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Abstract

Terpenes and terpenoids represent the largest and most structurally diverse group of

natural products, with applications across many fields, including the pharmaceutical

industry. These molecules are synthesized in nature by enzymes known as terpene

synthases. This thesis conducted a bioinformatic analysis of a curated database

containing all 1125 experimentally characterized terpene synthases, focusing on

identifying patterns in sequence lengths and domain architectures of these enzymes

across different kingdoms of life.

Based on this analysis's knowledge, sequence-guided mining was conducted to identify

possible new terpene synthases. Using nearly 5.5 billion protein sequences from various

large-scale sequence repositories, the mining resulted in the identification of more

than 600 thousand putative terpene synthases. These putative terpene synthases mainly

originate from Bacteria and metagenomes, sources that had historically been less

explored.

The resulting dataset, accompanied by a phylogenetic tree, sequence similarity network,

and two prioritization scores, offers a valuable resource for the discovery of novel

terpenes.
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Abstrakt

Terpeny a terpenoidy představují největší a strukturně nejrozmanitější skupinu

přírodních látek s využitím v mnoha oborech, včetně farmaceutického průmyslu. Tyto

molekuly jsou v přírodě syntetizovány enzymy známými jako terpen syntázy. V této

práci byla provedena bioinformatická analýza kurátorované databáze obsahující všech

1125 experimentálně charakterizovaných terpen syntáz se zaměřením na identifikaci

vzorců v délkách sekvencí a doménových architekturách těchto enzymů napříč různými

říšemi života.

Na základě poznatků této analýzy byl proveden sekvenčně založený mining s cílem

identifikovat možné nové terpen syntázy. S využitím téměř 5,5 miliard proteinových

sekvencí z různých rozsáhlých sekvenčních databází vedl mining k identifikaci více než

600 tisíc potenciálních terpen syntáz. Tyto potenciální terpen syntázy pocházejí

převážně z bakterií a metagenomů, tedy ze zdrojů, které byly historicky méně

zkoumány.

Výsledný dataset, doplněný fylogenetickým stromem, sítí sekvenční podobnosti a dvěma

skóre prioritizace, nabízí cenný zdroj pro objevování nových terpenů.

Klíčová slova: terpen syntáza, TPS, mining, Pfam, SUPERFAMILY, doména, terpen
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Abbreviations

TPS terpene synthase

IPP isopentenyl diphosphate

DMAPP dimethylallyl diphosphate

GPP geranyl diphosphate

FPP farnesyl diphosphate

GFPP geranylfarnesyl diphosphate

IDS isoprenyl diphosphate synthase

MTPSL microbial TPS-like

PTTS prenyltransferase-terpene synthase

PT prenyltransferase

HMM Hidden Markov Model

BLAST Basic Local Alignment Search Tool

PSI-BLAST Position-Specific Iterated BLAST

MSA multiple sequence alignment

SSN sequence similarity network

ML maximum likelihood

PLM protein language model

MDP maximum diversity problem

TSA Transcriptome shotgun assembly

t-SNE t-distributed stochastic neighbor embedding

UMAP Uniform Manifold Approximation and Projection

PCA principal component analysis
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Introduction

Terpenes and terpenoids represent the largest and most structurally diverse group of

natural products (> 80,000 structures known) (Christianson 2017)1. These compounds,

the biosynthesis of which starts from isoprene units, are present across various

domains of life, spanning organisms from plants and fungi to bacteria, marine

organisms, and even insects (Tholl et al. 2023). The initial scaffolding step in terpene

biosynthesis is carried out by terpene synthases (TPSs), enzymes that catalyze some of

the most complex chemical reactions in biology. Remarkably, during the course of a

multistep cyclization cascade catalyzed by these enzymes, more than half of the

substrate carbon atoms, on average, undergo changes in bonding, hybridization, and

stereochemistry (Christianson 2017). Terpene synthases significantly contribute to the

high structural diversity of terpenoids by producing a wide array of terpene scaffolds.

The pool of terpenoids is then further expanded by activities of other enzymes (such as

cytochromes P450s), which modify the initial scaffolds (Zhang et al. 2020; Leferink and

Scrutton 2022; Rudolf and Chang 2020).

The importance of terpenoids spans a wide spectrum of fields, including the

pharmaceutical industry, food industry, and biofuels (Schwab, Fuchs, and Huang 2013).

In the pharmaceutical industry, terpenoids serve as important drugs. For example,

artemisinin is a first-line treatment for malaria first discovered by Youyou Tu, who was

awarded the Nobel Prize in 2015. Similarly, taxol stands as an important

chemotherapeutic drug in the fight against cancer. Additionally, pleuromutilin, first

identified in 1951, serves as an antibiotic for livestock and holds promise for human use

(Liu, Chen, and Zhang 2023).

The chemical synthesis of terpenoids can be highly complex, and natural extraction

often yields low quantities. This underscores the importance of terpene synthases. By

genetically engineering host organisms to express these enzymes, it becomes possible

to achieve more efficient production (Zerbe and Bohlmann 2015). For instance,

1 This thesis utilized AI tools, grammarly.com, and OpenAI's ChatGPT for grammar correction and
to enhance readability. Their usage did not influence the original research findings or
conclusions presented herein.
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extracting artemisinin from Artemisia annua typically yields 0.1-1% of the plant's dry

weight, and chemical synthesis methods suffer from low overall yields and high costs.

Contrastingly, utilizing engineered microorganisms such as Saccharomyces cerevisiae

can boost the overall yields, offering a scalable and cost-effective alternative for

commercial production of terpenoids (Zhao et al. 2022; Liu, Chen, and Zhang 2023).

Sequence-guided mining has emerged as a powerful bioinformatics tool to identify

terpene synthases across diverse organisms (see Chapter 3). This approach holds

promise for discovering novel enzymes and, consequently, novel terpenes with potential

applications across various industries, including the pharmaceutical industry.

The goals of this thesis

Through comprehensive analysis of a library of characterized terpene synthases, the

goal is to understand the similarities and differences in terpene synthases across

different domains/kingdoms of life, as well as different types of TPSs according to their

products. Special attention is focused on examining the presence and combinations of

conserved domains found in the Pfam (Mistry et al. 2021; Sonnhammer, Eddy, and

Durbin 1997) and SUPERFAMILY (Gough et al. 2001) databases.

Using this understanding of terpene synthases, this thesis explores the application of

sequence-guided mining techniques in unraveling the landscape of terpene synthases.

To the best of my knowledge, this effort represents the largest ever reported TPSs

mining using nearly 5.5 billion protein sequences from various sources, resulting in the

identification of more than 600 thousand TPS candidates spanning all kingdoms of life.

Furthermore, the thesis also provides a Sequence Similarity Network (SSN), and a

large-scale phylogenetic tree for exploration of the TPS candidates, and two scoring

mechanisms aimed at prioritizing the candidates for experimental characterization.

The findings of this research enable rapid discovery of novel terpene synthases, which

in turn could produce novel terpene compounds with diverse potential applications.
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1 Terpene synthases

The basic building blocks of terpenes are activated isoprene units (C5) isopentenyl

diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). Through the

action of isoprenyl diphosphate synthases (IDSs), also referred to as prenyltransferases

(PTs), DMAPP and variable numbers of IPP are fused to form isoprenyl diphosphates

such as geranyl diphosphate (GPP, C10), farnesyl diphosphate (FPP, C15), geranylgeranyl

diphosphate (GGPP, C20), and geranylfarnesyl diphosphate (GFPP, C25), which serve as

substrates for terpene synthases (Gao, Honzatko, and Peters 2012; Christianson 2017).

Based on the number of isoprene units they contain, terpenes are classified into several

types: monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesterterpenes (C25),

triterpenes (C30), sesquarterpenes (C35) and tetraterpenes (C40)2. Accordingly, TPSs

are classified as monoterpene synthases (monoTPSs), sesquiterpene synthases

(sesquiTPSs), diterpene synthases (diTPSs), etc. Many terpene synthases are

promiscuous and can produce multiple types of terpenes (Gao, Honzatko, and Peters

2012; Christianson 2017). This classification of TPSs is later referred to as TPS types.

Chapter 1.1 reviews the modular protein architecture of TPSs. In Chapter 1.2, the

classification of TPSs into two classes, Class I and Class II, is described. These two

classes differ by the substrate activation mechanism and also by their structural domain

architectures. Finally, Chapter 1.3 compares TPSs from various kingdoms of life,

including plants, fungi, bacteria, and some animals, along with a recently discovered

TPS from a giant virus (Jung et al. 2023; Tholl et al. 2023).

1.1 Modular architecture

TPSs exhibit a modular architecture of various combinations of three alpha-helical

structural domains, α, β, and γ. Ancestral TPS likely consisted of all three domains, with

both α domain and βγ domain assembly being catalytically active. Very low sequence and

2 Longer isoprene polymers (such as natural rubber) exist; however they will not be discussed in
this thesis.
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structural similarity between α and β domains suggests that α and β evolved

independently (Christianson 2017).

The α domain represents the typical Class I terpene synthase fold. This domain forms a

bundle comprising 10-12 α-helices, also often referred to as the "isoprenoid" fold (see

Figure 1). This is likely due to the same ionization mechanism in Class I TPSs and

prenyltransferases (see Chapter 1.2) (Rudolf and Chang 2020; Gao, Honzatko, and Peters

2012). Active α domains contain two highly conserved Mg2+-binding motifs

(metal-binding residues are in bold): DDXXD3 and NSE/DTE, typically characterized as

[ND]DXX[ST]XXXE, although alternative definitions exist (Christianson 2017).

The βγ domain assembly represents the Class II terpene synthase fold, characterized by

two α-barrels with an overall dumbbell shape (see Figure 1). The γ domain, positioned

between the first and second helices of the β domain, likely originated from a gene

duplication event. In some TPSs, such as squalene-hopene cyclases and oxidosqualene

cyclases, the γ domain functions as a membrane anchoring component (Christianson

2017). In catalytically active βγ domains, the active site resides at the interface of β and γ

and consists of a characteristic Asp-rich DXDD motif unrelated to the DDXXD motif

found in the α domain. Unlike Class I motifs, the DXDD motif does not bind Mg2+ (Rudolf

and Chang 2020).

The modular architecture of TPSs manifests in various combinations, including α, αβ, βγ,

αβγ, and αα assemblies with different combinations observed in both Class I and Class II

TPSs (Christianson 2017).

3 This motif is also commonly denoted as DDXX[D/E].
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Figure 1. In the center, a schematic representation illustrates the Class I and Class II domain

architectures and evolution of TPSs. On the left side, examples of structures of Class I TPSs are

provided, with colored domains corresponding to the schematic representations in the center.

Similarly, the right side shows examples of Class II TPSs. Adapted from (Moosmann et al. 2020).

1.2 Class I and Class II TPS

With regard to the initiation of catalysis, TPSs can be divided into two classes, which

also have different folds, as previously mentioned.

Class I TPSs initiate the reaction by ionization of prenyl-PP substrate. A trinuclear Mg2+

cluster, coordinated by the highly conserved DDXXD and NSE/DTE metal-binding

motifs situated within the α-domain, binds the prenyl-PP substrate, which provides an

electrophilic driving force for the ionization. The same mechanism is used by

prenyltransferases. The observed domain architectures include α, αβ, αβγ, or αα, where

different architectures are typical for different TPS types and TPSs from different

kingdoms. For example, plant TPSs typically have the αβ architecture (where the β

6
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domain is not active), whereas bacterial TPSs typically have only the α domain. Class I

TPSs are usually mono-, sesqui-, di-, and sesterTPSs (Christianson 2017).

Class II TPSs employ a distinct catalytic mechanism wherein a conserved aspartic acid

in the DXDD motif protonates the terminal carbon−carbon double bond of the

prenyl-PP substrate, generating a tertiary carbocation. The active site of a Class II TPSs

is located at the interface of β and γ. The observed domain architectures are βγ or αβγ,

but recently, β architecture was also observed in cyanobacteria (Moosmann et al. 2020).

Plant Class II diTPSs often adopt the αβγ architecture, with the α domain lacking

catalytic activity and metal-binding motifs, whereas for bacterial Class II diTPSs, the βγ

domain architecture is typical. TriTPSs typically have the βγ fold. Class II TPSs are

usually di-, tri-, sester-, and sesquarTPSs (Christianson 2017).

Figure 2. Substrate activation mechanisms in Class I (a) and Class II (b) TPSs. (a) Class I

ionization-dependent activation reaction, (b) Class II protonation-dependent activation reaction.

Adapted from (Huang et al. 2021).

There are also, although less common, bifunctional TPSs, either Class I-Class I with αα

architecture or Class I-Class II with αβγ architecture, same as the ancestral TPS. Plant

copalyl diphosphate synthase-kaurene synthase is an example of a Class I-Class II TPS,

which probably represents the evolutionary ancestor of all plant TPSs (Christianson

2017).
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1.3 TPSs across kingdoms of life

While terpenes from plants are the most extensively studied, terpenes and terpene

synthases are found across various kingdoms of life. To date, TPSs have been identified

in plants, fungi, bacteria, red algae, amoebae, sponges, corals, and insects. Most

recently, TPSs were also surprisingly identified in giant viruses (Jung et al. 2023).

Figure 3. Phylogenetic tree of TPSs from different kingdoms. Adapted from (Jung et al. 2023).

Generally, TPSs can be categorized into plant TPSs, microbial TPSs from Bacteria and
Fungi (or microbial-like TPS from other kingdoms), and IDS-like TPSs, with different
structural domain architectures observed across various kingdoms (see Figure 4).
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Figure 4. Structural domain architectures and conserved motifs in plants, fungi, and bacteria.

Adapted from (Jia et al. 2018).

Plants

In plants, terpenes play essential roles in the production of the phytohormones

gibberellins, but the majority of terpenes serve as secondary metabolites with diverse

functions. These functions range from defense against herbivores or microbes and

attraction of insect pollinators to coping with environmental stress. The remarkable

diversity of terpene synthases in plants reflects their complex ecological adaptations

(Jia et al. 2018; Boutanaev et al. 2015; S.-Y. Jiang et al. 2019).

