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Abstract: This thesis aims to study the Navier-Stokes-Fourier problem with the
entropy equation. In particular, we want to define the notion of a solution and
prove its existence. We approach this problem by modifying techniques used in
several papers studying the generalized NSF system and the entropy equality and
we want to conclude similar results. We are treating the two-dimensional case
as opposed to the more frequent 3D case, hence we were able to relax conditions
on the initial data. Firstly, we formulate the definition of a weak solution and
impose sufficient conditions to prove its existence. In particular, we will require
a bound p > 2 for the power-law index of the Cauchy stress tensor. Next, we
show that there exists a solution to Navier-Stokes-Fourier system (u,?) fulfilling
our definition. Lastly, we show that this solution additionally fulfills the entropy
equality for n = log .
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Introduction

We want to present a mathematical analysis of a model describing mechanical
and thermal changes shown by unsteady flows of incompressible non-Newtonian
fluids in fixed bounded two-dimensional domains. The incompressibility of the
fluid is exhibited by equation , the mechanical and thermal changes respect
the balance of linear momentum and the balance of energy ([3). We treat
the case where the viscosity of the fluid (i.e., its resistance to deformation) and
the heat conductivity (i.e., the ability of a fluid to conduct heat) depend on the
temperature. As we consider that the fluid is non-Newtonian, we expect the
viscosity to change disproportionally to the velocity of the fluid. Thus, in our
model, the viscous part of the Cauchy stress tensor & depends non-linearly on
the velocity gradient.

Additionally, we introduce the entropy equality , which on a formal level
corresponds to the balance of energy divided by temperature. It is a desirable
equality for proving the stability of a solution since its terms possess better reg-
ularity properties.

As regards the boundary conditions, we consider the homogeneous Dirichlet
boundary condition for the velocity, so we expect no fluid exchange with the
exterior and also the velocity of the fluid to slow down to zero near the boundary.
We expect a thermal interaction with the exterior, which is described by a non-
homogeneous Dirichlet boundary condition. This condition is time-independent,
so we suppose that the heating (or cooling) of the system is constant in time.

Let us now formulate the problem more rigorously. We study the generalized
Navier—Stokes—Fourier system with the entropy equation

O+ diviu @u) — div(S)+ Vp=f (1)
dive =0 (2)
09 + div(du) — div(q) = S : Du (3)
. . q S:Du q-Vv
om + div(nu) — le(@) == T (4)

in Q := (0,7) x Q with a bounded Lipschitz domain @ C R* and T' > 0. Here
u : Q — R? denotes the velocity field, Du := (Vu + (Vu)T)/2 is the symmetric
part of the velocity gradient Vu, p : () — R is the pressure, ¥ : Q — R is the
temperature, 7 = log? is the entropy, f : Q@ — R? denotes the external body
forces, 8 : Q — R?*2 denotes the viscous part of the Cauchy stress tensor, and
q : Q — R? is the heat flux. The system — is completed by the initial and
boundary conditions

u=0 ondQx(0,T)

v =1, ondQx(0,T)

u(0) =up in Q

For given f : Q — R, ¥, : 092 — R, uy : Q — R? and ¥y : Q — R we search for u,

9 and p solving the system —.
We will assume, that the heat flux is represented by the Fourier law. That is

(5)



q = q*(9¥) and for all ¥ € R it holds
q (V) = —r(9) VY, (6)

where the heat conductivity k : R — (0, 00) is a continuous function, satisfying
for some constants 0 < k, k < 00,

0<k<k<E<o0. (7)

Furthermore, we assume that & = 8*(J, Du), where 8* : (0,00) x R2X2 —

sym

R2%2 is a continuous mapping. Additionally, S fulfills the following set of condi-

sym
tions

(S*(ﬂ, Dl) - 8*<19,D2)) : (Dl - DQ) 2 0
S*(’ﬁ?Dl) . D1 Z Z|D1|p -V
S*(9, D) < 7(1+ D)
S*(v,0)=0
for some 0 < v, 7 < oo, for all ¥ € Ry, Dy, Dy € R2*2 and for p > 2, where the

sym
parameter p is called the power law index of S.
For simplicity, let us introduce ¥ solving

(8)

—divg*(0) =0 inQ, Jd=10, ondQ, JeLlQ)NWQ). (9

We will assume that such 9 exists and is uniquely defined.



1. Notation

Q

L(2)
W ()
11,
1111,
ed(%)
D(0,T)
Wo ki (Q)
L3 giv

V,V(Q)

L0, T, X)

C([0,77, X)

0l )
SN,M

SN
£ dt

IBP

GT

Bounded Lipschitz subdomain of R2.

Standard Lebesgue space with a norm ||+ 1,y 7 € [1, 00].
Standard Sobolev space with a norm ||-||yy1,5(q, 7 € [1, 00].
Shorter notation for [|-[|, ), 7 € [1, oc].

Shorter notation for |||y, q), v € [1, 00].

Smooth functions with compact support in €.

Smooth functions compactly supported on (0, 7).

{u e (WP(Q))%u =0 on 9Q;dive = 0}.

e (CoRO))% diva =0,
Shorter notation for W&fiv(Q).

Duality pairing between functional from X* and function from
X, sometimes we omit the space X if it is clear from the con-
text.

Space of symmetric 2 x 2 matrices.

Regularization kernel e ~?w(z/¢), where w : R? — R is a non-
negative radially symmetric function, C§°(R?), such that it
support lies in a unit ball and fRQ wdr = 1.

Constant dependent only on initial data, unless denoted other-
wise (e.g. C(M)). It can vary from one inequality to another.

Standard Bochner space with a norm |||, 7.x). 7 € [1,00],
X Banach space on ().

Space of vector-valued continuous functions with a norm
I[leqo.ry.x), X Banach space on .

Shorter notation for |||+ 7.x)-
Abbreviation for S* (ﬁN M DyNM )
Abbreviation for S* (19N , Du )
Normed integral ﬁ ff dt.
Integration by parts.

Use of the Gelfand triple to express the duality pairing as a
scalar product.



Note that for vector-valued functions, we will simplify the notation by writing
e.g. L7(0,T, L} 4,) instead of L7(0, T, L§ 4, (€2)).



2. Preliminaries

Let us recall some known results that will be used in the upcoming chapters.

Lemma 1 (Carathéodory’s existence theorem). Let n € N, tg € R, 2y € R", and
€>0,0>0. Consider equation

Oy (t) = F(t, z(1)),
x(to) =Xy,

where F is defined on R =1x G :={(t,x) e RxR": [t —ty| < ¢, |xr—x| < 0}.
We say that z is a solution to ([2.1)-(2.2) on interval J C I, ty € J, ifz € C'(J),
the equality holds for allt € J, and x(ty) = zo. We say that  is a maximal
solution to - if it is a solution and there is no solution & on J O J such
that x =x on J.

Let F' satisfy the following conditions:

o F(t,x) is continuous in x for each fized t € I,
o F(t,x) is measurable in t for each fixed x € G,

e there is a Lebesque-integrable function M : [to—e,to+¢] — [0,00) such that
|F(t,z)| < M(t) for all (t,x) € R.

Then there ezists a mazimal solution to (2.1)).
Proof. For proof of the lemma see [I], Theorem 2.1.1. O

Definition 1 (Gelfand triple). Let X be a separable reflexive Banach space such
that there exists a Hilbert space H, where X — H densely. Then we call the
triple X, H = H*, and X* the Gelfand triple.

For Gelfand triple, it holds that also H* — X* densely. Let I : X — H
represent the dense embedding, and let ® : H* — H represent the identification
of H and H* through the Riesz representation theorem. We then may define
1: X — X* as

(ix,y)y = Iz, Iy)g = <<I>_1]x, ]y>H,
where z,y € X. More details on the Gelfand triple and its properties can be
found in Section 4.2 in [2].

Lemma 2. Let g : (0,00)> — [0,00) be a continuous function such that there
exists a constant D > 0 for which it holds

019(0,7)| + |07 g(o, 7)| + |02019(0,7)| < D

forallo > pand 0 < 7 < 71 < 7. Furthermore, let J be defined as in @ and
s € L2(0,T; W2 such that ;s € L*(0,T; (W,2)*) and s > p a.e. in Q. Then
llg(s, D)y is an absolutely continuous function on the interval (0,T) and

AHllg(s, D)lly = (D15, 0r9(s,9)) 1 (2.3)

0



Proof. We know, by Lemma 5.3.19 in [3], that there exist functions {s,}>2, €
(C>(]0,T); W'2))" such that

s$n — s in L2(0, T; Wh?), Dysn — Ops in L2(0,T; (Wy)"). (2.4)

Without the loss of generality we can assume s, > u for all n € N. For all s, it
holds

Ovsn (D1g(sn, D)) = Dilg(s0, D)), ace. in Q

since g is Lipschitz continuous in the first component (by the boundedness of
019) and s, has a weak time derivative. Also, g = |g| by the assumption on
non-negativity of g. We thus have ||g(s,, )|, = o g(sn,0) dz. For p € D(0,T)
we can compute

| (o ongton D)ot 2 [ ousa (Br9(50, ) pt2) =

T
/at gpdtm // sn, ) dxopp dt = /||g(sn,f9)||18tg0dt,
0

(2.5)
where we could use the property of the Gelfand triple since for all ¢t € (0,7 it
holds 9;s,(t) € WH2(Q) — L*(Q).

We know that up to a subsequence s,, — s and Vs,, — Vs almost everywhere
in @ by (2.4), thus also 91g(sn, U) and V8, g(sn, ¥) converge almost everywhere.
Additionally, s, — s and Vs, — Vs in L*(Q), hence there exist functions
m € L*(Q) and m, € L*(Q) such that for all n € N it holds |s| + |s,,| < m and
|Vs| + |Vs,| < m,. We can use the Lebesgue Dominated Convergence Theorem
to show

A1g(sn, V) — d1g(s, V) in L*(0,T; L?), and
Vog(sn, V) — Vig(s, ) in L*(0,T; L?).
since
01950, 9) = Drg(s,0)|* < 4D* € LY(Q),
and

V019 (50, D) — Vrg(s,9)]* < AD? (|Vs,[* + 2|V0]* + |s]*) <
< 8D (|my|* + |VI?) € L'(Q).

Furthermore, |g(s,,0)| < D|s,| + C by the estimate on 8;¢. Thus Lebesgue
Dominated Convergence Theorem again implies

/ / g(Sn, ¥ d:catcpdt—>/ / 319 ) dzOyp dt,

|9(sn, D) — g(s5,9)| < 2DJm| +2C € L(Q).

since



We can now take the limit n — oo in (2.5]) to obtain

T T
/ Billg(s, D)l pdt = — / lg(s, )1 dup dt =
0 0

= /T <8ts, 819(5,{9)> pdt.
0

Since .
<(9ts,81g(3,19)> € L'(0,7T),
we can use Theorem 2.17 in [4] to conclude
lg(s, D)l € AC(0,T).
[l

Lemma 3 (Aubin-Lions). Let Xy, X; and X be Banach spaces such that Xo is
compactly embedded in X and X is embedded in X;. Let Xo, X; be reflexive,
1 < ag,aq <00 and T < oo. Then {u € L*(0,T, Xo);0u € L*(0,T,X1)} is
compactly embedded in L*(0,T,X).

Proof. The lemma is a consequence of Corollary 9 in [5]. O]

Lemma 4 (Korn’s inequality). Let Q € C%' be a bounded domain in R? and

q € (1,00). There exists a positive constant C' depending only on q and 2 such
that for allu € WH4(Q)? with Tru € L*(09Q) it holds

Cllullg < 1Dully + | Tr 2]l 2(50)-
Proof. The lemma with a proof can be found in [6] as Lemma 1.11. O

Lemma 5. Let Q € C%' be a bounded domain in R?, 2 € LP(Q)NLI(N), 1 <p<
q <oo. Then z € L" for allr € [p,q| and

p(g—r) a(r—p)

21l < [l2ll5 7 112115 for q < oo,
b r—p
1]l < [l2[l5 l|2]los Jor q = oo.

Proof. Firstly, let us show the case for ¢ finite. Let us take

(g=r) (r=p) Hold
ol = [ el do = [ 1o e
Q Q

Holder p(g—r) a(r—p) Lq:” L(T:p)
< el e oz el llaz = 12l 2l

If ¢ = oo, we have

Il = / o] de = / (2P| dw<
Q Q

SHIZ!’”_”HOO/QIZIWSE: z[15 7 12115-



Lemma 6 (Gagliardo-Nirenberg interpolation inequality). Let Q € C%' be a
bounded domain in R?, z € W14(Q) N LY(Q), and 1 < q < oco. Then

1. If s < 2, then z € L"(Q) forr < % and for g < r < % there exists a
constant C' such that:

2s(g—r) q(2r—sr—2s)
Izl < YT 2.

2. If s =2, then z € L"(Q) for r < oo and for ¢ < r < oo there exists a
constant C' such that: e
[2llr < Cllzlliz ll2lla-

3. If s > 2, then z € L"(Q) for r < oo and for ¢ < r < oo there exists a
constant C' such that:

Tt ||| e
Izl < Cllzll1s zlla :

Proof. For a proof of the lemma see Theorem 2.2 in [7]. O

Lemma 7. Let X, H, X* form a Gelfand triple on 0, and r € (1,00). Let
z € L"(0,T;X) and 0,z € L"(0,T;X*). Then z = % almost everywhere on
(0,T), where 2 € C([0,T]; H). Moreover, the mapping t — ||z(t)||% is weakly
differentiable and

Oull=(t)17 = 2(0e(t), 2(8)) x
for a.e. t €10,T).

