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Introduction

Approximation theory traces its origins back to Reinhold Baer’s 1940 discovery
of the injective hull of a “group with operators”. Since the late 1950s, injec-
tive envelopes, projective covers as well as pure-injective envelopes, have suc-
cessfully been used in module theory of arbitrary rings. The general theory of
preenvelopes and precovers (or left and right approximations) of modules was
developed through independent research by Auslander, Reiten, and Smalø in the
finite-dimensional case, and by Enochs and Xu for arbitrary modules.

It’s worth noting that decomposability of classes of modules in homological
algebra is typically rare. Essentially, decomposability is available only for projec-
tive modules, and for injective modules over right noetherian rings. On the other
hand, deconstructible classes [41, 2.4] are abundant, and the deconstructibility
leads to approximations of modules. With these approximations, one can per-
form relative homological algebra, where projective and injective modules are
replaced by other classes of modules that better fit the specific settings under
consideration.

A well-known result of Bass states that non-right perfect rings R are charac-
terized by the existence of countably presented flat (right R-) modules that are
not projective [4, 28.4]. Although projective modules can be decomposed into
direct sums of countably generated submodules [4, 26.2], the situation is less
straightforward for flat modules, as only a deconstruction theorem is available:
if κ = cardR + ℵ0, then each flat module M can be deconstructed into a trans-
finite extension of ≤ κ-presented flat modules [27, 6.17]. That is, M possesses
a continuous increasing chain of submodules, (Mα |α ≤ σ), such that M0 = 0,
Mσ = M , and for each α < σ, Mα+1/Mα is a ≤ κ-presented flat module.

When answering Grothendieck’s question concerning the Zariski locality of the
notion of a vector bundle, Raynaud and Gruson introduced the intermediate
class of (absolute) flat Mittag-Leffler modules, denoted by FM, in their work
[38]. Recall that a module M is Mittag-Leffler, if for each family I = (Qi| i ∈ I)
of left R-modules, the canonical group homomorphism φM,I : M ⊗R

∏︁
i∈I Qi →∏︁

i∈IM ⊗R Qi is monic (see the next chapter for unexplained terminology).
Let P and F denote the classes of all projective and flat modules, respectively. If

R is not right perfect, then P ⊊ FM ⊊ F . These classes are closed under trans-
finite extensions, however, unlike P and F , the class FM is not deconstructible
[27, 10.13]. Nonetheless, between P and F , there exists an abundant supply of
deconstructible classes closed under transfinite extensions: as κ varies over all in-
finite cardinals, the classes FMκ, which consist of κ-restricted flat Mittag-Leffler
modules (= transfinite extensions of ≤ κ-presented flat Mittag-Leffler modules),
form a strictly increasing chain (FMκ | ℵ0 ≤ κ) between P and FM [45]:
P = FMℵ0 ⊊ FMℵ1 ⊆ · · · ⊊ FMκ ⊊ FMκ+ ⊊ · · · ⊊ ⋃︁

ℵ0≤κFMκ = FM.
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For each κ ≥ ℵ0, the class FMκ is obviously deconstructible, and hence precov-
ering [27, 7.21], but the class FM fails these properties [41, 3.3].

If R is not right perfect, the classes of flat relative Mittag-Leffler modules pro-
vide a rich intermediate structure between the classes FM and F . These are
obtained by restricting the choice of the families I in the definition above: if
Q is any class of left R-modules, then a module M is Q-Mittag-Leffler, if the
canonical group homomorphism φM,I is monic for each family I = (Qi | i ∈ I)
which consists of modules from Q. Following [31], we will use DQ to denote the
class of all flat Q-Mittag-Leffler modules. Thus, if Q′ ⊆ Q, we get the following
inclusions

FM = D
R–Mod ⊆ DQ ⊆ DQ′ ⊆ F .

While there exists a proper class of classes Q ⊆ R–Mod, there is only a set of
different classes DQ. As proved by Rothmaler [39, 2.2], DQ = DDef Q where DefQ
is the definable closure of Q, that is, the least class of left R-modules containing Q
and closed under direct products, direct limits, and pure submodules. Moreover,
if R ∈ Q, then the structure of the class DQ is completely determined by the
countably presented modules in DQ. Therefore, if R ∈ Q′, then DQ = DQ′ , iff
DQ and DQ′ contain the same countably presented modules, [12, 2.5]. Regarding
the approximation properties of flat relative Mittag-Leffler modules, the situation
is similar to the absolute case: the class DQ is precovering only if it coincides with
the class of all flat modules [12, 2.6].

Another key aspect to highlight is the application of large cardinal principles in
approximation theory, notably the Vopěnka’s Principle. A recent application of
this principle to approximation theory has been discussed in [14]: If Vopěnka’s
Principle is consistent, then it is also consistent that each cotorsion pair over any
right hereditary ring is complete. However, by [17], it is consistent with ZFC that
the Whitehead cotorsion pair (⊥Z, (⊥Z)⊥) is not complete.

The core of this thesis consists of three papers, the first of which has already
been published online:

(i) A. Ben Yassine, J. Trlifaj, Flat relative Mittag-Leffler modules and ap-
proximations, J. Algebra and Its Appl., DOI: 10.1142/S0219498824502190,
arXiv:2110.06792v2.

(ii) A. Ben Yassine, J. Trlifaj, Flat relative Mittag-Leffler modules and Zariski
locality, submitted to J. of Pure and Applied Algebra, arXiv:2208.00869v2.

(iii) A. Ben Yassine, J. Trlifaj, Dualizations of approximations, ℵ1-projectivity,
and Vopěnka’s Principles, submitted to Applied Categorical Structures,
arXiv:2401.11979v1.

Before introducing the contents of these three papers, the first chapter will gather
relevant aspects of approximation theory. Additionally, it will cover basic proper-
ties of (flat) Mittag-Leffler modules, quasi-coherent sheaves, Zariski locality and
the Vopěnka’s principles. This is done to ensure completeness and improve the
readability of the following chapters.

Paper (i) investigates the structure and approximation properties of the class
DQ in dependence on Q. We prove that the classes DQ are determined by their
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countably presented modules. Additionally, we show that approximation proper-
ties of DQ depend completely on whether there exists a Bass module N /∈ DQ.
In the final section, we apply these results to the particular setting of Q = {R},
i.e., to the f-projective modules.

Concerning the second paper (ii), the aim is to refine the classic result on the as-
cent and descent of flat Mittag-Leffler modules to the relative setting and prove
Zariski locality of the corresponding notions of flat quasi-coherent sheaves. In
particular, we prove the Zariski locality of the notion of a locally f-projective
quasi-coherent sheaf for all schemes, and for each n ≥ 1, of the notion of an
n-Drinfeld vector bundle for all locally noetherian schemes.

Finally, in (iii), we consider general approximation classes of modules and inves-
tigate if, and how, dualizations are possible assuming additional closure properties
for these classes. While certain results can be straightforwardly dualized by em-
ploying dual arguments, other require the use of large cardinal principles, namely,
Vopěnka’s Principles. Flat Mittag-Leffler modules appear also in this context, as
they yield limits for dualizations.

A brief note about the structure of the thesis: each of the four chapters has its
own bibliography at the end. Therefore, any citation in square brackets refers
to the list of references at the end of the chapter in which it appears. Despite
the fact that the thesis is a collection of individual papers, it has a consistent
numbering of chapters, sections, and theorems.
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Chapter 1

Preliminaries and Main
Theorems

The reader is supposed to be familiar with basic notions of module theory (see
for instance [4]). The aim of this chapter is to present some basic and classi-
cal results concerning approximation theory, Mittag-Leffler modules and quasi-
coherent sheaves which will be needed in the next chapters.

1.1 Introduction to approximation theory
In this section, we recall the basics of approximation theory for module categories
over any associative ring with unit. We introduce preenvelopes and precovers and
their minimal versions, envelopes and covers.

Many of the results presented in this section have been known for decades;
they have contributed significantly to progress of the general theory and proved
essential for the recent applications discussed in the upcoming chapters.

Let R be an associative and unital ring. By Mod–R we denote the category of
all unitary right R-modules. When referring to a module without specifying the
side and/or the ring, we consistently mean a right R-module. At times, duality
will also take us to the category of all left R-modules, which is denoted by R–Mod.

Throughout this chapter, we denote the class of all projective modules by P ,
the class of all injective modules by I, and the class of all flat modules by F .

1.1.1 Basic tools: direct and inverse limits
Direct and inverse limits are among the main constructions that yield new mod-
ules from classes of modules whose structure is already known.

For example, flat modules are obtained as direct limits of direct systems of
finitely generated free modules. Let us now recall the general construction:

A partially ordered set (I,≤) is upper directed, provided that for all i, j ∈ I,
there exists k ∈ I, such that i ≤ k and j ≤ k.

Definition 1.1.1. Given an upper directed set (I,≤), a system D = (Mi, fji | i ≤
j ∈ I) is a direct system of modules, provided that Mi(i ∈ I) are (right R-)
modules and fji(i ≤ j ∈ I) are R-homomorphisms, such that fji : Mi → Mj for
i ≤ j ∈ I, fii = idMi

, for all i ∈ I and fki = fkjfji, whenever i ≤ j ≤ k ∈ I.
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Viewing D as a diagram in the category of all right R-modules, we can form its
colimit (M, fi | i ∈ I). In particular, M is a module, and fi ∈ HomR(Mi,M)
satisfies fi = fjfji for all i ≤ j ∈ I. This colimit (or sometimes just the module M
itself) is called the direct limit of the direct system D. It is denoted by lim−→i∈IMi

(or just lim−→D).
More precisely, the colimit is a cocone admitting the following universal property:
for each cocone (M ′, f ′

i | i ∈ I) there is a unique homomorphism g : M → M ′

such that gfi = f ′
i for each i ∈ I.

M ′

M

Mi Mj

g

fji

fi

f ′
i

fj

f ′
j

Dually, we define inverse limits of inverse systems of (right R-) modules. In
this thesis, we will employ them mainly to define and investigate properties of
Mittag-Leffler systems and Mittag-Leffler modules.

Definition 1.1.2. For an upper directed set (I,≤), a system V = (Ni, fij | i ≤
j ∈ I) is an inverse system of modules, provided that Ni is a (right R-) module,
fij ∈ HomR(Nj, Ni), fii = idNi

, and fik = fijfjk for all i ≤ j ≤ k ∈ I.
Let (N, fi(i ∈ I)) be the limit of V viewed as a diagram in the category Mod–R.
So M is a module, and fi ∈ HomR(N,Ni) satisfies fi = fijfj for all i ≤ j ∈ I.
This limit (or just the module M itself) is called the inverse limit of the inverse
system V and denoted by lim←−i∈I Ni.
Specifically, the limit is a cone with the following universal property: for each
cone (N ′, f ′

i(i ∈ I)) there is a unique homomorphism h : N ′ → N such that
fih = f ′

i for each i ∈ I.

N ′

N

Nj Ni

f ′
j f ′

i

h

fj fi

fij

Remark 1. In category theoretic language, direct limits are usually called filtered
colimits, and inverse limits are the filtered limits. Since we deal with modules
here, we stick to the terminology common in algebra.

1.1.2 Envelopes and covers
Let C be a class of R-modules. Throughout this section, we assume that C is
closed under direct summands and isomorphic images.

Definition 1.1.3. For an R-module M , a module C ∈ C is called a C -envelope
of M if there is a homomorphism φ : M → C such that the following hold:
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(1) For any homomorphism φ′ : M → C ′ with C ′ ∈ C , there is a homomor-
phism f : C → C ′ with φ′ = fφ:

M C

C ′.

φ

φ′
f

In other words, HomR(C,C ′)→ HomR(M,C ′)→ 0 is exact for any C ′ ∈ C ;

(2) If an endomorphism f : C → C is such that φ = fφ, then f must be an
automorphism.

If condition (1) is satisfied, and possibly not (2), we call φ : M → C a C -
preenvelope.
For simplicity, we sometimes refer to C or the map φ as a C -envelope (preenve-
lope) of M . We say that C is a preenveloping class, (enveloping class) provided
that each module has a C -preenvelope (C -envelope).
Note that if M → C is a C -preenvelope and if S ⊆ M is a direct summand of
M , then S → M → C is a C -preenvelope of S. One can also prove easily that
if φ1 : M → C1 and φ2 : M → C2 are two different C -envelopes of M , then
C1 ∼= C2.

Example 1.1.4. (i) The embedding M ↪→ E(M) where E(M) is the injective
hull of M is evidently the I-envelope of a module M .

(ii) A module M is pure-injective, provided that M is injective with respect to
pure embeddings, that is, HomR(f,M) : HomR(B,M) → HomR(A,M) is
surjective for each pure embedding f : A ⊆ B. Let PI be the class of all
pure-injective modules and let PE(M) be the pure-injective hull of M (cf.
[33, Chapter 7]). Then M → PE(M) is the PI-envelope of M .

Hence, the classes I and PI are enveloping classes of modules.

Proposition 1.1.5. [48, Proposition 1.2.2] Let M be an R-module. Assume that
M has a C -envelope and let φ : M → C be a C -preenvelope. Then, there exist
submodules D and K such that C = D ⊕K, and the composition M → C → D
is a C -envelope.

Proposition 1.1.6. [48, Corollary 1.2.3] Let M be an R-module. Assume that
M has a C -envelope, and let φ : M → C be a C -preenvelope. Then, φ is an
envelope if and only if there is no direct sum decomposition C = D ⊕ K with
K ̸= 0 and im(φ) ⊆ D.

Dually, we have the following definition and properties for C -covers.

Definition 1.1.7. For an R-module M , a module C ∈ C is called a C -cover of
M if there is a homomorphism φ : C →M such that the following hold:

(1) For any homomorphism φ′ : C ′ → M with C ′ ∈ C , there exists a homo-
morphism f : C ′ → C with φ′ = φf :
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C M

C ′

φ

φ′
f

or equivalently, HomR(C ′, C)→ HomR(C ′,M)→ 0 is exact for any C ′ ∈ C ;

(2) If f is an endomorphism of C with φ = φf , then f must be an automor-
phism.

If condition (1) is satisfied, and possibly not (2), we call φ : C → M a C -
precover.

A C -cover (precover) is not necessarily surjective. Moreover, if C → M is a
C -precover of M , and M → S is the projection of M onto a direct summand S
of M , then C → M → S is a C -precover of S. Additionally, one can show that
if φi : Ci →M , i = 1, 2, are two C -covers, then C1 ∼= C2.

We say that C is a precovering class, (covering class) provided that each module
has a C -precover (C -cover).
Remark 2. These definitions were given close in time by Auslander and Smalø in
[7] in the setting of finitely generated modules over artin algebras and by Enochs
in [21] for arbitrary modules. However Auslander and Smalø used the terminology
of minimal right and minimal left approximations instead of covers and envelopes,
respectively.

Example 1.1.8. Since every module is a homomorphic image of a projective
module, each module M admits a P-precover. Moreover, M has a P-cover if and
only if it has a projective cover in the sense of Bass. Therefore, P is always a
precovering class, and it is a covering class, if and only if R is a right perfect ring.
See Theorem 1.1.18 below for more details.

One of our main interests is to determine for which classes C , C -covers exist.

Proposition 1.1.9. [48, Theorem 1.2.7] Let M be an R-module and assume that
M has a C -cover. Let φ : C → M be a C -precover. Then C = D ⊕K for some
submodules D and K such that the restriction φ|D : D → M gives rise to a
C -cover of M and K ⊆ ker(φ).

Proposition 1.1.10. [48, Corollary 1.2.8] Let M be an R-module and assume
that M has a C -cover. Then a C -precover φ : C → M is a cover if and only if
there is no nonzero direct summand K of C contained in ker(φ).

We list some essential closure properties related to covering and enveloping
classes:

Lemma 1.1.11. [44, Lemma 9.13] Let R be a ring and C be a class of modules
closed under isomorphisms. Let C ∈ C and D ⊕ E = C.

(i) Assume that D has a C -cover. Then D ∈ C .
So if C is covering, then C is closed under direct summands.

(ii) Assume that D has a C -envelope. Then D ∈ C .
So if C is enveloping, then C is closed under direct summands.
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Lemma 1.1.12. [44, Lemma 9.14] Let R be a ring and C be a class of modules
closed under isomorphisms and direct summands.

(i) Assume that C is precovering. Then C is closed under direct sums.

(ii) Assume that C is preenveloping. Then C is closed under direct products.

Corollary 1.1.13. Let R be a ring and C be a class of modules closed under
isomorphisms.

(i) Assume that C is covering. Then C is closed under direct summands and
direct sums.

(ii) Assume that C is enveloping. Then C is closed under direct summands and
direct products.

Up to this point, our discussion has evolved around envelopes and covers in a
general sense. Now, we shift our focus to examine important specific examples.

Definition 1.1.14. An injective module I is called an injective envelope of M if
M can be essentially embedded into I, i.e., there is an injection φ : M → I such
that Im (φ) ∩K = 0 for any submodule K of I only if K = 0.

Over any ring, Eckmann and Schopf [15] showed that every module M pos-
sesses an injective envelope, denoted by E(M). This result, along with Matlis’
structure theorem for injective modules [35], has played a crucial role in homo-
logical algebra and its application in commutative algebra (see [24, 43, 36]). The
following illustrates the consistency between the notion of an injective envelope
and the notion of an I-envelope.

Proposition 1.1.15. [48, Theorem 1.2.11] Let M be an R-module, and let I ∈ I.
Then the following assertions are equivalent:

(i) φ : M → I is an I-envelope;

(ii) φ : M → I is an injective envelope in the Eckmann-Schopf’s sense.

Bass [8] introduced projective covers as the duals of injective envelopes. Sur-
prisingly, the existence of projective covers is rather uncommon and requires the
ring to be right perfect.

Definition 1.1.16. (1) For an R-module M , a submodule S ⊆ M is said to
be small or superfluous if for any submodule D ⊆ M , S + D = M implies
D = M . This is denoted by S << M .

(2) Let P be a projective R-module. A surjective homomorphism φ : P → M
is called a projective cover if ker(φ) << P .

The following result shows the consistency between projective covers and P-
covers.

Proposition 1.1.17. [48, Theorem 1.2.12] Let M be an R-module, and let P ∈
P. Then the following assertions are equivalent:
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(i) φ : P →M is a P-cover;

(ii) φ : P →M is a projective cover.

Next, we present Bass’ Theorem P [8], which addresses the existence of pro-
jective covers. A ring R is said to be right perfect if every R-module admits a
projective cover. For additional terminology used in Bass’ Theorem, we refer to
[8] or [34].

Theorem 1.1.18. [8, Theorem P] Let R be an associative ring and let J be its
Jacobson radical. Then, the following statements are equivalent:

(1) R is right perfect;

(2) R/J is semisimple and J is right T -nilpotent;

(3) R/J is semisimple and every nonzero R-module has a maximal submodule;

(4) Every flat R-module is projective;

(5) R satisfies the descending chain condition (DCC) for principal left ideals;

(6) Any direct limit of projective R-modules is projective.

1.1.3 Existence of left and right approximations
Assume the class C is as previously defined. We say that C is closed under
extensions provided that for every short exact sequence of R-modules :

0→ A→ B → C → 0

if both A and C are in C , then B ∈ C . For instance, P , I, and F are closed
under extensions.

Definition 1.1.19. Let C be a class of R-modules. We have the two associated
classes:

C ⊥ = {N ∈ R–Mod | Ext1
R(C,N) = 0, C ∈ C }

⊥C = {N ∈ R–Mod | Ext1
R(N,C) = 0, C ∈ C }

C ⊥ is called the right orthogonal class of C , while ⊥C is called the left orthogonal
class of C .

Regarding the orthogonal operations mentioned above, one interesting ques-
tion is when the following holds true:

C = ⊥(C ⊥) or C = (⊥C )⊥.

i.e., (C ,C ⊥) or (⊥C ,C ) form a cotorsion pair in the sense of the next section.

