query, key,
and value vectors and outputs the result of a standard full-attention. Rabe and
Staats [2021] proposed an implementation of full self-attention in the Jax library1

for TPUs that uses a logarithmic amount of memory in the length of the input.
Dao et al. [2022] introduced Flash Attention, which optimizes input reads and
output writes and achieves non-trivial speedups. Flash Attention offers custom
CUDA kernels for both block-sparse and full self-attentions. Later, Dao [2023]
improved Flash Attention’s parallelization and increased its efficiency even more.
Though using an optimized kernel is more involved than spelling the operations
out, libraries like xFormers2 and recent versions of PyTorch3 make it much more
straightforward. Unfortunately, as of this writing, only xFormers support custom
masking in self-attention.

Mixed precision, gradient checkpointing, and accumulation

Besides the above-mentioned recent implementation enhancements, some tech-
niques have been used not just in conjunction with transformers. We mention
them here, mainly for completeness, since they dramatically lower the required
memory of a transformer model and thus allow training with longer sequences.

Micikevicius et al. [2017] introduced mixed precision training, which almost
halves the memory requirements of the model as almost all of the activations and
the gradients are computed in half precision. As the authors show, with addi-
tional techniques such as loss scaling, mixed precision does not worsen the results
compared to traditional single precision training. In another effort to lower the

1https://github.com/google/jax
2https://github.com/facebookresearch/xformers
3https://pytorch.org/docs/2.2/generated/torch.nn.functional.scaled_dot_

product_attention.html
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memory required to train a model, Chen et al. [2016] introduced gradient check-
pointing to trade speed for memory. With gradient checkpointing activations,
some layers are dropped or overwritten to save memory but then need to be re-
computed again during a backward pass. Another popular technique is gradient
accumulation, which may effectively increase batch size while maintaining the
same memory footprint. With gradient accumulation, gradients are not applied
immediately but are accumulated for k batches and only then applied to the
weights. This has a similar effect as multiplying the batch size by k but is not
equivalent since operations like Batch Normalization [Ioffe and Szegedy, 2015]
or methods such as in-batch negatives behave differently. Nevertheless, gradient
accumulation is a good alternative, especially if the desired batch size cannot fit
into the GPU memory.

2.1.3 Combination of model architectures
To circumvent the problem of memory-intensive self-attention, some research ef-
forts explored combining the Transformer architecture with another architectural
concept, namely recursive and hierarchical networks. The typical approach of
these models is not to modify the self-attention or the maximum length of input
Transformer can process but instead to use Transformers to process smaller text
segments separately and contextualize them later. Dai et al. [2019] proposes using
a recursive architecture of Transformer nodes, where each Transformer receives
the hidden states of the previous one. Since gradients do not travel between the
nodes, processing longer sequences requires only constant memory. The resulting
model achieves state-of-the-art performance on language modeling tasks with a
parameter count comparable to that of the competition. Yang et al. [2020] use
a simpler architecture of a hierarchical Transformer model. First, Transformers
individually process text segments, producing segment-level representations fed
to another document-level Transformer, together with their position embeddings.
The authors pre-train with both word-masking and segment-masking losses. Af-
ter finetuning it on the target tasks, the model beats scores previously set by
recurrent networks.

2.2 Training document embedding models
Training of a document embedding model aims to improve the performance of
the model’s embeddings on downstream tasks. There are many types of down-
stream tasks, such as classification, retrieval, clustering, or visualizations, and an
embedding model is generally expected to perform well in all of them. There-
fore, there is no clear optimization objective, nor is there an objective universally
agreed upon to outperform others. That makes the task of training document
embedding models diverse. All training techniques, however, have to adapt to the
currently available training document corpora. Due to higher annotation costs
and complexity, there are fewer labeled datasets of documents than of shorter se-
quences such as sentences. Nevertheless, some datasets offer rich metadata that
is useful for constructing supervised datasets. A typical example is the Semantic
Scholar corpus [Ammar et al., 2018] that links academic papers via citations.
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In the simplest case, embedding models are trained only through word or
token prediction. Paragraph Vector [Le and Mikolov, 2014] is trained on the pre-
diction of the masked-out words given the embeddings of the surrounding words
and the embedding of the given document. However, Transformers cannot learn
document embedding through token prediction. So, a Transformer embedding
model is typically trained using pre-training on a large unlabeled dataset and
then finetuned. In pre-training, the model gains most of its knowledge, and then,
in the finetuning phase, the model improves the quality of its embeddings. For
instance, Cohan et al. [2020], Izacard et al. [2021] warm start their embedding
models from SciBERT [Beltagy et al., 2019] and BERT [Devlin et al., 2019], both
trained using Masked Language Modelling (MLM ) on an unlabeled text corpus.
However, these models differ in how they are finetuned.

Cohan et al. [2020] use a triplet loss that takes three documents: a query,
a positive, and a negative document. Triplet loss then minimizes the distance
between the query and the positive document while maximizing the distance be-
tween the query and the negative document. The authors leverage the structure
of Semantic Scholar corpus [Ammar et al., 2018] to obtain a positive and a neg-
ative document for a given query document. Ostendorff et al. [2022] repeats
the experiment but shows a more elaborate method of sampling negative papers
improves the final model.

Another popular technique is to train the model by contrasting several inputs’
embeddings against each other. For each input, there is at least one similar to
it (positive), while the others are usually deemed dissimilar (negative). The loss
then minimizes cross-entropy between the true similarities and those computed
from the input’s embeddings. As with the triplet loss, the main difference between
models is how they obtain the positive and negative documents. Neelakantan
et al. [2022] use the given input as a positive, while all other inputs in the batch
are considered negatives. Using in-batch negatives is very efficient since the model
can utilize each input once as a positive and several times as a negative. As
the authors point out, the key to this technique is to have large batch sizes –
the authors suggest batch sizes of several thousand documents. Izacard et al.
[2021] obtain positives by augmenting the original document. In contrast to the
previously mentioned model, the authors use negatives computed in previous
batches. While using out-of-batch negatives avoids the need for a large batch
size, a set of new problems surfaces, such as making sure that the trained model
does not change too quickly, which would make the stored negatives irrelevant
and possibly harmful to the training. The authors solve this issue by a secondary
network, whose parameters are updated according to the primary embedding
model.

An embedding model usually only outputs one embedding for a single input,
yet some models can generate more embeddings for a given input depending on
external factors. Singh et al. [2022] train an embedding model whose embeddings
are finetuned for a given type of downstream task. The model’s task-specific
modules are trained end-to-end on supervised data collected by the authors. The
proposed model can share knowledge across all types of tasks thanks to the use
of control codes and a layer connecting all task-specific modules. While the idea
seems reasonable, the authors achieve only a fractional improvement over state-
of-the-art models that generate a single embedding for a single input.
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2.2.1 Comparison to the proposed training method
Like other transformer-based embedding models, ours is warm-started from a
pre-trained model. However, the following finetuning of our embeddings avoids
some of the downsides of the previously mentioned methods. First, it does not
require any structure in the training data, which is essential as there is only a
limited amount of structured document datasets. Typically, these would be sci-
entific papers or Wikipedia articles connected via citations or links. Our training
method allows using any document corpora, such as a set of books or news ar-
ticles. Secondly, it does not require large batch sizes. Despite the advancements
mentioned in Section 2.1, using a consumer-grade GPU card to train a Trans-
former embedding model with long inputs can still pose a practical challenge.
Using a batch size of several thousand documents is unimaginable in this con-
text. Third, our method does not require maintaining any secondary network
while training the model. Though our method uses embeddings of other models,
these can be generated beforehand and thus do not take up the resources needed
to train the embedding model. Fourth, we aim to obtain a model usable with any
continuous text. We do not limit our embedding model only to a specific field,
such as scientific literature. Finally, our model generates a single embedding,
which we evaluate on a diverse set of tasks, including classification of individual
documents, classification of document pairs, and document retrieval.
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3. Distilling qualities of
document embeddings
In this chapter, we introduce our method of training document embeddings. We
base our approach on teacher-student training, distilling the knowledge of two
embedding models (referred to as teachers) into one student model. Section 3.1
explains our training method in detail and outlines the used loss function. In the
rest of this chapter, we describe the two teacher models in Section 3.2 and the
student in Section 3.3.

3.1 Training methodology
Our training methodology aims to improve a model’s embeddings such that they
represent the input more faithfully. As we describe in Chapter 1, we distinguish
two qualities of faithful representations: structural and contextual. The goal is to
instill both qualities into a single embedding model and thus gain the advantage
of both of them at the same time. To do so, we use teacher-student training with
two teacher embedding models, one with high structural capacity and the other
with high contextual capacity.

In the following subsections, we describe teacher-student training in detail
and give a high-level overview of the proposed loss function.

3.1.1 Teacher-student training
In the teacher-student training, we train a student model based on a frozen teacher
model. The goal is to make the student model imitate the teacher model, thereby
digesting the teacher’s understanding of the input. Although the student model is
generally not expected to outperform the teacher model, teacher-student training
is still valuable in several situations. For instance, Sanh et al. [2019] use teacher-
student training to make a model smaller while sacrificing only a fraction of its
performance. In another scenario, Reimers and Gurevych [2020] use teacher-
student training to enforce similarity between models’ outputs, thereby giving
the student model a powerful training signal.

We assume two embedding models in our setting: a structural teacher TS and a
contextual teacher TC with high structural and contextual capacities, respectively.
Teacher-student training allows us to instill both capacities into a third student
model S while avoiding the architectural limitations of the teachers.

3.1.2 Abstract loss formulation
We instill a quality of a teacher’s embedding by simply enforcing a similarity
between the teacher’s and student’s embedding. Since we have two teachers, we
use two similarities LS and LC , which compare the student’s embedding yS with
the structural teacher’s embedding yTS

or the contextual teacher’s embedding
yTC

, respectively. We show a graphical overview of the training architecture in
Figure 3.1.
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Figure 3.1: The architecture of our teacher-student training. We distill the qual-
ities of the teachers’ embeddings through corresponding losses into a student
model. Since we do not update the weights of either teacher, the generation of
their embeddings can be done offline before training.

To regulate the mixture of LS and LC , we introduce weighting parameter
λ. In the most general form, we assume λ to be dependent on the input text x
since the performance of the teacher models might vary across different inputs. In
particular, we can expect λ to depend on the length of the input since, for shorter
inputs, the context is minimal and, therefore, expendable. Abstract formulation
of the loss is given in Equation 3.1. We explore concrete options for LS, LC and
λ(x) in Chapter 4.

L(x, yS , yTS
, yTC

, λ) = λ(x)LS(yS , yTS
) + (1 − λ(x))LC(yS , yTC

) (3.1)

The two losses could push against each other and slow down or halt the
training. To avoid that, we choose one of the losses to be more strict while the
other to be more forgiving. In that way, the more forgiving loss should adapt
to the strict one instead of pushing against it. As mentioned in Section 1.2.3,
we view structural quality as the more important. Therefore, we choose the
structural loss LS as the stricter and exact loss, forcing the student to mimic
the structural teacher as much as possible. On the other hand, the contextual
loss LC should give the student model more freedom in the form of the produced
embedding but still force it to incorporate the information from the contextual
embedding.
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Figure 3.2: Siamese network architecture used to train SBERT. During training,
SBERT classifies a pair of sentences from an NLI dataset into three classes “en-
tailment”, “neutral” and “contradiction”.