Plant genomes exhibit highly variable counts of TPS family genes, usually ranging from

20 to more than 100, with particularly large families observed in dicots. The primary

mechanisms driving this expansion are tandem and segmental genome duplications

(S.-Y. Jiang et al. 2019; F. Chen et al. 2011).

TPSs in different plant species were primarily identified through sequence similarity

and similar gene organization across related taxa (Leferink and Scrutton 2022). The

ancestral plant TPS was likely a copalyl diphosphate synthase-kaurene synthase, which

is a bifunctional Class I-Class II diTPS. Both Class I and Class II TPSs are common in

plants, with typical domain architectures of αβγ or αβ.

Typical plant terpene synthases can be categorized as mono-, sesqui-, di-, or triTPSs.

Their lengths typically range from 550 to 800 amino acids, depending on the domain
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architecture and subcellular localization. SesquiTPSs are localized in the cytosol,

whereas monoTPSs and diTPSs are usually localized in plastids and, therefore, contain

additional transit peptides at the N-terminal (Jia et al. 2018; F. Chen et al. 2011).

Beyond seed plants, a distinct group of terpene synthases, known as microbial TPS-like

(MTPSLs)/microbial-type TPSs, was identified in non-seed plants, including liverworts,

mosses, hornworts, lycophytes, and monilophytes. Phylogenetically and structurally

related to bacterial and fungal terpene synthases, MTPSLs likely originated through

horizontal gene transfer. These enzymes, mostly monoTPSs or sesquiTPSs, typically

contain the α domain architectures and are typically shorter, around 350 amino acids.

Non-seed plants also contain typical plant TPSs (Jia et al. 2016, 2018).

Red algae

In red algae, terpene biosynthesis is exclusively mediated by microbial-type TPSs,

which, according to phylogenetic analysis, cluster with bacterial TPSs and do not group

with microbial-type TPSs from non-seed plants. Microbial-type TPSs in red algae likely

originated from an independent horizontal gene transfer event (Wei et al. 2019).

Fungi

In fungi, terpenes play key roles in defense against predators (mycotoxins and

phytotoxins), as well as in establishing symbiotic relationships. SesquiTPSs are the most

common type of TPSs in fungi, followed by triTPSs and diTPSs (Hage et al. 2023;

González-Hernández et al. 2023). These fungal TPSs typically have the α domain

architectures or occasionally the αβγ domain architectures and exhibit low sequence

similarity to plant TPSs (Jia et al. 2018).

There are Class I TPSs and also Class I-Class II bifunctional TPSs in fungi (Gao,

Honzatko, and Peters 2012; Schmidt-Dannert 2015). In addition to typical TPSs, fungi

from Dikarya contain a unique class of TPSs called prenyltransferase-terpene synthases

(PTTSs) or chimeric TPSs. These enzymes contain a prenyltransferase (PT) domain at

the C-terminal and a Class I TPS (TS) domain at the N-terminal. They can directly use

IPP and DMAPP to produce di- and sesterterpenes (R. Chen et al. 2021; Jia et al. 2018).
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Fungal biosynthetic pathways, including terpenoid biosynthetic pathways, often exhibit

gene clustering, simplifying the identification of entire biosynthetic pathways (Quin,

Flynn, and Schmidt-Dannert 2014).

Bacteria

Most characterized bacterial TPSs produce one major product, and most characterized

bacterial TPSs produce sesquiterpenes (Reddy et al. 2020; Helfrich et al. 2019). Bacterial

TPSs exhibit low sequence similarities not only to plant and fungal TPSs but also among

themselves. Both Class I and Class II TPSs are known to exist in bacteria (Z. Li et al.

2023). They typically have the α domain architecture, but sometimes also the αα or βγ in

diterpene synthases. Recently, a cyanobacterial Class II TPS with only a β domain was

reported (Moosmann et al. 2020).

Insects

In insect biology, terpenes typically serve as pheromones for communication, such as

mate finding and avoiding predators by signaling danger. (Tholl et al. 2023) Initially, it

was believed that terpenes in insects originated from bacterial symbionts, but later,

insect TPSs were identified.

Insect TPSs have probably recently evolved from IDSs by their neofunctionalization, and

they are often denoted as IDS-like TPSs. These IDS-like TPSs represent a distinct

non-canonical group of TPSs (Rebholz et al. 2023).

Other animals

Many animals use terpenes for interactions as they are constituents of pheromones

(Tholl et al. 2023). Octocorals (soft corals) are significant contributors to terpenoid

diversity in oceans. They mainly produce diterpenes, probably as chemical defenses

against predators. Octocoral TPSs form their own clade but are most similar to

microbial TPSs. The so far discovered TPSs are typically 400 amino acids long and

belong to Class I TPSs (Scesa, Lin, and Schmidt 2022; Burkhardt et al. 2022). Recent

discoveries have revealed Class I TPSs also in marine sponges, where it was traditionally

thought that terpenes originated from their microbial symbionts. These sponge TPSs
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mainly produce sesquiterpenes and contain the DDXXD motif and slightly altered

NSE/DTE motif characteristic for Class I TPSs (Wilson et al. 2023). Furthermore, TPSs

have been identified in various arthropods, including trombidid mites, millipedes, and

arachnids. They likely acquired their TPS genes from microbial sources through

horizontal gene transfer (Tholl et al. 2023). TPSs were also identified in social amoebae.

These enzymes primarily exhibit sesquiterpene synthase activity and are most closely

related to fungal TPSs (X. Chen et al. 2016). Humans and other animals possess

lanosterol synthase, a type of oxidosqualene cyclase (triTPS) involved in forming sterols,

including intermediates leading to cholesterol (Christianson 2017). Other TPSs have not

been identified in animals, and their primary source of terpenoids is diet or symbionts

(Tholl et al. 2023).

Giant viruses

Recently, the first TPSs were discovered in giant viruses (giruses), large viruses with

extensive genomes. The discovery of TPSs in the giral genomes was surprising, and it

remains unclear why these viruses possess TPSs. The giral TPSs form a separate clade

but contain the characteristic Class I TPS motifs, DDXXD and NSE/DTE. One giral TPS

was experimentally characterized and found to function as both sesquiTPS and

monoTPS. It has the α domain architecture and consists of only 278 amino acids.

Notably, the genomes of examined giant viruses do not contain prenyltransferases,

indicating that the substrates for terpene synthesis would need to be obtained from the

host organism (Jung et al. 2023)).
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2 Sequence-guided mining

Sequence-guided mining techniques, such as genome mining, aim to extract specific

sequences of interest from a target genome, often belonging to particular protein

families or superfamilies. In this thesis, my focus lies on the protein superfamily of TPSs.

However, rather than targeting a single genome, the approach here involves sequences

from various genomic, metagenomic, transcriptomic, and protein databases, a method

commonly referred to as global genome mining (Malit, Leung, and Qian 2022).

There are three primary approaches to sequence-guided mining: utilizing sequence

alignment algorithms such as BLAST or PSI-BLAST; employing custom profile Hidden

Markov Models (HMMs); and leveraging profile HMMs from protein family databases.

The first approach utilizes BLAST (Basic Local Alignment Search Tool), a sequence

alignment tool designed to compare query sequences against a sequence database to

identify similar sequences (Altschul et al. 1990). This approach proves helpful when the

objective is to find homologous protein sequences in closely related species. However,

using BLAST is less suited for tasks such as identifying distant homologs with potentially

novel functions (Park et al. 1998; Madera and Gough 2002), as in the case of searching

for terpene synthases producing novel compounds. There is also an alternative version

of BLAST, PSI-BLAST (Position-Specific Iterated BLAST), which aims to find more distant

relatives by utilizing a position-specific scoring matrix or profile updated in every

iteration of the search (Altschul et al. 1997).

The second approach involves creating and utilizing profile Hidden Markov Models

(profile HMMs). Profile HMMs are probabilistic models that can capture conservation

patterns within protein families. They are better at handling insertions and deletions,

thus enabling the identification of more distant homologs (Krogh et al. 1994; S. R. Eddy

1998). They have proven to be even more sensitive than PSI-BLAST (Madera and Gough

2002). Profile HMMs can be generated and utilized using bioinformatic tools such as

HMMER3 (Sean R. Eddy 2023). The profile HMM building process begins with collecting

a seed of sequences, followed by multiple sequence alignment (MSA). From the MSA, a
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profile HMM is built and then compared with sequences in the databases (Krogh et al.

1994; Sean R. Eddy 2023).

The third approach also utilizes profile HMMs. However, in this case, rather than

creating HMMs from scratch using a seed of sequences, protein family databases are

leveraged. There are several protein family databases, many collected within the

InterPro database (Paysan-Lafosse et al. 2023; Apweiler et al. 2001). The most commonly

used database is the Pfam database; another notable database is the SUPERFAMILY

database.

Pfam (Mistry et al. 2021; Sonnhammer, Eddy, and Durbin 1997) provides a database of

expert-curated protein family alignments and profile HMMs. Pfam is a member of

InterPro. Pfam tries to cover as many protein sequences as possible using the fewest

possible number of models. The goal is that no models overlap. However, this is not

possible in some cases, and it led to the introduction of clans, collections of families

with the same evolutionary origin. In the clans, models can overlap (Finn et al. 2006).

Each Pfam family is defined by a representative set of sequences (seed), which are

aligned to create a profile HMM. An iterative process is then employed to scan a

database of sequences pfamseq (based on UniProtKB reference proteomes), updating

the model with additional sequences aligned to the profile HMM. Finally, each family is

annotated with information from literature when available.

SUPERFAMILY 1.75 is another database of expert-curated profile HMMs (Gough et al.

2001). This database is based on SCOP (Structural Classification of Proteins) database

1.75, which classifies protein domains with known 3D structures into a hierarchical

system. The first four levels of SCOP classify into classes, folds, superfamilies, and

families (Murzin et al. 1995). SUPERFAMILY focuses on the superfamily level, grouping

protein domains with structural, functional, and sequence evidence of a common

evolutionary ancestor. Each superfamily consists of one or multiple profile HMMs

representing the superfamily. SUPERFAMILY 1.75 is a member of InterPro (de Lima

Morais et al. 2011). A newer version, SUPERFAMILY 2.0 (Pandurangan et al. 2019), based

on a newer version of SCOP, has been developed; however, it is not included in the
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commonly used InterProScan suite, and its HMMs are not publicly available for

download.

For enzyme mining, there is also a specialized tool known as EnzymeMiner, which is

designed to automate the mining process for any enzyme of interest. EnzymeMiner is a

web server solution that automates the mining, annotation, and prioritization of

candidates for experimental characterization. This method requires input query

sequences along with a template file describing essential residues within these

sequences. By employing two iteration PSI-BLAST using the query sequences, it mines

sequences from the NCBI nr database and filters them based on the presence of

user-defined essential residues. The next step is the annotation of identified sequences

with several tools (Hon et al. 2020). The prioritization step of EnzymeMiner will be

described in the subsequent Chapter 2.3.

2.1 HMM domains associated with terpene synthases

2.1.1 Pfam domains

Pfam domains associated with TPSs belong to two Pfam clans, CL0613 (Terp_synthase)

and CL0059 (6_Hairpin). Pfam clan CL0613 includes a diverse range of enzyme families

involved in terpene biosynthesis, all sharing an alpha-helical core structure (see Figure

1). Pfam clan CL0059 (6_Hairpin) consists of 42 members sharing a common structure

composed of 6 helical hairpins.

An overview of the Pfam models associated with TPSs is provided in Table 1, showing

only TPS-related models in these clans.
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Table 1. IDs and descriptions of Pfam HMMmodels associated with TPSs.

Pfam clan (ID) Pfam family Description

Terp_synthase
(CL0613)

PF03936
(Terpene synthase
family, metal binding
domain)

Terpene synthase C terminal domain

PF19086
(Terpene synthase family
2, C-terminal metal
binding)

Domain for C-terminal metal binding of class I TPS,
especially in bacteria

PF06330
(Trichodiene synthase) Family of several fungal trichodiene synthase proteins

PF00494
(Squalene/phytoene
synthase)

Family of squalene synthases and phytoene
synthases which share conserved regions

6_Hairpin
(CL0059)

PF01397
(Terpene synthase,
N-terminal domain)

Terpene synthase N terminal domain

PF13243
(Squalene-hopene
cyclase C-terminal
domain)

Squalene-hopene cyclase catalyses the cyclisation of
squalene into hopene.This family is the C-terminal
domain

PF13249
(Squalene-hopene
cyclase N-terminal
domain)

Squalene-hopene cyclase catalyses the cyclisation of
squalene into hopene.This family is the N-terminal
domain

Additionally, in Figure 5, the taxonomic distribution of sequences captured by Pfam

models in the InterPro database is presented. For instance, domains PF03936 and

PF01397 predominantly capture sequences from plants, while PF06330 primarily

captures fungal sequences. PF19086 mainly captures microbial sequences. PF00494,

PF13243, and PF13249 capture sequences from both Eukarya and Bacteria.
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Figure 5. Taxonomic distribution of sequences in InterPro captured by Pfam HMMmodels.

2.1.2 SUPERFAMILY domains

TPSs are associated with two superfamilies in the SUPERFAMILY database: the

Terpenoid synthases superfamily (48576) and the Terpenoid cyclases/Protein

prenyltransferases superfamily (48239). The Terpenoid synthases superfamily consists of

5 families, and the Terpenoid cyclases/Protein prenyltransferases superfamily consists

of 4 families. Moreover, each family then consists of 1 or more HMM models. Table 2

summarizes the superfamilies. It's worth noting that while some models represent

terpene synthases, others encompass additional enzymes involved in terpene

biosynthesis.
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Table 2. IDs and descriptions of SUPERFAMILY superfamilies, families, and HMM models associated with TPSs.