It is clear that P⊥ = R–Mod, and ⊥(P⊥) = P . Similarly, we have ⊥I = R–Mod
and (⊥I)⊥ = I.
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Remark 3. The orthogonal operations are very handy for describing modules. For
instance, let FI denotes the class of all fp-injective (or absolutely pure) modules,
i.e., modules M that are pure submodules of every module containing them as
submodules. It is well known that M is fp-injective if and only if Ext1

R(N,M) = 0
for all finitely presented modules N . Hence, FI = F⊥

P , where FP is the class of all
finitely presented R-modules. On the other hand a finitely generated R-module
is finitely presented if and only Ext1

R(N,M) = 0 for all fp-injective modules M
(see Enochs [19] or Glaz [26, Theorem 2.1.10]).

Let us go back to C -covers and envelopes.

Definition 1.1.20. Let M be an R-module.

(i) A C -preenvelope φ : M → C of M is called special, provided that φ is
injective and Coker(φ) ∈ ⊥C . In other words, a special C -preenvelope φ of
M is a morphism that fits into a short exact sequence

0→M
φ−→ C → D → 0

with C ∈ C and D ∈ ⊥C . Indeed, such φ is always a C -preenvelope,
since for each C ′ ∈ C , Ext1

R(D,C ′) = 0 implies that the abelian group
homomorphism HomR(φ,C ′) : HomR(C,C ′)→ HomR(M,C ′) is surjective.

(ii) A C -precover ψ : C →M ofM is called special, provided that ψ is surjective
and Ker(ψ) ∈ C ⊥. Again, a special C -precover ψ of M is just a map that
fits into a short exact sequence

0→ B → C
ψ−→M → 0

where C ∈ C and B ∈ C ⊥.

If C is a class of modules such that each module M has a special C -preenvelope
(special C -precover), then C is called special preenveloping (special precovering).

The next two results are referred to as Wakamatsu’s Lemmas.

Lemma 1.1.21. [48, Lemma 2.1.1] Let M be an R-module, and let φ : C →M
be a C -cover of M . Assume that C is closed under extensions. Let K = ker(φ).
Then Ext1

R(C ′, K) = 0 for any C ′ ∈ C . In particular, each injective C -envelope
of M is special.

Lemma 1.1.22. [48, Lemma 2.1.2] Let M be an R-module, and let φ : M → C
be a C -envelope of M . Assume that C is closed under extensions. Let D =
Coker(φ). Then Ext1

R(D,C ′) = 0 for all C ′ ∈ C . In particular, each surjective
C -cover of M is special.

Definition 1.1.23. Let C be a class of R-modules, and let M be an R-module.
Let Ext(C ,M) denote the class of all extensions of M by C . An extension
0→M → E → C → 0 with C ∈ C is called a generator for Ext(C ,M) if for any
extension 0→M → E ′ → C ′ → 0 with C ′ ∈ C , there is a commutative diagram:

0 M E ′ C ′ 0

0 M E C 0

g f
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Furthermore, such a generator is said to be minimal provided that any commu-
tative diagram

0 M E C 0

0 M E C 0

g f

always implies that f is an automorphism (so that g is too).

Note that if 0→M → E → C → 0 is a generator for Ext(C ,M) and

0 M E C 0

0 M E ′′ C ′′ 0

g f

is a commutative diagram with exact rows and C ′′ ∈ C , then 0 → M → E ′′ →
C ′′ → 0 is also a generator.

Example 1.1.24. For a given R-module M , any exact sequence 0→M → I →
L → 0 with I injective gives a generator for Ext(Mod-R,M). Moreover if I is
the injective envelope of M , then this generator is minimal.

In the following, we will see that the existence of a generator (resp. minimal
generator) is merely related to the existence of a C ⊥-preenvelope (resp. C ⊥-
envelope), for a given class C .

Proposition 1.1.25. [48, Proposition 2.2.1] Assume that the class C is closed
under extensions, and assume that 0→M → K → C → 0 is a minimal generator
for Ext(C ,M), then K ∈ C ⊥.

When having a generator, we aim to find the minimal one. The following
theorem is one important result of this section:

Theorem 1.1.26. [48, Theorem 2.2.2] Assume that the class C is closed under
direct limits. If for an R-module M , Ext(C ,M) has a generator, then there must
be a minimal generator.

The proof can be given through the following three lemmas, which are listed
here for the sake of completeness (the main ingredients were first presented by
Enochs, see [21]).

Lemma 1.1.27. [48, Lemma 2.2.3] Assume the class C is closed under direct
limits. For an R-module M , if 0 → M → N → C → 0 is a generator for
Ext(C ,M), then there is a generator 0→M → N ′ → C ′ → 0 and a commutative
diagram

0 M N C 0

0 M N ′ C ′ 0

g f

such that for any generator 0 → M → N ′′ → C ′′ → 0 and for any commutative
diagram with exact rows
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0 M N C 0

0 M N ′ C ′ 0

0 M N ′′ C ′′ 0

g f

h p

we have that ker(g) = ker(hg).

Lemma 1.1.28. [48, Lemma 2.2.4] Assume the class C is closed under direct
limits. If there exists a generator 0 → M → N → C → 0 for Ext(C ,M),
then there is a generator 0 → M → N ′ → C ′ → 0 such that for any generator
0→M → N ′′ → C ′′ → 0 and any commutative diagram

0 M N ′ C ′ 0

0 M N ′′ C ′′ 0

g f

g must be injective.

Lemma 1.1.29. [48, Lemma 2.2.5] Assume the class C is closed under direct
limits. If 0 → M → N → C → 0 is a generator having the property stated in
Lemma 1.1.28, then it is a minimal generator.

Using Proposition 1.1.25 and Theorem 1.1.26, one can notice an explicit link
between minimal genrators and envelopes, serving as a bridge between these
different subjects:

Theorem 1.1.30. [48, Theorem 2.2.6] Assume the class C is closed under ex-
tensions and under direct limits. For a given R-module M , if Ext(C ,M) has a
generator, then M admits a C ⊥-envelope.

Equivalently,

Theorem 1.1.31. [27, Theorem 5.27] Let R be a ring and M be an R-module.
Let C be a class of modules closed under direct limits. Assume moreover that
C is closed under extensions, and that M has a monic C ⊥-preenvelope φ with
Coker(φ) ∈ C . Then M has a C ⊥-envelope.

The preceding results have dual versions:

Proposition 1.1.32. [48, Proposition 2.2.7] Assume C is closed under exten-
sions and let M be an R-module. If φ : C → M is a C -cover of M , then
ker(φ) ∈ C ⊥.

Theorem 1.1.33. [48, Theorem 2.2.8] Assume C is closed under direct limits
and let M be an R-module. If M has a C -precover, then M has a C -cover.

The proof is similar to that of Theorem 1.1.26. The three required steps are
analogous to Lemmas 1.1.27–1.1.29.

14



Lemma 1.1.34. [48, Lemma 2.2.9] Assume C is closed under direct limits. If
C → M is a C -precover of M , then there is a precover C ′ → M and a commu-
tative diagram

C M

C ′ M

g

such that for any precover C ′′ →M and any commutative diagram

C ′ M

C ′′ M

h

we have ker(hg) = ker(g).

Lemma 1.1.35. [48, Lemma 2.2.10] Assume C is closed under direct limits. If
M has a C -precover, then there is a precover C ′ →M such that for any precover
C ′′ →M and any commutative diagram

C ′ M

C ′′ M

h

h must be an injection.

Lemma 1.1.36. [48, Lemma 2.2.11] If C is closed under direct limits and C →
M is a C -precover of M satisfying the condition of Lemma 1.1.35, then C →M
is a C -cover of M .

1.1.4 Cotorsion pairs and approximations
The notion of a cotorsion pair, as presented below, yields a duality between special
preenvelopes and precovers.

Definition 1.1.37. (1) Let A,B ⊆ Mod–R. The pair (A,B) is called a cotor-
sion pair (or a cotorsion theory), if A = ⊥B and B = A⊥.

(2) Let L be a class of modules. Then L ⊆ ⊥(L ⊥) as well as L ⊆ (⊥L )⊥.
Moreover, GL = (⊥(L ⊥),L ⊥) and CL = (⊥L , (⊥L )⊥) are easily seen
to be cotorsion pairs, called the cotorsion pairs generated and cogenerated,
respectively, by the class L . When L consists of a single module L, we
will use ⊥L and L⊥ instead of ⊥{L} and {L}⊥, respectively.

(3) If C = (A,B) is a cotorsion pair, then the class KC = A ∩ B is called the
kernel of C. Note that each element K of the kernel is a splitter (or an
exceptional module), that is, K satisfies Ext1

R(K,K) = 0.

Replacing Hom(= Ext0) with Ext1, cotorsion pairs can be considered analo-
gous to the classical (non-hereditary) torsion pairs.
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Definition 1.1.38. For a class of (right resp. left) R-modules, L , we define

L ⊤ = Ker Tor1
R(L,−) = {N ∈ R–Mod | Tor1

R(L,N) = 0 for all L ∈ L },

resp.
⊤L = Ker Tor1

R(−, L) = {N ∈ Mod–R | Tor1
R(N,L) = 0 for all L ∈ L },

(A,B) is called a Tor-pair, if A = ⊤B and B = A⊤. As Tor commutes
with direct limits, both A and B are closed under direct limits. If necessary, for
simplification, we will use A⊤ and ⊤B instead of {A}⊤ and ⊤{B}, respectively,
where A ∈ Mod–R and B ∈ R–Mod.

Let Bc be the character module of B, defined as HomZ(B,Q/Z). The following
result holds:

Lemma 1.1.39. [27, Lemma 5.17] Let R be a ring and (A,B) be a Tor-pair.
Then D = (A,A⊥) is a cotorsion pair. Moreover, D = CL , where L = {Bc | B ∈
B} ⊆ PI.

Before presenting examples of cotorsion pairs, we start by defining some key
notions:

Definition 1.1.40. Let R be a ring, Q be its maximal left quotient ring and M
be a left R-module.

(1) An element r ∈ R is called a non-zero-divisor if, for every r′ ∈ R, the
conditions r · r′ = 0 or r′ · r = 0 imply that r′ = 0.
We say that M is torsion-free if Tor1

R(R/rR,M) = 0 for each non-zero-
divisor r ∈ R.

(2) M is called Matlis cotorsion if Ext1
R(Q,M) = 0.

(3) M is called Enochs cotorsion if Ext1
R(F,M) = 0 for all flat modules F .

(4) M is called Warfield cotorsion if Ext1
R(T,M) = 0 for all torsion-free modules

T .

We will denote by T F , MC, EC, and RC the classes of all torsion-free, Matlis
cotorsion, Enochs cotorsion, and Warfield cotorsion modules, respectively.

Example 1.1.41. (i) Consider the case presented in Lemma 1.1.39, where
A = F and B = R–Mod. Then (F , EC) forms a cotorsion pair, known
as the Enochs cotorsion pair. In this case, EC = F⊥ represents the class of
all Enochs cotorsion modules, as defined in Definition 1.1.40(3).
Lemma 1.1.39 implies that the Enochs cotorsion pair is cogenerated by the
class of all dual modules, and hence by the class PI as well. In particular,
we have PI ⊆ EC too.

(ii) An additional interesting case arises when A = T F , where T F = ⊤L and
L represents the set of all cyclically presented left R-modules. We recall
that a left R-module M is called cyclically presented if it can be expressed
as R/Rr, where either r = 0 or r ∈ R is a non-zero-divisor.
The elements of T F are the torsion-free modules in the sense of Definition
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1.1.40(1). By Lemma 1.1.39, the pair (T F ,RC) forms a cotorsion pair,
known as the Warfield cotorsion pair. In this case, RC = T F⊥ consists of
all Warfield cotorsion modules, as defined in Definition 1.1.40(4).

Obviously, P ⊆ F ⊆ T F , so I ⊆ RC ⊆ EC for any ring R.

We now shift our focus to approximations arising from cotorsion pairs.

Lemma 1.1.42. [27, Corollary 5.19] Let R be a ring and (A,B) be a cotorsion
pair. If A is a covering class, then A is special precovering. Similarly, if B is an
enveloping class, then B is special preenveloping.

Thanks to the notion of a cotorsion pair, Salce [40] discovered that special
precovers and special preenvelopes go hand in hand, offering a remedy for the
problem of not having duality involving all modules over a ring:

Lemma 1.1.43. [27, Lemma 5.20] Let R be a ring and C = (A,B) be a cotorsion
pair of modules. The following statements are equivalent:

(1) Every module has a special A-precover.

(2) Every module has a special B-preenvelope.

Cotorsion pairs satisfying the equivalent conditions of the previous lemma,
also known as Salce Lemma, are called complete.

Definition 1.1.44. Let R be a ring and C = (A,B) be a cotorsion pair.

(i) C is called perfect, provided that A is a covering class and B is an enveloping
class.

(ii) C is called closed, provided that A = lim−→A, that is, the class A is closed
under forming direct limits in Mod–R.

Using Theorems 1.1.31 and 1.1.33, we obtain:

Corollary 1.1.45. [27, Corollary 5.32] Let C = (A,B) be a complete and closed
cotorsion pair. Then C is perfect.

The following theorem, presented in [18], proves the abundance of complete
cotorsion pairs. Similar reasoning has been applied in homotopy theory since
Quillen’s fundamental work [37] known as the small object argument.

Theorem 1.1.46. [27, Theorem 6.11] Let S be a set of modules.

(1) Let M be a module. Then there is a short exact sequence

0→M → A→ B → 0,

where A ∈ S⊥ and B is S-filtered. In particular, M → A is a special
S⊥-preenvelope of M .

(2) The cotorsion pair (⊥(S⊥),S⊥) is complete.
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Definition 1.1.47. Let R be a domain, Q be the quotient field of R and let M
be an R-module. We say that M is strongly flat, provided that Ext1

R(M,N) = 0
for each Matlis cotorsion module N .

Denote by SF the class of all strongly flat modules. Then, we have SF =
⊥MC. Clearly, any projective module and any divisible torsion-free module is
strongly flat. Since Q is a flat module (namely the localisation of R at 0), we
have

I ⊆ RC ⊆ EC ⊆MC

and hence

P ⊆ SF ⊆ F ⊆ T F

for any domain R.
By Theorem 1.1.46, (SF ,MC) is a complete cotorsion pair (generated by Q).

This cotorsion pair is called the Matlis cotorsion pair. Note that Mod–Q (= the
class of all divisible torsion-free R-modules) is a subclass of Mod–R closed under
extensions and direct limits and (Mod–Q)⊥ =MC. Therefore, Theorems 1.1.46
and 1.1.31 directly imply:

Lemma 1.1.48. [27, Corollary 7.42] Assume R is a domain. Then each module
admits an MC-envelope and a special SF-precover.

1.1.5 Enochs’ Conjecture and some well-known examples
The converse of Theorem 1.1.31 fails in general. A counterexample illustrating
this point is provided.

Example 1.1.49. Let R be a domain that is not almost perfect, meaning SF ̸=
F (cf. [27, Theorem 7.56]). Consider C = SF . As shown earlier, C ⊥ = MC.
According to Lemma 1.1.48, C ⊥ is enveloping. However, SF is not closed under
direct limits (the closure of SF under direct limits is the class of all flat modules
F , since every projective module is strongly flat and every flat module is a direct
limit of projective modules). Specifically, if R is a Prüfer domain, then R not
being almost perfect implies that R is not Dedekind (cf. [10, Corollary 2.3 and
2.4]).

Problem 1.1.50. Does the converse of Proposition 1.1.45 hold, meaning, is every
perfect cotorsion pair closed?

Remark 4. Notice that, while A is special precovering, if and only if B is special
preenveloping for any cotorsion pair (A,B) by Lemma 1.1.43, there exist cotorsion
pairs (A,B), such that B is enveloping, butA is not covering (see Example 1.1.49).

The question whether the converse implication of Theorem 1.1.33 holds as
well is known as the Enochs’ conjecture:

Conjecture 1.1.51 (Enochs). Every covering class of modules is closed under
direct limits.
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This conjecture has been verified for various special types of classes. How-
ever, the general case of the conjecture remains an open question. In this section,
we present notable examples to provide more context. For any unexplained ter-
minology, readers are encouraged to refer to the respective theorem references
accompanying each result.

We recall that a T F -cover (precover) of M is called a torsion-free cover (pre-
cover) of M . Note that if φ : T →M is a torsion-free precover, then φ is always
surjective.

We start with the following result due to Enochs in 1963, showing that the class
T F is covering over any integral domain.

Theorem 1.1.52. [20, Theorem 1] Every module over an integral domain has a
torsion-free cover.

The flat cover conjecture below was proved in 2001 by Bican, El Bashir and
Enochs [13].

Theorem 1.1.53. [13, Theorem 3] Over any associative ring R, every R-module
has a flat cover.

In 2017, a positive answer was given by L. Angeleri Hügel, J. Šaroch and J.
Trlifaj: if A fits in a cotorsion pair (A,B) with B closed under direct limits. In
particular, when (A,B) is any tilting cotorsion pair.
Recall that the tilting cotorsion pair induced by a tilting module T is the cotorsion
pair (⊥B,B), where

B = T⊥∞ = {B ∈ Mod–R | ExtiR(T,B) = 0 for all i ≥ 1}.

Theorem 1.1.54. [6, Corollary 5.5] Let R be a ring, and C = (A,B) be a
cotorsion pair with B = lim−→B. Let K be a module such that Ker (C) = Add (K),
where Add (K) denotes all direct summands of arbitrary direct sums of copies of
K. Then the following conditions are equivalent:

(i) A = lim−→A;

(ii) every module (in B) has an A-cover;

(iii) every module in Ker(C) has a semiregular endomorphism ring;

(iv) K is Σ-pure-split;

(v) every module (in B) has a Ker (C)-cover.

It’s important to mention another significant advancement towards proving
the Enochs’ conjecture namely a paper by Bazzoni-Positselski-Št’ov́ıček in 2020
[9], which gives the following application:

Theorem 1.1.55. [9, Application 8.3] Let A be an Ab 5-category and (L ,E ) be
a cotorsion pair in A. Assume that the class of objects E ⊂ A is closed under
direct limits, and let M ∈ L ∩E be an object of the kernel. Let D ∈ lim−→Add (M)
be an object having an Add (M)-cover in A. Then D ∈ Add (M).
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We conclude this section with a more recent result due to S. Bazzoni and J.
Šaroch in 2023, assuming the following additional set-theoretic hypothesis con-
sistent with ZFC (for more details, see [11]):
Assumption (*). For each infinite regular cardinal θ, there is a proper class of
cardinals κ such that:

(i) There exists a non-reflecting stationary set E ⊆ κ+ consisting of ordinals
with cofinality θ, and

(ii) κ<θ = κ.

Theorem 1.1.56. [11, Corollary 3.5] Assume (*). Let S ⊆ Mod–R be a set.
Put A = Filt (S). Then the following conditions are equivalent:

(i) A is a covering class of modules;

(ii) A is closed under direct limits;

(iii) A is closed under direct summands and under taking direct limits of ξ-
continuous well-ordered directed systems of modules (and monomorphisms
between them) for an infinite regular cardinal ξ.

1.2 Mittag-Leffler modules
Mittag-Leffler modules can be seen in several equivalent ways that may initially
appear unrelated. In this section, we will see different facets of the same notion.

1.2.1 Mittag-Leffler conditions and modules
Grothendieck introduced the Mittag-Leffler condition for countable inverse sys-
tems as a sufficient condition for the exactness of the inverse limit functor [29].
We define the Mittag-Leffler conditions as stabilization criteria for decreasing
chains of images of inverse system maps:

Definition 1.2.1. Let D = (Di, gij | i ≤ j ∈ I) be an inverse system of modules
and let D = lim←−D = (Di, gi | (i ∈ I)) be its inverse limit.

(i) D is Mittag-Leffler, provided that for each i ∈ I there exists i ≤ j ∈ I, such
that Im gij = Im gik for each j ≤ k ∈ I. That is, the terms of the decreasing
chain (Im gik | i ≤ k ∈ I) of submodules of Di stabilize.

(ii) D is strict Mittag-Leffler, provided that for each i ∈ I there exists i ≤ j ∈ I,
such that Im gij = Im gi.

We recall a well-known characterization by Lenzing that concerns finitely gen-
erated and finitely presented modules M . This characterization is based on the
properties of the tensor product functor M ⊗R −.

For each module M and each sequence Q = (Qi | i ∈ I) of left R-modules, we
let φM,Q denote the abelian group homomorphism

φM,Q : M ⊗R
∏︁
i∈I Qi →

∏︁
i∈IM ⊗R Qi
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defined by φM,Q(m⊗ (qi)i∈I) = (m⊗ qi)i∈I .