3.2 Teacher models
This section introduces the teacher models used during our experiments in Chap-
ter 4. We chose Sentence-BERT [Reimers and Gurevych, 2019] as the structural
teacher model and Paragraph Vector [Le and Mikolov, 2014] (or PV ) as the con-
textual teacher model. As explained in Chapter 1, each of the two mentioned
models can generate embedding of a different quality. SBERT can compare word
relationships on many levels and thus understand even complex text structures.
However, it cannot process long texts. On the other hand, Paragraph Vector can
produce embeddings even for long documents, but it processes text very shallowly,
which prohibits understanding any complex structures. We hope to synthesize
both qualities by distilling the knowledge of the two teacher models into a single
model.

3.2.1 SBERT
Sentence-BERT is a composition of a BERT-like [Devlin et al., 2019] encoder with
a mean pooling layer above its last layer’s hidden states. The model is finetuned
with Natural Language Inference (NLI ) datasets to produce semantically mean-
ingful embeddings. We illustrate SBERT’s training architecture in Figure 3.2.
We have chosen SBERT as a structural teacher for its high structural capacity
and strong performance in sentence-level text-understanding tasks [Reimers and
Gurevych, 2019].
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Figure 3.3: Architecture of Distributed Bag of Words. The model predicts words
from a document, only using the document’s embedding.

3.2.2 Paragraph Vector
Paragraph Vector [Le and Mikolov, 2014], sometimes referred to as Doc2Vec,
is a simple text-embedding model that views the input as a Bag of Words (or
BoW). Paragraph Vector comprises two sub-models: Distributed Memory (DM)
and Distributed Bag of Words (DBOW). While each model is trained separately,
the authors recommend combining both architectures into a single model, where
the combined models’ embeddings are concatenated. The models are trained to
predict a word within a window in the given document. As shown in Figure 3.3,
DBOW bases its prediction only on the whole paragraph’s embedding. DM,
whose architecture is depicted in Figure 3.4, additionally uses the embeddings of
the surrounding words within a given window.

We chose Paragraph Vector as a contextual teacher due to its unique archi-
tecture, which forces the model to develop a single vector that summarizes the
common theme of the document. Moreover, Paragraph Vector does not have a
limited maximum input length, so as a contextual teacher, it will always provide
some signal to the student regarding the document’s context. Also, even though
Paragraph Vector cannot match the performance of substantially more complex
models such as Transformers, Dai et al. [2015] show that for larger datasets, Para-
graph Vector, outperforms classical embedding models such as Latent Dirichlet
Allocation [Blei et al., 2003] or TF-IDF weighted BoW model [Harris, 1954]. Fi-
nally, Paragraph Vector’s simple architecture allows it to train on significantly
larger text corpora than other bigger models, such as SBERT. Therefore, for a
given computational budget, Paragraph Vector would see more documents during
training than SBERT, which may give it a slight advantage.

3.3 Student model
The student model is the embedding model we train based on the outputs of
the teacher models. By using teacher-student training, we can avoid some of the
architectural drawbacks of both teacher models while still benefiting from the
qualities of the teachers’ embeddings. We choose the student’s architecture at a
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Figure 3.4: Distributed Memory model architecture. The model predicts the
input words’ neighboring word within the input paragraph.

midpoint between the two teachers’ architectures. In other words, not to be as
complex as the architecture of SBERT but not as simple as the architecture of PV.
Therefore the student model can model world relationships, similarly to SBERT,
and process longer inputs, while still having a manageable memory footprint.
We chose a Transformer with a sparse attention mechanism. Transformer is a
well-tested architecture that is used throughout NLP. Additionally, with sparse
attention, Transformers consume a relatively small amount of memory even for
longer inputs, as we explain in Section 2.1.1. Another consideration is that we
need a pre-trained model, as our method is not suited to train a model from
scratch but to finetune a model’s document embeddings.

Contrary to the selection of architecture, selecting a concrete model is not
crucial to our method. Our choice of the concrete model is governed more by
practical considerations rather than the conditions of our method. Since we have
limited computational resources, we prefer a smaller model that we can fit on a
consumer-grade GPU card. We also value the model’s performance, ease of use,
and simplicity. We choose Longformer [Beltagy et al., 2020] as it is reasonably
small, memory efficient, performs above average compared to other similar models
[Tay et al., 2020], and its self-attention mechanism is straightforward. Other
alternatives are BigBird [Zaheer et al., 2020], or if we would not mind a more
complex model, we could use Reformer [Kitaev et al., 2020], Linformer [Wang
et al., 2020] or Performer [Choromanski et al., 2020].

3.3.1 Longformer
Longformer [Beltagy et al., 2020] is a Transformer encoder with sparse attention.
Because we refer to Longformer’s configuration and training in the following chap-
ters, we briefly explain Longformer’s self-attention mechanism and training data.

Self-attention mechanism

Longformer has a sparse self-attention mechanism that composes three different
patterns: local, global, and dilated local attention. Local attention is full atten-
tion limited to the neighborhood of 1

2ω tokens on either side of the key token,
where ω can be set differently per self-attention layer. In global attention, few
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selected tokens attend to all other tokens. The tokens on which Longformer
computes global attention can be selected per each input. Global attention’s pa-
rameters are not pre-trained. Instead, at the beginning of the training, they are
initialized with the local attention’s parameters and finetuned for a given task.
With dilated local attention, every key token attends to every k neighboring query
token. So, it is analogous to a one-dimensional Convolution layer [Van Den Oord
et al., 2016] with stride, or dilatation of k. However, dilated local attention is
only available with a custom CUDA kernel or slow Python implementation using
loops in Python. The authors also provide a reasonably fast, memory-efficient
block implementation for global and local attention.

Training

Longformer is warm-started from a RoBERTa [Liu et al., 2019] checkpoint with
its learned positional embeddings duplicated eight times to support inputs up to
4096 tokens long. The authors show that duplicating RoBERTa’s positional em-
beddings is faster than training position embeddings for all 4096 positions from
scratch. Then, the authors train Longformer using MLM on long documents for
65k gradient steps to improve its capabilities for longer inputs. The training cor-
pus overlaps with RoBERTa’s pre-training corpus but is more focused on longer
pieces of text. It includes the following datasets:

• Book corpus [Zhu et al., 2015]

• English Wikipedia

• One-third of articles from Realnews dataset [Zellers et al., 2019] with more
than 1200 tokens

• One-third of the Stories corpus [Trinh and Le, 2018]

Unfortunately, as of this writing, the Book corpus is unavailable due to li-
censing issues. Moreover, we have not been able to find a comparable alternative.
The Stories corpus is also unavailable. The only alternative we have found is
hosted on HuggingFace1, which, despite its description, does not seem to mimic
the original dataset, since the articles it contains are extremely short. The mean
word count per document is only 71 words and 99% of documents have less than
145 words.

1https://huggingface.co/datasets/spacemanidol/cc-stories
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4. Experiments
In this chapter, we experiment with the training method we introduce in Chap-
ter 3. This chapter’s main goal is to show that our method improves the base
student’s performance and, ideally, also the performances of both teacher mod-
els. We also examine each teacher’s contribution to the student’s performance
and find a mix of the teachers’ capabilities that produce the best-performing
student model.

This chapter is laid out as follows. We describe the training data in Sec-
tion 4.1. Next, we discuss how we compare models in Section 4.2. In Section 4.3,
we present the student’s configuration and specify the baselines we try to beat
in the following experiments. First, we experiment with the structural loss in
Section 4.4. Then, for the given best-performing structural loss, we find the best-
performing contextual loss and the weighting of the two losses in Section 4.5.
Finally, we summarize our experiments and findings in Section 4.6.

4.1 Training data
Our training dataset mirrors Longformer’s training dataset, except for a few
exceptions. We have to leave out the Book corpus [Zhu et al., 2015] and the Stories
corpus [Trinh and Le, 2018] as they are currently unavailable. Thus, we equally
sample documents from English Wikipedia1 and RealNews articles [Zellers et al.,
2019], which are at least 1200 Longformer tokens long. We label the resulting
dataset as val-500k and show its statistics in Table 4.1. We compile our training
dataset from Longformer’s training data so that comparing our trained student
model and Longformer is fair. In this way, the trained student model does not
see any new data compared to Longformer. Therefore, any difference between the
models’ performances can be attributed to our training method. For the same
reasons, we use an identical method to generate the dataset train-1M for the
final training of a selected few student models in Chapter 5.

Very similar to train-1M, val-500k contains long documents that are, on
average, over 1300 tokens long. Consequently, only about 34% of the documents
could be processed whole using a traditional Transformer such as RoBERTa [Liu
et al., 2019]. We also display the documents’ length distribution in Figure 4.1.
The source’s distributions are well-spaced since Wikipedia contains relatively
short documents, while RealNews does not contain documents shorter than 1200
tokens. Consequently, most training documents have either between 0 and 500
tokens or 1200 to 1700 tokens.

4.2 Validation tasks
We compare the embedding models based on their performance on downstream
tasks. We use a subset of our evaluation tasks, described in detail in Chapter 5.
We include tasks with either a large enough training split suitable for cross-
validation or a validation split. As a result, we validate embedding models only

1https://huggingface.co/datasets/wikipedia/viewer/20220301.en
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Split Train Validation

Documents 500 000 10 000
Tokens 6.85e+08 1.37e+07
Tokens per document 1371±1723 1372±1717
SBERT tokens over 384 71% 70%
SBERT tokens over 512 66% 66%

Table 4.1: Statistics of val-500k. Apart from document count, token count, and
mean token count per document, we also show the percentage of documents with
the number of SBERT tokens above a given threshold.
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Figure 4.1: Distribution of train and validation documents’ lengths for val-500k.
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Documents Classes Class percentage σ
Dataset Train Validation Train Validation

arxiv [He et al., 2019] †10 000 2 500 11 1.24 1.01
imdb [Maas et al., 2011] †10 000 - 2 0.00 -
oc [Xuhui Zhou, 2020] †10 000 †10 000 2 0.06 0.15
aan [Xuhui Zhou, 2020] †10 000 †10 000 2 1.50 4.57
s2orc [Xuhui Zhou, 2020] †10 000 †10 000 2 0.09 0.32
pan [Xuhui Zhou, 2020] †10 000 2 908 2 0.00 0.00

Table 4.2: Validation tasks we use to compare embedding models in this chap-
ter. We truncated splits marked with † to speed up the evaluation process. We
truncate a split by downsampling it following its label distribution. The class dis-
tributions for all tasks are on average balanced, thus we show only the standard
deviation of class percentages.

on classification tasks. All tasks are evaluated using a validation split, except for
IMDB, where we take the mean score of five cross-validation folds. To make the
validation faster to compute, we downsample the validation and train splits to
10000 examples. We downsample the datasets following their label distribution
so that the truncated split has a label distribution nearly identical to the original
one. We present the validation tasks and their document count in Table 4.2.