Superfamily name
(SCOP ID)

Family name (SCOP
ID)

HMM ID
(ASTRAL
seed ID)

Seed organisms
(ASTRAL seed ID) Seed description

Terpenoid
synthases
superfamily
(48576)

Isoprenyl diphosphate
synthases (48577)

43373 Staphylococcus aureus
(d1rtra_) Farnesyl diphosphate synthase (geranyltranstransferase) domain

49855 Chicken (Gallus gallus)
(d1ubya_) Farnesyl diphosphate synthase (geranyltranstransferase) domain

43350 Escherichia coli (d1rqja_) Farnesyl diphosphate synthase (geranyltranstransferase) domain

44612 Thermotoga maritima
(d1v4ea_) Octoprenyl-diphosphate synthase domain

54583 Human (Homo sapiens)
(d2q80a1) Geranylgeranyl pyrophosphate synthetase domain

Squalene synthase
(48580) 46658 Human (Homo sapiens)

(d1ezfa_) Squalene synthase domain

Terpenoid cyclase
C-terminal domain
(48583)

53355 Tobacco (Nicotiana
tabacum) (d5eaua2) 5-Epi-aristolochene synthase domain

48261 Garden sage (Salvia
officinalis) (d1n1ba2) (+)-bornyl diphosphate synthase domain

Aristolochene/pentale
nene synthase
(48586)

46340 Fungus (Penicillium
roqueforti) (d1di1a_) Aristolochene synthase domain

48806 Streptomyces sp.,
UC5319 (d1ps1a_) Pentalenene synthase domain

Trichodiene synthase
(69113) 47573 Fusarium sporotrichioides

(d1jfaa_) Trichodiene synthase domain
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Terpenoid
cyclases/Protein
prenyltransferase
s superfamily
(48239)

Terpenoid cyclase
N-terminal domain
(48240)

53354 Tobacco (Nicotiana
tabacum) (d5eaua1) 5-Epi-aristolochene synthase domain

41184 Garden sage (Salvia
officinalis) (d1n1ba1) (+)-bornyl diphosphate synthase

Terpene synthases
(48243)

53306 Alicyclobacillus
acidocaldarius (d2sqca2) Squalene-hopene cyclase domain

50379 Human (Homo sapiens)
(d1w6ka1) Lanosterol synthase domain

53305 Alicyclobacillus
acidocaldarius (d2sqca1) Squalene-hopene cyclase domain

50380 Human (Homo sapiens)
(d1w6ka2) Lanosterol synthase, middle domain

Protein
prenyltransferases
(48246)

46282 Rat (Rattus norvegicus)
(d1d8db_) Protein farnesyltransferase, beta-subunit domain

48283 Rat (Rattus norvegicus)
(d1n4qb_) Protein farnesyltransferase, beta-subunit domain

Complement
components (48251)

35832 Human (Homo sapiens)
(d1c3da_)

Thio-ester containing domain (TED) from Complement C3, aka C3d
or C3dg

49012 Rat (Rattus norvegicus)
(d1qqfa_)

Thio-ester containing domain (TED) from Complement C3, aka C3d
or C3dg

47273 Human (Homo sapiens)
(d1hzfa_) C4adg fragment of complement factor C4a domain

19



In InterPro, only the superfamily level is considered, meaning that a superfamily is

assigned to a sequence if it is identified by any HMM model within that superfamily.

Figure 6 illustrates the taxonomic distribution of sequences captured by superfamilies

in the InterPro database. Compared with Pfam domains, there appears to be a larger

proportion of bacterial and metazoan sequences. However, it is important to note that

this data encompasses the entire superfamily and may not exclusively represent TPSs.

Figure 6. Taxonomic distribution of sequences in InterPro captured by the SUPERFAMILY HMM

models. This data encompasses the entire superfamily and may not exclusively represent TPSs.
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2.2 Analyzing the mined sequence space of protein

families

When analyzing mined sequences, annotating them with relevant metadata is essential

to gather as much information as possible to effectively explore the sequence space of

the protein family or superfamily. This typically includes obtaining information such as

the source organism (using its NCBI Taxon ID) and its kingdom, the presence of specific

functional motifs and HMM domains, and annotations of the most similar annotated

characterized sequences. Additionally, the sequences' structural similarity can be

explored by obtaining or predicting 3D structures.

To visualize and analyze the sequence space, a combination of characterized and

annotated sequences is used along with the metadata-annotated set of mined

sequences. Commonly used techniques include phylogenetic trees and sequence

similarity networks (SSNs). Additionally, projections of protein embeddings of the

sequences are sometimes used.

Figure 7. Comparison of SSN (A) and phylogenetic tree (B) on the same data. Adapted from (Copp

et al. 2019; Akiva et al. 2017).
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2.2.1 Phylogenetic trees

Phylogenetic trees serve as a traditional tool for visualizing evolutionary relationships

among sequences within a protein family or superfamily. The output from phylogenetic

analysis yields a set of nested relationships between the input sequences (aligned in an

MSA), which are then visualized as a phylogenetic tree. In the phylogenetic tree,

sequences are represented as leaves, and their connections represent the relationships

(Copp et al. 2019). Phylogenetic trees can be used to infer functions of proteins based on

characterized orthologs (Brown and Sjölander 2006). Exploring distant clades without

characterized sequences can increase the knowledge about the given protein family,

The process involves building an MSA, which is subsequently used for phylogenetic tree

construction. From the sequence conservation, MSAs can detect features that determine

function, such as key catalytic residues (Copp et al. 2019). Various algorithms, such as

Maximum Likelihood (ML) or Bayesian methods, can be used to construct phylogenetic

trees.

Constructing phylogenetic trees can be challenging, especially with large or/and diverse

sets of sequences. Building an MSA with such a set of sequences can be prone to errors

(Atkinson et al. 2009). Furthermore, inference of function relies on the assumption that

the phylogenetic tree topology is correct, which may not always be true and can lead to

errors. Events such as gene duplication and neofunctionalization, and varying

evolutionary rates can even further complicate the construction of a correct

phylogenetic tree as it may violate the assumptions of evolutionary models (Brown and

Sjölander 2006).

Despite these challenges, phylogenetics remains a key method for the exploration of

protein superfamilies. Compared to other methods, its main strength is better capturing

of key functional features. An example of a helpful tool for visualizing large phylogenetic

trees with several annotations is iTOL (Letunic and Bork 2021).
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2.2.2 Sequence similarity networks (SSN)

Sequence similarity networks (SSN) have emerged as a popular alternative to

phylogenetic trees for visualizing sequence relationships within protein families. In

SSNs, sequences are represented as nodes, and connections between nodes indicate

sequence similarity above a defined threshold (Atkinson et al. 2009). Unlike phylogenetic

trees, SSNs do not rely on evolutionary models, and therefore, they cannot be used to

infer evolutionary relationships (Copp et al. 2019).

SSNs are relatively easy to read, even with large datasets, and provide an effective view

of sequence similarity relationships. After overlaying with annotations, SSNs can reveal

clusters of sequences with similar functions (isofunctional clusters), as well as

unexplored clusters that may contain sequences with novel functions (Atkinson et al.

2009).

However, SSNs also pose challenges, particularly regarding the selection of similarity

thresholds since there is no universal threshold. The distance metric, based on sequence

similarity, can be misleading. In some cases, members of a protein family with the same

function can have sequence similarity of less than 20%, while in some other cases,

sequences with over 90% similarity can have distinct functions (often due to a single

residue mutation). Therefore, the separation of sequences into clusters based on

sequence similarity does not guarantee isofunctionality(Copp et al. 2018).

SSNs can be created manually by running all-vs-all BLAST, as described in detail in

(Copp et al. 2018), or using EFI-EST, a web-based platform for generating SSNs (Oberg,

Zallot, and Gerlt 2023; Rémi Zallot, Oberg, and Gerlt 2019). SSNs are typically visualized

in Cytoscape (Shannon et al. 2003).

2.2.3 Protein sequence embeddings

The utilization of protein sequence embeddings from protein language models (PLMs) is

gaining popularity for various tasks in computational biology. Remarkably, PLMs have

demonstrated the ability to learn structural, evolutionary, and biochemical properties

solely from sequences (Rives et al. 2021; Elnaggar et al. 2022).
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In protein embeddings, each sequence is represented as a single numerical vector (an

embedding), thereby occupying a single point in a high-dimensional space. Sequences

with similar representations are mapped to nearby points. It was shown that remote

homologs with similar structures but divergent sequences cluster in the representation

space (Rives et al. 2021).

Figure 8. t-SNE projection of protein embeddings annotated with SCOPe classes (D), kingdoms

(E), and function (F). Adapted from (Elnaggar et al. 2022).

The Transformer architecture (Vaswani et al. 2017), the most successful machine

learning model architecture of PLMs, incorporates an attention mechanism that can be

analyzed and visualized. For instance, in the case of the zinc-finger protein, it was

shown that attention heads learned to detect the zinc-finger motif, a motif crucial for

DNA and RNA binding. This motif consists of residues distant in the sequence but close

in structure (Elnaggar et al. 2022).

To explore the sequence space, embeddings can be projected to lower dimensions (2D

or 3D) using dimensionality reduction algorithms such as t-distributed stochastic

neighbor embedding (t-SNE) (Maaten and Hinton 2008), Uniform Manifold

Approximation and Projection (UMAP) (McInnes, Healy, and Melville 2018), or principal

component analysis (PCA).
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2.3 Candidate selection for novelty discovery

After sequence mining, the goal can often be to select a diverse collection of enzymes

for experimental characterization. Effective exploration of the sequence space is a

difficult task. There are no standardized methods, and the task usually requires manual

expert decisions.

The problem of effective exploration of the sequence space can be viewed as an MDP

(maximum diversity problem), which is an NP-hard problem. Heuristic algorithms such

as tabu search or k-medoids address the MDP. Still, the development of algorithms for

the automated selection of diverse sets of proteins remains mostly unexplored due to

the difficulty of this problem. One example of the tabu search algorithm adjusted to the

selection of diverse enzymes from an enzyme family is described in (Atallah et al. 2024).

A more established approach, as mentioned earlier, involves manual expert

decision-making. This decision-making process can be guided by annotated

phylogenetic trees, sequence similarity networks, and other relevant properties

depending on the specific problem (such as prioritizing a particular family of species or

certain biochemical properties).

In the context of phylogenetic trees, particular interest is directed towards clades

lacking characterized sequences, offering potential opportunities for novelty discovery.

Successful examples of investigations of such clades include those conducted by

(Yamada et al. 2015), which led to the discovery of novel terpenes, (S. Chen, Zhang, and

Zhang 2022), which led to the discovery of novel polyketides, and (Kang and Brady 2014),

which led to the discovery of novel pentangular polyphenols. Nonetheless, it's crucial to

acknowledge that not all divergent enzymes catalyze new chemical reactions (Malit,

Leung, and Qian 2022). Some enzymes may produce known products despite their

evolutionary distance from characterized sequences, while other distant enzymes may

be pseudogenes or possess entirely different functions.

Similarly, in SSNs, particular interest is directed towards clusters without characterized

sequences from which the candidates can be chosen. Several explorations across various

protein families have been summarized by (Remi Zallot, Oberg, and Gerlt 2021). Notably,
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an SSN analysis of bacterial TPSs also led to the discovery of novel terpenes (Hu et al.

2023). Although SSNs have proven successful in numerous cases, it is important to be

aware of the fact that the sequence similarity distance metric is very simple and does

not guarantee that unexplored clusters will have new functions.

As previously introduced, EnzymeMiner aims to automate the process of mining and

selecting novel enzymes. However, the step of selecting candidates from a results table

remains manual. Results are presented across multiple tables to guide the selection by,

for example, covering sequences from diverse phyla focusing on extremophilic

organisms, covering sequences from different SSN clusters, covering sequences with or

without additional Pfam domains, covering sequences annotated in NCBI with disease

annotations or sequences with known 3D structures. In addition, results can also be

filtered to exclude proteins with predicted low solubility, proteins with transmembrane

regions, or functionally annotated proteins present in the Swiss-Prot knowledgebase

(Hon et al. 2020).
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3 Literature overview on TPS sequence mining

There is a large body of previous research on sequence-guided mining of terpene

synthases from a particular genome of interest, especially in plants. In addition, there

are also various publications where TPS sequences were mined from a larger collection

of genomes, often focusing on a specific kingdom. This chapter attempts to summarize

the methods used in these publications.

In summary, the methods described in Chapter 2 were used by different research teams,

ranging from BLAST and custom HMMs to Pfam models. Furthermore, in most

publications, mined sequences were also inspected for the presence of functional motifs

along with the expected sequence lengths. Most research teams used phylogenetic trees

to explore the sequence space, but there are also examples of using SSNs in Fungi and

Bacteria.

Plants

The exploration of terpene synthases in plants has been extensive, often focusing on

specific species or families of species. A common approach involves scanning genomes

or transcriptomes using Pfam domains PF01397 and PF03936, or using BLAST with query

TPS sequences from related species. Examples of such studies include investigations in

Arabidopsis thaliana (Aubourg, Lecharny, and Bohlmann 2002), maize (Sun et al. 2023),

mint (Z. Chen et al. 2021), Vitis vinifera (Martin et al. 2010), Eucalyptus globulus (Külheim

et al. 2015), Pinaceae (K. Jiang et al. 2023), or Citrus sinensis (Alquézar et al. 2017). In many

studies, the researchers have also focused on phylogenetic analyses of plant TPSs (F.

Chen et al. 2011; Jia et al. 2022; Yan et al. 2023).

In a few publications, researchers mined diverse collections of plant genomes. (Jia et al.

