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1 Introduction

1.1 Voltage-gated Calcium Channels

The process of calcium influx, triggered by membrane depolarization, plays a critical role in
initiating various cellular functions (W. A. Catterall 2011). This influx is controlled by
Voltage-Gated Calcium Channels (VGCC), which are pivotal in regulating calcium entry
across different membrane potential ranges, particularly in excitable cells. These channels act
as vital molecular converters of electrical signals, enabling calcium to enter cells during
action potentials or subthreshold depolarizations. In muscle cells (cardiac, skeletal, and
smooth), VGCCs facilitate excitation-contraction coupling (Cooper, Soeller, and Cannell
2010), while in neurons, they are essential at presynaptic terminals for rapid
neurotransmission (Reid et al. 2004; Cao et al. 2004) and play a role in synaptic plasticity by
activating gene expression (Dolmetsch et al. 2001). Additionally, VGCCs initiate hormone
secretion in endocrine cells and trigger calcium-dependent enzyme activities (Comunanza et

al. 2010).

VGCCs are classified into several types based on their pharmacological and
electrophysiological characteristics: T-, N-, L-, P/Q-, and R-types (William A. Catterall et al.
2005). Each type has distinct physiological functions. T-type (or LVA, low voltage activated)
and HVA (high voltage activated) channels are the two subgroups (Gardoni 2008)(Bean,
1985 Tsien et al., 1988, 1991). T-type channels, which activate at potentials more negative
than -40 mV, have low unitary conductance and rapid inactivation. They are crucial in
regulating cellular excitability due to their activation near resting membrane potentials. In
contrast, N-, L-, R-, P/Q-type channels, known as high voltage activated, function at more
positive potentials. Although these channels have similar biophysical profiles, they can be
differentiated by their responses to dihydropyridine agonists and antagonists and specific

peptide inhibitors from various venoms (Doering and Zamponi 2005).

HVA calcium channels are multi-subunit complexes formed by a central pore-forming
subunit Cayal, and auxiliary subunits Cava20, Cayp, and Cavy (Fig. 1) (Curtis and Catterall
1984; 1986; Flockerzi et al. 1986; dHosey et al. 1987; Leung, Imagawa, and Campbell 1987;
Takahashi et al. 1987). These subunits combine to create functional HVA calcium channel
complexes, while a single pore-forming Cayal subunit is typical for LVA channels. The

Cayal subunit is composed of four homologous domains (I to IV), connected by cytoplasmic
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links, with each domain containing six membrane-spanning helices (S1-S6) and a pore-
forming regions (P-loops). These cytoplasmic links provide sites for regulatory protein
interactions and are potential targets for secondary messenger regulation (William A.
Catterall et al. 2005; William A. Catterall 2000). The channel's major functional properties
are determined by the pore-forming al subunit, which defines the calcium channel subtype,

while other subunits modulate Cayal properties.

There are ten distinct calcium channel ol subunits, classified into three families: Cayl, Cay2,
and Ca,3. The Ca,3 family encodes T-type calcium channels (Perez-Reyes 2003), Ca,2.1,
Ca,2.2, and Ca,2.3 correspond to P/Q-type, N-type, and R-type channels, respectively, and
the Cay1 family represents L-type calcium channels (William A. Catterall et al. 2005).
Furthermore, four Ca,f subunit genes, four Caya2d subunit genes and nine y subunit genes
have been identified, each with several splice variants (Arikkath and Campbell 2003). Co-
expression of Cayf and Caya2d with the Cayal subunit can alter the channel's biophysical
properties, affecting voltage-dependences, activation-inactivation rates, and enhancing Cayal
subunit trafficking to the plasma membrane. However, the effect of Cay026 subunits is
generally milder and more selective compared to Cay subunits (Arikkath and Campbell
2003; Bichet et al. 2000; Dolphin 2003; Yasuda et al. 2004). Ca,p also influences Cav
channel biogenesis by regulating ubiquitination and preventing channel degradation (Altier et
al. 2011). Of the nine y subunit genes, only the y1 subunit is linked to calcium channels,
playing a specific role in their regulation. The remaining eight y subunit genes have a
different function; they encode transmembrane regulators of glutamate receptors. These
receptors are crucial for initiating excitatory neurotransmission in the brain, a process
fundamental to neural communication and various brain functions (Nicoll, Tomita, and Bredt
2006). Thus, auxiliary subunits refine VGCC gating and regulate their expression levels on

the plasma membrane.
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Figure 1 General structure of HVA channels including their auxiliary subunit distribution

around the main al subunit (taken from (William A. Catterall et al. 2005)).

1.1.1 HV A Distribution and Function

HVA channels make up the majority of VGCCs and play pivotal roles in many physiological
processes. L-types which are represented by Cay1 family are divided into four subtypes. Cay1
channels play a pivotal role in linking the depolarization of the plasma membrane to various
cellular responses, demonstrated in processes like excitation-contraction coupling in muscle,
excitation-transcription in nerve and muscle, and excitation-secretion coupling in endocrine
cells and ribbon synapses (Armstrong, Bezanilla, and Horowicz 1972; Numa et al. 1990;
Coetzee 1988; Liao et al. 2004; Tippens et al. 2008; Fabiato 1983; Bers 2002; Kollmar et al.
1997; Braun et al. 2009; Eliasson et al. 2008; Brandt, Striessnig, and Moser 2003; Mangoni et
al. 2003; H.F. Vandael, Marcantoni, and Carbone 2015; Barnes and Kelly 2002).

L-type calcium channels, or Cay1 channels, are categorized into different subtypes based on
their molecular structure and functional properties. These subtypes are Cay1.1, Cay1.2,
Cayl1.3, and Cay1.4 (W. A. Catterall 2011). Cay1.1 is distributed primarily in skeletal muscles
where it is essential for excitation-contraction coupling in skeletal muscle fibres. It plays a
crucial role in translating the electrical signal into muscle contraction (Armstrong, Bezanilla,
and Horowicz 1972). Cayl1.1 channels in the transverse tubules interact directly with
ryanodine-sensitive Ca** release channels (RyR1) in the sarcoplasmic reticulum, as shown in
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high-resolution electron microscopy (Block et al. 1988). This interaction and the voltage-
driven changes in the voltage-sensing domains of Cay1.1 channels directly activate RyR 1
(Numa et al. 1990). Cay1.2 channels are distributed in cardiac muscle cells, smooth muscle
cells, neurons, and endocrine cells. In cardiac muscles, it is key in initiating cardiac muscle
contraction. Here, Ca?" entry through Cay1.2 channels triggers RyR2 activation, leading to
Ca**-induced Ca?*-release, actomyosin activation, and contraction (Fabiato 1983; Bers 2002).
Cay1.2 channels also play a role in setting the duration of the cardiac action potential, thereby
influencing the heart rate and rhythm. They contribute to the plateau phase of the cardiac
action potential, which is crucial for the rhythmic and coordinated contraction of the heart
(Coetzee 1988). In smooth muscle cells, especially those lining blood vessels, Cay1.2
channels are involved in regulating vascular tone. Their activation leads to calcium influx,
which promotes muscle contraction, thus influencing blood vessel diameter and blood
pressure (Liao et al. 2004). In neurons, Cay1.2 channels are critical for the release of
neurotransmitters (Kollmar et al. 1997). They are activated during the depolarization phase of
the neuronal action potential, triggering the influx of calcium, which is a key signal for
neurotransmitter vesicles to fuse with the cell membrane and release their contents (Tippens
et al. 2008). These channels influence neuronal excitability and are involved in synaptic
plasticity, a fundamental mechanism for learning and memory, regulating gene transcription
(Tippens et al. 2008; Berger and Bartsch 2014). Cay1.2 channels are present in certain
endocrine cells, such as pancreatic beta cells (Braun et al. 2009). The calcium influx through
these channels triggers the release of hormones, like insulin, which is critical for glucose
homeostasis (Eliasson et al. 2008). Cay1.3 is distribute in neurons, endocrine cells, and some
types of smooth muscle cells. Cay1.3 channels are predominantly expressed in the cochlea's
inner hair cells. They are essential for normal inner hair cell development and synaptic
transmission, making them crucial for proper hearing (Brandt, Striessnig, and Moser 2003). It
plays a role in neurotransmitter release in the nervous system and is involved in pacemaking
activities in the heart and certain neurons (Mangoni et al. 2003; H.F. Vandael, Marcantoni,
and Carbone 2015). In chromaffin cells, it contributes to catecholamine secretion (H.F.
Vandael, Marcantoni, and Carbone 2015). Cay1.4 are distributed in the retina where they are
critical for normal visual processing. It is involved in the phototransduction pathway in the

retina by initiating exocytosis of neurotransmitters (Barnes and Kelly 2002).
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The Ca,2.1 channels, are a vital component of the nervous system. These channels are
extensively distributed throughout the brain, particularly in the presynaptic terminals and
somatodendritic membranes (Ludwig, Flockerzi, and Hofmann 1997; Dolphin and Lee 2020).
Their primary role is in mediating neurotransmitter release, which is crucial for effective
communication between neurons. Ca,2.1 channels are key players in several neurological
processes such as postsynaptic integration, neuroplasticity, neural excitability, and gene
transcription, showcasing their wide-ranging influence on brain function (Ludwig, Flockerzi,
and Hofmann 1997; Im, Me, and Bp 1992; R et al. 1992; Sutton et al. 1999; Hoxha et al.
2018; Folacci et al. 2023; Alehabib et al. 2021).

In the central nervous system, Ca,2.1 channels are broadly expressed and are particularly
prominent on the cell bodies and dendrites of cerebellar Purkinje cells and granule cells of the
cerebellum (Ludwig, Flockerzi, and Hofmann 1997). This strategic positioning underscores
their critical role in controlling the release of neurotransmitters (Sutton et al. 1999). These
neurons in the cerebellum exhibit spontaneous firing, and the Cay2.1 channels contribute
significantly to their regular pacemaking activity (Hoxha et al. 2018). This function is
essential for maintaining the rhythmic firing patterns of these neurons, which is critical for
their role in coordinating movement and balance (Folacci et al. 2023).This specific
distribution highlights their importance in the cerebellar functioning, which plays a key role

in motor coordination and balance (Alehabib et al. 2021).

Ca,2.2 channels, also known as N-type calcium channels, are predominantly found in
neuronal tissues and are characterized by their sensitivity to m-conotoxins, a group of toxins
isolated from marine cone snails (Reynolds et al. 1986). These channels are mainly localized
on nerve terminals and dendrites, as well as in neuroendocrine cells, highlighting their
importance in neuronal communication and hormone regulation (Westenbroek et al. 1992;

Westenbroek, Hoskins, and Catterall 1998; Nowycky, Fox, and Tsien 1985).

Cay2.2 channels are essential mediators in the release of neurotransmitters and the
transmission of sensory information from peripheral to central sites in the nervous system
(Nowycky, Fox, and Tsien 1985). This function is particularly significant in sensory neurons,
where Ca,2.2 channels are highly expressed (Nowycky, Fox, and Tsien 1985). As the main

presynaptic VGCCs, they are pivotal in controlling the flow of calcium ions, which is crucial
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for neurotransmitter release and sensory signal transmission (Weber et al. 2010; Bourinet et

al. 2014).

Cay2.3 channels, also known as R-type calcium channels, are primarily found in apical
dendritic and spines of neurons throughout the central nervous system (CNS) (Sabatini and
Svoboda 2000). They are defined by their resistance to blockers of L-type, N-type, and P/Q-
type calcium channels, while they are sensitive to SNX-482, a peptide component of spider
venom (Murakami et al. 2004). They play a variety of roles in synaptic plasticity, cerebellar
function, nociception, and morphine tolerance (Metz et al. 2005; Tai, Kuzmiski, and
MacVicar 2006; Kubota et al. 2001; Breustedt et al. 2003; Dietrich et al. 2003; Yokoyama et
al. 2004; Osanai et al. 2006; Saegusa et al. 2000). They contribute significantly to synaptic
transduction and aid in the release of neurotransmitters (Metz et al. 2005; Tai, Kuzmiski, and
MacVicar 2006; Breustedt et al. 2003; Dietrich et al. 2003). They also play an important role
in Purkinje cells aiding in spike generation (Osanai et al. 2006). This helps in motor
coordination and learning (Kubota et al. 2001; Osanai et al. 2006). They have also been
connected to pain transduction, especially in the activity of morphine (Yokoyama et al. 2004;

Saegusa et al. 2000).

1.1.2 T-type calcium channels

1.1.2.1 Initial description and cloning

T-type calcium channels are a subset of VGCCs that activate at lower voltage thresholds.
Their initial identification dates back to 1975, thanks to Hagiwara and team's research on
starfish eggs (Hagiwara, Ozawa, and Sand 1975). The first detection of neuronal T-type
calcium channels was in Purkinje and inferior olivary neurons (Regan 1991). T-type channels
are now know to be ubiquitously expressed throughout the body, found in nervous tissues, the
heart, kidneys, smooth muscle, reproductive cells, and several glands (Kostyuk, Shuba, and
Savchenko 1988; Regan 1991; McKay et al. 2006; Cribbs et al. 1998a; Talley et al. 1999;
Vassort, Talavera, and Alvarez 2006; Fry, Sui, and Wu 2006; Beam and Knudson 1988;
Nilius and Droogmans 2001; Gu et al. 1999; Marcantoni et al. 2008; S.-N. Yang and
Berggren 2006; Biagi and Enyeart 1991; Asem, Qin, and Rane 2002; Jagannathan,
Publicover, and Barratt 2002).

The late 20th century, especially with the cloning of T-type channels by Perez-Reyes in the

1990s, offered deeper insights into the biophysical attributes and presence of these channels
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in both central and peripheral nervous systems (Cribbs et al. 1998; J.-H. Lee et al. 1999;
Perez-Reyes et al. 1998). Importantly, these channels were found to be integral in modulating

neuronal network dynamics.

1.1.2.2 Molecular structure and biophysical properties

For mammals, these three T-type channel types—Ca,3.1, Ca,3.2, and Ca,3.3—are directed
by individual genes: CACNAIG (chromosome 17), CACNA1H (chromosome 16), and
CACNA I (chromosome 22) (Cribbs et al. 1998) (Figure 2A). Further studies on these
channels also revealed several splice variants, adding to T-type channels' molecular and
functional diversity (Zhong et al. 2006; Latour et al. 2004; Murbartian, Arias, and Perez-
Reyes 2004). Despite all three channel types operating at hyperpolarized potentials, their
inactivation speeds differ, serving as a signature of their specific molecular make-up (Perez-

Reyes and Schneider 1994).

T-type channels differ from other VGCCs; they don't merge with auxiliary subunits but stand
alone with only the central Cay3 core subunit. T-type channels have a membrane structure
comparable to other members of the VGCC family. Recent cryo-electron microscopy studies
of Ca,3.1 and Ca,3.3 channels have offered significant understanding into the molecular
processes of channel operation and the effects of drugs (Zhao et al. 2019; L. He et al. 2022).
The Cay3 core comprises four homologous domains (DI to DIV), each consisting of six
transmembrane helices (S1 to S6). These domains are connected by intracellular loops. A
central pore is made up of four loops (p-loops) connecting the S5 and S6 segments of each
domain, with four essential acidic residues ensuring calcium selectivity. The S4 segments,
enriched with charged residues, play a role in voltage detection (Jurkovicova-Tarabova et al.
2018). These components, together with the amino and carboxy termini, create a molecular
centre for protein interactions. This influences the expression and regulation of the channel at

the plasma membrane (Weiss and Zamponi 2023) (Figure 2B).
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Figure 2 Cav3 channel location in human chromosomes and their membrane structure (taken
from (Weiss and Zamponi 2020)). A: The three chromosomes and the specific genes
encoding for Ca,3.1, Ca,3.2, Ca,3.3. B: Ca,3 secondary structure in the membrane and their

main structures integral for gating.

These channels have unique biophysical properties compared to HVA VGCCs. They open in
response to smaller depolarizations compared to other types of voltage-gated calcium
channels. This allows them to be activated at more negative membrane potentials compared
to HVA, typically in the range of -60 to -50 mV (Chemin et al. 2002). Due to this, they play a
key role in controlling neuronal activity, by enhancing subthreshold excitatory postsynaptic
potentials, and propagating electrical impulses to the cell body (Crandall, Govindaiah, and
Cox 2010). These channels typically produce transient currents, hence T-type (transient),
which means they open briefly and then quickly inactivate compared to HVA channels (J R
Huguenard 1996). This rapid inactivation contributes to the short-lived nature of the calcium

influx.
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T-type channels also exhibit both voltage-dependent and calcium-dependent inactivation in
which an increase in submembrane Ca*" induces a significant decrease in T-type current
amplitude due to a hyperpolarizing shift in the steady-state inactivation (Cazade et al. 2017).
These channels can also recover from inactivation relatively quickly compared to HVA
channels. A key characteristic of T-type channels is their ability to produce calcium spikes
during membrane hyperpolarization, leading to rebound burst firing (D. Kim et al. 2001).
Interestingly, these channels also have overlapping voltage-activated and inactivated states.
This maintains a “window current”, facilitating passive calcium influx at resting membrane

potentials (S. R. Williams et al. 1997).

During a typical neuronal action potential, T-type channels are activated in the initial
depolarization phase, provided the membrane potential was sufficiently hyperpolarized
beforehand. However, the primary calcium conductance through these channels happens
during repolarization, as cells rapidly return to resting potential, mainly due to voltage-gated
potassium channel activation (Llinds, Steinberg, and Walton 1981; McCobb and Beam 1991).
This occurs because T-type channel kinetics are relatively slow compared to the action
potential duration, keeping many channels open during repolarization. As the cell moves
further from the calcium equilibrium potential (generally around +10 to +40 mV), the
calcium conductance increases, creating a "tail current" that then deactivates (McCobb and

Beam 1991).

1.1.2.3 Tissue distribution and physiological functions

These channels are prevalent in both the central and peripheral nervous systems, playing a
crucial role in modulating neuronal activities (Fig. 3). For instance, in thalamic and
hippocampal neurons, their activation at low membrane potentials amplifies subthreshold
excitatory potentials and aids signal transmission to the cell body (Crandall, Govindaiah, and
Cox 2010). Furthermore, their expression in the axon initial segment allows them to regulate
the timing and generation of action potentials in axons (Bender and Trussell 2009). In
thalamocortical circuits, the ability of T-types to aid in rebound burst firing contributes to
spike-and-wave discharges seen in conditions like absence epilepsy (D. Kim et al. 2001). In

thalamocortical neurons, the ability of T-type channels to maintain a "window current" is
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essential for neuronal oscillations during sleep rhythms (S. R. Williams et al. 1997; Hughes et

al. 2002).

T-type channels also play a key role in neurotransmitter release at synapses via Ca>'-
dependent vesicle binding to the plasma membrane (Fig.3)(For a full review see 101). This is
primarily in GABAergic and glutamatergic synapses. For example, in hippocampal
perisomatic targeting interneurons, Ca,3.1 plays a role in release of GABA with the aid of
release of Ca* from internal stores (Tang et al. 2011). In cortical neurons, presynaptic Ca,3.2
aids the release of glutamate into the synaptic cleft (Z. Huang et al. 2011). Furthermore in
dopaminergic neurons, activation of T-type channels controls dopamine release from the

soma (Y. Kim et al. 2007).

T-type calcium channels also play a crucial role in various neurodevelopmental processes,
including the growth of axons and dendrites, as well as neuronal migration. These channels
are key in initiating localized calcium oscillations, which are vital for the expression of
guidance molecules in developing neurons. For example, in chick embryonic motor neurons,
these oscillations are essential for axonal migration (S. Wang, Polo-Parada, and Landmesser
2009). Furthermore, T-type channels are involved in TNFa reverse signalling-induced axonal

growth in sympathetic neurons (Kisiswa et al. 2017).

In addition to these roles, T-type channels have been implicated in the regulation of other
types of calcium channels. For instance, a study found that disrupting Ca,3.2 through
oligonucleotide based knockdown or pharmacological inhibition in neuroblastoma NG108-15
cells altered the expression of HVA calcium channels as these cells differentiated (Chemin,
Nargeot, and Lory 2002). This interplay was further evidenced by (Nagasawa et al. 2009),
who showed that hydrogen sulphite-induced neurite outgrowth and the expression of HVA
channels in NG108-15 cells depended on the activation of T-type channels. This process is
believed to involve Src kinase-dependent signalling pathways (Tarui et al. 2010). T-type
channels are also crucial in maintaining the viability of neuronal progenitor cells (J.-W. Kim
et al. 2018). These finding suggests that T-type channels might play a significant role in
neurodevelopmental or neurodegenerative disorders, offering a new perspective on their

importance in the nervous system.
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T-type channels are also found in other tissues apart from the nervous system contributing to
specific cellular functions. For example, Ca,3.1 help regulate cardiac pacemaking in
sinoatrial and atrioventricular nodes (Fig. 3)(Mesirca, Torrente, and Mangoni 2014). In
vascular smooth muscles, Ca,3.1 and Ca,3.2 help control vascular tone (Cazade et al. 2014;
El-Rahman et al. 2013), possibly due to their interaction with Ca**-sensitive K channels
(BKca) which are key mediators in smooth muscle relaxation (Brenner et al. 2000; M. T.
Nelson and Quayle 1995). Although absent in adult skeletal muscle, Cay3.2 is involved in the
development of embryonic fibers, aiding in the maturation of myoblasts (Fig. 3)(Berthier et

al. 2002; Bijlenga et al. 2000).

T-type channels are significant in hormone secretion, with Ca,3.2 channels aiding in the
release of aldosterone and catecholamines from the adrenal cortex and chromaftin cells
(Mahapatra et al. 2012; T. Yang et al. 2020), and facilitating insulin secretion in pancreatic -
cells (Fig. 3)(Barghouth et al. 2022). They are also found in non-excitable tissues, such as
immune cells, where Cav3.1 may activate T lymphocytes (H. Wang et al. 2016), and in blood
cells, Cay3.2 contributes to platelet activation and arterial thrombosis (Fig. 3)(Tamang et al.
2022; Weiss 2022). Cay3.2 channels also play roles in sperm function, aiding in the acrosome
reaction during fertilisation (Escoffier et al. 2007), and chondrogenesis in tracheal cartilage

(S.-S. Lin et al. 2014).
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Figure 3 T-type channel tissue distribution and physiological function (taken from (Weiss
and Zamponi 2023).

In line with T-type channel functions, Ca,3.1 deficient mice demonstrate a variety of
physiological changes. These include increased sensitivity to visceral pain in established
rodent pain models, which is thought to be due to alterations in the way pain is processed in
the thalamus, where they are abundantly expressed (D. Kim et al. 2001). Additionally, these
mice exhibit bradycardia (Mangoni et al. 2006), which makes sense considering their role in
cardiac pacemaking and vascular tone (Mesirca, Torrente, and Mangoni 2014; Cazade et al.

2014; El-Rahman et al. 2013). Remarkably, they show resistance to conditions such as
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experimentally induced epilepsy, which likely due to their role in burst firing in hippocampal
and thalamic neurons (D. Kim et al. 2001; Sakkaki et al. 2016). They are also resistant to
high-fat diets (Uebele et al. 2009), which is surprising considering evidence for disturbed
sleep patterns and decreased slow wave sleep in mice lacking Ca,3.1 (J. Lee, Kim, and Shin
2004). In humans a lack of sleep has been found to correlate with obesity and other metabolic
disorders (Taheri 2006; S. R. Patel et al. 2006; Cizza, Skarulis, and Mignot 2005). This may

outline the fact that rodent models are not a perfect representation of human physiology.

In contrast, mice lacking Cay3.2 channels present a different set of physiological alterations.
These include an increased level of anxiety and difficulties with memory (Gangarossa et al.
2014). It is difficult to identify the reason for an increase in anxiety due to the complex nature
of this mental state. However, the deficits in memory could be due to the expression of
Ca,3.2 in the hippocampus and amygdala where it is a key regulator of neurotransmitter
release (Carbone, Calorio, and Vandael 2014), which is important for long-term potentiation
of memory formation (Korchounov and Ziemann 2011) which has already been associated
with block of T-type channels (Ly et al. 2013). They also have an increased hearing
threshold, which is evidenced by their expression in the auditory system (Lundt et al. 2019).
Furthermore, these mice show reduced sensitivity to pain (S. Choi et al. 2007) which likely
due to their expression in DRGs which are integral for processing peripheral pain (Talley et
al. 2000). Ca,3.2 deficient mice also show a reduced ability for vascular smooth muscle
contraction (C.-C. Chen et al. 2003), possibly due to their interaction with BKca channels
which are activated from the influx of Ca®" from Ca,3.2 (Brenner et al. 2000; M. T. Nelson
and Quayle 1995). Furthermore, Ca,3.2 deficient mice had narrow and elliptically shaped
tracheas (S.-S. Lin et al. 2014). This is due to their expression in mesenchymal cells where
they essential for differentiation into chondrocytes through interaction with
calcineurin/nuclear factor of the activated T-cell (NFAT) signalling pathway (Matta et al.
2008; Shao, Alicknavitch, and Farach-Carson 2005).

Lastly, mice deficient in Cay3.3 channels exhibit disturbances in sleep rhythmogenesis due to
their significantly less rebound bursting in nucleus reticularis thalami (nRt)(Talley et al.
1999; Astori et al. 2011; Pellegrini et al. 2016), a crucial generator of oscillatory bursts which
produce sleep spindles (Steriade 2006). They also have an increased sensitivity to anaesthesia
induced by isoflurane, which is also thought to be due to the reduced activity of nRt (Timic

Stamenic et al. 2020). This is due to nRT important regulation of the thalamus and sensory
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cortex due to their abundant inhibitory GABAergic neurons composition (Mc Alonan and

Brown 2002; Pinault 2004).

Mutations in genes encoding T-type channels have been associated with several human
disorders, including epilepsy, hypertension, autism, amyotrophic lateral sclerosis, and

schizophrenia.

These channels are essential in shaping neuronal activities, such as low-threshold calcium
spikes and burst firing. This is controlled by the unique biophysical properties of T-type
channels, which will be described in this thesis. However, for a full in-depth review see (Cain

and Snutch 2010).

T-type channel dysfunction has been linked to many chronic conditions, including
hyperaldosteronism, various epileptic disorders, cancer, certain pain conditions, and motor
defects (Talley et al. 2000; Heinzen et al. 2007; Meis, Biella, and Pape 1996; Scholl et al.
2015; Khosravani and Zamponi 2006; M. Nelson, Todorovic, and Perez-Reyes 2006; Jagodic
et al. 2007; D. Wang et al. 2006). Emerging studies also hint at T-type channels' roles in other
health issues. Some mutations in the CACNA1H gene have been linked to autism, with these
mutations affecting the activity of Cay3.2 channels (Splawski et al. 2006). A significant
number of autism patients also have epilepsy (Splawski et al. 2006). There's a possibility that
these gene mutations might impact brain development, potentially contributing to autism's
onset. Moreover, T-type calcium channel blockers show potential as treatments for conditions

like schizophrenia and essential tremor (Uslaner et al. 2012).

To sum up, T-type calcium channels have unique features that play pivotal roles in various
cellular activities, and when they malfunction, it can result in neurological issues. Their
activity is adjusted by several cellular mechanisms, and they have emerged as important
targets for potential drug therapies (Belardetti and Zamponi 2008; Bergson et al. 2011; Weiss
2019).
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1.1.2.4 Regulation

T-type calcium channels, critical to neuronal and non-neuronal cell activity, have an intricate
regulation system. Their involvement in numerous physiological and pathological processes
is modulated by a variety of endogenous and exogenous factors, going through a number of

regulatory processes. These will be explored below.

1.1.2.4.1 Regulation by interacting proteins

KLHL1

KLHL1, a brain-specific member of the actin-binding protein family. It is characterized by its
BTB/POZ (broad complex, tramtrack, bric-a-brac/poxvirus, and zinc finger) domains and
actin-binding Kelch domains, playing a key role in neuronal structure and function (Shi et al.
2019). This protein is crucial in organizing actin, impacting neurite formation and dendritic
spine head dynamics (S. Jiang et al. 2007). Its significance is highlighted in the context of
spinocerebellar ataxia type 8 (SCAS), where CTG trinucleotide repeat expansions in the
KLHL1 gene's untranslated antisense RNA are implicated (Nemes, Benzow, and Koob 2000).
This genetic link is corroborated by the phenotype observed in KLHL1 knockout mice, which
mirrors SCAS8 (Y. He et al. 2006).

KLHL1's influence extends to the regulation of VGCCs. It interacts with Ca,2.1 and Ca,3.2
channels, both in recombinant and native systems (K. A. Aromolaran et al. 2007; 2010; Kelly
A. Aromolaran et al. 2009). In HEK293 cells, KLHL1 enhances calcium conductance when
co-expressed with Cay2.1 (K. A. Aromolaran et al. 2007). Particularly notable is KLHL1's
specific interaction with Cay3.2 channels, boosting their plasma membrane expression
through facilitating their endosomal recycling. This specificity is underscored by the lack of
regulation on Cay3.1 and Cay3.3 channels by KLHL1 (K. A. Aromolaran et al. 2010; Kelly A.
Aromolaran et al. 2009).