We use binary or micro-averaged accuracy as the scoring metric. Often, we
compare performance across several tasks. However, not all tasks are equally
difficult, so averaging accuracies would lead us to favor models that performed
well on easy tasks and undervalue models that performed well on more difficult
tasks. Therefore, we normalize the accuracy by the highest score reached for the
given task within the considered models, making the tasks equally difficult. We
call this metric normalized accuracy. When more tasks are taken into account,
we asses models based on the mean normalized accuracy. In visualizations, we
mark mean normalized accuracy with a black triangle.

When validating a trained embedding model on a task, we finetune a head that
transforms the embeddings into the output format required by the given task. We
do not finetune the embedding model itself. Besides speeding up the validation,
this gives us a more genuine picture of the embedding model’s performance. Since
all our validation tasks are classifications, we train a classification head for all of
them. For each task, we use the same 2-layer neural network with a cross-entropy
loss. We present the complete list of the classifier’s hyperparameters and training
parameters in Table 4.3.

4.3 Student model’s configuration and baselines
As we explain in Section 3.3, we initialize our student model with Longformer
[Beltagy et al., 2020]. We use Longformer’s base version with about 126M pa-
rameters implemented by HuggingFace transformers library2.

We generate the student’s embedding by computing a mean of the last layer’s
hidden states. We do not use global attention and employ sliding window atten-
tion, with the window sizes ω set to the default 512 tokens. In our preliminary

2https://huggingface.co/allenai/longformer-base-4096
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Parameter Value

Hidden features 50
Hidden dropout rate 0.5
Hidden activation ReLU
Epochs 10
Batch size 32
Weight decay 0.1
Label smoothing 0.1
Learning rate 1e-4
Learning rate decay Cosine
Maximum gradient norm 1.0
Optimizer AdamW
Mixed-precision training Yes

Table 4.3: Hyperparameters used for training classification heads during evalua-
tion in this chapter.

Parameter Value

Batch size 6
Weight decay 0.1
Learning rate 1e-4
Learning rate decay Cosine
Maximum gradient norm 1.0
Optimizer AdamW
Gradient accumulation steps 1
Warmup steps 10% of training steps
Gradient checkpointing Yes
Mixed-precision training Yes

Table 4.4: Training parameters’ values we use every time we train a student
model in this chapter.

experiments, we also tested setting global attention to the CLS token and tak-
ing its hidden state from the last layer as the input’s embedding. However, the
mean-pooling approach proved to be superior. Additionally, with mean-pooling,
we found global attention is not beneficial, so we do not use it.

During training, we aim for fast convergence with a small memory footprint.
Therefore, we use a high learning rate, no gradient accumulation steps, mixed-
precision training, and gradient checkpointing. We enumerate the complete list
of student’s training parameters in Table 4.4. We use these values for all students
we train in this chapter.

4.3.1 Baselines
As mentioned, our goal is to find a configuration of our training method such
that the trained student outperforms both teachers and Longformer. To check
how close we are to this goal throughout this chapter, we compare the students to
three models: Longformer [Beltagy et al., 2020], SBERT [Reimers and Gurevych,
2019], and PV [Le and Mikolov, 2014]. We compare students to Longformer
to judge how our training method improves document embeddings. Due to the
selection of our training data, the student’s performance depends only on our
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training method. Thus, the student model’s performance becomes proportional
to our training method’s performance. As we also want to consume a minimum
amount of resources, we train the student models only on 15k documents. In
our preliminary experiments, we found this number of training documents to be
enough to show the benefit of our method. For context, we train the student
models for only 3.8% of Longformer’s pre-training iterations with an eight times
smaller batch size.

We compare the students to the two teachers to see how much performance
our training method ignores or takes advantage of. If our student model performs
worse than a particular teacher, we need to improve how we distill the teacher’s
embeddings into the student’s embeddings. As the student has architectural
advantages compared to both teachers, such as longer maximum context, we
hypothesize it can match and surpass both teachers’ performance. We discuss
the configuration of the structural teacher in the following section. We train
Paragraph Vector as a part of our method in Section 4.5.1.

4.4 Structural loss
We start our experiments with the structural loss LS. The structural loss com-
pares the student’s and the structural teacher’s embeddings. Its goal is to en-
courage distillation of the quality of the structural teacher’s embeddings into the
student’s embeddings. We focus on the structural loss first since, in our prelim-
inary experiments, we observed that the structural quality is more important to
the performance of the student model than the contextual quality. We arrive at
the same conclusions later in this chapter in Section 4.5.2. Therefore, we priori-
tize first finding the best-performing hyperparameters of the structural loss and
adapting the contextual loss to it afterward.

As we mention in Section 3.2, we use SBERT [Reimers and Gurevych, 2019]
as our structural teacher. We use SBERT’s version initialized with MPNet [Song
et al., 2020] since it is a relatively small model with above-average performance3.
We use SBERT’s implementation from the HuggingFace transformers library4

with a mean pooling layer above the last layer’s hidden states. We do not perform
any finetuning and use the pre-trained weights only.

As explained in Section 3.1.2, we choose structural loss to be more restrictive,
forcing an exact similarity between the two embeddings. Therefore, we test two
different exact losses as structural losses: Mean Squared Error (MSE) and cosine
distance. We try MSE because it forces equality, the most restrictive similarity
measure. The motivation for using cosine comes from the embeddings’ use cases,
where cosine distance is a popular similarity measure. More importantly, it is
also used by SBERT’s authors, suggesting that for SBERT’s embeddings, it is
the best-performing similarity measure.

We train the student model with each loss on the first 15k documents of val-
500k with the hyperparameters given in Section 4.3. As we show in Figure 4.2,
with cosine distance, the student model surpasses both baselines. The fact that
the student performs better than the teacher indicates that Longformer’s longer

3https://sbert.net/docs/pretrained_models.html
4https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Figure 4.2: Performance of student models trained with only the structural
teacher.

context and supervision from the structural teacher can boost the student’s per-
formance even above the level of the teacher. Moreover, SBERT’s scores are
significantly higher than Longformer’s, showing that unless Longformer’s embed-
dings are finetuned, its longer context length or pre-training is of no benefit.

These encouraging results show that using only the structural teacher can be
a valid method of improving a model’s embeddings in itself, even without the con-
textual teacher. In subsequent experiments, we use cosine as the structural loss.
For brevity, we label the student model trained with only the cosine structural
loss as only-structural;cosine.

4.4.1 Composite structural losses
Besides the cosine and the MSE, we also explore losses that combine a positive and
a negative component, such as contrastive loss. We call these losses composite to
differentiate them from simple losses, such as MSE or cosine distance. Composite
losses compare the student’s embedding to a teacher’s embedding of the same
input, which we call positive, and to the teacher’s embedding of different inputs,
which we call negatives. They reward the student model for close proximity to
positives or large distances to the negatives. Therefore, structural composite
losses aim to optimize two objectives: they decrease the distance to SBERT’s
embeddings while increasing the margin between the student’s embeddings of
different inputs.

We explore two types of composite losses: max-margin and contrastive. To
formulate these losses, we label the student’s embedding as y, the corresponding
teacher’s embedding as ypos, the set of negatives as Yneg, the given similarity
measure as sim, and a weighting parameter as γ. We define the max-margin loss
in Equation 4.1 and the contrastive loss in Equation 4.2.
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Figure 4.3: Performance of student models trained with composite and simple
structural losses.

Lmax-margin(y, ypos, Yneg) = sim(y, ypos) − γ
1

|Yneg|
∑︂

yneg∈Yneg

sim(y, yneg) (4.1)

Lcontrastive(y, ypos, Yneg) = − log exp(cos(y, ypos))
exp(cos(y, ypos) + ∑︁

yneg∈Yneg cos(y, yneg)) (4.2)

For max-margin loss, we try MSE and cosine distance as sim and simultane-
ously try several weightings γ. We compare models trained with the composite
losses with those trained with the simple losses in Figure 4.3. Composite losses
using MSE seem to benefit from the negative loss component, as 3 out of the 4
tested outperform the simple MSE loss. However, despite the benefits, only one
variant surpasses both baselines. With cosine, it seems that the negative loss
component hurts the performance since only one version outperforms the simple
cosine loss and does so by only 10−4. We carry out an analysis to explain the dif-
ferences between MSE and cosine composite losses and to show how the negatives
contribute to the model’s performance.

Analysis of composite losses

The impact of composite losses is different for MSE and cosine. Also, it is not
clear how the negatives contribute to the student’s performance. To explain these
results, we compare the distances to positives and negatives for several chosen
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Figure 4.4: Distribution of distances between the model’s and the structural
teacher’s embeddings. A distance to the teacher’s embedding of the same doc-
ument is labeled as positive, whereas distances to the teacher’s embedding of
another document are labeled as negative. We generated the distances from the
first 1000 documents of val-500k’s validation split.

models in Figure 4.4. The plotted distances nicely mirror the students’ per-
formances. However, the effect of the negative loss component is minimal for
most student models. Except for max-margin;MSE with γ set to 1 or 1.5, there
is no dramatic shift in the distances’ distributions. In terms of squared L2 dis-
tance, max-margin;MSE;γ=1.0 widens the gap between positives and negatives, yet
it also increases the distances to the positives. However, this effect is much less
pronounced for cosine distance. This suggests that the model increases the em-
beddings’ norm to create a large gap between positives and negatives in terms of
squared L2 distance while decreasing the cosine distance to positives. In other
words, despite computing L2 distances, max-margin MSE loss with γ = 1.0 opti-
mizes cosine distance. Note that with γ = 1.5, the negative loss component has
damaging effects in terms of both cosine and squared L2 distances.

To summarize, the effect of the negatives being included in the loss may be
dual. With the right configuration, the composite losses may enforce a larger sepa-
ration between the student’s embeddings while decreasing their distance from the
structural teacher’s embeddings. So, besides only-structural;cosine we also continue
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experimenting with max-margin;MSE;γ=1.0, which we label in further sections as
only-structural;mm-MSE.

4.5 Structural and contextual loss
This section explores contextual losses to complement the best-performing struc-
tural losses from the previous section. Since there are several hyperparameters to
explore, we split this section into parts. Each part focuses on a different aspect
of the contextual loss or the weighting of the contextual and structural loss. At
the end of each part, we select a few best-performing variants, which serve as a
starting point in the subsequent section. First, we test different training hyper-
parameters of the contextual teacher in Section 4.5.1. Then, we experiment with
the contextual loss’s configuration in Section 4.5.2. To illustrate the importance
of the structural teacher, we show the performance we reach when we use only
the contextual loss. More importantly, we test the contextual losses with both
selected structural losses and pick the best-performing configuration for each one.
Finally, we explore different ways to weigh the contextual and structural loss for
both combinations in Section 4.5.3.