2016) focused on microbial-like TPSs in plants, mining over 1000 species from the 1KP

database using Pfam models PF03936 and PF01397. They identified 712 microbial-like

genes in non-seed plants and conducted a phylogenetic analysis in which the plant

microbial-like TPS genes clustered with bacterial or fungal TPSs. (Boutanaev et al. 2015)

mined 17 plant genomes using genome annotations and BLAST, using monocot and dicot

sequences from UniProt annotated as terpene synthases as the query. (S.-Y. Jiang et al.
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2019) utilized Pfam domains PF01397 and PF03936 to mine genomes of 50 lower and

higher plant species from the Phytozome database, filtering for “full-length” sequences

containing both domains, followed by phylogenetic analysis. They further investigated

the similarity between IDS proteins and TPSs in plants. For this, they used the Pfam

domain PF00348 to mine IDSs, of which 4.36% could also be found using PF03936 with

low e-value, indicating some degree of similarity between them. (Yan et al. 2023) mined

74 plant species from diverse plant lineages also utilizing Pfam domains PF01397 and

PF03936 to study the evolution of TPSs in plants. In the mining, they identified 3,600

“full-length” sequences containing both domains, 513 sequences containing only the

PF01397 domain, and 1,049 sequences containing only the PF03936 domain. Comparing

the mined plant TPSs with mined TPSs from microbes, they hypothesize that fusion of

PF03936 and PF01397 occurred in an ancestral land plant, which likely acquired both

domains independently from microbes through horizontal gene transfer.

Red algae

(Wei et al. 2019) mined seven genomes and 34 transcriptomes of red algae using Pfam

models PF01397, PF03936, and PF06330, resulting in the discovery of three

microbial-like TPSs in red algae.

Fungi

In fungi, several publications have explored TPSs across multiple genomes. Some

studies, such as those by (Quin, Flynn, and Schmidt-Dannert 2014; Zhang et al. 2020),

used BLAST for mining. (R. Chen et al. 2021) focused on chimeric PTTSs using Pfam

domains PF03936 and PF00348 (Polyprenyl synthetase) for mining. (Hage et al. 2023)

used BLAST to mine bacterial sesquiTPS, from which they created four HMMs, which

were further updated with new hits. They also concluded that the Pfam model PF19086

better captures fungal TPSs in comparison to PF03936.

To analyze the sequence space, (Quin, Flynn, and Schmidt-Dannert 2014; Hage et al.

2023; R. Chen et al. 2021) used phylogenetic trees. (Zhang et al. 2020) used SSN and

found out that the characterized fungal TPSs from Ascomycota are actually located in

minor clusters, while the major clusters in the SSN did not contain characterized

species and, therefore, present opportunities for the discovery of novel TPSs.
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Bacteria

The exploration of bacterial TPSs is gaining increased attention, with multiple recent

studies delving into the rich diversity of TPSs present within bacterial genomes.

(Cane and Ikeda 2012; Yamada et al. 2015) used the Pfam model PF03936 to mine

bacterial genomes and to iteratively construct their own HMMs from the identified

sequences. Similarly, the Pfam model PF03936 was also used by (Reddy et al. 2020). (Hu

et al. 2023) used the Pfam model PF19086, which was added to Pfam recently and targets

the bacterial TPSs better than PF03936. ((Z. Li et al. 2023) utilized the InterPro database

to obtain all bacterial sequences categorized as ‘‘terpene cyclase-like 2’’ (IPR034686).

Lastly, (Chhalodia et al. 2023) used BLAST to mine TPSs from bacterial genomes.

Sequence space exploration involved both phylogenetic trees (Yamada et al. 2015; Reddy

et al. 2020; Chhalodia et al. 2023) and SSNs (Z. Li et al. 2023; Hu et al. 2023), focused on

selecting candidates from clades/clusters separated from the clades/clusters

containing characterized TPSs.

Animals

(X. Chen et al. 2016) employed Pfam models PF03936, PF01397, and PF06330 to scan 168

well-annotated genomes of non-plant/non-fungus eukaryotes, discovering TPSs in

Amoebozoa. Recent studies focused on octocorals and have employed the Pfam model

PF19086 (Scesa, Lin, and Schmidt 2022) and a custom HMM from bacterial and fungal

TPSs (Burkhardt et al. 2022) to successfully mine octocoral TPSs. (Wilson et al. 2023) also

built a custom HMM using a diverse set of characterized fungal, bacterial, plant, and

coral TPSs to mine TPSs from sponges.

All of these studies analyzed their mined TPS sequences in the context of TPSs from

other kingdoms using phylogenetic trees, which highlighted that all discovered TPSs

form separate clades.
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Giant viruses

(Jung et al. 2023) utilized the Pfam model PF19086 to uncover TPSs within giant viruses,

discovering 3 TPSs. These TPSs were contextualized alongside TPSs from different

kingdoms in a phylogenetic tree, forming their own distinct clade, as depicted in Figure

3.
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4 Data and methods

4.1 Data

In this section, a description of the utilized data will be presented, including a manually

curated database of characterized terpene synthases (TPS db), large-scale repositories

of sequences used for the mining, and protein family profile HMM databases.

4.1.1 TPS database - a curated database of characterized terpene

synthases

In the Pluskal lab at IOCB Prague, a database of characterized terpene synthases has

been manually collected and curated, hereafter referred to as the TPS database or TPS

db (Samusevich et al. 2024). There is an ongoing effort in the group to manually collect

data from all published experimentally characterized terpene synthases, and several lab

members, including the author, have contributed to the curation process. This database

represents the “ground truth” regarding our knowledge of terpene synthases.

The dataset consists of entries representing terpene synthase reactions, each containing

several attributes. For this thesis, only selected attributes are detailed, including:

● the ID of the terpene synthase (typically a UniProt ID, but alternatively an NCBI

ID or other identifier if the sequence is absent in the UniProt database),

● terpene synthase name,

● protein sequence,

● species,

● kingdom,

● type (mono/di/sesqui,...),

● product name,

● ChEBI ID of the product,

● fragment status (boolean),

● experimentally characterized status (boolean), and
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● publication details.

This dataset was and continues to be constructed by gathering information on published

terpene synthases with experimentally characterized reaction products. Entries were

initially obtained through a manual review of UniProt entries assigned under protein

family categories in Table 3. This manual approach was necessary as some entries within

the families were assigned to the families based on similarity but lacked experimental

characterization. Furthermore, entries were supplemented from additional resources,

such as recent publications where data was not yet present in UniProt.

Table 3. TPS protein family categories in UniProt.

Protein Family Name

Lycopene beta-cyclase family

Phytoene/squalene synthase family

Phytoene/squalene synthase family, CrtM subfamily

Terpene cyclase/mutase family

Terpene synthase family

Terpene synthase family, 2-methylisoborneol
synthase subfamily

Terpene synthase family, Tpsa subfamily

Terpene synthase family, Tpsb subfamily

Terpene synthase family, Tpsc subfamily

Terpene synthase family, Tpsd subfamily

Terpene synthase family, Tpse subfamily

Terpene synthase family, Tpsf subfamily

Terpene synthase family, Tpsg subfamily

Trichodiene synthase family

When writing this thesis, the dataset comprised a total of 2515 reaction entries

corresponding to 1323 unique proteins. However, it is important to note that the dataset

originally also includes IDSs, sequences not yet experimentally characterized (usually

IDSs), fragmented sequences, and some incomplete entries. Sequences from these

categories were filtered out, and only the remaining sequences were utilized, forming a

dataset of 1198 entries corresponding to 1125 proteins. Both the original TPS db and the

filtered TPS db datasets are available as attachments (See A.2). Overview of the filtered

TPS db dataset is described in Chapter 4.2.
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4.1.2 Protein sequence databases

This section provides a description of six large-scale sequence repositories (databases)

used for the mining. Each database is described below, along with a summary table of

database sizes and corresponding download links. The complete collection consists of

nearly 5.5 billion sequences, although there is some redundancy in the sources. To the

author's best knowledge, this is the largest terpene synthase mining effort conducted up

to this day.

1KP (Carpenter et al. 2019; One Thousand Plant Transcriptomes Initiative 2019) is an

initiative that collects data from over 1,000 plant transcriptomes (1KP). Selected species

encompass a broad diversity of the plant taxonomy (One Thousand Plant

Transcriptomes Initiative 2019).

TSA (Transcriptome Shotgun Assembly Sequence Database) (Sayers et al. 2023), a

member of the GenBank database, contains assembled transcriptomic data. The

nucleotide sequence data was obtained from the NCBI FTP GenBank site. However, since

the transcriptomic sequences are nucleotide sequences, the resulting protein sequences

were predicted using the TransDecoder tool (Haas 2022).

UniParc (UniProt Archive) (UniProt Consortium 2023) is a non-redundant database

collecting sequences from various sources, including UniProt, GenBank, Ensembl,

EnsemblGenomes, PDB, RefSeq, and more. It removes redundant entries by assigning

each unique protein sequence a UPI identifier.

Phytozome (Goodstein et al. 2012) is a database of green plant genomes and associated

data, including amino acid FASTA files of all gene coding sequences. The latest release,

version 13, contains 395 assembled and annotated genomes.

MGnify (Richardson et al. 2023) is a metagenomics database containing data from 297

various environments, including, for example, marine, soil, microbiome, and

host-associated samples.

BFD (Big Fantastic Database) (Jumper et al. 2021) is a large database of protein

sequences from UniProt, MetaClust, and Soil Reference Catalog and the Marine
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Eukaryotic Reference Catalog, which were clustered using Linclust/MMseqs2. This

database was originally created for developing AlphaFold (Jumper et al. 2021).

Table 4. Summary of protein sequence databases utilized for TPS mining. * indicates the number

of protein sequences predicted with TransDecoder.

Database
Size
(GB)

Number of
protein
sequences

Plant
only Download source

1KP 8 25 241 940 Yes
ftp://parrot.genomics.cn/gigadb/pub/10.5524/100001_101000
/100627/assemblies/

TSA 130 194 875 849* No ftp://ftp.ncbi.nlm.nih.gov/genbank/tsa/ (folders G, H, I)

Phytozome 7 11 952 181 Yes

https://genome.jgi.doe.gov/portal/ (v9-v12 using API)
https://data.jgi.doe.gov/refine-download/phytozome (v13
manually)

UniParc 226 543 244 145 No
https://ftp.expasy.org/databases/uniprot/current_release/uni
parc/uniparc_active.fasta.gz

MGnify 597 2 477 479 951 No
https://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_d
atabase/current_release/

BFD 1556 2 204 390 010 No
https://bfd.mmseqs.com/bfd_metaclust_clu_complete_id30_
c90_final_seq.sorted_opt.tar.gz

4.1.3 Protein domain databases

For analysis of domain architectures and mining, the Pfam and SUPERFAMILY databases

of domain profile HMMs were used. All HMMs were considered, and each model's

precision was estimated using the SwissProt database protein family annotation. The

model was used to mine the SwissProt database, and for each mined sequence, the

protein family annotation was retrieved. Depending on whether the protein family

belonged to one of the “allowed” terpene synthase families (families in Table 3) or not, it

was assigned as either true positive (TP) or false positive (FP) respectively. Then, the

precision estimate was calculated as: .𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)
If the estimated precision was high enough, the model was selected for the subsequent

large-scale mining effort. The collections of the selected domains are denoted as TPS

Pfam db and TPS SUPERFAMILY db.
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4.1.3.1 Pfam

All possible TPS Pfam models described in Chapter 2.1.1 were included in TPS Pfam db

and used for architecture analysis and mining. Table 5 shows the precision estimate for

each of them. Pfam models PF01397, PF03936, and PF19086 have all estimated precision

over 90%, and except Pfam model PF13249, with an estimated precision of 69%, all Pfam

models have an estimated precision higher than 70%.

Table 5. Precision estimates for Pfam HMMmodels

Domain ID Description Precision estimate

PF00494 Squalene/phytoene synthase 0.77

PF01397 Terpene synthase, N-terminal domain 0.95

PF03936 Terpene synthase family, metal binding domain 0.93

PF06330 Trichodiene synthase 0.84

PF13243 Squalene-hopene cyclase C-terminal domain 0.76

PF13249 Squalene-hopene cyclase N-terminal domain 0.69

PF19086 Terpene synthase family 2, C-terminal metal binding 0.91

4.1.3.2 SUPERFAMILY

For SUPERFAMILY HMMs, precision estimates fluctuated more among the models, and

only those models with precision estimates higher than 70% were included in TPS

SUPERFAMILY db. In the table below, selected models are highlighted in bold. The low

precision estimates of some models are likely caused by the fact that the models

represent other enzyme families from the terpene biosynthetic pathway, such as

prenyltransferases, as indicated by the model descriptions. However, in the case of

certain models, particularly those within Superfamily 48239, the descriptions themselves

do not raise suspicions that these models should not represent terpene synthases.

Nevertheless, these models demonstrated low precision estimates, and their inclusion

could potentially result in a significant number of false positives in the large-scale

mining.
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Table 6. Precision estimates for SUPERFAMILY HMMmodels. Selected domains with precision

estimates of over 70% are highlighted in bold.