Proof. The statement and the proof can be found in Section 4.1 in [§]. O

Lemma 8. Let Wo%’jiv ={u € (C§°(N))?%;divu = O}H'HZ’Q. Then
W()Qﬁiv = {uec (W**(Q))%u = 0= Vu on 0Q;dive = 0}

and there exists a countable set {\,.}°, and a corresponding family of functions
{w, }52, such that

e forallr,s € N it holds [,w,w,dx = d,,,
e 1< AN < <., and N\, — o0 forr — o0,
o {w,}2, forms a basis of W(ifiv(ﬁ),

o forallg € W53, (Q) and allr € N it holds [, V’w,Vipdx = ), [, w,edz,

« forallr,s € N it holds [, V\;ﬂ V\/Q/\ﬂ dr = 6,s.

Moreover, defining HY := span{w, ..., wx} (a linear hull) and

N
PNp)=>" [ wepdrw, : Wi5, — HY,
r=1J9Q

we get
N
1P ez, waz o < 1
Proof. See Theorem 4.11 in the appendix of [9]. O



3. Existence and Uniqueness of a
Weak Solution

Let C§°(92) denote a set of smooth and compactly supported functions in 2. We
then define

V(Q) = Wit (Q) == {u € (C ()% divad} ™,

and

L 41y () := {u € (C5°())?; divu = 0}“'”2,
Furthermore, we know that
W()l,lipiv(Q) = {uc (W"(Q))*u =0 on 99Q;divu = 0},
L) = 2@,
which can be found in sections I11.2 and II1.4 of [10]. We know that
V() — Ladiv(Q) densely, and
WE2(Q) < LA(Q) densely.

In addition, V(Q), Wy () are separable reflexive Banach spaces, and L 41 (),
L3(R2) are Hilbert spaces. Consequently,

(V(Q), L4 (), (V(2))) and (Wy™(Q), L§(Q), (W (2))")

form Gelfand triplets and we can identify dualities (-, -), and (-, -)WO1,2 with the

scalar products using L§ 4, (Q), L§(Q) for functionals that are regular enough.
Let us now define the weak solution to the problem —.

Definition 2 (Weak solution). Let Q@ C R? be a bounded domain with Lips-
chitz boundary and T > 0. Assume that 8* and r satisfy (7)-(§) with p > 2.
Additionally, assume that f, ug, 99, ¥ fulfill

feLr(0,T;V"), up € L 4,(Q), (3.1)
0o € LHQ), ¥ € WH(Q) N L¥(Q),
o= mln{esrselélfﬂ(:c), esmselélf Yo(z)} > 0. (3.3)

We define a weak solution to f as a quadruplet (u,S,9,n) fulfilling

u e C([0,T]; L 4i) N LP(0,T5 V), (3.4)

O € LP(0,T; V™), 8 € L7 (Q,RZ2), (3.5)

9 € L>0,T; LY, (9)* € L*(0,T; Wh?) a€(0,1/2), (3.6)

¥ e L"(Q) re(l,2), (3.7)

¥ —19 e L0, T; Wy) sell,4/3), (3.8)
n € L0, T;Wh) N LYQ) q € [1,00), (3.9)

10



and satisfying f in the following sense:
Momentum equation: The Cauchy stress is of the form 8 = 8*(¥, Du) a.e. in

Q, it holds u(0) = ug in L 4,(Q), and for allw € LP(0,T;V)

T T
/ (O, w),, dt+/ /S:Dwdxdt
0 0o Ja
T T
:/ /(u@u):Dwdwdt—l—/ (f,w), dt;
0o Jo 0

Internal energy balance: Temperature satisfies the minimum principle 9 > p a.e.
in Q. There exists a set of full measure S C [0,T] such that 9(t) — g in L'(Q)
as S 3t — 0+. Additionally, for all ¢ € C3°((—o00,T) x Q)

T T T
—/ /fﬁ@tgodxdt—/ /ﬁu'Vgodxdt—i-/ /m(ﬁ)Vﬁ-Vgpdzdt
o Ja o Ja 0o Ja

T
:/ /S:Dugpdxdt+/ﬁo<p(0)dx;
0 Q Q

Entropy equation: Entropy is given as n=Ind a.e. in Q, ny := Invdy and for all
Y e Ogo((—OO,T) X Q)

T T T
—/ /n@twdxdt—/ /nu~Vg0dmdt—|—/ //i(ﬁ)Vn'Vgpdxdt
o Jo o Jo o Jo

T 1 T |V?9|2
= -8 : Dupdzdt + K(9) edrdt+ | nop(0)d.
o Ja? 0o Ja 2 0

We can now formulate the main theorem of the thesis.

(3.10)

(3.11)

(3.12)

Theorem 9 (Existence of a solution fulfilling entropy equality). Let  C R? be
a bounded domain with Lipschitz boundary and T > 0. Assume that 8* and k

satisfy — with p > 2. Then for any data f, uo, 9o, U fulfilling (13-1)—(3.3),
there exists a weak solution (u,S,9,1) to (1)—(5).

11



4. Proof of Theorem

Firstly, following the methods used in the article [I1], we will prove the existence
of a weak solution satisfying and (3.11). Such an approach needs to be
modified since the article treats the case with Navier’s slip boundary condition
for temperature whereas we consider a nonhomogeneous Dirichlet condition.

We then show that the found solution fulfills adopting the methods
from [12].

4.1 Galerkin approximations

Let us consider the basis {w;}52, of W(i 7.(Q) from Lemma . Note that for
every j € N, |lwy||, , is bounded for all ¢ € [1,00) by the Sobolev Emmbeding
Theorem. Furthermore, we define {w;}3%, as an orthonormal basis of L*(€2) that

is orthogonal in W, *(Q), such that for any ¢ € W,?(Q) it holds

/Vwkvwdx— )\k/wkwd:c. (4.1)
Q Q

Such basis can be constructed by eigenfunctions of the Laplace operator in ()
subject to the homogeneous Dirichlet boundary condition, see Theorem 6.5.1. in
[13] for more details.

For fixed N, M € N, let us define

N
=2
=1

IVM ( (%dz >+19

=1

.

such that the vector (¢MM, dVM) = ("M, .. en™, dY ™M, a0, 7%) —
RNTM “for T* € (0,T), is the maximal solution to the followmg system of ordinary
differential equations

/atquij dx—i—/S* (ﬁN’M,DuN’M) cDw;dx =
Q Q
= [ @ o u ) Vi) do o+ (fwy),
@ (4.2)
/ 0N My, dx + / k(MY INM L (Vwy,) dr =
Q Q
= / 8" (VM DuN M) - DuN My da + / INMYNM (T, da,
Q Q

where j € {1,...,N} and k € {1,...,M}. System of equations (4.2]) can be

12



rewritten into

M N
e ((z df-V’M(t)wi> . ZcﬁV’M(t)Dwi> . Dw, d
i=1

i=1

+ [ S MMM () (w @ wy) : V(wy) dr + (f,w;)

Qi=11=1
M

Oy ™ (1) = — /Q k(32 dYM (t)w; + 9) Zd (O)Vw; + VD) - (Vaoy) d
=1

N M
> M )S* (Z dNM (Hyw; + 0, > ch’M(t)D'wi> : Dw;wy, dz
Qi=1 i=1 i=1

N M
> () (Z 4 (s + ﬁ) w: - (V) dr.
Q=1 =1

We hence obtain a system of N + M equations

Oycy M (t) = Fy(t, MM (1), dMM (1)), Vie{l,...,N},

’ 4.3
iy M (8) = Gi(e™M (1), a™ (1)), Yk e {l,....M}. )
Note, that functions F and G are measurable in ¢ and continuous in (¢, d™-M).
We equip (|4.3]) with the following initial conditions:
N.M N
" (x,0) =uy (x on (),
(@,0) =u(z) o

VM (2,0) = 90" (z) on Q,

where u) (z) = 3I¥,; cNw;(x) is the projection of ug onto the linear hull of {w;}}¥,

in L?(€). We define 93"" in the following manner. Set

19~_ 190, ifﬁL'GQ,
T u ifzeR2\Q,

and for regularization kernel w 1 set I =y * w 1. Since ¥y > p almost every-

where in R?, the same holds for 9. We then deﬁne 190 as a projection of ¥
onto the hnear hull of {w;}}Z, in LQ(Q) hence 95" = > dNM w;.
Note, that

P 2o 9l i L2(Q),

ul Y22 4 in (L2(Q))2, (4.5)

9N X229 in LY,

where the first two convergences hold due to the completeness of an orthonor-
mal basis in Hilbert spaces, and the last convergence is given by properties of a

regularization kernel.
Moreover, for k < M and j < N, G}, depends only on (VM d¥M) and

Fj(t,CN’M,dN’M) = Rj(CN’M,dN’M) + <f(t),wj> s

where (f,w;) € L*(0,T). Thus |F|+ |G| has an integrable majorant M (t) on a
certain right neighbourhood of ¢t = 0. By Lemma [I, we obtain the existence of
a maximal solution to the system — until 7% < T. Showing that ¢V
and dVM are bounded will imply the existence of the solution until time 7" by
the Theorem of Maximal Interval of Existence.

13



4.2 Estimates independent of M

We wish to show estimates on ¢¥*™ and d™™ uniform with respect to M. That

will imply the existence of a solution to for all t € (0,7, and additionally
it will allow us to find converging subsequences of 9™ and u™*. Hence, we
multiply the j-th equation in by cj-V’M, sum over j = 1,..., N and integrate
until time ¢ < T™. This gives us

/<auNM NM> dr—l—/ /s* 19NM DuNM) DuNM dy dr =

0 // NAL g y N V(uN’M)dxdT+/0t<f,uN’M>dT.

Using estimate on 8&*, Holder’s inequality, and identity

N,M |2
/(UN’M @uM): VM) dr = /uN’M -V <]u2|> dr =
Q Q

N,M |2
— —/(diqu’M)‘u e =0
Q 2
we will obtain

tl t t
| sola g [ [ dpa iy —vdsar < [ ]
0 0 Q 0

By Lemma , Young’s inequality, and the fact that f € L” (0,7;V*) we have

V* dT.

1 ¢ v [*
IO+ [ dr <o d [t ar,
0 0
hence

t
uwmw%+AWmemsa

Since this estimate works for any ¢ < 7™, we have the estimate independent of
M and N on the whole interval (0, 7™*), hence

T*
swﬂwmwmﬁéuw%mmsa (4.6)

te(0,17*

The estimate of the first term on the left-hand side furthermore implies that

N,M (2
sup sup ¢ (H)]" < C.
jSNte(o,T*)| I ( )l (4'7)

We now multiply the (M + k)-th equation in ({&.2) by dp ", sum over k =
1,..., M and integrate until the time t < 7T™*. We obtain

t t
/ (09NM 9N — ) dr + / / k(MY g (9NM D) da dr =
0 0 Q
t
= / / S* . DuM MMM _ ) 4 9N My NM g (9NM D) da dr
0 Q
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By the identity

/ (VM DM WM _ ) g — /
Q

Q

NM _ Q)2
= —/(div’u,]\]’]\/[)(q9 V) dx =0,
Q 2

uNM .y ((191\11\42_{9)2) dr =
(4.8)

the estimates on k and &%, and the manipulation with 19, we can rewrite the
equation as

/ Lol — 312 + | VM — 9|2 + /ﬁ(ﬂN’M)V@~V(19N’M—1A9)d:vdT§

Q

// (14 [Du )" [ Du) [95 —9| 4 JudM (VM — ) da dr.