Lemma 1.2.2. [27, Lemma 3.8] Let R be a ring and M be a module.

(i) M is finitely generated, if and only if φM,Q is an epimorphism for all se-
quences Q of left R-modules, if and only if φM,Q is an epimorphism for the
sequence Q = (Qi | i ∈ I), such that I = M and Qi = R for all i ∈ I.

(ii) M is finitely presented, if and only if φM,Q is an isomorphism for all se-
quences Q of left R-modules.

Now, let’s consider the case where φM,Q in Lemma 1.2.2 is a monomorphism.
In fact, it introduces the central notion of this section:

Definition 1.2.3. Let R be a ring and M be a module. Then M is Mittag-Leffler,
provided that the homomorphism φM,Q is a monomorphism for all sequences Q
of R-modules.

Remark 5. (i) A module M is pure-projective, provided that M is projective
with respect to pure epimorphisms, that is, HomR(g,M) : HomR(M,B)→
HomR(M,C) is surjective for each pure epimorphism g : B → C. Since
each pure-projective module is a direct summand of a direct sum of finitely
presented modules (see [27, Example 2.10]), Lemma 1.2.2(ii) implies that
each pure-projective module is Mittag-Leffler.

(ii) From Definition 1.2.3, we also immediately see that the class of all Mittag-
Leffler modules is closed under pure submodules and pure extensions.
That is, if 0 → M ′ → M → M ′′ → 0 is a pure-exact sequence and M
is Mittag-Leffler (both M ′ and M ′′ are Mittag-Leffler), then M ′ is Mittag-
Leffler (M is Mittag-Leffler, respectively).

To investigate the structure of Mittag-Leffler modules, an additional lemma is
needed. This lemma establishes a local condition for a module M to be Mittag-
Leffler when M is already expressed as a direct limit of Mittag-Leffler modules:

Lemma 1.2.4. [27, Lemma 3.11] Let R be a ring and M a module, such that
M = lim−→α∈Λ Mα where (Mα, fβα |α < β ∈ Λ) is a direct system of Mittag-Leffler
modules. Assume that M ′ = lim−→n<ω

Mαn is Mittag-Leffler for each countable
chain α0 < · · · < αn < αn+1 < · · · in Λ. Then M is Mittag-Leffler.

Theorem 1.2.6 below unifies various approaches to the notion of a Mittag-
Leffler module. With the exception of parts (2) and (3), these perspectives were
already discovered in the seminal work of Raynaud and Gruson [38]. The ℵ1-
pure-projectivity approach employed in parts (2) and (3) is provided by [31]. It
appears as a special case of κ = ℵ1 in the following definition:

Definition 1.2.5. Let R be a ring, κ a regular uncountable cardinal, and M an
R-module. We say that M is κ-pure-projective if there exists a set S consisting
of < κ-generated pure-projective submodules of M with the following properties:
0 ∈ S, every subset of M with cardinality < κ is contained in an element of S,
and S is closed under unions of well-ordered chains of length < κ.

Mittag-Leffler modules are closely related to Mittag-Leffler inverse systems of
modules:
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Theorem 1.2.6. [27, Theorem 3.14] Let R be a ring and M be a module. Then
the following conditions are equivalent:

(1) Each finite (or countable) subset of M is contained in a countably generated
pure-projective and pure submodule of M .

(2) M is ℵ1-pure-projective.

(3) M is the directed union of a set S consisting of Mittag-Leffler submodules of
M , such that 0 ∈ S, each countable subset of M is contained in an element
of S, and S is closed under unions of countable chains.

(4) M is Mittag-Leffler.

(5) For each finitely presented module P and each f ∈ HomR(P,M), there exist
a finitely presented module P ′ and f ′ ∈ HomR(P, P ′), such that Ker(f ⊗R
N) = Ker(f ′ ⊗R N) for each left R-module N .

(6) If M = lim−→i∈IMi, for a direct system (Mi, fji | i ≤ j ∈ I) of finitely
presented modules, then for each module N , the induced inverse system

(HomR(Mi, N),HomR(fji, N) | i ≤ j ∈ I)

satisfies the Mittag-Leffler condition.
Remark 6. (1) Mittag-Leffler modules were first introduced by Grothendieck,

Raynaud, and Gruson [38], using condition (5) of Theorem 1.2.6 as defini-
tion.

(2) A variant of this notion, introduced by Rothmaler in [39], is the relative
version, which allows sequences Q to include only elements from a specified
class of left R-modules. Angeleri and Herbera [5] extensively studied this
relative version. Additionally, [39] unveiled another facet of Mittag-Leffler
modules from a model-theoretic perspective: they are positively atomic
modules, meaning that the pp-type of each tuple from these modules is
finitely generated.

We end this section by giving several results that follow from Theorem 1.2.6:
Corollary 1.2.7. [27, Corollary 3.16] Let R be a ring and denote by ML the
class of all Mittag-Leffler modules. Then the following statements hold:

(a) ML contains all pure-projective modules, and it is closed under pure sub-
modules, pure extensions, and unions of pure chains.

(b) If M ∈ Mod–R is countably generated, then M ∈ ML, if and only if M is
pure-projective.

(c) Let κ be an infinite cardinal. Then each ≤ κ-generated Mittag-Leffler mod-
ule is ≤ κ-presented.

(d) Let κ be an infinite cardinal, M ∈ML, and N be a ≤ κ-generated submod-
ule of M . Then N is contained in a pure and ≤ κ-presented submodule P
of M .

(e) Let κ be an uncountable cardinal, and M be a κ-pure-projective module.
Then M is ℵ1-pure-projective.
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1.2.2 Flat Mittag-Leffler modules
In this paragraph, we restrict the implications of Theorem 1.2.6 to the setting of
flat modules. We shall observe that the correspondence between Mittag-Leffler
modules and ℵ1-pure-projective modules can be restricted to a correspondence
between the flat Mittag-Leffler modules and the ℵ1-projective ones.

It is worth noting that ℵ1-projective (or almost free) modules represent an
important topic of research in general module theory, cf. [16, 25]. Let’s start by
recalling the more general setting:

Definition 1.2.8. Let R be a ring, κ a regular uncountable cardinal, and M an
R-module. We say that M is κ-projective if there exists a set S consisting of
< κ-generated projective submodules of M with the following properties: 0 ∈ S,
any subset of M with cardinality < κ is contained in an element of S, and S is
closed under unions of well-ordered chains of length < κ.

The connection for κ = ℵ1 is established by the following straightforward
lemma.

Lemma 1.2.9. [27, Lemma 3.18] Let R be a ring, and M be an R-module. Then
M is ℵ1-projective, if and only if M is flat and ℵ1-pure projective.

Theorem 1.2.6 readily specializes to the case of flat modules:

Corollary 1.2.10. [27, Corollary 3.19] Let R be a ring and M be a module.
Then the following conditions are equivalent:

(i) Each finite (or countable) subset of M is contained in a countably generated
projective and pure submodule of M .

(ii) M is ℵ1-projective.

(iii) M is a directed union of a set S consisting of flat Mittag-Leffler submodules
of M , such that 0 ∈ S, each countable subset of M is contained in an
element of S, and S is closed under unions of countable chains.

(iv) M is flat and Mittag-Leffler.

(v) M is flat, and if M = lim−→i∈IMi of a direct system (Mi, fji | i ≤ j ∈ I)
consisting of finitely generated free modules, then the induced inverse system

(HomR(Mi, R),HomR(fji, R) | i ≤ j ∈ I)

satisfies the Mittag-Leffler condition.

Similarly, we obtain

Corollary 1.2.11. [27, Corollary 3.20] Let R be a ring.

(i) The class FM of all flat Mittag-Leffler modules is closed under pure sub-
modules, extensions, unions of pure chains and transfinite extensions.

(ii) If M is a countably generated R-module, then M ∈ FM, if and only if M
is projective.
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(iii) Let κ be an infinite cardinal, and let M be a ≤ κ-generated flat Mittag-
Leffler module. Then, M admits a projective resolution consisting of ≤ κ-
generated modules.

(iv) Each subset of cardinality ≤ κ in a flat Mittag-Leffler module M is contained
in a pure and ≤ κ-presented submodule of M .

(v) Let κ be an uncountable cardinal, and let M be a κ-projective module. Then
M is ℵ1-projective.

1.3 Quasi-coherent sheaves and Zariski locality
We assume the reader has a certain level of familiarity with fundamental concepts
related to schemes and quasi-coherent sheaves of modules over a scheme. For
additional details, we refer to [28, 30].

All rings in this section are commutative. We will denote by CRing the category
of commutative rings.

1.3.1 Quasi-coherent sheaves as quasi-coherent represen-
tations

The purpose of this section is to recall how the category of quasi-coherent sheaves
over a given scheme can be characterized in terms of quasi-coherent modules over
a flat ring representation of a poset.

We adopt the approach presented in [42, §2], which is an adjusted version of
[22, §2].

Definition 1.3.1. For a partially ordered set (I,≤), a representation R of I in
the category CRing is defined as follows:

(1) for each i ∈ I, we have a ring R(i),

(2) for each i ≤ j, we have a ring homomorphism f ij : R(i)→ R(j), and

(3) we require that for each triple i ≤ j ≤ k, f ik = f jk ◦ f ij , and also that
f ii = 1R(i).

Remark 7. Viewing I as a thin category, R can simply be regarded as a covariant
functor R : I → CRing .

After defining representations of I in the category CRing , one can easily define
modules over these representations as follows.

Definition 1.3.2. Let R be a representation of a poset I in CRing . A right
R-module is

(1) a collection (M(i))i∈I , where M(i) ∈ Mod–R(i) for each i ∈ I,

(2) together with morphisms of the additive groups gij : M(i)→M(j) for each
i ≤ j,
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(3) satisfying the compatibility conditions gik = gjk ◦ gij and gii = 1M(i) for every
triple i ≤ j ≤ k, and such that,

(4) the ring actions are respected in the following manner: given x ∈ R(i) and
m ∈M(i) for i ∈ I, then for any j ≥ i we have the equality

gij(m · x) = gij(m) · f ij(x).

Throughout the rest of this section, all our modules will be considered as right
modules. To form a category, the only remaining step is to define morphisms of
R-modules.

Definition 1.3.3. Let R be a representation of a poset I in CRing , and let M
and N be R-modules. A morphism f : M → N is a collection (f(i) : M(i) →
N(i))i∈I , where f(i) is a morphism of R(i)-modules for every i ∈ I, and the
square

M(i) N(i)

M(j) N(j)

f(i)

f i
j gi

j

f(j)

commutes for every i < j.

Let Mod–R denote the category of all R-modules. Then, we have:

Proposition 1.3.4. [42, Proposition 2.8] Let (I,≤) be a poset and let R be a
representation of I in CRing . Then Mod–R is a Grothendieck category. Fur-
thermore, limits and colimits of diagrams of modules are computed component
wise—we compute the corresponding (co)limit in Mod–R(i) for each i ∈ I and
connect these by the (co)limit morphisms.

The categories Mod–R discussed previously are examples of Grothendieck
categories, but they are not our central focus in this section. To fulfill the promise
of describing categories of quasi-coherent sheaves, we need to consider specific full
subcategories. To achieve this, we require an additional condition on R:

Definition 1.3.5. Let R be a representation of a poset I in CRing . We say
that R is a flat representation if for each pair i < j in I, the ring homomorphism
f ij : R(i)→ R(j) gives R(j) the structure of a flat left R(i)-module. That is,

−⊗R(i) R(j) : Mod–R(i)→ Mod–R(j)

is an exact functor.

As we will observe later, the representations arising from the structure sheaves
of schemes satisfy this condition. In the case of such anR, we can explicitly define
the modules of interest:

Definition 1.3.6. Let R be a flat representation of a poset I in CRing . A
module M ∈ Mod–R is called quasi-coherent if, for every i < j, the R(j)-module
homomorphism
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M(i)⊗R(i) R(j)→M(j)

m⊗ x ↦→ gij(m) · x

is an isomorphism.

Denote the full subcategory of Mod–R consisting of quasi-coherentR-modules
by Qcoh(R). Again, we obtain a Grothendieck category:

Proposition 1.3.7. [42, Theorem 2.11] Let (I,≤) be a poset and R be a flat
representation of I in CRing . Then Qcoh(R) is a Grothendieck category. More-
over, colimits of diagrams and limits of finite diagrams are computed component
wise–that is, for each i ∈ I separately.

We present a specific example of a flat representation for a poset with geo-
metric origins and the quasi-coherent modules associated with it.

Example 1.3.8. [42, Example 2.13] Consider the three element poset be given
by the Hasse diagram

• • •
and a representation in CRing of the form

R : k[x] k[x, x−1] k[x−1],⊆ ⊇

where k is an arbitrary commutative ring. Clearly R is a flat representation since
the inclusions are localization morphisms.

For each n ∈ Z, we have a quasi-coherent R-module

O(n) : k[x] k[x, x−1] k[x−1].⊆ xn·−

By direct computation, we have HomR(O(m),O(n)) = 0 for m > n. Conse-
quently, it follows that O(m) ≉ O(n) whenever m ̸= n.

In fact, the category Qcoh(R) is equivalent to the category of quasi-coherent
sheaves over P1

k, the projective line over k.

Let (X,OX) be a scheme, that is, a ringed space which is locally isomorphic
to (Spec(R),OSpec(R)) for a commutative ring R (cf. [28, Definition 3.1]). With
this data in hand, our first step is to construct a representation of a poset in the
category of commutative rings.

Construction 1.3.9. [42, Construction 2.15] Let U be a collection of open affine
sets of X satisfying the following two conditions:

(1) U covers X; that is X = ⋃︁
U.

(2) Given U, V ∈ U, then U ∩ V = ⋃︁{W ∈ U | W ⊆ U ∩ V }.

Remark 8. It’s usually safe to choose the collection of all affine open sets, although
frequently, much smaller sets U suffice. For projective schemes for instance, we
can always choose U to be finite.

Now U forms a poset with respect to inclusion, and we define I = Uop as the
opposite poset. Since OX is a sheaf of commutative rings, we consequently obtain
a functor
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Uop → CRing

which sends a pair U ⊇ V of sets in U to the restriction resUV : OX(U)→ OX(V ).
By defining I in this way, it is equivalent to say that there exists a covariant
functor R : I → CRing such that, following the notation in Definition 1.3.1, we
have R(U) = OX(U) and fUV = resUV .

A well-known fact is that the representation of I obtained in this manner is flat:

Lemma 1.3.10. [42, Lemma 2.16] Let R be the representation of I in CRing
as in Construction 1.3.9. Then R is flat.

It is now straightforward to construct a functor from the category Qcoh(X) of
quasi-coherent sheaves on X to the category Qcoh(R) of quasi-coherent modules
over R.

Construction 1.3.11. [42, Construction 2.17] Consider the notation introduced
in Construction 1.3.9. For a quasi-coherent sheaf M on X and two affine open
sets U ⊇ V , there exists a canonical isomorphism

M(U)⊗OX(U) OX(V ) ∼=M(V ).

This isomorphism is obtained by applying [28, Remark 7.23 and Proposition
7.24(2)] to the open immersion

(Spec(R(V )),OSpec(R(V ))) ∼= (V,OX|V )→ (U,OX|U) ∼= (Spec(R(U)),OSpec(R(U)))

and the corresponding ring homomorphism fUV : R(U)→ R(V ).

Therefore, we can restrict the functor to I = Uop by viewing the sheaf M as
a contravariant functor from the poset of open affine sets of X to the category
of abelian groups Ab . In doing so, we assign an R-module F (M) to M ∈
Qcoh(X), and the discussion above implies that F (M) is quasi-coherent. Since
this assignment is clearly functorial, we obtain an additive functor:

F : Qcoh(X)→ Qcoh(R).

Compared to F (M), there appears to be significantly more structure in M ∈
Qcoh(X). The latter is just a set of modules that meet a specific coherence
condition, whereas the former is a sheaf of modules over a potentially complex
topological spaceX. However, the fact thatM is quasi-coherent is very restrictive
in itself, yielding the following crucial result; see [22, §2].

Theorem 1.3.12. [42, Theorem 2.18] The functor F from Construction 1.3.11
(which depends on the choice of U in Construction 1.3.9) is an equivalence of
categories.

1.3.2 Zariski locality
Consider P to be a property of modules. For any commutative ring R, let PR

denote the class of all R–modules that satisfy P. In the following discussion, we
assume that P is compatible with ring direct products which means: if n < ω,
R = ∏︁

i<nRi is a ring direct product, and Mi ∈ PRi
for each i < n, then
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M = ∏︁
i<nMi ∈ PR.

The global notion for quasi-coherent sheaves corresponding to a property of
R-modules PR is said to be Zariski local in case the following holds true: If X
is a scheme with the structure sheaf OX , X = ⋃︁

i∈I Spec(Ri) is an open affine
covering of X, and M is a quasi-coherent sheaf on X such that the Ri-module
of sections M(Spec(Ri)) satisfies PRi

for each i ∈ I, then the OX(U)-module of
sections M(U) satisfies POX(U) for all open affine subsets U of X (see [23, §3]
and [46, §5.3]).

In order to prove Zariski locality, it suffices to verify the assumptions of the
following “Affine Communication Lemma” for the given setting (cf. [23, 3.5]).

Lemma 1.3.13. [32, Lemma 2.1] Let R be a commutative ring, M ∈ Mod–R,
and PR be a property of R-modules such that

(i) if M satisfies property PR, then M [f−1] = M ⊗R R[f−1] satisfies property
PR[f−1] for each f ∈ R.

(ii) if R = ∑︁
j<m fjR, and the R[f−1

j ]-modules M [f−1
j ] = M ⊗R R[f−1

j ] satisfy
property PR[f−1

j ] for all j < m, then M satisfies property PR.

Then the global notion for quasi-coherent sheaves corresponding to PR is Zariski
local.

Note that for each f ∈ R, the localization in f , denoted by φf : R→ R[f−1],
is a flat ring homomorphism. That is, φf makes R[f−1] into a flat R-module.
Furthermore, the ring homomorphism φf0,··· ,fm−1 : R→ ∏︁

i<mR[f−1
i ] is faithfully

flat when R = ∑︁
j<m fjR, which means that φf0,··· ,fm−1 makes ∏︁

i<mR[f−1
i ] into

a faithfully flat R-module. Consequently, the assumptions of the Affine Com-
munication Lemma hold in case P ascends along flat ring homomorphisms and
descends along faithfully flat ring homomorphisms, as per the following definition:

Definition 1.3.14. Let φ : R → S be a flat ring homomorphism, and P be a
property of modules.

(i) P is said to ascend along φ if for each R-module M with the property PR,
the S-module M ⊗R S has the property PS.

(ii) Assume φ is a faithfully flat ring homomorphism. Then P is said to descend
along φ if for each R-module M , M has the property PR whenever the S-
module M ⊗R S has the property PS.

If P ascends along all flat ring homomorphisms, and descends along all faithfully
flat ring homomorphisms, then P is called an ad-property.

In view of Lemma 1.3.13, in order to prove Zariski locality of a property P
of quasi-coherent sheaves on a scheme X, it suffices to verify that P is an ad-
property. This is the way we will proceed in Chapter 3 for the properties arising
from Mittag-Leffler conditions.
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1.4 The Vopěnka’s Principles
While graphs may appear to be simple objects at first sight, the category of all
graphs is complex. This is reflected by the fact that some of its properties are
independent of standard set theory axioms. This necessitates exploration of ad-
ditional principles beyond those axioms.

One notable principle is Vopěnka’s Principle (VP), which asserts that the cat-
egory of graphs has no large discrete full subcategory. In other words, for any
proper class of graphs, there exists a non-identity homomorphism among the
graphs within that class.

It is called a large-cardinal principle because it implies the existence of measur-
able cardinals while its consistency follows from the existence of huge cardinals
[3, Theorem A.6 and Theorem A.18].

Vopěnka’s Principle applies not only to graphs but also to many other categories
that can be fully embedded in the category of graphs, such as locally presentable
categories (e.g., [3, Theorem 2.65]). The Vopěnka’s Principle and its weak forms
discussed below thus allow for equivalent statements in the context of locally pre-
sentable categories (for more details we refer to [3]).