Further studies employing shRNA-mediated knockdown of KLHLI in cultured hippocampal
neurons demonstrate a decrease in the expression levels of Cay2.1 and Cay3.2, accompanied
by reductions in HVA and LVA calcium currents, and a decrease in postsynaptic currents
(Perissinotti et al. 2014). These effects are partially echoed in hippocampal neurons from
KLHL1 knockout mice, where a decrease in Cay3.2 channels is somewhat offset by an

increase in Cay3.1 channel expression (Perissinotti et al. 2015).
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Spectrin o/p and ankyrin B

Spectrin proteins, found on the inner side of the plasma membrane, interact closely with the
actin cytoskeleton. They are crucial for maintaining membrane stability and structure, and
they play a key role in anchoring and grouping membrane proteins like ion channels and
receptors. This is done through their connection with ankyrins, which act as a bridge between
the membrane proteins and the spectrin-actin based membrane cytoskeleton (refer to
(Machnicka et al. 2014; Stevens and Rasband 2022) for more details). For instance, the
clustering of voltage-gated sodium channels at the axon initial segment and nodes of Ranvier,
important for fast and effective action potential propagation, depends on their interaction with
the actin-based cytoskeleton (Ho et al. 2014; Komada and Soriano 2002; Liu, Stevens, et al.
2020; Liu, Seo, et al. 2020). In a similar vein, T-type channels such as Ca,3.1 and Ca,3.2
have been shown to interact with various cytoskeletal proteins like spectrin a1, spectrin i,
spectrin B, and ankyrin B. This interaction occurs through a specific a-helical stretch of
charged amino acids in the channels' proximal carboxy-terminal region (Garcia-Caballero et
al. 2018). Removing this binding site reduces the channels' functional expression in tsA-201
cells and their mobility in re-expressed cultured hippocampal neurons. Additionally, reducing
spectrin a1 and ankyrin B levels in hippocampal neurons leads to lower native Cay3.1 and
Ca,3.2 channel expression. This finding is consistent with other studies showing that ankyrin
B's binding to Cay2.1 and Cay2.2 channels, through the cytoplasmic loop between repeats 11
and III, is vital for the channels' correct positioning on the cell surface (C. S. W. Choi et al.
2019; Kline et al. 2014). Similarly, ankyrin B's attachment to the distal part of the carboxy-
terminal domain of Cay1.3 is necessary for the channel's proper localization in atrial
myocytes (Cunha et al. 2011). Therefore, the attachment of cytoskeletal proteins to VGCCs,
through various channel-specific molecular features, appears to be a common regulatory

mechanism for ensuring the channels are correctly positioned on the cell surface.

STAC1

STAC (Src homology three (SH3) and cysteine-rich domains) proteins, consisting of STACI,
STAC2, and STAC3 isoforms, are a small group of adaptor proteins. Their role was unclear
for many years, but they are now recognized as important regulators of VGCCs. STAC3,
primarily found in skeletal muscles (B. R. Nelson et al. 2013), is crucial in the excitation-
contraction coupling process. It does this by interacting with and influencing the expression

of Cayl.1 channels, playing a significant part in muscle function (see reviews (Flucher and
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Campiglio 2019; Rufenach and Van Petegem 2021)). In contrast, STAC1 and STAC?2 are
mainly located in nerve cells [146], such as dorsal root ganglia (DRG) neurons. They are

involved in defining specific types of nociceptors (Legha et al. 2010).

Research has shown that STAC]1 forms a complex with Ca,3.2 channels by binding to the
distal area of the cytoplasmic amino-terminal domain of Ca,3.2. This interaction boosts
Ca,3.2's presence in the plasma membrane, leading to increased T-type currents without
altering the channel's gating characteristics (Rzhepetskyy, Lazniewska, Proft, et al. 2016).
STAC proteins also influence neuronal Cay1.2 channels. However, unlike with Ca,3.2, the
STAC’s interaction with Cay1.2 mainly involves the 1Q domain within Cay1.2's carboxy-
terminal region and disrupts the channel's calcium-dependent inactivation (Campiglio et al.

2018; Polster et al. 2018).

The full physiological impact of these interactions is still being studied. Notably, Stac2 was
identified as the most upregulated gene in DRGs in a rodent model of nerve injury-induced
chronic pain (K. E. Stephens et al. 2019). Given the known role of Cay3.2 channels in pain
(Cai et al. 2021), it's plausible that STAC2's enhancement of Ca,3.2 function could contribute
to the sensitization of peripheral nociceptive neurons. This hypothesis is significant as it may
reveal a potential mechanism in the development of chronic pain, warranting further

investigation.

RACK1

RACKI1 (Receptor for Activated C Kinase 1) 1s a scaffold protein that is part of the
tryptophan-aspartate repeat (WD-repeat) family. Initially known for its link with the activated
form of protein kinase C (PKC) BII, RACKI has emerged as a key molecular junction,
binding to a variety of signalling proteins. This binding affects numerous aspects of these
proteins, including their movement within the cell, activity, interactions with other proteins,
and stability (for a detailed review, see (Adams, Ron, and Kiely 2011)). As a result, several
ion channels, such as the inositol 1,4,5-trisphosphate receptor (IP3R) (Patterson et al. 2004),
the transient receptor potential (TRP) Pkd2L1 channel (J. Yang et al. 2012), and the BKca
channel (Isacson et al. 2007), have been found to interact with RACKI1. This interaction leads

to changes in their functional expression.
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A prime example of RACK1's role in regulating ion channels is its essential role in the
formation of the multi-channel complex Orail-STIM1-TRPC3-RACK1-IP3R. This complex
allows for precise control of intracellular calcium levels in response to various channel
agonists (Woodard et al. 2010). Studies have shown that RACK 1 forms a molecular complex
with Ca,3.2, binding to the cytoplasmic linker between repeats II and III, and the carboxy-
terminal region of the channel (Gandini et al. 2022). Intriguingly, when RACKI1 is co-
expressed with Cay3.2 in tsA-201 cells, there is a decrease in the channel's expression in the
plasma membrane. However, this effect is negated in the presence of PKCBIL, suggesting an

interaction between RACK1 and PKCBII in regulating Cay3.2 channels.

Although the exact mechanisms behind this regulation are not fully understood, another study
reported PKC-dependent phosphorylation of Ca,3.2 at serine residues (positions 1144 and
2188 in the human channel), which align with the sites of RACK1/Cay3.2 interaction,
enhances the channel's surface expression (Gaifullina et al. 2019). Therefore, it's conceivable
that PKC might increase Ca,3.2's surface expression by mitigating the inhibitory effect of
RACKI1.

SNARE

Syntaxin 1A, a member of the syntaxin superfamily, plays a pivotal role in the docking of
synaptic vesicles with the presynaptic plasma membrane in neurons. It is recognized not only
for this role but also as a regulator of presynaptic calcium entry. This regulatory function
involves interactions with neuronal Cay2.1 and Ca,2.2 channels, as highlighted in various
studies (for a comprehensive review, see (Weiss and Zamponi 2012)). The regulation mainly
occurs through the binding of synaptic proteins to the "synprint" domain of these channels,
located in the cytoplasmic loop between repeats II and III. These interactions are essential for

facilitating neurotransmitter release.

Interestingly, research has shown that T-type channels, known for supporting fast and low-
threshold exocytosis (Carabelli, Marcantoni, Comunanza, and Carbone 2007; Carabelli,
Marcantoni, Comunanza, De Luca, et al. 2007; Ivanov and Calabrese 2000; Pan et al. 2001),
might also interact with synaptic proteins involved in vesicular release (Weiss and Zamponi
2013). In particular, syntaxin 1A has been found to interact with the carboxy-terminal domain

of Cay3.2 (Weiss et al. 2012). This interaction, while not altering Cay3.2's expression level in
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the plasma membrane of tsA-201 cells, significantly modifies the channel's gating properties.
It causes a shift in the voltage dependence of inactivation, and to some extent activation,
towards more hyperpolarized membrane potentials. Similar effects have been observed with
Ca,3.1 and Ca,3.3 channels, although their interactions with syntaxin 1A require further

investigation.

The regulation of Cay3.2 by syntaxin 1A is particularly noteworthy because it is negated
when SNAP-25, which also binds to the carboxy-terminal domain of Ca,3.2, is co-expressed
(Weiss et al. 2012). This cross-talk is reminiscent of the combined effects of syntaxin 1A and
SNAP-25 on Cay2.1 and Cay2.2 channels. Significantly, this interaction between syntaxin 1A
and Ca,3.2 has been shown to support T-type channel-mediated exocytosis in chromaffin
cells (Carabelli, Marcantoni, Comunanza, and Carbone 2007), suggesting that T-type
channels, despite having different molecular binding sites, engage with the vesicular release
machinery in a manner akin to Ca,2 channels. This finding provides insight into the complex
interactions and regulatory mechanisms within the neuronal signalling and vesicular release

systems.

Calnexin

Calnexin (CNX) is an endoplasmic reticulum (ER) chaperone protein known for its role in
aiding the folding and quality control of newly synthesized glycoproteins before they proceed
through the secretory pathway. This function is crucial, as most plasma membrane proteins,
including ion channels, are glycosylated at their extracellular domains (Kozlov and Gehring
2020; Lazniewska and Weiss 2017; 2014). T-type calcium channels such as Cay3.2 are
among these glycosylated proteins (Orestes et al. 2013; Weiss et al. 2013).

Studies have identified a molecular complex formed between CNX and Cay3.2, hinging on
the interaction between the cytosolic carboxy-terminal region of CNX and the cytosolic
domain of Ca,3.2 that links repeats I1I and IV (Proft et al. 2017). This interaction
predominantly limits the exit of Cay3.2 from the ER. When CNX is co-expressed with Cay3.2
in tsA-201 cells, there is a notable decrease in the channel's surface expression. This
regulatory mechanism is particularly significant in Cay3.2 channels that include exon 25,
which encodes a small portion of the III-IV linker. This observation suggests that CNX's

influence on Ca,3.2 is delicately modulated through alternative splicing of the channel.
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In the context of neurological disorders, the GAERS mutation found in a rodent model of
absence epilepsy, which involves replacing an arginine with a proline within the III-IV linker
of Cay3.2, disrupts the CNX/Ca,3.2 interaction. This disruption leads to an increased
presence of the channel in the plasma membrane. This change is likely a contributing factor
to the heightened T-type currents observed in reticular thalamic neurons derived from
GAERS, which are thought to be central to the development of seizures in this model

(Tsakiridou et al. 1995).

It is also noteworthy that similar to what has been observed with Cay3.2 channels, co-
expression of CNX with Ca,3.1 and Ca,3.3 channels in tsA-201 cells results in a comparable
downregulation of T-type conductance. However, the specific details of CNX's interaction

with Ca,3.1 and Ca,3.3 channels remain to be fully elucidated (Proft et al. 2017).

CACHD1

Early research suggested that the plasma membrane expression of T-type channels could be
influenced by known VGCC ancillary subunits Ca,3 and Caya26 (Dubel et al. 2004), possibly
via low-affinity interactions (Thompson et al. 2011; Bae, Suh, and Lee 2010). However, these
interactions and their regulatory effects have been a subject of debate (Arteaga-Tlecuitl et al.
2018; Leuranguer et al. 1998). This leaves the precise mechanisms through which Cayf and

Cay020 might affect T-type channels somewhat unclear.

In contrast to this uncertainty, a recent discovery has brought to light CACHD]1 (calcium
channel and chemotaxis receptor (cache) domain containing protein 1) as a novel modulator
of Ca,3 channels, with functional similarities to Caya2d (Cottrell et al. 2018; G. J. Stephens
and Cottrell 2019). Despite not sharing significant sequence identity with traditional Caya20
proteins, CACHD1 possesses a characteristic von Willebrand Factor A (VWA) domain,

similar to Caya29, along with a bacterial chemosensory-like cache domain.

CACHDI is particularly abundant in brain regions such as the thalamus, hippocampus, and
cerebellum, which also have a high prevalence of T-type channels. When co-expressed with
Cay3.1 channels in tsA-201 cells, CACHD1 forms a molecular complex that increases the

membrane expression of all three T-type channel members (Cottrell et al. 2018). Beyond just
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boosting their presence in the plasma membrane, CACHD1 also seems to alter the
biophysical properties of Ca,3.1, notably increasing the channel's open probability. As a
result, the overexpression of CACHD1 in cultured hippocampal neurons enhances T-type

channel-mediated neuronal excitability (Cottrell et al. 2018).

A key distinction of CACHD1, compared to Ca,a26 members which are known to
exclusively affect HVA calcium channels, is its broader influence. CACHD1 not only
impacts Cay3.x channels but also has been demonstrated to interact with Cay2.2 channels. In
the case of Cay2.2, CACHD1 enhances their expression at the cell surface by stabilizing these

channels in the plasma membrane (Dahimene et al. 2018).

Caveolins

Caveolins are a small family of membrane proteins known for their association with
Caveolae, a specialized type of lipid rafts. These proteins are crucial for forming and
maintaining Caveolae and also act as scaffolding proteins within the Caveolar membrane,
organizing and concentrating signalling molecules (for an in-depth review, see (T. M.
Williams and Lisanti 2004)). There are three mammalian Caveolins, of which Caveolin-3
(CAV-3) is primarily found in striated and smooth muscles, where it interacts with a range of

ion channels, including Cay1.2 channels (Bryant et al. 2014).

CAV-3 also interacts with both recombinant and native Ca,3.1 and Ca,3.2 channels in
ventricular myocytes (Markandeya et al. 2011). When CAV-3 is co-expressed in HEK293
cells, there is a significant decrease in conductance in cells expressing Cay3.2, but not in
those expressing Cay3.1. This reduction occurs without altering the surface expression of the
channel. Furthermore, overexpressing CAV-3 inhibits Ca,3.2 currents in isolated ventricular
myocytes. Conversely, knocking down CAV-3 in ventricular myocytes doesn’t seem to affect

T-type channels directly but does abolish their potentiation by protein kinase A (PKA).

Calmodulin
Calmodulin (CaM) is a highly versatile calcium-binding protein known for modulating the
activity of numerous effector proteins via calcium signalling. Its role in regulating VGCCs

has been the subject of extensive study. CaM is associated with almost all HVA calcium
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channels, evidencing its integral role in the calcium channel complex (for detailed reviews,

refer to (Ben-Johny and Yue 2014; S. R. Lee et al. 2015)).

CaM has also been shown to bind to the carboxy-terminal region of recombinant and native
Ca,3.1 channels (Asmara et al. 2017). Upon activation of Ca,3.1 at rest the influx of calcium
leads to the dissociation of CaM from the channel. This dissociation triggers the activation

and phosphorylation of aCaMKII (calcium/calmodulin-dependent protein kinase II).

Furthermore, it has been reported that all three T-type channel isoforms interact with CaM.
The high-affinity binding site for CaM has been identified as the proximal region of the
cytoplasmic linker connecting repeats I and II, termed the “gating brake” (Chemin et al.
2017). Intriguingly, when the gating brake peptide is introduced into HEK293 cells
expressing Ca,3.2, it results in a hyperpolarizing shift in the voltage dependence of activation

and inactivation of the channel, and faster gating kinetics.

Though it is not known whether these gating effects are due to the direct dissociation of CaM
from the channel (an allosteric modulation) or if they are the result of a feedback loop
activated by CaM following its dissociation from the channel. This feedback loop could
potentially involve the activation of CaMKII (Barrett et al. 2000; Lu et al. 1994; Welsby et al.
2003; Wolfe et al. 2002).

G-protein p2y2

VGCCs are significantly modulated by a wide array of heterotrimeric G protein-coupled
receptors (GPCRs) (Waard et al. 1997). The activation of these receptors leads to the
exchange of GDP for GTP on the Ga subunit, resulting in a structural change within the
Goafy complex. This reconfiguration causes the complex to dissociate into two separate,

active signalling substances: the Gy dimer and the GTP-bound Ga.

Both the GPBy dimer and the Ga-GTP initiate a variety of signalling pathways. These include
the activation of protein kinases which phosphorylate specific proteins, such as ion channels.
However, the Gy dimer is also known for its ability to directly associate with neuronal

VGCCs, especially Cay2.1 and Cay2.2 channels (Waard et al. 1997; Zamponi et al. 1997).
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This binding occurs through a G protein-binding pocket created by specific molecular

components of the channel, leading to a substantial inhibition of the channel's activity.

This inhibition is described as voltage-dependent because it can be experimentally reversed
by strong membrane depolarization or, under physiological conditions, by a series of action
potentials. These action potentials are thought to cause the temporary dissociation of the GBy
dimer from the channel. This mechanism is a key aspect of how GPCRs regulate VGCCs and
is extensively reviewed in literature (J. Huang and Zamponi 2017; Proft and Weiss 2015).

One significant physiological outcome of this regulation is its role in how opioids enact their
effects (Weiss and Zamponi 2021). Opioids, by activating their respective GPCRs, may
indirectly modulate VGCC activity through the GBy dimer's interaction with the channels
(Wolfe et al. 2002; Lledo et al. 1992; Marchetti, Carbone, and Lux 1986; P. J. Williams,
MacVicar, and Pittman 1990; DePuy et al. 2006; Hu et al. 2009). Understanding this complex
interaction between GPCRs, G proteins, and VGCCs is vital in comprehending the broader

implications of GPCR-mediated signalling in neuronal function and pharmacology.

WWP1/2 and USP5S

The ubiquitin-proteasome system (UPS) plays a crucial role in the regulation of VGCCs,
particularly in controlling their degradation by aiding in the removal of these channels from
the cell membrane. This process is detailed in review (Felix and Weiss 2017). The
mechanism begins with the binding of a ubiquitin ligase to the channel, followed by the
addition of ubiquitin moieties to the channel. These ubiquitin tags signal the

polyubiquitinated channels for degradation by the proteasome system.

Specifically, ubiquitin ligases WWP1 and WWP2, as well as the ubiquitin hydrolase USP5,
bind with the cytoplasmic region between repeats I1I and IV of Cay3.2 channels. This
interaction regulates both the ubiquitination and the expression levels of Cay3.2 in the plasma
membrane (Garcia-Caballero et al. 2014). Interestingly, USPS5 is upregulated in numerous
pain conditions, leading to decreased ubiquitination of Cay3.2. This reduced ubiquitination

results in an increased surface expression of the channel, which contributes to pain.
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Experimental approaches have explored inhibiting the Ca,3.2/USP5 interaction as a potential
pain treatment strategy. These methods have produced analgesic effects in a variety of
preclinical rodent models of pain (Garcia-Caballero et al. 2014; Gadotti et al. 2015; Garcia-
Caballero et al. 2022; 2016). Furthermore, the interaction between Ca,3.2 and USPS5 is
known to diminish following the SUMOylation of USP5 (Garcia-Caballero, Zhang, et al.
2019). Targeting this SUMOylation process may present another promising path for

developing pain therapeutics.

ENaC

T-type channels, particularly Cay3.2, have been found to form a signalling complex with the
epithelial sodium channel (ENaC). ENaC channels are primarily known for their role in the
reabsorption of sodium ions in the kidney. However, they are also expressed in the central
and peripheral nervous system, where their function is less defined (for a detailed review, see
(Giraldez, Dominguez, and Rosa 2013)). ENaC is composed of three homologous subunits:
a, B, and y. An association between Ca,3.2 and the B- and y-subunits of ENaC has been
discovered (Garcia-Caballero, Gandini, et al. 2019). This interaction suggests a more
complex role for both sets of channels than previously understood. Additionally, when
afyENaC and Ca,3.2 are co-expressed in tsA-201 cells, there is an increase in the expression
of both channels at the plasma membrane. This observation implies that there might be a co-
trafficking mechanism at play between ENaC and Ca,3.2 channels, indicating a synergistic
relationship in their membrane localization and function (Garcia-Caballero, Gandini, et al.

2019).

However, the physiological significance of this interaction between T-type channels and
ENaC in the nervous system remains an open area for exploration. Given the crucial roles of
both channel types in various physiological processes, understanding this relationship could
provide valuable insights into their joint contributions to cellular and systemic functions,

particularly in the context of nervous system signalling and ion homeostasis.
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1.1.2.4.2 Regulation by post-translational modifications

Post-translational modifications (PTMs) are crucial in regulating the function of many
proteins, including T-type calcium channels. Understanding the PTMs of T-type channels is
essential for comprehending their regulation and function in different cellular contexts. This
has been well reviewed in (Iftinca and Zamponi 2009; Chemin, Traboulsie, and Lory 2006;

Huc et al. 2009; Yuan Zhang et al. 2013).

Phosphorylation is an integral PTM of T-type channels involving different kinases that target
specific amino acid residues on T-type channels. For example, phosphorylation by PKA
usually occurs on serine or threonine residues, while tyrosine kinases target tyrosine residues
(Park et al. 2006; J.-A. Kim et al. 2006). Phosphorylation can lead to changes in channel
conductance, opening and closing kinetics, and sensitivity to voltage changes. This can result
in altered calcium influx, impacting cellular excitability and signalling. For example,
phosphorylation by PKC or PKA can modulate the gating properties of these channels,
changing the voltage-dependence of activation and inactivation and augmenting T-type

currents (J.-A. Kim et al. 2006; Dong et al. 2020; Blesneac et al. 2015).

Asparagine (N)-linked glycosylation plays a crucial role in the functionality of Cay3.2
channels, a type of T-type calcium channel. This glycosylation involves the addition of
carbohydrate chains to asparagine residues and is essential for the proper surface expression,
stability, and gating mechanisms of these channels (Weiss et al. 2013; Ondacova et al. 2016).
N-glycosylation also enhances the surface expression of Cay3.2 in response to glucose
(Lazniewska et al. 2016). This glucose-dependent potentiation of Cay3.2 may have significant
implications for the development of painful diabetic neuropathy, a common complication of

diabetes.

Supporting this link, experimental evidence has shown that pharmacological interference
with N-glycosylation can have therapeutic effects in diabetic neuropathy (Orestes et al.
2013). They discovered that disrupting N-glycosylation in a rodent model of diabetes led to a
reduction in T-type currents and, importantly, alleviated neuropathic pain. This suggests that
the modulation of N-glycosylation of Ca,3.2 channels could be a potential target for the

treatment of neuropathic pain, especially in the context of diabetes.
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The regulation of T-type channels, particularly Ca,3.2, extends beyond glycosylation and
involves the UPS, which is crucial in controlling protein degradation and turnover in cells
(Felix and Weiss 2017). The ubiquitin ligase WWP1 and the ubiquitin protease USP5 have
been identified as key players in managing the density of Ca,3.2 channels in the plasma
membrane, especially in primary nociceptive fibres and spinal cord neurons. This was
demonstrated in a study by (Garcia-Caballero et al. 2014), which highlighted the significant
role of these proteins in pain modulation. These in vivo experiments disrupted the interaction
between Cay3.2 and USP5 showing remarkable outcomes in terms of pain management.
Specifically, interfering with the Cay3.2/USP5 complex led to significant analgesic effects in
various rodent models of inflammatory and neuropathic pain. This finding suggests that the
UPS, through the actions of WWP1 and USPS5, directly influences the availability and

function of Ca,3.2 channels on the cell surface, thereby affecting pain signalling pathways.

These insights into the regulation of T-type channels by the UPS offer potential therapeutic
avenues. By targeting specific components of the UPS, such as WWP1 and USPS5, it may be
possible to develop novel pain management strategies, especially for conditions like

inflammatory and neuropathic pain, where conventional treatments are often inadequate.

T-type calcium channels, especially Cay3.2, are also influenced by redox conditions.
Reducing agents, such as the naturally occurring amino acid L-cysteine, have been found to
amplify T-type currents in nociceptive neurons, leading to hyperalgesia due to heightened
neuronal excitability (Todorovic et al. 2001; Michael T. Nelson et al. 2005). This effect is
particularly pronounced with Cay3.2 channels and has been observed in various neuron types,
including nociceptive and reticular thalamic neurons (Michael T. Nelson et al. 2005; Joksovic

et al. 2000).

In contrast, oxidizing agents act as inhibitors of Cay3.2 channels, illustrating the channels'
sensitivity to changes in the cellular redox environment (Joksovic et al. 2007). Notably,
external application of compounds like L-nitrosocysteine and ascorbate can suppress T-type
calcium channel activity and decrease the burst firing of reticular thalamic neurons (Joksovic
et al. 2007; Michael T. Nelson et al. 2007). The action of ascorbate is unique in that it

oxidizes a specific histidine residue (His191) in Ca,3.2, altering channel function.
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L-cysteine's role is also significant in relation to Ca,3.2 channels. It counteracts the inhibitory
effect of zinc ions, which normally bind to extracellular histidine residues on the channel,
thus enhancing channel activity (M. T. Nelson et al. 2007). Zinc not only inhibits Ca,3.2 but
also significantly slows Ca,3.3 tail currents, leading to increased activity of Ca,3.3 channels
during action potential bursts (Traboulsie et al. 2007). This modulation by zinc has
implications for epileptic activity, suggesting a role in seizure-related disorders (Cataldi et al.

2007).

Additionally, lead ions have been shown to stimulate T-type calcium channel activity, in
contrast to zinc (Yan et al. 2008). This stimulation by lead is linked to the release of calcium
from internal stores, mediated by receptors like inositol trisphosphate and ryanodine,

particularly affecting hippocampal pyramidal neurons.

Overall, these findings emphasize the complex regulation of T-type calcium channels by
various redox agents, including endogenous compounds like L-cysteine and external
elements like zinc and lead. This regulation is crucial for understanding the channels' roles in
pathological conditions such as pain and epilepsy, highlighting their significance in neural

excitability and related disorders.

1.1.2.5 Channelopathies

T-type calcium channels are central in governing neuronal activities under normal
physiological states, such as in sleep rhythms. However, their involvement extends far
beyond just regular physiological functions. Recent research paints a broader picture,

highlighting the role of T-type channels in various pathophysiological conditions.

1.1.2.5.1 CACNA1H channelopathies

Primary Aldosteronism: Primary aldosteronism (PA) is a condition wherein the adrenal
glands produce too much aldosterone, leading to hypertension and low potassium levels.
Aldosterone is a hormone that helps manage sodium and potassium levels in the blood, and

its excessive secretion can result in high blood pressure and other complications (Ganguly
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1998). T-type calcium channels, specifically Ca,3.2, play a role in the secretion of
aldosterone from the adrenal zona glomerulosa. The adrenal zona glomerulosa is the
outermost layer of the adrenal cortex and is primarily responsible for producing aldosterone.
In situ hybridisation studies, combined with functional and pharmacological analyses, have
identified Ca,3.2 as the predominant channel isoform responsible for the T-type current

associated with aldosterone secretion (Schrier et al. 2001).

With advances in genetic sequencing, researchers have been able to delve deeper into the
genetic underpinnings of diseases. Whole exome sequencing of PA patients led to the
identification of several mutations in the CACNAH gene, which encodes for the Ca,3.2
channel. Although these genetic variants don't consistently manifest in all carriers, they often
are associated with the presence of PA (Scholl et al. 2015; Daniil et al. 2016). When
researchers expressed these Cay3.2 variants in a laboratory setting (specifically HEK-293
cells), they observed a gain-of-function in channel activity. Furthermore, there's an increased
release of aldosterone in certain adrenal cell lines that produce aldosterone and express these
Cay3.2 variants. This might be due to a direct boost in aldosterone release or potentially an
increase in aldosterone production since cells with these channel variants also exhibited
elevated levels of genes linked to aldosterone metabolism (Daniil et al. 2016; Reimer et al.

2016).

Interestingly, while mutations in another related gene, CACNA 1D, are linked to both severe
neurodevelopmental issues and endocrine disorders, mutations in CACNA 1 H associated with
PA don't seem to present these additional health concerns (Flanagan et al. 2017; Scholl et al.
2013). This suggests a more specific or isolated impact of CACNAIH mutations on the
adrenal system, emphasising the need for specialised medical interventions for patients with

different genetic backgrounds.

Epilepsy: T-type channels are closely associated with the onset and progression of
generalised seizures in both humans and animals. Mutations in Cay3.2 channels have been
linked to childhood absence epilepsy and other idiopathic generalised epilepsies (Zhong et al.
2006; Khosravani and Zamponi 2006; M. Nelson, Todorovic, and Perez-Reyes 2006; Eckle et
al. 2014; Powell et al. 2009; Cain et al. 2018; J. Liang et al. 2007; Heron et al. 2007; 2004;

Peloquin et al. 2006; Vitko et al. 2005; Yi Zhang et al. 2004; Y. Chen et al. 2003; Tsakiridou
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et al. 1995). The functional ramifications of these mutations, however, can be subtle and at
times even elusive when assessed in recombinant channel expression in heterologous systems

(for a full review of these subtle changes see 84).

T-type channels are crucial for the thalamocortical circuitry and are implicated in the spike-
and-wave discharges seen during absence seizures (Khosravani and Zamponi 2006; Cain et
al. 2018; John R. Huguenard 2002; J. R. Huguenard and McCormick 1992; Destexhe et al.
1998; D. Kim et al. 2001; J. R. Huguenard and Prince 1992). Rodent models have shown
enhanced thalamic T-type currents in cases of absence epilepsy (Tsakiridou et al. 1995; Yi
Zhang et al. 2002; 2004). Additionally, several drugs that block T-type channels have proven
effective against absence seizures in humans (Zamponi 2016; Capovilla et al. 1999; Mattson

etal. 1978; Kwan et al. 2015).

Over 200 genetic variants in the human CACNA1H gene, linked to T-type channels, have
been identified in people with various epilepsy syndromes that fall under the idiopathic
generalised epilepsies (IGE) category (Y. Chen et al. 2003; Heron et al. 2007; 2004; Jianmin
Liang et al. 2006; J. Liang et al. 2007; Chourasia et al. 2019). Although many of these
variants can also be found in the Exome Aggregation Consortium (ExAC), indicating they
might not have a strong correlation with epilepsy or might need other factors for

manifestation.