4.5.1 Optimizing Paragraph Vector’s training
We choose Paragraph Vector [Le and Mikolov, 2014] as our contextual teacher, as
we elaborate on in Section 3.2.2. Since there is no concept of a pre-trained PV, as
in the case of Transformers, we train PV from scratch. We use PV’s implemen-
tation from the Gensim library5 and explore some of the hyperparameters that
govern the training of PV. We focus on four hyperparameters that we consider
important and adopt the recommendation of the library or related literature for
the rest of them. We enumerate the adopted and the grid-searched hyperparam-
eters in Table 4.5. To explain the meaning of all hyperparameters, we provide
the following summary:

• dm – PV architecture; true for Distributed Memory (DM), false for Dis-
tributed Bag of Words (DBOW)

• vector size – dimensionality of the generated embedding

• min count – words with document frequency below this limit will be ignored

• text pre process – applied word processing done before the model’s train-
ing; for stemming, we use PorterStemmer implemented by the nltk library6

• negative – number of noise words used for negative sampling during train-
ing

• window – the maximum distance between known and predicated word

• sample – percentile threshold configuring which words will be downsampled;
0 for no downsampling

5https://radimrehurek.com/gensim
6https://www.nltk.org/api/nltk.stem.porter.html
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• dbow words – whether to train word embeddings using Word2Vec’s [Mikolov
et al., 2013] Skip-gram architecture together with document embeddings;
only applicable to DBOW, as DM learns word embeddings by default

• epochs – a number of iterations done over the corpus during training

As recommended by the authors of PV [Le and Mikolov, 2014], we experi-
ment with both architectures. For each architecture, we try different values of
vector size, min count, and text pre process, which all control the model’s
regularization. Settings such as higher dimensional embedding, small minimum
count, and no text pre-processing regularize the model the least. They give the
model the most information on its inputs while providing it with a large em-
bedding through which it can express precisely. On the other hand, using lower
dimensional embedding, large minimum count, and stemming forces the model to
be more general and less precise. The model has less detailed information on its
input and must squeeze all of it into a small vector. We do not see any value in
trying dimensions of embeddings higher than 1024 since, in later experiments, we
must distill the contextual embedding to a 768-dimensional embedding of our stu-
dent model. Intuitively, the larger the contextual embedding will be, the smaller
the fraction of information the student model will be able to digest. Also, there is
no value in considering min count to be lower than two since we would only add
words unique to a single document. Embeddings of such words would be poorly
trained and not add meaningful information to the document’s embedding. The
last hyperparameter that is worth mentioning is dbow words. DBOW, on its
own, does not train word embeddings, which are, by default, randomly gener-
ated. Setting dbow words to true causes DBOW to train word embeddings using
Word2Vec’s Skip-gram model [Mikolov et al., 2013] in each epoch. Lau and Bald-
win [2016] showed that random word embeddings significantly hurt the model.
Consequently, when training DBOW, we also train word embeddings despite the
slower training, which it inevitably causes.

We train all variants on the whole val-500k corpus. We follow the rec-
ommendations of Le and Mikolov [2014] and also evaluate the combination of
both architectures. However, we only select the best three models from each ar-
chitecture and evaluate all nine combinations. We call these models compound

Hyperparameter Value(s) Recommended by

dm true, false -
vector size 100, 768, 1024 -
min count 2, 10% of training corpus -
text pre process stem, lowercase, none -
window 5 default
negative 5 default, Lau and Baldwin [2016]
sample 0 default
dbow words true Lau and Baldwin [2016]
epochs 10 default, Dai et al. [2015]

Table 4.5: Used hyperparameters for training Paragraph Vector. We grid-
searched four hyperparameters: PV architecture, vector size, minimum word
count, and pre-processing of words. For the rest of the hyperparameters, we
adopted either the default values or recommended by the mentioned literature.
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Paragraph Vectors. We evaluate 45 models and display their performance on val-
idation tasks in Figure 4.5. The single models favor large embedding dimensions
and low minimum count. Additionally, on average, stemming or lowercasing
leads to higher scores than not pre-processing the words. DBOWs vary more
in performance, occupying the best and the worst positions, whereas DMs are
more consistent. We achieve a slight improvement by concatenating a DM and
a DBOW model, but considering the resulting model has an embedding twice
as large, the improvement is not surprising. Interestingly, all compound models
perform very similarly, suggesting that slight imperfections of one model can be
compensated by another model of a different architecture.

In our preliminary experiments, we saw that the dimension of contextual
teacher embedding plays a significant role in teacher-student training. So, we
select three paragraph vectors with varying vector sizes. We pick the best model
with small vector size (DM;100;lowercase;2), the best single model
(DBOW;1024;None;2) and the best model composed of both architectures
(DM;1024;stem;2+DBOW;1024;None;2). For brevity, we label these models as
DM;100d, DBOW;1024d and PV;2048d respectively.

4.5.2 Contextual loss
Contextual loss LC compares the student’s and the contextual teacher’s embed-
dings and encourages distillation of the quality of the teacher’s embedding into
the student’s embedding. As we discuss in Section 3.1.2, we choose LC to be less
strict and give the student model more freedom in encoding the input into the
document embedding. Consequently, we do not consider losses such as MSE or
cosine since they enforce either an exact vector or a direction in the embedding
space. Instead, we use a variant of Canonical Correlation Analysis [Hotelling,
1992] (CCA). In its base form, CCA computes a correlation of two linearly pro-
jected sets of vectors, where the projections are optimized to maximize the cor-
relation. We define CCA in Equation 1.

Definition 1 (Canonical Correlation Analysis). For two matrices X1 ∈ Rn1×m1

and X2 ∈ Rn2×m2, Canonical Correlation Analysis for k dimensions finds P ∈
Rm1×k and Q ∈ Rm2×k that maximize

CCA(X1, X2) =
k∑︂

i=1
corr(X1P∗i, X2Q∗i)

s.t. P T XT
1 X1P = Ik = QT XT

2 X2Q

(4.3)

CCA gives the student the freedom to change its embeddings as long as their
linear projections correlate more with the linear projections of the contextual
teacher’s embeddings. However, linear projection may still leave too little leeway
for the student model to mimic the structural teacher. Ideally, we would like to
regulate the strength of the projections. Such adjustment is possible with Deep
CCA (DCCA) [Andrew et al., 2013]. DCCA projects the input vectors with two
neural networks and feeds the projections to the vanilla CCA. The two networks
are trained jointly with the embedding model based on the computed CCA, which
is used as a loss. The advantage of DCCA is that we can adjust the strength of
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Figure 4.5: Performance of all Paragraph Vector variants on validation tasks. We
identify a model by its architecture, embedding dimension, text pre-processing,
and minimum count. Compound models are identified as a concatenation of such
identifiers separated by +.
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the projections and thereby regulate the pressure the contextual loss inflicts on
the student model. The larger the neural network is, the more it can transform
the embeddings and the less the student model needs to adjust its embedding.

As we can see in Equation 1, CCA is computed from the entire dataset of
input vectors. And so DCCA is trained using a full-batch optimization [Andrew
et al., 2013] or a mini-batch optimization with large batch sizes [Wang et al., 2015].
However, both methods need large amounts of GPU memory and are suitable only
with smaller models. For this reason, we avoid CCA and use SoftCCA [Chang
et al., 2018] instead. SoftCCA reformulates CCA such that it is usable even in
the case of mini-batch optimization with small batches. To explain how SoftCCA
is related to CCA, we reformulate the solution to CCA using a Forbenious matrix
norm in Equations 4.4-4.8.

P ∗, Q∗ = argmin
P,Q

||X1P − X2Q||2F (4.4)

= argmin
P,Q

trace
(︂
(X1P − X2Q)T (X1P − X2Q)

)︂
(4.5)

= argmin
P,Q

−2 trace(P T XT
1 X2Q) (4.6)

= argmax
P,Q

trace(P T XT
1 X2Q) (4.7)

= argmax
P,Q

k∑︂
i=1

corr(X1P∗i, X2Q∗i) (4.8)

Thus, by minimizing CCA, we effectively minimize the difference between two
projections with uncorrelated features. SoftCCA enforces the same behavior with
two separate losses:

• L2 loss, which minimizes the difference between a projected set of vectors
Z1 and Z2:

LL2(Z1, Z2) = ||Z1 − Z2||2F = MSE(Z1, Z2) (4.9)

• Soft Decorrelation Loss (SDL), which forces a projected set of vectors Z to
have decorrelated features:

LSDL(Zt) =
∑︂
i ̸=j

⃓⃓⃓⃓
⃓⃓(Φt

Z)ij

β̂
t

⃓⃓⃓⃓
⃓⃓ (4.10)

where

Φt
Z = βΦt−1

Z + ΣZt (4.11)
Φ0

Z = 0d (4.12)

β̂
t = ββ̂

t−1 + 1 (4.13)

β̂
0 = 0 (4.14)

Where the symbols above have the following meanings:
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• Z, Z1, Z2 ∈ Rb×d are mini-batches of d-dimensional vectors

• ΣZ is a covariance matrix of a mini-batch of vectors Z

• 0d is a d × d zero matrix

• β is a hyperparameter

• Φt
Z , Zt, β̂

t is ΦZ , Z, β̂ at iteration t

The L2 loss forces the projected vectors to be equal, while the Soft Decorre-
lation Loss forces them to have uncorrelated features. SoftCCA can approximate
CCA by keeping a running mean of the projected vectors’ covariance matrices.
Similarly to Batch Normalization [Ioffe and Szegedy, 2015], SDL updates the
running mean during training but avoids any updates during inference. With the
above losses and the weighting hyperparameter δ, we define SoftCCA in Equa-
tion 4.15.

LSoftCCA(Z1, Z2) = LL2(Z1, Z2) + δ(LSDL(Z1) + LSDL(Z2)) (4.15)
We use SoftCCA loss as a replacement for CCA in DCCA. To be explicit,

we project the student’s and the contextual teacher’s embedding with two sepa-
rate feed-forward neural networks. Then, we apply SoftCCA loss, which provides
a training signal for the embedding model and the neural networks projecting
the embeddings. Depending on which input the neural networks project, we call
them student and contextual projections. And so, we can finally express LC from
Equation 3.1 more concretely. For a student projection fS and a contextual pro-
jection fC , we formulate our contextual loss in Equation 4.16. We also illustrate
the architecture of contextual loss graphically in Figure 4.6.

LC(yS , yTC
) = LSoftCCA(fS(yS), fC(yTC

)) (4.16)
In our preliminary experiments, we found that the value of δ from Equa-

tion 4.15 has little effect on the final student’s performance. So, we set it so
that the ranges of LL2 and LSDL are roughly equal. On the other hand, choosing
the right value of β proved to be critical. Based on how the CCA of the pro-
jected embeddings of the validation split progressed throughout the training, we
found the optimal value to be 0.95, which puts a relatively large emphasis on the
accumulated mean compared to lower values of β.

In the rest of this section, we experiment with the strength of the projections.
In the following section, we build the basic intuition behind training with con-
textual loss while finding the ideal projections without structural loss. In the
subsequent sections, we study how different structural losses influence the pro-
jections. First, we experiment with cosine and then with max-margin MSE loss.
In all cases, we test the projections for each of the three contextual teachers:
DM;100d, DBOW;1024d and PV;2048d. Finally, we select the best contextual loss
with the best contextual teacher for both cosine and max-margin MSE structural
loss.
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Figure 4.6: Architecture of contextual loss.