Superfamily
(SCOP ID) Family Domain

ID Description
Precision
estimate

Terpenoid
synthases
superfamily
(48576)

Isoprenyl
diphosphate
synthases

43373 Farnesyl diphosphate synthase
(geranyltranstransferase) domain 0.13

49855 Farnesyl diphosphate synthase
(geranyltranstransferase) domain 0.19

43350 Farnesyl diphosphate synthase
(geranyltranstransferase) domain 0.11

44612
Octoprenyl-diphosphate synthase domain 0.21

54583
Geranylgeranyl pyrophosphate synthetase
domain 0.22

Squalene
synthase 46658 Squalene synthase domain 0.58

Terpenoid
cyclase
C-terminal
domain

53355 5-Epi-aristolochene synthase domain 0.84

48261 (+)-bornyl diphosphate synthase domain 0.85

Aristolochen
e/pentalene
ne synthase

46340 Aristolochene synthase domain 0.71

48806 Pentalenene synthase domain 0.72

Trichodiene
synthase 47573 Trichodiene synthase domain 0.77

Terpenoid
cyclases/Prote
in
prenyltransfer
ases
superfamily
(48239)

Terpenoid
cyclase
N-terminal
domain

53354 5-Epi-aristolochene synthase domain 0.90

41184 (+)-bornyl diphosphate synthase 0.90

Terpene
synthases

53306 Squalene-hopene cyclase domain 0.51

50379 Lanosterol synthase domain 0.66

53305 Squalene-hopene cyclase domain 0.56

50380 Lanosterol synthase, middle domain 0.61

Protein
prenyltransf
erases 46282

Protein farnesyltransferase, beta-subunit
domain 0.59
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48283
Protein farnesyltransferase, beta-subunit
domain 0.59

Complemen
t
components

35832
Thio-ester containing domain (TED) from
Complement C3, aka C3d or C3dg 0.64

49012
Thio-ester containing domain (TED) from
Complement C3, aka C3d or C3dg 0.58

47273
C4adg fragment of complement factor C4a
domain 0.56

4.2 Analysis of the characterized terpene synthases

The initial step, as previously mentioned in Chapter 4.1.1, involved filtering of the TPS db,

wherein entries identified as fragments or IDSs, entries lacking experimental

characterization, and entries with missing information were filtered out. This filtration

process resulted in a curated dataset comprising 1125 unique TPSs. Figure 9A illustrates

the taxonomic distribution within this dataset, revealing that plant TPSs make up the

largest part, accounting for 70% of all TPSs. Following behind are fungal (17%) and

bacterial (6%) TPSs. The remaining part of the dataset consists of TPSs from animals

(including corals, insects, and marine sponges), amoebozoa, and red algae. Figure 9B

shows that among the characterized TPSs, sesquiTPSs appear as the most abundant,

followed by mono-, di-, and triTPSs. SesterTPSs and tetraTPSs are rare. Moreover, only

two characterized sesquarTPSs are documented in TPS db.

Figure 9. A) Number of TPSs in each taxonomic group B) Number of TPSs in each TPS type; one

TPS can occur in more categories if it produces products of more categories
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4.2.1 Pfam and SUPERFAMILY domains

Models from TPS Pfam db and TPS SUPERFAMILY db, described in Chapters 4.1.3.1 and

4.1.3.2, respectively, were employed to scan the TPS database using HMMER hmmscan

(Sean R. Eddy 2023). This analysis revealed notable differences in occurrences of Pfam

domains across various kingdoms, as outlined in Table 7. For instance, the Pfam model

PF01397 exclusively captured sequences from plants, which is in agreement with the

available taxonomical distribution from InterPro, as illustrated in Figure 5. Surprisingly,

PF19086 demonstrated the ability to capture microbial-type TPSs but also a high

number of plant TPSs. An unsurprising outcome was that Pfam domains failed to detect

insect TPSs, as they differ from typical TPSs. Only 15 sequences lacked Pfam hits, out of

which eight were TPSs from insects.

Table 7. Percentage of TPSs from TPS db containing Pfam model hits across different kingdoms.

The last row provides the total percentage of sequences across all kingdoms.

PF01397 PF03936 PF19086 PF06330 PF13243 PF13249 PF00494

Plantae 83,1 83,7 79,1 0,6 18,9 15,6 2,4

Red algae 0,0 0,0 100,0 0,0 0,0 0,0 0,0

Fungi 0.0 54,6 87,2 18,9 8,7 7,1 4,1

Bacteria 0.0 42,7 66,7 10,7 13,3 13,3 16,0

Cyanobacteria 0,0 0,0 0,0 0,0 100,0 100,0 0,0

Coral 0,0 17,6 100,0 0,0 0,0 0,0 0,0

Amoebozoa 0,0 35,3 88,2 0,0 5,9 5,9 5,9

Insecta 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Animalia 0,0 0,0 46,7 0,0 26,7 26,7 20,0

Total 58,7 72,2 79,2 4,4 16,3 13,7 3,8

An overview of the occurrences of individual SUPERFAMILY domains from TPS

SUPERFAMILY db across various kingdoms is presented in Table 8. This analysis revealed

results that are consistent with the distinct philosophy of the SUPERFAMILY database

compared to Pfam. In the SUPERFAMILY database, models can overlap, a feature evident

for TPSs from TPS db where most sequences are captured by multiple models. Notably,

in more than 80% of cases, plant sequences were detected by all models employed.
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Unlike Pfam, SUPERFAMILY models were able to detect even some insect TPSs. For 169

sequences, there were no SUPERFAMILY hits. Only five TPSs did not have hits from

either Pfam or SUPERFAMILY. On the other hand, 950 sequences (84%) contain hits from

both Pfam and SUPERFAMILY.

Table 8. Percentage of TPSs from TPS db containing SUPERFAMILYmodel hits across different

kingdoms. The last row provides the total percentage of sequences across all kingdoms.

41184 53354 53355 48261 48806 46340 47573

Plantae 83,1 83,1 84,5 84,5 84,4 84,5 84,4

Red algae 0,0 0,0 100,0 100,0 100,0 100,0 100,0

Fungi 0.0 0.0 88,8 89,8 90,3 90,3 89,8

Bacteria 0.0 0.0 68,0 70,7 68,0 70,7 68,0

Cyanobacteria 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Coral 0,0 0,0 100,0 100,0 100,0 100,0 100,0

Amoebozoa 0,0 0,0 88,2 88,2 88,2 88,2 88,2

Insecta 0.0 0.0 12,5 12,5 50 87,5 25

Animalia 0,0 0,0 46,7 46,7 46,7 46,7 46,7

Total 58,7 58,7 83,4 83,7 83,8 84,4 83,6

4.2.2 Length distribution analysis

The amino acid sequence length of each terpene synthase within the TPS db was

calculated to analyze the distribution across different TPS types and kingdoms.

Additionally, the lengths of sequences captured by each Pfam or SUPERFAMILY domain

were compared to find any patterns.

Overall, three main peaks emerged in the length distribution of TPSs, centered around

350, 565, and 760 amino acids, as depicted in Figure 10A. However, further analysis

revealed characteristic differences in length distribution among various TPS types and

kingdoms, as illustrated in Figure 10B.
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Figure 10. Length distribution of TPSs. (A) Length density plot depicting the lengths of TPSs in

TPS db forming three peaks at 350, 565, and 760 amino acids. (B) Density ridge plot illustrating

the length diversity of TPSs categorized by type and kingdom.

Figure 11. Length distribution of sequences from TPS db captured by different Pfam (A) and

SUPERFAMILY (B) models.

Figure 11A demonstrates how different Pfam models capture sequences of varying

lengths. This does not hold for SUPERFAMILY models because of the previously

mentioned ability to capture the majority of all sequences, therefore resulting in a

length distribution closely resembling the mean length, as depicted in Figure 11B.
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4.2.3 Domain architecture analysis

The common combinations of Pfam and SUPERFAMILY domains in the data were

analyzed.

Figure 10B illustrates the varying lengths observed for different TPS types across

kingdoms. These peaks correspond to different Pfam domain architectures, as depicted

in Figure 12. The most common Pfam architecture was found to be a combination of

PF01397 and PF03936 domains, a typical domain architecture for plant TPSs. In plant

diTPSs, this architecture can be extended by fragments of TPS Pfam domains from one

or both sides, resulting in longer sequences. The second most common architecture

consists of a single PF19086 domain, which is the architecture observed in mono-,

sesqui-, and diTPSs from all other kingdoms, except diTPSs from Fungi, where this

domain occurs duplicated. This architecture is also typical for fungal sesterTPSs. The

third most common architecture, a combination of PF13249 and PF13243 domains, is

typical for squalene-hopene cyclases (triTPSs). Other architectures include a single

PF00494 domain of squalene or phytoene synthases, or a single PF06330 domain of

trichodiene synthases (sesquiTPSs) in Fungi.
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Figure 12. Analysis of Pfam domain architectures and length diversity of TPSs in TPS db. (A) A

histogram depicts the observed Pfam architectures. Each architecture is schematically illustrated

(actual lengths of sequences and domains are not reflected) and assigned a number. In

architectures 4, 8, and 9, the grey partial domain represents any partial domain from TPS Pfam

db. “Other” encompasses all remaining architectures, and “no architecture” encompasses TPSs

with no Pfam hits. (B) Density ridge plot from Figure 10B illustrating the length diversity of TPSs

categorized by type and kingdom, with numbers above the peaks denoting the most common

architecture(s) for sequences of the corresponding kingdom and type.
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Figure 13. A histogram depicts the observed SUPERFAMILY architectures in TPS db. Each

architecture is schematically illustrated (actual lengths of sequences and domains are not reflected).

“Other” encompasses all remaining architectures, and “no architecture” encompasses TPSs with no

SUPERFAMILY hits.

Figure 13 provides an overview of SUPERFAMILY domain architectures. This analysis

revealed a major occurrence of single domains. The most common single-domain

architectures include domains 48261, 53354, 47573, and 48806. However, domain 41184

often occurs in combination with other domains. Domain 46340 was observed both

independently and in combination with other domains (including itself).

Overall, characterized TPSs from TPS db contain full domains or at least one full domain.

Only five TPSs contained Pfam domain architecture consisting of a single partial domain,

and only seven other TPSs contained SUPERFAMILY domain architecture consisting of a

single partial domain.

4.2.4 Conserved motifs

The TPS database was analyzed to see whether the sequences contain the conserved

functional motifs of terpene synthases - namely, the DDXXD and NSE/DTE motifs of

Class I TPSs and the DXDD motif of Class II TPSs. These motifs were identified using the

EMBOSS fuzzpro tool (Rice, Longden, and Bleasby 2000) designed for pattern searches
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within protein sequences. Specifically, the presence of these motifs was determined

based on predefined patterns: for the DDXXD motif, at least one hit of the following

patterns indicated its presence: DDXXD or DDXX[DE]; for the NSE/DTE motif, at least

one occurrence of the following patterns indicated its presence:

[ND][DE]XX[ST]XX[NKR][DE], [ND]D[LIV]X[ST]XXXE, or [ND]DXX[ST]XXXE; and for the

DXDD motif, an exact match was considered, i.e., DXDD.

The results of the presence of individual motifs are summarized in Table 9. Almost all

mono-, sesqui-, di-, and sesterTPSs contain at least one motif. In contrast, tri-, sesquar-,

and tetraTPSs possess variations of the motifs or different motifs, as the inspected

motifs were present in less than 50% of the TPSs.

Among the Class I motifs, DDXXD was more frequently present than the NSE/DTE

motif, possibly due to slight variations in the latter. The Class II motif DXDD was not

prominently represented in the dataset.

Table 9. Frequency of conserved motifs within different TPS types.

MonoTPS SesquiTPS DiTPS SesterTPS TriTPS SesquarTPS TetraTPS

At least 1 motif 99,6% 99,4% 99,5% 98,0% 18,1% 50,0% 38,9%

DDXXD (Class I) 97% 89% 79% 96% 12% 0% 39%

NSE/DTE (Class I) 64% 76% 63% 94% 2% 0% 0%

DXDD (Class II) 7% 12% 39% 12% 9% 50% 6%

4.2.5 Sequence similarity of terpene synthases and IDSs

The objective of this analysis was to investigate whether the removal of sequences

highly similar to IDSs would accidentally remove terpene synthases as well.

IDS sequences were obtained from the unfiltered TPS database and divided into two

classes: monofunctional IDSs and bifunctional IDS-TPSs (PTTSs), denoting sequences

exhibiting both IDS and TPS activity.

The pairwise sequence identities were obtained from all-vs-all BLAST.
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There was only one case of sequence identity between monofunctional IDS and TPS

higher than 80%, observed for sesterTPS A0A0F4GLU2, annotated in UniProt as

Geranylgeranyl pyrophosphate synthase like protein, suggesting this sequence might

actually represent bifunctional IDS-TPS. However, in most cases, the similarity remained

below 50%, with an average identity of 31%, as depicted in Figure 14A.

Even among bifunctional IDS-TPSs, high similarity to monofunctional IDSs was rare,

with only two sequences exhibiting identity over 80% and an average identity of 32%, as

depicted in Figure 14B.

Figure 14. Histograms of sequence identity between monofunctional IDSs and TPSs (A) and

bifunctional IDS-TPSs (B).

Therefore, removing sequences with more than 80% identity to monofunctional IDSs

should not remove TPSs but rather IDSs that were incorporated by accident.

4.2.6 Protein sequence embeddings for TPS comparison

As previously mentioned, protein sequence embeddings are an alternative

representation of protein sequences that are useful for sequence comparison.

Embeddings were generated using the ESM2 model esm2_t6_8M_UR50D, which

comprises 6 layers, 8 million parameters, and yields embeddings of dimension 320 (Lin

et al. 2023). This model was chosen as ESM2 models are among the most popular protein

language models, and this version has the smallest size and relatively low resource

requirements. The objective was to test if this small model could produce meaningful
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representations of TPSs as it could be potentially used on a large number of mined

sequences to compare them. In Figure 15, the projections of the embeddings using t-SNE

are illustrated. The Figure shows that the embedded TPSs exhibit clustering based on

both the type and kingdom, highlighting that sequence embeddings may provide a useful

representation for comparing TPSs.

Figure 15. t-SNE projection of protein embeddings of TPSs from TPS db colored according to

their type (left) and kingdom (right). Points cluster according to both type and kingdom.
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4.3 Mining of putative terpene synthases

Figure 16. Schematic diagram of the mining process.

The mining process was executed on MetaCentrum4 through a custom Snakemake

pipeline (Köster and Rahmann 2012) developed for this project (see attachment A.4).

Programs required for the whole process were installed using Anaconda (Anaconda Inc.

2020) and pip, and their versions are listed in the GitHub repository (see attachment

A.4).

To enable parallel processing, each sequence database fasta file was split using the

fasta-splitter tool (Kryukov 2021) into smaller chunks of 1,000,000 sequences. Each file

was first length-filtered to ensure the length of each sequence between 20 and 100,000

amino acids, addressing issues with very short and very long sequences in subsequent

stages.

4 MetaCentrum, organization of the Czech National Grid Organization providing distributed
computing infrastructure
https://metavo.metacentrum.cz
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For Pfam mining, TPS Pfam db models (see Chapter 4.1.3.1) were downloaded from the

InterPro website (Paysan-Lafosse et al. 2023). They were merged into a database, which

was then compressed and indexed using the hmmpress command from HMMER (Sean R.