When these genetic variants were analysed for their biophysical properties, most showed only
slight alterations or none at all. These variants aren't concentrated in areas critical for channel
function but are spread throughout the channel sequence (Weiss and Zamponi 2020). Some
mutations might impact the channel's alternative splicing, potentially affecting native T-type
currents (Zhong et al. 2006). While many mutations indicate a channel gain-of-function,
indicating a propensity for neurons to fire more, a few show a loss. Some mutations may
influence the channel's presence on the cell surface (Khosravani et al. 2004; 2005; Vitko et al.
2005; Peloquin et al. 2006; Arias-Olguin et al. 2008). Simulations and in vitro tests have
supported this idea, showing that these gain-of-function (GoF) mutations might increase
neuronal activity similar to that seen in absence seizures (Vitko et al. 2005; Eckle et al.

2014).
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However, many of the identified CACNA1H gene variants don't correlate with specific
epilepsy types in family studies (Heron et al. 2007). A definitive mutation connecting Ca,3.2
with genetic epilepsies was found in the genetic absence epilepsy rat from Strasburg
(GAERS) (Marescaux et al. 1984). This GoF mutation, associated with increased seizures,
enhances the Ca,3.2 channel's recovery from inactivation and increases expression to the
surface through a change in the interaction with calnexin (Proft et al. 2017; Powell et al.
2009). This variant's impact is seen particularly in a specific Cay3.2 splice variant containing
exon 25 which is highly expressed in thalamic tissue (Powell et al. 2009). This could explain
why GAERS rats display no other physiological dysfunctions except seizures, as much of the

pathogenic effect is focused in the thalamus.

It remains ambiguous how much these CACNA 1 H variants contribute to human epilepsies.
They might only be low-risk factors and might require other genetic or environmental factors
to trigger the condition. As such one of the studies in this thesis will aim to explore the link
between CACNA1H and a different epileptic syndrome, previously not associated with
CACNAIH.

Pain: These channels are integral to the understanding of neuropathic and inflammatory pain.
Any dysregulation or aberrant expression of Cay3.2, has been implicated in several chronic
pain conditions (M. Nelson, Todorovic, and Perez-Reyes 2006; Jagodic et al. 2007; Souza et
al. 2016; Garcia-Caballero et al. 2016; Duzhyy et al. 2015; Orestes et al. 2013; Marger et al.
2011; Jagodic et al. 2008). In animal models, T-type channel inhibitors yield analgesic effects
(Todorovic and Jevtovic-Todorovic 2007). In particular, the downregulation of the Cay3.2
channel counters both neuropathic and inflammatory pain (Bourinet et al. 2005; S. Choi et al.
2007). Similarly, knockdown of Ca,3.2 and Ca,3.3 channels alleviates symptoms such as
tactile allodynia and thermal hyperalgesia (Wen et al. 2000).

For instance, there's a heightened activity of Cay3.2 channels in primary afferent fibres (nerve
fibres that transmit sensory signals to the central nervous system) in cases of diabetic
neuropathy, nerve injury, irritable bowel syndrome, and peripheral inflammation (Garcia-
Caballero et al. 2014; Duzhyy et al. 2015; Jagodic et al. 2008; Marger et al. 2011). These
conditions are often linked with chronic pain. The GoF of Ca,3.2 channels in these situations

is thought to be a driving factor behind the initiation and persistence of chronic pain.
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However, it's important to note that these GoF effects in Ca,3.2 channels are not due to
mutations in the channel's genetic sequence. Instead, they stem from altered post-translational
modifications, more specifically, changes in processes like deubiquitination and
glycosylation (Garcia-Caballero et al. 2014; Gadotti et al. 2015; Garcia-Caballero et al. 2016;
Stemkowski et al. 2016; Orestes et al. 2013). The influence of glycosylation of Ca,3.2 and its

impact on diabetic neuropathic pain will be further explored in two studies in this thesis.

More recently, there was a documented case of a paediatric patient experiencing chronic pain
who had two heterozygous missense mutations in the CACNA 1 H gene (Souza et al. 2016).
When these mutations were functionally studied using a heterologous expression system, the
findings were ambiguous. Specifically, the functional implications of these mutations on the
Ca,3.2 channel seemed to be contingent on the specific experimental conditions used (Souza
et al. 2016). When co-expressed in tsA-201 cells, they discovered a loss-of-function (LoF) in
the channel with significantly reduced Ca,3.2 current density. However, when co-expressing
these variants in neuronal-derived CAD cells in a different extracellular media, they had a
non-significant GoF, instead increasing in current density. This poses challenges and implies
that understanding the exact impacts of these mutations requires further exploration, perhaps

under a variety of experimental conditions or in more physiologically relevant systems.

Autism Spectrum Disorder (ASD): Autism spectrum disorders (ASD) are
neurodevelopmental disorders with communication difficulties, social interaction deficits,
and unusual sensory-motor behaviours (Lord et al. 2018). While the genetic foundation of
ASD is incredibly diverse with numerous risk genes identified, around 5% of those with ASD
consistently exhibit a subset of high-risk mutations (Ramaswami and Geschwind 2018; de la
Torre-Ubieta et al. 2016). Among these, several missense mutations have been identified in
the CACNAIH gene in ASD patients (Splawski et al. 2006). These mutations altered the
Cay3.2 channel's function, causing a significant positive shift in activation kinetics and a
reduction in channel conductance. This suggests a LoF in the channel. Given the intersection
of ASD and epilepsy in many individuals (Tuchman, Cuccaro, and Alessandri 2010), and T-
type channels' role in neuronal development, it's speculated that mutations in CACNAIH
might affect neuronal function during early brain development, potentially influencing the
onset of autism (Lory, Bidaud, and Chemin 2006). The extent and nature of these changes

seemed to correlate with the mutation's location within the channel protein, but there is still
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much to understand about this complex disorder and its relationship with Cav3.2 (Splawski et

al. 2006).

Neuromuscular disorder: Neuromuscular disorders refer to a broad set of conditions that
are marked by both voluntary and involuntary muscle degeneration and weakness.
Amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig’s disease, stands out
as a the most severe and prevalent neuromuscular disorder (Chio et al. 2013). It involves the
gradual degeneration of cortical, brain stem, and spinal motor neurons, leading to muscle
weakness and eventual paralysis (Taylor, Brown, and Cleveland 2016). Only about 5%—10%
of ALS cases are familial (fALS) with a clear Mendelian inheritance pattern. The majority of
ALS patients have no family history of the condition, making it 'sporadic' or 'isolated’
(sALS). However, genetics still plays a role, as numerous genes and loci in sporadic ALS
cases have been linked to increased disease risk or an effect on its onset or progression

(Nguyen, Van Broeckhoven, and van der Zee 2018).

In recent studies, whole exome sequencing analysis pinpointed two compound heterozygous
recessive missense mutations in the CACNAIH gene (Steinberg et al. 2015). When these
mutations were functionally analysed, it was found that they resulted in a minor alteration of
the Cay3.2 channel activity, indicative of a LoF of the channel. Computer simulations showed
reduced neuronal activity in nerve cells containing these channel variants (Rzhepetskyy,

Lazniewska, Blesneac, et al. 2016).

Though T-type channels have been identified in motor neurons, their exact role in these cells
hasn't been thoroughly investigated (Chang and Martin 2016; Canto-Bustos et al. 2014; Z.
Zhang and David 2016). Increased neuronal excitability, often characterised by increased
sodium conductance and reduced axonal potassium currents, is a known feature of ALS (Pieri
et al. 2009; J. J. Kuo et al. 2005; Jason J. Kuo et al. 2004; Vucic and Kiernan 2006; Bostock
et al. 1995; Y.-M. Jiang et al. 2005). Given the influence of T-type channels on calcium-
activated potassium channels, it's plausible that a decrease in T-type channel activity from
ALS-associated mutations could affect potassium currents (Womack, Chevez, and
Khodakhah 2004). Recent research has also highlighted the role of T-type channels in
preserving the viability of neuronal progenitor cells (J.-W. Kim et al. 2018). This is especially

significant when considering neurodegenerative diseases like ALS.
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Furthermore, another recent study reported on an individual with severe infantile onset
amyotrophy who had inherited two heterozygous CACNA1H mutations (Carter et al. 2019).
Functional tests of the associated Cay3.2 variants indicated a loss-of-channel function, mainly
evidenced by a reduced window current. This broadens the potential link between CACNAIH
and motor neuron diseases. As such, this thesis functionally analysis several new CACNAIH

mutations associated with ALS to expand on this relationship.

In the backdrop of all these revelations, there's a renewed interest in exploring T-type current
modulators. While some blockers, like mibefradil, were known even before the molecular
cloning of T-type channels, the recent surge in research emphasises the hunt for novel
compounds. The hope is to find new molecules capable of fine-tuning T-type channels, which

could be immensely valuable therapeutically.

1.1.2.5.2 CACNA1G Channelopathies

Cerebellar Ataxia: This condition affects the cerebellum and its connecting pathways,
resulting in poor coordination (Bernard and Shevell 2008). While some forms are non-genetic
and arise from acquired conditions or spontaneous degenerative processes, many hereditary
cerebellar ataxias have been traced back to specific genes, particularly those coding for ion
channels (Mancuso et al. 2014). The R1715H variant of CACNA G has been documented in
several families with autosomal dominant cerebellar ataxia (Coutelier et al. 2015; Morino et
al. 2015; Kimura et al. 2017; Ngo et al. 2018). This mutation resides in a critical voltage-
sensing region, and it brings about a LoF of the channel found both in electrophysiological
studies and computer simulations. Another crucial piece of evidence is the LoF of T-type
current found in patient-derived iPSC Purkinje cells carrying this R1715H variant (Morino et

al. 2015).

Other GoF mutations in CACNA 1 G are linked to childhood-onset cerebellar atrophy (Chemin
et al. 2018). These mutations, including A961T and M1531V, inhibit the channel's
inactivation, thus causing a GoF. Furthermore, a specific mutation, M1574L, found in
Chinese patients has been associated with spinocerebellar ataxia type 42, characterised not

only by ataxia but also cerebellar atrophy and defects in the brainstem (Chemin et al. 2018).
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This mutation has not been functionally characterised as of yet and without testing it is

difficult to hypothesise the potential effects.

Essential Tremor: T-type calcium channel antagonists also show promise as potential
treatments for essential tremor (Handforth et al. 2010; Sinton et al. 1989). The link between
T-type channels, specifically Ca,3.1, and essential tremor suggests that they might also be

relevant in conditions like parkinsonian tremor (Matthews et al. 2023).

Epilepsy: The connection between CACNA G and epilepsy has also been explored. In a
study that observed a group of patients with idiopathic generalised epilepsies (IGEs), 13
CACNA G variants were discovered, five of which caused amino acid substitutions (B. Singh
et al. 2007). The biophysical properties of these mutations, however, were not significantly
different from the WT channel. Intriguingly, CACNA G has also been seen as a potential
modifier for Dravet syndrome, a severe form of epilepsy, when defects are present in the
sodium channel Nay1.2 (Calhoun et al. 2016; 2017). This revelation hints at the possibility
that mutations in CACNA 1 G might not always be directly pathogenic but could sometimes

modify the manifestation of disorders influenced by other genes.

1.1.2.5.3 CACNAI1I Channelopathies

Unlike CACNA1G and CACNAIH, which have known associations with a variety of
neurological conditions, CACNA 11's links are still being uncovered, and its implications are

not as well-established.

Schizophrenia: This is a complex psychiatric disorder with a genetic basis that encompasses
both common and rare genetic variations (Henriksen, Nordgaard, and Jansson 2017).
Recently, two de novo missense mutations in CACNA 11 were found in individuals with
schizophrenia (Gulsuner et al. 2013). These mutations are situated in the pore-forming region
of the Ca,3.3 channel, both displaying LoF effects. The mutation A1346H led to a significant
reduction in the channel's expression, potentially as a result of an impact on the glycosylation
of Cay3.3. The other mutation, T797M, did not exhibit any noticeable impact on the channel
(Andrade et al. 2016). When the effects of the R1346H mutation were examined through

computer simulations focused on thalamic reticular nucleus neurons, a decrease in neuronal
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excitability, which is associated with this mutation, was observed (Andrade et al. 2016).
However, considering the complexity of this disorder, it is difficult to elucidate the overall

physiological effects in the development of schizophrenia.

The genetic landscape of neurological and psychiatric disorders is incredibly complex, and as
research continues, it's becoming clear that even small variations in genes like CACNA I can
potentially have significant implications for brain function and, consequently, for behaviour
and cognition. The absence of epilepsy associations for Ca,3.3 compared to other T-type
channels underscores the need for nuanced, gene-specific research (Juli Wang et al. 2006).
Understanding these distinctions will be pivotal for the development of targeted therapeutic

interventions for conditions like schizophrenia and epilepsy.

1.1.2.6 T-type channel drugs

As the role of T-type channels in diseases has continued to be documented, so has the number
of drugs targeting these channels. For many years there has only been a few T-type channel
blockers approved, but recently there has been a large influx in these drugs. This includes;
ethosuximide, zonisamide, verapamil, trazodone, haloperidol, and several types of
dihydropyridines (DHP)(Melgari et al. 2022). There are many more T-type channel blockers
that have either been withdrawn from the market, failed clinical trials or are still in clinical

trials (for a full review of these see (Melgari et al. 2022; Nam 2018).

Those that have been approved are used to treat a variety of different disorders through a
variety of different mechanisms. Ethosuximide for example, is primarily used in the treatment
of absence seizures. It is an antagonist of T-type channels predominantly in thalamic neurons,
reducing the ability of thalamic neurons to generate abnormal rhythmic discharges (Coulter,
Huguenard, and Prince 1989). Zonisamide is another antiepileptic drug, but the mechanism of
action is not fully understood. However, studies find that it targets numerous pathways to
reduce neuronal excitability. These include inhibition of T-type channels, particularly in
thalamic neurons, but also voltage-gated sodium channels. Other effects include inhibition of
carbonic anhydrase, modulation of neurotransmitter release, and free radical sCavenging

(Biton 2007).
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Verapamil is a medication primarily used in the management of high blood pressure, angina
(chest pain), and certain types of irregular heartbeats (B. N. Singh, Ellrodt, and Peter 1978). It
blocks both L-type and T-type channels with a higher affinity at more depolarised membrane
potentials. However, this state-dependent block is more dramatic in L-type channels than T-
type channels. Studies have found that verapamil preferentially blocks from the extracellular

side of the channel, binding inside the pore (Bergson et al. 2011).

Trazodone is a medication primarily used in the treatment of major depressive disorder, but it
also has several off-label uses, such as insomnia (Fagiolini et al. 2012; Jaffer et al. 2017). It
belongs to the class of drugs known as serotonin antagonist and reuptake inhibitors (SARIs).
Along with its various effects on other pathways, trazodone also inhibits T-type currents
(Stahl 2009). Studies have found that this block occurs when the channel is at rest, with a

weak voltage-dependence of inhibition (Kraus et al. 2007).

Haloperidol, a typical antipsychotic medication, is primarily used in the treatment of
schizophrenia and acute psychotic states, including delirium. It is also used in controlling
severe tics and vocal utterances in Tourette syndrome (Kudo and Ishizaki 1999). In addition
to its antipsychotic properties, it has a role in treating severe behaviour problems in children,
including combative and explosive behaviour (Werry and Aman 1975). These effects are
thought to be primarily due to its activity on dopamine receptors as although it inhibits T-type

currents, it is not very potent (Santi et al. 2002).

Dihydropyridines constitute a category of drugs mainly used for treating cardiovascular
diseases (Epstein, Vogel, and Palmer 2007; Messerli et al. 2006). These drugs function by
blocking the entry of calcium ions into the heart and vascular smooth muscle cells. This
mechanism plays a crucial role in treating conditions like hypertension, angina pectoris, and
certain types of arrhythmias (Messerli et al. 2006). They are selective in their action, focusing
on L-type and T-type calcium channels (Schaller et al. 2018; Weiland and Oswald 1985;
Wappl et al. 2001). Their ability to selectively inhibit calcium entry into vascular smooth
muscle stems from their unique splicing variations and their increased affinity to bind with
calcium channels when these channels are in an inactive state. Since vascular smooth muscle
cells typically keep their membrane potential at relatively depolarized levels, a greater

number of calcium channels are found in their inactive state (Perez-Lemus et al., n.d.)
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2 Aims of the thesis

This comprehensive thesis delves into several critical aspects of T-type channels, highlighting
their significance in medical science and pharmacology. These channels play a vital role in
many physiological systems in the body from their neuronal activity to regulating heart rate
and rhythm and their implication in cancer cell proliferation and embryonic development.
This underscores the need for research into all facets of T-type channels to combat not only

neurological but also various other disorders.

The thesis is thus structured around three main areas: understanding the regulation pathways
of T-type channels, including their processing and expression on the plasma membrane;
investigating mutations in T-type channels associated with various neurological disorders;

and developing drugs targeting T-type calcium channels.

Part 1: Regulation of T-type channel expression

It is already well established that T-type channels go through various post-translational
modifications which influence the expression and function of the channel at the cell
membrane. Despite acceptance of N-glycosylation at N-X-S/T motifs, it is unknown if non-

canonical motifs undergo N-glycosylation.

Another area of focus is the role of trafficking proteins, such as the Secretory carrier-
associated membrane proteins (SCAMPs), in the regulation of ion channels. SCAMPs form a
family of intrinsic membrane proteins expressed in the trans-Golgi network and recycling
endosome membranes, where they help modulate vesicular trafficking and vesicle recycling
processes (Castle and Castle 2005). SCAMP2, found across all tissues, including neuronal
tissues (https://www.proteinatlas.org/ENSG00000140497-SCAMP2/tissue), has been linked
to ion channel and transporter regulation (Miiller, Wiborg, and Haase 2006; Diering, Church,
and Numata 2009; Zaarour et al. 2011; Fjorback et al. 2011), but its specific role in T-type

channel expression remains unexplored.

Part 2: T-type channelopathies associated with neurological disorders
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ALS has been linked to the dysfunction of many genes, and new genetic mutations associated
with ALS are still being discovered (Nguyen, Van Broeckhoven, and van der Zee 2018).
Studies have also long known that excitability dysfunction in neurons is associated with ALS
pathology (Zanette et al. 2002). As ion channels are intrinsic to the excitability of the neuron,
and one of the only drugs available for treatment targets ion channels (Lamanauskas and
Nistri 2008). It suggests that dysfunction in ion channels is linked to ALS pathology.
However, as of yet, there has been only one other study identifying the functional effect of
CACNA 1 H variants associated with ALS (Rzhepetskyy, Lazniewska, Blesneac, et al. 2016).
Therefore, we will further explore this link between CACNA1H and ALS.

CACNA1H GoF variants have long been associated with various forms of epilepsy, including
childhood absence epilepsy and other idiopathic generalised epilepsies (Zhong et al. 2006;
Khosravani and Zamponi 2006; M. Nelson, Todorovic, and Perez-Reyes 2006; Eckle et al.
2014; Powell et al. 2009; Cain et al. 2018; J. Liang et al. 2007; Heron et al. 2007; 2004;
Peloquin et al. 2006; Vitko et al. 2005; Yi Zhang et al. 2004; Y. Chen et al. 2003; Tsakiridou
et al. 1995). Although the link between CACNAH and various forms of epilepsy is evident,
the implications of these mutations is still largely unknown. Furthermore, CACNA1H LoF
variants have been associated with various developmental disorders such as autism (Splawski
et al. 2006). Recently, a young patient with severe developmental and epileptic
encephalopathy (DEE) was found to carry a CACNA1H variant. However, this variant has not
been functionally characterised for its biophysical properties and therefore its pathological

impact.

Recently, through whole exome sequencing analysis of familial trigeminal neuralgia patients,
a study has identified 19 CACNAIH variants (Dong et al. 2020). As of yet only four of these
have been biophysically characterised (Gambeta et al. 2022), so the potential pathogenicity of

the rest is still unknown.

Part 3: Drugs targeting T-type channels

Finally, the thesis emphasises the urgency of developing new drugs targeting T-type calcium
channels, given the increasing recognition of their connection to various disorders and the
limited number of approved drugs in this category (Melgari et al. 2022). This highlights the

essential nature of ongoing research and development in this field.
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Specific aims were therefore:

Part 1: Regulation of T-type channel expression
e To determine the role of non-canonical N-glycosylation sites on the post-translational
processing of Ca,3.2 channels to the cell membrane.

e To determine the role of SCAMP2 on cell membrane expression of T-type channels

Part 2: T-type channelopathies associated with neurological disorders
e To ascertain the effect of diabetes on glycan-processing genes and their functional
effect on CACNAIH.
e To ascertain the functional effect of various CACNA 1 H variants associated with ALS.
e To ascertain the functional effect of a CACNAIH variant associated with severe
developmental and epileptic encephalopathy.
e To ascertain the functional effect of CACNA 1H variants associated with familial

trigeminal neuralgia.

Part 3: Drugs targeting T-type channels

e To identify the effects of a group of surfen derivatives on T-type channel activity.
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3 Methods

Biophysical Characterization (Study 1-7): We conducted patch clamp recordings to study T-
type currents in tsA-201 cells expressing Ca,3.2 channel variants and associated regulatory
proteins when applicable (study 1, 2, and 3). These recordings were performed 72 hours after
transfection in a whole-cell configuration at room temperature (22-24 °C). This study utilized
specific bath and pipette solutions for the experiment. They used an Axopatch 200B amplifier
and software like pClamp 10 and Clampfit 10 for data acquisition and analysis. We
correcting the linear leak component of the current using a subtraction protocol, and the data
was digitized at 10 kHz and filtered at 2 kHz. These studies focused on analyzing the voltage
dependence of activation, conductance, and steady-state inactivation of Cav3.2 channels in
response to, various mutations (study 1, 4, 5, 6), or regulatory proteins (study 2 and 3). This
involved measuring the peak T-type current amplitude in response to various protocols and
fitting the data to modified Boltzmann equations. Additionally, the recovery from
inactivation was assessed using a double-pulse protocol, and the results were fitted to a
single-exponential function to determine the time constant for channel recovery from
inactivation. For study 7 a stab protocol was used to measure the current induced at one
voltage step and drugs were applied to see the resulting inhibition. This was carried out on

Cay1.2, Ca,2.1, Ca,2.2, Cay3.1, Ca,3.2, and Cay3.3 recombinant channels.

Biotinylation studies (study 1): This process was carried out using EZ-Link Sulfo-NHS-SS-
Biotin. After quenching the reaction, the cells were lysed using a modified RIPA buffer. Two
milligrams of these lysates were then incubated with Neutravidin beads to isolate the
biotinylated proteins. Subsequent to the incubation, the beads were washed, and the proteins
were eluted using 2x Laemmli sample buffer. The biotinylated proteins, along with the
lysates, were then subjected to SDS-PAGE for separation. Following this, a Western blot
analysis was conducted using specific antibodies: anti-Cav3.2, and anti-Na+/K+ ATPase, to

detect and analyze the presence of these proteins.

Co-Immunoprecipitation (study 2): tsA-201 cells expressing Cav3.2-HA (hemagglutinin-
tagged) in combination with SCAMP2-Myc were used. These cells were first solubilized in a
lysis buffer supplemented with a protease inhibitor cocktail obtained from Sigma. After
solubilization, the cell lysates were cleared by centrifugation. All these steps were performed

at a temperature of 4°C to preserve protein integrity. Following centrifugation, the lysates
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were incubated overnight at 4°C with a rat monoclonal anti-HA antibody. This step allows
the antibody to bind to the HA-tagged Cav3.2 proteins. After the overnight incubation, the
lysates were further incubated for two hours at 4°C with magnetic protein G beads. Once the
incubation with the beads was complete, the beads were washed to remove non-specifically
bound proteins. The beads, with the bound protein complexes, were then resuspended in

Laemmli buffer. Finally, the samples were heated at 100°C.

Western Blot (study 2): immunoprecipitation samples and total cell lysates were separated
using 10% SDS-PAGE and transferred onto a PVDF membrane. Detection involved
incubating the membrane with specific primary antibodies: mouse monoclonal anti-Myc for
SCAMP2-Myc, rat monoclonal anti-HA for Cav3.2-HA, and mouse monoclonal anti-actin
for actin. Post-incubation, membranes were washed and treated with HRP-conjugated
secondary antibodies. Immunoreactive bands were detected using enhanced

chemiluminescence and analyzed with ImageJ software.

Transcriptomic analysis (study 3): Transcriptomic analysis was conducted on total RNA from
the dorsal root ganglia (L4/L6) of wild-type and db/db mice. The study utilized the
Glycosylation RT2 Profiler PCR Array (Qiagen) for analyzing glycan-modifying enzymes,
following the manufacturer's guidelines. PCR and qRT-PCR were performed using a
LightCycler® 480 (Roche) under specific conditions: initial denaturation at 95°C for 5
minutes, followed by 40 cycles of denaturation at 95°C for 15 seconds, annealing at 60°C for
15 seconds, and extension at 72°C for 20 seconds. Each test was repeated thrice to ensure
accuracy, averaging the results to minimize discrepancies. The focus was on 84 key genes
encoding enzymes processing glycans, including glycosyltransferases and glycosidases for
various sugars like galactose, glucose, mannose, N-acetylgalactosamine, N-

acetylglucosamine, fucose, and sialic acid.

Computational modeling (study 6): We simulated thalamic reticular neuron (nRT) firing
using the NEURON simulation environment, based on a three-compartment model.
Electrophysiological properties of both wild-type and TG-associated Cav3.2 variants were
incorporated into the model using Hodgkin-Huxley equations. Recognizing the relative
expression of Cav3.2 channels in nRT neurons (about 40% Cav3.2 and 60% Cav3.3) and the
heterozygous nature of TN-associated Cav3.2 variants, only 20% of the T-type channel

conductance in the model was modified with experimental values for WT and TN-associated
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Cav3.2 variants. Simulations were conducted at a holding potential of -70 mV, monitoring
the virtual soma's electrical membrane potential in response to 200ms hyperpolarizing and

depolarizing current injections to assess rebound and tonic firing.

Cell toxicity assay (study 7): The study involved evaluating the cytotoxicity of compounds on
various human cancer cell lines, including cervix cancer (HeLa), hepatocellular carcinoma
(Hep G2), acute lymphoblastic leukemia (CCRF-CEM), and acute promyelocytic leukemia
(HL-60), all sourced from ATCC. Each cell line was cultured in specific media: HeLa in
DMEM high glucose, CCRF-CEM and HL-60 in RPMI-1640 (Dutch modification), and Hep
G2 in aMEM, supplemented with 10% heat-inactivated fetal bovine serum (FBS) and 2 mM
glutamine, at 37 °C in a 5% CO2 humidified atmosphere. The CellTiter-Glo® 2.0 Cell
Viability Assay kit from Promega was used for measuring cytotoxicity. Cells were seeded
into white 384-well plates and treated with compounds or DMSO (control) for 72 hours.
Post-treatment, CellTiter-Glo® reagent was added, mixed, and allowed to stabilize, with
luminescence readings indicating cell number and hence viability. IC50 values, indicating the
concentration reducing viable cells by half, were calculated using nonlinear regression

analysis with GraphPadPRISM® 7, based on a sigmoidal concentration-response curve.

Molecular docking (study 7): This study involved protein and ligand preparation and docking
using the Schrodinger Docking Suite (2023-2 release). Ligands were prepared using LigPrep,
considering ionization states at pH 7.0. The cryo-EM structure of Ca v 2.2 (PDB ID: 7mix)
was prepared with the Protein Preparation Wizard, while the homology model of Ca v 3.2
was based on previous descriptions. Docking simulations were conducted using Glide in
Standard Precision mode with enhanced sampling to generate up to 100 poses per site.
Furthermore, Schrodinger Induced-Fit Docking allowed for flexible receptor docking,
involving 20 docking runs with subsequent optimization of amino acid positions and
conformations within 5 A of the docked site. The ligand-receptor complexes were then

ranked based on the energies of the induced-fit complexes.

Preclinical efficacy (study 7): The assessment of mechanical allodynia in rats involved
measuring their paw withdrawal threshold in response to probing with a series of fine
calibrated filaments (von Frey filaments, Stoelting, Wood Dale, IL). For the test, rats were
placed in suspended plastic cages with a wire mesh floor. The von Frey filaments were

applied perpendicularly to the plantar surface of the rat's paw. The "up-down" method, which
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sequentially increases and decreases stimulus strength, was used to determine the paw
withdrawal threshold. Data analysis was conducted using Dixon’s nonparametric method.
Mechanical allodynia in the rats was indicated by a decrease in the paw withdrawal threshold,

meaning the rats withdrew their paws at lower filament pressures compared to normal.
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4 Results

Comments to the results

According to the specific aims for this thesis, seven papers have been designed, six of which
have been published with the last one going for review. In the first part, two studies were
designed to assess the regulation and expression of T-type channels to the surface by 1)
determining the potential role of non-canonical N-glycosylation sites within Ca,3.2 and 2)
regulatory properties of SCAMP2 on T-type channels. In the second part, three studies were
carried out to identify T-type channelopathies associated with neurological disorders and
conditions including 3) peripheral diabetic neuropathy, 4) ALS, 5) DEE, and 6) familial TN.
The final part includes one study that 7) characterises the action of a group of compounds that

target T-type channels.

Part 1: Regulation of T-type channel expression

The research presented in these studies offers significant insights into the mechanisms
regulating the expression and function of T-type channels, specifically focusing on Cay3.2

channels and the role of non-canonical glycosylation motifs and a novel regulator, SCAMP?2.

Study 1: Non-Canonical Glycosylation Motifs in Ca,3.2

Key findings include:

Biophysical Characterization: Using patch-clamp electrophysiology, we found that the motifs
at N345 and N1780 were crucial for the proper trafficking of Cay3.2 to the membrane. This
was evident from the significant reduction in channel conductance in cells expressing these

mutations, compared to those expressing the wild-type (WT) channel.