Using
¢ — ~
/ /1/(1+|DuN’M\)p Du |9 9| do dr <
0 JQ
t
S/ /O(1+|DuN’M|>p’19N’M—f9’ dvdr <
0 JQ
t
< C/ /|DuN’M|p)19N’M—79( + [pVM = | dxdr <
< [ NDuS A Dl + O — D
and

//ﬁuNM KONV - V(MM — 9) da dr <
g/ /(19|qu1”\+m\v@|>\vavM—@)|dxdTg
0 Q

t
< / (19l lfu™ 11y + BNV ) IV (¥ = D), dr

0

together with Poincaré’s inequality yields into
1 . 1 . ¢ .
SO = DO = SN = DO+ C [ 9%~ DR, dr <
0

t
< /0 C (L4 11Du™M15, + 10l ™M [l + F V) 197 = D)y dr <

Young

t
L [0 (L 10w DI B + RIVOI) + 39N DR
0

where Young’s inequality is used in such a way that 0 is small enough. We observe
that || (9™M —9)(0)]]3 and fot | VY3 dr are finite by (4.5) and (3.2). Furthermore,
19|00 fi ™M ]2 dr is bounded, since ||9)|. is finite by (3.2), and

T*

t
[ gar < [ gar <
0 0

15



by (4.6)). Finally, we can estimate

t t [N »
/ | Da™M |2 dr < sup ||ij||§§/ S| gr<om). 49)
0 J<N 0 \j=1
This holds since |Jw;]|, 5, < C for every j by the choice of the basis {w;}}_,, and
since
[ N v N,M |2
/ Z ‘Cj ’ ‘ dr < N*T* sup le;” HLI;O(O,T*)?
0 \j=1 J<N
which is bounded by (4.7)).
Thus .
1@ = D)(t)]13 +/ |9 = D|J p dr < C(N). (4.10)
0
The estimate (4.10) holds for any ¢ < T, so in particular we have
A T* A
sup 0N D@+ [ N =D, d <o), (@
te(0,T*) 0
hence also N M
sup sup |[d;" (1)[|; < C(N). (4.12)
k<M te(0,T*)
Since (VM @My = (VM e aM, L dyY) is a maximal solution of

(4.3)—(4.4) uniformly bounded with respect to time, it is defined until time 7" by
the Theorem of Maximal Interval of Existence. We thus obtain the estimates

T
s Wl [ <
5 0
A . A (4.13)
sup (%M — 9)(0)]3 + / [9%M B2, dt < C(N),
0

te(0,T)

We now need to estimate the norm of the time derivatives of 9V'¥ and u™M
uniformly in M. Firstly, we show that 9,9NM € L2(0,T; (W,?)*). Due to the
orthonormality of {w;} in L? we can write for any ¢ € (0,7) and for any ¢ €
L2(0,T; Wy *(92)):

(0N 0) gy (1) = (O™ = D), 0) (1) = / OO = D) ()p(t) da =

Q

= /Q >0 (Hwip(t) do = /Q B (M — D) (t)p™ (1) dar =

- / DM (1) M (1) da
Q

where ¢ denotes a projection of ¢ onto the linear hull of {w;}}Z, in L*(Q). Let

16



SVM .— g+ (ﬁN’M, DuN’M) for the simplicity of notation. Then we have

(#2)
|‘atﬂN7MH(L2(W§v2)*) = 9 Md( x)

”‘P” L2w 1 2

= sup
]

< Sgp/(lﬁN’MlluN’Ml + R VON) VM| 4 [ST DM M d(t, 7) <
Q

/ (ONMyNM g (9NMYyggNMy (T M) 4 SNM  DuNM M (¢ )| <
Q

T
< sgp/o O+ 1 Du™ M, + [0l Ly + VO™ ) 1™ [ o dt <

T
< sgp/o CUDuM M55 + 1M1+ ™M 5+ [V 13) del|o™ [ o g2y

We know that [[Du™M|| 2,5 < C(N) by ([@.9) and [[VOVY| 155 < C(N) by

(4.13). Furthermore, we use that fo ||?9NM||3dt and fo w24 dt are bounded
by (4.13)) using Lemma [6] Additionally, it holds that

||90M||L2(W0172) < ||90||L2(W01’2)
in W, by the orthogonality of {w;}32, together with (4.1). Hence

9v-M < N < N).
||at ||(L2(W01’2)*) = ol sup < C( >HSO||L2(WOI’2) = C( ) (414)

L2(wy?%)

Analogously, we show that du™ € L (0,T; (VVO2 %)) and the estimate is
uniform with respect to both M and N. Take any ¢ € LP(0,T; Wo% ﬁiv) and any
t € (0,7T), using properties of the basis from Theorem (8 we have

Z@tcNM <’w“Z wip(t dy'wj> o

2,2
0,div

N

=Y 0l /'wlz w;ip(t) dyw; dx =

—/ <Z@tch’M ) (Z wip(t dywj) dx—/atuN’M(t)goN(t) dz.
Q \i=1 Q

Function ™ (¢) is defined as follows
N
o0 = Pl = 3 / w,p(t) dyw; € H,

where PV and HY were introduced in Lemma . We could use the property of
the Gelfand triple since for all j € N it holds w; € Wy 5, (Q) = L2 4, (). Due

17



to the previous equality we can estimate

HatuN7MHLp’((W272 )*) = sup / atuN’M(pN d(t,x) "
0,div
ol 22 <11/
T
o /(uNyM @u M — STV d(t, x) +/ (fo") dt| <
14 Q 0

T
< /Q (a1 4 1Y) (Vg dle) + [ (£.0¥) di <
0

T
< sup / (™M 13, + € (14 DM B (I f 1y ) o™ [l dt <

za

T
<sup [ (W, + € (141D ) + 1l ) 0¥z e <

< sup (™ 2w g+ C (14 1DW™ o) + 1 llnn)) 1™z

We know, that ||'u,N’M||L2p,(Q) < Cllu™M|| 1, which is bounded by Lemma

and estimate (4.13). It remains to show that for all ¢t € (0,7) the following
implication holds

lo()llyy2e <1 = [l (B)ll2e < 1.
0,div 0,div
This is true since
N _ N N
6" Ollyzz = 1P¥ @Dz < 1P paz ez he@lyzs < 1.
We can thus conclude

2,2
WO,div)*)

where the constant is independent of both N and M.

4.3 Limit M — oo

Due to estimates (4.6)—(4.15) that are independent of M, for any fixed N € N,
we can find a not relabeled subsequence {u™ 9MM}2e  such that for M — oo
we will obtain the following convergences

ouNM —~ gl in Lp/(O, T (W()Qﬁiv)*>’ (4.16)
uNM s N in L=(0, T L(Q),div), (4.17)
WM N in LP(0,T; V), (4.18)
OONM s oV in L2(0,7; (Wy™*)"), (4.19)
GNM _x gN in L®(0,T; L?), (4.20)
GNM _ 9N in L2(0,T; W"?). (4.21)

In this section the convergence results are considered up to a subsequence.
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We use Lemma [3| to conclude, that
{ONM e L2(0,T; Wh2); 090N M € L2(0,T; (W)} < L*(0,T; L?),

hence we get 9NV — 9N in L2(0,T; L?). Fixing 0 < ¢ << 1 and using Lemma [f]
we get the following estimate for » < 4 we can estimate

T T
/ [9%M — 9N | gt < / [ — N 120N — 9N |2 dr <
0 0
T
< sup ]9 — 9|3 / [ONM 9N 29NN — 9|5 df <
0

S
< (/ [V g |2 %t) (/ ||19N’M—«9N||3dt)
0

Since € > 0 can be chosen in such a way that % < 1if r < 4, we obtain

NI

INM s 9N in L7(0,T; L") for r € [1,4). (4.22)
Similarly, we have
™M e L2(0,T; V); 0u™™M € LP(0,T; (W t)")} == LP(0,T; LP),

hence we get u™™ — uv in LP(0,T;LP), which also implies uM™ — 4V in
L2(0,T; L?). Fixing 0 < £ << 1 and using Lemma [f| for 7 € (2,2p) we get

T p(2—r) 2r—2p—pr
[ < [ e ), <
0

2r—2p— pr_ o T p(2—r)
< Coup ™ — ¥, [ I i <
0

~ T p(2—r) 2 2%5 T %
§C</ [ 2 Edt> (/ HuN’M—uNﬂgdt) |
0 0

Since for r < 2p, € > 0 can be chosen such that (zj)ﬁ < 1, we obtain even
better strong convergence result

uN M N in L"(0,T; L") for r € [1,2p). (4.23)

For fixed j < N and fixed k < M we multiply the j-th and (N +k)-th equation
in (4.2) by ¢ € D(0,T) and integrate over time. That gives us

/ O™ Mow; d(t, ) + / S* (ﬁN’M,DuN’M> :Dwjpd(t,z) =
Q Q
T
- / P @u™M) : Vw; d(t,x) + / (f,ow;) dt,
Q 0

/ 0N M d(t, x) +/ k(MY VINM Ty d(t, 7)) =
Q Q

- / S (0NM, DuNMY : DuN My d(t, x) + / GOV M NM 7 d(t ).
Q Q
(4.24)

19



We now wish to pass the limit M — oo in these equations. First, let us show
that

/Q oM @ uNM) Y, d(t, 7) — /Q o @u): Vw, d(t,z).  (4.25)
This holds since

<

/ng(uN’M @u¥M —uN @u) : Vw,;d(t, z)

T
<C / oIl ™M = ™) [ ([ Ml + [l 5) (| V|3 dt <
0
M—00
< Ol = u™| o) (M 2y + V]2 rs)) "5 0.

Now let us show, that
/ S* (ﬁN’M,DuN’M> cDwjpd(t,z) — / S* (ﬁN,DuN) : Dwjpd(t, ).
Q Q

By (4.22)), we obtain that

INAM N almost everywhere in Q). (4.26)

Let us now show that Du™'* also converges almost everywhere. We have

T
|1 Du™M — Du|[, o) = /0 | Du™M — DuMN|Edt <

T T
< [ I =< o) [ - e <
0 0

T
< C(N) sup [uM —uNH’Q’_Q/ ™M — w2 dt Mzzeo
t€(0,7) 0

where the second inequality holds since all norms are equivalent on a finite di-
mensional space HV. This gives us

Du™M — Du® in LP(0,T; L?), (4.27)
and consequently
DuMM — Dy almost everywhere in ).
By the continuity of &* we have

S* (ﬁN’M, DuN’M) - 8 (19N, DuN> almost everywhere in Q). (4.28)

Furthermore, |S* (19N7M, DuN’M) | <C (1 + |DuN7M\p_1) by the third inequality
in (8). Additionally, by (4.27), for fixed N there exist a function m”" : Q@ —
(0,00) such that |[Du™M| 4+ |Du| < m and m € LP(Q). Thus, by the Lebesgue
Dominated Convergence Theorem

SNM = 8 (9N, Du) in ¥ (0,T; L"), (4.29)
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since
SN — 8 (Y, Du) [P < C(1+ [DuM VP 4 [DuN ) < C(1 4+ m) € LY(Q).

Hence,
/SN’M : DuNMwspd(t, x) — / S* (ﬁN,DuN) : DuMNwjpd(t, x),
Q Q

since 8™ converges strongly in L” (Q) by (#.29) and Du™-" converges strongly
in LP(Q) by (4.27)). Lastly, we want to show

/ k(MY pVINM - Twy d(t, ) — / k(M) eVIN - Vg d(t, z). (4.30)
Q Q

We have V9NVM — vy in L?(Q) by ([£.21). Also

k(M) YV, — k() pVwy in L*(Q)
due to (4.26)), the integrable majorant ‘R(ﬁN’M)QOVwk’Q
and the Lebesgue Dominated Convergence Theorem. Hence, holds true.

Since the convergences of the other integrals in are straightforward,
we can take the limit M — oco. The convergences hold for any ¢ € D(0,7), so
we can use the Fundamental Lemma of the Calculus of Variations and obtain a
system of equations independent of M, that holds almost everywhere in (0, 7):

< (Rl Van])* € L2,

<(9tuN,wj>W272 +/S* (ﬁN,DuN) :Dw;dr =
Q

0,div

:/(uN®uN):V'wjdx+<f,wj>, forall j € {1,2,...,N}
Q
(4.31)
(00N ) 1 + / k(WNYVIN - YV, de =
’ @ (4.32)
= / 8" (0", DuM) : DuNwy da + / N . Vw, dr, for all k € N.
Q Q
Additionally, linear hull of {wy} is dense in W, (). Hence for any 1 € W,*(Q)
we have a sequence {tM}35_, such that Y™ € span{w,, ... ,wy}, and ™ — o

in I/VO1 2(Q) We can thus consider (4.32)), where wy, is replaced by ¥, pass to
the limit M — oo, and conclude

<(9t19N,w>W172 + / /Q(T?N)VﬁN . Vw dx =

0" Jo (4.33)

_ / 5 (0", Du) : DuNy d + / N Ve de, Vi€ WiH(9Q),
Q Q

almost everywhere on (0, 7).
It remains to show that the initial conditions are attained. For all M, we

have the equality ¢V (0) = ¢). To conclude u™(z,0) = XX, N (0O)w; =
YN Nw; = u) (), for all € €, it is thus enough to prove that for all
je{l,...,N} it holds

M — el in C([0,T7). (4.34)
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For each j € {1,..., N} it holds

N

N.M . N,M A NM

<(9tu ,wj>W02§ = E oic; (wi,wj)woz,jiv = 0c; .
,div =1 ’

Thus |yatc§V»M\|Lp,(07T) < C by (4.15). Furthermore, chy’MHLoo(O’T) < C by (4.7).

We thus have ||c§-V’MHW1,p,(OT
respect to M. We can hence find a weakly converging not relabeled subsequence
such that

) < C, where the estimates are again uniform with

cj-V’M — cj»v in WH'(0,T).
Convergence then holds by the Sobolev embedding
W' (0,T) —— C([0,T]).
Furthermore, using Lemma [7] for

N — 9 e L¥(0,T; Wy ?)

and A
O, (WN —9) = 00N € L*(0,T; (W ?)"),

we conclude ¥V — 9 € C([0,T); L?), and thus
9N e C([0,T]; L?), (4.35)

since 9 is independent of t. Let us now show, that 9~ (z,0) = 9 (z). Take
T € D(—00,T), 7(0) # 0, then

/ ON M d(t, z) "2 — / ONM oy d(t, ) — / 90" M wyr(0) da.
Q Q

Q

Taking the limit in M — oo and using (4.20)), (4.21)) and (4.5)), we have
/ 09N wyT d(t,7) = —/ N w0y d(t, ) — / 9 weT(0) da.
Q Q Q
Also

T
/ <0t19N, w"”>wl’2 rdt'"Z —/ INwp 0,1 d(t, ) — / IV (0)w,T(0) da.
0 0 Q

Q

Hence 9V (0) = 9{ in L*(Q).