In [1], Adámek, Rosický, and Trnková observed that Vopěnka’s principle is
equivalent to the statement that the category of all ordinals, Ord , cannot be fully
embedded into the category of graphs. This means that there is no sequence of
graphs (Gα : α ∈ Ord ) that satisfies both of the following properties:

• for each α ≤ α′, there is a unique homomorphism Gα → Gα′ , and

• for each α < α′, there is no homomorphism Gα′ → Gα.

They introduced the Weak Vopěnka’s Principle (WVP) as the dual statement: the
opposite category Ord op cannot be fully embedded into the category of graphs.
This means that there is no sequence of graphs (Gα : α ∈ Ord ) that satisfies
both of the following properties:

• for each α ≤ α′, there is a unique homomorphism Gα′ → Gα, and

• for each α < α′, there is no homomorphism Gα → Gα′ .

They additionally proved that (VP) implies (WVP) [1, Lemma 2] and raised the
question of whether the two principles are equivalent.

Removing the uniqueness of homomorphisms from the (WVP) statement yields
the Semi-Weak Vopěnka’s Principle (SWVP), as introduced by Adámek and
Rosický [2]. This means that there is no sequence of graphs (Gα : α ∈ Ord )
that satisfies both of the following properties:

• for each α ≤ α′, there is a homomorphism Gα′ → Gα, and

• for each α < α′, there is no homomorphism Gα → Gα′ .

It is clear from the definitions that Semi-Weak Vopěnka’s Principle implies Weak
Vopěnka’s Principle. The following recent result, proved in ZFC by Wilson,
greatly simplified matters:

Theorem 1.4.1. [47, Theorem 1.4] Weak Vopěnka’s Principle is equivalent to
Semi-Weak Vopěnka’s Principle.
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Moreover, Wilson proved that assuming the existence of supercompact cardi-
nals, (SWVP) does not imply (VP); for more details, see [47, Theorem 1.2 and
1.3]. Hence, under the latter assumption, (WVP) does not imply (VP).
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Abstract. The classes DQ of flat relative Mittag-Leffler modules are
sandwiched between the class FM of all flat (absolute) Mittag-Leffler modules,

and the class F of all flat modules. Building on the works of Angeleri Hügel,
Herbera, and Šaroch, we give a characterization of flat relative Mittag-Leffler
modules in terms of their local structure, and show that Enochs’ Conjecture
holds for all the classes DQ. In the final section, we apply these results to the

particular setting of f-projective modules.
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Chapter 2

Flat relative Mittag-Leffler
modules and approximations

2.1 Introduction
For a ring R, denote by P , F , and FM the classes of all projective, flat, and flat
Mittag-Leffler (right R-) modules, respectively. We always have the inclusions
P ⊆ FM ⊆ F . The equality P = FM = F holds, if and only if R is a
right perfect ring. By a classic result of Bass, in this case P is a covering class
consisting of modules isomorphic to direct sums of (indecomposable projective)
modules generated by primitive idempotents of the ring R.

If R is not right perfect, then P ⊊ FM ⊊ F . In fact, though the classes
P and FM contain the same countably generated modules, there always exist
ℵ1-generated modules in FM that are not projective, cf. [3, §VII.1]. Moreover,
there exist countably presented modules N ∈ F \ FM. Each such module N is
called a Bass module [20].

By a classic theorem of Kaplansky, each projective module is a direct sum of
countably generated projective modules, so the class P is ℵ1-decomposable. If
κ = cardR + ℵ0, then each flat module is known to be a transfinite extension of
≤ κ-presented flat modules, so the class F is κ+-deconstructible. The class P is
easily seen to be precovering, while F is a covering class by [2] (see Section 2.2
for unexplained terminology).

The intermediate class FM can be described as the class of all ‘locally pro-
jective’, or better ℵ1-projective modules [9]. Its global structure over non-right
perfect rings is known to be quite complex: there is no cardinal λ such that FM
is λ-deconstructible [9]; moreover, the class FM is not precovering [18].

In this note, we will deal with classes of flat relative Mittag-Leffler modules,
or more precisely, flat Q-Mittag-Leffler modules for a class of left R-modules Q.

The notion of an (absolute) Mittag-Leffler module was introduced already
in the seminal paper by Raynaud and Gruson [14], and studied in a number of
sequel works revealing its many facets. Relative Mittag-Leffler modules appeared
much later, in the Habilitationsschrift of Rothmaler [15]. Rothmaler has further
pursued the model theoretic point of view in [16], where he proved that if Q is a
definable class of left R-modules and D(Q) is its dual definable class of (right R-)
modules, then Q-Mittag-Leffler modules are exactly the D(Q)-atomic modules,
[16, Theorem 3.1]. For a very recent application of relative atomic modules to a
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description of Ziegler spectra of tubular algebras, we refer to [12].
A detailed algebraic study of relative Mittag-Leffler modules was performed in

[1] (see also [8] and [9]); notably, it discovered their role in (infinite dimensional)
tilting theory.

Following [9], we denote the class of all flat Q-Mittag-Leffler modules by DQ.
Thus FM ⊆ DQ ⊆ F . Notice that D

R–Mod = FM and D{0} = F , while D{R}
is the class of all f-projective modules studied by Goodearl et al. in [4], [6], etc.

Our goal here is to investigate the structure and approximation properties of
the class DQ in dependence on Q. In Theorem 2.3.5, we prove that the classes
DQ are determined by their countably presented modules, while Theorem 2.3.6
shows that approximation properties of DQ depend completely on whether there
exists a Bass module N /∈ DQ. In the final part, we apply these results to the
particular setting of Q = {R}, i.e., to the f-projective modules.

2.2 Preliminaries
For a ring R, we denote by Mod–R the class of all (right R-) modules, and by
R–Mod the class of all left R-modules.

2.2.1 Filtrations and deconstructible classes
Let R be a ring, M a module, and C a class of modules. A family of submodules,
M = (Mα | α ≤ σ), of M is called a continuous chain in M , provided that
M0 = 0, Mα ⊆ Mα+1 for each α < σ, and Mα = ⋃︁

β<αMβ for each limit ordinal
α ≤ σ.
A continuous chainM in M is a C -filtration of M , provided that M = Mσ, and
each of the modules Mα+1/Mα (α < σ) is isomorphic to an element of C .
M is called C -filtered, provided that M possesses at least one C -filtration. We
will use the notation Filt (C ) for the class of all C -filtered modules. The modules
M ∈ Filt (C ) are also called transfinite extensions of the modules in C . A class
A is said to be closed under transfinite extensions provided that A = Filt (A ).
Clearly, this implies that A is closed under extensions and arbitrary direct sums.
Given a class C and a cardinal κ, we use C ≤κ and C <κ to denote the subclass of
C consisting of all ≤ κ-presented and < κ-presented modules, respectively.
Let κ be an infinite cardinal. A class of modules C is κ-deconstructible provided
that C ⊆ Filt (C <κ). If moreover each module M ∈ C is a direct sum of modules
from C <κ, then C is called κ-decomposable. For example, the class P of all
projective modules is ℵ1-deconstructible by a classic theorem of Kaplansky. A
class C is deconstructible in case it is κ-deconstructible for some infinite cardinal
κ.

2.2.2 Approximations
A map f ∈ HomR(C,M) with C ∈ C is a C -precover of M , if the abelian group
homomorphism HomR(C ′, f) : HomR(C ′, C) → HomR(C ′,M) is surjective for
each C ′ ∈ C .
A C -precover f ∈ HomR(C,M) of M is called a C -cover of M , provided that f
is right minimal, that is, provided fg = f implies that g is an automorphism for
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each g ∈ End R(C ).
C ⊆ Mod-R is a precovering class (covering class) provided that each module
has a C -precover (C -cover).

2.2.3 (Relative) Mittag-Leffler modules
Let R be a ring. A module M is Mittag-Leffler provided that the canonical group
homomorphism

φ : M ⊗R
∏︂
i∈I
Ni →

∏︂
i∈I
M ⊗R Ni

defined by
φ(m⊗R (ni)i∈I) = (m⊗R ni)i∈I

is monic for each family (Ni | i ∈ I) of left R-modules.
Let M ∈ Mod–R and Q ⊆ R–Mod. Then M is Q-Mittag-Leffler, provided that
the canonical morphism M ⊗∏︁

i∈I Qi →
∏︁
i∈IM ⊗RQi is injective for any family

(Qi | i ∈ I) consisting of elements of Q.

2.2.4 Direct limits and add(M)
Let C be any class of modules and D = (Ci, fji | i ≤ j ∈ I) a direct system of
modules in C . Viewing D as a diagram in the category Mod–R, we can form its
colimit, (M, fi | i ∈ I). In particular, M is a module, and fi ∈ HomR(Mi,M)
satisfy fi = fijfj for all i ≤ j ∈ I.
This colimit (or sometimes just the module M itself) is called the direct limit of
the direct system D . It is denoted by lim−→i∈IMi (or just lim−→D).
Let Q ⊆ R–Mod. We denote by lim−→Q the class of all modules N such that
N = lim−→Qi where (Qi, fji | i ≤ j ∈ I) is a direct system of modules from Q.
Let R be a ring, M be a module. We define add (M) to be the class of all modules
isomorphic to direct summands of finite direct sums of copies of M .

2.2.5 Bass modules
Given a class C of finitely generated free modules, we call a module M a Bass
module over C , provided that M is the direct limit of a direct system

C0
f0−→ C1 → · · ·

fn−1−−→ Cn
fn−→ Cn+1

fn+1−−→ · · ·

where Cn ∈ C for each n < ω.
If C is the class of all finitely generated free modules, then the Bass modules over
C are just called the (unadorned) Bass modules; they are exactly the countably
presented flat modules.

For basic properties of the notions defined above, we refer the reader to [5].

2.3 Flat relative Mittag-Leffler modules
We record the following well-known properties of the class DQ of all flatQ-Mittag-
Leffler modules (cf. [1, SS1 and 5], [9, §4] or [5, 3.20(a)]):
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Lemma 2.3.1. Let Q ⊆ R–Mod.

(i) The class DQ is closed under pure submodules, extensions, and unions of
pure chains. Hence DQ is closed under transfinite extensions.

(ii) DQ is a resolving subcategory of Mod–R (i.e., DQ contains all projective
modules, and it is closed under extensions and kernels of epimorphisms).

Remark 9. Clearly, DQ is closed under direct limits, iff DQ = F . This case will
be examined in more detail in Theorems 2.3.5(ii) and 2.3.6 below. The closure
of the class DQ under products was studied in [9, §4]: if Q is the limit closure of
a class of finitely presented left R-modules, then DQ is closed under products, iff
RR ∈ DQ (see [9, Theorem 4.6]).

Another basic property of the classes DQ is that in their study, one can restrict
to definable classes of left R-modules. Recall that a class of modules is definable
provided that it is closed under direct limits, direct products and pure submod-
ules. For each class of left R-modules Q there is a least definable class Def (Q) in
R–Mod containing Q; it is obtained by closing Q first by direct products, then
direct limits, and finally by pure submodules, cf. [8, Lemma 2.9 and Corollary
2.10].

Lemma 2.3.2. Let Q ⊆ R–Mod. Then DQ = DDef (Q).

Definable classes are parametrized by the subset of the set of all indecompos-
able pure-injective modules which they contain. So though R–Mod is a proper
class, there is only a set of classes of relative Mittag-Leffler modules. Note
however, that it may still happen that DDef (Q) = DDef (Q′) even if Def (Q) ̸=
Def (Q′): just take a right noetherian ring R which is not completely reducible,
and consider the following two definable classes of left R-modules: Q = {0} and
Q′ = F ′ (the class of all flat left R-modules). Then DQ = DQ′ = F by Proposi-
tion 2.4.7(i) below. In Theorem 2.3.5, we will give a different parametrization of
the classes DQ, by their countably presented modules.

Our next prerequisite was proved in [9, 2.2] (see also [5, 3.11]):

Lemma 2.3.3. Let R be a ring, M be a module, and Q be a class of left R-
modules. Assume that M = lim−→α∈LMα where (Mα, fβα | α < β ∈ L) is a direct
system of Q-Mittag-Leffler modules. Moreover, assume that M ′ = lim−→n<ω

Mαn is
Q-Mittag-Leffler for each countable chain α0 < · · · < αn < αn+1 < · · · in L.

Then M is Q-Mittag-Leffler.

For all rings, flat relative Mittag-Leffler modules include the flat (absolute)
Mittag-Leffler modules, and for some rings, even all the flat modules (see Sec-
tion 2.4 below). So the following description of the local structure of flat rela-
tive Mittag-Leffler modules extends simultaneously the ‘local projectivity’ of flat
Mittag-Leffler modules from [9, Theorem 2.10(i)] and the deconstructibility, and
hence abundance of small pure flat submodules, of flat modules from [5, Lemma
6.17 and Theorem 7.10] (cf. also [1, Theorem 5.1], [9, Theorem 2.6], [16, Corollary
6.5], and [19, Lemma 2.5]):

Proposition 2.3.4. Let R be a ring, M be a module, and Q be a class of left
R-modules. Let κ = card (R) + ℵ0. Then the following conditions (i)-(iv) are
equivalent:
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(i) M is a flat Q-Mittag-Leffler module.

(ii) For each subset C of M of cardinality ≤ κ, there exists a pure flat Q-
Mittag-Leffler submodule N of M such that C ⊆ N , and N has cardinality
≤ κ.

(iii) There exists a system S consisting of pure flat Q-Mittag-Leffler submodules
of M of cardinality ≤ κ, such that for each subset C in M of cardinality ≤ κ
there is N ∈ S containing C, and S is closed under unions of well-ordered
chains of length ≤ κ.

(iv) M is a directed union of a direct system T consisting of flat Q-Mittag-
Leffler submodules of M , such that T is closed under unions of countable
chains.

Consider also the following condition:

(v) There exists a system U consisting of countably presented flat Q-Mittag-
Leffler submodules N of M such that the inclusion N ↪→M remains injec-
tive when tensored by any left R-module Q ∈ Q, and satisfying the following
two conditions: (a) for each countable subset C in M there is N ∈ U con-
taining C, and (b) U is closed under unions of countable chains.

Then (v) implies (i), and if R ∈ Q, then (v) is equivalent to (i).

Proof. (i) ⇒ (ii). Let C be a subset of M with cardC ≤ κ. Then there is a pure
submodule P ⊆∗ M such that C ⊆ P and cardP ≤ κ (see e.g. [5, 2.25(i)]). By
Lemma 2.3.1, P is flat and Q-Mittag-Leffler, whence (ii) holds.
(ii) ⇒ (iii). We will prove that the set S consisting of all pure flat Q-Mittag-
Leffler submodules of M of cardinality ≤ κ has the required two properties. The
first one is just a restatement of (ii). For the second (closure under unions of
well-ordered chains of length ≤ κ), let (Nα | α < κ) be a such a chain in S. Let
N = ⋃︁

α<κNα. Since Nα is pure in M for each α < κ, N is pure in M , too, by
[5, Lemma 2.25(d)]. Since cardN ≤ κ, (ii) yields existence of N ′ ∈ S such that
N ⊆ N ′. Finally, N ⊆∗ M implies N ⊆∗ N ′. As N ′ is flat and Q-Mittag-Leffler,
Lemma 2.3.1(i) gives N ∈ S.
(iii) ⇒ (iv) This is clear - just take T = S.
(iv) ⇒ (i) First, M , being a directed union of flat modules, is flat. In view of
(iv), we can apply Lemma 2.3.3 to the presentation of M as the directed union
of the elements of T ; thus, M is Q-Mittag-Leffler.

Assume (v). Then M is a directed union of the modules in U , and Lemma
2.3.3 applies, showing that M is a flat Q-Mittag-Leffler module.

Finally, let R ∈ Q. Assume M is a flat Q-Mittag-Leffler module, and let U be
the set consisting of all countably presented flat Q-Mittag-Leffler submodules N
of M such that the inclusion N ↪→M remains injective when tensored by any left
R-module Q ∈ Q. Since R ∈ Q, the implication (1) ⇒ (4) of [1, Theorem 5.1]
(for S = the class of all finitely generated free modules) yields condition (a). Let
N ′ be the union of a countable chain (Ni | i < ω) of modules from U . Then N ′ is
flat, and each finite subset of N ′ is contained in some term of the chain, so by the
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implication (4)⇒ (1) of [1, Theorem 5.1], N ′ is a Q-Mittag-Leffler module. Since
the inclusion ν : N ′ ↪→M is a direct limit of the inclusions νi : Ni ↪→M (i < ω),
ν ⊗R Q is the direct limit of the monomorphisms νi ⊗R Q : Ni ⊗R Q ↪→M ⊗R Q
(i < ω), hence ν ⊗R Q is injective, for each Q ∈ Q. Thus N ′ ∈ U , and condition
(b) holds, too.

Remark 10. 1. If R /∈ Q, then (i) need not imply (v). For a simple counter-
example, consider a von Neumann regular ring R such that there exists a simple
module M which is not countably presented (i.e., M = R/I where I is a maximal
right ideal of R which is not countably generated). Examples of such rings R
include infinite products of fields, or endomorphism rings of infinite dimensional
linear spaces. Let Q = {0}. Then M is flat (= flat Q-Mittag-Leffler), as all
modules over von Neumann regular rings are flat, but (v) fails, because the only
countably presented submodule of M is 0.

2. If we remove the assumption of flatness from conditions (i)-(v), then the
result still holds true, cf. [9, Theorem 2.6].

3. The system S in (iii) consists of ‘big’ (= of cardinality ≤ κ) pure submod-
ules of M and it is closed under unions of ‘long’ (= of length ≤ κ) well-ordered
chains, while the system U in (v) consists of ‘small’ (= countably presented), but
possibly non-pure, submodules of M , and it is closed under unions of ‘short’ (=
countable) chains.

It may even happen that no non-zero module in the system U is pure in M :
for an example, consider the polynomial ring R = C[x], let Q = {R}, and let M
be the quotient field of R viewed as an (uncountably generated) R-module. Then
M ∈ DQ, but M has no non-zero countably generated pure submodules. So in
this setting, there are only the trivial choices for a system S satisfying condition
(iii) (namely, S = {M}, and S = {0,M}), while U from (v) must be uncountable
- e.g., U can be taken as the set of all countably generated submodules of M .

We arrive at a simple test of coincidence for various classes DQ – one only has
to check their countably presented modules:

Theorem 2.3.5. Let R be a ring.

(i) Let Q and Q′ be classes of left R-modules containing R. Then DQ = DQ′,
iff DQ and DQ′ contain the same countably presented modules.

(ii) Let Q be an arbitrary class of left R-modules. Then DQ = F , iff each
countably presented flat module is Q-Mittag-Leffler.

(iii) Let Q be a class of left R-modules containing R. Then DQ = FM, iff each
countably presented flat Q-Mittag-Leffler module is projective.

Proof. (i) Assume there is a module M ∈ DQ\DQ′ . Consider the system U ⊆ DQ
provided by Proposition 2.3.4(v) for the class Q. Then M is the directed union
of the modules in U , but M /∈ DQ′ . By Lemma 2.3.3, there is a (countably
presented) module N ∈ U such that N /∈ DQ′ .

(ii) Assume there is a module M ∈ F \ DQ. Being flat, M is a direct limit
of a direct system D of finitely generated free modules. By Lemma 2.3.3, there
exists a Bass module N over D such that N /∈ DQ.

(iii) is a special instance of (i) for Q′ = R–Mod, since countably presented
flat Mittag-Leffler modules are projective.
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The relation of countably generated Q-Mittag-Leffler modules to D(Def (Q))-
pure chains of finitely presented modules was examined in [16, §7] (see [17] for
corrections and further results).

Our next theorem says that precovers (right approximations) by modules in
the class DQ exist only in the threshold case of DQ = F . The theorem also
confirms Enochs’ Conjecture (that covering classes of modules are closed under
direct limits) for all the classes DQ:

Theorem 2.3.6. Let R be a ring and Q be a class of left R-modules. Then the
following conditions are equivalent:

(i) Each Bass module (= countably presented flat module) is Q-Mittag-Leffler.

(ii) DQ = F .

(iii) DQ is covering.