Eddy 2023).

Similarly, HMM models from the TPS SUPERFAMILY db (see Chapter 4.1.3.2) were

downloaded from the SUPERFAMILY database version 1.75 and merged into a database,

which was compressed and indexed with hmmpress.

The actual mining procedure utilized the hmmsearch command from HMMER (Sean R.

Eddy 2023), with input consisting of the fasta file chunks, the TPS Pfam db, and TPS

SUPERFAMILY db. Any sequence identified by any model from TPS Pfam db or TPS

SUPERFAMILY db was mined.

The only special approach during the mining was used for the BFD database as it

contained already preclustered sequences. Taking advantage of the preclustering, the

mining process here took two steps. Each cluster contained a representative sequence,

and in the first step, mining was done only on the representative sequences. In the

second step, all cluster sequences were used only if the representative sequence had any

Pfam or SUPERFAMILY hit.

4.4 Enhancing the reliability through sequence filtering

To enhance the reliability of the mined sequences as potential terpene synthases with

the capability to produce terpenes, a series of filtering steps were implemented based

on insights from the literature and analysis of characterized terpene synthases

described in Chapter 4.2. The filtering process comprised five steps denoted as: length

filtering, stronger domain hit from other families, presence of a functional motif, bad

domain architecture, and possible IDS.

According to literature and the analysis of characterized terpene synthases from TPS db,

terpene synthases typically exhibit lengths between 300 and 1100 amino acids.

Sequences falling outside this range were filtered out.
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To further minimize the risk of a false hit, sequences with a stronger hit to any Pfam or

SUPERFAMILY domain not associated with terpene synthases were filtered out. For the

Pfam database, except from domains in TPS Pfam db, the following domains were

considered as associated with terpene synthases: PF00348 (Polyprenyl synthetase),

PF00432 (Prenyltransferase and squalene oxidase repeat), and PF02458 (Transferase

family). For SUPERFAMILY, any domain in the 48576 and 48239 superfamilies was

considered.

Class I terpene synthases typically contain the DDXXD and NSE/DTE motifs. Class II

terpene synthases typically contain the DXDD motif. The motifs were scanned using

EMBOSS fuzzpro as described in 2.4.2. Sequences that did not contain at least one motif

were filtered out.

Within TPS db, only five sequences (<1%) fall into the following Pfam and SUPERFAMILY

“bad domain architectures”: (i) absence of both Pfam and Supfam architectures, (ii)

absence of Pfam architecture but presence of a single partial Supfam domain, (iii)

absence of Supfam architecture but presence of a single partial Pfam domain, or (iv)

presence of both a single partial Pfam domain and a single partial Supfam domain

architectures. This means that functional terpene synthases almost never consist of just

a single partial domain architecture. Thus, all mined sequences falling into those four

categories were filtered out since there is a risk that these sequences would not be

functional.

Lastly, sequences highly similar to IDSs were removed to mitigate the risk of accidentally

mining these enzymes. Monofunctional IDSs from the TPS db, as described in Chapter

4.2.5, were BLASTed with the mined sequences, and all sequences with a sequence

identity above 80% were filtered out.

These sequences are further referred to as candidate terpene synthases, TPS candidates

or putative TPSs.
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4.5 Sequence annotation

Computational and manual approaches were combined to annotate the candidate

terpene synthase sequences. The annotation process involved gathering information

about the source organism and its NCBI taxon ID. In cases when it was possible to

acquire the taxon ID, the taxoniq Python library (“Taxoniq: Taxon Information Query -

Fast, Offline Querying of NCBI Taxonomy and Related Data,” n.d.) was utilized to fetch

the species lineage, extracting details such as superkingdom, kingdom, and phylum.

When enough information was available, metagenomic sequences were placed in one of

the following categories as per NCBI taxonomy classification: engineered,

environmental, host-associated, mixed, and unknown.

Since sequences in the UniParc database represent sequences from multiple databases,

they were mapped back to the original entries using the UniProt API to get the available

annotations.

In addition, the annotation also integrated the Pfam and SUPERFAMILY domain

architectures, along with boolean indicators of hit of each TPS Pfam db and TPS

SUPERFAMILY db domains.

Lastly, the ID of the closest characterized TPS from TPS db was added based on

sequence similarity and the Euclidean distance of the protein embeddings (see

attachment A.3).

4.6 Scoring the terpene synthase candidates

The objective of this section was to show how resulting sequences could be prioritized

for functional characterization. The aim would be to identify candidate sequences that

have a higher chance to be functional terpene synthases but also have a higher chance

to yield novel terpene products. For this purpose, two separate scores were proposed:

the reliability score and the novelty score. The scores can be weighted and combined,

allowing a flexible approach to prioritize one criterion over the other. It is essential to
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note that the proposed scores are simplistic and serve as guiding tools rather than

definitive selection criteria.

4.6.1 Reliability score

The reliability score aims to capture if a candidate sequence has properties observed in

the characterized sequences and the certainty of being a functional terpene synthase.

The score is derived by summing up six partial scores, each ranging from 0 to 1.

These six partial scores include the methionine score (Smet), observed Pfam domain

architecture score (Sp_arch), observed SUPERFAMILY domain architecture score (Ss_arch),

strongest Pfam hit c-Evalue score (Sp_evalue), strongest SUPERFAMILY hit c-Evalue score

(Ss_evalue), and the presence of domain hit from both TPS Pfam db and TPS SUPERFAMILY

db score (Sp&s).

Figure 17. The formula to calculate the reliability score.

The methionine score (Smet) is a binary score of 1 for all sequences starting with

methionine and 0 otherwise. Functional terpene synthases start with methionine.

Figure 18. The formula to calculate the methionine score.

The observed Pfam architecture score (Sp_arch) and observed SUPERFAMILY architecture

score (Ss_arch) are binary scores of 1 if a candidate sequence consists of Pfam domain

architecture observed in the TPS db (or SUPERFAMILY domain architecture,

respectively) and 0 otherwise.
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Figure 19. The formula to calculate the observed Pfam architecture score and observed

SUPERFAMILY architecture score.

The following partial scores reflect the strength of a Pfam domain hit (Sp_evalue) or

SUPERFAMILY domain hit (Ss_evalue), respectively. The strength of a hit can be expressed

by the conditional E-value (c-Evalue) of the domain hit provided by HMMER. The smaller

the c-Evalue, the stronger the hit is. The assumption was that if the candidate sequence

has a strong domain hit, it is more reliable. For each candidate sequence, the lowest

c-Evalue of all TPS Pfam domains (or TPS SUPERFAMILY domains, respectively) was

used. Since there was a large range of exponential values, the values were transformed

by taking the negative logarithm of the c-Evalues and then normalized to the range from

0 to 1. After the transformation, the strongest hits got a value of 1, and the weakest hits

got a value of 0.

Figure 20. The formula to calculate the strongest Pfam hit c-Evalue score and strongest

SUPERFAMILY hit c-Evalue score (not rigorously formalized).

Finally, the last score (Sp&s) checks if the candidate sequence carries at least one domain

hit from both Pfam and SUPERFAMILY. The assumption here was that the presence of

domain hits from two domain databases enhances the reliability of the candidate

sequence as the majority (84%) of sequences from TPS db contain both Pfam and

SUPERFAMILY hits.
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Figure 21. The formula to calculate the presence of domain hit from both TPS Pfam db and TPS

SUPERFAMILY db score.

4.6.2 Novelty score

The aim of the novelty score is to identify candidate sequences with a higher chance of

producing novel terpene products. Consisting of four subscores, each ranging from 0 to

1, the novelty score seeks to penalize candidate sequences close to the characterized

sequences while prioritizing those that are more distant. The four approaches employed

for each subscore are taxonomical categorization, sequence similarity network,

phylogenetic tree, and protein embedding distance, resulting in taxonomic score (Stax),

SSN score (Sssn), phylogenetic score (Sphylo), and embedding product score (Sproduct).

Figure 22. The formula to calculate the novelty score.

The novelty score was then tested on a subset of the characterized sequences from TPS

db and is discussed in Chapter 6.

4.6.2.1 Taxonomic score

The assumption is that there is a higher chance of discovering a terpene synthase that

yields a novel terpene when characterized sequences from the same organism or higher

taxonomic rank are absent. Recognized taxonomic ranks used in the score include

phylum, class, order, family, genus, and species. If there are no characterized sequences

in a particular taxonomic rank, it is denoted as uncharacterized. The score ranges from 1

for an uncharacterized phylum to 0 for a characterized species, missing taxonomic

information, or sequences from metagenomic samples. The scoring system assigns the

score as follows: 1 is assigned if the candidate sequence originates from an
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uncharacterized phylum, 0.8 from an uncharacterized class, 0.6 from an uncharacterized

order, 0.4 from an uncharacterized family, 0.2 from an uncharacterized genus, 0.1 if

uncharacterized species and 0 from a characterized species, cases when the taxonomic

information is missing or the candidate sequence originates from a metagenomic

sample.

Figure 23. The formula to calculate the taxonomic score.

4.6.2.2 SSN score

For the purpose of visualizing the result of the mining but also prioritization of the

candidates, a sequence similarity network was created and leveraged. The SSN was

constructed following the guidelines outlined in the supplementary material of (Copp et

al. 2018). The SSN was created by reducing the dataset of TPS candidates and performing

an all vs. all blast search.

The reduced dataset was created by similarity clustering using a threshold of 50% with

CD-hit (W. Li and Godzik 2006; Fu et al. 2012). This threshold was selected to obtain a

manageable number of cluster representatives for downstream steps, including

visualization in Cytoscape. A higher threshold could be used in a scenario with fewer

mined sequences. Lastly, all characterized terpene sequences were also added to the

dataset.

The sequence similarity network from this reduced dataset was created by using the

result of an all-vs-all blast search. Edges were formed between sequences, represented

as nodes, with blast e-value smaller than 10e-50. This threshold was again chosen to

maintain a manageable number of edges.
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Clusters within the network can be visually observed, and their characteristics become

apparent when annotations such as terpene product type, superkingdom, or the

presence of individual domains are visualized. The Louvain method from the Networkx

python package (Hagberg, Swart, and Schult 2008) was employed to automate the

identification of the clusters. This method was developed to detect communities in large

networks. In this case, we can consider clusters of sequences with similar features as a

community. The method uses only the structure of the network to identify the clusters.

The clusters were then analyzed to see how many characterized sequences they contain

and how many candidate sequences they actually represent (since in the network, only

sequence similarity representatives are used from the candidate sequences).

The underlying assumption when creating the SSN score (Sssn) was that large clusters

with no or few characterized sequences could be more interesting for exploration. The

SSN score tries to capture both the degree of exploration within the cluster, using the

percentage of uncharacterized sequences in the total number of sequences, and also the

cluster size, using a normalized score of the logarithm of the total size.

Figure 24. The formula to calculate the SSN score (not rigorously formalized).

4.6.2.3 Phylogenetic score

A phylogenetic tree was constructed from the reduced dataset (see Chapter 4.6.2.2) and

followed a standard procedure consisting of computing an MSA (using Clustal omega

(Sievers et al. 2011)), MSA trimming (using TrimAl (Capella-Gutiérrez, Silla-Martínez, and

Gabaldón 2009)) and finally, tree construction (using FastTree2 (Price, Dehal, and Arkin

2010)). FastTree2 is a popular method for large datasets as it is fast and uses less

memory. The method starts by creating an initial topology using the Neighbor-Joining

algorithm, which is then refined using nearest-neighbor rearrangements and

subtree-pruning-regrafting, and finally, it is optimized by the Maximum Likelihood

algorithm.
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The assumption in the phylogenetic score (Sphylo) is that there could be a higher chance

of novelty discovery in a clade that is large and consists only of uncharacterized

sequences. For each candidate sequence, the size (number of leaves) of the largest clade

it belongs to, containing only uncharacterized sequences, was calculated. These

numbers were then transformed by taking a logarithm and normalized between 0 and 1.

For the sequences not represented in the tree, the score of their clustering

representative was used.

Figure 25. The formula to calculate the phylogenetic tree score (not rigorously formalized).

4.6.2.4 Embedding product score

The embedding product score (Sproduct) aims to compare candidate terpene synthases to

characterized terpene synthases and reflect how interesting their products are.

In the TPS db, all possible products were selected, and their number of occurrences was

counted. For each sequence, only the product with the smallest number of occurrences

and this occurrence count were kept. The number of occurrences serves as a measure of

how interesting the product is. This number was then normalized between 0 and 1 and

subtracted from 1.

The protein embedding distance was employed in this score. The Euclidean distances

between the embeddings of uncharacterized candidate sequences and characterized

sequences were calculated. This process enabled the assignment of the closest

characterized sequence to each uncharacterized sequence and the usage of its product

score.

Figure 26. The formula to calculate the embedding product score (not rigorously formalized).
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5 Results

5.1 Overview of the TPS mining

Sequence mining using Pfam domains resulted in 1,456,732 TPS-like sequences, and

using SUPERFAMILY domains resulted in 1,312,531 sequences, together 2,447,978 unique

sequences. Clustering with 90% identity resulted in 1,207,771 clusters. Surprisingly, there

was not a big overlap in the sequences mined by Pfam and SUPERFAMILY domains. For

comparison, in TPS db, 84% of sequences contain hits from both Pfam and

SUPERFAMILY.

This dataset consisted of 48% from data from the BFD database, 30% from MGnify, 15%

from UniParc, 5% from TSA, 1% from OneKP, and 1% from Phytozome. However, the

dataset was further filtered to increase the quality of the final dataset, as described in

Chapter 4.4. Length filtering resulted in the removal of many sequences, especially from

the metagenomic databases, where more than 70% of sequences were filtered out. The

most common cases were short sequences with domain hits from TPS Pfam or TPS

SUPERFAMILY db, but they were likely too short to be functional.