Biotinylation Studies: To discern whether the reduced current was due to channel dysfunction
or decreased surface expression, biotinylation was employed. The total cellular expression of
all channels was consistent, but the surface expression of the N345 and N1780 mutated

channels was notably reduced. This reduction in surface expression correlated with the
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decreased channel conductance, suggesting that these motifs are essential for the

glycosylation and correct trafficking of Ca,3.2 to the plasma membrane.

Study 2: SCAMP?2 as a regulator of T-Type Channels

Key findings include:

Co-Immunoprecipitation: This confirmed a physical interaction between SCAMP2 and
Ca,3.2, forming a protein complex. Though we cannot confirm if there is a direct interaction
or if there is an intermediate protein.

Electrophysiological Analysis: Patch-clamp recordings showed a 91% reduction in Cav3.2
channel conductance when co-expressed with SCAMP2 and a 35% and 98% reduction in
Ca,3.1 and Ca,3.3 conductance, respectively. Further analysis through Alanine mutagenesis
on SCAMP2's E peptide residues (C201A and W202A) reduced this inhibition effect,
suggesting the E peptide's involvement in the regulation process.

Western Blot Analysis: This revealed a non-significant increase in total Cay3.2 expression,
possibly due to a reduced rate of vesicular exocytosis, which in turn may prevent the channel
from being targeted for degradation.

Intramembrane Charge Movement Measurement: Indicated a decrease in channel expression
at the surface and a change in the coupling between voltage-sensor activation and pore
opening, suggesting a role for SCAMP2 in gating regulation.

Part 2: T-type channelopathies associated with neurological disorders

Study 3: Glycan-processing genes in diabetic mice

Key findings include:
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Transcriptomic Analysis: This study employed transcriptomic analysis to examine changes in
gene expression in DRGs. It revealed that several genes encoding glycosyltransferases and

sialic acid-modifying enzymes were upregulated in diabetic conditions.

Functional Analysis of Glycosylation Enzymes: When these enzymes were applied to
recombinant Cay3.2 channels, there was an unexpected loss of channel function. Despite the
observed upregulation of T-type channels in diabetic conditions, the individual action of

these glycosylation enzymes on recombinant Ca,3.2 did not align with this upregulation.

Study 4: CACNAIH variants linked to ALS patients

Key findings include:

Whole genome sequencing: This technique was used on a small cohort of ALS patients,

revealing two heterozygous CACNA 1 H variants.

Patch Clamp Electrophysiology: ¢.454GTAC > G Variant (AI153): This newly discovered
variant led to an inframe deletion of a highly conserved isoleucine residue in Cay3.2, causing
a complete loss of channel function. Notably, this variant also exerted a dominant-negative
effect on the wild-type channel when co-expressed, further impairing channel function.
¢.3629C > T Variant (P1210L): This variant caused a missense substitution (proline to
leucine) and resulted in a mild reduction of the Cay3.2 channel activity and thus is unlikely to

be pathogenic.

Study 5: SCN8A and CACNA 1H variants associated with DEE

Key findings include:

Whole exome sequencing: This technique uncovered genetic variations in two channels that

could be responsible for the condition, a de novo heterozygous variant in SCN8A (c.4873-

4881 duplication) and an inherited heterozygous variant in CACNA1H (c.952G>A).
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Patch Clamp Electrophysiology: SCN8A4 (c.4873-4881 duplication): A mild leftward shift in
voltage dependence of activation, consistent with a gain-of-function. CACNAIH (c.952G>A):

A mild rightward shift in the voltage dependence of activation, suggesting a loss-of-function.

Study 6: CACNA1H variants associated with TN

Key findings include:

Patch Clamp Electrophysiology: Seven variants showed a GoF. Six variants showed altered
gating properties, exhibiting a hyperpolarizing shift in voltage dependence of activation
and/or inactivation, leading to an enhanced window current through Ca,3.2 channels. One
variant enhanced recovery from inactivation which could potentially contribute to increased

channel activity.

Computational Modelling: Using a computational model of reticular thalamic neurons, this
study simulated the neuronal electrical membrane potential. The results suggest that TN-
associated Cay3.2 GoF variants could enhance neuronal excitability, potentially contributing

to the development of TN.

Part 3: Drugs targeting T-type channels

Study 7: Quinolone-based calcium channel blockers

Key findings include:

Patch Clamp Electrophysiology: Among the synthesised compounds, S13 effectively blocks
several VGCC subtypes, including Ca,2.2 and Cay3.2, which are particularly relevant to pain.
Biophysical studies conducted on cultured DRG neurons confirmed S13's blocking activity

on native LVA and HVA VGCCs, without affecting sodium and potassium channels.

Cell Toxicity Assay: S13 had improved cell tolerance compared to surfen and other

derivatives.
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Molecular Docking Analysis: Predicted the direct binding of S13 to Ca,2.2 and Ca,3.2

channels.

Preclinical Efficacy: Intrathecal administration of S13 in a rat model of nerve ligation-

induced mechanical allodynia showed substantial antinociceptive effects.
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5 Discussion

The increase in diseases associated with T-type channels has increased the need to further
research them. This starts at basic research elucidating their modulation and trafficking to the
surface and then expands to the need to find out what the effect of channel variants and
regulatory proteins have on the biophysical function of the channel. Finally, as many T-type
channel blockers have been produced with only a handful of them being approved for use due
to efficacy (Melgari et al. 2022), there is a need to develop novel drugs to combat the
growing number of diseases associated with T-type channels.

As such seven studies have been carried out to research the three aspects involved in treating
these diseases; 1) regulation of T-type channels, 2) T-type channelopathies, and 3) novel drug

development.

Part 1: Regulation of T-type channel expression

Two studies were focused on the regulation of T-type channels. The first study revealed a
previously unknown aspect of T-type channel regulation. While N-glycosylation at canonical
sites is well-known, we identified additional regulatory processes at two non-canonical sites.
This discovery is key for a more comprehensive understanding of how T-type channels are
controlled. Our findings showed a reduced presence of these channels at the cell surface
when these sites were mutated, highlighting their role in the channel's proper trafficking and
expression. Our study didn't pinpoint the exact mechanisms behind this effect. Nevertheless,
since we replaced the asparagines with glutamine to maintain similar secondary structures
and charge distributions, we deduce that the change isn't due to the changes in the channel's
biophysical properties. Instead, it appears to result from disrupting the glycosylation process.
We also noted no difference in the overall cellular expression of the mutated channels, only a
decrease at the surface identified through biotinylation. This suggests the mutations likely
don't influence the channel's ubiquitination, as this would lead to decreased overall cellular

expression due to marked degradation.

Glycosylation's role in T-type channels is notably crucial, impacting their function, location,
and broader cellular effects (Lazniewska and Weiss 2017). Commonly occurring in the
channels' extracellular loop, glycosylation can alter their gating, conductance, and drug

responses. These modifications affect how the channels interact with their surroundings,
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influencing their distribution, stability, and response to regulatory elements (Q. Wang,
Groenendyk, and Michalak 2015; Weiss et al. 2013; Ferris, Kodali, and Kaufman 2014;
Vagin, Kraut, and Sachs 2009). Therefore, identifying glycosylation sites is vital for

understanding the fundamental regulatory mechanisms of T-type channels.

The second study brought to light a novel modulator of T-type channels, SCAMP2, which
plays a critical role in various cellular processes, particularly in regulating membrane
trafficking and signal transduction (Castle and Castle 2005). As a part of the SCAMP family,
SCAMP2 is integral to post-Golgi recycling pathways, facilitating the efficient transport of
proteins and lipids within cells. Its involvement in key physiological processes such as
exocytosis, endocytosis, and membrane repair underscore its importance (Castle and Castle

2005).

SCAMP2's ability to interact with a diverse range of proteins and lipids enables it to function
as a versatile regulator. It coordinates the trafficking of cargo molecules to specific
destinations within the cell, a process vital for maintaining cellular homeostasis and
responding to environmental changes. Disruptions in SCAMP2 function are linked to various
diseases, including neurodegenerative disorders and cancer, highlighting its significance in

both normal cellular functioning and disease pathology (C. Yue et al. 2021).

T-type channels have already been found to be modulated by a variety of interacting proteins
including Stacl (Rzhepetskyy, Lazniewska, Proft, et al. 2016), Rack-1 (Gandini et al. 2022),
KLHLI1 (Perissinotti et al. 2014), calnexin (Proft et al. 2017), spectrins (Garcia-Caballero et
al. 2018), Caveolins (Markandeya et al. 2011), calmodulin (Ben-Johny and Yue 2014),
syntaxin (Weiss et al. 2012), and USP5 (Garcia-Caballero et al. 2014). Here we have
identified an additional interacting protein to add to these and increase our understanding of

the basic regulatory mechanism T-type channels are under.
Part 2: T-type channelopathies associated with neurological disorders

In the third study, we explored further the role of glycosylation in the trafficking of T-type
channels, particularly in the context of diabetes. Glycosylation is known to be crucial for the
proper trafficking of T-type channels to the cell surface, and dysfunctions in this process have

been linked to various disorders (Jagodic et al. 2007; 2008; Andrade et al. 2016; Dogrul et al.
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2003; Bourinet, Francois, and Laffray 2016; J. Yue et al. 2013; Watanabe et al. 2015; Scanzi
et al. 2016; Latham et al. 2009).

Our study initially aimed to provide evidence for peripheral diabetic neuropathy (PDN) by
analysing the transcriptomic profiles of glycan-processing genes in a mouse model of
diabetes. We observed an increase in these genes, leading us to theorise an associated
increase in Ca,3.2 expression. This hypothesis was based on existing knowledge that elevated
Ca,3.2 expression in primary afferent nociceptive fibres is linked to the development of

peripheral painful neuropathy in various conditions (Jagodic et al. 2007).

However, contrary to this, when we tested this in a recombinant expression system using tsA-
201 cells, we observed a significant reduction in Cay3.2 surface expression. In fact, three out
of the five glycan-processing genes we studied caused an almost complete loss of Cay3.2

surface expression.

We speculate that these contradictory results may stem from the limitations of the tsA-201
cell expression system in replicating the complexities of primary neurons, such as DRGs.
While this system is a common choice for such studies due to practical constraints, it cannot
always accurately mimic native systems, especially as the cell line does not come from
neuronal origins. Due to this there may be a difference in cell expression profiles, changing

cellular dynamics in comparison to neurons (Y.-C. Lin et al. 2014).

To reach a definitive conclusion about the interaction of these glycan-processing genes with
Cay3.2 expression in diabetes and its impact on PDN, further investigation in native
conditions is necessary. For instance, this could involve experiments in DRGs from normal
animals. By increasing the expression of these glycan-processing genes, we could measure
the changes in the biophysical properties of Cay3.2 channels compared to WT DRGs. This
could be achieved through various methods, such as gene therapy with viral vectors
(Lundstrom 2018), CRISPR/Cas9 (Hsu, Lander, and Zhang 2014) to enhance gene
expression, or RNA interference (RNAI1) targeting repressor genes to indirectly boost the

expression of these glycan-processing genes (D. H. Kim and Rossi 2008).

In the fourth study, we investigated the role of rare genetic variants in sporadic Amyotrophic

Lateral Sclerosis (SALS), focusing on two heterozygous CACNA [ H variants identified in
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ALS patients through whole genome sequencing. Our functional analysis revealed varying

degrees of loss-of-function in Ca,3.2 channel variants.

The P1210L missense mutation, located in a variable region of Ca,3.2, was initially not
predicted to be deleterious. This is supported by the fact that this variant is found abundantly
in the general population. However, our electrophysiological analysis showed a mild
reduction in cell surface expression and T-type conductance of the P1210L channel variant.
Even then, we would still predict it has no pathogenic activity. To confirm this, we would
need to introduce the mutation into a knock-in rodent model to elucidate the phenotypic
effects, as has been previously carried out for ALS associated genes (Kao et al. 2020; S.-L.
Huang et al. 2020). We can also express them in more native conditions such as motor
neurons, which have already been found to express Ca,3.2 (Chang and Martin 2016; Canto-
Bustos et al. 2014; Z. Zhang and David 2016). We could then analyse any potential
biophysical changes that may occur in the firing properties of these neurons to elucidate if
these changes correspond with dysfunction of excitability found in ALS motor neurons

(Jason J. Kuo et al. 2004; Filipchuk et al. 2021).

In contrast, the AI153 variant, previously unreported and predicted to be deleterious, showed
a complete loss of functional expression. Electrophysiological analysis and charge movement
recordings indicated its absence from the cell surface, and biochemical analysis suggested
extensive degradation of the channel protein. Notably, the AI153 variant exerted a dominant-
negative effect on the WT channel when co-expressed, likely due to Cay3.2 subunit
dimerization, which could impede the trafficking of the WT channel to the cell surface. This
effect might extend to other ion channels, given Cay3.2's known interactions with various
calcium- and voltage-activated potassium and sodium channel subunits (Garcia-Caballero,

Gandini, et al. 2019; Y1 Zhang et al. 2002; Gackiere et al. 2013; Wolfart and Roeper 2002).

It is difficult to predict the effect of this loss-of-function in a patient due to the ubiquitous
expression of Cay3.2 throughout the body (J.-H. Lee et al. 1999). However, due to the nature
of ALS we can hypothesise the effect based on the neurons known to be affected. For
example, evidence for a decrease in synaptic transmission in thalamic neurons has been noted
in ALS patients (Sharma et al. 2011), and it is well known that Ca,3.2 are expressed in
reticular thalamic neurons, where they contribute to NMDA receptor-mediated synaptic
transmission (Talley et al. 1999; G. Wang et al. 2015). The loss-of-function seen could then
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explain this reduced synaptic transmission. Additionally, the presence of T-type channels has
been documented in motor neurons and their role in cellular excitability and motor functions
suggest that a loss-of-function in Ca,3.2 could lead to a hypoexcitable state, causing neuronal
degeneration (Chang and Martin 2016; Canto-Bustos et al. 2014; Z. Zhang and David 2016).
This could explain the hypoexcitability identified in some models of ALS (Filipchuk et al.
2021). It would be interesting to continue studying the effect of this loss-of-function mutation
in more native conditions, and to screen other ALS patients for CACNA [ H mutations to
provide stronger evidence in the link between ALS and CACNAIH. It would also be
intriguing to test the biophysical properties of motor neurons from ALS patients to elucidate
the role of Cay3.2 in neuronal degeneration. However, as this is unethical to extract motor
neurons from patients other methods would have to suffice. We then should turn to
expressing these Cay3.2 variants in mice models and in human iPSC cells to come to a better

understanding of the potential biophysical changes.

In the fifth study, we reported the case of a child with severe developmental and epileptic
encephalopathy (DEE), who was found to have a de novo mutation in SCN84 and an
inherited rare variant in CACNA1H. Pathogenic variants in SCN8A4, particularly de novo
missense variants in the conserved transmembrane domains of Nav1.6, have been previously
described in DEE patients and the GoF we found aligns with this data (Veeramah et al. 2012;
Meisler et al. 2016; Jiaping Wang et al. 2017). In contrast, CACNA 1H has not been
previously associated with DEEs. It is interesting to see that we found a LoF in CACNAIH
activity as this is usually associated with autism spectrum disorders, amyotrophic lateral
sclerosis, and congenital amyotrophy (Splawski et al. 2006; Rzhepetskyy, Lazniewska,
Blesneac, et al. 2016; Carter et al. 2019). Whereas GoF variants in CACNA1H have been
linked to conditions like absence epilepsy and primary aldosteronism (Daniil et al. 2016;
Khosravani et al. 2005). We would then have expected a GoF in CACNAI1H. Although this
variant was inherited from the father and he had no symptoms, it suggests that this alone
would have no significant effect on disease development. From our results we could
hypothesise that when expressed together, they could negate each other's effect on the
biophysical properties in neurons. Therefore, to ascertain the impact these two variants have
on the pathogenicity of DEE, we would need to express both in more native conditions, such

as in iPSC derived neurons.
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In the sixth study, we investigated the functional characteristics of 13 Ca,3.2 missense
variants identified in patients with trigeminal neuralgia (TN). Interestingly, 6 of the 13 Ca,3.2
variants (S187L, A802V, E819K, P1120L, P2280H, and E2291K) exhibited a hyperpolarized
shift in the voltage dependence of activation, indicative of a GoF effect. Additionally, A802V
and Q1049H variants showed an increased recovery from inactivation, also displaying a GoF
effect. It is interesting to see that despite the spread of these variants across the CACNAIH
channel, they displayed similar biophysical modifications. Moreover, these six variants
caused a hyperpolarizing shift in the voltage dependence of the window current, potentially
leading to increased passive calcium influx near the resting membrane potential. This could
further enhance neuronal activity, as the window current's voltage range is crucial for

neuronal electrical activities and calcium oscillations (S. R. Williams et al. 1997).

When these 6 variants were introduced into a computational model of nRT neurons, they
reduced the threshold for rebound burst firing, suggesting an overall GoF effect. This finding
aligns with previous studies demonstrating that increased T-type channel activity can lower
the threshold for rebound burst firing in various neuron types (Woodward et al. 2019).
Although our modelling was based on nRT neurons, it may reflect potential effects of TN-
associated Cay3.2 variants on the trigeminal pathway. This is supported by several factors,
including the potential for T-type dependent rebound burst firing in trigeminal ganglion
neurons (Guido, Giinhan-Agar, and Erzurumlu 1998; Zhu, Wei, and Wang 2022), the
presence of low-threshold calcium conductance in brainstem trigeminal nuclei neurons
(Guido, Glinhan-Agar, and Erzurumlu 1998), and the role of T-type channels in
thalamocortical rhythmic activities implicated in trigeminal pain (Soonwook Choi et al.
2016). To discover the role that these variants have in the development of TN, we would need
to express these channels in trigeminal neurons, possibly through CRISPR/Cas9 on WT
neurons (Hsu, Lander, and Zhang 2014). We would also need to find out why these GoF
Ca,3.2 variants did not cause idiopathic generalised epilepsy or primary aldosteronism, which
have been previously seen with GoF variants (Daniil et al. 2016; J. Liang et al. 2007; Jianmin
Liang et al. 2006; Khosravani et al. 2004). This would need to be carried out by expressing
these variants in different subsets of neurons, such as thalamic neurons to see if they’re effect

is somewhat neuron specific.
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In conclusion, our functional analysis of 13 Ca,3.2 variants in TN patients revealed a GoF in
7 variants, potentially contributing to trigeminal pathway sensitization. While these effects
are similar to those reported for TN-associated variants in other channels, it's important to
note that one variant showed a loss-of-function (LoF), indicating that GoF phenotypes may
not be universal in TN. Interestingly, all idiopathic TN patients with continuous pain
harboured GoF Ca,3.2 variants, while those with congenital TN did not show channel
alterations. Further studies are needed to fully understand Ca,3.2's role in trigeminal sensory

processing.
Part 3: Drugs targeting T-type channels

Previous research has highlighted the analgesic potential of mixed VGCC blockers. For
instance, TROX-1, which inhibits Ca,2.1, Ca,2.2, and Ca,2.3 channels, has shown efficacy in
reversing inflammation-induced hyperalgesia and nerve-injury-induced allodynia (Abbadie et
al. 2010; R. Patel et al. 2015). Similarly, A-1264087, a blocker of Ca,2.1, Ca,2.2, and Ca,3
channels, has been effective in reducing mechanical hyperalgesia induced by spinal nerve
ligation (SNL) in animal models (Xu et al. 2014). Additionally, physalin F, a natural product,
acts as a dual blocker of Cay2.2 and Cay2.3 channels and has provided relief from mechanical

hyperalgesia in rodent models of neuropathic pain (Shan et al. 2019).

In the seventh study, we therefore introduce S13, a novel quinolone-based compound, as a
promising addition to the arsenal of broad spectrum VGCC blockers. S13 effectively inhibits
voltage-activated calcium currents in nociceptive DRGs, while not affecting sodium and
potassium currents. This specificity is ideal, as it suggests a targeted action on calcium

channels involved in pain signalling (Bourinet et al. 2014).

S13 has shown significant analgesic potential in a preclinical rat model of SNL-induced
neuropathic pain. It successfully alleviated mechanical allodynia in both male and female
subjects, indicating its effectiveness across genders. These results are encouraging and
highlight the therapeutic potential of broad-spectrum calcium channel blockers in the
treatment of neuropathic pain (Rivas-Ramirez et al. 2017; Radwani et al. 2016; Dobremez et

al. 2005; de Amorim Ferreira and Ferreira 2023).

The findings from this study also suggest that the quinolone backbone structure of S13 could

be a valuable foundation for developing new analgesic compounds. The efficacy of S13 in
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preclinical models warrants further investigation into quinolone derivatives, potentially
leading to the development of novel analgesics for clinical use. This approach could open
new avenues for the treatment of neuropathic pain, a condition that is often challenging to
manage with current therapies (Gordon and Dahl 2004; Johnson, Collett, and Castro-Lopes
2013).
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6 Conclusions

This thesis was focused on three aspects of T-type channels. It includes basic research on the
modulation of T-type channel expression with two studies. This is followed by four papers on
channelopathies of T-type channels. Finally, focusing on the development of novel
compounds for targeting disorders associated with T-type channel dysfunction. What we

found was the following:

e We discovered two key non-canonical glycosylation sites required for correct
expression of Cay3.2 to the surface. We also found that two other potential
non-canonical glycosylation sites were unnecessary.

e SCAMP2 is a key regulatory protein in the trafficking of T-type channels to
the surface, and overexpression of SCAMP?2 in a recombinant system displays
a varied reduction of channel expression to the surface, dependent on channel
subtype.

e Diabetes impacts the glycosylation of Ca,3.2, but we could not find definitive
evidence of how this takes place. This was due to the unexpected differences
between recombinant expression of glycan-enzymes and phenotypic data in
diabetic mice. Further studies in more native conditions would need to be
carried out to elucidate the impact of diabetes on glycosylation.

e We identified a LoF in CACNAIH variants associated with ALS. This
increases the evidence for characterising CACNAH as a susceptible gene in
the development of ALS.

e We discovered a GoF in SCN8A, consistent with previous studies. We also
identified a LoF in CACNA 1 H associated with DEE. A gene that has not been
previously linked to DEE. It is unknown what the significance of this variant
is to the development of DEE, especially considering LoF in CACNAIH is
usually associated with developmental disorders such as autism.

e We discovered seven CACNAIH variants associated with TN had a GoF. This
is indicative of an increase in excitability, which coincides with an increase in
pain as previously documented. Interestingly, there was a correlation between

TN patients with idiopathic TN with concomitant continuous pain and GoF
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CACNAIH variants. Whereas there was no dysfunction of the channel in
patients with congenital TN and concomitant pain.

Finally, we identified and characterised a group of broad-spectrum VGCC
blockers and their use as pain therapeutics. Suggesting the importance of using
broad-spectrum VGCC blockers over selective VGCC blockers in treating

some disorders.
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7 Summary

T-type channels are integral in many physiological responses evident by their abundant
expression in the cardiovascular, neuroendocrine, and nervous system. Due to their unique
biophysical properties compared to other VGCC subtypes they are essential in hormone
release and shaping neuronal excitability. As such this thesis aims to further our

understanding of this unique set of VGCCs.

First, we aimed to understand the regulation of T-type channel expression through two
studies. The first study identified non-canonical sites for N-glycosylation on T-type channels,
affecting their trafficking and surface expression. This study suggests these glycosylation
sites play a crucial role in channel regulation, but the exact mechanisms remain unclear and
requires additional in native conditions. The second study introduced SCAMP?2 as a novel
modulator of T-type channels, essential for various cellular processes including membrane
trafficking and signal transduction. SCAMP2's dysfunction is linked to diseases like
neurodegenerative disorders and cancer further increasing the requirement of basic research

to understand the link with pathophysiology.

Secondly, we explored various T-type channelopathies associated with neurological
disorders. To do this we conducted four studies on T-type channels and their role in four
different disorders. The third study therefore investigated the role of glycosylation in T-type
channels in the context of diabetes, finding contradictory results regarding Cay3.2 expression
in a mouse model and a recombinant expression system. As such this would need to be
carried out in primary neurons such as DRGs, which are integral in processing peripheral
pain, to elucidate the role of these glycan-enzymes in increasing T-type current and
peripheral diabetic neuralgia. The fourth study analysed two CACNAIH variants in ALS
patients, revealing varying degrees of loss-of-function in Cay3.2 channel variants. This
increases the link between CACNAIH and ALS pathology and warrants further investigation
in motor neurons, which are known to be functionally affected in ALS patients. The fifth
study reported on a child with DEE, having a de novo mutation in SCN84 and an inherited
rare variant in CACNAIH, showing contrasting effects of gain-of-function and loss-of-
function, respectively. This adds to the known complexity in channel function and
interactions, and could add CACNA1H to the DEE disorder. The sixth study examined Ca,3.2

missense variants in patients with trigeminal neuralgia, finding mostly gain-of-function
68



effects that could contribute to trigeminal pathway sensitization. Interestingly, this study
found a noteworthy correlation in patients with idiopathic TN who also experienced
continuous pain. Specifically, these patients showed a presence of GoF variants in the
CACNAIH gene. However, in cases of congenital TN accompanied by pain, there was no
observed dysfunction in these channels. This distinction suggests different underlying
mechanisms in idiopathic vs. congenital TN, particularly regarding the role and behaviour of

T-type channels.

Finally, in the seventh study we aimed to develop novel VGCC blockers in the search for
finding more efficacious drugs to alleviate pain and potentially other conditions displaying a
GoF in these channels. This study also underscores the potential of broad-spectrum VGCC

blockers in treating neuropathic pain.
Overall, this thesis emphasizes the importance of understanding T-type channels' regulation,

the impact of channelopathies on neurological disorders, and the development of novel drugs

targeting these channels to combat associated diseases.
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Low-voltage-activated T-type calcium channels are important contributors to nervous system function. Post-transla-
tional modifcation of these channels has emerged as an important mechanism to control channel activity. Previous
studies have documented the importance of asparagine (M)-linked glycosylation and identified several asparagine
residues within the canonical consensus sequence N-X-5/T that is essential for the expression and function of Ca 3.2
channels. Here, we explored the functional role of non-canonical N-glycosylation motifs in the conformation N-X-C
based on site directed mutagenesis. Using a combination of electrophysiological recordings and surface biotinylation
assays, we show that asparagines N345 and N1780 located in the motifs NVC and NPC, respectively, are essential for
the expression of the human Ca,3.2 channel in the plasma membrane. Therefore, these newly identified asparagine
residues within non-canonical motifs add to those previously reported in canonical sites and suggest that N-glyco-
sylation of Ca,3.2 may also occur at non-cancnical motifs to control expression of the channel in the plasma mem-
brane. It is also the first study to report the functional importance of non-canonical N-glycosylation motifs in an ion
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Low-voltage-activated T-type calcium channels are
widely expressed throughout the nervous system where
they generate low-threshold calcium spikes that contrib-
ute to neuronal electrical excitability [1]. Owver recent
years, post-translational modification of the channel
protein including phosphorylation [2-4], ubiguitination
[5], and glycosylation [6] has emerged as an important
level of control over the expression and function of the
channel in the plasma membrane, and alteration of these
regulations is known to contribute to the development of
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several neurological disorders. Therefore, the identifica-
tion of channel loci undergoing post-translational modi-
fication is essential not only to enhance our fundamental
understanding of the channel, but also to gain insights
into how alteration of these regulations may compromise
channel function in pathological conditions.

We and others have previously documented the impor-
tance of asparagine (N)-linked glycosylation in the
expression of the Ca 3.2 T-type channels and identified
several asparagines essential for the expression of the
channel in the plasma membrane |7, 8]. These asparagine
residues are located within the sequence N-X-8/T com-
monly referred to as the canonical N-glycosylation motif
where the asparagine is located at the N-terminal to any
amino acid (except proline) followed by either a serine (S)
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or threonine ( T). However, while N-glycosylation at N-X-
ST motifs is an established dogma, there is evidence
for the occurrence of N-glycosylation at non-canonical
maotifs falling into the conformation N-X-C (cysteine)
[9]. In the present study, we aimed to further explore the
glycosylation loci of Ca,3.2 channels and assess whether
asparagines located within such non-canonical motifs
contribute to the expression of the channel. The human
Ca,32 channel contains four potential non-canonical
motifs defined by asparagines N258, N335 and N345
located within the first pore-forming loop (P-loop), and
asparagine N1780 within the forth P-loop of the channel
(Fig. 1a) and in-silico analysis using NetNGlye 1.0 server
(https:/ www.cbs.didk/services/NetNGlye/)  predicted
that these sites could be potentially glycosylated (Fig. 1h).
To assess the functional importance of these residues in
the expression of Ca 2.2 channels, we used site directed
mutagenesis to disrupt these motifs. We replaced aspara-
gine residues with ghitamine (Q) and such recombinant
mutated channels were expressed in tsA-201 cells for
functional characterization by patch clamp electrophysi-
ology. Representative current traces for cells expressing
the wild-type (WT) channel and the various mutated
variants (N2580), N335(), N3450), and M1780Q) are
shown in Fig. 1c. While all channel variants produced a
characteristic low-threshold voltage-activated T-type
current, currents recorded from cells expressing the
N3M5Q and N17800) variants were strongly reduced
compared to cells expressing the WT channel (Fig. 1d).
The maximal whole cell slope conductance was reduced
by 50% (p—0.0050) in N2450Q) (480468 pS/pE, n=17)
and by 56% (p=0.0021) in N17800)-expressing cells
(423490 pS/pE, n=11) compared to cells expressing the
WT channel (9704 110 pS/pE n=27). This decrease of
the maximal conductance was associated with a mild but
significant shift of the voltage-dependence of activation
without any additional alteration of the voltage-depend-
ence of inactivation and recovery from inactivation
(Additional file 1: Figure 51). Furthermore, mutations at
asparagines N345 and N1780 did not alter the ability of
nickel to block T-type currents (Additional file 1: Figure
52). MNext, we aimed to determine whether the impaired
T-type conductance in cells expressing the N345C) and
W1780() channels was caused by an alteration of the
channel activity or due to reduced expression of the
channels in the plasma membrane. To do so, we used cell
surface biotinylation followed by immunodetection of
the channels. Representative immunoblots of total and
surface biotinylated channels are shown in Fig 1f and g,
respectively. No immunoreactivity was detected in non-
biotinylated cells expressing WT Ca, 3.2 channels demon-
strating the absence of contamination from other cellular
fractions and also the absence of non-specific interaction
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of the channel with NeutrAvidin beads. While the total
channel expression was statistically similar across all
channel variants (Fig. 1f), the expression of the N345Q
and N1780Q channels in the plasma membrane was
reduced by 50% (p=0.0021) and 56% (p=0.0301) respec-
tively, a decrease that is closely correlated with the redue-
tion of the whole cell conductance.