(iv) DQ is precovering.

(v) DQ is deconstructible.

(vi) DQ is closed under direct limits.

Proof. (i) ⇒ (ii) by Theorem 2.3.5(ii).
(ii) ⇒ (iii), (v), and (vi): This follows from the fact that for any ring R, the

class of all flat modules is a deconstructible covering class closed under direct
limits, cf. [2].

(iii) ⇒ (iv) is trivial.
(iv) ⇒ (i): Assume (i) fails, so there is a Bass module N ∈ F \ DQ. Let

f : A → N be a (surjective) DQ-precover of N and M = ker f . Let κ be an
infinite cardinal such that cardR ≤ κ and cardM ≤ 2κ = κω. By [20, Lemma
5.6], there are a ‘tree module’ L and an exact sequence 0→ D → L→ N (2κ) → 0,
where D is a direct sum of κ finitely generated free modules and L is flat and
Mittag-Leffler. Proceeding as in the proof of [18, Lemma 3.2], we infer that f
splits, whence N ∈ DQ, a contradiction.

(v) ⇒ (i): This has been proved in [9, Corollary 7.2(ii)].
(vi) ⇒ (i): This holds since F = lim−→P , whence lim−→DQ = F .

Remark 11. If Q is a class of left R-modules such that DQ = F , then DQ =
FiltD≤κ

Q for any infinite cardinal κ ≥ cardR.
In constrast, if Q is a class of left R-modules such that DQ ̸= F , then the

classes FiltD≤κ
Q , where κ runs over all infinite cardinals ≥ cardR, form a strictly

increasing ‘chain’ – a proper class of subclasses of DQ – consisting of classes closed
under transfinite extensions, whose union is DQ.

Indeed, the existence of a Bass module N ∈ F \ DQ makes it possible to
construct for each infinite cardinal κ ≥ cardR a κ+-generated flat Mittag-Leffler
module Mκ+ such that Mκ+ is not D≤κ

Q -filtered, cf. [9, §5]. Thus FiltD≤κ
Q ⊊

FiltD≤κ+

Q ⊊ DQ, and DQ = ⋃︁
κ≥card R

FiltD≤κ
Q . Moreover, though FM ⊆ DQ,

there is no cardinal κ such that FM ⊆ FiltD≤κ
Q .
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2.4 f-projective modules
In this section, we will consider a particular kind of relative Mittag-Leffler mod-
ules, the f-projective ones. Their original definition is as follows:

Definition 2.4.1. A module M is said to be f-projective if for every finitely gener-
ated submodule C of M , the inclusion map factors through a (finitely generated)
free module F .

C M

F

So every projective module is f-projective, and every finitely generated f-
projective module is projective. Since flat modules are characterized as the direct
limits of finitely generated free modules, each f-projective module is flat by the
following lemma due to Lenzing, cf. [5, Lemma 2.13]:

Lemma 2.4.2. Let R be a ring and C be a class of finitely presented modules
closed under finite direct sums. Then the following are equivalent for a module
M .

(i) Every homomorphism φ : G → M , where G is finitely presented, has a
factorisation through a module in C.

(ii) M ∈ lim−→C.

The fact that f-projective modules are a particular kind of flat relative Mittag-
Leffler modules goes back to Goodearl [6], see also [4, Proposition 2.7]:

Proposition 2.4.3. A module M is f-projective if and only if it is flat and {R}-
Mittag-Leffler.

In particular, each countably generated f-projective module is countably pre-
sented, and hence of projective dimension ≤ 1.

Proof. Let F ′ denote the class of all flat left R-modules. By Lemma 2.3.2 (or [6,
Theorem 1]), D{R} = DF ′ . By [6, Theorem 1], for each module M , M ∈ DF ′ ,
iff M is flat and for each finitely generated submodule F of M , the inclusion
F ↪→ M factors through a finitely presented module. By Lemma 2.4.2, this is
further equivalent to the f-projectivity of M .

The final claim follows from [1, Corollary 5.3].

We also note the following corollary of [1, Theorem 5.1] (and Theorem 2.3.4):

Corollary 2.4.4. Let R be a ring and M ∈ Mod–R. Then M is f -projective,
if and only if M possesses a system of submodules, U , consisting of countably
presented f-projective modules such that each countable subset of M is contained
in an element of U (and U is closed under unions of countable chains).

We will denote by  the class of all f-projective modules. So  = D{R} =
DF ′ .

There is an interesting relation between f-projectivity and coherence. Here,
we will call a module M coherent, if all its finitely generated submodules are
finitely presented. (Thus a ring R is right coherent, if the regular right module
is coherent.)
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Lemma 2.4.5. Let R be a ring.

(i) Let M be a flat coherent module. Then M is f-projective.

(ii) The ring R is right coherent, iff  coincides with the class of all flat
coherent modules.

Proof. (i) Since M is flat, M = lim−→Fi where the modules Fi are finitely generated
and free. If C is a finitely generated submodule of M , then C is finitely presented,
so the inclusion C ⊆ M factors through some Fi by Lemma 2.4.2, whence M is
f-projective.

(ii) In view of part (i) and Lemma 2.4.2, in order to prove the only-if part, we
have to prove that f-projectivity implies coherence for any module M . Let F be
be a finitely generated submodule of M . By f-projectivity, F is a submodule of a
finitely generated free module. Since R is right coherent, F is finitely presented.

The if part is clear, since the regular module R is always f-projective.

Note that the situation simplifies for coherent domains:

Lemma 2.4.6. Let R be a coherent domain. Then  = F .

Proof. Let M be a flat module. By Lemma 2.4.5(i), it suffices to prove that M
is coherent. Let F be a finitely generated submodule of M . Then M and F are
torsion-free, so by a classic result of Cartan and Eilenberg [5, 16.1], F embeds into
a finitely generated free module. By the coherence of R, F is finitely presented,
proving that M is coherent.

Further instances of the coincidence  with F (i.e., of the case when  is a
covering class, see Theorem 2.3.6) appear in part (i) of the following proposition:

Proposition 2.4.7. Let R be a ring.

(i) Assume that R is right noetherian or R is right perfect. Then  = F is
a covering class.

(ii) If R is right non-singular, then all f-projective modules are non-singular.

(iii) If R is von Neumann regular, then  = FM. Hence  is covering, only
if R is completely reducible.

(iv) Assume R is von Neumann regular and right self-injective. Then  coin-
cides with the class of all non-singular modules.

Proof. (i) If R is right noetherian, then each finitely generated module is finitely
presented, so Lemma 2.4.2 yields that all flat modules are f-projective. If R is
right perfect, then all relative Mittag-Leffler modules are projective (= flat).
(ii) Let M be an f-projective module. By Definition 2.4.1, each finitely generated
submodule C of M embeds into a finitely generated free module F . By assump-
tion, F is non-singular, hence so are C and M .
(iii) This is clear, since von Neumann regularity of R is equivalent to the property
that all left R-modules are flat.
(iv) The non-singularity of all f-projective modules follows from (ii). Since R is
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right self-injective, [7, 9.2] shows that all finitely generated submodules of non-
singular modules are projective, hence all non-singular modules are f-projective
by Definition 2.4.1. Alternatively, we can use (iii) and the fact that under the
assumptions of (iv), flat Mittag-Leffler modules coincide with the non-singular
ones by [9, 6.8].

For semihereditary rings, we have a fully ring theoretic characterization:

Proposition 2.4.8. (i) The following conditions are equivalent for a ring R:

(1) R is right semihereditary.
(2)  coincides with the class of all modules M such that each finitely

generated submodule of M is projective.
(3) The class  is closed under submodules.

(ii) Assume R is right semihereditary. Then the following conditions are equiv-
alent:

(1)  is a covering class.
(2) Each finitely generated flat module is projective.
(3) For each n > 0, the full matrix ring Mn(R) contains no infinite sets

of non-zero pairwise orthogonal idempotents.

Proof. (i) By [10, Theorem 2.29], R is right semihereditary, iff all finitely gen-
erated submodules of projective modules are projective. So the implication (1)
implies (2) is immediate from Definition 2.4.1, (2) implies (3) is trivial, and (3)
implies (1) because projective modules are f-projective, and finitely generated
f-projective modules are projective.

(ii) The implication (1) ⇒ (2) holds for any ring: By Theorem 2.3.6, (1)
implies  = F , so each finitely generated flat module is f-projective, hence
projective, and (2) holds. If R is right semihereditary, then R has flat dimension
≤ 1, i.e., submodules of flat modules are flat. So if each finitely generated flat
module is projective, then by part (i), each flat module is f-projective. This proves
(2) ⇒ (1).

Assume (2) holds, and there is an n > 0 such that the full matrix ring S =
Mn(R) contains an infinite set {ei | i < ω} of non-zero pairwise orthogonal
idempotents. Then M = S/⊕∑︁

i<ω eiS is a direct limit of the projective modules
S/⊕∑︁

i∈X eiS, where X runs over all finite subsets of ω. So M is a cyclic flat right
S-module which is not projective. Further, S is Morita equivalent to R. If (F,G)
is a pair functors realizing this equivalence, then F (M) is a finitely generated
non-projective flat module, in contradiction with (2).

The implication (3) ⇒ (2) is proved e.g. in [13, Proposition 4.10].

On the one hand, if  ⊊ F , then there is always a finitely generated pro-
jective module M ∈  such that lim−→ addM ⊈  (just take M = R). On
the other hand, we have the following result that applies, e.g., to any simple
projective module M :

Proposition 2.4.9. Let R be a ring and M be an f-projective module. Let S =
EndM . Assume that S is right noetherian and M is a flat left S-module. Then
lim−→ addM ⊆ .
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Proof. By [11, Theorem 3.3], lim−→ addM = {F ⊗S M | F a flat right S-module }.
So we have to prove that F ⊗S M is a flat and {R}-Mittag-Leffler module, for
each flat right S-module F . Flatness of F ⊗S M is clear since M is f-projective,
hence flat.

Let I be a set. By assumption, the canonical map M ⊗R RI → M I is an
injective homomorphism of left S-modules, whence the map (F ⊗S M)⊗R RI →
F ⊗S M I is monic. Since S is right noetherian, F is an f-projective right S-
module by Proposition 2.4.7(i). Since M is a flat left S-module, the canonical
map F ⊗S M I → (F ⊗S M)I is monic by Proposition 2.4.3. Thus, the module
F ⊗S M is {R}-Mittag-Leffler.
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[1] L. Angeleri Hügel, D. Herbera, Mittag–Leffler conditions on modules, Indiana
Math. J. 57(2008), 2459–2517.

[2] L. Bican, R. El Bashir, E.E. Enochs, All modules have flat covers, Bull.
London Math. Soc. 33(2001), 385–390.

[3] P.C. Eklof, A.H. Mekler, Almost free modules, Revised ed., North–Holland,
New York 2002.

[4] M. Finkel Jones, F-projectivity and flat epimorphisms, Comm. Algebra
9(1981), 1603–1616.
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Abstract. The ascent and descent of the Mittag-Leffler property were
instrumental in proving Zariski locality of the notion of an (infinite

dimensional) vector bundle by Raynaud and Gruson in [25]. More recently,
relative Mittag-Leffler modules were employed in the theory of (infinitely

generated) tilting modules and the associated quasi-coherent sheaves, [1], [21].
Here, we study the ascent and descent along flat and faithfully flat

homomorphisms for relative versions of the Mittag-Leffler property. In
particular, we prove the Zariski locality of the notion of a locally f-projective
quasi-coherent sheaf for all schemes, and for each n ≥ 1, of the notion of an

n-Drinfeld vector bundle for all locally noetherian schemes.
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Chapter 3

Flat relative Mittag-Leffler
modules and Zariski locality

3.1 Introduction
Relative Mittag-Leffler modules were introduced by Rothmaler in [26]. His ap-
proach was model theoretic: Mittag-Leffler modules were shown to be the coun-
terparts of pure-injective modules in the sense that the former are atomic (i.e.,
they realize only the finitely generated pp-types) while the latter are saturated
(i.e., they realize all pp-types). The adjective ‘relative’ referred to restricting to
theories of modules induced by definable subclasses of Mod–R. Much later, the
important role of relative Mittag-Leffler modules for (infinite dimensional) tilting
theory was recognized by Angeleri and Herbera [1]; this in turn led to a proof of
finite type of all 1-tilting modules in [4].

Flat Mittag-Leffler modules played a key role in proving Zariski locality of the
notion of an (infinite dimensional) vector bundle in the classic work of Raynaud
and Gruson, [25, Seconde partie]. The locality follows by the Affine Commu-
nication Lemma (see e.g. [30, 5.3.2]), whose assumptions are guaranteed by the
ascent and descent of projectivity along flat ring homomorphisms, and faithfully
flat ring homomorphisms, respectively.

Once a structure theory of tilting modules over commutative rings was de-
veloped in [2] and [20], it was possible to generalize the classic results to prov-
ing Zariski locality for various notions of quasi-coherent sheaves associated with
tilting, [21]. Another generalization, employing the notion of a restricted flat
Mittag-Leffler module, proved the Zariski locality of restricted Drinfeld vector
bundles in [14].

Our goal here is to refine the classic result on the ascent and descent of flat
Mittag-Leffler modules to the relative setting. The main technical tools needed for
this purpose are presented in Section 3.3. In Section 3.4, we apply these tools and
prove Zariski locality of the corresponding notions of flat quasi-coherent sheaves.
In particular, we prove the Zariski locality of the notion of a locally f-projective
quasi-coherent sheaf for all schemes, and for each n ≥ 1, of the notion of an
n-Drinfeld vector bundle for all locally noetherian schemes.
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3.2 Preliminaries
Let R be an (associative, unital) ring and Mod–R the category of all (unitary
right R-) modules. The elements of Mod–R will often be referred to simply as
modules. Further, R–Mod will denote the category of all (unitary) left R-modules.

Let n ≥ 0. A module M is an FPn module provided that M possesses a
projective resolution · · · → Pi → Pi−1 → · · · → P0 → M → 0 such that all the
modules Pi (i ≤ n) are finitely generated. So FP0 modules are just the finitely
generated modules, FP1 modules are the finitely presented ones, etc. Notice that
the ring R is right noetherian, iff the classes of FPn modules coincide for all n ≥ 0
, while R is right coherent, iff the classes of FPn modules coincide for all n ≥ 1.

We will denote by Pn, Fn, and In the classes of all modules of projective,
weak, and injective dimension ≤ n, respectively.

Let B be a class of modules. Then ⊥B denotes the class of all modules A such
that Ext1

R(A,B) = 0 for each B ∈ B. Similarly, B⊥ is the class of all modules C
such that Ext1

R(B,C) = 0 for all B ∈ B. Further, B⊺ denotes the class of all left
R-modules D such that TorR1 (B,D) = 0 for all B ∈ B. Similarly, for a class of left
R-modules D, ⊺D denotes the class of all modules C such that TorR1 (C,D) = 0
for all D ∈ D.

For a class of modules C we denote by lim−→C the class of all modules that
are direct limits of direct systems consiting of modules from C. For example,
F0 = lim−→P0 for any ring R. Also, PI will denote the class of all pure-injective
modules.

We will need the following consequence of [15, Theorem 8.40 and Corollary
8.42]:

Lemma 3.2.1. Let R be a ring and C be a class of FP2-modules closed under
extensions, direct summands and containing R. Let B = C⊥. Then lim−→C =
⊥(B ∩ PI).

We also recall the following identities satisfied by the Tor bifunctor.

Lemma 3.2.2. Let φ : R → S be a flat ring homomorphism of commutative
rings.

(1) For all modules A and B, there is an S-isomorphism TorR1 (A,B) ⊗R S ∼=
TorS1 (A⊗R S,B ⊗R S).

(2) If A is a module and B is an S-module, then there is an S-isomorphism
TorS1 (A⊗R S,B) ∼= TorR1 (A,B).

Proof. (1) is a particular instance of [12, Theorem 2.1.11], and (2) a particular
instance of [9, Proposition VI.4.1.2].

The central notion of our paper is that of a relative Mittag-Leffler module:

Definition 3.2.3. Let R be an arbitrary ring, M ∈ Mod–R and Q ⊆ R–Mod.
Then M is Q-Mittag-Leffler (or Mittag-Leffler relative to Q), provided that the
canonical morphism ψM : M ⊗R

∏︁
i∈I Qi →

∏︁
i∈IM ⊗R Qi defined by ψM(m ⊗

(qi)i∈I) = (m⊗ qi)i∈I is injective for any family (Qi | i ∈ I) consisting of elements
of Q.
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As mentioned above, relative Mittag-Leffler modules were introduced in [26].
Further results on these modules were proved in [1], and in the more recent
papers [17] and [27]. Following [19], we will denote by DQ the class of all flat
Q-Mittag-Leffler modules.

The two borderline cases of Definition 3.2.3 occur for Q = ∅, when DQ = F0,
and for Q0 = R–Mod, when DQ0 = FM is the class of all flat Mittag-Leffler
modules. As Q0 = (F0)⊺, the latter setting can be extended as follows: for each
n ≥ 0, we let Qn = (Fn)⊺. We will call the modules M ∈ DQn flat n-Mittag-
Leffler.

Another case of interest is when Q = {R}, or equivalently, Q is the class of
all flat left R-modules. Then the flat Q-Mittag-Leffler modules coincide with the
f-projective modules, that is, the modules M such that each homomorphism from
a finitely generated module to M factorizes through a free module, see [16] or [5,
§3].

Denoting the class of all f-projective modules by FP , we have the following
chain of classes of modules

(∗) P0 ⊆ FM = DQ0 ⊆ · · · ⊆ DQn ⊆ DQn+1 ⊆ · · · ⊆ FP ⊆ F0.

The inclusions in the chain (∗) need not be strict in general. For example, if
R has weak global dimension ≤ n, then DQn = DQn+1 = · · · = FP . If R is a
right perfect ring, then all the classes in the chain (∗) coincide.
Remark 12. 1. Other variants of the notion of a flat Mittag-Leffler module, called
restricted flat Mittag-Leffler modules, were introduced in [14]. Their classes form
a chain located between the classes P0 and FM.

2. The following generalization of the notion of an f-projective module goes
back to Simson [28]: given a cardinal κ ≥ ℵ0, a module M is κ-projective if each
homomorphism from a < κ-generated module to M factorizes through a free
module. Denote by Cκ the class of all κ-projective modules. Since Cℵ0 = FP =
D{R} one may wonder whether the classes Cκ fit in the setting of flat relative
Mittag-Leffler modules also for κ > ℵ0.

It is easy to see that FM ⊆ Cℵ1 ⊆ FP for any ring R, and that Cℵ1 = FM
when R is right hereditary or von Neumann regular (cf. [15, 3.19] and [5, 3.7(iii)]).
Also, for each κ ≥ ℵ0, all < κ-generated modules in the class Cκ are projective.
In particular, for κ = ℵ1, the classes Cℵ1 and FM contain the same countably
presented modules (namely the projective ones), so if Cℵ1 ̸= FM, then Cℵ1 ̸= DQ
for any class of left R-modules Q by [5, 2.5(i)]. If R is not right perfect, then the
class FM contains ℵ1-generated non-projective modules (cf. [15, 3.19] and [11,
VII.1.3]), so for each κ > ℵ1, FM ⊈ Cκ, whence again Cκ ̸= DQ for any class of
left R-modules Q.

Definition 3.2.4. Let R be a commutative ring.

(1) Let P a property of modules. Then P(Mod-R) denotes the class of all
modules satisfying the property P.
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(2) Let R be a class of commutative rings. Let X be a scheme and (R(u) | u ⊆
X, u open affine ) be its structure sheaf. Then X is a locally R-scheme
provided that R(u) ∈ R for each open affine set u of X.

The main properties P of modules that we will be interested in here are the
flatness, projectivity, and various properties related to Mittag-Leffler conditions
that are in general weaker than projectivity, but stronger than flatness. We will
work with general schemes, but in our final application, we will restrict ourselves
to locally noetherian schemes, that is, the locally R-schemes where R is the class
of commutative noetherian rings.