4.4 Minimum principle

We wish to show that 9% > p for almost all (¢,z) € (0,T) x £, where p is defined
in (3.3]). Hence, we set

o™ (7, x) := max{—1,min{0, 9" (r,2) — u}} <0
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as a test function in (4.33)) and integrate until ¢t € (0,7"). We need to check that
N (1) € Wy*(Q) for almost all 7 € (0, 7). By (8.3) and 9 = & on the boundary,
we know that o (7,-) = 0 for a.a. 7 € (0,7T) in the sense of traces. Additionally,

V| = |V19NX{79N€(#71,M)}| < |V, (4.36)

thus V(1) € Wy?(Q) for a.a. 7 € (0,7). Let use Lemma [2| to identify the
duality <8t19N , N > If we consider

1 1
g(S) = 5(8 - IM)QX{SE(;Lfl,,u)} + (:u - 5 - S)X{sﬁufl}a
then ¢'(9V) = V. Also |¢'(s)| + |¢"(s)] < D and g(s) > 0. Lastly, note that
g > 0on (—oo, i), and g=0on [u,o0) (4.37)

Function ¢ fulfills the assumptions of Lemma [2, so we can conclude
<8t79N; 90N>W(},2 = a1t||g(19N||1'

Using ¢” as a test function in (4.33) thus gives us

t t
[ o[ aw¥yazars [ [ (s0")00" - 0¥u¥) - v dodr ~
0 Q 0 Q
t
:/ /s* (9", Du") : DuV N dadr <0,
0 Q

where the inequality holds by the first and the last property in . By a simple
computation, we have

t t
/&/9(1%’) dl’dT—i—/ /H<19N)|VQ9N‘2X{19NE(M_17M)} d:EdTS
0 Q 0o Jo
t t
S/ /ﬁNuN.Vg/(ﬁN) de dr B _/ /vg(ﬁN) N dedr B 0.
o Ja o Jo

Since the second and the third term on the left-hand side are positive, we have

0> / o / g (™) dz dr = [|g(™ ()2 — lg)|2

This yields into
lg(@™ @)1l < 0,

since ¥} > p a. e. by definition and so g(9{) = 0 a.e. on Q by (4.37). Hence,
g9V (t)) = 0 almost everywhere on Q and by (4.37) we can conclude
9N > p for a. a. (t,x) € (0,7) x €. (4.38)

To summarize the last four sections, we have functions

uV Q- R? IV Q =R
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such that
u € L°(0,T; LE 4,) N LP(0,T; V), o™ € LP(0,T; (Wis,)™),
O e C([0,T); L2) N L2(0, T; Wh?), 8,0~ e L*0,T; (Wy?)*), (4.39)
9N > paa. on Q.
Furthermore 4 and 9V fulfill the system —, and
u™ (2,0) = ul (z) for all z € Q,
IV (0) = 9 in L*(Q).

4.5 Estimates independent of N

We now wish to provide estimates of u, ¥V, du”, and 9,9V that are uniform
with respect to N. This will allow us to derive weakly convergent subsequences
in the next section. Since the estimates of u™* and 9u™* in Section [4.2 were
uniform with respect to N, we can apply the same procedure as at the beginning
of Section |4.2) E 2| and observe, that u”V satisfies for all ¢ € [0, 7]

/ L o 12 dr + / / YDuNP — pdvdr < / a1y 1

ved
which implies that u” also satisfies
o ™ @13 + w1y < C. (4.40)
Additionally, by the same steps as in (4.15)), we have
HUN”LP’((WgﬁiV)*) <C. (4.41)

We now wish to provide estimates for ¥V uniform with respect to N. For

€ (0,1), we consider
K [e%
— - (—)
v <K+19N —19>

where K is a constant such that K > ||9||.. It is zero at the boundary because
¥ = 9V at the boundary. By the minimum principle (4.39) and the positivity of
a, we have ¢ € L>(Q). Also

K VN — v

— =) P, 4.42
o) e @ (1.2)

so (t) € W, (Q) for a.e. t € (0,T). Thus we can take (t) as a test function in
(4.33)) and integrate until time ¢ € (0,7"). We hence have

t K «
[l (5 VY
K+9N -9 W2

K a+1 N
[ R P (N o LAES CPRP P
K+ 9N —9 K

:/ /SN:DuN<1—<KA> )dxdT.
o Jo K+9V -9
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Since 8 : Du! is positive, we can estimate

t «
//SN:DuN (1—(KA> )ddeg/SN:DuNd(t,x)gC,
0o Ja K+9N -9 Q

which holds by Hélder’s inequality, (4.40), and the third part of ().
We define H : (0,00)? — R as

S K (07
H(s,0)= [ (———) d
(s5,0) /O(K+T_U) .

and we observe that there exist ¢, co > 0 such that for all s > pand K < g <
o < 7 it holds

c1(a)s' ™ < H%(s,0) < ca(a)s' ™. (4.44)

Let us use Lemma [2| for g(9V,0) := 9V — H*(WN,d). The function g is non-
negative since g(o,0) = 0 and

K (6%
tots.) =1 (=)

is positive for s > ¢ and negative for s < o. Furthermore,
|01g(s,9)] + [97g(s,D)| + |02019(s,9)| < D.

We can thus use Lemma [2] to conclude that ||g(9™,d)]|, is an absolutely contin-
uous function on the interval (0,7") and

N K o
allg(9™, ), = <awN, - () > )
! K +9N —9 W&’Q

Let us now rewrite

a+1 N _ o
K(ﬁN)wN-Q< K 19) VN — v

K+ 9N — K
ak(ONK ak(ONK R
( ) a+1‘v N| ( ) ~ a+1V19N'V79
(K +9V =) (K +9V =)

and treat each part separately. Firstly, by (| , we know that

(V) K
/ / ar( VOV da dr
(K + 9~ )

is non-negative. For the second part, we have

N
// om0 Gov Vi dedr <
(K +9V =)

NKa
// an(v VNV dedr S
(K +9V =)

. N Ko N |2
g/ /C|V19|2+ ar(V7)K QH‘W " dzar
0o Jo (K_HgN_ﬁ) 4
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Lastly, we need to estimate

/t/ﬁNuN a( K >a+1VQ9N_v{9dasz—
0 Jo K+9N -9 K
t atl N 3
:/ /(191\’_{9)“1\/.&<KA> dedﬂ—
K+9N -9 K
a+1 N ~
//ﬂu Ky YoV
K+o9N -9 K
The first part is equal to zero since
a+1 6
/t/wv_@)uzv.a(fﬂ)*wdm_
0o Ja K+ 9N —9
a [ 1BP04
:K//UN-Vf(ﬁN //dlvuf — ) dzdr =0,
0 Ja

where ¢ is defined as follows

o= [ ()" o

To estimate the second part we consider

drdr <

ANO[< K )““WN—V@
K+9N -9 K

19 u™| |V dzdr + Cla ‘19’ il ‘WNJ drdr
.

K+19N

. \uNwa
C)[0]loo [ 1] 12y VDl + K+19N a+1 dedr| <

ak( 19N K~ ]VﬁN|2
( )"’C( ”U, HL2L2 // K+19N a+1 1 dx dr.

Putting all the estimates together we can rewrite (4.43) as

19N K“ VN |?
/atng H1d7+// il o VO e dr < Cla).
(K + o~ — 2

We will now write C' instead of C'(«) for clearer notation. Note, however, that
the constants still depend on alpha. The estimates hold for any t € (0,7"), so we
can write

ak(IV)K« V|2
oup [lg0™ ()l + [ — U T ) <
te(0,T) 0 <K+19N _19)

< C+llg@¥ o)l < C.
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We thus conclude
||9(19N)||L00(L1) <C.
This implies
[0% | oo 21y < C, (4.46)

since

Young

[ 10¥de < [ 1)+ e @] de < g, + [ () de S
Q Q Q

1
< a0l +C+5 [ 19¥]ds

Additionally,
N|2 Ny N|2
C/ |V19 | e d(t,l‘) S / Of/f(ﬁ ) —— |V7~9 | d(t,l’) S C,
Q (K +9N—9) Q (K +9N—9) 2

(4.47)

which gives us that for all a € (0,1) it holds

1 a+1 N2
/Q (W) o[ dt,x) < (4.48)

It is important to notice that we cannot let o — 0+, since from (4.47)) we would

have TN )
/ | ’A 7 d(t,x) <C aa_—>(>)+oo
Q (K +9N—0) KoK

and we would thus lose estimate (4.48). We can now use (4.48)) to estimate

e alze | 1\
/Q’v ((0 )5 ) ) d(t,z) < C/Q <W> Vo[ dt, )

a+1

ettt . 1\ /1\ %% . [E4m)
+ C’/ <{9> v +2 <W> (ﬁ) VoV v d(te) 2 C
Q

and we conclude
Vs < oo : (V)25 — (9)72" € L2(0, T; Wi?) — L2(0,T; L*(2)).
From the upper bound on 19, we have that
1—o

Vs <oo: (W) 2 € L*0,T; L°(Q)). (4.49)

For fixed s < oo, denote ¢q := 5(1;()‘) and note that

T T - P @m
/ HﬁNH;ﬂ dt = / (/ CANES dx) dt ? C. (4.50)
0 0 Q
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We now use Lemma [5| together with (4.46)) to estimate
T T g=r g(r=1) T a(r=1)
[Nt < [ 0t a <o 1o e
0 0 0

which is finite when

qir—1) s(l—a)(r—1) s5e

1—a> = —1).
o > ) si—a)—2 = (r )
Hence 9V € L"(Q) for r < 2 — a. Taking o — 0+ we have
HﬁNHLr(Q) <C for r € [1,2). (4.51)

Let us now estimate the gradient of ¥V using estimate (4.48)):

1 QTH % 7““; 1) Holder

/|V19N]td(t,x):/<]V19N|<W) ) () 7 d(ta) <

Q Q
Hélder 1\ (etD) 3 Hatl) = [@43)

< </ VN |2 (W) d(t,x)) </ (o) d(t,x)) <

Q Q
ta+1) =t
<C (/ (v) = d(t,x)) .
Q

That is finite if

t 1
(o +1) <2 <= t< )
2 —t 3+«
Hence, taking « — 0+ we obtain
4
VOV 1oy < C for t € {1) 4.52
| 1) < or 3 (4.52)

Finally, we consider 1) € L>(0,T;W,"°) as a test function in (£.33)) and inte-
grate over time. We obtain

[ 10 e ta < [ (590141901 1901 70+ 1D Pl ) <
0 Q

T
<C / (IO s + 119V o [l 1y) 79115+ [l + | DuN [Pl dt <

< Cllllmaresy (1990, + 1970, i B eiesy + 100V W) )

Note, that ||19N||L1(L%) < (' uniformly with respect to N since
[Vl < CO™l, s

by Sobolev’s embedding, and ||19N||L1(W17%) < C by (4.51)) and (4.52). The re-
maining terms are estimated by (4.52)) and (4.40) Thus
N
100 HL1((W01,5)*) <C. (4.53)

Since all the estimates are uniform with respect to IV, we can proceed to limit
passage N — o0.
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4.6 Limit N — o0

From the uniform estimates in the previous section, we obtain the following con-
vergences for not-relabeled subsequences:

o™ — du in L (0, T; (W)™, (4.54)
u —*u in L=(0,T; L§ 4, (4.55)
u —u in L?(0,T;V), (4.56)
u —u in L"(0,T; L") for r € [1,2p), (4.57)
sV -8 in L (0, T; LV (Q; R2:%)). (4.58)
IV =9 in L*(0,T; L®) for s € [1,2), (4.59)
Vol — vy in L'(0,T; L") for t € [1,4/3), (4.60)
(V)™ — ()~ in L?(0,T; W?) for a € (0,1/2), (4.61)

where convergence (4.57) is obtained by the same procedure as in (4.23)).
We use Lemma |3 to show stronger convergence results for V. We have

2

(o € L7(0, T, W' ()); 00N € L' (0,75 (W *(Q)) )} == L7(0, T, L>7),

for r € [1, %) Hence for non-relabeled subsequences, we have
9N 9 in L"(0, T, L=) for r € [1,4/3), (4.62)
IV — 0 almost everywhere in Q). (4.63)
If we combine with and use Vitali convergence theorem, we have
I — in L°(0,T, L*) for s € [1,2). (4.64)
Additionally, we have

9 € L=(0,T; LY (4.65)

by (4.46) and (4.64)).

We now test equations (4.31) by ¢ € D(0,7) and equation (4.33)) by ¥ €
D((—00,T) x §2), and we obtain the following equalities

T
/0 <6tuN,wj>W272 godt+/@8* (ﬁN,DuN> : Dwjpd(t,z) =

0,div

. (4.66)
= /Q(uN®uN) : V(wj)ed(t,x) +/O (f,ow;),, dt,vj € {0,...,N}.

0

T
/0 (00Y, ) 1o dt + /Q r(ON)VIN - Vi d(t, x) = o
:/s* (ﬁN,DuN) ;DuN¢d(t,x)+/ Nu - Vo d(t, z).
Q Q
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Taking the limit N — oo in (4.66)), using convergences (4.54))-(4.58) we have

T
/ (O, wj) w2 godt+/ /S Dwjpdxdt =
0 v

:/0 /Qgp(u@)u):v'wjdxdt—l—/o (f w;), @dt,

for all 7 € N, and all ¢ € D(0,7). The convergence of the convective term
was managed similarly as in (4.25)). Additionally, linear hull of {wy} is dense in
W(i 7.(€Q). Hence for any 4 € Wi (©2) we have a sequence

(4.68)

M € spanfwy, ..., wy}

such that ™ — 9 in W(i 7.(Q). We can thus take a limit passage in (4.68) and
conclude

T
/ (O, )y 22 sodlf—i-/goS:Dz/Jd(t,x):
0

0,div

. (4.69)
_ /Q o @ u) : Vi d(t, ) + / (F )y pdt, Y € W22, (9).