Glycosylation of T-type channels has emerged as an
important post-translational modification to control
the expression and functioning of the channel in the
plasma membrane, and it was suggested that altera-
tion of the glycoproteome of Ca 3.2 may contribute
to the development of peripheral pain associated with
diabetes [8, 10]. While several studies have previously
reported the importance of canonical plycosylation
sites in the expression and function of Ca 3.2 chan-
nels [7, 8, 11, 12], the potential role for non-canonical
motifs has never been explored. Here, we identified two
asparagine residues, N345 and N1780 located within
non-consensus glycosylation motifs in the conforma-
tion MN-X-C that contribute to the expression of the
channel in the plasma membrane. Although the exact
underlying mechanisms by which these two asparagines
influence the expression of the channel at the cell sur-
face was not explored in this study, it is likely that they
either enhance the trafficking of the channel to the cell
surface, or stabilize the channel protein in the plasma
membrane by slowing down its internalization as it was
previously reported for other plycosylation loei [11].
Because of the large molecular weight of the full-length
channel and the existence of several canonical glyco-
sylation sites, it is challenging to demonstrate by West-
ern blot analysis that mutagenesis of the non-canonical
sites leads to small molecular weight shifts that are con-
sistent with fewer sugar groups. We can therefore not
exclude the possibility that alteration of Ca 3.2 expres-
sion upon mutagenesis of asparagines N345 and N1780
may have resulted from an alteration of the channel
itself rather than from disruption of its glycosylation.
However, this mutagenesis approach is commaonly used
to functionally assess the functional importance of gly-
cosylation motifs, and glutamine 2s 2 replacement of
asparagine was chosen because of its similarity, which
is therefore expected to preserve the local charge distri-
bution and secondary structure of the channel. More-
over, we cannot totally exclude that mutagenesis of
asparagines N345 and N1780 may have interfered with
the ubiquitination of the channel, although this process
occurs at a different locus (111-1V linker) and therefore
is not expected to be directly impacted by the muta-
tions [5]. Our observation that the total expression of
mutzted channels remained unaltered would also argue
against an effect on the ubiguitination pathway.
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Altogether, this study supports the notion that C2,3.2  channel at the cell surface. To our knowledge, this study
channels may underge N-glycosylation at non-canon- s the first to document the functional role of non-
iral motifs and identified two sites defined by aspara-  canonical N-glycosylation motifs within an ion channel.

gines N345 and N1780 important for expression of the
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Secretory carrier-associated membrane

Molecular Brain

protein 2 (SCAMP2) regulates cell surface
expression of T-type calcium channels

Leos Cmarko™®, Robin M. Stringer™>®, Bohumila Jurkovicova-Tarabova®®, Tomas Vacik'®,

Abstract

Low-voltage-activated T-type Ca*t channels are key regulators of neuronal exditability bath in the central and periph-
eral nervous systems. Therefare, their recruitment at the plasma membrane is critical in determining firing activity
patterns of nerve calls. In this study, we r=port the importance of secretory carrier-associated membrane proteins
(SCAMPSs) in the trafficking regulation of T-type channels. We identified SCAMP2 as a novel Ca,3.2-interacting protein.
In addition, we show that co-expression of SCAMP2 in mammialian cells expressing recombinant Ca, 3.2 channels
caused an almost complete drop of the whole cell T-type curmrent, an effect partly reversed by single amino acid muta-
tions within the conserved cytoplasmic E peptide of SCAMPZ. SCAMP2-induced downregulation of T-type currents
was alsc observed in cells expressing Ca 3.1 and Ca 3.3 channel iscforms. Finally, we show that SCAMP2-mediated
knockdown of the T-type conductance is caused by the lack of Ca, 3.2 expression at the cell surface as evidenced

by the concomitant loss of intramembrane charge movement without decrease of total Ca, 3.2 protein level. Taken
together, our results indicate that SCAMPZ plays an important role in the trafficking of Ca, 3.2 channels at the plasma

memorans.

Keywords: lon channels, Caldum channels, T-type channels, Ca, 32 channels, Secretory carrier-associated membrane

protein 2, SCAMPZ, Trafficking

Through their ability to pass caleium ions (Ca™) near
the resting membrane potential, low-voltage-activated
T-type channels have an important physiological role in
shaping firing activity patterns of nerve cells, both in the
central and peripheral nervous system. The implication
of T-type channels in the control of neuronal excitabil-
ity is partly defined by the density of channels embed-
ded in the plasma membrane. Therefore, a3 number of
molecular mechanisms and signaling pathways come into
play to underly precise control of cell surface expression
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of T-type channels [1] and defects whether genetic or
acquired can lead to severe neuronal conditions [2, 3].
Secretory carrier-associsted membrane  proteins
(SCAMPs) form a family of integral membrane pro-
teins essentially expressed in the trans-Golgi network
and recycling endosome membranes where they regu-
late vesicular trafficking and vesicle recycling processes
[4]. OF the five known mammalian SCAMPs, SCAMP2
shows a ubiquitous expression pattern including in neu-
ronal tissues where SCAMP?2 transcripts are observed for
instance in the cerebellum, thalamus, hippocampus, and
spinal cord (https:/fwww.proteinatias.org/ ENSGOO0001
404597 -SCAMPL/ tissue). SCAMP2 consists of four trans-
membrane helices with cytoplasmic aming- and car-
boxy-termini and a so-called E peptide located between

i The Autheorfs) 2021, Aocess This arfde i lioermed urder 3 Creaties Commans Attsbution 40 Irbsrabioral Licenss, which
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other thisd party maberial in this artide ane induded in the artice’s Creative Commons kenoe, unkes indicated othersise ina oodit ine
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reguibation ar exosers the penmitted use, you will reed/to abtain permission directiy fiom the oopyright holder To view 2 copy of this
bcenee, visi: hitpolfreativecommonsonyficeraesop A0V, The Creative Commons Pubic Domain Dedication waiver (hitzoomatvecs
mmons ogpubiroiomainden'T I applies to the tita made avaizible in this articks, uniess otheraise stated ina ordit fine o the data.
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transmembrane helices 2 and 3 essential for mediating
SCAMP? function [5]. This E domain is highly conserved
among SCAMP isoforms and represents an essential
molecular determinant for SCAMP2-mediated inhibition
of exocytosis [6]. Only a few reports have documented
the role of SCAMP2 in the regulation of ion channels and
transporters [7-10]. In the present study, we aimed to
assess the functional role of SCAMP2 in the regulation of
T-type channels.

To address this issue, we assessed whether Ca 3.2
channels and SCAMP2 associate at the protein level.
Co-immuniprecipitation from tsA-201 eells express-
ing recombinant HA-tagged Ca 3.2 and Myc-tagged
SCAMP? uwsing an anti-HA-antibody precipitated
SCAMP2-Myc with Ca 3.2-HA revealing the existence
of a Ca,3.2/SCAMP2 protein complex (Fig. 1a). We note
that co-immunoprecipitation experiments from total cell
lysates do not address whether this interaction is direct
or not and it is a possibility that formation of Ca 3.2/
SCAMP2 protein complex may also involve another
intermediate protein. Next, we aimed to analyze the
functional effect of SCAMP2 on Ca, 3.2 channels. Patch-
clamp recordings from tsA-201 cells expressing Ca 3.2
showed that co-expression of SCAMP2 produces an
almost complete drop of the whole-cell T-type current
{Fig. 1b and ¢). For instance, the maximal macroscopic
conductance (G} was reduced by 91% (p<0.0001)
in cells co-expressing SCAMPZ (61+18 pS/pE n=18)
compared to cells expressing Ca,3.2 alone (692 -£62 pS/
pE n=25) (Fig. 1d). Alanine mutagenesis of the E pep-
tide of SCAMPZ at cysteine 201 (C201A) and tryptophan
202 (W202A) reduced this effect to 64% (p=0.0269) and
39% (p<0.0001) inhibition, respectively, indicating that
SCAMP2-induced knockdown of Ca 3.2 currents is at
least partly mediated by the E peptide (Fig. 1b—d). These
data also indicate that the reduction in Ca 3.2 current
density in the presence of SCAMP2 is not merely due
to the co-expression of just any protein given that the
W202A mutant construct has no big effect. With regard

Page 2of 5

to the effect of SCAMP2 on the other T-type channel
isoforms, co-expression of SCAMP2 in cells expressing
recombinant Ca 3.1 and Ca 3.3 reduced G, by 35%
(p<0.0001) and 98% (p<0.0001) respectively (Fig. le and
fand Additional file 1: Fig. 51) indicative of a differential
susceptibility to SCAMP2-dependent modulation (Ca,3.3
2 (00, 3.2 > Ca, 3. 1), Next, we aimed to assess the underly-
ing mechanism by which SCAMP2 induced knockdown
of the T-type conductance. The alteration of the T-type
conductance in the presence of SCAMP2 could origi-
nate from an overall decreased level of Ca, 3.2 proteins or
from a reduced expression of the channel in the plasma
membrane. Western blot analysis from total cell lysates
showed that Ca 3.2 protein levels were not decreased
by the presence of SCAMP2. Instead, we observed a
non-significant trend toward higher expression lev-
els which may have arisen from a lower rate of vesicu-
lar exocytosis therefore preventing the channel from
being targeted to the proteasomal degradation machin-
ery (Fig. 1g and h). In contrast, recording of intramem-
brane charge movements () that provide an accurate
assessment of the number of channels embedded in the
plasma membrane revealed an 85% decrease (p<0.0001)
of Q. in cells expressing SCAMP2 (from 6.1£0.7 fC/
pE, n=16 to 0.8+0.2 fC/pF, n=17) (Fig. 1i and j) indi-
cating a decreased channel expression at the cell surface.
Moreover, while the kinetics of intramembrane charge
movements remained unaltered (Fig. 1k), the G,/ Qe
dependency in the presence of SCAMP2 was reduced
by 52% (p<0.0001) (from 0.169£0.007 pS/fC, n=16
to L0280 L£0.014 pS/AC, n=11) supgesting an additional
alteration of the coupling between the activation of the
voltage-sensor and the pore opening of the channel
{Fig. 11). This observation is consistent with a previous
report showing that besides to be concentrated primar-
ily in intracellular membranes, SCAMP2 is also found in
the plasma membrane [11] and therefore could poten-
tially modulate the gating of the channel in addition to its
insertion in the membrane. We note that the reduction

{See figure on next page)

Fig. 1 SCAMPZ requiatas T-type channel exprassion. a Codmmunoprecipitation of Myc-tagged SCAMP2 SCAMP2-Myc) from tsA-201 calls
co-transfectad with HA-tagged Ca,3.7 channel {Ca 32-HAL The upper paned shows the sesult of the co-mmunoprecipitation of SCAMPZ-Myc

witth Ca,32-HA using an antl-HA antibody. The kower panels show the iImmunoblot of Cav3 2-HA and SCAMP2-Myc from total cell lvsates using an
aniti-HA and ant-Wyc antibody, respecthedy. FC heavy chain antibody; LC, Bght chain antibody. This experiment was performied fou times from
independant transfections and (3,3 25CAMPZ interaction was consistently observed. b Representative T-type cument traces from tsA-201 cells
axpressing Ca,32 alone iblack taoes) and In combination with wild-type SCAMP2 (biue traces), as well as with C200A (pumple traces) and W202A
{orange traces) SCAMP2 mutants In response to 150 ms depolanzing steps varied from — 90mV to+ 30 mV from a holding potential of — 100 mi.
« Comesponding mean cument‘voltage (#V) relationships. d Corresponding mean madmal maooscopic conductance values (Gag,) obtzined

from the fit of the WV curves with the modified Bolamann Eq. (1) e—f Mean Gy, values for tsA-201 cells expeessing (a,3.0 and Ca,33 channels,
respecthely. g. Immunoblot of Ca,3.2-HA expressed in tsA-201 cells in the absence (—) and presence: (+ of SCAMP2-Myc The Immamobiot shows
the nasults of three iIndependent sats of transfections. h Corresponding mean expeession bevels of Ca,3.2-HA nommallzed to actin, | Representative
inframembrane charge moverment traces recorded at the lonic reversal potential from cells expressing Ca,3 2 alone (black trace) and in the
presence of SCAMP2 (bl trace). The doted bnes depict the time coursa of the Intremembrzne charge mouvement integral. | Corespanding mesn
madmal Intramemibrana charge movement values (G 2,). k Comesponding meaan 10-50% rise time values caloulated from the Integral time course
shown in 1L | Cormesponding mean G g, values
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of Q_,, combined with the reduction of G__ /Q__, of the
small fraction of channels that still reached the plasma
membrane in the presence of SCAMP2 is very similar
to the reduction of the maximal T-type conductance we
previously observed (91%, Fig. 1d).

Several Ca 3.2 interacting proteins including KLHL1
[12], USPS [13], Stacl [14], calnexin [15], and Rack-1 [16]
have been reported to modulate the sorting and traffick-
ing of the channel to the plasma membrane. In this study,
we reported SCAMP?2 as a novel Ca 3 2-interacting part-
ner and potent repressor of the expression of the chan-
nel at the cell surface. Further investigations will be
necessary to fully explore the importance of this regula-
tion in native conditions. Importantly, altered expres-
sion of SCAMP2 has been reported in several types of
cancer [17]. Given the importance of Ca 3.2 channels in
the development of peripheral painful neuropathies [18],
it will be interesting to assess to what extent SCAMP2-
mediated regulation of Ca,3.2 could possibly contribute
to cancer-related neuropathic pain.

Abbreviations

(5, MMl mamoscopic conductance; KLHL1: Kebdh-le 1; Q- Maximal
Intra membrane charge movement; Rack-1: Receptor for activated C kinase 1;
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cells expressing 2,33 channel
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Transcriptomic analysis of glycan-processing genes in the dorsal root ganglia of
diabetic mice and functional characterization on Ca, 3.2 channels
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ABSTRACT ARTILE HETORY

Ca, 3.2 T4ype calium channels play an essential role in the transmision of peripheral nociception in the Recetved 26 February 2020
dorsal root ganglia (DRG) and alteration of Ca 3.2 expression is associated with the development of Revised 27 Febauary 2020
peripheral painful diabetic neuropathy (PDM). Several studies have previously documented the role of ~ Adcepted 2 March 2020
ghycosylation in the expression and fundtioning of Ca 3.2 and suggested that altered g lycosylation of the KEYWORDS

channel may contribute to the aberrant expression of the channel in diabetic conditions. In this study, Glycasylation: transcriptome:
we aimed to analyze the expression of gly@an-processing genes in DRG neurons from a leptin-deficient DG neumng disbetes
genetic mouse model of diabetes (db/db). Transcriptomic analysis revealed that seweral glycan- alcium channel; Ca32
processing genes encoding for glycosyltransferases and sialic acid-modifying enzymes were upragu- channel; T-type channel
lated in diabetic conditions. Functional analyds of these eneymes on recombinant Ca 2.2 revealed an

unexpected los-of-function of the channel. Gollectively, our data indiate that diabetes is assodated

with an alteration of the glycosylation machinery in DRG neurons. Howeva, individual action of these

enzymes when tested on recombinant Ca.3.2 cannot explain the obseved upregulation of T-type

channels under diabetic conditions.

Abbreviations: Galnt16: Polypeptide N-acetylgalactosaminyltransferase 16; Bigntf: UDP-GlcNAC

betaGal beta-1,3-N-acetyiglucosaminyhtransferase 8 Bdgaltl: Beta-1,4-galactosyltransferase 1;

StGgall: Beta-galactoside alpha-2 G-sialyltransferase 1; Neu: Sialidase-3

Introduction maolecule oligosaccharide (glycan) to specific residues

. . . . within the target protein. It is an essential chemical
It is well established that increased expression of the process that conributes to the proper maturation,

low-valtage-activated Ca,3.2 T-type calcium channel sorting, and functioning of proteins including ion
within nedrons 1I:|frh=_- dorsinl m.:'t ganglia contribuFe channels [6,7], and several studies have documented
to the sensitization of nq?aceptnlre sensory ﬁ!:ers ™ the importance of glycosylation for the expression of
response fo hyperglycemia asmciated with diabetes, Ca, 32 channels [8,9]. However, the underlying cellu
leading to painful symptoms of peripheral diabetic lar mechanisms by which Ca32 chamnel may
neurcpathy [1-3]. This notion is further exemplified
by the observation that pharmacological blockade of
T-type channels alleviates diabetes-induced hyperal
gesia in a leptin-deficient genetic mouse model of
diabetes (obfob) [4]. Furthermore, it has been
reported that removal of terminal sialic acid moieties
from complex glycan structures can nomalize T-type
currents in DRG neurons isolated from obfob mice,
and reverse neuropathic pain in vivo 5], suggesting
that glycosylation of Ca,3.2 could possibly represent Materials and methods
an undedying mechanisms contributing to  the
enhanced expression of the channel during diabetes.
Protein glycosylation is a posttranslational modifi 8 weeks old male db/db mice and their control hiber
cation that refers to the co-valent addition of a sugar  nates were purchased from Janvier Labs and were

undergo aberrant glycosylation during diabetes have
remained unknown.

In this study, we aimed to specifically analyzed
the transcriptomic profile of glycan-modifying
enzymes in DRG neurons from diabetic db/db
mice and assess the effect of these enzymes on
the expression of recombinant Ca,3.2 channels.

Animals

CONTACT Norbert Weiss @ weissBuodhboas o
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kept under standard conditions for 3 weeks to allow
sufficient adaptation. The mean glycemia values mea-
sured using a glucocard X-meter ARKAY from blood
samples drawn from the tail were 8.2 + 0.6 mmaol/T.
for wild-type animals (n = 6) and 29.9 + 0.7 mmol/L
for db/db animals (n= 7).

Transcriptomic analysis

Transcriptomic analysis of glycan-modifying enzymes
was performed on total RNA harvested from the
dorsal root ganglia (lumbar [4/L6) of wild-type and
db/db mice using the Glycosylation RT2 Profiler PCR
Armay (Qiagen) according to the manufacturer’s
instructions. The PCR array and gRT-PCR were per-
formed ona LightCycler® 480 (Roche) with the follow-
ing PCR conditions: 95°C for 5 min, 40 cycles at 95°C
for 15 sec, 60°C for 15 sec, and 72°C for 20 sec. Each
test was run three times and the mean values were
taken to eradicate any discrepancies. 84 key genes
encoding glycan-processing enzymes were analyzed
and included glycosyltransferase and glycosidase for
several important sugars (galactose, glucose, mannose,
N-acetylgalactosamine, N-acetylglucosamine, fucose
and sialic acid).

Plasmid cDNA constructs

The ¢cDNA construct encoding for the human Ca,
32 wildtype in pcDNA3] was previously
described [10]. The plamid ¢DNAs encoding for
the human glycan-modifying enzymes Galntle,
B3gnt#, Bdgaltl, Stégall, and Neu3 in pCMV3
were purchased from Sino Biological

Cell culture and heterologous expression

Human embryonic kidney tsA-201 cells were
grown in high glucose DMEM medium supple-
mented with 10% fetal bovine serum and 1% peni-
cillin/streptomycin  (all media were purchased
from Invitrogen) and maintained under standard
conditions. Cells were transfected using the cal-
cum/phosphate method using 2.5 = g of Ca,32
plasmid and 2.5 + g of plasmid encoding for the
glycan-modifying enzymes. For transfections using
the channel alone, 2.5 £ g of empty pcDNA3
vector was added to the mixture to maintained
the total amount of cDNA.
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Electrophysiology

Patch clamp recording of T-type currents in tsA-
201 cells expressing Ca,3.2 channels was per-
formed 72 h after transfection in the whole-cell
configuration at room temperature (2224°C) as
previously described [11]. The external solution
contained (in millimolary 5 BaCl,, 5 EKCI 1
MgCl,, 128 Nadl, 10 TEA-CL, 10 D-glucose, 10
4-(2-hydroxyethyl)-1 -piperazineethanesulfonic
acid (HEPES) (pH 7.2 with NaOH). Patch pipettes
were filled with an internal solution containing (in
millimolar): 110 CsCl, 3 Mg-ATP, 0.5 Na-GTP, 2.5
MgCl,, 5 D-glucose, 10 EGTA, and 10 HEPES (pH
7.4 with CsOH), and had a resistance of 2-4 M()
Recordings were performed using an Axopatch
200B amplifier (Axon Instruments) and acquisi-
tion and analysis were performed using pClamp
10 and Clampfit 10 software, respectively (Axon
Instruments). The linear leak component of the
current was corrected online and current traces
were digitized at 10 kHz and filtered at 2 kHz
The wvoltage dependence of activation of Ca,3.2
channels was determined by measuring the peak
T-type current amplitude in response to 150 ms
depolarizing steps to various potentials applied
every 10 s from a holding membrane potential of
—100 mV. The current-voltage relationship (I/V)
curve was fitted with the following modified
Boltzmann Equation (1):

V — Vrev
f{'l.":l = G'”axl{ilm—:ll’] E]}l
tep—r—

with (V) being the peak current amplitude at the
command potential V, G, the maximum con-
ductance, V,_, the reversal potential, V, ; the half-
activation potential, and k the slope factor. The
voltage dependence of the whole-cell Ba® conduc-
tance was fitted with the following modified
Boltzmann Equation (2):

(rmiaxe
1+ exp (va5—Vv)

with G(V) being the Ba** conductance at the com-
mand potential V.

The voltage dependence of the steady-state inac-
tivation of Ca,32 channels was ascertained by
measuring the peak T-type current amplitude in
response to a 150 ms depolarizing step to —20 mV

G(V) = )
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applied after a 5 s-long conditioning prepulse ran-
ging from -120 mV to -30 mV. The current
amplitude obtained during each test pulse was
normalized to the maximal current amplitude
and plotted as a function of the prepulse potential.
The voltage dependence of the steady-state inacti-
vation was fitted with the following two-state
Boltzmann function (3):

Imax
V)= ——g (3)

1 +exp—7p—m-
with I., as the maximal peak current amplitude
and Vis as half-inactivation voltage.

The recovery from inactivation was determined
using a double-pulse protocol from a holding
potential of —100 mV. The cell membrane was
depolarized for 2 s at 0 mV (inactivating prepulse)
to ensure complete inactivation of the channel,
and then to —20 mV for 150 ms (test pulse) after
an increasing time period (interpulse) ranging
between 0.1 ms and 2 s at —100 mV. The peak
current from the test pulse was plotted as a ratio of
the maximum prepulse cument versus interpulse
interval. The data were fitted with the following
single-exponential function (4):

! =A = (l—fxpi) (4)
T

Imax

where 1T denotes the time constant of channel
recovery from inactivation.

Statistical analysis

Data values are presented as mean = 5. EM. for
n measurements. Statistical analysis was performed
using GraphPad Prism 7. Statistical significance
was determined using a one-way ANOVA test
and datasets were considered significantly different
for p = 005

Results

Expression of glycan-processing enzymes in the
dorsal root ganglia of diabetic mice

In order to assess the expression of glycan-
processing enzymes in diabetic conditions, we per-
formed a differential transcriptomic analysis on the
dorsal root ganglia isolated from a transgenic mouse

maodel of diabetes (db/db) versus wild-type animals
(Figure 1). 19 out of 84 enzymes analyzed were
found significanty upregulated (p < 0.05) in diabetic
conditions (Figure 2am). The majority of these
enzymes (53%) belonged to the family of glycosyl-
transferases (Galntl, Galnt4, Galntl2, Galntlé,
Bigntd, Gentl, Mgatd ¢, Ugg2, B3glet, and
B4galt1) that catalyze the transfer of saccharide moi-
eties from an activated nucleotide sugar to
a nuceophilic glycosyl acceptor molecule. In addi-
tion, 16% belonged to the family of mannosidases
(Manla, ManZ2al, and Man2bl) that hydrolyze man-
nose moieties; 16% to the family of fucosidases/fuco-
syltransferases (Fucal, Fut8, and Pofut2); 5% to the
family of galactosides/glucosidases/hexosaminidases
(Ganab); and 10% to the family of sialidases/sialyl-
transferases (St6gall, and Neu3) involved in the pro-
cessing of sialic acid moieties from complex glycan
structures (Figure 2m). In contrast, we did not
observe any enzymes that were significantly down-
regulated.

Functional effect of glycan-processing enzymes
on the expression of recombinant Ca 3.2
channels

Wext, we aimed to assess the functional impact of
up-regulated  glycan-modifying  enzymes on
recombinant Ca,3.2 channels expressed in tsA-
201 cells. Six enzymes responsible for the proces-
sing of the glycan structure at different stages were
assessed:  Galntleé  (N-acetylgalactosaminyltran
sferase) responsible for catalyzing the initial addi-
tion of N-acetylgalactosamine to a serine or threo-
nine residue on early protein precursors [12];
Bignt8 (N-acetylglucosaminyltransferase) respon-
sible for the elongation of the polylactosamine
chains on tetraantennary N-glycans [13]; B4galtl
(Galactosyltransferase) which catalyzes the addi-
tion of galactose moieties to N-acetylglucosamine
of complex N-glycans in the Golgi apparatus [14];
Stegall (Sialyltransferase) responsible for catalyz-
ing the final transfer of sialic acid moieties from
CMP-sialic acid to galactose acceptor substrates
[15]; and Weu3 (sialidase) expressed in the plasma
membrane and responsible for removing sialic
acid moieties from glycoproteins and glycolipids,
acting in the opposite way of Stégall [16].
Representative T-type current traces recorded
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Figure 1. Schematic representation of the transcriptomic analysis process. (a) Total RMA harvested from the dorsal root ganglia
(lumbar L4/15} of wild-type and dbdb mice and subjected to the Glycasylation RT® Prafiler PCR Amay to analyze the expression level

of B4 genes encoding for glyan-processing enzymes,

from cells co-expressing Ca,3.2 with glycosyltrans-
ferases (Galntlé, Bignts, or Bdgaltl) and sialic
acid-modifying enzymes (Stogall or Neu3) are
shown in Figure 3a in response to 150 ms depo-
larizing steps ranging between -%0 mV and
30 mV from a holding potential of -100 mV.
Unexpectedly, co-expression of glycosylirans-
ferases with Ca,3.2 nearly abolished T-type cur-
rents. For instance, the maximal T-type
conductance (Grma..) in cells expressing Ca,3.2
with Galntl6, B3gnt8, and Bdgaltl was reduced
by 98% (p = 0.0001) (20 + 20 pS/pF, n = 14),
92% (p = 0.0003) (67 = 28 pS/pF, n = 5), and
0% (p = 0.0002) (165 = 21 pS/pF, n = 7), respec-
tively, compared to cells expressing Ca,3.2 alone
(821 £ 68 pS/pF. n = 37) (Figure 3b.c). We also
observed a significant decrease of G, in cells co-
expressing the sialyltransferase Stogall by 52%
(p = 0.0028) (395 £ 74 pS/pF, n = 13) (Figure
3ac and Table 1). In contrast, we did not observe
a significant alteration (p = 0.7542) of G in cells
co-expressing the sialidase Neu3 (921 + 104 p5/pF,
n = 24) (Figure 3ac and Table 1). Altogether, these
data indicate that some of the glycan-processing
enzymes tested here can have a potent influence

on the expression of Ca, 3.2 that is consistent with
a loss-of-channel function.