Recall that given two commutative rings R and S, a ring homomorphism
φ : R → S is flat, provided that S is a flat R-module (where the R-module
structure on S is induced by φ), that is, the functor F = −⊗R S is exact.
Moreover, φ is faithfully flat provided that φ is flat, and N ⊗R S ̸= 0, whenever
0 ̸= N ∈ Mod-R. Faithful flatness of φ is equivalent to the following property
of the functor F : for each complex C of R-modules, C is exact in Mod-R, if and
only if F (C) is exact in Mod-S, [23, Theorem 7.2].

A useful characterization of faithfully flat ring homomorphisms of commu-
tative rings goes back to [6, Chap. I, §3, Proposition 9] (see also [3, Lemma
2]):

Lemma 3.2.5. A flat ring homomorphism φ : R → S of commutative rings
is faithfully flat, if and only if φ – viewed as an R-homomorphism – is a pure
monomorphism.

Next, we recall the classic notions of ascent and descent, cf. [22, 10.82] or [24].

Definition 3.2.6. Let P be a property of modules, and R a class of commutative
rings.

(1) P is said to ascend along flat morphisms in R, provided that for each
flat ring homomorphism φ : R → S, such that R, S ∈ R, and each M ∈
P(Mod-R), also M ⊗R S ∈ P(Mod-S).

(2) P is said to descend along faithfully flat morphisms in R, provided that for
each faithfully flat ring homomorphism of commutative rings, φ : R → S,
such that R ∈ R and S is a finite direct product of rings from R, and for
each M ∈ Mod-R, such that M ⊗R S ∈ P(Mod-S), also M ∈ P(Mod-R).

(3) P is an ad-property in R , provided that P ascends along flat morphisms
in R, descends along faithfully flat morphisms in R, and, moreover, P is
compatible with finite ring direct products in the following sense: if R =∏︁
i<nRi is a finite ring direct product of rings with Ri ∈ R for each i < n,

and (Mi | i < n) satisfy Mi ∈ P(Mod-Ri) for each i < n, then M =∏︁
i<nMi ∈ P(Mod-R).

In the case when R is the class of all commutative rings, we will omit the
attribute ‘in R’ and say simply that P ascends, descends, and P is an ad-property.

Let P be a property of modules. If X is an affine scheme, i.e., X = Spec(R)
for a commutative ring R, then Qcoh(X) = Mod–R, so P is at the same time a
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property of quasi-coherent sheaves on X. For general schemes X, one can extend
P to a property of quasi-coherent sheaves M on X algebraically, by requiring
property P to hold for each module of sections of M:
Definition 3.2.7. Let P be a property of R-modules, X a scheme, and (R(u) |
u ⊆ X, u open affine ) be its structure sheaf. A quasi-coherent sheaf M on X is
a locally P-quasi-coherent sheaf on X in the case when for each open affine set u
of X, the R(u)-module of sectionsM(u) satisfies P. That is,M(u) ∈ P(R(u)).

If P is the property of being a projective module, then the locally P-quasi-
coherent sheaves are the (infinite dimensional) vector bundles, see [10]. When
P denotes the property of being a flat Mittag-Leffler module (a restricted flat
Mittag-Leffler module) then by [13], the locally P-quasi-coherent sheaves are
called Drinfeld vector bundles (restricted Drinfeld vector bundles). Extending this
notation to n ≥ 0, we will call a quasi-coherent sheaf M an n-Drinfeld vector
bundle in case it is a locally Pn-quasi-coherent sheaf where Pn is the property
of being a flat n-Mittag-Leffler module. Thus, 0-Drinfeld vector bundles are just
the Drinfeld vector bundles from [13].

A basic question concerning the various algebraic notions of locally P-quasi-
coherent sheaves defined above is whether these notions are also geometric, in-
dependent on a particular choice of affine coordinates on X, that is, whether the
notions are Zariski local:
Definition 3.2.8. Let R be a class of commutative rings, and C be the class of
all locally R-schemes.

The notion of a locally P-quasi-coherent sheaf is Zariski local on C provided
that for each X ∈ C, each open affine covering X = ⋃︁

v∈V v of X, and each quasi-
coherent sheafM on X, the following implication holds true: ifM(v) ∈ P(R(v))
for all v ∈ V , then M is locally P-quasi-coherent.

ad-properties of modules are important, because they guarantee Zariski local-
ity:
Lemma 3.2.9. Let R be a class of commutative rings. Let P be an ad-property
in R. Then the notion of a locally P-quasi-coherent sheaf is Zariski local on the
class of all locally R-schemes.
Proof. This is proved via the Affine Communication Lemma [30, 5.3.2], see [22,
27.21.2] or [14, Lemma 3.5].

It is well-known that the properties of being a projective, flat, flat Mittag–
Leffler, and restricted flat Mittag–Leffler module, are ad-properties in the class
of all commutative rings. Thus the corresponding notions of an (infinite di-
mensional) vector bundle, flat quasi-coherent sheaf, Drinfeld vector bundle, and
restricted Drinfeld vector bundle, are Zariski local on the class of all schemes (see
[25, Seconde partie], [24, §§8-9], and [14]). Further instances of ad-properties,
related to tilting and silting, have recently been introduced in [7] and [21].

Our goal here is to investigate the ascent and descent for flat relative Mittag-
Leffler modules, i.e., the flat Q-Mittag-Leffler modules where Q is a subclass of
R–Mod. Then we will apply the results obtained to proving Zariski locality for
the corresponding notions of quasi-coherent sheaves.

For further unexplained terminology, we refer to [12] and [15].
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3.3 The algebraic background of ascent and de-
scent for flat relative Mittag-Leffler modules

First, we recall some connections between the Mittag-Leffler property and sta-
tionarity.

Definition 3.3.1. Let R be an arbitrary ring and B be a module.

(1) Let (I,≤) be an upper directed poset. A direct system (Mi, fji | i ≤ j ∈ I)
of modules is said to be B-stationary provided that the induced inverse
system

(HomR(Mi, B),HomR(fji, B) | i ≤ j ∈ I)
satisfies the Mittag-Leffler condition, that is, for each i ∈ I there exists
i ≤ j ∈ I such that Im HomR(fki, B) = Im HomR(fji, B) for all j ≤ k ∈ I.

(2) A module M is said to be B-stationary if there exists a B-stationary direct
system of finitely presented modules (Mi, fji | i ≤ j ∈ I) such that M =
lim−→Mi.

(3) Let B be a class of right R-modules. We say that a direct system (Mi, fji |
i ≤ j ∈ I), or a right R-module M , is B-stationary, if it is B-stationary for
all B ∈ B.

Recall that a class of modules is said to be definable provided that it is closed
under direct limits, direct products and pure submodules. For each class of
modules Q there is the least definable class of modules containing Q, called the
definable closure of Q and denoted by DefQ. It is obtained by closing Q first
by direct products, then direct limits, and finally by pure submodules, cf. [17,
Lemma 2.9 and Corollary 2.10]. Note that each definable class is also closed under
direct sums, pure extensions, and pure-epimorphic images (see e.g. [15, Lemma
6.9]).

There is a duality between definable classes of left and right R-modules: given
a definable class Q of left (right) R-modules, the dual definable class Q∨ of Q is
the least definable class of right (left) R-modules containing the character modules
Q+ = HomZ(M,Q/Z) of all modules M ∈ Q. Then Q = (Q∨)∨ for any definable
class of left (right) modules Q, see e.g. [27, §2.5].

FP2 modules are important sources of mutually dual definable classes of left
and right modules:

Example 3.3.2. Let S be a class of FP2 modules. Then S⊥ is a definable class
in Mod–R (see [15, Example 6.10]), and S⊺ is a definable class of left R-modules.
Indeed, S⊺ is always closed under direct limits and pure submodules, and since
S consists of FP2 modules, S⊺ is also closed under products (cf. [12, Theorem
3.2.26] and [8, §VIII.5]). Since M+ ∈ S⊺ for each M ∈ S⊥, and N+ ∈ S⊥ for
each N ∈ S⊺ by [15, Lemma 2.16(b) and (d)], the definable classes S⊥ and S⊺

are mutually dual.
The classes of left R-modules Q of the form Q = S⊺ for a class S consisting

of FP2 modules will be called of finite type.
For example, when R is a right coherent ring and S the class of all finitely

presented modules, then the class S⊥ of all absolutely pure modules is definable
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in Mod–R, and its dual definable class of all flat left R-modules, S⊺, is of finite
type.

Proposition 3.3.3. [17, Proposition 1.7 and Theorem 2.11] Let R be a ring. Let
Q be a definable class of left R-modules and B = Q∨ be its dual definable class.
Let M be a right R-module. Then the following conditions are equivalent:

(1) M is Q-Mittag-Leffler.

(2) M is Q-Mittag-Leffler for all Q ∈ Q.

(3) M is Q+-stationary for all Q ∈ Q.

(4) M is B-stationary.

While studying flat Q-Mittag-Leffler modules, one can actually restrict to
definable classes of modules Q:

Proposition 3.3.4. [17, Corollary 2.10] Let Q be a class of left R-modules. Let
M be a Q-Mittag-Leffler module. Then M is also DefQ-Mittag-Leffler.

Now we will turn to the ascent for flat relative Mittag-Leffler modules, so we
will again restrict ourselves to commutative rings.

Lemma 3.3.5. Let φ : R→ S be a flat homomorphism of commutative rings and
Q be any class of modules. If M is a flat Q-Mittag-Leffler module, then M ⊗R S
is a flat (Q⊗R S)-Mittag-Leffler S-module.

Proof. Since M is a flat module, the functor (M ⊗R S)⊗S − : Mod–S → Mod–Z
is a composition of two exact functors

(M ⊗R S)⊗S − = (M ⊗R −)(S ⊗S −).
Thus M ⊗R S is a flat S-module.
Assume that M is a Q-Mittag-Leffler module and let (Qi | i ∈ I) be a family of
elements of Q. First, note that Q⊗R S ⊆ Def (Q) as classes of modules. Indeed,
since S is a flat module, we can write it as a direct limit of finitely generated free
modules, say S = lim−→α

Rnα . Therefore, Q⊗R lim−→α
Rnα ∼= lim−→α

Qnα ∈ Def (Q). By
our assumption on M and by Proposition 3.3.4, we infer that the canonical map
ψM : M ⊗R

∏︁
i∈I(Qi ⊗R S)→ ∏︁

i∈I(M ⊗R Qi ⊗R S) is monic.
We have the following commutative diagram whose horizontal maps are iso-

morphisms:

(M ⊗R S)⊗S
∏︁
i∈I(Qi ⊗R S)

∼=−−−→ M ⊗R
∏︁
i∈I(Qi ⊗R S)

ψM⊗RS

⏐⏐⏐↓ ψM

⏐⏐⏐↓∏︁
i∈I(M ⊗R S)⊗S (Qi ⊗R S)

∼=−−−→ ∏︁
i∈IM ⊗R (Qi ⊗R S).

Here, the left vertical map ψM⊗RS is the canonical morphism ψM⊗RS : (M ⊗R
S)⊗S

∏︁
i∈I(Qi ⊗R S)→ ∏︁

i∈I(M⊗RS)⊗S (Qi⊗RS). Thus ψM⊗RS is monic. This
proves that M ⊗R S is a (Q⊗R S)-Mittag-Leffler S-module.

The descent of flatness is well-known, we include a proof here for the sake of
completeness.

55



Lemma 3.3.6. Let φ : R→ S be a faithfully flat homomorphism of commutative
rings, and let M be a module such that the S-module M ⊗R S is flat. Then M is
a flat module.

Proof. First, since S is a flat module, also M ⊗R S, viewed as an R-module, is
flat. Indeed, the functor (M⊗RS)⊗R− is a composition of two exact functors as
follows: M⊗R (S⊗SS)⊗R− = ((M⊗RS)⊗S−)(S⊗R−). So for each short exact
sequence C of modules, C ⊗R (M ⊗R S) is a short exact sequence of S-modules.
Hence, by faithful flatness of φ, C ⊗R M is exact in Mod-R, whence M is a flat
module.

Recently, a short proof of the descent of the (absolute) flat Mittag-Leffler
property along all pure (and hence all faithfully flat) ring homomorphisms was
presented in [3, Lemma 5]. We include this short proof here as it works also in our
relative setting. (We refer to [18] for a broader context and further applications.)

Lemma 3.3.7. Let φ : R → S be a pure monomorphism of commutative rings.
Let Q be a class of modules. Let M be a flat module such that M ⊗R S is a
(Q⊗R S)-Mittag-Leffler S-module. Then M is a Q-Mittag-Leffler module.

Proof. Let (Qi | i ∈ I) be a family consisting of modules from Q. Since φ is pure,
the canonical morphism gi : Qi

∼= Qi ⊗R R → Qi ⊗R S is monic for each i ∈ I,
and so is g = ∏︁

i∈I gi : ∏︁
i∈I Qi →

∏︁
i∈I(Qi ⊗R S).

Let M be a flat module such that M ⊗R S is a (Q ⊗R S)-Mittag-Leffler S-
module. Since M is flat, the morphism M ⊗R g : M ⊗R

∏︁
i∈I Qi → M ⊗R∏︁

i∈I(Qi⊗R S) is monic. Moreover, we have the canonical isomorphism ψ : M ⊗R∏︁
i∈I(Qi ⊗R S) ∼= M ⊗R (S ⊗S

∏︁
i∈I(Qi ⊗R S)) ∼= (M ⊗R S) ⊗S

∏︁
i∈I(Qi ⊗R S).

Since M ⊗R S is a (Q ⊗R S)-Mittag-Leffler S-module, the canonical morphism
h : (M ⊗R S)⊗S

∏︁
i∈I(Qi ⊗R S) → ∏︁

i∈I(M ⊗R S)⊗S (Qi ⊗R S) is monic. Thus
the composite morphism k = hψ(M ⊗R g) is monic.

Notice that k(m ⊗R (qi)i∈I) = ((m ⊗R 1) ⊗S (qi ⊗R 1))i∈I , so k can also be
expressed as the composition of another triple of canonical morphisms: k = ψ′g′h′,
where h′ : M ⊗R

∏︁
i∈I Qi →

∏︁
i∈I(M ⊗RQi), g′ is the monomorphism ∏︁

i∈I(M ⊗R
Qi) →

∏︁
i∈I(M ⊗R Qi ⊗R S), and ψ′ the isomorphism ∏︁

i∈I(M ⊗R Qi ⊗R S) →∏︁
i∈I(M ⊗R S)⊗S (Qi ⊗R S). Since k is monic, so is h′. The latter says that M

is a Q-Mittag-Leffler module.

Now, we can easily prove the descent for flat relative Mittag-Leffler modules:

Theorem 3.3.8. Let φ : R→ S be a faithfully flat homomorphism of commuta-
tive rings. Let Q be a class of modules. Let M be a module such that M ⊗R S
is a flat (Q ⊗R S)-Mittag-Leffler S-module. Then M is a flat Q-Mittag-Leffler
module.

Proof. By Lemma 3.3.6, we can assume that M is a flat module. By Lemma
3.2.5, φ is a pure monomorphism, so Lemma 3.3.7 applies and shows that M is
a Q-Mittag-Leffler module.

It is worth noting that for countably presented flat modules, Mittag-Leffler
conditions relative to definable classes of modules can be expressed in terms of
vanishing of the Ext functor, following [17, §1].

56



Lemma 3.3.9. Let R be any ring. Let M be a countably presented flat module, Q
be a definable class of left R-modules, and B = Q∨. Then M is Q-Mittag-Leffler,
if and only if M ∈ ⊥B.

Proof. If M is Q-Mittag-Leffler, then M is B-stationary by Proposition 3.3.3.
Since M is a countable direct limit of finitely presented free modules and B is
closed under countable direct sums, we infer from [15, Corollary 2.23] and [17,
Lemma 1.11(3)] that Ext1

R(M,B) = 0 for each B ∈ B. The converse implication
follows by [17, Lemma 1.11(1)] and Proposition 3.3.3.

Remark 13. Lemma 3.3.9 does not extend to uncountably presented modules in
general. Just consider any non-right perfect ring R and let Q = R–Mod. Then
B = Q∨ = Mod–R, so ⊥B = P0 ⊊ FM (though, as correctly claimed by Lemma
3.3.9, the countably presented modules in P0 and FM are the same).

Theorem 3.3.8, Proposition 3.3.4, and Lemmas 3.3.5 and 3.3.9 yield the fol-
lowing

Corollary 3.3.10. Let φ : R→ S be a faithfully flat homomorphism of commu-
tative rings. Let Q be a definable class of modules and B = Q∨. Let Q′ denote
the least definable class of S-modules containing Q⊗RS, and B′ its dual definable
class.

Let M be a countably presented flat module. Then M ∈ ⊥B, if and only if
M ⊗R S ∈ ⊥B′.

In the particular setting of definable classes arising from kernels of Tor functors
(such as the definable classes of finite type from Example 3.3.2), we have the
following relation between definable closures:

Lemma 3.3.11. Let φ : R → S is a flat homomorphism of commutative rings
and C be a class of R-modules. Then Def (C ⊗R S)⊺ = Def (C⊺ ⊗R S).

In particular, if C consists of FP2 modules, then Def (C⊺ ⊗R S) = (C ⊗R S)⊺.

Proof. First, (C⊺)⊗R S ⊆ (C ⊗R S)⊺ by Lemma 3.2.2(1), whence Def (C⊺ ⊗R S) ⊆
Def (C ⊗R S)⊺.

For the opposite inclusion, note that by Lemma 3.2.2(2), (C⊗RS)⊺ is the class
of all S-modules N satisfying the following condition: N , viewed as an R-module,
is an element of C⊺. Then again N⊗RS ∈ (C⊗RS)⊺ by Lemma 3.2.2(1). Since the
canonical homomorphism f : n ↦→ n⊗1 from N to N⊗RS is an S-homomorphism,
and the S-homomorphism g : N ⊗R S → N defined by g : n ⊗ s ↦→ n.s satisfies
gf = 1N , we infer that N is isomorphic to a direct summand in N ⊗R S as an
S-module. Thus (C ⊗R S)⊺ consists of S-modules isomorphic to direct summands
of the modules from C⊺ ⊗R S, whence (C ⊗R S)⊺ ⊆ Def (C⊺ ⊗R S), proving the
opposite inclusion.

If C consists of FP2 modules, then also C ⊗R S consists of FP2 S-modules,
whence (C ⊗R S)⊺ is a definable class by Example 3.3.2.
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3.4 Zariski locality of quasi-coherent sheaves
associated with flat relative Mittag-Leffler
modules

In this section, we will apply the results of Section 3.3 to prove Zariski locality
of flat relative Q-Mittag-Leffler modules in various particular settings.

We start with a direct general application to quasi-coherent sheaves associated
with f-projective modules. Recall that a module M is f-projective if M is flat and
{R}-Mittag-Leffler, or equivalently, M is a flat Q-Mittag-Leffler module where
Q is the class of all flat left R-modules, [16] (see also Proposition 3.3.4 and [5,
§3]). In accordance with our Definition 3.2.7, we call a quasi-coherent sheaf M
on a scheme X locally f-projective in case for each open affine set u in X, the
R(u)-module of sections M(u) is an f-projective R(u)-module.

Theorem 3.4.1. The notion of a locally f-projective quasi-coherent sheaf is Zaris-
ki local on the class of all schemes.

Proof. By Lemma 3.2.9, it suffices to prove that the property of being an f-
projective module is an ad-property in the class of all commutative rings. How-
ever, its ascent and descent follows for Q = {R} immediately by Lemma 3.3.5 and
Theorem 3.3.8, respectively. The compatibility with finite ring direct products is
obvious (cf. Definition 3.2.6(3)).

For the rest of this section, R will denote a commutative ring, CR a class of
modules, and QR the definable class QR = Def C⊺R. In particular, QR = C⊺R in
case CR consists of FP2 modules.

The relevant property P of modules is defined as follows: if M is a module,
then M ∈ P(Mod–R), iff M is a flat QR-Mittag-Leffler module.

In order to prove locality of the induced notions of quasi-coherent sheaves in
this setting, we will need compatibility of the properties P for commutative rings
R and S connected by flat, and faithfully flat, morphisms. More precisely, we
will require the following compatibility conditions (C1), (C2) and (C3):

Definition 3.4.2. Let R be a class of commutative rings.

(C1) For each flat ring homomorphism φ : R→ S with R, S ∈ R, CR⊗R S ⊆ CS.