Contextual projection with contextual loss only

With only the contextual loss, the student’s only goal is to mimic the contextual
teacher. This presents an elementary setting in which we can study the behavior
of the projections and the contextual loss as a whole without any influence from
the structural loss.

Our preliminary experiments show that the projections’ over-parameterization
hurts the model’s performance. Even though large projections result in smaller
SoftCCA loss, they tend to harm the CCA computed on the student’s and con-
textual teacher’s embeddings. Strong projections compensate for the student’s
flaws, lessening the pressure on the student model as it does not need to adjust its
embedding much. Consequently, the student model learns very little compared
to the projections. Similarly, strong contextual projection takes away pressure
from the student projection and vice-versa. In this regard, it is essential to keep
the contextual projection small. This puts more pressure on the student’s side,
where the gradients can propagate to the embedding model.

As we mentioned before, we feed the projected outputs to SoftCCA loss
LSoftCCA. SoftCCA requires both inputs to be of the same dimension, so both
projections must end with an equally sized layer. We always use the dimension of
the larger embedding as the final projection dimension. We do so to preserve all
the embeddings’ information through the projection and force the student model
to distill all the contextual embedding’s dimensions, not just their subset. Also,
there is no point in projecting the embeddings to even more dimensions than the
embeddings have. Due to the Pigeonhole principle, some features of the final pro-
jections would have to depend on the same embedding’s features and, therefore,
would correlate with each other. Such correlations would create unnecessary con-
flict with the SDL loss. This phenomenon would also occur for projections with
an hourglass shape, where there is one bottle-neck layer with significantly fewer
dimensions than the layers after or before it. And indeed, during preliminary
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Contextual teacher’s embedding dimension

Projection 100 1024 2048

Student 768(ReLU)x1024(ReLU)x768 768(ReLU)x1024 1024(ReLU)x2048
768 1024 2048

Contextual 100(ReLU)x768 768x1024 1024x2048
768 1024 2048

- -

Table 4.6: All tested variants of projections with only contextual loss. We do a
grid search of the given variants for each contextual teacher. This results in 16
combinations overall.

testing, we saw these projections always perform poorly.
We build the projections as a sequence of blocks, where each block is com-

posed of a fully connected layer and an optional Rectified Linear Unit (ReLU ). In
preliminary experiments, we also tried adding Dropout, Batch, or Layer Normal-
ization layers at different places in a block. However, in all cases, they had either
negligible or negative effects on the performance of the final model. We label
each block with the dimension of the fully connected layer and the activation’s
name in brackets if used. We identify a projection by block’s labels delimited by
an “x”. So, 768(ReLU)x1024 are two feed-forward layers with 768 and 1024 features
connected via ReLU. To label projections without any layers, we use a dash.
We present all the projections’ variations we tested in Table 4.6. Considering
the conditions described in the previous paragraph, we choose a strong and a
weak projection for both the student and contextual side. We are careful not to
over-parametrize either projection and lean toward stronger student projection.

We train the student models on the first 15k documents of val-500k and
compare the models’ performance to all the relevant teachers, Longformer and
only-structural;cosine in Figure 4.7. We identify a student model with the contextual
teacher’s dimension, the student projection prefixed by S: and the contextual
projection prefixed by C:.

The results correspond to those we witnessed in our preliminary experiments
and showcase some of the mentioned projections’ behaviors. The better half of the
student models differs from the rest by having a minimal contextual projection.
Moreover, for a given contextual teacher and a projection, the student model
with a larger student projection outperforms the student with a smaller one in
all cases but one.

Half of the tested projections improve the score of Longformer. The better
projections demonstrate that we can distill useful information from the contex-
tual teacher to the student, while the worse projections highlight how impor-
tant the projections are. However, as our contextual loss does not enforce an
exact similarity of the student’s and the contextual teacher’s embedding, most
students do not outperform their respective contextual teachers. Interestingly,
students trained with DM;100d surpass students trained with better performing
DBOW;1024d. We can observe the same performance differences for DBOW;1024d
and PV;2048d, even if we compare projections that scale with the contextual
embedding, such as 1024d;S:1024;C:- and 2048d;S:2048;C:- or 1024d;S:1024;C:1024 and
2048d;S:2048;C:2048. Consequently, distilling information from an embedding with
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Figure 4.7: Performances of student models trained with different projections and
without structural loss. We compare the students to all the relevant teachers,
Longformer, and only-structural;cosine.

fewer features seems easier than from a larger one. And so, even though PV with
2048 dimensions beats SBERT, the students trained with it fail to capitalize on
this advantage and perform worse than the model trained with SBERT. So, ac-
cording to our results, the structural teacher is more important to the student’s
performance than the contextual teacher and justifies why we search for the ideal
contextual loss to the best-performing structural loss rather than the other way
around.

Contextual projection with cosine structural loss

In this section, we search for the best-performing projections while simultaneously
using cosine structural loss. The training is a bit more complex than in the
previous section as here the student should distill two qualities, each from a
different teacher. So, even though the student and contextual projections still
behave equally, they may cause different outcomes.

We list all the tested projections in Table 4.7. We add stronger projections
while discarding some of the less successful projections from the previous section.
We again train the student models on the first 15k documents of val-500k
and present the performance of the trained student models in Figure 4.8. The
projection variants differ less than in the case of the student models trained
without structural loss. The cosine structural loss boosts the models’ performance
and lessens the negative impact of a poor projection. As a consequence, almost all
of the student models surpass all baselines. The best-performing projections are
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Contextual teacher’s embedding dimension

Projection 100

Student 768(ReLU)x1024(ReLU)x768
Contextual 100(ReLU)x768

768

(a) 100-dimensional contextual teacher

Contextual teacher’s embedding dimension

Projection 1024 2048

Student 768(ReLU)x1024 1024(ReLU)x2048
Contextual 1024 2048

- -

Student 768(ReLU)x4096(ReLU)x1024 768(ReLU)x4096(ReLU)x2048
Contextual 768(ReLU)x1024 2048(ReLU)x2048

1024 2048
- -

(b) 1024 and 2048-dimensional contextual teachers

Table 4.7: All tested variants of projections with contextual loss and cosine struc-
tural loss. For a given contextual teacher, we delimit each group of projections
by a horizontal line. We grid search all variants within each group. This results
in 12 combinations of projections.

much larger compared to the best projections trained without any structural loss.
As the added structural loss puts more pressure on the student, the contextual
loss needs to give the model more freedom to avoid conflict between the losses,
which would slow down the training. With the larger projections, we were able
to surpass only-structural;cosine. This shows that, with the right projections, the
student model benefits from both losses being used during training. Even if the
performance gain is not huge, we conclude that the contextual and structural
embeddings may complement each other in the right setting.

Contextual projection with max-margin MSE structural loss

Finally, we find the optimal projections for the max-margin MSE structural loss.
We present all the tested projection variants in Table 4.8. We include success-
ful projections from the previous section and add stronger contextual projections
as they perform surprisingly well in this context. Same as before, we train all
student models on the first 15k documents from val-500k and compare their
performance to all relevant teachers, Longformer, and only-structural;mm-MSE. We
present the model’s performances in Figure 4.9. As with the cosine structural
loss, max-margin MSE loss boosts the students’ performances. Consequently,
the student’s performances are not as dependent on the projections as those of
students trained without structural loss. Contrary to what we witness in previ-
ous experiments, stronger contextual projections perform very well overall. This
shows that max-margin MSE loss puts more pressure on the student’s embedding
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Figure 4.8: Performance of student models trained with contextual and cosine
structural loss on validation tasks. We compare the student models to all relevant
teachers, Longformer and only-structural;cosine.

than the cosine structural loss. Despite testing even more projections for max-
margin MSE than for cosine structural loss, we fail to find projections that would
outperform only-structural;mm-MSE. Nonetheless, we continue experimenting with
the best projections we find.

4.5.3 Weighting of structural and contextual loss
The final loss is a weighted sum of the contextual and the structural loss. In
this section, we explore two weighting mechanisms. We combine a static weight-
ing of each loss with a dynamic masking of the structural loss based on the
length of the inputs. As the structural teacher has limited context length, its
embedding only reflects the information in the first 384 tokens. We use dynamic
masking to train the student only on those inputs, which the structural teacher
encodes whole. Therefore, in theory, the structural loss should be more reliable.
Without the masking, we might motivate the student model to focus only on
the first 384 tokens and discard the rest. To summarize, we grid-search two pa-
rameters: max structural len and λ. max structural len determines which
inputs’ structural loss we mask out. λ is the static weight used for unmasked in-
puts to balance the importance of the structural and contextual loss. For clarity,
we include a Python-like pseudocode of the weighting algorithm in Listing 4.1.
Note that we mask the inputs of the structural loss rather than its results. So,
we effectively select only some inputs on which the loss will be computed. This
is especially important for the max-margin loss, where the number of negatives
effectively decreases.

In previous experiments, we weight the losses less intrusively. We do not mask
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Contextual teacher’s embedding dimension

Projection 100

Student 768(ReLU)x1024(ReLU)x768
768

Contextual 100(ReLU)x768
768

(a) 100-dimensional contextual teacher

Contextual teacher’s embedding dimension

Projection 1024 2048

Student 768(ReLU)x1024 1024(ReLU)x2048
Contextual 768x1024 1024x2048

1024 2048
- -

Student 768(ReLU)x4096(ReLU)x1024 768(ReLU)x4096(ReLU)x2048
Contextual 1024(ReLU)x1024 2048(ReLU)x2048

768(ReLU)x1024 -

(b) 1024 and 2048-dimensional contextual teachers

Table 4.8: All variants of projections tested with max-margin MSE structural
loss. For a given contextual teacher, we delimit each group of projections by a
horizontal line. We grid-search all variants within a group. This results in 14
combinations in total.
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Figure 4.9: Performance of student models trained with contextual and max-
margin MSE structural loss on validation tasks. We compare the student models
to all relevant teachers, Longformer and only-structural;mm-MSE.
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length_mask = torch.ones( batch_size )
if max_structural_len is not None:

length_mask = lengths <= max_structural_len
lams = torch.zeros( batch_size ).fill_(λ)
lams *= length_mask

# For each loss we expect shape (batch_size ,)
structural_loss = structural_loss_fn(..., mask= length_mask )
contextual_loss = ...

loss = structural_loss * lams + contextual_loss * (1 - lams)
loss = torch.mean(loss)

Listing 4.1: Python-like pseudocode of weighting algorithm.

max structural len λ

384 0.95
None 0.8

0.5
0.2

Table 4.9: Tested weighting hyperparameters’ values. We experiment with several
static weightings λ with or without dynamic masking of structural losses for
inputs longer than 385 tokens.

out structural loss and sum the two losses. The advantage of this approach is
that it does not reduce any gradients. However, we lose control over the mix of
the two losses. Even if the losses are not weighted, we see this as another variant
of obtaining the final loss and label it as no-weighting. We label all other weighting
variants with the used max structural len and λ separated by a semicolon.