Finally, we want equation (£.69) to hold for all w € LP(0,T;V) instead of
the products ¢, where ¢ € D(0,7T) and ¢ € WOQdQW(Q). For that, we need to
formulate an auxiliary lemma

Lemma 10. For any function w € LP(0,7,V), there exist sequences {¢"}5°
and {§"}22 such that ¢ € D(0,T), " € Wi, (Q), and X1, ¥'¢" converges to
w in LP(0,T;V)-norm as n — oc.

Proof. Pick ¢ > 0, by part (iii) of Theorem 5.2.8. in [3], there exists w €

C([0,T]; V) such that
N 5
lw —wl|pr < 3
By continuity of w, for any ¢ € [0,7] there exists §; > 0 such that for all 7 €
It = (t — (St,t + (St) N [O,T] it holds
€
w(r) —w(t)|, < —.
()~ a0l <~

Since [0, T is a compact, we can find a finite covering {1}, of [0, T]. By taking

Ii =T\ Iis: fori € {1,...,m — 1} and I;m := I;m we obtain pairwise disjoint
covering of [0, 7] up to a null set. Then for 7 € U, I;i we have
. i o €
lo(r) = > xr, (o)l < —,
i=1 31>
where for all 4 € {1,...,m} it holds x;, € LP(0,T) and w(t') € V(). For every
i € {1,...,m} there exists ¥’ € C*(Q) C W&fiv(ﬂ) and ¢' € D(0,T) such that

€

||Xltl- - ‘Pi ||LP(O,T)

.....

lo(t") = %' lly o) <
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by the density of the smooth functions. Thus
1> xr, @) =Y @[ oy <
i=1 i=1

Y

wl M

< m Hax (||X1ti — @' ooy @ E) vy + 16| ooy l0(E) — WHV(Q)) <

which implies
i € SN D(t =
lw =3P o) < 5+ 10 =D X1, @) oy + 3 <&
3 3
i=1 i=1
]

We will now show that the time derivative of u has better regularity. More
precisely, we will show du € LP (0,7;V*). We know that by the definition of the
weak time derivative

/0 (O, P) 22 gpdt:—/Q'u,@t('l,bgp) d(t, x).

0,div

We thus have
- /Q wd ) d(t, ) = Fbg), @ €DOT),$e Wi (Q)  (4.70)
where

Fpp) = / pu@u): Vi — 8 : D d(t,x) +/0 (f, o), dt.

Q
Furthermore, F is bounded for all w € LP(0,7T; V), since

T
Ftw)l < [ Vol +|SIDul )+ [ |Gy s
Q 0
< ||u||i2p’(Q)||vw||Lp(Q) + HSHLP’(Q)HD"UHLP(Q) + ||f||Lp’(v*)
The last estimate is true for p > 2 by (4.57)), (4.58]), and (3.1)). For p =2 =p’ we

need to proceed more carefully with the term [[ul| ,, (@) From Lemma |§| we have

Wl oy < C.

T T
/0 ulld dt < / el ]2 < ] oo ]2 1,

which is bounded by ([£.55) and (#.56). We hence have F € L” (0,T;V*). Since
the set span{py;p € D(0,T),¢ € WéﬁiV(Q)} is dense in LP(0,7;V) by Lemma
there exists a uniquely defined extension of dyu (denoted again d;u) such that
O € LY (0,T;V*). This extension is defined by

<at'u’7w>LP(V) - ]:(’UI), w e Lp(o) Ta V)
Hence, by Lemma [10] we can conclude that for every w € LP(0,T, V) it holds

/T (O, w),, dt + / S Dwd(t,z) =
0 ¢ (4.71)

:/(u®u):de(t,m)—i—/T(f,'w)V dt.
Q 0
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Additionally, by Lemma , we have u € C([0,T7]; L§ 4,)-

Now, we only need to identify & with 8" (9, Du) by using the Minty trick.
Recall 8V := 8*(¥V, Du). From the first property in we have that for all
D € LP(Q;R%2) it holds

0< /Q(SN —8*(WN,D)): (Du” — D)d(t,z) = /QSN - Du® d(t, z)

- [ &Y. D)5 (Du¥ = Dy dte.w) - [ 8 Dar.r) -
Q Q

T
:_/ <8tuN,uN>V dt+/(uN®uN) : Vu® d(t, x)

0 Q
+/DT (f.u®), dt—/QSN:DJFS*(ﬁN,D) - (DuY — DY d(t, ),

(4.72)

where the last equality is obtained from (4.31)) by the method shown at the
beginning of Section [4.2] We recall that

/(uN®uN):VuNd(t,x):O:/(u@)u):Vud(t,x).
Q Q

We want to take the limit of (4.72) as N — oo. The term fOT <f,uN>V dt
converges by (4.56)), and fQ SV : Dd(t,z) by (#.58). Furthermore,

/ S (9, D) : (Du" — D)d(t,z) — / S*(9, D) : (Du — D)d(t, )
Q Q

since Du™ — Du in LP(Q) by (#.56), and S*(9~, D) — &*(9¥, D) in L¥ (Q) by
[@:63), continuity of S*, the fact that |S*(9Y, D)|+|8* (¥, D)| < C(1+D" ') €
LP (@), and the Lebesgue Dominated Convergence Theorem. Lastly,

T

1
. . N N T . - N 2 N2\ __
lininf | (0u®,u¥), dt =timint 5 (™ (D)5 ~ | I3) =

(4.73)

] 1
= hNHLloIéf §H’U:N(T)H% - 5““0“%

by (4.5). We need to show that u™¥(T) — w(T) in L*(). Let us take ¢ €

span{wy,...,wy} and a sequence {nx}32,
kt on [0, 1],
Ny =41 on [%7T_%]7
—k@t—-T) on[T—4,T).

Plugging ¢n, in (4.71)) and integrating by parts, we have

+ T
—][k/ucpdxdt—l—][ /u¢dmdt+/szp<pnkd(t,x):
0 Jo -1 Jo Q

~ [wow): Vondta)+ [ (.0 mit
Q 0
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Letting k£ — oo yields into

_ /Qu(o)tpder/Qu(T)cpdm-F/QS Ded(t,v) = (4.74)

:/(u®u):Vg0d(t,x)+/ (f.p)y dt,
0 0

since w € C([0,T], L§ 4,). Plugging ¢n, in ([4.31), integrating by parts, and
letting k — oo results in

_AUN(o)wdx+/§2uN(T)¢dx+/625N:D<Pd(t:37)_

. (4.75)
= N Ny Nd , T ,N dt,
/Q(u®u)w (t )+/0<f<p>vt

because u¥ € C([0,T], L% ;). Passing to the limit N — oo in (4.75) and com-
paring the result with yields into imy_,o0 [ u™ (T)p dz = [, u(T)p dz for
any ¢ € W(i’jiv(ﬁ). However, since u(t) € L§ 4,(Q) for all t € [0,T], we can
conclude

lim [ u™(T)pdr = /u(T)go dx for all p € L*(Q). (4.76)

N—oo Q Q

We can now use ({4.76]) together with the weak lower semicontinuity of the L2-
norm in (4.73)) to estimate

—00

' ' T 1 T
h&nmf/o (0 )t > 3 (D)3~ fuol) :/0 (O, )., dt.
We can hence take N — oo in (4.72)) to obtain
T
0< —/ (O, u),, dt+/(u®u) : Vud(t, z)
0 Q

T ~ ~ ~

+/ (fou), di — / S:Dd(t z) / S0, D) : (Du— D)d(t,z) = (4.77)
0 Q Q
/ (S —8°(9,D)) : (Du— D)d(t, ).
Q

In the last equality, we used that w € LP(0,7; V') and it is thus an admissible test
function in (4.71)).

We now take D := Du—eW for some W € LP(Q; R2x2) and € € (0,1). Hence,
we have

0< /(S — 80, Du — W) : eW d(t, x), implying
Q

0< /(S — 80, Du —eW)) : Wd(t,z) 23"
Q

R / (8§ —=8*(9,Du)) : Wd(t,z), since 8" is continuous.
Q
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Taking the same estimates for —W, we obtain
0= /(S — 8", Du)) : Wd(t, x).
Q

This holds for any W € LP(Q; R?X2), in particular for all W € C§°(Q; R2%?), and

sym sym

so by the Fundamental Lemma of Calculus of Variations we have 8 = 8*(¢, Du)

almost everywhere in Q).
We thus have u € L?(0,T; V) such that du € LY (0, T;V*)

/T (Oru, w)y, dt + /628*(19, Du) : Dwd(t,z) =
0 (4.78)

T
0

:/(u®u):V'wd(t,x)+/ (f,w), dt,vw e LP(0,T;V).
Q

Furthermore, it holds u(0) = wy in L*(Q2). This can be shown in the same
way as the equality ¥VV(0) = 9% by the end of Section We have thus found
u € C([0,T]; L3 41,) N LP(0,T, V) such that du € L' (0,T,V*) and u fulfills the

Momentum equation (3.10)).
Let us now focus on the convergence of (4.67)). By the definition of the weak

time-derivative term, we have

/OT <atq9N,¢>W&72 dt = —/QﬂNatw(t,x) —/Qﬂw(o) dx

(4.79)
- / DO d(t, x) — / Yot (0) da.
Q Q

For the convective term, it holds
/Q VU VY — du- w] d(t,z) <
< IVl 1) (/Q WO — 0| | d(t, ) +/Q|19| u® — | d(t,x)) < (4.80)
< (10% =0l 3,0 10" 3 )+ 1212 g 0" =l 3 ) =0
Moreover, we have the convergence
/QWN k(UMY d(t, z) — /Qw k()Y d(t, 1), (4.81)

since VOV — V¢ in Li(Q), and x(0N)Vy — k(9)Ve in L5(Q) due to the
convergence k(9) — k(9) almost everywhere, the fact that k < % on (0, ),
and the Lebesgue Dominated Convergence Theorem.

We will now show the convergence of

/ 8" (0", DuM) : DuNyd(t, x).
Q
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Let us substitute D := Du in ([#.72) and (&.77). This same procedure as in the
Minty trick above yields to

14.72)
0 < lim [ (8N -8 (WY, Du)): (Dul — Du)d(t,z) <

N—oo Q

< /(8 —8*(Y,Du)) : (Du — Du) = 0.
Q

Hence
(SN —8*(WN, Du)) : (Du" — Du) — 0 in LY(Q). (4.82)
Additionally,
S*(9N, Du) : (Du™ — Du) — 0 in L1(Q), (4.83)

since for w € L*(Q) we have

lim
N—o0

<

/ S*(9Y, Du) : (Du™ — Du)w d(t, x)
Q

< lim / S*(0, Du) : (Du® — Du)wd(t, z)
= | /g
+ lim / (S8*(9, Du) — 8*(VN, Du)) : (Du” — Du)wd(t,z)|.
— 00 Q

The first integral converges to zero, since Du” — Du in LP(Q) and
S* (9, Du)w € L* (Q).
For the second integral, we estimate
/Q (S*(9, Du) — S*(@™, Du)) : (Du® — Du)wd(t,z) <
< 8" (9, Du) = 8* (0N, Du) | g (1D | oy + 106N |10y ) 0]l ey = 0
due to the convergence , the Lebesgue Dominated Convergence Theorem,

and the L -growth and continuity of S*.
For w € L*(Q) we thus have

/SN : DuNwd(t, z) = /(SN — S*(WN, Du)) : (Du” — Du)wd(t, x)
Q Q
+ / SN . Duwd(t, x) +/ S (N, Du) : (Du" — Du)wd(t, z) "=
Q Q
—>/ S : Duwd(t,x),
Q

where we have used convergences (4.82), (4.58]), and (4.83). Hence
SY:DuN =~ 8:Du in L'(Q). (4.84)
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We can now take the limit in (4.67) and obtain

- [ vawdt.)+ [ w@)Vo- Vo) -
Q Q (4.85)
Q Q @

for all ©» € D((—o0,T) x ).
We have thus found ¢ € L>(0,T; L') N L"(Q), for r € [1,2), such that

A

¥ —10 e L0, T; W) for s € [1,4/3),

(9)* € L*(0,T; W?) for a € (0,1/2),

and v solves the Internal energy balance (3.11)). Furthermore, minimal principle
IV > u, for N € N, together with (4.63]) implies © > p almost everywhere.