(C2) For each faithfully flat ring homomorphism φ : R→ S where R ∈ R and S
is a finite direct product of rings in R, Def C⊺S = Def (CR ⊗R S)⊺.

(C3) If S = ∏︁
i<nRi where Ri ∈ R for each i < n, then CS = ∏︁

i<n CRi
.

Notice that (C1) implies the inclusion C⊺S ⊆ (CR ⊗R S)⊺, and hence Def C⊺S ⊆
Def (CR ⊗R S)⊺.

Lemma 3.4.3. Let R be a class of commutative rings such that condition (C1)
holds. Then the property P ascends along flat morphisms in R.
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Proof. Let φ : R → S be a flat ring homomorphism with R, S ∈ R and M be a
flat QR-Mittag-Leffler module. By Lemma 3.3.5, M ⊗R S is a flat (QR ⊗R S)-
Mittag-Leffler S-module, and hence a flat Def (QR⊗RS)-Mittag-Leffler S-module
by Proposition 3.3.4. Condition (C1) and Lemma 3.3.11 give

QS = Def C⊺S ⊆ Def (CR ⊗R S)⊺ = Def (QR ⊗R S).

Thus, M ⊗R S is a flat QS-Mittag-Leffler S-module.

Lemma 3.4.4. Let R be a class of commutative rings such that condition (C2)
holds. Then the property P descends along faithfully flat morphisms in R.

Proof. Let φ : R→ S be a faithfully flat ring homomorphism, where R ∈ R and
S is a finite direct product of rings in R. Let M be a module such that M ⊗R S
is a flat QS-Mittag-Leffler S-module. Condition (C2) and Lemma 3.3.11 yield

QS = Def C⊺S = Def (CR ⊗R S)⊺ = Def (QR ⊗R S),

so M ⊗R S is a flat (QR ⊗R S)-Mittag-Leffler S-module. By Theorem 3.3.8, M
is a flat QR-Mittag-Leffler module.

Thus, we obtain

Theorem 3.4.5. Let R be a class of commutative rings such that conditions
(C1), (C2) and (C3) hold. Then P is an ad-property in R, whence the notion
of a locally P-quasi-coherent sheaf is Zariski local on the class of all locally R-
schemes.

Proof. By condition (C3), P is compatible with finite ring direct products, so the
ad-property of P follows by Lemmas 3.4.3 and 3.4.4. The final claim follows by
Lemma 3.2.9.

We finish this section by noting several applications of Theorem 3.4.5:

3.4.1 Applications

1. Let R be the class of all commutative rings and CR = {0}, so QR = R–Mod.
In this case, Theorem 3.4.5 yields the Zariski locality of the notion of a Drinfeld
vector bundle (= locally flat Mittag-Leffler quasi-coherent sheaf) proved in [14].

2. Let R be the class of all commutative rings and CR the class of all finitely
presented modules. Then QR = Def C⊺R = DefF0. By Proposition 3.3.4, a module
M has property P, iff M is f-projective. Conditions (C1) and (C3) clearly hold
true.

Condition (C2) holds even in the stronger form of C⊺S = (CR ⊗R S)⊺ whenever
φ : R → S is a faithfully flat homomorphism of commutative rings. Indeed, C⊺S
is the class of all flat S-modules. Let M ∈ (CR ⊗R S)⊺. By Lemma 3.2.2(2),
TorR1 (CR,M) = 0, whence M is a flat R-module. Then M ⊗R S is a flat S-
module, by (the proof of) Lemma 3.3.5. However, the S-module M is isomorphic
to a direct summand in M ⊗R S (cf. the proof of Lemma 3.3.11), whence M is a
flat S-module. This proves the inclusion (CR ⊗R S)⊺ ⊆ C⊺S; the other inclusion is
a consequence of condition (C1).
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Thus, Theorem 3.4.1 is just a particular instance of Theorem 3.4.5 for CR =
the class of all finitely presented modules.

3. A more involved application of Theorem 3.4.5 concerns the case when
CR = Fn for some n ≥ 1. In this case, we will verify conditions (C1) – (C3) for
R = the class of all noetherian rings.

Condition (C1) holds since CR ⊗R S ⊆ CS when S is a flat module, and
(C3) is obvious. As in Application 2, it only suffices to prove the inclusion
(CR⊗RS)⊺ ⊆ C⊺S for each faithfully flat homomorphism of commutative noetherian
rings φ : R→ S.

Recall that for an S-module M , M+ = HomZ(M,Q/Z) denotes the S-module
of characters of M , and for a class of S-modules E , E+ = {M+ | M ∈ E}. We
claim that F+

n = In ∩ (Mod–S)+. Since character modules of flat modules are
injective, the ⊆ inclusion holds. Conversely, let N = M+ ∈ In. Since S is
noetherian, character modules of injective modules are flat (e.g., by [15, Lemma
2.16(d)]), so N+ = M++ ∈ Fn. As the class Fn is closed under pure submodules
and the embedding M ↪→ M++ is pure, M ∈ Fn and the claim is proved. Using
[15, Lemma 2.16(b)] and the fact that the pure embedding M ↪→M++ splits for
any pure-injective module M , we get (Fn)⊺ = ⊥(F+

n ) = ⊥(In ∩ PI).
Let Sn,R denote the class of all finitely generated modules that appear as

nth syzygies in some projective resolution, P , of a finitely generated module
such that P consists of finitely generated modules. Then R ∈ Sn,R, and since
R is noetherian, S⊥

n,R = In by the Baer Test of Injectivity and by dimension
shifting. Let Dn,R denote the class of all modules M that are isomorphic to
direct summands of finite extensions of the modules from Sn,R. Then the class
Dn,R is closed under extensions, direct summands, and contains R. Moreover,
D⊥
n,R = In. By Lemma 3.2.1, lim−→Dn,R = ⊥(In ∩ PI).

Finally, let M ∈ (CR ⊗R S)⊺. Then Lemma 3.2.2(2) gives TorR1 (CR,M) = 0.
By the above, M , viewed as an R-module, is an element of lim−→Dn,R. Since S is
a flat module, Sn,R ⊗R S ⊆ Sn,S, whence also Dn,R ⊗R S ⊆ Dn,S. Moreover, the
tensor product commutes with direct limits, so M ⊗R S ∈ lim−→Dn,S = C⊺S. As M
is isomorphic to a direct summand in M ⊗R S as an S-module, also M ∈ C⊺S, and
the inclusion (CR ⊗R S)⊺ ⊆ C⊺S is proved.

Recall that if n ≥ 0 and Qn = (Fn)⊺, then the flat Qn-Mittag-Leffler modules
are called flat n-Mittag-Leffler, and the corresponding quasi-coherent sheaves
are the n-Drinfeld vector bundles. Thus, we have the following consequence of
Theorem 3.4.5 for CR = Fn:

Theorem 3.4.6. For each n ≥ 1, the notion of an n-Drinfeld vector bundle is
Zariski local on the class of all locally noetherian schemes.

Remark 14. If R is a non-right perfect ring (e.g., a commutative noetherian ring
of Krull dimension ≥ 1), then there is a gap between the classes FM of all flat
Mittag-Leffler modules and F of all flat modules. In fact, for each class Q of left
R-modules we have FM ⊆ DQ ⊆ F . Since DQ = DDef (Q) by Proposition 3.3.4
and there is only a set of definable classes of modules, there is also only a set of
such intermediate classes DQ between FM and F (see also [5, Theorem 3.5(i)]).

Of course, the variety of classes of modules between FM and F translates
directly into the same variety of classes of locally P-quasi-coherent sheaves in the
class of all flat quasi-coherent sheaves on the affine scheme X = Spec(R), where
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R is any commutative non-perfect ring (since in this case, Qcoh(X) is equivalent
to Mod–R). Moreover, all these classes contain a flat generator, as they contain
all vector bundles on X.

However, the picture for non-affine schemes may be different, depending on
further properties of the schemes. For example, by [29], if X is a quasi-compact
and quasi-separated scheme, then Qcoh(X) contains a flat generator, if and only
if X is semiseparated (i.e., the intersection of any two open affine sets is affine).
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304.

[11] P. C. Eklof, A. H. Mekler, Almost Free Modules, revised ed., North-Holland
Math. Library vol. 65, Elsevier, Amsterdam 2002.

[12] E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, GEM 30, W.
de Gruyter, Berlin 2011.

[13] S. Estrada, P. Guil Asensio, M. Prest, J. Trlifaj, Model category structures
arising from Drinfeld vector bundles, Adv. Math. 231(2012), 1417–1438.

62

https://doi.org/10.1142/S0219498824502190
https://doi.org/10.1142/S0219498824502190


[14] S. Estrada, P. Guil Asensio, J. Trlifaj, Descent of restricted flat Mittag-Leffler
modules and generalized vector bundles, Proc. Amer. Math. Soc. 142(2014),
2973–2981.
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Dualizations of approximations, ℵ1-projectivity, and
Vopěnka’s Principles
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Abstract. The approximation classes of modules that arise as components of
cotorsion pairs are tied up by Salce’s duality. Here we consider general

approximation classes of modules and investigate possibilities of dualization in
dependence on closure properties of these classes. While some proofs are easily
dualized, other dualizations require large cardinal principles, and some fail in
ZFC, with counterexamples provided by classes of ℵ1-projective modules over
non-perfect rings. For example, we show that Vopěnka’s Principle implies that
each covering class of modules closed under homomorphic images is of the form

Gen (M) for a module M , and that the latter property restricted to classes
generated by ℵ1-free abelian groups implies Weak Vopěnka’s Principle.
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Chapter 4

Dualizations of approximations,
ℵ1-projectivity, and Vopěnka’s
Principles

4.1 Introduction
Cotorsion pairs were introduced by Salce in [21] as analogs of the well-known
torsion pairs where the Hom functor was replaced by Ext. A formal replacement
was certainly not the main point: Salce proved the remarkable fact that though
there is no duality available in the category Mod–R, for each cotorsion pair (A,B),
the classes A and B are tied up by a duality: A is a special precovering class, if
and only if B is a special preeveloping class, cf. [14, Salce’s Lemma 5.20].

For general classes C of modules that do not necessarily fit in cotorsion
pairs, one still has the formally dual notions of a C -preenvelope (or a left C -
approximation) and a C -precover (or a right C -approximation). However, there
is no general tool for dualization like Salce’s Lemma at hand. In the present pa-
per, we consider general approximation classes of modules and investigate if, and
how, dualizations are possible assuming extra closure properties of these classes.

While some results can easily be dualized simply by employing dual argu-
ments, other require the use of large cardinal principles. On the one hand, we
prove that Vopěnka’s Principle implies that each covering class of modules closed
under homomorphic images is of the form Gen (M) for a module M (Proposition
4.3.7). On the other hand, we show that the latter property restricted to classes
of abelian groups generated by ℵ1-free groups implies Weak Vopěnka’s Principle
(Theorem 4.3.11).

In several cases, the class FM of all ℵ1-projective modules (= flat Mittag-
Leffler modules) over a non-right perfect ring R serves as a barrier for dualization
in ZFC. While Weak Vopěnka’s Principle is known to guarantee that each class
of modules closed under direct products and direct summands is preenveloping
(Lemma 4.3.1), the dual statement is not true in ZFC: by Example 4.3.4, FM
is a class of modules closed under direct sums and direct summands which is
not precovering. Also, in contrast with the claim of Proposition 4.3.7 mentioned
above, if R is a Dedekind domain with a countable spectrum which is not a com-
plete discrete valuation domain (e.g., when R = Z), then FM is an enveloping
class of modules closed under submodules, but FM is not of the form Cog (M)
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for any module M (Example 4.3.6).

4.2 Preliminaries
For a ring R, we denote by Mod–R the class of all (right R-) modules, and by
R–Mod the class of all left R-modules.

4.2.1 Approximations
A map f ∈ HomR(M,C) with C ∈ C is a C -preenvelope of M , if the abelian
group homomorphism HomR(f, C ′) : HomR(C,C ′) → HomR(M,C ′) is surjective
for each C ′ ∈ C .
A C -preenvelope f ∈ HomR(M,C) of M is called a C -envelope of M , provided
that f is left minimal, that is, provided f = gf implies that g is an automorphism
for each g ∈ End R(C ).
C ⊆ Mod–R is a preenveloping class (enveloping class) provided that each module
has a C -preenvelope (C -envelope).

Dually, a map f ∈ HomR(C,M) with C ∈ C is a C -precover of M , if the
abelian group homomorphism HomR(C ′, f) : HomR(C ′, C) → HomR(C ′,M) is
surjective for each C ′ ∈ C .
A C -precover f ∈ HomR(C,M) of M is called a C -cover of M , provided that f
is right minimal, that is, provided fg = f implies that g is an automorphism for
each g ∈ End R(C ).
C ⊆ Mod–R is a precovering class (covering class) provided that each module
has a C -precover (C -cover).

Let C be a class of R-modules. We define

C ⊥ = {N ∈ R–Mod | Ext1
R(C,N) = 0 for all C ∈ C }

⊥C = {N ∈ R–Mod | Ext1
R(N,C) = 0 for all C ∈ C }

Let A,B ⊆ Mod–R. The pair (A,B) is called a cotorsion pair [14, §5.2] (or a
cotorsion theory, [21]), if A =⊥ B and B = A⊥.

A module M is called Enochs cotorsion if Ext1
R(F,M) = 0 for all flat modules

F . We denote by EC the class of all Enochs cotorsion modules, and F0 the class
of all flat modules. By [14, Lemma 5.17], (F0, EC) forms a cotorsion pair, known
as the Enochs cotorsion pair.

A C -preenvelope f is called special if f is monic and its cokernel is an element
of ⊥C . A C -precover g is called special if g is surjective and its kernel is an
element of C ⊥. A class C is special preenveloping (special precovering) in case
each module has a special C -preenvelope (special C -precover).

A cotorsion pair (A,B) is called complete if A is a special precovering class.
By Salce’s Lemma mentioned in the Introduction, this is equivalent to B being a
special preenveloping class.

Throughout our paper, we stick to the terminology introduced for modules by
Enochs [10]. Notice that a different, though equivalent, terminology has been used
in representation theory by the Auslander school (see e.g.[4]): C -preenvelopes and
C -envelopes are called left C -approximations and minimal left C -approximations.
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Dually, C -precovers and C -covers are called right C -approximations and minimal
right C -approximations.

In category theory, a still different terminology has been used, cf. [1]: Preen-
veloping classes closed under direct summands are called weakly reflective, while
precovering classes closed under direct summands are weakly coreflective.

It is easy to see that all enveloping (covering) classes of modules are closed
under direct summands, so they are weakly reflective (weakly coreflective). An
example of a precovering class that is not coreflective is provided by the class of all
free modules over any ring possessing projective modules that are not free (such
as a path algebra of a non-trivial quiver). Examples of preenveloping classes of
modules that are not weakly reflective arise from pure-injective modules that are
not dual modules:
Example 4.2.1. Let R be a ring, D be the class of all dual modules (= the
class of all modules isomorphic to the character modules N+ = HomZ(N,Q/Z)
of all left R-modules N), and let PI be the class of all pure-injective modules
(= modules injective w.r.t. all pure embeddings). By [14, Theorem 2.27], PI is
the class of all direct summands of the modules from D. Both PI and D are
preenveloping classes of modules, since the canonical embedding of any module
M into its double dual module M++ is pure, cf. [14, Corollary 2.21(b)]. However,
D ⊊ PI in general:

For an example, let R = Z. Let E denote the class of all torsion-free divisible
groups, that is, the underlying groups of Q-linear spaces. By [14, Corollary
2.18(a)], E+ = D ∩ E . However, Q ∈ E \ E+, so Q is a pure-injective abelian
group which is not dual. The point is that duals of non-zero torsion-free divisible
groups are uncountable, as Q+ is uncountable. Indeed, Q+ fits in the short
exact sequence 0 → (Q/Z)+ → Q+ → Z+ → 0 where (Q/Z)+ ∼=

∏︁
p∈P Jp is an

uncountable group. Here, P denotes the set of all prime integers and Jp the group
of all p-adic integers, for p ∈ P.

4.2.2 Modules
Let R be a ring, M a module, and C a class of modules. A family of submodules,
M = (Mα | α ≤ σ), of M is called a continuous chain in M , provided that
M0 = 0, Mα ⊆ Mα+1 for each α < σ, and Mα = ⋃︁

β<αMβ for each limit ordinal
α ≤ σ.
A continuous chainM in M is a C -filtration of M , provided that M = Mσ, and
each of the modules Mα+1/Mα (α < σ) is isomorphic to an element of C .
M is called C -filtered (or a transfinite extension of modules in C ), provided
that M possesses at least one C -filtration. A class C is closed under transfinite
extensions provided that M ∈ C for each C -filtered module M .

Notice that each class of modules closed under transfinite extensions is closed
under extensions and (arbitrary) direct sums.

Let C be a class of modules. A module M is said to be generated by C
if there exists a set Λ, a family (Cλ)Λ of elements of C and an epimorphism⨁︁

λ∈Λ Cλ →M .
Dually, let C be a class of modules. A module M is said to be cogenerated by

C if there exists a set Λ, a family (Cλ)Λ of elements of C and a monomorphism
M → ∏︁

λ∈Λ Cλ.
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The class of all modules generated and cogenerated by C is denoted by
Gen (C ) and Cog (C ), respectively. If C consists of a single module C, we say that
C generates (cogenerates) M . We also use the notations Gen (C) and Cog (C)
instead of Gen (C ) and Cog (C ).

We recall the following easy facts (see e.g. [24, 13.4 and 14.4])

Lemma 4.2.2. (i) The class Gen (C ) is closed under homomorphic images
and direct sums, and it contains C . Moreover if X is a subclass of Mod–R
which contains C , and is closed under epimorphic images and direct sums,
then Gen (C ) ⊆ X .

(ii) The class Cog (C ) is closed under submodules and direct products, and it
contains C . Moreover if X is a subclass of Mod–R which contains C , and
is closed under submodules and direct products, then Cog (C ) ⊆ X .

Let M be a module. We will denote by sumM the class of all finite direct
sums of copies of M , and by addM the class of all direct summands of all modules
in sumM .

For a class of modules C , we denote TrN(C ) the trace of C in N , that is,
the sum of images of all homomorphisms from modules in C to N . Dually,
RejN(C ) denotes the reject of C in N , that is, the intersection of kernels of all
homomorphisms from N to modules in C , cf. [3, p.109].

Proposition 4.2.3. [3, Proposition 8.12] Let C be a class of modules, and let N
be a module. Then:

(i) TrN(C ) is the unique largest submodule L of N generated by C ;

(ii) RejN(C ) is the unique smallest submodule U of N such that N/U is cogen-
erated by C .

For a module M , σ[M ] denotes the class of all modules subgenerated by
the module M , that is, the submodules of all modules generated by M . This
class is closed under submodules and homomorphic images, and it is the smallest
Grothendieck subcategory of Mod–R containing the module M , cf. [24, §15]. Du-
ally, π[M ] will denote the class of all homomorphic images of modules cogenerated
by M . Also this class is closed under homomorphic images and submodules.

For a class of modules C , we will denote by lim−→C the class of all modules
that are direct limits of directed systems consisting of modules from C .

4.2.3 ℵ1-projectivity
Let R be a ring and M be an R-module. We say that M is ℵ1-projective in case
there exists a set S consisting of countably generated projective submodules of M
with the following properties: 0 ∈ S, any countable subset of M is contained in
an element of S, and S is closed under unions of well-ordered chains of countable
length.

Notice that if R is a right hereditary ring, then a module is ℵ1-projective,
iff each of its countably generated submodules is projective. In particular, ℵ1-
projective abelian groups (i.e., the abelian groups all of whose countable sub-
groups are free) are called ℵ1-free.
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Let R be a ring. A module M is Mittag-Leffler provided that the canonical
group homomorphism

φ : M ⊗R
∏︂
i∈I
Ni →

∏︂
i∈I
M ⊗R Ni

defined by
φ(m⊗R (ni)i∈I) = (m⊗R ni)i∈I

is monic for each family (Ni | i ∈ I) of left R-modules.
Let M ∈ Mod–R and Q ⊆ R–Mod. Then M is Q-Mittag-Leffler, provided that
the canonical morphism M ⊗∏︁

i∈I Qi →
∏︁
i∈IM ⊗RQi is injective for any family

(Qi | i ∈ I) consisting of elements of Q. So a module M is Mittag-Leffler, iff it is
Q-Mittag-Leffler for Q = R–Mod.