The final dataset of TPS candidates after the five rounds of filtering comprises a total of

606,791 sequences (see attachment A.3). The majority of TPS candidates originate from

UniParc, MGnify, and BFD repositories, as depicted in Figure 27.

Figure 27. Number and percentage of TPS candidates from each database.
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The length distribution of TPS candidate sequences is predominantly located within the

range of 300 to 500 amino acids. The peaks at 565 and 760 amino acids, which were

characteristic for characterized TPSs in TPS db (Figure 10A), are also apparent in this

dataset (Figure 28).

Figure 28. Length density plot depicting the lengths of TPS candidates. The density peak on the

left side appears trimmed as the minimum sequence length was set to 300 amino acids.

Nearly half of the TPS candidates originate from metagenomic sources (Figure 29),

underscoring the richness of metagenomes as a valuable data source for sequence

mining. A closer examination of the metagenomic candidates shows that the majority

originates from various environmental samples. The taxonomic analysis revealed that

the largest represented superkingdom is Bacteria, constituting 25.9% of the dataset,

followed by Eukarya at 18.6%. Archaea represents a small fraction of 0.9%. 84 candidates

were also identified among viruses. In Bacteria, there are several notable phyla that

contain TPS candidates but do not contain previously experimentally characterized

TPSs. These include Campylobacterota, Planctomycetota, Acidobacteriota,

Verrucomicrobiota, Thermodesulfobacteriota, Spirochaetota, Gemmatimonadota, and

Deinococcota. Among the previously characterized phyla, notable taxonomic classes

without previously characterized TPSs are primarily found in Pseudomonadota,

Bacteroidota, and Bacillota.
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Figure 29. Sunburst plot of the taxonomy of TPS candidates (superkingdom, kingdom, phylum).

A closer look at TPS candidates from Eukaryota, illustrated in Figure 30, reveals that the

majority group within Eukaryotic candidates are plants (63.2%). The second largest

group comprising 18.2% are TPS candidates from Metazoa, closely followed by TPS

candidates from Fungi (14.1%). Several notable eukaryotic phyla lack previously

characterized TPSs, including Bacillariophyta (Diatoms), Nematoda (roundworms),

Mollusca, Haptophyta, and Mucoromycota. Among the previously characterized phyla,

notable taxonomic classes without previously characterized TPSs are primarily found in

Arthropoda, Chordata, Chlorophyta, Basidiomycota, Streptophyta, and Ascomycota.
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Figure 30. Sunburst plot of the taxonomy of eukaryotic TPS candidates (kingdom, phylum, class,

order).

Exploring the length distribution among different superkingdoms revealed that only

candidate sequences from Eukaryota exhibit a larger number of sequences that are

longer than 500 amino acids. Candidate sequences from other superkingdoms exhibit

lengths primarily between 300 and 400 amino acids, as depicted in Figure 31.
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Figure 31. Density ridge plot illustrating the length diversity of TPS candidates categorized by

superkingdom.

Eukaryotic sequences were thus further analyzed, focusing on Plants, Fungi, Metazoa,

and other eukaryotic candidates without an assigned kingdom (Figure 32). From this, it

can be seen that the longer sequences can be primarily attributed to plant sequences,

although some longer sequences are found also in other groups.

Figure 32. Density ridge plot illustrating the length diversity of eukaryotic TPS candidates

categorized by the kingdom.

Out of all candidate sequences, 103,637 sequences have at least one Pfam hit. The Pfam

domain that got the most hits is domain PF00494 (Squalene/phytoene synthase),
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followed by domain PF19086 (Terpene synthase family 2, C-terminal metal binding).

Results are summarized in Table 10.

Table 10. Percentage of TPS candidates containing Pfam model hits across different

superkingdoms. The last row provides the total percentage of sequences across all

superkingdoms.

PF01397 PF03936 PF19086 PF06330 PF13243 PF13249 PF00494

Eukaryotes (all) 40,1 48,8 52,1 2,0 8,3 7,8 7,3

Eukaryotes - Plantae 63,3 69,0 65,7 0,2 8,3 7,6 6,5

Eukaryotes - Fungi 0,1 30,2 54,0 12,7 4,2 4,3 9,9

Eukaryotes - Metazoa 0,4 4,0 12,8 0,2 12,0 12,0 3,2

Eukaryotes - other 0,1 4,8 12,7 0,2 6,0 6,1 26,3

Bacteria 0,0 7,0 10,8 1,8 5,3 5,2 16,6

Archaea 0,1 3,6 5,3 0,0 2,4 2,3 28,3

Metagenome 0,2 1,8 1,7 0,1 5,0 4,9 18,7

Viruses 0,0 0,0 1,9 0,0 8,3 8,3 20,2

Total 7,7 11,7 13,6 0,9 5,8 5,7 16,1

Different Pfam models capture candidate sequences of different lengths. This is

consistent with the same analysis performed for TPS db (Figure 11A); however, now there

is a larger peak between 300 and 400 amino acids as these sequences are enriched in

the mined dataset.

Figure 33. Length distribution of TPS candidate sequences captured by different Pfam models.
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Out of all candidate sequences, 478,058 sequences have at least one SUPERFAMILY

domain. Three SUPERFAMILY domains are very frequent - 48806, 46340, and 47573.

Domains 48261 and 53355 are most common among plants and fungi. Domains 41184 and

53354 occur almost exclusively in plants, which was also observed for characterized

sequences (Table 8). 48261

Table 11. Percentage of TPS candidates containing SUPERFAMILY model hits across different

superkingdoms. The last row provides the total percentage of sequences across all

superkingdoms.

41184 53354 53355 48261 48806 46340 47573

Eukaryotes (all) 41,2 41,2 59,7 58,8 84,0 87,0 79,7

Eukaryotes - Plantae 64,9 64,9 69,3 69,1 84,6 88,3 84,3

Eukaryotes - Fungi 0,1 0,1 68,8 68,0 86,2 87,1 80,0

Eukaryotes - Metazoa 0,4 0,4 28,7 25,8 84,2 85,7 69,6

Eukaryotes - other 0,1 0,1 20,9 19,9 68,3 73,5 55,5

Bacteria 0,0 0,0 27,7 15,7 76,0 83,8 74,2

Archaea 0,1 0,1 26,3 13,5 71,9 76,7 70,4

Metagenome 0,2 0,2 21,9 9,0 73,8 81,5 72,3

Viruses 0,0 0,0 23,8 6,0 64,3 75,0 65,5

Total 7,9 7,9 30,3 20,1 76,1 83,0 74,0

Major differences in length distribution captured by individual models are apparent only

for models 41184 and 53354, which capture longer sequences (Figure 34). As mentioned

earlier, these models almost exclusively capture plant sequences that tend to be longer.
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Figure 34. Length distribution of TPS candidate sequences captured by different SUPERFAMILY

models.

Only 71,573 sequences have both at least one Pfam and one SUPERFAMILY domain. In

contrast, in the ground-truth TPS db, 84% of sequences have both Pfam and

SUPERFAMILY hits. Therefore, sequences with only Pfam or only SUPERFAMILY model

hits may not represent very reliable matches. This limitation is reflected in the reliability

score. However, although many sequences were captured only by SUPERFAMILY models,

in most cases, multiple models captured them.

For Pfam architectures, the most common architectures are generally the ones that

were also observed for characterized sequences in TPS db (Figure 12A), just in different

frequencies. The most common architecture (34.6% from sequences with some Pfam

architecture) is a single PF00494 domain. The second most common architecture is

PF01397+PF03936 (14.8%), which is the most common architecture in the characterized

TPSs. The third most common architecture is a single PF19086 domain (10%), and the

fourth most common architecture is PF13249+PF13243 (7.6%) (which was the third most

common architecture in the characterized TPSs).

For SUPERFAMILY, the same trend was observed as for characterized TPSs, which is that

most sequences have architecture consisting of just a single domain. In the case of the

candidate sequences, that was domain 46340, while for characterized TPSs, these were

mostly domains 48261 and 53355.
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5.2 Exploration of the TPS space using phylogenetics

To visualize the sequence space, the phylogenetic tree from Chapter 4.6.2.3 is presented

here along with various annotations, including the indicators of individual Pfam and

SUPERFAMILY domains along with superkingdoms/kingdoms of origin, reliability, and

novelty scores (see attachment A.4). In the phylogenetic tree, only the representative

sequences (from 50% sequence identity clustering) are shown. The tree was annotated

and visualized in iTOL The tree is displayed, ignoring the branch lengths. It is possible to

see that sequences from the same superkingdoms and with the same domain

occurrences cluster together. It is also possible to see that some parts of the tree are

highly characterized; however, many clades lack characterized sequences, including a

large clade without characterized sequences formed mainly from metagenomic

sequences (Figure 35). The visualized tree also contains the reliability score, and it is

possible to observe that the parts that are mostly uncharacterized score lower, but on

the other hand, they score higher in the novelty score.
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Figure 35. Phylogenetic tree of TPS candidates (representative sequences after 50% sequence identity clustering) and characterized TPSs. For clarity,

the tree is displayed without branch lengths. Annotations around the phylogenetic tree include (1) TPS type for characterized TPSs, (2)

superkingdom/kingdom, (3) Pfam domain presence, (4) SUPERFAMILY domain presence, (5) reliability score (0-6), and (6) novelty score (0-4).
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5.3 Exploration of the TPS space using SSNs

To visualize the sequence space, the SSN from Chapter 4.6.2.2 is presented here, along

with various annotations (see attachment A.4). The SSN nicely visualizes which parts of

sequence space have not been explored so far (Figure 36).

Similar to the phylogenetic tree, there is a large cluster formed primarily by bacterial

and metagenomic sequences and there are numerous smaller clusters without any

characterized sequences. These parts of the TPS sequence space represent the

potential for finding novel TPSs and terpenes.

The advantage of SSN visualization is that, firstly, it can be nicely seen how densely the

clusters are connected within. Secondly, it can be nicely seen how the clusters are

related.

From the characterized sequences in the network, we can see that they cluster both

based on type (Figure 36) and kingdom/superkingdom (Figure A1). Clustering based on

kingdom/superkingdom is also observable for the uncharacterized sequences (Figure

A1).

Similarly to the phylogenetic tree, both novelty (Figure A2) and reliability (Figure A3)

scores are also visualized. Generally, the clusters containing characterized sequences

have higher reliability scores, whereas clusters without characterized sequences score

higher with novelty scores.
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Figure 36. SSN with characterized TPSs colored according to their type, revealing distinct clustering patterns corresponding to different TPS types

and uncovering unexplored regions of the TPS space.
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6. Discussion

This thesis aimed to analyze characterized terpene synthases and utilize this knowledge

to mine putative terpene synthases from large protein sequence repositories. Using

Pfam domains for TPS mining is a standard method in the field, whereas using

SUPERFAMILY domains for this purpose is less common. The employed filtering criteria,

including sequence length, the presence of functional motifs, and domain completeness,

align with established practices in the field.

The results were presented using two approaches: a phylogenetic tree and a sequence

similarity network. Phylogenetic trees represent an established method in the field,

while SSNs are a relatively newer method that has been gaining popularity in recent

years.

The mining of terpene synthases revealed over 600 thousand sequences spanning

various taxa. However, most sequences originate from metagenomes and bacteria.

Notably, the exploration using the phylogenetic tree (Figure 35) and the SSN (Figure A1)

revealed numerous large uncharacterized clades/clusters consisting mostly of bacterial

and metagenomic sequences, highlighting their potential for further investigation as

they also score high with the novelty score. Another interesting group of candidates is

archaeal candidates, as Archaea can often be found in extreme environments (Wang et

al. 2019), and there are currently no characterized archaeal TPSs in TPS db. In

Eukaryotes, putative TPSs were newly identified, for example in Bacillariophyta

(Diatoms), Nematoda (roundworms), orMollusca. In addition, classes containing putative

TPSs were newly identified, for example, in Arthropoda, Chordata, Chlorophyta,

Basidiomycota, Streptophyta, or Ascomycota. More than 70 thousand TPS candidates

were also identified in plants where the most interest could be directed using the

novelty score, or it could be directed towards candidates from species or genera where

TPSs have not been documented so far.

Although established methods were used, there are several limitations to the thesis that

are further discussed. Firstly, in Chapter 4.1.3, the precision of the individual Pfam and

SUPERFAMILY models was estimated, and models with low precision estimates were
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discarded for further usage. Still, since the precision of the models was not 100%, false

positives were likely incorporated. Subsequent filtering aimed to remove them. One of

the filtering criteria was based on the presence of conserved functional motifs, which is

a standard approach in the field. In Chapter 4.2.4, the characterized TPSs were analyzed

for the presence of functional motifs, revealing that while most contain typical

functional motifs, the majority of tri-, sesquar-, and tetraTPSs do not contain these

motifs or may contain variations that were not detected. Therefore, filtering based on

the presence of functional motifs could have potentially removed functional TPSs that

do not contain these motifs or contain variations of them.

For mining of the BFD database, only clusters where the cluster representative

contained some hit were inspected. However, this simplification may have potentially

missed some sequences.

The majority of the mined results contain only SUPERFAMILY domain hits. It is

interesting to see this big difference in the number of sequences captured by Pfam and

SUPERFAMILY and the limited overlap of the hits. Characterized TPSs typically contain

both Pfam and SUPERFAMILY domains, as shown in Chapter 4.2.1. Therefore, more

reliable candidate sequences containg both Pfam and SUPERFAMILY domains. However,

it would be interesting to experimentally test whether sequences containing only

SUPERFAMILY domains exhibit TPS activity, as most of these sequences have multiple

hits from the TPS SUPERFAMILY db.

Another limitation of using HMMs from Pfam and SUPERFAMILY is the possibility that

completely novel TPSs exist beyond the detection capabilities of these models. For

example, in insects, TPSs have evolved more recently, and their detection using Pfam

models is not possible. In TPS db, five TPSs are not detectable by any Pfam or

SUPERFAMILY model.