We want to show that the initial condition is attained, more specifically that
there exists S C (0,7 such that (0,77) \ S is of measure zero and

¥(t) — Jo in L'(Q) as S >t — 0+. (4.86)

We note that by (4.65)) we have (/6(t) € L*(Q) for all ¢ € (0,T). From (4.64)
we know that there exists a set S C (0,7"), such that [(0,7") \ S| = 0 and for all
t € S it holds

IV (1) — O(t) in L*(Q),s < 2, as N — oo. (4.87)

Let us now show that

- 2
‘lglég&fr/g VO dr > /Q\/ﬁimp dx for all p € L*(Q), ¢ > 0. (4.88)

We test the equation (4.33) by —Z, where 0 < ¢ € Cee(€2), and integrate
until the time ¢ € S. Note, that it is an admissible test function for (4.33))
since \/19%@) e Wy2(Q) for a.a. t € (0,7). Additionally, —£ € L>(Q). Since

g(N) = 2\/ YN fulfills the assumptions if Lemma [2, we can 1dent1fy the duality
<8t19N > We obtain

t t
/ 8t/2\/19N<pdxdT—|-/ /m(ﬁN)wNV\/*;_d:ch:

//SN DuN -7 dxd7+//19N N *0 dwdT

which can be rewritten into
t vﬂN
2 IN(t)p — /O da;+//</<;19N—2 ﬁNuN>-v drdr =
[V O edn+ [ [ (s ’

/ / (V) Vo dxd¢+/t/sN-DuN¢dxdT>o
2(9N) 9(9N\3/2 o Jo : TGN = U,
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since by the zero divergence of u® it holds
/ INul . vi dx "2 / 22 / Ve - uVIN da.
Q

We can now let N — oo in the inequality 1) Using convergences (4.87)),

[3), [E63), (E51) and [T57) yields to
/\/ Yo — \Fcpdxjt/ /< —2\/_u> -Vodrdr > 0. (4.90)

We can pass to the limit inferior S 3 ¢ — 0+ in (4.90). The term

/Q (/1(19)3% — 2\/5'&) -Vdr € L*0,T),

hence

( —2\/_u> - Vedzdr

Vi
UMV R R

converges to zero. We thus obtain

klglgl_l}glf/ﬂ V() pdr > /Q\/ﬂ»()cpdx for all ¢ € C5°(Q2), ¢ > 0.

Since VU € L>(0,T; L?) we can extend the result for all ¢ € L*(Q) by the density
of smooth functions. Hence (4.88)) holds.
Next, we would like to obtain the following result

S5t—0+

lim 19 (t)pdr = / Yoy for p € C°(Q), 0 < < 1. (4.91)

We test the equation (4.33) by ¢ € C5°(22), 0 < ¢ < 1 and integrate until the
time ¢ € S. By the definition of a weak derivative

/<(9t19N,g0> Lo dT—/ﬁN(t)godx—/ﬁéVgod:r
0 Q )

we have

t
/ﬂN(t)godx:—/ /ﬁ(ﬁN)V§N~V<pdxdT+/ﬁéVgodx
0 0 Ja Q

t t
+/ /SN:DuNapdwdT+/ /ﬁNuN-VgpdxdT.
0o Ja 0o Ja

We now want to pass to the limit N — oo in (4.92)). The right-hand side converges

by (4.81)), (4.5)), (4.84), and (4.80). The left-hand side converges by (4.87)). We

thus have
¢
/19(t)<pdx:—/ /m(ﬁ)Vﬂ-VgpdwdT—i—/Q?ogpdw
Q 0 Jo Q

t t
+/ /S:DucpdxdT—i—/ /19u-Vg0da:dT.
0o Jo 0o Ja

(4.92)
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We can now let S 3¢ — 0+ in (4.93]). The term
t
/ / S : Dup+idu-Vo — r(9)VY-Veodrdr
0 Ja
converges to 0 by the Lebesgue Dominated Convergence Theorem as
/ S : Dug+ du- Ve — k(0)VI - Vipda € L} (0, T).
Q

We thus obtain the desired estimate (4.91]).
For p € C§°(£2), 0 < ¢ <1 we can estimate

0< lim [ (o) = ooJv@)de < lim [ 9(t)p + dopda

T S3t-0+ — S3t—0+
(4.91), (4.88)
— limi VO)/ < 0.
klglgl_l}g}i 2/Q V(t)\/Dopdr — < 0

For any compact K C Q we can find ¢ € C§°(£2), 0 < ¢ < 1 such that ¢ =1 on
K. The inequality above hence implies

VU (t) — \/19: in L?(K) for any compact K C €.

This yields into

/ \/%go dr — / \/1970<p dx for p € C3°(Q) as S >t —)+ (4.94)

as such ¢ are compactly supported. For any ¢ € L*(Q) there exists a sequence
{©n}5°, such that

On = O in L*(Q) (4.95)

and ¢, € C§°(€2) by the density of smooth functions. For given ¢ > 0 we can find
n € N such that it holds

(1913 21y + 190113) 12 = pull, < £/2

by (4.95). For such n € N we can find § > 0 such that for all t € SN (0,0) we

have
(V90 = /o) g da
by ([4.94). We can thus estimate
‘/Q\/%@dx—/g\/%wx A(M—&)@ndx
+ [ VIOl =l do+ [ Jiolp =l da <
[ (V90 = /o) g

<e/2

<

< + (1903 22y + 190]13) 12 — eull < .
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Hence

\/% — \/19>0 in L?(Q) as S >t — 0+. (4.96)

Let us now show that

limsup/ v(t) — 2\/%\/5(11; < /9/9190 — 2\/170\/56&. (4.97)

Sat—0+ JO

We test equation (4.33) by ¢ := 1 — \/1% and integrate until the time ¢ € S.
Note, that ¢ is an admissible test function since it is zero at the boundary,
Y(t) € L®(Q) for a.a. t € S by (3.2) and the minimum principle 9% > p, and

v \f VN
2oV 2O

Let us use Lemma [2] for g(0V,d) = 9V — 2\/19N\/5 + 9. Function g is positive
and |01g(s,0)| + |029(s,0)| + |02019(s,0)| < D. We can thus use Lemma 2| to
obtain

t
/<19N—2\/19N\/5> (t)+{9d:c+/ /m(ﬁN)VﬁN-V@DdxdT:
Q . 0 JQ i )
:/ /SN:DuNw+19NuN-Vz/}da:d7+/19év—2\/ﬁév\/5+19dx.
0 Q Q

By the non-negativity of the term

/ / 3/2 \WNFdxdT
we have

/(ﬁN—Q\/ﬁ_N\/é (t)+@dxg/ﬁgv—2M\/5+@dx
//SN Du™ (1—\/1;) dxdTJr/ /sziv\/z_i VN dx dr (4.98)
//\/Wu 2\fda:+// ()4 \/;X;zj:dxm

We want to pass to the limit N — oo in (4.98). The term on the left-hand side
of @ converges by . The first term on the right-hand side converges
by E[) Convergence of the second term on the right-hand side holds due to
@D, , Egorov’s Theorem, and Dunford-Pettis Theorem. A more detailed
explanation is provided at the beginning of Section for convergence (|4.107)).
Convergence of the third term can be shown analogously to . The fourth

term converges by (4.64), (4.57), (3.2), and (3.3), which can be shown similarly

Viy(t) = ( ) (t) € L*(Q), foraa.teSs.
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as in (4.80)). Finally, the last term converges by (4.57)), (4.64), and (4.61). We
thus obtain

/(19—2@\/5) (t)+1§dx§/190—2\/170\/5+{9da:

+/Ot/QS:Du(1\/>>dxdT+//92\/>\/_ Vi drdr (4.99)
/0 Q\/_u da:—l—// \/>V0d37d7

Let us take the limit S 3 ¢t — 0+ in - Since all the terms on the right-hand
side of (4.99) except for the first one converge to zero by the Lebesgue Dominated
Convergence Theorem we will obtain

limsup/< —2\/_\f) —|—19d:z</190—2\/19>0\/;9+{9dx,
Q Q

S5t—0+

which implies (4.97)), since ¥ is independent of ¢.
The convergence m 4.97)) yields into

limsup/g(F \/T) dx—hmsup/ (t)—Q\/%\/éjL@d:E

S3t—0+ S3t—0+
2
g//ﬁo—Z@ﬁ+@dx:/<ﬁ—ﬁ> dx.
Jo Q
(4.100)
Using (4.96) we have

\/%—\/54\/1?0—\/5 in L?(Q) as S >t — 0+,

which by the weak lower semicontinuity of the L2 norm implies

2 2
tminf | (Vo - \/5) do > /Q (Voo - \/5) da. (4.101)

If we combine (4.100) and (4.101) we have
900 = VIl = 180 = Vil (1.102)

From (4.102)) we can deduce

Vo) = /0, in L2(Q) as S 3t — 0+, (4.103)

since we have

[ (V0= foo) s = [ (i)~ = (oo =)
Zl)(m—\@):(\/ﬁ»— @)Qd:c
_2/9\/%\/7970—\/5\/1970—\/%\/5+@dx
%/{22(\/1970—\/%2_2(190_2\/5\/504_@):0
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Convergence (|4.86)) is indeed true by

[ 90— s = [ (50~ )+ e 20 EEED
Q Q

Hence, we have shown that the initial condition ¥, is indeed attained.
It only remains to prove that n := log ¢ fulfills the Entropy equation.

4.7 Entropy equation

We want to show equality following closely the method used in the article
[12] since the difference between the 2D and 3D case is negligible. However, we
provide more structured and detailed steps than the ones in the article.

We test over Q by ¥ := 5% where ¢ € C5°((—o0,T) x Q) and denote
nN :=log¥". We note that

Vo]

N ¥ N
VI - V-— =Vn" -V — CAE ®,

19N

and

/19NuN-V1;dex:/uN-Vgo—gouN-VnNdeB:P/nuN-Vg&dx.
Q Q Q

Additionally, we have
T T
/O <8t79N’ 1;‘])V>W3,2 dt = /0 <3t77N7<p>W01,2 dt =
—~ [ Pag ) - [ we0)ds
Q Q
where 7 :=log¥{’. We thus obtain

_/ T]Natgpd(t,]}) - / UNUN ’ VSOd(t7$) +/ H(,&N)VHN ' V@d(t,l‘)
Q Q

Q
:/ iSN : DuNpd(t x)+/ /<a(19N)|V19N’290d(t ) —|—/77N<,0(0) dx
QU ’ Q ()2 Q" '
(4.104)
We want to let N — co. By (4.64)) we have
N —n in L9(0,T, L%) for q € [1,00), (4.105)

where 7 := log . Moreover, VnV = Vl;’%NN € L?(Q) by (#.48). We can thus find a

converging subsequence
vt — Vn in L2(0,T, L?), (4.106)

and so n € L*(0,T; W?) N LY(Q) for q € [1,00).
The left-hand side of (4.104) converges due to (4.105)), (4.57)), (4.106)), (4.63)),
the boundedness of k and the Lebesgue Dominated Convergence Theorem. Also,
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the limit passage works in the last term of (4.104)) due to (4.5). We want to show
the convergence

1 1
/ fNSN :DuNpd(t, x) — / =8 Dupd(t, z). (4.107)
QY QY

Using Egorov’s Theorem we obtain from (4.63)) that for every € > 0 there exists
Q. C @Q such that |Q \ Q.| < e and

RN uniformly on Q.. (4.108)

N U
We have

Y eN. N _ Pa. _ | P(QN . p,N :
Qﬂ—Ns : Du —ﬁs.Dud(t,x)—/Qﬁ(S : DuN — S : Du) d(t, )

Y P\ eN N Y P\ eN N
+ — = = : D + —_— = = : D .
/\ 5 <19N 19>8 u d(t, ) /5( N 19>S u d(t,x)

The first term converges to zero by (4.84)), the last term convergence is given by

v @
/QE (W - 19> SV Du d(t,x)

Lastly, for the second term we have

b _ 90) SV Du d(t,x)
/Q\QE <19N v

Since 8V : Du" converges weakly in L', we have by the Dunford-Pettis Theorem
that it is a uniformly integrable sequence, thus for all N it holds

¥ ¥

(4.108) 0
(VA '

< HSN . DUNHLl(Q) chp

€

< ¥z / Y D dt, ).
H Q\Qe

/ SY: D] dit, ) < C(e),
Q\Qe

where C'(e) — 0+ as |Q \ Q:| =& — 0+. Thus (4.107)) holds.

However, the second term on the right-hand side is problematic, since
VO

KO0) g = w0V

is uniformly bounded only in L'(Q), hence we cannot apriori extract a weakly
converging subsequence. We will thus need to find a different way to show the
strong convergence in L'(Q).

We first need to show the convergence almost everywhere of VV. To do so,
we will introduce two functions ; and 1), that are regular enough to be used
as test functions in (4.33). We will find such v, and 1, using auxiliary cut-off
functions. For any k > 0 we define

Ti - R — [k, k], Tr(z) := sign(z) min{|z|, k}. (4.109)
Let G, denote such function that

G, =T on R, Gr(0) = 0.
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Note that for all z € R it holds |Gx(2)| < k|z|. For ¢ € (0,k), let Tz € C*(R)
denote the mollification of 7, which is given by a convolution with w,. For Ty,
it holds

Tiolz) = Til2) if 2] < ke or || > k+e,
T < — ¢ on R, (4.110)
Oﬁ’ﬁmﬁl, T <0, Tie < T on (0,00).
Let us fix N, M, k € N, where k > 2||9||... For fixed ,8 € (0, k) we define
M= T e (0V) = Tro(0M).
Let us then consider a test function
= 77c,+5,a(19N)7:5(wév’M)
in for ¥V, and a test function
Vo = T (M) Ts (w)

in - ) for 9. We can consider v and 1) as test functions in since
for almost all ¢ € (0,7 we have (), 1y (t) € Wy*(Q). Especially, the functlons
have a zero trace since 19N 19 M on 9Q and Tris-(0) = 0 = Tro(V) by the

choice of k and €. Thus w¥"* = 0 on the boundary. We observe that
Vi = k+5g(19N)V19N73( &)+ Tk+55(19N)7E( S Vw M,
Viby = TL(0Y) VO T (wM) + T (M) T3 (w2 ) Vo,
where

VM =T, (05N = T (M) Vol

We hence have two equations

T
/Q kNN - Vb d(t, z) = — /0 (00N ) dt

(4.111)
+/19N'U,N-V1/11+SN - DuNyy d(t, z),
Q

T
/Q R(M)VIM - iy d(t, z) = — /0 (0™ 1)y dt

T
- / / IMuM - Vapy + SM : DuMapy d(t, x).
0 Q

We want to subtract (4.112]) from (4.111)) and pass to the limit in all the pa-
rameters ¢,0 — 0+, and k, N, M — oo. This will give us a strong convergence
VN — Vi in L1(Q). Before we proceed, we should notice some auxiliary equal-
ities

(4.112)

k(V)YVIN - Vi — k(0M)VIM - Vipy =
(RN VOV PT 5 (0Y) = k(M) VM PTL(0M)) To(w M)+
+ kM) T (M) [Vl M P 4 (k(N) = 5(0M)) VT () - VT(wM),
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where

VT (M) == T (9M) VoM

VT(w ) = T3 (w ) V.