Electrophysiological properties of Ca,3.2
channels in the presence of sialic acid-processing
enzymes

Previous studies have shown that the terminal
sialic acid moiety attached to complex glycan
structures can affect the gating of voltage-gated
ion channels [17]. Therefore, we further assessed
the voltage-dependence of activation and inacti-
vation of Ca,3.2 channels in the presence of the
sialyltransferase 5tégall and sialidase Neu3. The
mean half-activation potential in cells expressing
Stogall was shifted by 4.9 mV (p = 0.0001)
toward depolarized potentials (-38.7 = 0.7 mV,
n = 13) compared to cells expressing the channel
alone (-43.6 £ 0.6 mV, n = 37) (Figure 4a,b and
Table 1). In contrast, co-expression of Neu3 had
no significant effect of the voltage-dependence of
activation of Ca,3.2. Furthermore, neither Stégall
nor Neu3 altered the voltage-dependence of inac-
tivation (Figure 4c,d and Table 1) or the recovery
from inactivation of Ca,3.2 channels (Figure 4e,f
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Figure 2. Summary of the transcriptomic profiling of glycan-modifying genes in the darsal root ganglia of db/db mice. Data are presented
as fold change compared to wild-type animak for fa) Neacetylgalactosaminyltramsferases, (b) MNacetdglucosaminyltransfaases, (<)
Glucosyltransfarases,  (d) Gaacoslramsferses, (e} Mannogyltransfersses, () Sialdtransferases, fg)  Galactosides/Glucoddases/
Hexosaminidases, (h) Mannosidases, (i} Sididases, (j) FucosdasesFucosyltransferases, (k) Mannose-6-Phosphate gynthess/catabalism,
and (I} other ghycosvlation genes. Erzymes indicated in bold were functionally characterized on Ca, 3.2 channels. fm) Summary of up-
requlated genes.

and Table 1). Altogether, these data indicate that  Discussion

increased sialylation activity tends to negatively

modulate recombinant Ca,3.2 channels when Increased expression of Ca,3.2 in primary afferent
expressed in tsA-201 cells. nociceptive fibers is causally linked to the
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Figure 3. Influence of glycan-modifying enzymes on the functional expression of Ca.3.2 channek. (a} Representative T-type cumrent
traces recorded from cells expressing Ca, 3.2 alone (black traces) and in combination with Galrt16 (green traces), B3gmB (purple
traces), Bagalt] (orange traces), Stegall (red traces), Neud (blue traces) glycan-modifying erzymes in response to 150 ms

depolarizing steps ranging between

90 m¥ and 30 mV from a holding potential of

100 mV. (b) Comesponding mean peak

current density-voltage (V) relatiorship. (¢} Corresponding mean maximal macroscopic conductance (G, values abtained from

the fit of the IV curves with the modified Bolzmann equation (1)

Table 1. Electrophysiclogical properties of human Ca, 3.2 channels expressed in tsA- 201 cells in the presence of sialic add-processing

ENIYMes.
Activation Inactivation RA
Channel Vg ImV) k (n) .. PS/pF) in) Vo (V] k (n) T [ms) (n)
a3l —436 = 06 45 =02 37 B0 = 68 37 —643 £ 09 9 =07 13 447 = 34 11
+Stagall —38.7 = 0 55 =03 13 35 =74 13 -7 =146 32=03 8 550 = 48 8
+Meusd —41 8 = 08 53=02° 24 921 = 104 24 —666 £ 13 37=z02 16 422 = 39 7

development of peripheral painful neuropathy asso
ciated with nerve injury [18-20], antineoplastic
drugs [21-23], inflammation [24,25], and diabetes
11,3]. Several studies have unraveled some of the
mechanisms underlying the pathological expression
of Ca,3.2 and alteration of the posttranslational reg
ulation of the channel induding ubiquitinyation
[26], SUMOwation [27] and phosphorylation
[28,29]. Defects in these processes have emerged as
some of the primary reasons leading to enhanced
expression of the channel. Furthermore, altered

glycosylation of Ca,32 was proposed to contribute
to the sensitization of nociceptive fibers in response
to hyperglyoemia associated with diabetes [ 5]. In this
study, we show using a differential transcriptomic
approach that several glycan-modifying enzymes are
upregulated in DRG neurons from db/db mice com

pared to wild-type animals. These results are consis

tent with previous studies reporting an alteration of
glycan-processing enzymes in the kidney of diabetic
mice |30]. Several of these enzymes contribute to the
processing of important sugars incduding glucose,
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Figure 4. influence of sialic add-processing enzymes on the electrophysiological properties of Ca 3.2 channels. (a} Mean nomalized
voltage-dependence of T-type curent activation for cells expressing Ca 3.2 alone (black circles) and in combination with Neu3 (blue
circles) or St6gall (red circles). (b) Comresponding mean half-activation potential values obtained from the fit of the activation curves
with the modified Bolzmann Equation (2). (csd) Legend same as for (ab) but for the voltage-dependence of steady state
inactivation. Half-inactivation potential values was obtained from the fit of the inactivation curves with the two-state Boltzmann
function (3). (e} Mean normalized recovery from inactivation kinetics. (f) Comesponding mean time constant values of recovery from
inactivation obtained from the fit of the recovery curves with the single-exponential function (4).

galactose, mannose, and fucose, and therefore altera
tion of their expression level could potentially alter
the processing and maturation of the glycan struc
tures. Furthermore, we found that several enzymes

involved in the processing of the terminal sialic acid
moieties found in complex glycan structures were
upregulated in diabetic conditions. This aspect is
particularly relevant in the context of PDN since
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enzymatic removal of sialic acid moieties with neur-
aminidase was reported to normalize T-type cur-
rents in DRG neurons isolated from diabatic mice
and to alleviate PDN in vivo [5]. Furthermore, sialy-
lation was reported to contribute to the hyperexcit-
ability of DRG neurons following peripheral nerve
injury [31]. However, our functional analysis on
recombinant Cav32 channels did not provide evi-
dence in support of a role for these enzymes in the
upregulation of Ca,3.2 when co-expressed individu-
ally with the channel. For instance, co-expression of
glycosyltransferases Galntle, B3gnt8, and B4galtl
with Ca,3.2 produced an almost complete loss of
functional expression of the channel. However, sev-
eral studies have previously shown that glycosyl-
transferases can form heterodimers that contribute
to their subcellular expression, enzymatic activity,
efficient bicsynthesis of glycan chains, trafficking
through intracellular vesicles, and substrate specifi-
cities [32]. For instance, binding of B3gnt8 appears
to cause a conformational change in the catalytic site
of Bignt2 and increases its enzymatic activity [33].
Therefore, we cannot exclude that overexpression of
individual enzymes with Ca,3.2 in tsA-201 cells as
performed in our stdy may not fully capture the
more complex situation in DRG neurons where the
expression several genes encoding for glycan-
modifying enzymes is altered at the same time and
there could be synergetic effects among the various
players. Furthermore, tsA-201 cells were grown in
high glucose medium which represents another vari-
able that could have influenced the phenotypic effect
of these enzymes on Ca,3.2 channels. In contrast to
glycosyltransferases, co-expression of the sialyltrans-
ferase St6gall produced a relatively mild decreased
expression of the channel with a depolarized shift of
the voltage-dependence of activation, indicating that
sialylation contributes to the functioning of Ca,3.2.
However, co-expression of the neuraminidase Neu3
that removes sialic acid moieties did not altered
expression of the channel, nor its gating properties.
These results are consistent with previous studies
showing that application of neuraminidase on tsA-
201 cells expressing Ca,3.2 channels did not alter
channel function [8], which could suggest a low
basal level of sialylation in these cells.

Altogether, this study identified several glycan-
modifying genes whose expression is altered in DRG
neurons under diabetic condition However, we did
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not find evidence for a role of these enzyme in the up-
regulation of Ca, 3.2 channels. At this stage, we cannot
exclude that expression of glycan-modifying enzymes
in DRG neurons may have produced a different phe-
notypic effect on Ca,3.2 and this aspect would deserve
further investigations in native conditions.
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Amyatrophic lateral sclerosis (ALS) is a newrodegenerative disorder characterized by the progressive loss of cortical,
brain stem and spinal motor neurons that leads (o muscle weakness and death. A previows study implicated CACN
AlH encoding for Ca,3.2 calcium channels as a susceptibility gene in ALS. In the present study, two heterozygous
CACNATH variants were identified by whole genome sequencing in a small cohort of ALS patients. These variants
were functionally characterized using patch clamp electrophysiclogy, biochemistry assays, and molecular modeling.
A previously unreported c454GTAC > G variant produced an inframe deletion of a highly conserved isoleucine
residue in Ca,32 (pdAl153) and caused a complete loss-of-function of the channel, with an additional dominant-
negative effect on the wild-type channel when expressed in trans. In contrast, the c.3629C = T variant caused a
missense substitution of a proline with a leucine (pP12700) and produced a comiparatively mild alteration of Ca,3.2
channel activity. The newly identified Al153 variant is the first to be reported to cause a complete loss of (3,32
channel function. These findings add to the notion that loss-of-function of Ca 3.2 channels associated with rare
CACMATH variants may be risk factors in the complex etiology of ALS.

Keywords: Al 5, Amyotrophic lateral sclerosis, Motor neuron disease, CACNATH, Muration, Calcium channel, Ca,3.2

Introduction

Amyotrophic lateral sclerosis (ALS), also kmown as
motor neuron disease or Lou Gehrig's disease, is a het-
erogeneous neuromuscular disease characterized by the
degeneration of cortical, brain stem and spinal motor
neurons that leads to muscle weakness and paralysis.
IVisease onset averages between 40 and 70 years of age
[1], and the annual incidence worddwide is estimated to
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be between one to three per 100,000 people [2]. ALS is
hest regarded as a complex genetic disorder with a Men-
delian pattern of inheritance in approximately 5-10% of
patients (familial ALS, FALS), but most patients have no
discernable family history of the disease which is then
referred to being "sporadic™ or "isolated” in nature
{sALS) [3]. However, the observation that established
fALS genes are also implicated in sALS makes the dis-
tinction between fALS and sALS more abstruse |4]. For
instance, mutations in the most common ALS genes
(S0Dd, FUS, TARDBP, C9nrf72, VCP, and PFNI) ac-
count for up to 70% of fALS patients and about 10% of
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sALS [5]. In addition, several genes and loci in apparent
SALS patients have been proposed to be associated with
an increased risk of ALS, or to modify the onset or pro-
gression of the disease, which highlights the importance
of genetic risk factors [6]. Among these genes, the most
prominent are ATXNZ [7], UNCI3A [8], ANG [9], and
SMNI [10]. Recently, whole exome sequence analysis of
case-unaffected-parents trios identified two compound

recessive missense mutations in the gene
CACNAIH [11, 12).

In the present study, we report two additional CACN
AlH variants (c.3629C > T, p.P1210L and c454GTAC >
G, pAllS3) identified using whole genome sequencing
of a cohort of 34 sALS patients, with sequencing under-
taken at the Genome Institute, Washington University,
St Louise USA. The method of whole genome analysis
was the same as that reported in a separate study [11].
Whole genome analyses reveal no pathogenetic single
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nucleotide or structural differences between monozy-
gotic twins discordant for amyotrophic lateral selerosis
[13]. No unaffected parent DNA was subjected to whole
genome sequencing, so it was not possible to determine
ifl the variants were recessive or de novo in nature [11).
Functional analysis of these two variants revealed a
complete loss of Ca,3.2 channel function associated with
the AI153 variant and a dominant-negative effect of this
variant on the wild-type channel when expressed in
Lrans.

Results

Whole genome sequencing identifies heterozygous CACN
ATH mutations in ALS patients

In a previous study, using casc-unaffected parents trio
exome analyses, we reported an ALS patient with two
heterozygous CACNAIH missense mutations causing a
partial loss-of-function of Ca,32 channel, suggesting
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that rare CACNATH variants may represent a risk factor
for ALS [11, 12]. In the present study, using whole gen-
ome sequencing of a small cohort of ALS patients, we
identified two additional heterozygous variants in CACN
AIH. The first variant (¢3629C > T, p.P1210L) was iden-
tified in a man with ALS onset aged 55 years who died
aged 62 years. He had no family history of ALS, though
hizs father had Alzheimer’s disease and his mother bipo-
lar disorder. The P1210L variant is located in a non-
conserved region of the intracellular linker connecting
transmembrane domains 11 and Il (I1-111 loop) of Ca,3.2
(Fig. 1a and b). This variant has previously been reported
in 188 out of 240,876 individuals in the gnomAT) data-
base (https://gnomad.broadinstitute.orgl), including 144
of 193,008 allcles only rom individuals who were not
ascertained for having a nenrological condition in a nearo-
logical casefcontrol study. Furthermore, in silico analysis
predicted the amino acid change to be neutral (Fig. 1c),
suggesting that this variant is likely to not have a major
pathological role. The second variant (c454GTAC =G,
p-Al153) was identified in a man with ALS onset aged 53
years who died aged 54 years. Although he had no family
history of ALS, his mother developed insulin-dependent
diabetes mellitus and narcolepsy, and his father presented
with carly onset dementia, a condition known to precede
motor impairment in some people with ALS [14]. This
mutation produces an inframe deletion of the isoleucine
153 located in the second transmembrane helix of Ca 3.2,
a region highly conserved across Ca,3.2 channel orthologs
(Fig- 1a and b). The AT153 variant has only been reported
in 1 out of 198,036 individuals in the gnomAl} database
and this deletion was predicted to be deleterious on the
channel (Fig. 1c). Hexanucleotide repeat number in
C9rf72, the most common genetic cause of ALS, was
normal in both paticnts.

The Al53 mutation causes a complete loss of Ca, 3.2
function

In the first series of experiments we assessed the func-
tional expression of Ca, 3.2 P1210L and AINS3 channel
variants expressed in tsA-201 cells by whole-cell patch
clamp electrophysiology. Cells expressing the P1210L
channel variant displayed a characteristic low-threshold
voltage-activated T-type current (Fig. 2a and b) that only
differed from cells expressing the wild-type (WT) chan-
nel by a 32% reduction (p = 0.0125, Mann-Whitney test)
of the maximal conductance (Goo.) (from 571.3 £ 584
pSIpF, m=42 to 3877 +33.9 pS/pF, n=41) (Fig. 2c).
The main electrophysiological properties, including
voltage-dependence of - activation  and  inactivation
(Fig. 2d), and recovery from inactivation (Fig. Ze),
remained unaffected. In cells expressing the AI153 chan-
nel variant, we did not record any T-type conductance
(Fig. 2a-c). It is noteworthy that experimental conditions
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known to favor the expression of misfolded proteins, such
as treatment of cells with the proteasome inhibitor
MG132 or decrease of cell incubation temperature to
30°C, were used but failed to restore a T-type conduct-
ance. Additionally, co-expression of the AILS3 channed
variant with Stacl or with a calnexin-derived peptide that
has previously been reported to potentiate the expression
of Ca, 3.2 in the plasma membrane [15, 16] also failed to
restore T-type currents (data mot shown). The lack of
functional expression of the AT1S3 channel variant could
have been inherent in our experimental conditions using
recombinant channels, so we aimed to further assess the
phenotypic effect of the AI153 mutation on native Ca, 3.2
channels in a neuronal environment. Therefore, we used a
CRISPR/Cas9 approach to introduce the AI153 mutation
in native Ca,3.2 channels in cultured dorsal root ganglion
(DRG) neurons. DRG neurons were used as a model sys-
tem since these neurons are known to display a T-type
conductance that is almost exclusively carried by Ca,3.2
channel subtype [17]. Consistent with our observation
with recombinant Ca,3.2 channels, T-type currents re-
corded from Ca,3.2 AlL53 DRG neurons 3 days after gene
editing were reduced by 73% (Mann-Whitney p < 0.0001)
compared to wild type neurons (from 154+ 2.5 pAJ/pF,
n=12to 4.1 + 0.8 pA/pF, n = 12) (Fig. 20 and g).

Collectively, these data revealed a mild loss of channel
function associated with the P1210L variant, and the
deleterious effect of the AINS3 mutation leading to a
complete loss of Ca,3.2 activity.

The AI53 mutation disrupts Ca,3.2 biogenesis
The alteration of T-type currents in ALS-associated
Ca,3.2 variants could originate from an overall decreased
expression of channel proteins, reduced channel density
in the plasma membrane, altered gating of the channel,
or from a combination of several of these. Therefore, we
first assessed the expression levels of P1210L and AILS3
channel variants in tsA-201 cells by western hblot
(Fig. 3a). Immunoblot analysis from total cell lysates
showed that the P1210L channel variant was present at a
similar level as the WT' chanmel (Fig. 3b). In contrast,
the expression level of the AILS3 channel variant was re-
duced by 78% (Mann-Whitney p=0.0286), suggesting
that this wvariant may undergo extensive degradation
(Fig. 3b). Mext, we aimed to assess the expression of
Cav3.2 channel variants at the cell surface. Therefore,
we anmalyzed charge movements () that refer to the
movemnent of the channel voltage-sensor in the plasma
membrane in response to electrical membrane depolar-
tzations. Total charges (Q,,) were assessed at the rever-
sal potential of the ionic current, where we can consider
Qe o be equal 10 Qg providing an aceurate assess-
ment of the total number of channels in the plasma
membrane (Fig. 3c). In cells expressing the P1210L
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variant, we observed a 27% reduction of (.

0.0467) compared to cells expressing the WT channel
(from 12,0+ 1.3 fC/pF, n=19 to 8.7 + 0.8 fC/pF, n=18)

(Fig. 3d). This reduction of Q,,, is similar to
tion of the maximal T-type conductance we

observed (32%, Fig. 2c), suggesting that the decrease of

(t-test p=

the reduc-
previoushy

the T-type conductance in cells expressing the P1210L
channel variant is likely caused by a reduced expression
of the channel in the plasma membrane. This notion is
further supported by the observation that neither the
Gal Qisx dependency (Fig. 3e), nor the kinetics of
charge movements (Fig. 3f), were modified, indicating

149



Stringer et al Molecular Brain (2020} 13:33

Page 5 of 11

b
- 15‘ i
E
5T 1
g
= .5
g =3
0ol L3 3 3
WT  Al153 P1210L
o4
Al153 Pi1210L

Do M

WT P1210L AMB3

d .
257 — = 4
20{ o s ‘
iy g - 2]
5 15 * * £ ’ .
L)
Eé L I B2 e e
10| 5% g i
o o | o5 =W |
5| ==* b @
- o' o]
WT P1210L

AN

N~
| i
f

WT F1210L

Fig. 3 Expression of Ca, 32 P1210L and Al153 variants. a Reprosentative immunotdot of Ca,3.2 from A 201 oclls cxpressing wild type (WT),
P1210L, and Al153 dhannel variants. b Cormesponding mean expression levels of F1210L and Al153 variants relative to WT channels. ©
Represeniative charge movement traces recorded at the ionic reversal potenitial from oolls expressing wild type (WT, black trace), P1210L (blue
trace), and Al153 (red trace) channel variants. The dotted line depics the time course of the integral for each trace. d Cormesponding mean Q.
vahes caloulated for cach invvestigated ool e Cormesponding mican G Qe ratios. F Coresponding mean 10-90% rise times. caloulated from

the integral tirme course: shown in panel ©

that the gating propertics of the P1210L channel variant
remained unaltered. In contrast, we did not detect any
charge movement in cells expressing the AT153 channel
wvariant (Fig. 3¢ and d), suggesting that despite being bio-
chemically expressed, this variant is not present in the
plasma membrane.

Altogether, these data are consistent with a mildly de-
ereased surface expression of the P1210L variant without
additional alterations. Importantly, these data demonstrate
the profound deleterious effect of the AI153 mutation on
the biogenesis and surface trafficking of Ca, 3.2 channels.

Dominant-negative effect of the Al153 channel variant
Given the heterozygosity of the Al153 mutation and the
defective trafficking of the All53 channel variant, we

aimed to test whether this vartant could have a dominant-
negative effect on W channels. Therefore, we co-
expressed the WT and AILSS channels in 1sA-201 cells in
a 1:1 ratio (equal amount of cDMNAs) and compared T-
type currents with cells expressing the WT channel in
combination with a cation-impermeant but trafficking-
competent channel (PM). Recording of T-type currents in
cells expressing a combination of WT:AILS3 channels
(Fig. 4a) revealed a 35% reduction (Mann-Whitney p =
0.0080) of the maximal T-type conductance compared to
cells expressing a combination of WT:PM channels (from
569 + 73 pS/pF. m =38 to 372 + 27 pS/pF, » = 58) (Fig. 4b
and c), indicating that the AIL53 variant produced a
dominant-negative effect on the WT channel when
expressed in trans. In contrast, the voltage-dependence of
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activation and inactivation remained unaltered. Given the
comparatively mild phenotype produced by the P1210L
mutation, the P1210L variant was not tested in combin-
ation with the WT channcl. Finally, to test whether this
dominant-negative effect could be mediated by an
interaction between Ca32 subunits, we performed co-
immunoprecipitations from tsA-201 cells co-expressing
Myc-tagged and GFP-tagged Ca,32 to discriminate

between the two channels. We observed that the GFP-
tagped Ca 32 was immunoprecipitated with the Myc-
tagged Ca,3.2 using a specific anti-Myc antibody, revealing
the ability of Ca,3.2 channels to dimerize (Fig 4d).

Collectively, these data revealed the dominant-negative
effect of the AILIS3 variant on the WT channel, a
phenomenon likely o be mediated by the interaction be-
tween Ca, 3.2 subunits.
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Discussion

While several common genes are implicated in familial
ALS, the occurrence of rare genetic variants in patients
with no family history of the disease has emerged as a
potential contributing factor in sporadic ALS [11]. In
this study, we report two heterozygous CACNATH vari-
ants identified by whole genome sequencing of a small
cohort of ALS patients. Functional analysis revealed mild
to severe alterations of Ca, 3.2 variants that were consist-
ent with a loss-of-lunction of the channels.

The P12101. missense mutation was located in a vari-
able region of Ca,32 and was not predicted to be dele-
terious. Our  electrophysiological analysis  showed a
moderate reduction of the expression of the P1210L
channel variant at the cell surface and an assodated re-
duction in the T-type conductance. We cannot entirely
rule out the possibility that the phenotypic expression of
the P1210L variant could have differed when introduced
into a different Ca, 3.2 splice variant [18], or when func-
tionally assessed under different experimental conditions
[19], but our experimental data together with the rela-
tively high occurrence of this variant in the general
population strongly suggest that it is indeed unlikely to
be pathogenic. In contrast, the All53 variant had never
been reported and was predicted to be deleterious. Elec-
trophysiological analysis revealed a complete loss of
functional expression of the AIL53 variant, and recording
of charge movements sugpested that this variant was ab-
gent from the cell surface. Furthermore, our biochemical
analysis revealed a dramatic decrease of the cxpression
level of the channel protein, suggesting that this variant
may have undergone extensive degradation. OFf particular
importance was the dominant-negative effect produced by
the Al153 variant on the WT channel when the two chan-
nels were cxpressed in trans. This effect was likdy to be
mediated by the ability of Ca,3.2 subunits to dimerize,
which could have prevented the proper trafficking of the
WT channel to the cell surface in the presence of the im-
paired Al153 variant. In this regard, it is worth considering
that this dominant-negative cffect may also have an effect
on other ion channels. Indeed, Ca, 3.2 channels are known
to biochemically interact with several caleium- and
voltage-activated potassium and sodium channel subunits
[20-23] whose surface trafficking and activity could be af-
fected by the Ca,3.2 AT153 variank.

The molecular mechanisms underlying the deleterious
effect of the AllS3 variant can be appreciated by exam-
ining the 3-dimensional environment of 1153, and the
possible impact of its deletion in the homology model of
Ca,32 we have developed, wsing the 3.3A CryoEM
structure of Ca 3.1 [24]. In this model, 1153 is located
within the transmembrane 52 alpha helix of domain 1
(Fig. 5a), where it is surrounded by hydrophobic residues
near the membrane-cytosol interface (Fig. 5h). The
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nearby hydrophobic residues are highly conserved bhe-
tween L- and T-type channels and 1153 shows a clear in-
volvement in the helical packing (Fig. 5h). Therefore,
deletion of 1153 that results in a net loss of hydrophobi-
city within the transmembrane segment is likely to alter
helix packing in domain | which would result in the mis-
folding of the channel. Additionally, deletion of 1153
would also affect downstream residues in the helix due
to a change in the helical register, thus further affecting
the helical packing in the voltage-sensing domain.

From a clinical point of view, the loss-of-channel func-
tion associated with the AILS3 variant could have several
pathological implications. First, Ca 3.2 is present in several
central neurons, including reticular thalamic neurons [25],
where they contribute to NMDA receptor-mediated syn-
aptic transmission [26]. Given that gain-of-function muta-
tions associated with childhood absence epilepsy were
shown to enhance synaptic activities |26, the reciprocal
theary would suggest that loss-of-channel function could,
lines, neuroimaging studies have revealed decreased thal-
amic activity in ALS [27-32], and a recent MEI study re-
ported alterations of thalamic connectivities that mirrored
the progressive motor functional decline in ALS [33]. Sec-
ond, although the functional expression of Ca, 3.2 in mam-
malian motor neurons remains elusive, several studies
suggest that T-type channels may have a functional role.
For instance, Ca 3.1 channels are present in turtle spinal
motor neurons where they contribute to cellular excitabil -
ity [34]. In addition, a low-threshold voltage-activated cal-
cium conductance was reported at nodes of Ranvier in
mouse spinal motor neurons, suggesting the presence of
T-type chanmels [35]. Third, a T-type channel ortholog is
present in motor neurons of the nematode C. elemans [36]
where it contributes to motor-related functions [37, 38].
Finally, a recent study documented the role of T-type
channels in the maintenance of neuwronal progenitor cells
[39]. A loss-of-function of Ca, 32 could compromise the
architecture of nerve cells and precipitate newaromnal
degeneration.

In conclusion, this newly identified AI153 variant is
the first to be reported o cause a complete loss of
Ca, 32 channel function [40). Although its pathogenic
role in the context of ALS remains to be established,
these findings add to the notion that rare CACNAIH
variants represent a risk factor for ALS. Furthermore,
several T-type channels blockers are currently being
used for the treatment of epilepsy [41]. The question
then arises as to whether long term use of these mole-
cules may present a risk to the development of ALS.
This notion should be given particular attention, espe-
cially considering that several other T-type channel
blockers are currently evaluated in dinical trials for the
management of epilepsy and chronic pain symptoms,
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in the helical paddng

Fig. 5 Homology model of human Ca,3.2 a Cartoon representation of secondany structural elements of human Ca, 2.2 (Uniprot C95180)
homaology model (residues 97-1974) based on Ca,3.1 (FDB: 6KZ0), showing side {eft panel) and bottom (right panel) views of the channel The
four domains of Ca, 3.2 are colored in red, yellow, blue and green. The 51-56 helices are indicated in red for domain | Some of the flexible loops
conmecting the transmembrane helices are nat shown, or could not be modeled, due to poor model accuracy or lack of structural information,
respectively. The isoleucine 153 (2153 is shown in black b Stereo diagram of l2153 and nearby fydrophobic residues showing its imolverment

Methads

Plasmids cDMNA constructs and site-directed mutagenesis
The Ca, 32 P1210L and AILS3 channel varianls were
created by introducing the respective mutations into the
human wild-type HA-tagged Ca,32 in peDNA3L [42]
by PCR-hased site-directed mutagenesis using Q5" Site-
Directed Mutagenesis Kit (Mew England Biolabs) and
the following mutagenic primers: dell153: 5°-TCAAGA
TGGTGGCCTTGG-3"  (forward) and 5-CCATCT
CCACCGCAAAAAAG-3" (reverse); PL210L: 5°-
GOCGCCCTCOMGCCTACCAAGTGC-3" (forward) and
5 -CGGCCGCAGGGGUCGTGG-3"  (reverse).  The
cation-impermeant Ca, 3.2 channel was generated by re-
placing the glutamic acid 378 in domain [ with a lysine
(E378K) by site-directed mutagenesis. Final constructs
were verified by sequencing of the coding sequence of
the plasmid cDMNAs.

Cell culture and heterologous expression

Human embryonic kidney 1sA-201 cells were grown in
DMEM mediom supplemented with 10% fetal bovine
serum and 1% penicillin/streptonyycin (all media purchased

from Invitrogen) and maintained under standard conditions
at 37°C in a humidified atmosphere containing 5% CO,.
Heterologous expression of Ca, 3.2 channels was perdformied
by transfecting cells with 5 pg plasmid clDMAs encoding for
Ca32 channel varants wsing the calcium/phosphate
method. For experiments aiming at investigating the dom-
inant negative effect of the AII53 variant, cells were co-
transfcted with 2.5 pg plasmid ¢DNA encoding for WT
channels with either 2.5 pg plasmid cXNA encoding for the
ATLS3 channel vadant or 2.5 pg plasmid ¢DNA encoding
for a non-conducting but trafficking-competent Ca 3.2
(PM).

Patch damp electrophysiology

Patch clamp recordings of T-type currents in tsA-201
cells expressing Ca, 3.2 channel variants were performed
72 h after transfection in the whole-cell configuration at
room temperature (22-24°C) as previously described
[43]. The bath solution contained (in millimolar): 5
BaCly, 5 KCl, 1 MgCl,, 128 Na(l, 10 TEA-CI, 10 D-
glucose, 10 4-(2-hydroxyethyl)- 1 -piperazineethanesulfo-
nic acid (HEPES) (pH 7.2 with NaOH). Patch pipettes
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were filled with a solution containing (in millimolar):
110 CsCl, 3Mp-ATP, 05 Na-GTP, 25 MpgCl,, 5 D-
glucose, 10 EGTA, and 10 HEPES (pH 7.4 with CsOH),
and had a resistance of 2-4 M(). Recordings were per-
formed wsing an Axopatch 2008 amplificr (Axon Instru-
ments) and acquisition and analysis were performed
using pClamp 10 and Clampfit 10 software, respectively
(Axon Instruments). The linear leak component of the
current was corrected online and current traces were
digitized at 10 kHz and fliered at 2 kHz The voltage de-
pendence of activation of Ca, 3.2 channels was deter-
mined by measuring the peak T-type current amplitude
in response to 150 ms depolarizing steps to various po-
tentials applied every 10s from a holding membrane po-
tential of — 100 mV. The current-voltage relationship (1f
V) curve was fitted with the following modified Boltz-
mann eq. (1)

(V—Vrev)
(V0.5-V)
Py

with f{V) being the peak current amplitude at the com-
mand potential V, G, the maximum conductance, V.,
the reversal potential, V5 the half-activation potential,
and k the slope factor. The voltage dependence of the
whole-cell Ba®" conductance was caleulated using the
following modified Boltzmann eq. (2):

I(V) = Gmax

1+

(1)

Gmax
(Vo5 v (2)
k

with G{V) being the Ba®™ conductance at the command
potential V.,

The voltage dependence of the steady-state inactivation
of Ca, 3.2 channels was determined by measuring the peak
T-type current amplitude in response to a 150 ms depolar-
izing step to — 20mV applied after a 5 s-long conditioning
prepulse ranging from — 120mV to — 30 mV. The current
amplitude obtaned during cach test pulse was normalized
to the maximal current amplitude and plotted as a func-
tion of the prepulse potential. The voltage dependence of
the steady-state inactivation was fitted with the following
two-state Boltzmann function (3):

G(V)
1+ exp

Imax

— (3)
- m{v 1::1.5]

(V) =

with f,,. corresponding to the maximal peak current
amplitude and V5 to the half-inactivation voltage.