We consider two structural losses: cosine and max-margin MSE. For each
structural loss, we take the best-performing contextual loss from the previous
sections and try all combinations of weighting hyperparameters’ values we list in
Table 4.9. We train a student model with each weighting variant on the first 15k
documents from val-500k.

Weighting a contextual and the cosine structural loss

We search for the best weighting configuration for the cosine structural loss,
PV;2048d contextual teacher and S:768(ReLU)x4096(ReLU)x2048;C:- projections, which
is the most promising combination. As we mention above, we label this combina-
tion as no-weighting. We present all the models’ performances in Figure 4.10. All
the weighting variants surpass all baselines. Interestingly, even if the weighting
is set significantly toward one side, such as None;λ=0.95 or 384;λ=0.2, the student
model can surpass the other teacher. Therefore, the student can use the infor-
mation provided by either teacher to surpass the other one. More importantly,
the best weighting variants that beat only-structural;cosine are more cautious with
the structural loss. They either mask it for longer documents or give it a smaller
weight. Consequently, forcing the student model to distill embedding that cap-
tures only a partial part of its input confuses it, thereby hurting its performance.
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Figure 4.10: Performances of all weighting variants trained with cosine struc-
tural loss. We compare the student models to Longformer, SBERT, and only-
structural;cosine.

We highlight the difference in performance between None;λ=0.5 and
no-weighting. These models’ losses are the same, except that None;λ=0.5 effectively
halves all loss gradients. This results in a noticeable drop in performance. How-
ever, even with the halved gradients, 384;λ=0.5 beats no-weighting variant. This
further emphasizes the importance of masking out structural loss for long inputs.

Weighting a contextual and the max-margin MSE structural loss

Now we explore weighting hyperparameters for the max-margin MSE structural
loss, DM;100d contextual teacher and S:768(ReLU)x1024(ReLU)x768;C:768 projections.
Even though this is the best-performing combination for max-margin MSE struc-
tural loss, it does not surpass only-structural;mm-MSE. So, we test if different
weighting of the structural and the contextual loss can improve the score of the
no-weighting variant. We display the models’ performances in Figure 4.11. Clearly,
masking out some inputs’ structural loss significantly hurts performance. As we
discuss in Section 4.4.1, part of the benefit of max-margin loss is that it increases
the distance between different inputs’ embeddings. If long inputs are masked out,
the loss cannot increase the margin between their embeddings and those of the
short inputs that have not been masked. Together with the smaller number of
updates, this causes the student models to perform much worse. Note that the
weighting variants with higher λ suffer considerably more.

Even without any masking, the different loss weightings fail to improve the
score of only-structural;mm-MSE. We highlight that None;λ=0.5 performed a bit
better than no-weighting, which are identical, except that no-weighting trains with
gradients twice as big. This shows that for max-margin MSE loss, the contextual
teacher does not bring any benefits. In fact, in this evaluation context, it seems
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Figure 4.11: Performances of all weighting variants for max-margin MSE struc-
tural loss. We compare the students to Longformer, SBERT, DM;100d contextual
teacher and only-structural;mm-MSE.

that the more we train with both losses, the worse the model will be.

4.6 Summary
After an extensive experimentation with our teacher-student training method,
we summarize what we test, but mainly how we interpret the results and what
conclusions we draw from them.

First, in Section 4.4, we experiment with simple and composite structural
losses. Simple losses focus only on the similarity between the student’s and the
corresponding teacher’s embedding, whereas composite losses also take advan-
tage of the in-batch teacher’s embedding of different inputs. Cosine is the best-
performing simple structural loss, surpassing even SBERT. These results show
that the combination of Longformer’s architecture and distillation of SBERT’s
embeddings can boost the student’s performance even above the level of the
structural teacher. The best composite loss, max-margin loss with MSE used as
distance, performs even better. As we show in Section 4.4.1, with max-margin
MSE loss, the student tries to mimic the structural teacher while also increasing
the distance between its embeddings of different inputs. So, the added benefit of
max-margin MSE loss compared to cosine structural loss is a better separation
between the student’s embeddings.

In Section 4.5, we try to leverage the contextual loss to improve the students
even further. For our contextual loss, we use SoftCCA loss to increase the corre-
lation between the student’s and the contextual teacher’s embeddings projected
via two feed-forward networks. After finding promising training hyperparameters
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Figure 4.12: Performance of the two best student models on validation tasks
per each structural loss. We compare the student’s performances to Longformer
and the relevant teacher models. The configuration of the student models is
summarized in Table 4.10.

for Paragraph Vector, we show that the contextual loss alone can improve Long-
former’s results. Yet, it cannot surpass SBERT or the student models trained
with only the structural loss. This demonstrates that, in our setting, the struc-
tural teacher is more important to the student’s performance than the contextual
teacher. We also find the optimal contextual loss for cosine and max-margin
MSE loss. We show that the student can benefit from both cosine structural loss
and the SoftCCA contextual loss with the right projections. On the other hand,
max-margin MSE loss is not as compatible with the contextual loss. Even after
many trials, we fail to find projections that would, together with the max-margin
MSE structural loss, improve the performance of a student trained with the given
structural loss only.

We also try several ways to weigh the contextual and the structural loss. In
the case of max-margin MSE structural loss, we find that even with a significant
emphasis on the structural loss, the student model suffers from both the contex-
tual loss and the max-margin MSE loss used simultaneously. Conversely, with
cosine structural loss, the student model behaves intuitively. It prefers an equal
balance of the structural and the contextual loss, where the structural loss is used
only for inputs the structural teacher can encode whole.

We demonstrate that our method can improve the student’s embeddings with
only about 2.5k training iterations. With the hyperparameters we listed in Ta-
ble 4.4, the student’s training takes approximately 3-5 hours on a consumer-grade
GPU card and requires only about 12GB of VRAM. As we see in Figure 4.12,
with such low resource consumption, our method is able to significantly improve
Longformer’s performance, while also outperforming both teachers on validation
tasks. For clarity, we also include the configuration of all 4 variants in Table 4.10.
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Models

Hyperparameter masked-cosine;λ=0.5 cosine;no-weighting

Structural loss cosine distance
Contextual teacher PV;2048d
Student projection 768(ReLU)x4096(ReLU)x2048
Contextual projection -
Weighting λ 0.5 -
Structural loss masking longer than 386 tokens -

(a) Models using cosine structural loss.

Models

Hyperparameter mm-MSE;λ=0.5 only-structural;mm-MSE

Structural loss max-margin MSE
Max-margin γ 1
Contextual teacher DM;100d -
Student projection 768(ReLU)x1024(ReLU)x768 -
Contextual projection 768 -
Weighting λ 0.5 -
Structural loss masking - -

(b) Models using max-margin MSE structural loss.

Table 4.10: Configurations of the best two models for each structural loss.
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5. Evaluation
In this chapter, we evaluate the most promising configurations of our train-
ing method. We train three student models on 1M documents with the best-
performing hyperparameters from Chapter 4 to show the effects of long training
with our teacher-student method. We evaluate the student models on six classifi-
cation and two retrieval tasks. For classification tasks, we consider three different
limits on the amount of available supervised data. We show the models’ perfor-
mances vary for different limits and thus highlight the strengths and limitations
of our training method.

5.1 Student models
We only evaluate the three best-performing variants of our training method from
Chapter 4. We use the hyperparameters listed in Table 4.10, however, as we
train the student models and the contextual teachers on significantly more data,
we label the models differently. cosine-masked is trained with a balanced mix of
contextual loss and cosine structural loss, which is masked out for inputs longer
than the structural teacher’s maximum context length. MSE-contextual is trained
with an equal mixture of contextual loss and a max-margin MSE structural loss.
Finally, only-MSE is trained only on the max-margin MSE structural loss. These
models’ hyperparameters correspond to the configurations of masked-cosine;λ=0.5,
mm-MSE;λ=0.5, and only-structural;mm-MSE from Table 4.10, respectively.

5.1.1 Training data
We compile our training corpus the same as val-500k. We train the student
models only using Longformer’s training data. Without any new training data,
the performance of our student model depends only on our training method.
Hence, the performances of the student models are proportional to our training
method’s performance, which gives us an easy way to gauge the benefits of our
training method.

Following Longformer’s approach, we equally sample articles from the English
Wikipedia1 and documents from the RealNews dataset [Zellers et al., 2019] that
have above 1200 Longformer’s tokens. We label the resulting dataset as train-
1M and display its statistics in Table 5.1. train-1M contains relatively long
documents. The average document has around 1300 tokens, and only 34% of its
documents can fit into the maximum context length of a vanilla Transformer.
However, as we show in Figure 5.1, most documents have between 0 and 500
tokens or 1200 and 1700 tokens.

5.1.2 Training of contextual teachers
Two of our student models use a contextual teacher. To showcase the full potential
of our training method, we train the contextual teachers anew and with much
more data than in the previous chapter. cosine-masked uses a 2048-dimensional

1https://huggingface.co/datasets/wikipedia/viewer/20220301.en
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Split Train Validation

Documents 1 000 000 30 000
Tokens 1.37e+09 4.15e+07
Tokens per document 1375±1738 1382±1697
SBERT tokens over 384 71% 71%
SBERT tokens over 512 66% 67%

Table 5.1: Statistics of train-1M. For each split, we also show the percentage
of documents with the number of SBERT tokens above the given threshold.
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Figure 5.1: Distribution of the number of Longformer tokens per document in
train-1M.
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Parameter Value

Batch size 6
Weight decay 0.1
Learning rate 3e-5
Learning rate decay Cosine
Maximum gradient norm 1.0
Optimizer AdamW
Gradient accumulation steps 10
Warmup update steps 500
Gradient checkpointing Yes
Mixed-precision training Yes

Table 5.2: Hyperparameters used for training all three student models: cosine-
masked, MSE-contextual, and only-MSE.

Paragraph Vector [Le and Mikolov, 2014] composed of Distributed Memory and
Distributed Bag of Words models. MSE-contextual uses only a 100-dimensional
Distributed Memory model. These contextual teachers correspond to PV;2048d
and DM;100d from Section 4.5.1 respectively.

We compile the contextual teacher’s training dataset in the same manner as
train-1M. Since the contextual teachers’ training data also becomes the stu-
dent’s training data, we restrict it to Longformer’s training data for the reasons
we mention in the previous section. However, as PV is a significantly smaller
model than our student model, we can afford to train it with substantially more
data. We use all available data from RealNews articles and an equal amount
of Wikipedia documents. The resulting dataset has 8.3 million documents. We
label the trained 100-dimensional and 2048-dimensional teachers DM and PV. To
keep the models’ memory footprint manageable, we restrict DM’s vocabulary to
6×107 words and PV’s vocabulary to 1.2×107 words. With these limitations, the
models take up approximately 96GB and 124GB of memory during prediction.

5.1.3 Training of student models
Finally, we train the student models with the newly trained contextual teachers.
We train on train-1M for one epoch with hyperparameters listed in Table 5.2.
Thanks to the student’s efficient self-attention, the models take up only 12GB of
VRAM during training. We train the models on an NVIDIA A100 GPU card for
approximately 30 hours.