Moreover,

(00N b1 ) = (0™ ) = (T (0NN = T (M) 00™, To(wM)) =
= <8twév’M),7f;(wN’M)> .

£

Finally, using the zero divergence of u",
/Q INuN - Vi — 9MuM Wy d(t,2) 2
- — /Q VOV u — VM uM d(t, z) =
—- /Q (775 0™)T0Y - = T (9™ )M ) Ty (M) d(t, ) =
- /Q (VTac(0Y) - u = OTL(0M) ) To(wM) d(t, ) =
- /Q div (Toces (0 — Too (0 ) To(wM) d(t, ) "
- /Q (Trs eV = Toc (0™ ) - OT5(wM) d(, ).

We can thus subtract (4.112) from (4.111)) and using the auxiliary equalities we
obtain

T
[ RO T 2T P ) = = [ (0 T ) de
Q 0

b [ [Trese @ = Tea (0] - VTo(w)dt,2)
“ (4.113)
+ /Q (R@M) = k(™)) VT (™) - VT3 (w M) d(t, )

+ / VM TN MY d(t, ),
Q

where we denoted

GNM = T 5 (0N)SY : Du™ — T (9M)SM : Du|
— [E@™) VOV PT 5 (0Y) = k(M) VM PTL(0M)]

Our first goal is to pass to the limit ¢ — 0+ in equation (4.113]) for fixed M,
N, k, and 6. We notice that

Tre — T uniformly on R, and (4.114)
Tie—=Th on R\ {—k,k} (4.115)
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as € — 0+4. Thus also
wM — wN M= T s(0N) — Te(9M) uniformly on Q. (4.116)
For the term on the left-hand side of we have
k() T3 (W) Yl MP < om (|VON [P + VoM ?) € LY(Q).
Additionally, for ¢ — 0+ it holds
k(M) TF (W) |Vl M 2=k (0T (™M) | VoM |2 a.e. in Q.
by convergences and . Thus, using the Lebesgue Dominated Con-

vergence Theorem we have
RT3 (W) [V M P =k (07) T (™) [V ™2 in L'(Q).

The same approach can be used for the second and the third term on the right-

hand side of (4.113)).

Let us now estimate the remaining terms uniformly with respect to €. For the
term containing the time derivative we have

T
- / (DM T (wM)) dt = — / 8,Gs(wN My d(t, z) <
0 Q

—/Qgs(wéV’M(T))dx+/an(wéV’M(O))divS/5295(wév’M(0))d93§C’5.

Lastly, we want to estimate the term [, G*MT5(wl"™) d(t, z). For the first part,
we have

/ T s (0N)SY s D — T, () SY : DU || To(w™)| d(t,2) <
< 5/ |8V DuN| +|$M : Du| d(t,x) < Co.
Q

To estimate the second part of G we introduce a function ¢y, := 1 =7 (9V)
for m > 2||0]|, and € < . Note that

Vipn, := =T .(9V)VIN € L*(Q),

and 7 _(0V) = 7;,/15(19) = T77(9) = 1 on 9Q. Hence, 1, (t) € Wa(Q) for almost
all t € (0,7) and we can use it as a test function in (4.33]). Such a choice leads to

T
/ (00N 1 =T, (9™)) dt — / ROV (™) VOV P d(t, ) =
0 Q

(4.117)
= / (1 - Tng,g(ﬁN)) S DuN — MU T (0 VON d(t, x).
Q

We use Lemma [2 for g(9V) = 9V — Ty, -(9V) to identify
T
/ (000N, 1 =Ty, (9N)) dt = / ) / N — T (9N da dt.
0
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Moreover, it holds
/ INuN T (V)N d(t,x) = / u - vewN)dt, ) 2 o,
Q Q

where

£(s) == /08 7'7',,/{75(7') dr.

Thus, by the non-positivity of 7, _(9"), we can rewrite as
/Q k(9N) \T,;;,a(ﬁN)\ IVON 2 d(t, ) = — /Q (9 = T (™)) (T) d
+ /Q (1 — 7‘77275(19]\’)) SV DuN d(t,z) + /Q I — T e (W) dx < (4.118)
< /QSN s DuN x(gnsmy d(t, ) +/Qﬂévxwév>g@} dx < C,

where we have used that (19N - ’vaa(ﬁN)) (T') > 0 by properties (4.110)). Hence,

for k > 2||9|., we estimate the second part of GNM as

< 03,

/Q ROV PT 5 (0N) = w0 VNPT WOM)] T (wM) d(t, )

which is uniform with respect to € by (4.118]).

All the remaining terms in (4.113]) are thus estimated uniformly in . We can
let € — 0+ to deduce
i [ T 9w P ) < 00
+ /Q (5(0™) = k(Y)) VTR(OM) - V(™M) d(t, 2) (4.119)
¥ /Q [Tres (0 — T )] - VTo(w™M) d(t, ).
We will additionally use that

/ VT (w™) P d(t, x) < / T (WM [V wN M2 d(t, x) (4.120)
Q Q

for 6 € (0,1).

We now want to let M, N — oo and lastly 6 — 0+ in (4.119)). We start with
the third term on the right-hand side of (4.119). We define ws := Ty 5(9) — Ti(9)
and using convergences (4.57)), (4.61)), and (4.63) we deduce

: : . N\, N My, M] N,M _
g&@&&%JJﬁHW)“ Te(@" ] - VT (™M) d(t, x) Lo

= 511%1+ (Ters(DNu — T (D] - T (ws) Vws d(t, x) = 0.
9 JqQ
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Note, that we can use convergence ([4.61) while working with V75(w™"*) since
we have e.g.

/ @y - T'5(0w™) (T (0N )Y = TL@ W0 d(t, )| <
Q

N M
Sk:/Q(k:Jré) u Vq;?v k:’uM vﬁi d(t, x).

To estimate the second term on the right-hand side of (4.119) note that
{JwM M| < 6y N {oM <k} = {|9~ — oM < 6} n {9M < k}.

Additionally, we will use that for all N € N it holds (9")* € L*(0,T; W'?) for
a € (0,1/2) by (#.48), and 9~ > p by ([4.39). Considering § < k, we can derive
the following estimate:

Young
<

(R@M) = k(™)) TLOM) VM - T (™M) VM d(t, )
Q
<C / () = K@) (IVOM P + [VON?) xqquan <opngoms <ay d(t, 7) <
Q

VM |2 V|2
< C/Q ‘5<19M) - /{/(ﬁN)’ (2k)2 <|(19M)L + |(19N)l > X {|wN-M|<s}n{9M <k} d(t,aj‘) <

< C(k) (tS%PQ (’“(ﬁM) - “(ﬁN)‘ X{|wN,M\<5}n{ﬂM<k}> <
,x)€E

< C(k) (tSU)po ("’v(ﬁM) - H(ﬁN)‘ X{|19N719M|<§}ﬂ{19M<k}) <
,T)E

<C(k) sup  [|&(l) = ~K(s)| =0

l,s€p,2k]:|s—1|<é

(4.122)
as 0 — 0+ by the uniform continuity of x on [u,2k]. Hence, taking the limits

N, M — 00, 6 = 0+ of the inequality (4.119)) and using (4.121)) and (4.122)), we
can conclude

4. 120

=0+ Nooco Moo

lim hmsuphmsupfi/|V7:s (w2 d(t, x

< lim hmsuphmsupm/ T3 (™M) [V M2 d(t, x) = 0.
=20+ Nosoo M—ooo
Furthermore,

k2 T

VT (™M) = | T3 (™M) (T (0™ VN = M) v | < || + e

and the right-hand side is bounded in L?(Q) uniformly with respect to M. We
can hence extract a weakly converging subsequence. Also,

To(Teas W) = To(0M)) = To(Toas W) = To(9))  in LU(Q) for all ¢ > 1.

We can thus use the Lebesgue Dominated Convergence Theorem to identify the
weak limit

VTs(w M) = V[T (Tirs (0Y) = To(0"))] = V[T5(Tras(9Y) — Ti(9))]
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in L?(Q) as M — co. It thus holds

lim lim sup/ IVTs(Tris(ON) — Te(9) > d(t, z) = 0, (4.123)
Q

by the weak lower semicontinuity of the L?-norm.
Finally, we use Holder’s inequality, Chebyschev’s inequality, and the fact that

by (4.64) it holds
/|19N| + 9] d(t,z) < C (4.124)
Q
to obtain that

/Q (VN — Vi|d(t, z) < /Q VO™ = VOIX (195 _gss30q108 191> A(t, @)

Hoélder

+ / VT (Tars(0Y) — To(0))] d(t, @)
Q

< CIVOY =90l o ([{19Y = 91 > 87 + {19 + ] > k/2}

Q)

)

% Chebyschev, (4.124))
v ([ Tt - Ty a7
Q

5ooolloN — o7,
N | 1210 +£1'
) ks

<o [Tt - T d(.o)|

=

We can therefore conclude, using convergence (4.64)), that

lim / (VN — V| d(t, x) <
Q

N—oo

<c <nm sup /Q VT (s (0Y) = Te(@))]? d(t,x>) .

N—o0 9
The left-hand side is independent of § and k, hence we may first let 6 — 04,

which by (4.123)) implies

lim / (VN — V| d(t, z) <
Q

N—o0

2 a

Lastly, we let k — oo and since the left-hand side doesn’t depend on k we obtain

lim / (VN — V| d(t,z) <O0.
Q

N—oo
This gives us the desired convergence

vl — Vo in LY(Q), (4.125)
and consequently (for a non-relabeled subsequence)

v — v almost everywhere in Q. (4.126)

48



We now wish to use (4.126)) to prove

iy [V [V9? -
k() ()2 — k(V) 72 in L°(Q). (4.127)

We start the proof by showing the strong convergence of |/k(9N)V T (9N — 1A9) in

L*(Q) for any k. To do so, we would like to test by 9 = Te(9N — 1A9), let
N — o0, and compare the limit with for ¢ := 7}(19—{9). However, such test
function isn’t admissible for , so we must proceed differently, without the
use of ([3.11). We fix an arbitrary Lebesgue point T* € (0,7 of 9(-,z) € LY(Q).
Let Q* denote the set (0,7%) x Q. We want to show

VEON VTN =) = /(@) V(0 - D) in L*(Q"), (4.128)
using the following lemma for f& := \/WVEWN —9)
Lemma 11. Let A C Q and let f¥, f: A— R. Furthermore, let
1. f¥ — fin L*(A), and
2. limsupy_o0 | /N N17204) < [1£11720a)
It then holds
N = f in L*(A).

Proof. We have

hm [ —f||L2(A = llm / 2 —2fNf 4+ f2d(t,x) <

assumptions 1,2

/f d(t,x) —2 lim f fd(t,x) —|—limsup/(fN)2d(t,x)
N—oo A
O

We know that /k(IN)VTr (9N — 0) is bounded in L2(Q*) uniformly with
respect to N so we can find a weakly converging subsequence

VEON VTN —09) = K in L2(Q").

Additionally, by (4.63]) and (4.126) it holds

VEONVT (9N —09) = \/k(0)VTe(9 —9)  almost everywhere in Q*.

We hence obtain

VEONVT(0Y = 0) = \/k(0)VTi(9 — D) in L(Q). (4.129)

It remains to show that

lim Sup/* KON VT(N =) d(t, z) < /Q* k()| VTR — 0 d(t, z).