The recovery from inactivation was assessed using a
double-pulse protocol from a holding potential of — 100

Page 9 of 11

mV. The cell membrane was depolarized for 2= at 0 mV
(inactivating prepulse) to ensure complete inactivation
of the channel, and then to —20mV for 150 ms (test
pulse) after an increasing time period (interpulse) ran-
ging between 01 ms and 25 at — 100mV. The peak
current from the test pulse was plotted as a ratio of the
maximum prepulse current versus interpulse interval
The data were fitted with the following single-
exponential function (4):

ez~ A% (1 @0 7) @

where 1 is the time constant for channel recovery from
inactivation.

Measurement of charge movements

Recording of charge movements was performed 72h
after transfection as previously described [44, 45]. The
bath solution contained (in millimolar): CsCl 95; TEAC]
40, BaCly 5; MgCly 1; HEPES 10; glucose 10; pH 7.4 (ad-
justed with CsQOH). Patch pipettes had a resistance ran-
ging from 1.8 ML) to 2.2 ML) when filled with a solution
containing (in millimolar): CH,50,Cs 130; Na-ATP 5;
TEAC] 10; HEPES 10 EGTA 1k MgCl, 5; pH 7.4 (ad-
justed with CsOH). Osmolarity of the intracellular solu-
tion was approximately 300 mOsmol/I. Osmolarity of
the extracellular solution was adjusted by adding sucrose
s0 that the final value was about 2-3 mOsmol/L lower
than the osmolarity of the corresponding intracellular
solution. Recordings were performed using HEKA
EPC10 amplifier (HEKA Electronics). Acguisition and
analysis were performed using Patchmaster v90.2 and
Fitmaster v2x73.1 and Origin Pro 2015 software, re-
spectively, Only cells with an input resistance less than 5
ML} were considered. The input resistance and capacity
transients were compensated by up to 70% with in-built
circuits of the EPC 10 amplifier. Remaining artifacts
woere subtracted wsing a -P/8 procedure. ON-gating cur-
rents were recorded in response to a series of 5 depolar-
izing pulses at the reversal potential of the jonic current
assessed for each cell, and total gating charge Qg was
calculated as the integral of area below the averaged
current traces.

CRISPR/Cas9 genome editing in DRG neurons

Male rats (6-week-old) were purchased from Charles
River and DRG neurons were harvested as described
previously [46]. The next day, newrons were transfected
with Crispr-Cas? plasmids (Cas9-sgRNA plasmid and
donor plasmid purchased from GeneCopoeia) using Li-
pofectamine 2000 from Invitrogen (Cat. 11,663—019).
The sequence of Crispr RNA was COGTGGAGATG
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GTGATCAAGA. The donor plasmid contained the
homologous arms of the genomic DNA without 1153,
Whole-cell voltage-clamp recordings of T-type currents
were performed 3 days post transfection. The external
solution contzined (in mM): 40 TEACI, 65 CsCl, 20
BaCly, 1 MgCly, 10 HEPES, 10 D-glucose, pH7.4. The
internal solution contained (in mM): 140 CsCl, 25
CaCly 1 MgCla, 5 EGTA, 10 HEPES, 2 Na-ATP, (03 Na-
GTP, pH7.3. We used GFP fluorescence to specifically
identify neurons that were transfected with the CRISPR
plasmids. The overall percentage of GFP positive neu-
rons in a dish was relatively low, and hence we cannot
use bulk genomic sequencing for verification. However,
given the large functional effect on current densities, we
are confident that the use of GFP fluorescenoe is an ap-
propriate means of identifying neurons that were tar-
geted with these plasmids. We specifically targeted
medium diameter neurons for our analysis. The mean
capacitance of the neurons that we recorded from was
24.79 1+ 440 pF for control neurons versus 21.89 4 1.31
pF for CRISPR-edited neurons.

SD5-PAGE and immunoblot analysis

Immunoblot of HA-tagged Ca,32 channel was per-
formed as previously described [16]. Briefly, total cell
lysate from tsA-201 cells expressing HA-Ca, 3.2 channels
was separated on a 5-20% gradient SDS-PAGE gel and
transferred onto FYDF membrane (Millipore). Detection
of HA-Ca,3.2 was performed using a primary rat mono-
clonal anti-HA antibody (1:1000, Roche) and secondary
HREP-conjugated antibody (1:10,000, Jackson Immunoke-
search). Immunoreactive products were detected by en-
hanced chemiluminescence and analyzed vsing Image]
software,

For co-immunoprecipitation, cell lysates containing
GFP-tagged and Myc-tagged Ca 3.2 were incubated for
3 h with a biotinylated mouse monoclonal anti-Mye anti-
hody (Santa Cruz Biotechnology), and then for 45 min
with streptavidin beads (Invitrogen) at 4°C, and washed
with PES/Tween-20 buffer. Beads were resuspended in
Laemmli buffer and immunoprecipitation samples were
separated on SDS-PAGE gel.

Generation of human Ca, 3.2 homology model

The homology model of the human Ca,3.2 channel was
prepared using the Ca, 3.1 structure as a template (PIH:
6KZ0) in conjunction with Swiss-Model server (hitps://
swissmodelexpasy.org/) [47]. Figures were prepared
using Pymol (v2.2 Schridinger, LLC.).

Statistics

Data values are presented as mean + SEM for n measure-
ments. Statistical analysis was performed using Graph-
Pad Prism 7. For datasets passing the I¥Agostino &
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Pearson omnibus normality test, statistical significance
was determined using either Student’s t-test or a Mann-
Whitney test. Datasets were considered significantly dif-
ferent for p < 0.05.
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Abstract

Developmental and epileplic encephalopathies (DkEs) are a group of severe epilepsies thal are characlerized by
seizures and developmental delay. [T s are primarily attributed to genetic causes and an increasing number of cases
have been correlated with variants in ion channel genes, In this study, we report a child with an early severe DEE
Whole exome sequencing showed a de novo heterorygous variant (c4873-4881 duplication) in the SCN8A gene and
an inherited heterozygaus variant (€.952G = A} in the CACNATH gene encoding for Na, 16 valtage-gated sodium and
Ca, 32 vollage-gated calcium channels, respectively. In vitre functional analysis of human Na, 1.6 and Ca, 3.2 chan-
niel varianits reviealed mild but significant alterations of their gating propertics that were in general consistent with a
gain- and loss-af-channel function, respectively. Although additional studies will be required to confirm the actual
pathogenic involvement of SCNGA and CACNATH, these findings add to the notion that rare ion channel variants may
contribute to the etickogy of DEFs.

& lon channels, Channelopathy, Calcium channel, CACNATH, Ca 3.2 channel, Sodium channel, SCNEA,

Na, 1.6 channel, Epilepsy, Encephalopathy

Main text

Developmental and epileptic encephalopathies (DJFEs)
are a group of severe epilepsies that are characterized
by seizures often drug-resistant, and developmental
delay leading to varying degrees of intellectual, psychiat-
ric, behavioral, and molor disabilities [1]. DEEs are pri-
marily attributed to genetic causes and while recessive

and X-linked variants have been found, the majority of

patients show de novo pathogenic variants [2]. Recently,
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an increasing number of DEE cases have been correlated
wilh variants in ion channel genes [3).

In the present study, we report a girl with an early
severe DEE. She was born by emergency caesarean Sec-
lion al 37 weeks due lo placenla previa and was Lhe
first child of non-consanguineocus parents. Immediately
after birth, she presented with trembling despite nor-
mal blood sugar levels. In the early postnatal period,
she developed myoclonic jerks in all limbs, diagnosed as
inlanlile spasms bul did nol respend Lo sleroids, By the
age of 2 months, she started having generalized tonic—
clonic seizures and recurrent status epilepticus that
poorly responded to antiepileptic medication including
clobazam, levetiracetam, phenobarbital and topiramate.
Seizures were characlerized by rightl eye deviation and
generalized tonic posturing. She also presented with
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Fig. 1 Decrrophysiological properties of Ma, 16 and Ca, 3.2 channel varants associated with developmental and epileptic encephalopathy. a
Family pedigree chart. Filled and apen symbaoks indicate affected and unaffected individuals, respectively. b Location of the Na, | 6 GI&2S_ 11627
dugplication (red circke) and Ca, 3.2 GBS missense variants tlue circle) within the secondary membrane topology of the channelks, ¢ Representative
sodium oument traces reconded friom cells expressing wild-type Na, |6 (Ma, 16", black fraces) and Na, | & duplication variant (Ma, | 6™, red fraces)
in combination with Na, b, d Cormesponding mean oumrent - voltage (K9 relationship. ¢ Comesponding mean masximal rmacroscops; conductance
el values obiained from the fit of the IV ourves with the modified Boltzrmann Ca, (1), f Comesponding mean nonmalized voltage-dependence

b chaninel vasiants

of activation The voltage-dependence of activation for Ma, 1A% in the absence of Magb, is shown for comparison (dotted line). nser shows
cormesponding mean half-activation potenitial walies obtained from the fit of the activation ourve with the modified Boltemann Cg, (7). g Mean
normalized voltage-dependence of stedy-state inactivation Br ha, 1E* and Mawvl 62, inser shows comesponding mean half-inactivation
protential viskees obdained from the fit of the inacivation ounees with the two-state Boltzmann function (30 h Mean normalized recoverny from
inactivation kinetics, Inset shows comesponding mean time constant T values of recoverny from inactivation cbitained by fitfing recoery cumess with
a singgle-expanential function (4). Hn Legend same as in io-h) but for cells expressing wild type Ca, 3.2 (Ca,2.2%, black) and Ca, 3.2 G185 (Ca, 3.7,

additional complications including scoliosis, bilateral
hip dislocation and recurrent pneumonia, and by the
age of 3 she developed myoclonus, spastic quadriplegia
with generalized hypertonia and hyperreflexia with clo-
nus. Secondary skeletal abnormalities were also observed
including flattening of the head and chest, severe
kyphoseoliosis and flexion contractures. An MRI brain
scan showed generalized brain atrophy with marked
insular atrophy and bright white matter on flair. Blood
tests were in general normal and only creatine phos-
phokinase levels were increased, probably as secondary
consequence of seizures. The patient died at the age of
4, Whole exome sequencing (EGL Genelics) showed a
de nove heterologous duplication (c4873_4881dup) in
SCNBA (Fig. 1a) causing the duplication of amino acid
G1625_11627 (p.G1625_11627dup) within the highly con-
served transmembrane TVS4 segment (voltage sensor) of
the vollage-galed sodium channel Na 1.6 (Fig. 1b). This
variant has never been reported in the Genome Aggre-
gation Database (gnomAD) and was predicted to be
deleterious (PROVEAN algorithm). In addition, a rare
heterozygous missense variant (c952G>A) In CAC-
NAIH (Fig. 1a) was inherited from the father who was
asymptomatic. This variant that caused the substitution
of a glycine at position 318 by a serine (p.G3185) within
the first pore-forming loop of the voltage-pated cal-
clum channel Ca, 3.2 (Fig. 1b) has never been reported
and was nol predicted Lo be deleterious. To assess the
impact of these mutations, the G1625 11627 duplica-
tion and G3185 missense variant were introduced into
the human Nal.6 (UniProt Q9UQDO-1) and Ca 32
{(UniProt 095180-1) channels, respectively, and recom-
binanl channels were expressed in HEK cells for electro-
physiological analysis. The sodium conductance recorded
from cells expressing the duplication variant (Na,1.6"F)
in combination with the human Nab, ancillary subu-
nit (Uniprot Os0939) was similar to the one measured
from cells expressing Lhe wild-lype channel (MNa,1.6"!)

(Fig. 1c—e and Additional file 1: Table 51). However, the
mean half activation potential of Na,1.6™* was shifted
loward more hyperpolarized polentials by — 54 mv
{p=0.0005) (Fig. 1f and Additional file 1: Table 51) to val-
ues similar to Na, 16" expressed without the Mab, sub.
unit (Additional file 1: Fig. 51 and Table 51). In contrast,
we did not observe any gating alteration of Na,1.6™ in
the absence of Nab,. While the current literalure on
the effect of Na b on the regulation of Na,l.6 is rather
sparse and conflicting [4, 5], these results suggest that
phenotypic expression of SCN8A duplication variant may
depend on the molecular composition of Na 1.6, possibly
by disrupling Na b-dependent regulation of the channel,
Other gating properties including steady-state inactiva-
tion and recovery from inactivalion were not affected
(Fig. 1g, h and Additional file 1: Table 51). In addition,
recording of T-type currents from cells expressing the
Ca,3.2 G3185 varianl (Ca,3.2%%) did nol reveal any
alteration of the T-type conductance compared to cells
expression the wild-type channel (Ca3.2"") (Fig. 1i-k
and Additional file 1: Table $1). Howover, the mean half
activation potential of the Ca 3.2 variant was shifted
Lloward more posilive polentials by +4.3 mV (p=00048)
(Fig. 11 and Additional file 1: Table 51) without any addi-
tional alteration of the other gating properties (Fig. 1m, n
and Additional file 1: Table 51).

In summary, we reported the case of a child with
severe DEE in whom a de nove mulalion in SCN8A
and an inherited rare CACNAIH variant were found.
Pathogenic variants in SCNBA have originally been
described in patients with DEE [6-9]. Most are de novo
missense variants clustered in the highly conserved
transmembrane domains of Ma, 1.6 and are in general
consistent with a gain-of-function pathogenic mecha-
nism predicted to increase newronal excitability and
seizure susceptibility [6, 10, 11]. Qur observation that
the SCNBA duplication variant produced a hyperpolar-
izing shill of the voltage-dependence of aclivalion of
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Ma,l.6 is also consistent with a gain-of-function (GoF)
of the channel. Although future studies will be required
Lo further assess the imporlance of the molecular com-
position of the channel in the phenotypic expression of
SCNBA variants, the resulls presented here strengthen
the motion that GoF SCNSA mutations may represent
a general pathogenic mechanism in DEEs. In contrast,
CACNAIH has never been associaled with DEEs.
Instead, GoF CACNAIH variants have been linked to
absence epilepsy and primary aldosteronism [12] while
loss-of-function (LoF) variants have been reported in
autism spectrum disorders [13], amyotrophic lateral
sclerosis |14, 15], and congenilal amyotrophy [16]. 1L
is not clear to which extent the LoF CACNA IH vari-
ant we identified in our patient may have contributed
to the disease. Given that the father from whom the
child inherited this variant was asymptomatic, this
varianl may nol have had a major contribution Lo the
development of the disease on its own. However, it is
a possibility that it may have precipitated its develop-
ment by interacting with other genes. This notion is
supparted by previous studies showing that CACNAIG
(Ca,3.1) and CACNAIA (Ca,2.1) are genelic modiliers
of epilepsy associated with Dravet syndrome [17-19].
While additional studies using primary neurons will be
required to uncover the detailed underlying pathogenic
mechanisms of Ma 1.6 and Ca 3.2 variants, the current
findings add Lo the notion thal rare jon channel vari-
ants may contribute to the etiology of DEEs.
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analysis of Ca 3.2 channel variants associated
with familial trigeminal neuralgia

Emilio R. Mustafd'' @, Fder Gambeta @, Robin N. Stringer'*! @, vana A. Souza’, Gerald W, Zamponi®* @ and

Marbert Weiss' @

Abstract

Trigeminal neuralgia (TH) is a rare form of chronic neuropathic pain characterized by spontaneous or elicited paros-
ysms af electric shock-like or stabhing pain in a region of the face, While mast cases ocour in a sporadic manner and
are accompanied by intracranial vascular compression ol the trigeminal nerve root, alleration of ion channels has
emerged as a potential exacerbating factor. Recently, whale exorne sequencing analysis of familial TN paticnts identi
fied 19 rare variants in the gene CACNATH encoding for Ca, 3.2 T-type calcium channels. Aninitial analysis of 4 of these
variants pointed to a pathogenic role. In this study, we assessed the electrophysiclogical properties of 13 additional
TN-assaciated Ca 3.2 variants expressed in tsA-201 cells. Qur data indicate that & our of the 13 variants analyzed
display alleration of their galing properties as evidenced by a hyperpolariging shill of their voltage dependence of
activation and/or inactivation resulting in an enhanced window current supported by Ca, 3.2 channels. An additicnal
variant enhanced the recovery fram inactivation. Simulation of neuronal electrical membrane potential using a com-
putational model of reticular thalamic neuron suggests that TN-assodated Ca 3.2 variants could enhance neuronal
excitability. Altogether, the present study adds to the nation that lon channel polymorphisens could contribute to the
etiology of some cases of [N and further support a wle lor Ca, 3.2 channels.

Keywords: lrigeminal neuralgia, lon channel, Calcium channel, CACNATH, Ca, 3.2 channel, Channelopathy

Intreduction

Trigeminal neuralgia (TW) also referred as “tic dou-
loureux” is a rare form of chronic neuropathic pain
syndrome originating from the trigeminal nerve that
supplies sensation to the face. TN is characterized by
recurrenl and chronic paroxysms of electric shock-like
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or stabbing pain in the orofacial region (for reviews see
[1. 2]). The pain usually lasts from a few seconds to a few
minutes and may be so intense that it triggers involun-
tary wincing, hence the term tic. Most cases of TN are
sporadic bul [amilial [orms exist and are likely lo be
underestimated [3]. In both situations, the etiology of TN
remains largely unknown and neurovascular compres-
sion of the trigeminal root nerve represents the primary
theory for the underlying cause of the disease. However,
the observation thal many I'N palients do nol show any
sign of neurovascular compression, and conversely that
individuals with compression do not necessarily develop
symptoms, supgested the existence of additional factors.
Hence, an alteration of neuronal excitability resulting
[rom abnormal funclioning of ion channels has emerged
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as a potential underlying mechanism [4-7] and consist-
ent with this notion, the sodium channel blockers car-
bamazepine and oxcarbazepine represent the first line
therapy in TN [8]. Moreover, alterations of the expression
of several ion channels including sodium, caleium, and
potassium channels have been reported in TH patients
[9] as well as in preclinical rodent models [10-17]. In
addition, rare polymorphisms in ion channel genes were
identified in TN patients [18-20] suggesting the exist-
ence of predisposing genetic factors and gain-of-function
mutations (GoF) were reported for Na, 1.6 [18], Ca,2.1
[21], TRPM7 [22, 23], and TRPMS channels [24].
Recenlly, TH-associaled polymorphisms in the gene
CACNAIH encoding Ca32 calcium channels were
reported [25]. Ca,3.2 channels belong to the sublamily
of low-voltage-activated T-type channels and are widely
expressed throughout the nervous system where they
play an essential rele in the control of nenronal excilabil-
ity [26]. Importantly, Ca, 3.2 is expressed in all structures
of the trigeminal pathway including trigeminal ganglion
sensory neurons [27, 28], the spinal trigeminal nucleus
(Sp¥) [17] as well as several thalamic nuclei such as the
venlroposierior nucleus (VPM) [29] thal receives pro-
jections from the SpV. Hence, Ca 3.2 channels may be of
direct relevance for the transmission of trigeminal sen-
sory information and a role for Ca 3.2 in TN-like syn-
drome was reported in a preclinical rodent model [17].
In this sludy, we aimed Lo provide a comprehen-
sion  analysis of TN-associated CACNAIH  wvari-
ants with regard to their impact on the functioning
of Ca3.2 channels. Of the 19 variants reported [25],
four had already been assessed for their impact on the
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biophysical properties of Ca 3.2 channels and revealed
a variant-dependent effect such that GG63R and PS66T
produced a Gok of the channel, E286K caused a mild
loss-of-function (LoF), and H526Y did not cause any
alteration [17, 30], We now report the functional char-
acterization of 13 additional variants. Seven of these
variants are located within cytoplasmic regions of
Ca, 3.2 including the N-lerminal region (P30L), the
loop connecting domains 11 and 11T (QI1049H and
P1120L), the loop connecting domains 11 and IV
(P1605H]), the linker connecting transmembrane seg-
ments S2-53 of domain TV (R1674), and the C-terminal
region (P2280H and E2291K). Four addilional variants
are mapped within important structural determinants
of the channel including the transmembrane segment
51 of domain 11 {(I799V and A802V), the end of the 54
voltage-sensor of domain TV (R1736C), and the fourth
pore-forming loop (D1779Y), The two remaining vari-
ants are localized within the extracellular linkers con-
necting transmembrane segments 53-54 of domain 1
(S187L) and 51-52 of domain 11 (E819K) (Fig. 1). Elec-
trophysiological analysis of recombinant TN-associated
Ca,3.2 variants in (5A-201 cells revealed a significant
alteration in the pating properties of 7 out of the 13
variants analyzed. In addition, introduction of these
variants in a computational model of reticular thalamic
neuron (NRT) enhanced rebound burst firing of action
polentials, Taken logelher, these dala suggesl Lhal
altered gating of TM-associated Ca 3.2 variants may
enhance neuronal excitability which could potentially
contribute to the etiology of TH.
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Fig. 1 Schematic representation of the membrane topology of Ca,3.7 depicting the amino acd position of TN-associated variants characterized in
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Materials and methods

Plasmid cDMA constructs and site-directed mutagenesis
The Ca, 32 varfants were generated by site directed
mulagenesis performed by GenScripl using the wild-lype
human Ca 3.2 (containing exon 26) in pcDNAZ] (kindly
provided by Dr. Terrance Snutch) as template. The fidelity
of all constructs was confirmed by full-length sequencing
of the coding region.

Call culture and heterologous expression

Human embryonic kidney tsA-201 cells were grown in
DMEM medium supplemented with 10% fetal bovine
serum and 1% penicillin/streptomycin (all media pur-
chased [rom Invilrogen) and mainlained under standard
conditions at 37 °C in a humidified atmosphere contain-
ing 5% COy. Heterologous expression was performed by
transfecting cells with 5 pg of plasmid cDNAs encoding
for Ca,3.2 variants and empty pEGEP vector as transfec-
Lion marker using Lhe caleium/phosphale method,

Patch dlamp electrophysiology
Patch clamp recordings of T-type currents in tsA-201
cells expressing Ca3.2 varlants were performed 72 h
alter transfection in the whole-coll configuration at room
temperature (22-24 °C) in a bath solution containing
(in millimolark: 10 BaCl,, 125 CsCl, 1 MgCly, 10 D-glu-
cose, 10 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
ackd (HEPES) (pH 7.4 with CsOH). Patch pipettes were
filled with a solulion conlaining (in millimolar): 110
CsCl, 3 Mg-ATP, 0.5 Na-GTP, 2.5 MgCl,, 5 D-glucose,
10 EGTA, and 10 HEPES (pH 7.4 with CsOH), and had
a resistance of 2-4MC. The caleulated liquid junction
potential was about — 26 mV and therefore was cor-
recled from the recordings. Recordings were perlormed
using an Axopatch 2008 amplifier (Axon Instruments)
and acquisition and analysis were performed using
pClamp 10 and Clampfit 10 softwares, respectively (Axon
Instruments). The linear leak component of the current
was correcled using a P/4 sublraction protocol and cur-
rent traces were digitized at 10 kHz and filtered at 2 kHz.
The voltage dependence of activation of Ca 3.2 chan-
nels was determined by measuring the peak of the T-type
current in response to 140 ms depolarizing steps from
B0 mV o420 mV in 5 mV increments preceded by
a 200 ms hyperpolarizing prepulse to — 110 mV from a
holding membrane potential of — 100 mV, The current
voltage relationship (I/V) curve was fitted with the fol-
lowing modified Boltzmann Fe. (1):

[ Vrev)

T epleT (1)

(V) = Gmax
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with V) being the peak current amplitude at the com-
mand potential V, G, the maximum conductance, V.,
the reversal polential, Vg the hall-activation polential,
and & the slope factor. The voltage dependence of the
whole-cell T-type channel conductance was caleulated
using the following modified Boltzmann Eq. (2):

GOV GHax

1+ cxp@[—v) )
with G{V) being the T-type channel conductance at the
command potential V.

The voltage dependence of the steady-state inactiva-
lion of Ca,3.2 channels was delermined by measuring
the peak T-type current amplitude in response to a 50 ms
depolarizing step to -30 mV applied after a 1 s-long con-
ditioning prepulse ranging from -110 mV to -15 mV in
5 mV increments. The current amplitude obtained dur-
ing cach Lest pulse was normalized Lo the maximal cur-
rent amplitude and plotted as a function of the prepulse
potential. The voltage dependence of the steady-state
inactivation was fitted with the following two-state Bolte-
mann function (3):

Imiax
V)= ——
v) 1+ explipesl (3)

with I, corresponding to the maximal peak current
amplitude and V5 to the half-inactivation voltage.

‘The recovery [rom inaclivalion was assessed using a
double-pulse protocol preceded by a 50 ms-long hyper-
polarizing prepulse to -110 mV from a holding potential
of -100 mV. The cell membrane was depolarized for 2 s at
20 mV (inactivating prepulse) to ensure complete inacti-
valion of the channel, and then to -20 mV for 150 ms (Lest
pulse) after an increasing time period (interpulse) rang-
ing between 1 ms and 8 s ab -110 mV, The peak current
from the test pulse was plotted as a ratio of the maximum
prepulse current versus interpulse interval. The data were
fitted with the following single-cxponenlial funclion (4):

1 —i
T Ax (] —exp 1_] (4)
where 1 is the time constant for channel recovery [rom
inactivation.

Computational modeling

Simulation of thalamic reticular neuron (nRT) firing was
performed using the NEURON simulation environmant
(https://senselab.med.yale.cdu/ModelDB/) [31] in the
three-compartment model previously described [32].
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The electrophysiological properties of wild-type and TG-
assoclated Ca 3.2 varlants obtained experimentally were
modeled using Hodgkin-Huxley equalions as previously
described [33] and introduced into the model. To take
into account the relative expression of Cav3.2 channels
in nRT neurons (about 40% of Ca 3.2 and 0% of Ca 33
[#4]) and the heterozygous nature of TN-assoclated
Ca 3.2 varianls, only 20% of the T-lype channel conducl-
ance described in the original model was altered with
experimental values oblained for WT and TN-associated
Ca 3.2 variants. The simulation was performed at a hold-
ing potential set to -70 mV and the electrical membrane
polential of the virlual soma was monilored in response
to a 200ms-long hyperpolarizing and depolarizing cur-
rent injection in order to assess rebound and tonic firing,

respectively.

Statistical analysis

Average dala arc presenled as meandS.EM. for »
measurements. Statistical analysis was performed using
GraphPad Prism 8. A Kolmogorov-Smirnov normal-
ity test was performed and statistical significance was
assessed using Kruskal-Wallis test with Dunn's post-
Lest. Datasels were considered significantly different for
p =0.06.

Results

Expression of TN-assoclated Ca 3.2 variants

To assess the functional impact of TH-associated CAC
NAIH variants, tsA-201 cells were transiently trans-
fected with plasmids encoding human Ca,3.2 wild-type
(W) and TN-associaled variants for eleclrophysiologi-
cal analysis. Whole-cell patch clamp recordings in tsA-
201 cells expressing wild-type (WT) and TN-associated
Ca,3.2 variants revealed that all variants were function-
ally expressed and generated a characteristic low-volt-
age-aclivaled I-type currenl similar o WU channels
(Fig. 2a—n, left panels). The maximal whole-cell macro-
scopic T-type channel conductance {G,,,) obtained from
the fit of the current-voltage relationships (Fig. 2a-n,
right panels) revealed no significant difference between
cells expressing Ca,32 varianls compared Lo cells
expressing the WT channel except for the R1674H vari-
ant were &, was reduced by 56% (p=0.0185) (Fig. 20
and Table 1).

TN-associated CACNATH varlants alter the gating
properties of Ca 3.2 channels

Wext, we aimed to assess the gating properties of TN-
associated Ca 3.2 variants. First, we analyzed the
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voltage dependence of activation of the channels. In 6
{S1871, ABO2V, FS19K, P1120L, P2280H, and E2291K)
oul of the 13 varianls analyzed. the mean hall-acti-
vation potential of the T-type current was signifi-
cantly shifted toward more hyperpolarized potentials
by — 80 mV (E2201K, p=0.0268) up to — 150 mV
{P2280H, p=0.0001) relative to WT channels which is
consistenl with a GoF of the channels (Fig. 3a-0 and
Table 1). In addition, a significant decrease of the acti-
vation slope factor (k) was observed for S187L, ABDZY,
ES19K, and P2280H variants suggesting an increased
coupling between the channel voltage-sensor and the
pore opening again consislenl with a GoF which may
be particularly relevant for voltage changes close to the
resting membrane potential where first openings of the
channel oceur (Table 1). To gain additional insights into
the electrophysiological properties of TN-assoclated
Ca 3.2 variants, we then assessed their vollage depend-
ence of inactivation. A statistically significant hyperpo-
larizing shift of the voltage dependence of inactivation
by -12.6 mV (p=0.0015) relative to WT channels was
observed for the P2280H variant and a similar trend
albeil nol stalistically signilicanl was observed [or
S1871. (— 8.6 mV, p=0.8716) and AB02V variants
{— 9.2 mV, p=0.3699) whereas the remaining variants
remained unaltered (Fig. 4a—o and Table 2). The altera-
tion of the voltage dependence of inactivation is con-
sislenl with a Lok of the channel variants although the
extent to which it may affect channel activity will largely
depend on the resting membrane potential of cells, with
a more pronounced effect in cells with a comparatively
depolarized resting potential. In contrast, the kinetics
of recovery from inactivation were aceelerated by 2.7-
fold for ABD2V (p=0.0001) and by 3.5-fold for Q1O49H
variants (p=0.0005) compared to WT channels, and
a similar trend (albeit not statistically significant) was
observed for several other variants indicative of a GoF
(Fig. 520 and Table 2).