5.2 Evaluation tasks
We thoroughly evaluate the student models using eight diverse tasks. We select
six classification tasks that cover citation prediction, plagiarism detection, senti-
ment, and topic classification. We also include two retrieval tasks from distinct
domains.

We present an overview of the selected classification tasks in Table 5.3. Besides
ordinary classification tasks, we also include classifications of document pairs. In
these tasks, the classifier bases its prediction on the comparison of two documents,
or in our case, their two embeddings. As can be seen from Table 5.4, the amount
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Class percentage σ
Dataset Inputs Classes Train Test

arxiv documents 11 1.25 1.30
imdb documents 2 0.00 0.00
aan pairs of documents 2 1.50 0.77
oc pairs of documents 2 0.07 0.34
pan pairs of documents 2 0.00 0.00
s2orc pairs of documents 2 0.09 0.33

Table 5.3: Overview of the classification tasks. For each task, we include the type
of input classified. The class distributions for all tasks are on average balanced,
thus we show only the standard deviation of class percentages.

SBERT tokens
Dataset Split Documents Over 384 Over 512

arxiv Train 28 388 100% 100%
Test 2 500 100% 100%

imdb Train 25 000 25% 15%
Test 25 000 24% 14%

aan Train 106 592 0% 0%
Test 13 324 0% 0%

oc Train 240 000 12% 1%
Test 30 000 12% 1%

pan Train 17 968 70% 59%
Test 2 906 61% 47%

s2orc Train 152 000 33% 19%
Test 19 000 33% 18%

Table 5.4: Statistics of the classification tasks. We include the percentage of
documents with SBERT tokens above a given threshold for each task and split.

of the tasks’ finetuning and evaluation data ranges. This becomes particularly
important in Section 5.3.1, where we evaluate the student models while limiting
the tasks’ training data to different amounts.

We present an overview of the retrieval tasks in Table 5.5. These tasks do not
have any finetuning data and test only the proximity of embeddings of similar
documents. Both tasks have around 90 source articles, each with around eight
similar target articles. However, games has substantially more documents.

We pay special attention to the lengths of documents contained in the datasets
and try to cover a span of lengths as large as possible. However, high-quality long
document datasets are very rare due to their annotation’s high complexity and
cost. Often, a dataset is said to be composed of documents, but it contains
only shorter pieces of text, such as abstracts. So, we include only one dataset
containing very long documents. As Figure 5.2 shows, the tasks arguably focus
more on documents up to around 1024 tokens. Nonetheless, as we show in Ta-
bles 5.4 and 5.5 the tasks still contain a considerable number of documents longer
than the maximum context of our structural teacher.
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SBERT tokens
Dataset Documents Sources Targets per source Over 384 Over 512

wines 1 662 89 8.92±1.23 100% 90%
games 21 228 88 8.74±2.35 100% 92%

Table 5.5: Statistics of our similarity-based evaluation tasks. Each dataset has
around 90 source documents, each similar to around nine target documents. We
also include the percentage of documents with SBERT tokens above the given
threshold.
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Figure 5.2: Estimated cumulative length distribution of the number of Long-
former tokens in a document.
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5.2.1 Tasks’ description
IMDB movie reviews. The IMDB dataset [Maas et al., 2011] (denoted as
imdb) is a binary classification dataset frequently used to evaluate long-context
NLP models [Zaheer et al., 2020, Beltagy et al., 2020, Le and Mikolov, 2014]. The
dataset consists of movie reviews, each with an associated rating on a 10-point
scale. The reviews that rated the movie with 7 points or higher are classified
as positive, and reviews with less than 4 points are classified as negative. There
can be up to 30 reviews for each movie, and the test set contains a disjoint set of
movies. Along with the train and test splits, the dataset contains an unsupervised
split without rating or class labels.

Arxiv papers. Arxiv papers [He et al., 2019] (denoted as arxiv) is a collection
of papers from ArXiv (arxiv.org), an online archive of scholarly papers. Each
paper contains its text truncated to 10000 words but spanning at least 1000
words. The papers are classified into 11 groups based on the scientific field of
the given paper. Since each paper can be associated with several scientific fields,
a small portion of the documents (≈ 3.1%) appear more than once but with
different labels. The scientific fields cover mainly fields of Computer science,
such as Artificial intelligence or Data structures, but also fields connected with
Mathematics, such as Group theory or Statistics theory.

ACL Anthology Network Corpus citations. The ACL Anthology Network
Corpus citations dataset [Xuhui Zhou, 2020] (denoted as aan) is a citation pre-
diction dataset. Each example in the dataset contains a pair of paper abstracts
and is classified as positive if the first document cites the second one or nega-
tive if it does not. The dataset is compiled from the ACL Anthology Network
Corpus [Radev et al., 2013], where each source paper creates positive pairs with
all cited papers and a negative pair with one other randomly sampled non-cited
paper.

Semantic Scholar Open Corpus citations. The Semantic Scholar Open
Corpus citations dataset [Xuhui Zhou, 2020] (denoted as oc) is also a citation
prediction dataset in the same format as aan. As the dataset name suggests, it
was compiled from the Semantic Scholar Open Corpus [Bhagavatula et al., 2018].
In this dataset, only a single positive pair is generated for each source paper,
resulting in a much higher count of unique papers compared to aan.

PAN plagiarism detection. The next classification dataset is the PAN plagia-
rism detection dataset [Xuhui Zhou, 2020] (denoted as pan). It was constructed
from PAN plagiarism alignment task [Potthast et al., 2013], which is a collection
of pairs of web documents, where the sections relevant to plagiarism are humanly
annotated both in the source as well as in the suspicious document. pan is a
binary classification task where each document pair is classified as positive or
negative. Positive inputs contain the source’s plagiarised section, with a part of
the suspicious document containing the corresponding plagiarised section. Neg-
ative pairs are constructed from the positives by replacing the source’s segment
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with a different part of the same document that is not annotated as being pla-
giarised.

Semantic Scholar Open Research Corpus citations. The Semantic
Scholar Open Research Corpus citations dataset [Xuhui Zhou, 2020] (denoted
as s2orc) is our third and final citation prediction dataset. The source of this
dataset is the Semantic Scholar Open Research Corpus [Lo et al., 2019], where
each paper is divided into sections connected via links to the papers cited within
the given section. This structure is used to generate positive and negative pairs.
A section is paired with an abstract of a cited paper to create a positive pair or
an abstract of a non-cited paper to create a negative pair.

Wines and Video games Wikipedia articles. Both of our similarity-based
tasks are datasets consisting of Wikipedia articles from two fields of interest:
wines (denoted as wines) and video games (denoted as games) [Ginzburg et al.,
2021]. Each dataset contains around 90 source articles, each associated with
around nine similar articles. We find the two datasets unique as they combine
two aspects that are rarely seen together. First, the similarities are based on
expert human annotations, not proxy measures such as common citations or
outgoing links. Second, the documents are relatively long, with around 90% of
documents being longer than 512 tokens. While wines contains fewer documents
and covers fewer topics, the similarities between a source and a target document
are less apparent as it is often based on a few details mentioned throughout the
document.

5.3 Results
This section evaluates the student models on the previously mentioned tasks. To
put the performance of the student models into context, we compare them to
four baselines. First, to estimate the contribution of our training method, we
compare the students to their base checkpoint, Longformer, with a mean pooling
layer over its last hidden states. We also include the performances of the two
contextual teachers PV and DM and the structural teacher SBERT. These models
showcase the potential of our method. Ideally, we would like the student models
to combine knowledge from all their teachers and surpass all of them. We evaluate
all embedding models without any finetuning. With finetuning on each task, the
models’ performance also depends on the used finetuning method, which makes
it more difficult to estimate the contribution of our training method.

As a classifier, we use a heavily regularized neural network. We train the
classifier with cross-entropy loss for several epochs. We list the complete list of
training hyperparameters in Table 5.6. We assess the performance of a model
based on micro or binary accuracy, depending on the number of classes. We use
micro-averaging for tasks with more classes to give each input the same weight.
When we compare embedding models across several tasks, we use normalized
accuracy, which we define in Section 4.2.

We evaluate the classification tasks in three rounds. In each round, we limit
the number of documents on which the classifier is trained. We find that evaluat-
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Parameter Value

Hidden features 50
Hidden dropout rate 0.5
Hidden activation ReLU
Epochs 10
Batch size 32
Weight decay 0.1
Label smoothing 0.1
Learning rate 1e-4
Learning rate decay Cosine
Maximum gradient norm 1.0
Optimizer AdamW
Mixed-precision training Yes

Table 5.6: Training parameters of classification heads during evaluation.

ing the student models with varying amounts of finetuning data presents a more
detailed picture of the students’ performances and highlights the strengths and
limitations of our training method. In the first round, we limit the finetuning
documents to 1 thousand. With so few finetuning documents, the features that
help the classifier predict the correct label must be obvious. In this setting, mod-
els that encode only a few main features of their input should achieve the best
results. In the second round, we increase the number of finetuning documents to
10 thousand. Finally, in the last round, we do not limit the amount of finetun-
ing data at all. With more finetuning data, the classifiers can pick up on more
complex features. Therefore, in the last round, models that compress as much
information as possible into their embedding should, in theory, achieve the best
results. Contrary to the evaluations in Chapter 4, we do not limit the number
of test documents. Thus, any overfitting, even with severely limited finetuning
data, should be obvious. When truncating the training splits, we downsample it
following its label distribution. So, the downsampled training splits have almost
equal class distribution to the original split.

For retrieval tasks, we measure the embedding’s proximity with cosine dis-
tance. As we do not do any training, we use the whole dataset for evaluation.
We measure the models’ performances based on Mean Average Precision (MAP)
but also present Mean Reciprocal Rank (MRR). While MAP scores the entire
predicted ordering, MRR is more interpretable and can be more important in
scenarios where we only care about the first positive result. When we compare
models across both tasks, we use normalized MAP, which is computed similarly
to normalized accuracy.

We show an overview of the models’ performances in Table 5.7.

5.3.1 Classification tasks
We evaluate the embedding models’ performance on the classification tasks in
three rounds. First, we compare the overall performance of the models between
the three different rounds. Then, we explore the models’ performances per task
in detail.