N—oo
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To prove this, let us set 1 = TV — @) as a test function in (4.33) and
integrate until time ¢ for some t € (T*,T). Note, that 9V € C([0,T]; L?) by
and ¥ does not depend on time. Using integration by parts and the fact
divuy = 0 we have

/ T~ — NV — ) - u de = / VG (9N — 9)-uN =0,
Q Q
thus

/7;(19 — D)V Ndx—/’rk — )V -u” da. (4.130)
Q

We can then use equality (4.130) and the identity
/ NN VTN = D) da "2 — / div(@Mu)Tp (9N — 9) do =
Q Q
—/ VOV uN T (9N — D) da
Q

together with Lemma 2] for g(9V,9) = Ge (9N — ) to derive

/Ot/ﬂﬁwN)vw ) - VTN — B da dr —

t
—/ /n(ﬁN—@) (8 DuN = Vi -uM) - k(@V)VD - VT = 9) dxdr

/gk (9N (¢) — Gr(OY = 0) du.
(4.131)
Let us now estimate lim supy_,, [, #(0")VOV-V T (0N — ) d(t, x) using equality

m We have
/ k(ON)VIN VTR (N — D) d(t,z) = / k()Y - VT (9N — D) d(t, x)

+ / KONV ON =) - VTN — ) d(t, x).
(4.132)
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The second term of (4.132)) is nonnegative by the nonnegativity of 7,/. For
0 € (0,7 —T™) we can hence estimate

lim sup / KWV ON — D) - VT (0N — D) d(t, ) <

N—o0
T+ pt
<l1msup][ //m(ﬁN)V(ﬁ ) - VTN — ) de dr dt =2
N—o00 (o)
T*+46 t R R
zlimsup][ //Tk(ﬁN—ﬁ) SN:DuN—W-uN) dz dr dt
N—o0
T*+6
—hmmf][ // (WONYVD - VTN — D) de dr dt
T*+0
—liminf][ / G (9N (1) — Ge (WY — ) da dt =
N—o0

T*+6
][ //ﬁ(ﬁ—@)(s:Du—v@-u)—ﬁ(ﬁ)v@.vmﬁ—@)dxdmt

T +46

where the last equality holds by convergences (4.63)), (4.84), (4.57)), (4.61), and
(4.5)). Since the left-hand side doesn’t depend on §, by letting § — 0+ we have

lim sup / KWV O = D) - VTN — D) d(t, ) <

/7;”9 9) (8 : Du—VD-u) - k()VD- V(0 — D) d(t,a)  (4.133)
/gk I(T*) {9 gk(ﬂo—{?)dﬁ

We used that T is a Lebesgue point of 9 to obtain [, Gi(9(1T™) — D) dz. For the
first term of (4.132)) we have

/ KONV - VTN = 0)d(t,z) = [ k(W)VI-VTe(¥—0)d(t,x) (4.134)
Q* Q*

by (4.61]) and (4.63)). Taking the limit superior of (4.132)) and using (4.133)) and
(4.134) we have

limsup/ k(ON)VIN VT (0N — ) d(t,z) <

N—o0
7;(19 D) (s Du— V9 -u) d(t,x) (4.135)
/ Gr(9(T™) — Gr(¥g — ) dz.
We now want to estimate the expression on the right-hand side of (4.135)) by
fQ* k(D)VY - VT (¥ — ) d(t, z). As mentioned before, setting ¢ := T (¢ — ¢) in

(3-11)) is not possible since Tg (¥ — 1A9) is not regular enough. We hence need to
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find a suitable function to test (4.33)) again. Let us consider m,k > 0 such that
m > k+1+ |9, and § € (0,1). Take any ¢ € Wy*(Q)NL>(Q), t € (0,T*) and
€ (0,7 —T*). Let us now set ¢ := X7 (") as a test function in ([4.33) and

integrate over the interval (¢,¢+¢). Using Lemmafor 9N, ) == T s (W), we
obtain

/at][ s(0M) dTgodx—i—/][ Tons () dr - Vo do

+ / ][ VTs(ON) - u drode = / ][ T s(0)SN - Du dropda
QJt

/][ 19N)|V19N|2d7'g0da7

where we have again used the zero divergence of u¥ for

(4.136)

/ NNV (T sV )p) da = / T s(WN)VIN g - u da.
Q Q

We now note that any function @ € L2(0, T*; W, *)NL>®(Q*) can be approximated
by a sequence of step functions ¢,, := > | X, ¥n, Where J,, is a measurable subset
of (0,7%) and ¢, € Wy*(Q) N L*®(Q). More precisely, it holds

Pn— @ in L*(0, T Wy?) N L=(Q").

Using this while integrating (4.136)) until 7™ yields into

/ at][ sONYdrpd(t,x) / ][ Tons(ON) dr - V@ d(t, z)

+/ V'Tm,g(ﬁN) cuN — 7;,’175(19N)SN DU drpd(t,x) =
Q* Jt

/ ][ KON T s (N[ VON [ dr@ d(t, ),V € L*(0, T Wy®) N L=(Q).
Q* Ji

Passing to the limit inferior NV — oo and using convergences (4.63)), (4.61)), (4.57)),
and (4.84)), we have for all ¢ € L2(0,T*; W,*) N L=(Q*):

/6t19m5gpdt:v /][ NV Tms(V)dr - Vo d(t, z)

/ VTma( )-u 7:175(19)8 Dudrpd(t,z) >
Q* Jt

(4.137)
Zliminf/ ][ k()T s (M) VOV |2 dr || d(t, z) =
Q* Ji

N—oo

= —limsup/ ][ k()| Ton s(ON)||VOV 2 dr| @] d(t, z),

N—o0

where 9™9(t, z) 1= tt+€ Tons(O(7,2)) dr. Since 97 (t,z) € WhH=(0,T; L) for
any € > 0 the integral with the time derivative is well defined. Let us estimate
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the last term of (4.137) from bellow. By taking the limit superior of (4.118) we
derive the inequality

[E1Ts)
lim sup/ K (ON) ‘7-,,’1’78(191\7)‘ VOV |2d(t,z) <
N—o00 Q

(4.138)
g/S:Dux{19>r§}d(t,x)+/190X{790>gl} dz,
Q Q

where we used convergences (4.5)), (4.63)), (4.84), Egorov’s Theorem and Dunford-
Pettis Theorem. Additionally, using Fubini’s Theorem we have

limsup/ ][ w0 19N)||V19N]2 dr|pld(t,x) <
Q* Ji

N—o0

< ||90HL°° hmsup/@ /
*Jt

T +e min{7,T*} 1
— 2l ey imsup / / ()T (M) [ V9N ? / Lt dedr <

max{0,7—e} €

e
<@l oo (- hmsup/ / W) T s(O||VOV P da dr <

<@l oo (- (/S Duyo>my d(t, z) /%X{%W}d%)a

hence

—limsup/ ][ k(9| T, 19N)|]V19N\2d7\<,0|d(t x) >

N—oo

SO [VON 2 dr d(t, ) TR

m,

(4.139)
> —[|®ll e (gr) </QS : Duxo>myd(t, ) + /9190)({190>’§}dx> :

Let us now set @ := Tp(9™ — {9) in (4.137). We are allowed to do that, since
Tr(0™% — ) € L2(0,T*; Wy*) N L®°(Q*). By (#.139) we obtain

t+e
/ ][ ()T Ton s (9) - VT — D) drd(t,z) >
Q*Jt

- [ G @) = 9) - G 0) - D) o
y t+e (4.140)
+/ (7[ 7;:175(19)8 : Du— VT,,5(0) -UdT) 7}(192”’5 — 1A9) d(t, z)

—k (/ S: D’U,X{lg>%} d(t,l’) + / 190X{190>%} dCL’) ,
Q Q

where we have used that
OV T = D) d(t, ) = | 0, [Gu(0I = D)] d(t, ).
Q* Q*
We can now let ¢ — 0+ in (4.140). We exploit that since 7% is a Lebesgue point
it holds

T*+e
19187176(71*) = ][ Tm,&(ﬁ(T» dr — Tmﬁ(ﬂ(T*))a a.e. in Q,

*
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and that 8
97(0) = ][ T s(O(7)) dT — T 5(Y0), a.e. in Q
0

by ({:86). Limit passage yields to
/Q* K(0)V s (9) - V(T s (9) — 9) d(t, ) >
— [ 6uTasOT)) = 9) = G Tos00) = D)
* / (T's(0)8 : D= VTo5(9) - w) Ta( Tows(9) — 9) d(t, )

—k (/ S: D’U,X{qbg} d(t,x) + / 190X{190>%} d:L’) .
Q Q

We note that

(4.141)

TilTns(9) = 0) = Tu(® = )
for m > k4 1+ ||0]|... Hence, letting m — oo in ([£.141)) we get

/ K(9)VI - VTi(9 — @)d(t,x)z/ (8 :Du— V0 -u) T —0)d(t,z)

/gk HT*) — ) — Ge(9o — V) da,

(4.142)
since T, 5 — 1 almost everywhere. Using that
/Qn(ﬁ — 0V -udr = /an — 0V - udz
by the same argument as in (4.130]), we can rewrite as
/* KOV - VTi(9 — 0)d(t,z) >
7;(0 0) (8 : Du— V9 -u) d(t,z) (4.143)

A

/ G (0(T*) — 9) — Gr(Vy — V) du.
Inequality (4.143]) gives us the estimate needed in (4.135)) and we can conclude

limsup/ k(OVYVIN VTN —0)d(t, z) <
N—oo *

(4.144)
g/ K(O)VY - VTR0 — 0) d(t, ).

o4



By (4.144)), (4.63)), (4.61)) and the positivity of x we have

lim sup / W)V — )2 d(t, ) =

N—o0

— limsup / KONV O = D) - VTN — D) d(t, ) <
N—o0 *

(4.145)
< / KOV (0 — D) - V(0 — D) d(t, z) =

— [ R @IVT0 — D) dit. ).
Hence, by Lemma |11| we have the desired convergence (4.128]) since the assump-

tions hold by (4.129) and (4.145]).

Finally, we want to show that

N
™) W )Vf in L2(Q") (4.146)
using Lemmafor = \/n(ﬁN)vﬂLNN. Since \/ﬁ(ﬁN)VﬁLNN is uniformly bounded

in L2(Q*), we can extract a weakly converging subsequence. By (4.63)), (4.126)
it holds that

VEON) —— WN )Vf in L*(Q"). (4.147)

To show that the second assumption of Lemma |11] holds, we rewrite

/*m(ﬁN)|V0 | d(t,:c):/*/i(ﬁN)w V—ﬁd(t,x)

(ﬁN)Q ﬁN ﬁN
voN V(N -9
+/*m(19N) gy ( GV >d(t,x) =
VoV V(N —9) (4.148)
_ / () o YD sy i)

N N 3 N
+/ /f(ﬁN)Vﬁ /G 19)+/1(19N)vz9 v—ﬁal

9N 9N g gn A7)

and let N — oo on the right-hand side. Firstly, by convergences (4.128)), (4.147),
(4.63)), and the minimum principle 9 > p, we have

VIV VTN - 9) Vi VTi(9 — )
/Q w0) i G ) = [ ) G

d(t, x).
(4.149)

Similarly, by convergences ([4.147)), (4.63)), the minimum principle ¥~ > p, and
the fact VI € L*(Q*), it holds

v V) Vi VD

w0 Gt = [ w) e )
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Lastly, for k > |||, the inequality [0 — 9| > k implies 9 > k, since 9V, 9 > 0.
Consequently, we can use Young’s inequality to estimate

voN VN -9
/*K(ﬁN) 9N (ﬁzv >X{\19N—f9\>k} d(t,z)| <

VOV 4 VP
= 2“/* (N2 NIk d(t, ) <

[ |[VON)R + |V C\)
< 2’%/* (ﬁN)l-&-)\kl—)\ d(t,x) < El-X7

where A € (0,1). Note, that C' is independent of N and k by the uniformity of
estimates ((4.48) and the minimum principle ¥~ > p. Furthermore, it holds

[ s b = [ eI T )

+ /Q n(ﬁ)? : Vﬁ(g —9) d(t,x) + /Q m(ﬁ)lﬁ : Viﬁd(t’gc)7

and also

VY V(0 —9)

by (4.61)). We can thus take the limit in (4.148)) and using (4.149)—(4.150) we

conclude
) |V7§’N|2 \V19|2 C(N)
h]rgljolip/* (V) ChE d(t,x) < /*K(ﬁ) 7 d(t,z) + R (4.151)

Since the left-hand side of (4.151)) doesn’t depend on k, we can take the limit
k — oo on both sides to obtain

: ny VO [Vo)?
hmsup/*/@(ﬁl ) )2 d(t,z) < /*5(19) 7 d(t,x). (4.152)

N—o0

Lemma (11| together with (4.152) and (4.147)) imply strong convergence (|4.146]).

We can a priori construct the solution on the extended time interval (0,27").
Thus, T* can be chosen bigger than T and so we obtain (4.146)) in L?*(Q).

By (4.146) and (4.147) we have

VoV|2 Vi|? .
/—f(ﬁN)‘(ﬁN)i —>/<J(19)’ 192’ in LY(Q),
because
VO |2

H(19N)

d(t,x) <

J

(9N)2 — (V) 92

/(WW mwfm
HFWN VR d(t,z) = 0.

Since we have shown all the necessary convergences, we can now pass to the
limit N — oo in (4.104). Consequently, n € L*(0,T;W'?) N LY(Q),q € [1,00)
satisfies the Entropy equation (3.12). All the parts of the theorem are proven.

+2
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Conclusion

In the thesis, we provided a qualitative analysis of the system —. More
precisely, we determined the sufficient bound on the power-law index p of Cauchy-
stress tensor 8, which ensures the existence of a solution in two dimensions. The
bound p > 2 differs from the three-dimensional case studied in [12] where p >
11/5. This difference stems from the need to use the Sobolev Embedding Theorem
to estimate the convective term while obtaining the apriori estimates on the time
derivative of the velocity. Additionally, we have shown that the constructed weak
solution to Navier-Stokes-Fourier system — is regular enough to satisfy the
entropy equality (4)).

This qualitative analysis can serve as a cornerstone of nonlinear stability re-
search. In fact, following the methods from [14], we should be able to show the
existence of a steady weak solution to f for f = 0 that is non-linearly stable
and attracts all suitable weak solutions.
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