Compared to characterized TPSs, mined sequences tend to be shorter. Most of the

sequences originate from bacteria and metagenomes, and hence likely from bacteria.

This observation can be explained by the fact that bacteria generally produce shorter

proteins, including TPSs, as shown in Chapter 4.2.2. The characterized TPS db mainly

consists of plant TPSs having different lengths and domain architectures than TPSs
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from other kingdoms and superkingdoms, such as bacteria. Another explanation could

be that the mined sequences are fragmented.

Another potential source of caution is the quality of the sequence databases and their

annotations. Metagenomic databases may contain lower-quality data (incomplete,

fragmented etc.) compared to repositories like 1KP and Phytozome. The length filtering

removed more than 70% of initially mined sequences from the metagenomic databases,

indicating that many sequences in these databases are incomplete or fragmented.

Another risk lies in the annotations, especially the taxonomical annotations, as some

sequences could potentially originate from microbiomes or symbionts but were

erroneously assigned as the host organism.

The exploration of the sequence space employed two methods: phylogenetic tree and

SSN. Both methods have advantages and limitations, as previously discussed in chapters

2.2.1 and 2.2.2.

The construction of phylogenetic trees requires considerable expertise and poses many

challenges, especially for large and diverse datasets like the one presented here. The

primary objective of this thesis was not to conduct a comprehensive phylogenetic

analysis. Instead, the phylogenetic tree presented here serves primarily as a tool for

visualizing the relationships within the dataset. Building an MSA for this dataset is

complicated and prone to errors. The MSA was automatically trimmed, which could

possibly remove important positions. As the aim was to use the phylogenetic tree

primarily for visualization, bootstrapping for estimating the branching confidence was

omitted.

For SSN, several other challenges and limitations exist. One challenge is selecting the

threshold for connecting nodes. While the separation of characterized sequences based

on their type can be observed, uncertainty remains regarding whether this also applies

to uncharacterized sequences. Additionally, SSNs cannot capture conserved functional

residues, and the sequence identity metric cannot account for functionally similar

proteins with dissimilar sequences.
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To address these limitations of sequence identity as a similarity metric, there was an

effort to use protein embedding distances for SSN instead. However, there was not

informative enough separation into clusters (data not shown), potentially due to the low

dimensionality of the selected model's embeddings. Nonetheless, exploring more

complex models may be a promising direction for future improvement.

Additionally, while reliability and novelty scores provide valuable insights, they should

be viewed as complementary rather than definitive selection criteria. The proposed

novelty score was evaluated on TPS db to assess the correlation between the novelty

score and the count of the most unique product (see Figure 38). TPS db was split into

train (0.8) and test (0.2) sets. The train set was used to set the novelty score subscores

for the test set. This assessment of the test set revealed a weak association (Spearman’s

rank correlation -0.44), suggesting that although the novelty score offers some insight,

its ability to predict interesting products is limited.

Figure 37. Comparison of novelty score and the count of the most unique product on the test set

from TPS db.

Despite these limitations, the results presented here offer a rich source of putative

terpene synthases for various applications. One straightforward application is the
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exploration of the terpene synthase space for characterizing novel TPSs. Another

application is in machine learning, as shown in (Samusevich et al. 2024), where this

mined dataset was used to fine-tune a protein language model for TPS substrate

prediction.

Prior to this thesis, the author conducted a similar TPS mining project. Nine candidates

spanning plants, bacteria, and fungi were selected for experimental characterization

detailed in (Smrčková 2023). Among the nine candidates, five exhibited terpene synthase

activity, and from a fungal TPS, two sesquiterpenes are likely novel terpene compounds.

This highlights the potential of the data gathered in this thesis to uncover additional

novel terpene compounds.

73

https://paperpile.com/c/05oHcC/SSby
https://paperpile.com/c/05oHcC/6Kz9


Conclusions

Terpene synthases are fascinating enzymes responsible for the initial biosynthetic steps

towards terpenoids, compounds with broad applications across various fields, including

several applications in the pharmaceutical industry. The chemical synthesis of

terpenoids presents a significant challenge, highlighting the importance of terpene

synthases, which can be engineered into various host organisms to provide an

alternative method for terpene production. This thesis primarily focused on two

objectives: Firstly, to comprehensively analyze all experimentally characterized terpene

synthases with bioinformatic methods, and subsequently, to leverage this knowledge to

systematically mine large-scale sequence repositories for the discovery of novel terpene

synthases.

The sequence-guided mining conducted in this thesis is, to my best knowledge, the

largest reported effort to date, using nearly 5.5 billion sequences and identifying over

600 thousand putative novel terpene synthases spanning various taxa. The mining

revealed that bacteria and metagenomes offer a rich reservoir of putative terpene

synthases for further investigation. Furthermore, this mining led to the discovery of

putative terpene synthases in taxa where they had not been previously documented.

The resulting dataset serves as a valuable resource for the experimental

characterization of novel terpene synthases and terpenes, as demonstrated in

(Smrčková 2023). Additionally, this thesis facilitates efficient exploration of the putative

terpene synthases by using the constructed phylogenetic tree, sequence similarity

network, and two prioritization scores. Moreover, the dataset presented here can be

utilized for various machine learning applications in the area of terpene biosynthesis, as

demonstrated by the work of (Samusevich et al. 2024) on the problem of terpene

synthase substrate prediction.

This bioinformatic analysis of all characterized terpene synthases has advanced our

understanding of these enzymes. The revealed diversity of terpene synthases presents

an exciting opportunity for further research and exploration, laying the groundwork for

discovering novel terpenes.
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A. Attachments

A.1 SSN Figures
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Figure A1. SSN with sequences colored according to superkingdom/kingdom. Characterized TPSs are outlined in black.
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Figure A2. SSN with candidate sequences according to their novelty score (0=yellow, 4=purple). Characterized TPSs are colored according to their

type.
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Figure A3. SSN with candidate sequences colored according to their reliability score (0=yellow, 6=dark purple). Characterized TPSs are colored

according to their type.
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A.2 TPS db dataset

The original TPS db dataset curated by the members of Pluskal lab at IOCB Prague is

available as an annotated csv file named tps_db_original.csv. The dataset contains 2515

entries of individual reactions corresponding to 1323 proteins, including some IDSs.

This dataset was filtered and further annotated, as described in Chapter 4.2. This

resulting dataset of characterized TPSs used for the analysis is available as an annotated

csv file named tps_db.csv. The dataset contains 1025 entries corresponding to individual

TPSs and the following attributes as columns:

● id: UniProt ID or other identifier

● type: type(s) (mono/sesq/di/…)

● name: UniProt name

● sequence: amino acid sequence

● species: species

● kingdom: kingdom

● pfam_architecture: Pfam architecture as a list of consecutive domains; domains

covered by less than 50% have suffix “_partial”

● supfam_architecture: SUPERFAMILY architecture as a list of consecutive

domains; domains covered by less than 50% have suffix “_partial”

● PF06330.14� a binary indicator (1 or 0) for the presence of Pfam domain

PF06330.14

● PF01397.24� a binary indicator (1 or 0) for the presence of Pfam domain

PF01397.24

● PF03936.19� a binary indicator (1 or 0) for the presence of Pfam domain

PF03936.19

● PF00494.22� a binary indicator (1 or 0) for the presence of Pfam domain

PF00494.22

● PF13249.9� a binary indicator (1 or 0) for the presence of Pfam domain PF13249.9

● PF19086.3� a binary indicator (1 or 0) for the presence of Pfam domain PF19086.3

● PF13243.9� a binary indicator (1 or 0) for the presence of Pfam domain PF13243.9
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● 0041184� a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

0041184

● 0053354: a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

0053354

● 0053355: a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

0053355

● 0048261: a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

0048261

● 0048806: a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

0048806

● 0046340: a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

0046340

● 0047573: a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

0047573

● motifs: a list of present conserved motifs

● DDXXD: a binary indicator (True or False) for the presence of the DDXXD motif

● NSE/DTE: a binary indicator (True or False) for the presence of the NSE/DTE

motif

● DXDD: a binary indicator (True or False) for the presence of the DXDD motif

● length: length of the amino acid sequence

● tax_id: NCBI taxon ID

● lineage: taxonomic lineage based on NCBI taxon ID

● ncbi_species: species based on NCBI taxon ID

● ncbi_genus: genus based on NCBI taxon ID

● ncbi_family: family based on NCBI taxon ID

● ncbi_order: order based on NCBI taxon ID

● ncbi_class: class based on NCBI taxon ID

● ncbi_phylum: phylum based on NCBI taxon ID

● ncbi_kingdom: kingdom based on NCBI taxon ID

● ncbi_superkingdom: superkingdom based on NCBI taxon ID
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A.3 TPS candidates dataset

The final dataset of TPS candidates is available as an annotated csv file named

tps_mining_dataset.csv.

The dataset contains 606,791 entries and the following attributes as columns:

● id: id of the sequence assigned during the mining, prefix corresponds to the

source database

● record_id: original id(s) of the sequence

● record_description: the original description of the sequence when available

● length: length of the amino acid sequence

● architecture_pfam: Pfam architecture as a list of consecutive domains; domains

covered by less than 50% have suffix “_partial”

● PF06330.14� a binary indicator (1 or 0) for the presence of Pfam domain

PF06330.14

● PF01397.24� a binary indicator (1 or 0) for the presence of Pfam domain

PF01397.24

● PF03936.19� a binary indicator (1 or 0) for the presence of Pfam domain

PF03936.19

● PF00494.22� a binary indicator (1 or 0) for the presence of Pfam domain

PF00494.22

● PF13249.9� a binary indicator (1 or 0) for the presence of Pfam domain PF13249.9

● PF19086.3� a binary indicator (1 or 0) for the presence of Pfam domain PF19086.3

● PF13243.9� a binary indicator (1 or 0) for the presence of Pfam domain PF13243.9

● architecture_supfam: SUPERFAMILY architecture as a list of consecutive

domains; domains covered by less than 50% have suffix “_partial”

● 0041184� a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

0041184

● 0053354� a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

● 0053355� a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

● 0048261� a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

● 0048806� a binary indicator (1 or 0) for the presence of SUPERFAMILY domain
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● 0046340� a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

● 0047573� a binary indicator (1 or 0) for the presence of SUPERFAMILY domain

● organism: source organism

● tax_id: NCBI taxon ID

● lineage: taxonomic lineage based on NCBI taxon ID

● superkingdom: superkingdom/metagenome

● kingdom: kingdom

● phylum: phylum

● methionin: a binary indicator (1 or 0) for the presence of starting methionine

● observed_pfam_architecture: a binary indicator (1 or 0) if the Pfam

architecture was observed in TPS db

● observed_supfam_architecture: a binary indicator (1 or 0) if the SUPERFAMILY

architecture was observed in TPS db

● strongest_pfam_hit_cevalue: smallest c-evalue (from HMMER) of all TPS Pfam

db domain hits for the sequence

● strongest_pfam_hit_cevalue_neg_log_norm: normalized logarithm of

strongest_pfam_hit_cevalue

● strongest_supfam_hit_cevalue: smallest c-evalue (from HMMER) of all TPS

SUPERFAMILY db domain hits for the sequence

● strongest_supfam_hit_cevalue_neg_log_norm: normalized logarithm of

strongest_supfam_hit_cevalue

● has_pfam_hit: a binary indicator (1 or 0) for the presence of any domain from

TPS Pfam db

● has_supfam_hit: a binary indicator (1 or 0) for the presence of any domain from

TPS SUPERFAMILY db

● has_pfam_and_supfam_hit: a binary indicator (1 or 0) for the presence of any

domain from both TPS Pfam db and TPS SUPERFAMILY db

● reliability_score: reliability score with range from 0 to 6

● tax_score: taxonomic score with a range from 0 to 1

● phylo_score: phylogenetic score with a range from 0 to 1

● ssn_score: SSN score with a range from 0 to 1

● product_score: product score with a range from 0 to 1
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● novelty_score: novelty score with a range from 0 to 4

● closest_char_tps_sid: ID of closest characterized TPS from TPS db by

sequence identity

● sid: sequence identity corresponding to closest_char_tps_sid

● closest_char_tps_esm_eucl_dist: ID of closest characterized TPS from TPS

db by Euclidean distance of their ESM2 embeddings

● closest_char_tps_esm: Euclidean distance corresponding to

closest_char_tps_esm_eucl_dist

● cluster: cluster id of cluster from 50% sequence identity clustering

● sequence: amino acid sequence
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A.4 Other

A GitHub repository for this project is available at:

https://github.com/CalounovaT/TPS_mining

This repository contains a README.md file with an overview of the repository and a

packages.txt file, which contains a list of used conda and pip packages and their

versions. The repository is organized into three subdirectories corresponding to

different parts of this thesis:

- 01_tps_db_analysis (Chapter 4.2):

https://github.com/CalounovaT/TPS_mining/tree/main/01_tps_db_analysis

- 02_mining (Chapter 4.3 and Chapter 4.4):

https://github.com/CalounovaT/TPS_mining/tree/main/02_mining

- 03_mining_analysis (Chapter 4.5, Chapter 4.6, and Chapter 5):

https://github.com/CalounovaT/TPS_mining/tree/main/03_mining_analysis

Each subdirectory contains a README.md file with a description, a Snakefile file, which

was used to process and generate data, and other additional scripts and files.

Directories 01_tps_db_analysis and 03_mining_analysis also contain a subdirectory

notebooks with various Python and R notebooks used to analyze data and create plots.

Lastly, the phylogenetic tree from chapters 4.6.2.3 and 5.2 is available in the directory

03_mining_analysis/phylogenetic_tree, along with instructions for its visualization.

https://github.com/CalounovaT/TPS_mining/tree/main/03_mining_analysis/phylog

enetic_tree

Similarly, the SSN from chapters 4.6.2.2 and 5.3 is available in the directory

03_mining_analysis/SSN, along with Cytoscape session files where the SSN is

annotated and colored.

https://github.com/CalounovaT/TPS_mining/tree/main/03_mining_analysis/SSN)
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