First, we focus on the overall models’ performance throughout the three eval-
uation rounds, which we present in Figure 5.3. The relative performance of the

53



Model arxiv imdb aan oc pan s2orc Mean Norm. mean

1k finetuning documents

Longformer .252 .835 .509 .655 .602 .677 .588 .814
DM .215 .591 .508 .567 .675 .581 .523 .735
PV .640 .779 .511 .654 .677 .661 .654 .918
SBERT .606 .780 .514 .601 .565 .605 .612 .860
cosine-masked .584 .726 .529 .747 .658 .703 .658 .922
MSE-contextual .645 .762 .541 .770 .629 .733 .680 .953
only-MSE .642 .746 .545 .763 .635 .750 .680 .953

10k finetuning documents

Longformer .508 .892 .521 .742 .660 .770 .682 .837
DM .650 .699 .520 .683 .695 .697 .657 .813
PV .821 .852 .537 .771 .585 .771 .723 .885
SBERT .785 .872 .544 .787 .599 .786 .729 .893
cosine-masked .747 .821 .568 .865 .629 .868 .750 .918
MSE-contextual .752 .826 .630 .886 .702 .901 .783 .963
only-MSE .748 .821 .619 .892 .717 .904 .784 .963

All finetuning documents

Longformer .649 .913 .625 .889 .675 .899 .775 .894
DM .710 .731 .570 .835 .685 .835 .728 .843
PV .840 .865 .703 .891 .602 .899 .800 .923
SBERT .819 .890 .805 .935 .640 .944 .839 .969
cosine-masked .779 .843 .751 .918 .638 .925 .809 .935
MSE-contextual .776 .842 .767 .930 .720 .942 .829 .961
only-MSE .773 .837 .760 .929 .740 .941 .830 .962

(a) Classification tasks

Model games wines Mean Norm. mean

Longformer .158 .096 .127 .724
DM .130 .115 .123 .717
PV .173 .133 .153 .887
SBERT .191 .143 .167 .964
cosine-masked .165 .148 .157 .917
MSE-contextual .186 .145 .165 .957
only-MSE .198 .145 .172 .989

(b) Retrieval tasks

Table 5.7: Performance of evaluated embedding models on all downstream tasks.
For classification tasks, we show the performance with all finetuning data and
with only 1k and 10k finetuning documents. For classification tasks, we show
binary or micro accuracy. For retrieval tasks, we show MAP. We also display the
mean score and the mean of normalized scores for each model.
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baselines and student models is similar to what we witness in Chapter 4. In
the first two rounds, the students outperform all baselines. In the last round,
they beat all contextual teachers and improve the score of Longformer. However,
they are only just worse than SBERT. The best student is only-MSE followed by
MSE-contextual. We witness the same order of corresponding models on valida-
tion tasks at the end of Chapter 4. However, as cosine-masked is trained with
the structural loss only on short inputs, it receives 3.26 times fewer update steps
with the structural loss than the other two students. Consequently, cosine-masked
often outperforms its contextual teacher only by a fraction, creating a noticeable
performance gap between it and the other two students.

In the first round, Longformer’s and SBERT’s performance is underwhelming.
At the same time, the best student model achieves, on average, nearly 80% of
the best performance for a given task achieved by an embedding model with all
finetuning data. We see this as a considerable achievement since there are 17 to
240 times more finetuning documents in the last round compared to the first one.
In the second round, the classifiers are trained on 10k finetuning documents,
and their performances naturally increase. Particularly for SBERT, as it now
surpasses PV, which improves by a relatively small amount. These effects are also
noticeable in the performance of cosine-masked as there is a more significant gap
between it and the other two students that rely on SBERT more. Finally, with
all finetuning data, the differences between models’ performances diminish as the
best models improve only marginally. SBERT takes the greatest advantage of
the increase in finetuning data and surpasses all other models. We see this as a
demonstration that the embedding model does not strictly need a large maximum
context for the selected set of tasks. In other words, despite the moderately large
documents, we can reach a competitive performance by only considering the first
384 tokens of each input. This is apparent, especially for arxiv, where we can
imagine classifying the field of a scholarly paper based on just its abstract. So,
as the context is of minor importance, SBERT benefits from its full attention
and surpasses the best student by a small fraction. Nonetheless, all student
models can improve the scores of their contextual teachers and base checkpoints.
Moreover, the students reach consistent and comparable performances despite
being trained differently. cosine-masked trains with a different contextual teacher,
contextual loss, structural loss, and weighting of the two losses than the rest of
the students. MSE-contextual trains with a significantly less performant contextual
teacher, while only-MSE does not use a contextual teacher. This shows that our
method is robust and open to multiple changes in various aspects.

We now examine the models’ performances per each task, which we plot in
Figure 5.4. The relative models’ performances on a given task stay consistent
throughout the three rounds, so we focus only on the last two. With 10k finetun-
ing documents, the students perform best on classifications of document pairs.
On imdb, Longformer shows the best performance, which is surprising given it is
the second-worst model in both rounds. On arxiv, PV shows the best perfor-
mance as it benefits from its large embedding and unlimited context. Arguably,
both of these attributes play a role, as DM with the same unlimited context but
with more than 50 times smaller embedding performs better than Longformer
but worse than PV. As we increase the number of finetuning documents, SBERT
substantially improves. We register the largest performance increase for tasks
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Figure 5.3: Overall relative performance of embedding models throughout the
three rounds. In the first two rounds, we limit the number of finetuning doc-
uments to 1k and 10k, but do not set any limit in the third round labeled as
“all”.
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Figure 5.4: Performance of embedding models on evaluation tasks with the fine-
tuning documents being limited to 10k and with all finetuning data.

with the most finetuning data available. These are aan, oc, and s2orc. We
also highlight SBERT’s performance on arxiv in both rounds, where it outper-
forms all students with eight times larger maximum context and comes relatively
close to the performance of PV. This demonstrates that, despite the task being
composed of only very long documents, we can achieve a competitive performance
based on just the first few hundred tokens. The insignificance of an embedding
model’s lack of context may partly explain why the students’ performances for a
given task are not affected by the length of the tasks’ documents. For example,
on tasks with longer documents such as arxiv or pan, cosine-masked and MSE-
contextual perform on par with only-MSE despite being trained with a contextual
teacher, which should theoretically improve the students’ performance on longer
inputs.

5.3.2 Retrieval tasks
We plot the overall models’ performances on the retrieval tasks in Figure 5.5. In
terms of MAP, the best-performing model is only-MSE closely followed by SBERT
and the other two student models. For Mean Reciprocal Rank, the best model is
cosine-masked, one of the most consistent models in both metrics. This suggests
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that using a structural teacher only for inputs, which it can process as a whole,
may lead to a more consistent student model.

We also plot the models’ performances per each task in Figure 5.6. As the re-
sults suggest, games is an easier task than wines. This may be unexpected since,
compared to wines, games has more total documents but a similar amount of
source and target documents. Consequently, games contains much more “noise”
documents, which may hurt the performance. However, as we mention in the
tasks’ description, the selection of topics for games is much wider, and the dif-
ferences between documents are far less nuanced. On the other hand, the simi-
larities of documents in wines are sometimes based on a few details mentioned
throughout the document.
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Conclusions
In pursuit of our goal to train a Transformer document embedding model with
low computational resources and without any labeled data, we use a teacher-
student training approach. We combine the qualities of two distinct embedding
models and distill their embeddings into a single student model. For the two
teachers, we choose SBERT [Reimers and Gurevych, 2019] for its capacity to
model complex text structure and Paragraph Vector [Le and Mikolov, 2014] for its
unlimited context. We label the teachers as structural and contextual respectively.
For our student model, we use an efficient Transformer with sparse attention.
Efficient Transformers compromise between having a large maximum context and
the ability to capture complex text structure. We initialize the student model
with Longformer [Beltagy et al., 2020]. However, our technique does not rely on
any specific Longformer’s features and can be theoretically applied to any other
Transformer with sparse attention, such as BigBird [Zaheer et al., 2020].

We train the student model on a mixture of two losses, each corresponding
to one teacher. We choose the structural loss to enforce exact similarity with the
structural teacher’s embeddings. We experiment with simple functions, such as
Mean Squared Error (MSE) and cosine distance, as well as composite functions,
such as contrastive or max-margin losses. Unlike structural loss, contextual loss
is designed to give the student more freedom and does not enforce exact sim-
ilarity. Thanks to this, we avoid conflict between the two losses, as structural
loss is always given priority. For the contextual loss, we use a variant of Canon-
ical Correlation Analysis (CCA) [Hotelling, 1992] called SoftCCA [Chen et al.,
2016]. SoftCCA enforces a higher correlation between the student’s and the con-
textual teacher’s embeddings projected via two separate feed-forward networks.
We conduct several experiments to find the best combination of the structural
loss, the contextual teacher, the contextual loss, and the weighting of the struc-
tural and contextual losses. We show that while the contextual loss alone can
improve Longformer’s performance, the performance gain is not as significant as
with the structural loss. However, with a suitable configuration, the student can
simultaneously benefit from training on both losses. We also demonstrate that
with as little as 2.5k updates, our training method can significantly improve the
performance of Longformer on validation tasks.

We evaluate the student models on six classification and two retrieval tasks.
For the classification tasks, we show results for three different amounts of fine-
tuning data available for the classifiers to train on. We demonstrate that in
scenarios with less finetuning data, our training method can boost the student’s
performance above the level of both teachers and Longformer. Although we select
tasks with an insignificant percentage of long documents, the results suggest that
an embedding model’s large context is relatively unimportant. Consequently, as
the number of finetuning documents grows, the denser architecture of SBERT
gives it a significant advantage over the less capable architecture of the student
model. Nonetheless, the student model significantly improves Longformer’s per-
formance with all three finetuning data limits. In retrieval tasks, the best student
model outperforms SBERT, and all tested student models again surpass both the
contextual teacher and Longformer.
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To summarize, we design a method to train document embedding models with
small amount of computational resources that significantly improves the model’s
performance. The benefit of our method is especially noticeable in scenarios
with few finetuning data, where the trained model quickly becomes proficient
compared to its base performance.

Future work
While this work touches on many research areas, the most opportunities to extend
it lie in the distillation training. We use two losses to distill the knowledge
of two teachers: SBERT and Paragraph Vector. While SBERT is designed to
understand the text structure, Paragraph Vector offers an understanding of the
whole text. However, as the results demonstrate, the best-performing model uses
only SBERT’s embeddings and disregards the context that Paragraph Vector
offers as unimportant. Such results offer two ways to extend our work. First,
explore the contribution of Paragraph Vector in detail. In particular, examine
what exactly Paragraph Vector’s embedding reflects and how it translates to the
student’s embedding with our contextual loss. Despite the many trials we have
carried out, we have found it difficult to measure the effect of the SoftCCA loss
and the configuration of projections used within the contextual loss. Hence, we
think the contextual loss and teacher deserve more attention. Second, it would be
fruitful to experiment with the structural loss that gives the best model all of its
performance. While we carry out some analysis of the max-margin MSE loss in
Section 4.4.1, it deserves a more thorough examination. Max-margin MSE loss is
particularly interesting since other document embedding models use similar loss
to learn from unsupervised text datasets [Cohan et al., 2020, Ostendorff et al.,
2022, Neelakantan et al., 2022, Izacard et al., 2021]. Some authors [Neelakantan
et al., 2022, Izacard et al., 2021] highlight that the key to good performance with
this type of loss is the number of negatives it considers. While other techniques
require complex setups or large amounts of memory, our approach does not. In
particular, increasing the number of negatives is simple and does not inflict a
larger memory footprint.

Finally, even though we have specific reasons for training with two teacher
models, we propose experimenting with more. In this regard, our method is
easily scalable, and more teachers could result in more consistent performance
of the resulting models. Additionally, as we demonstrate throughout this work,
there are no restrictions on the dimensionality of the teacher’s embeddings or on
the teacher’s architecture. This offers great freedom and space for original and
unique solutions.
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