We will be interested in flat Mittag-Leffler modules, and more in general,
flat Q-Mittag-Leffler modules. Following [15], we will denote the class of all flat
Mittag-Leffler modules by FM, and the class of all flat Q-Mittag-Leffler modules
by DQ.

The key relation between these notions goes back to [15, Corollary 2.14(i)]:
If R is any ring and M any module, then M is ℵ1-projective, if and only if M is
flat Mittag-Leffler. In particular, abelian groups are flat Mittag-Leffler, iff they
are ℵ1-free.

4.2.4 Vopěnka’s Principles
We will employ two large cardinal principles. The first one is due to Petr Vopěnka,
cf. [2, p. 278]. It is now called Vopěnka’s Principle, and one of its equivalent
renderings says that there exist no large rigid systems in the category G of all
graphs. That is, there exists no proper class of graphs {Gα | α ∈ Ord} such that
HomG(Gα, Gβ) = ∅ for all ordinals α ̸= β and HomG(Gα, Gα) = {idGα} for each
ordinal α.

The second principle, called Weak Vopěnka’s Principle, says that there ex-
ists no proper class of graphs (Gα | α ∈ Ord) such that for all ordinals α, β,
HomG(Xα, Xβ) ̸= ∅, iff α ≥ β 1.

It is known that Vopěnka’s Principle implies Weak Vopěnka’s Principle ([1,
Observation I.12]), but the converse fails under the assumption of existence of
supercompact cardinals, see [23, Theorem 1.2]. A recent application of Vopěnka’s
Principle to approximation theory has appeared in [6]: If Vopěnka’s Principle
is consistent, then it is also consistent that each cotorsion pair over any right
hereditary ring is complete. However, by [8], it is consistent with ZFC that the
Whitehead cotorsion pair is not complete (the Whitehead cotorsion pair is the
cotorsion pair of abelian groups (⊥Z, (⊥Z)⊥)). We refer to [2, Appendix] and [23]
for more details on the large cardinal strength of Vopěnka’s principles.

Also, we refer to [14, Part II] for basics of approximation theory of modules,
to [7, Chap. IV and VII] for properties of ℵ1-projective modules, and to [3] for
basics of general theory of modules.

1This is not the original formulation of Weak Vopěnka’s Principle, but it is equivalent to it
by [23, Theorem 1.4]
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4.3 Closure properties, and enveloping and cov-
ering classes of modules

We start with a characterization of preenveloping classes in terms of their closure
properties:

Lemma 4.3.1. Let R be a ring, and C ⊆ Mod–R a class of modules closed under
direct summands. Consider the following two conditions:

(i) C is preenveloping.

(ii) C is closed under direct products.

Then (i) implies (ii). If Weak Vopěnka’s Principle holds, then (ii) implies (i).

Proof. Assume (i) and let (Ei | i ∈ I) be a family of modules from C . Let
f : P → C be a C -preenvelope of the module P = ∏︁

i∈I Ei. Denote by πi : P → Ei
the canonical projection (i ∈ I). Then there exist homomorphisms gi : C → Ei
such that gif = πi for each i ∈ I. Define a homomorphism g : C → P by
πig(c) = gi(c) for all c ∈ C and i ∈ I. Then gf(x) = (gi(f(x)) | i ∈ I) = x for
all x ∈ P . Thus P is isomorphic to a direct summand in C, and P ∈ C by our
assumption on the class C , so (ii) holds.

The implication (ii) implies (i) holds under Weak Vopěnka’s Principle by [1,
Theorem 1.9 and Remark 1.10] and [23, Theorem 1.4].

Next, we consider classes of modules closed under submodules. Under this ad-
ditional assumption, the conditions (i) and (ii) of Lemma 4.3.1 become equivalent
in ZFC:

Lemma 4.3.2. Let R be a ring, and C ⊆ Mod–R a class of modules. Consider
the following conditions

(i) C is (pre-) enveloping and closed under submodules.

(ii) C is closed under submodules and direct products.

(iii) C = Cog (M) for a module M .

Then (i) is equivalent to (ii), and it is implied by (iii).

Proof. (i) implies (ii) by Lemma 4.3.1. Assume (ii) and let N ∈ Mod–R. Let
U = RejN(C ). We claim that the canonical projection πU : N → N/U is a
C -envelope of N .

First, N/U ∈ C by Proposition 4.2.3(ii). Let f ∈ HomR(N,C) where C ∈
C . Since ker f ⊇ U , the Homomorphism Theorem implies that f factorizes
through πU , and that the only factorization of πU through itself is by the identity
automorphism idN/U .

Therefore, C is an enveloping class and (i) holds. Finally, (iii) trivially implies
(ii).

Let us try to dualize Lemma 4.3.1. First, dualizing the proof of the implication
(i) =⇒ (ii) in Lemma 4.3.1, we easily obtain
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Lemma 4.3.3. Let R be a ring, and C ⊆ Mod–R a class of modules closed under
direct summands. Consider the following two conditions:

(i) C is precovering.

(ii) C is closed under direct sums.

Then (i) implies (ii).

The following two examples show that flat relative Mittag-Leffler modules
yield a barrier in ZFC for proving both reverse implications, i.e., both (ii) =⇒
(iii) in Lemma 4.3.2, and (ii) =⇒ (i) in Lemma 4.3.3. We start with the second
implication:

Example 4.3.4. Let R be a ring, Q a class of left R-modules, and DQ the class
of all flat Q-Mittag-Leffler modules So DQ = FM is the class of all flat Mittag-
Leffler (= ℵ1-projective) modules in the particular case when Q = R–Mod, and
DQ = FP the class of all f -projective modules in the particular case when Q =
{R}, cf. [5, §4]. By [5, Lemma 3.1(i)], the class DQ is always closed under
transfinite extensions and pure submodules (and hence under direct sums and
direct summands).

By [5, Theorem 3.6] (see also [22, Theorem 3.3]), for any class Q of left R-
modules, the class DQ is precovering, iff DQ coincides with the class F0 of all flat
modules.

For Q = R–Mod, it is well-known that FM = F0, only if the ring R is right
perfect, cf. [3, §28]. So (ii) does not imply (i) in Lemma 4.3.3 whenever R is any
non-right perfect ring and C = FM.

A different kind of examples arises for Q = {R}: by [5, Proposition 4.8(ii)]
and [20, Proposition 4.10], if R is a right semihereditary ring such that FP = F0,
then R left semihereditary. So if R is (the opposite ring of) the Chase ring from
[16, Chap. 1,§2F,2.34], then (ii) does not imply (i) in Lemma 4.3.3 for C = FP .

Before presenting our second example showing that in general (ii) does not
imply (iii) in Lemma 4.3.2, we need a lemma generalizing a construction from
[12, Theorem 5.8].

Lemma 4.3.5. Let R be a right hereditary ring, (A,B) be a cotorsion pair in
Mod–R. Let C ⊆ A be such that C is closed under submodules and transfinite
extensions, C ⊥ = B, and C ∩ B = 0.

Then for each 0 ̸= C ∈ C there exists 0 ̸= D ∈ C such that HomR(D,C) = 0.
In particular, C ⊈ Cog (C) for any module C ∈ C .

Proof. Let 0 ̸= C ∈ C and κ = cardC+cardR+ℵ0. Let S denote a representative
set of all non-zero modules in C of cardinality≤ κ such that C ∈ S. Since C ⊥ = B
and C∩B = 0, for each S ∈ S there exists CS ∈ C such that Ext1

R(CS, S) ̸= 0. Let
E = ⨁︁

S∈S CS ∈ C . Then Ext1
R(E, S) ̸= 0 for each S ∈ S. Let λ = cardE(≥ κ).

Since R is right hereditary, there is a projective resolution of E of the form
0→ K

η
↪→ F → E → 0 where F is free of rank λ.

The module D will be constructed as the last term of a C -filtration (Dα |
α ≤ τ) for some τ ≤ λ+ by induction as follows: D0 = C; if Dα has already been
constructed and HomR(Dα, C) = 0, we let τ = α and D = Dτ , and finish the
construction.
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Otherwise we proceed by putting Hα = HomR(Dα, C)\{0}. For each h ∈ Hα,
we let Ih = Imh ⊆ C. Since C is closed under submodules, Ih ∈ C , and
card Ih ≤ κ implies Ext1

R(E, Ih) ̸= 0 by our definition of E. Using the projective
resolution of E above, we infer that there exists ϕh ∈ HomR(K, Ih) that cannot be
extended to a homomorphism from F to Ih. SinceK is projective and h : Dα → Ih
is surjective, there exists ψh ∈ HomR(K,Dα) such that ϕh = hψh.

We have the exact sequence 0→ K(Hα) ηα
↪→ F (Hα) → E(Hα) → 0 where E(Hα) ∈

C because C is closed under transfinite extensions. For each h ∈ Hα, let νh be
the hth canonical inclusion of K into K(Hα), and µh hth canonical inclusion of F
into F (Hα). Then µhη = ηανh for each h ∈ Hα. We define Ψα ∈ HomR(K(Hα), Dα)
by Ψανh = ψh for each h ∈ Hα.

The module Dα+1 is defined by the pushout of ηα and Ψα,

0 −−−→ K(Hα) ηα−−−→ F (Hα) −−−→ E(Hα) −−−→ 0

Ψα

⏐⏐⏐↓ ρ

⏐⏐⏐↓ ⃦⃦⃦⃦
0 −−−→ Dα

⊆−−−→ Dα+1 −−−→ E(Hα) −−−→ 0.
Then Dα+1 ∈ C because C is closed under extensions. For a limit ordinal α,

we put Dα = ⋃︁
β<αDβ.

We claim that our construction terminates at some τ ≤ λ+, whence for D =
Dτ , we have HomR(D,C) = 0.

If not, then Dλ+ is defined and satisfies Dλ+ = ⋃︁
α<λ+ Dα, and there exists

0 ̸= g ∈ HomR(Dλ+ , C). Let β < λ+ be the least ordinal such that g ↾ Dβ ̸= 0.
We will prove that for each β ≤ α < λ+, Im (g ↾ Dα) is a proper submodule

of Im (g ↾ Dα+1). Then (Im (g ↾ Dα) | β ≤ α < λ+) is a strictly increasing
continuous chain of submodules of C of cardinality λ+, in contradiction with
cardC = κ ≤ λ.

Assume Im (g ↾ Dα) = Im (g ↾ Dα+1) for some β ≤ α < λ+. Using the no-
tation from the non-limit step of our construction for h = g ↾ Dα, we define
fh = (g ↾ Dα+1)ρµh ∈ HomR(F, Ih).

We claim that fh extends ϕh from K to F , in contradiction with our definition
of ϕh. Indeed, fhη = (g ↾ Dα+1)ρηανh. Denoting the inclusion Dα ⊆ Dα+1 by σα
and using the pushout diagram above, we obtain fhη = (g ↾ Dα+1)σαΨανh. The
latter map is equal to hΨανh, and hence to hψh = ϕh. Thus, fhη = ϕh, q.e.d.

Example 4.3.6. Let R be a Dedekind domain with a countable spectrum which
is not a complete discrete valuation domain (e.g., let R = Z). We claim that
the class of all ℵ1-projective modules FM is an enveloping class closed under
submodules, but FM is not of the form Cog (M) for any module M .

To verify this claim, we apply Lemma 4.3.5 to the Enochs cotorsion pair, i.e.,
A = F0 and B = EC, and let C = FM. This is possible, since R is hereditary,
whence C is closed under submodules by [15, Corollary 2.10(i)]. Moreover C
is closed under transfinite extensions by [14, Corollary 3.20(i)]. Since Spec(R)
is countable, the quotient field Q is countably presented, whence Q ∈ ⊥(C ⊥)
by [14, Lemma 10.19]. Then ⊥(C ⊥) contains all torsion-free modules, whence
⊥(C ⊥) = F0, and C ⊥ = B.

Moreover, if 0 ̸= M ∈ C ∩ B, then M is a flat cotorsion module, so M ∼=
Q(α) ⊕ ∏︁

0̸=p∈Spec(R)
ˆ︁
R

(αp)
p for some cardinals α, αp (0 ̸= p ∈ Spec(R)), where
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Rp denotes the localization of R at p and ˆ︁ the p-adic completion, see [11,
Theorem 5.3.28]. Since Q /∈ C , M has a direct summand isomorphic to ˆ︂Rp,
whence ˆ︂Rp ∈ C . We have an exact sequence 0 → Rp → ˆ︂Rp → D → 0 where
D is torsion free and divisible, hence a direct sum of copies of Q. Since Rp is
a countably generated pure submodule of ˆ︂Rp, it is projective. This implies that
R = Rp is a (discrete) valuation domain. If R is not complete, then there is
an exact sequence 0 → R → N → Q → 0 with N ⊆ ˆ︂Rp countably generated,
and hence free, a contradiction. Thus, if R is not a complete discrete valuation
domain, then C ∩ B = 0.

Finally, since R is noetherian, C is closed under direct products by [15, Propo-
sition 4.3], so by Lemmas 4.3.2 and 4.3.5, C is an enveloping class of modules
closed under submodules, but C is not of the form Cog (M) for any module M .

We have seen that only one implication from Lemma 4.3.1 can be dualized.
However, the dual version of Lemma 4.3.2 does hold true, even in an extended
form:

Proposition 4.3.7. Let R be a ring, and C ⊆ Mod–R a class of modules. Con-
sider the following conditions

(i) C is (pre-) covering and closed under homomorphic images.

(ii) C is closed under homomorphic images and direct sums.

(iii) C = Gen (M) for a module M .

Then (i) is equivalent to (ii), and it is implied by (iii). If Vopěnka’s Principle
holds, then (ii) implies (iii).

Proof. (i) implies (ii) by Lemma 4.3.3. Assume (ii) and let N ∈ Mod–R. Let
T = TC (N). By (ii), T ∈ C , and basic properties of the trace yield that the
monomorphism T ⊆ N is a C -cover of N . So (i) holds. The implication (iii)
=⇒ (ii) is trivial.

Finally, assume (ii). Since C is closed under direct sums and homomorphic
images, it is also closed under direct limits. Then Vopěnka’s Principle gives
C = lim−→S for a subset S ⊆ C (cf. [9, Theorem 3.3] or [2, Corollary 6.18]).
Let M = ⨁︁

S∈S S. Then M ∈ C , and the closure properties of C yield that
Gen (M) ⊆ C . Moreover, by [17, Lemma 1.1], Gen (M) ⊇ lim−→ sumM = lim−→S =
lim−→ addM , so Gen (M) = C , proving (iii).

Adding further closure properties of the class C allows a complete charac-
terization of the dual setting in ZFC in terms of the Grothendieck categories
σ[M ].

Lemma 4.3.8. Let R be a ring, and C ⊆ Mod–R a class of modules. Then the
following conditions are equivalent:

(i) C is (pre-) covering and closed under submodules and homomorphic images.

(ii) C = σ[M ] (= Gen (M)) for a module M .
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Proof. Assume (i). Denote by D a representative set of all finitely generated
modules in the class C . Let M = ⨁︁

D∈D D. Since C is precovering and closed
under direct summands, C is closed under direct sums by Lemma 4.3.3. So
M ∈ C . Then Gen (M) ⊆ σ[M ] ⊆ C as C is also closed under homomorphic
images and submodules. Conversely, let N ∈ C . Then N is a directed union
of copies of some modules from D, say N = ⋃︁

F∈E F for some E ⊆ D. Thus
N ∈ lim−→ addM = lim−→ sumM by [17, Lemma 1.1], whence (ii) holds because
lim−→ sumM ⊆ Gen (M) ⊆ σ[M ].

Assume (ii). Clearly, σ[M ] is closed under submodules and homomorphic
images. For a module N , let T = Tσ[M ](N). Then T ∈ σ[M ] and the inclusion
T ↪→ N is a σ[M ]-cover of N , whence (i) holds true.

Let’s turn again to the setting of preenveloping classes. For a module M , we
will denote by π[M ] the class of all homomorphic images of all modules cogener-
ated by M .

Lemma 4.3.9. Let R be a ring, and C ⊆ Mod–R a class of modules. Then the
following conditions are equivalent:

(i) C is (pre-) enveloping and closed under submodules and homomorphic im-
ages.

(ii) C = π[M ] for a module M .

(iii) C = Mod–(R/I) for a two-sided ideal I in R.

Proof. Assume (i). For eachM ∈ C , let IM = Ann(M), and let I = ⋂︁
M∈C IM . By

Lemma 4.3.1, C is closed under direct products, so I = IN for a module N ∈ C ,
and moreover, there is a cyclic module C = xR ∈ C such that I = Ann(x).
Thus R/I ∈ C , and Mod–(R/I) ⊆ C by the closure properties of C . However,
I ⊆ Ann(M) for each module M ∈ C , whence C ⊆ Mod–(R/I) and (iii) holds.

Assume (iii). Then (ii) holds for M = R/I ∈ Mod–R. The proof that (ii)
implies (i) is dual to the one given in Lemma 4.3.8, replacing the trace by the
reject.

Remark 15. Since for each two-sided ideal I in R, Mod–(R/I) = σ[R/I], Lemmas
4.3.8 and 4.3.9 imply that for each class C of modules closed under submodules
and homomorphic images, C is covering whenever C is preenveloping. The con-
verse fails in general as witnessed, for example, by the class C of all torsion
abelian groups, cf. [23, 15.10].

Notice also that for each module M , the class σ[M ] is determined by the filter
FM = {I ≤ RR : R/I ∈ σ[M ]} consisting of right ideals of R (see e.g. [18, §1]).
The condition σ[M ] = Mod–(R/I) for a two-sided ideal I was characterized in
[18, Proposition 1.5]: σ[M ] = Mod–(R/I), iff the filter FM is principal.

We finish by showing that the proof of the implication (ii) implies (iii) in
Proposition 4.3.7 does in general require a large cardinal assumption, namely the
Weak Vopěnka’s Principle. The extra tool that we will need for this purpose is
due to Przeździecki, [19, Theorem 3.14]:

Lemma 4.3.10. There exists a functor G from the category G of all graphs to
Mod–Z which induces for all X, Y ∈ G a group isomorphism Z(HomG(X,Y )) ∼=
HomZ(G(X), G(Y )) natural in both variables.
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Remark 16. By [13, Corollary 4.11], we can moreover assume that the functor G
from Lemma 4.3.10 takes its values in the class of all ℵ1-free groups.

Theorem 4.3.11. Assume that each covering class C of abelian groups which is
closed under homomorphic images and is generated by a class of ℵ1-free groups,
satisfies C = Gen (M) for an abelian group M . Then Weak Vopěnka’s Principle
holds true.

Proof. Assume that Weak Vopěnka’s Principle fails, that is, there exists a proper
class of graphs (Xα | α ∈ Ord) such that for all ordinals α, β, HomG(Xα, Xβ) ̸= ∅,
iff α ≥ β.

Let C be the subclass of Mod–Z generated by the groups G(Xα) (α ∈ Ord).
By Remark 16, we can w.l.o.g. assume that G(Xα) is ℵ1-free for each α ∈ Ord.
Since C is closed under direct sums and homomorphic images, C is covering by
Proposition 4.3.7. We will show that there is no abelian group M ∈ C such that
C = Gen (M).

Assume that such a group M does exist. Let α be the least ordinal such
that M is generated by the groups G(Xβ) (β < α). Then M is a homomor-
phic image of a direct sum of copies of those groups. Since G(Xα) ∈ Gen (M),
G(Xα) a homomorphic image of a direct sum of copies of M . Thus, there is
a non-zero homomorphism from from G(Xβ) to G(Xα) for some β < α. Then
HomG(Xβ, Xα) ̸= ∅ by Lemma 4.3.10, a contradiction.

Corollary 4.3.12. If Vopěnka’s Principle holds, then each covering class of mod-
ules closed under homomorphic images is of the form Gen (M) for a module M .
The latter property restricted to classes of abelian groups generated by ℵ1-free
groups implies Weak Vopěnka’s Principle.

Proof. By Proposition 4.3.7 and Theorem 4.3.11.
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