Ca 3.2-dependent window current Is altered by
TN-assoclated CACNATH variants

Because several TH-associated Ca 3.2 variants showed
allerations in the vollage dependence of aclivalion and/
or inactivation, we aimed to assess the impact on the
T-type window current by visualizing the overlapping
area between the activation and inactivation curves
(Fig- sa—g). In all TN-associated Ca,3.2 variants for
which the vollage dependence of aclivalion and/or
inactivation was altered, the window current was dis-
placed toward more hyperpolarized potentials with
the peak-voltage shifted by — 5 mV (P1120L) up-to

167



Mustafa et al. Modacular Brain

(2022) 1507

Cumant density
DR |

=
1

=0 =]

Current dansity

PE2E0H

Cusmaim durneaiy

-
-

A ED Al L2000 2

=

A0 80 A0 -2 0 X

RapF)

R1T73GC

|

E223K

B0 GO0 -40 -20 O &0

{n =10} =-R0

\oltage (M)
-l .60 80 .20 O
]

Wiltaga [
A0 -0 -40 -20 0 W

n=17)
Fig. 2 Fepression of TH-asociated Ca, 3.7 variants. a Representative whaole-cell T-type curment traces recorded in tsA-201 cellks expeessing Ca, 3.2
wild-type (WT) in responss to 1400ms depolanring steps tovalues ranging between — 30 mb and -+ 20 mi {left panel). Comesponding mean
oument-voltage relationship (1) (rght panel) fitted with the modified Boltzrmann function (1). b-n | egend same as (a) but for cells expressing
Th-associated Ca, 3.2 vananis. The dashed line depicts the ¥V curve of the WT channel for companson. e Comesponding mean maximal
macrosropic conductance (G, ) values obtained from the fit of the YV oores

e N5}

LMl

E0 5D 40 -2 0 20

(BAIEF)

Ciirant deatpity

=

0
-
]

‘okage (mV)
A0 £ 40 FF 0020

o
i

i U

o iz

M

.r{\:--‘;1||§':4‘g£
LS E IS LSS

Page 5of 14
p
h . Woltage {m) c “okage imV)
A1 0 40 .20 0 20 P30L A0 60 40 30 § 0 S8 AN E0 40 20 020
q
2.
H
F]
5
[+]
=38 80
d e
. I Wirllez {1 ‘ol i)
A A0 A0 20 9 2 AR A0 -80 40 -2 0 m a0 A A 200 20
s = i = =
a_ y e B
i H ik
E E z
s E i
3] I5] [
n=1g) 80 in=14} 50 in=14) 80
q h i
Wollage [y Woliage (mV]
0 80 0 30 0 20 Pi120l PIGDSH

— 12 mV (P2280H) (Fig. 6h). This effect was accom-
panied by an increased magnitude of the window cur-
rent {excepl for the P2280H variant) ranging from 14%

(E2291K) up-to 165% increase (P1120L) (Fig. 6i).

TN-assoclated Ca 3.2 varlants increase neuronal firing In a

computational model of thalamic neurons

Given hal Ca,3.2 channels are highly expressed in tha-
lamic neurons where they play an essential role in
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Table 1 Steady-state activation properties of TMN-associated human Ca, 3.2 varants expressed in BsA-201 calls
Activation

Caa32 Gy (NS/F) Vg (m¥) P ke (miV) P )
WT 0844007 TRATH080 6IRH035 k3
P30 077400 > (0990 — 18124 01251 4704051 02024 15
L1EN 1014005 = (00000 BLATE 256 < (00 1474050 Q0006 17
oy 0&5 000 &89 — 41751158 05519 LA 069 »09999 19
AR 0854008 >00%0 ABEIE1.14 < 00001 1564045 Q0015 14
ES19§ 0&6-E002 > (0990 — 4509297 00208 4314053 Q0491 14
Ono4aaH 0fo40m = (e 41884242 =>00En 4590467 LI 14
P11AN 0914003 > (00990 — 49553107 000G 4231056 s 10
P1L05H 0.7 000 = (e MEIE1ED R B1/+034 02336 15
R1674H 037 1 Qo7 as WAE230 09900 6401099 ENR a
R1/36C 0&0 005 (hBGER ERENE L] 4164 FA0E0F LI 15
ooy 0720 R 1B ELI2 09900 &0B 1027 0257 15
PX2B0H L2006 =00 S3E2N < [0 38,2037 Qo5 n
F2721K 0814015 (095909 LA ER Bl )| 00P6S A91 1059 01754 17

regulating neuronal excitability [35] and considering that
the thalamus is a key relay station in the trigeminal sen-
sory pathway [36]. we aimed o simulale the [unclional
consequence of TN-associated Ca 3.2 variants on neu-
ronal electrical activities using a computational model
of reticular thalamic neuron (nRT). The simulation was
performed with Ca,3.2 varfants for which an alteration
of the vollage dependence of aclivalion and/or inacliva-
tion was observed and the original model was altered in
order to account for the relative contribution of Ca, 3.2
channels to the overall native T-type conductance and
also to account for the heterozygous nature of TH-asso-
cialed Ca 3.2 varianls (sec Methods), Simulation of the
neuronal membrane potential showed that hyperpolar-
izing current injections triggered rebound burst firing
with WT as well as with TN-associated Ca 3.2 variants
(Fig. Ta—g). However, the minimum current necessary to
trigger rebound firing (rheobase) was significantly less for
TW-associated Ca 3.2 variants (except ABDIV) compared
o W channels (Fig. 7h). Moreover, the firing frequency
was increased (Fig. 7i). In contrast, when the firing was
triggered with depolarizing current injections there was
no major cifect belween W and TM-associaled Ca, 3.2
variants (Fig. 7j—r).

Discussion

Polymorphisms in the CACNAIH gene have been
reporied in a number of human disorders [37] and GoF
mutations in Ca 3.2 are linked to primary aldosteronism
(PA) [38-40] and idiopathic generalized epilepsy (1GE)
[41]. In contrast, LoF mutations were documented in

autism spectrum disorders [42]. neuromuscular disor-
ders [43-45], and developmental and epileptic encepha-
lopathy [46].

In this study, we report the functional characteriza-
tion of 13 Ca 3.2 missense variants identified in TN
patients. Patch clamp recordings of T-type currents in
tsA-201 cells expressing recombinant TM-associated
Ca,3.2 varianls showed that all variants were funclional
with no significant alteration in their maximal macro-
scopic conductance except for the B1674H variant for
which the conductance was reduced. This effect was
not further investigated but may have been caused by a
decreased trafficking of the channel Lo the plasma mem-
brane and/or decreased stability. In contrast, of the 13
Ca 3.2 variants analyzed, & varianls (51871, ABO2V,
E&19K, 11201, P2280H, and E2291K) displayed altera-
tions in their gating properties evidenced by a recurrent
hyperpolarized shifl of the vollage dependence of acli-
vation consistent with a GoF of the channels. An addi-
tional acceleration of the recovery from inactivation
was also observed for AB02V and (Q1049H. Although
these variants showed similar alterations in their gat-
ing properlies, they did nol segregale inlo a parlicu-
lar region of Ca 3.2, Nonetheless, some of the channel
molecular determinants containing TN-associated vari-
ants are known to contribute to the pating of Ca3.2.
For instance, the 11111 loop containing variant P11201.
and the C-lerminus conlaining varianls P2280H and
F2291K were previously reported to affect the wolt-
age dependence of T-type channels [47-49], Moreover,
the GoF effect of TN-associated variants in the C-ter-
minus of Ca,/3.2 is reminiscent of what was reported
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for several variants associated with (1GE) and PA [40, GoF effect. This is consistent with previous findings in
50]. Importantly, when introduced into a computa-  varfous types of neurons showing that upregulation of
tional model of nRT neuron, the 6 variants reduced the  I-lype channel activity underlies reduced threshold for
threshold for rebound burst firing implying an overall  rebound burst firing [51-55]. While our modeling was
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performed in a computational model of nRT neurons,
it may anticipate some of the possible effects of TH-
associaled Ca 3.2 varianls on the funclioning of the
trigeminal pathway for several reasons. First, although

T-type dependent rebound burst firing has yet to be
shown in trigeminal ganglion (TG) sensory neurons, it
has been documented in dorsal rool ganglion sensory
neurons [56] and it is a possibility that it does also occur
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Table 2 Steady-state inactivation and recovery from inactivation properties of TN-associated human Ca, 3.2 variants expressad in 1sA-

201 cells
Inactivation Recovery from Inactivation

Ca3.2 Vas (m¥) P k (miV) P (n} T(ms) P {n)
Wi IO TS 4484012 14 440 15
P30l B5.95 1 267 > 05999 A75 10 >0.9999 7 705 1 200 >0.9959 5
S RIFEEL 0ENG 4101034 =0.5999 7 400439 06749 &
ey EA22 11T >0.0000 A27 1051 09900 10 kR B [IAL= W 3
Ady — M3 B0 03600 — 4162039 >0.9909 & FELE o 0000 o
FR19K B531 1 286 >0.9999 5181055 > 09909 335138 01564 5
01049H —bhbEE1./4 > 09999 — &40+ 003 > 09999 ! 185129 L0000 5
P11200 BA38 1353 099909 364 1057 > 09000 7 4891197 04634 [
P1605H — 6132 £05] =099 = 510+009 L 12 40446 0995 ]
R1&2401 61204249 > 005999 6054104 =05999 7 74103 03918 3
R1/360 — 6248403 >05999 — 350011 oomm 12 b ol >0.995% !
[Ty 64234107 = (5909 5014011 =099 12 652458 09909 8
P2B0H — AR 000 — 456103/ =0.9990 10 33442 0024 !
[2291K 65274183 = (5909 4214009 =08999 n 429480 03967 8

in TG neurons. Second, a low-threshold calcium con-
ductance (presumably mediated by T-type channels)
leading Lo calcium spikes and rebound burst firing has
been reported in neurons of the brain stem trigeminal
nuclei [57]. Third, the trigeminal pathway gates through
the thalamus in particular via the VPM where T-type
channels contribute to rebound burst firing [58]. And
finally, alleralion of thalamocortical rhythmic activilies
mediated by T-type channels has been implicated in the
development of trigeminal pain [14]. Hence, all of these
asprecls suggesl thal alleration of rebound bursl firing
caused by TN-associated Ca 3.2 variants could poten-
tially contribule Lo the sensitizalion of the trigeminal
pathway. In addition, alteration of the channel gating
properties resulted in a hyperpolarizing displacement
of the voltage dependence of the window current which
implies an increased passive influx of calcium around
the resting membrane polential of cells, Consider-
ing that the voltage range of the window current is an
important determinant of neuronal electrical activities
and calcium oscillations [59], this may further contrib-
ute to enhance neuronal activity. These data are consist-
enl with a previous report showing thal re-expression
of a GoF TN-associated Ca 3.2 variant in cultured TG
neuron increased neuronal excitability [17]. The ques-
tion then remains as to why TN patients harboring GoF
Ca3.2 variants did not show signs of 1GE or PA. Tt is
a possibility that the galing alteralions caused by these
variants and affecting only the rebound burst firing in
the absence of general alteration of the tonic firing is
not enough to cause additional disease phenotypes.

In conclusion, our functional analysis of 13 Ca, 3.2 vari-
ants identified in TN patients revealed an overall GoF
of the channel for 7 of these variants thal could polen-
tially contribute to the sensitization of the trigeminal
pathway. Although these galing effects are reminiscent
of what was previously reported for TM-associated vari-
ants in Na,1.6 [18], Ca,2.1 [21], TRPM7 [22, 23], and
TRPMSE channels [24], il is importanl o consider thal
our functional analysis in a heterologous expression
system provides only a snapshol of the phenotype of a
mutation. Hence, additional analysis of these variants
in native conditions will be necessary to further validate
Lthese (indings. Morcover, il is a possibilily that the vari-
ants for which we did not obhserve any gating alteration
will show different phenotypes in a more complex physi-
ological environment. Finally, although most of the gat-
ing alterations were in general consistent with a Gol of
the channel, il is important o consider thal one variant
was associated with a LoF suggesting that GoF pheno-
Lypes in jon channels may not represent a universal fea-
ture in TM. For instance, the expression level of SCN94
{Na,1.7) and SCNI0A (Na,1.8) is reduced in gingival tis-
sue of TN patients [9], as well as in preclinical models of
TN [11] implying a ToF phenotype, although this mecha-
nism may oocur as a prolective mechanism to normalize
neuronal excitability. Nonetheless, it is striking to note
that all patients exhibiting idiopathic TN with concomi-
Lanl conlinuous pain (i1'N-2) harbored Gokr Ca, 3.2 vari-
ants. In contrast, all Ca 3.2 variants identified in patients
with congenital TN and concomitant pain (¢TN-2) did
not cause any alteration of the channel (Table 3). While
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additional studies are necessary to assess the exact role of
Ca,3.2 in the processing of lrigeminal sensory informa-
tion, our data add to the notion that rare CACNA /H vari-
ants may contribute to the etiology of TN, In that respect,
the T-type channel blocker valproic acid was shown to be

effective to mitigate pain in some TN patients [60] sug-
gesling thal other anliepileptic T-lype channel blockers
ethosuximide, zonizamide, and nimodipine [26] should
also be considered especially in patients resistant to first
line therapies.
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Table 3 Summary of gating effects of Th-assodlated Ca 32
astlants in redation o the clinical phanotype ol patkents

Idiopathic TN**  Ca32variant Classical TN®*  Ca,3.2 variant

i E286K* TN E2MK

iTH-1 H6IR"

i R1674H cIN-2 PI0L

iTH-1 D1FFay TH-? H526¥"
TN 2 1799y

iTH-2 PLEETY cTH-2 P1605H

iN2 Ea1OK cIN-2 R1736C

iTN-2 QI cTH-2 P30L

ilN-2 PIL

-2 F228001

ILallc: GoF

Rald: LoF

Bolditaic: Neatral

TN Sapatnic Trigerninal nerig, T Classical trgeminal neurgis; (— 1),
purely parysmal; {— 2 with concoemiant continueis pain, *Accoeding 1o [17]
*saceoming 1o [25]. Two GoF varlants (51871 and ABI2V) are not Included in this
taie since their clinical phenatypa was not fully defined (stypical factal pain and
TH without furtnes Information,

Abbreviations

CTM-1: Classical tigeminal newalgla purely paregysmat cTN-2: Classical
igerninal neuralgla with conoomlant continuous paing Gok Gain-of-fundc-
ven; WGE: kiopathic generalizad epllepsy. ITN-1: kdiopathic trigerminal neural-
gl purely parceersmal; TH 2 Idiopathic tigeminal newralgla with concomitant
continuous pain; | ol- | oss-of-finction; nRT: Retioutar thalamic neuron; PA-
Primary aldosteronism; Spi: Spinal trigeminal nuclews; T0: Tigeminal gangiion;
IN: Tigeminal newalgla; VPR Ventopostenion nucleus; W: WikiHype.
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ABSTRACT

In the neurons of the dorsal root ganglia (DRG), various voltage-gated calcium channels
(VGCCs) play a role in the processing of peripheral nociceptive information, serving as
validated targets for pain therapeutics. Despite significant efforts to develop selective
pharmacological blockers of VGCC subtypes for pain management, progress in clinical
translation has been slow. Alternatively, polypharmacological blockers targeting multiple
VGCC subtypes may offer additional advantages over highly selective inhibitors due to their
synergistic activity. Previously, we identified surfen (bis(2-methyl-4-amino-quinolin-6-
vl)urea) as a broad-spectrum VGCC blocker with analgesic properties. In this study, a series
of 15 quinoline-based surfen analogs were rationally synthesized and evaluated for their
pharmacological activity on VGCCs. Our results demonstrate that compound S13 exhibits
improved cell tolerance compared to the reference compound surfen, while maintaining
blocking activities on several recombinant VGCCs subtypes, including the primary pain-
relevant Ca,2.2 (N-type) and Ca,3.2 (T-type) channels. Molecular docking analyses predicted
direct binding of S13 to Ca,2.2 and Ca,3.2, suggesting potential interactions with ion-
conducting pathways. Additional electrophysiology analyses of acutely dissociated DRG
neurons in culture confirmed the blocking activity of S13 on both native low-voltage-activated
(LVA) and high-voltage-activated (HVA) VGCCs, while sparing sodium and potassium
channels. Notably, we show that intrathecal administration of S13 in a preclinical rat model
of nerve ligation-induced mechanical allodynia produced substantial antinociceptive effects.
Altogether, these findings underscore the potential of broad-spectrum VGCC blockers for pain
therapy, and establish the quinoline-based backbone structure of S13 as the basis for the

development of novel analgesics.

KEYWORDS
Calcium channels, Voltage-gated calcium channels, Quinoline, Molecular docking, Pain,

Neuropathy
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INTRODUCTION

Voltage-gated calcium channels (VGCCs) play an essential role in processing peripheral
nociceptive information within the neurons of the dorsal root ganglia (DRG) '°. Among the
diverse VGCCs expressed in DRG neurons '*#’, two stand out as primary contributors to pain
signaling in primary afferent nociceptive nerve fibers: the low-voltage-activated (LVA) Ca,3.2
(T-type) and the high-voltage-activated (HVA) Ca,2.2 (N-type) channels. For example, Ca,3.2
channels, found in the soma and along the axon 32, drive neuronal excitability 26. Moreover,
presynaptic Ca,3.2 channels directly participate in nociceptive transmission between primary
afferent fibers and second-order neurons of the lamina I and II in the dorsal horn of the spinal
cord 2°. Likewise, Cay2.2 channels, predominantly located in presynaptic nerve terminals,
facilitate the release of key pronociceptive neurotransmitters such as glutamate, substance P,
and calcitonin gene-related peptide (CGRP) ! 2%3%3% Beyond Ca,3.2 and Ca,2.2 channels,
there is also evidence pointing to the involvement other VGCC members, especially the HVA
Cay1.2 73! and Ca,2.3 channels ¢ to the processing of peripheral nociception. Consequently,
selective inhibition of VGCC subtypes with small organic molecules or peptides has been
recognized for its potential in mediating analgesia in a wide range of preclinical rodent pain
models 273, Significant effort has been directed towards the development of selective VGCC
blockers for pain therapy. However, progress in clinical development of new drugs for chronic
pain treatment has been slow. Despite promising preclinical drug candidates, no selective
small-molecule channel blockers have received clinical approval thus far *°. The limitations of
established rodent pain models in predicting drug responses may be one factor, but it is also
evident that these molecules often fail due to their adverse side effects.

An alternative approach may hinge on broad-spectrum calcium channel blockers with
relatively lower affinity. Such molecules offer dual advantages: 1) their lower affinity may be
less harmful to tissues beyond the pain pathway, which generally display a more limited
diversity of VGCCs, and 2) their analgesic effect arises from the synergistic blocking of
multiple VGCC subtypes.

Our previous findings indicate that surfen (bis(2-methyl-4-amino-quinolin-6-yl)urea)
possesses analgesic properties in mouse models of acute and chronic inflammatory pain *.
These analgesic effects were primarily attributed to the ability of surfen to inhibit VGCCs,
irrespective of the specific channel isoform. As part of our ongoing endeavors to develop
broad-spectrum calcium channel blockers for pain therapy, we rationally designed and

synthesized a series of surfen analogs to generate structure-activity relationships, and assessed
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their pharmacological activity on heterologous and native VGCCs. Among these 16
compounds, S13 emerged as noteworthy, showing enhanced tolerance in cell toxicity assays
compared to surfen, all the while retaining its ability to inhibit VGCCs. Molecular docking
analyses provide further support for presumptive direct binding of S13 to the channels.
Importantly, in vivo evaluation of S13 revealed potent analgesic effects in a preclinical rat

pain model of neuropathic pain.
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RESULTS AND DISCUSSION

Chemical synthesis of quinoline-based compounds. The synthesis of the quinoline
derivatives S1 was performed according to the literature *> by condensation of 5-nitro-2-
aminobenzonitrile and acetone in the presence of tin tetrachloride and subsequent reduction of
the nitro group to amino with AI/Ni alloy under basic conditions (Figure 1A-B). Quinoline S1
and commercially available 4-desamino derivatives S2 were subsequently subjected to
selective N-acylation reaction at N6. Ureas S5-S11 were synthesized by reaction with
isocyanates (X=0), potassium cyanate (X = O, R?> = H) or isothiocyanates (X = S). N-Quinolin-
6-yl amides S12 and S14-S16 and carbamate S13 were prepared by N-acylation with acid

chlorides or phenyl chloroformate, respectively (see Supplemental information).

Screening of quinoline-based compounds on recombinant Cay3.2 channels. To evaluate
the pharmacological activities of quinoline-based compounds, we conducted a primary screen
on recombinant Ca,3.2 channels expressed in tsA-201 cells using patch-clamp
electrophysiology. The compounds were applied acutely at 30 uM and the steady-state
inhibition was recorded (Figure 2A). Clear trends emerged from the results. The N’-
aminoquinolinyl unit in surfen S4 can be easily substituted by the sterically similar, yet
significantly more hydrophobic, B-naphthyl unit in S6 or the sterically less demanding N’-
phenyl unit in urea S5 without losing blocking activity. The carbonyl oxygen atom in S4-S6
appeared to play a crucial role for the pharmacological action, as the thiourea S7 displayed
significantly less blocking activity. However, substituting the distal nitrogen atom in N’-
phenylurea S5 with a CH; group in phenylacetamide S12 or an oxygen atom to O-phenyl
carbamate S13 resulted only in a slight decrease in channel blocking activity, while S13 showed
a more favorable biological profile (vide infra). Urea S9, featuring the sterically significantly
different o-naphthyl group compared to surfen S4, S5, or S6, showed almost no blocking
activity, demonstrating the importance of steric features at the N’-aryl group. However,
substituting the N’-aryl unit in ureas S4-S6 with aliphatic amide groups as in S8 and S15,
benzamide units as in S14, or having no N’-substituent at all as in S10, largely abolished the
pharmacological activity on VGCCs. Finally, the importance of the free amino group at the 4-
position of the quinoline ring is highlighted by the loss of blocking activity if it is absent, as
observed in S11, or if acylated, as in S16 (Figure 2B).
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S13 is a broad-spectrum calcium channel blocker. Among the four surfen derivatives that
produced greater than 50% inhibition of Cay3.2 channels (Figure 3A), S13 showed
significantly less cytotoxicity against various human cell lines in vitro. Notably, the half-
maximal (ICso) cytotoxic concentration of S13 was approximately 5 to 7 times higher than that
of our reference compound S4 (surfen) (Figure 3B). Consequently, S13 was selected as the
lead compound for further analysis. To assess the pharmacological profile of S13 across the
voltage-gated calcium channel family, we conducted patch-clamp recordings in tsA-201 cells
expressing recombinant channels to assess S13 against Cay1.2 (L-type), Cay2.1 (P/Q-type), and
Ca,2.2 (N-type), as well as Ca,3.1, Ca,3.2, and Ca,3.3 (T-type) channels. Acute application of
S13 (30 uM) resulted in pronounced inhibition of all channels, with the exception of Ca,2.1,
which appeared to be comparatively less sensitive (Figure 4A). The time course for S13-
mediated inhibition of LVA channels was nearly instantaneous, whereas it occurred
progressively over 3 to 4 minutes for HVA channels. While we cannot totally dismiss the
possibility of two markedly different mechanisms of inhibition between LVA and HVA
channels, one possibility for this difference could be due to S13 binding to the channels with
distinct accessibility (see Molecular docking section below for in-depth discussion). Notably,
S13 blocked the two prominent channels involved in the processing of peripheral nociception,
Cay3.2 and Ca,2.2 channels, by 67% and 58%, respectively (Figure 4B). The relative 1Cso
values were approximately 17 uM (Hill coefficient 1.8) for Cay3.2 channels (Figure 4C) and
25 uM (Hill coefficient 2.5) for Cay2.2 channels (Figure 4D).

Next, we conducted a further assessment of the effects of S13 on the gating properties
of recombinant Cay3.2 and Cay2.2 channels. T-type currents recorded in Cay3.2-expressing
cells treated with 30 uM S13 for 2 minutes were significantly reduced across a wide range of
membrane potentials compared to cells treated with the vehicle (Figure 5A), and the maximal
macroscopic T-type conductance (Gmax) was reduced by 68% (p<0.0001) (Figure 5B).
Furthermore, S13 caused an additional depolarized shift of the voltage dependence of
activation by 10.0 mV (p<0.0001) (Figure 5C), along with a depolarized shift of the voltage
dependence of inactivation by 7.5 mV (p<0.0001) (Figure 5D). Likewise, S13 caused
inhibition of N-type currents in cells expressing Ca,2.2 channels (Figure SE) and decreased
the maximal N-type conductance by 44% (p=0.0004) (Figure SF). The voltage dependence of

activation remained unaltered (Figure 5G), and only the voltage dependence of inactivation
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was slightly shifted, by 3.5 mV (p=0.0038), in cells treated with S13 (Figure SH). Altogether,
these data indicate that S13 is effective in blocking several VGCC members including those

involved in the processing of peripheral nociception.

Molecular docking of S13 to Cay2.2 and Cay3.2 channels. We used computational docking
to predict binding sites for S13, focusing on the two primary pain-relevant channels, Cay2.2
and Ca,3.2 which were most strongly inhibited by S13. Because a structure of Ca,3.2 has not
yet been published, we used our previously generated homology model °. Based on
electrophysiology data showing minimal (Cay2.2) or moderate (Ca,3.2) effects on channel
gating (Figure 5), we docked S13 to the extracellular vestibule and the pore (including open
fenestrations) in each structure using Glide with enhanced sampling (see Methods). The top
scoring sites were within the central pore for Ca,2.2 (Fig 6A) and in the open fenestration
between domains IV and I for Ca,3.2 (Fig 6B). Each of these sites were then redocked using
the Schrédinger Induced-Fit (flexible-receptor) protocol, resulting in improved docking scores
for both targets due to optimization of favorable contacts (Fig 6A-D). In both receptors, the
best S13 pose is predicted to contact residues in the domain I S6 helix, partially obscuring the
ion-conducting pathway, albeit with S13 in different orientations (Fig 6C-D). This site differs
from ligand binding sites observed in Cay2.2 and Cay3.1 or Ca,3.3 structures to date. Cryo-EM
structures of Cay2.2 showed that PD173212 and “blocker 1” bound within the open DIII-DIV
fenestration and partially within the pore ®. One overlap does occur for predicted S13 and bound
PD173212 which are both within hydrophobic contact distance of the Phe345 side-chain (Fig
6E). In the cases of Ca,3.1 with bound Z944 >! and Ca,3.3 with mibefradil, otilonium bromide,
or pimozide '°, these ligands bind to the central pore and also enter into fenestration DII-DIII
to varying degrees (Fig 6F). In the Ca,3.2 model, S13 docks in the pore and the DIV-DI
fenestration (Fig 6F). In this pose, S13 is in the vicinity of two conserved contacts made by
mibefradil and pimozide at Asn412 in DI-S6 (Asn388 in Cay3.1, Asn391 in Cay3.3) and at
Leul851 DIV-S6 (Leul891 in Ca,3.1, Leul791 in Cay3.3). Interestingly, Cryo-EM structures
have uncovered changes in pore-lining S6 helices with ligand binding, such as a/x transitions

46.50.51 "straightening of kinks *°, and axial rotation °!. S6 transitions have also been observed

in other p-loop channels, including the highly structurally related Nays '3 44 4

, and may impact
opening and closing of the intracellular gate * *. Thus, interaction with the S6 helix suggests
that S13 could impair calcium current via direct channel block as well as through restriction of

conformational transitions of the DI-S6 helix. Further, the predicted fenestration site for S13
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for Ca,3.2 is also of interest as the fenestrations, first proposed 45 years ago by Hille '¢, have
been found to be utilized to anchor various channel inhibitors and drugs within the pore of both
Cay % 154651 and Nay channels -2!:2% 4% demonstrating the importance of these sites for drug
targeting. Recent studies in Nay channels suggest that opening and closing of these hydrophobic
drug access pathways may also be linked to o/m transitions and kinking in the S6 helices > *?
highlighting additional layers of complexity to inhibition of voltage-gated channels and raising
a third possible mechanism for channel block by S13.

Finally, we venture to speculate that the slower onset of inhibition by S13 observed for
Ca,2.2 channels could be due to slower entry into the pore or effects of VGCC ancillary
subunits Cayf3 and Cay020. We did not investigate docking to the latter based on the ability of
S13 to inhibit T-type channels, which are typically impervious to regulation by Cay ancillary
subunits 22, Finally, we also note several caveats of our in-silico studies. In addition to the
obvious predictive nature of docking and uncertainties in homology modeling, we note that the
Cay structures are missing about 40% of the amino acids (mainly the intracellular loops)
precluding investigation into possible ligand binding sites in these regions. Thus, although our
docking models are intriguing, the predicted binding sites remain to be experimentally

validated.

S13 blocks voltage-activated calcium currents in DRG neurons but not sodium and
potassium currents. Next, our aim was to confirm that S13 not only inhibits recombinant
calcium channels but is also effective on native channels in cultured mouse DRG neurons. We
assessed the effects of S13 on voltage-activated calcium currents in medium-sized DRG
neurons, corresponding to thinly myelinated nociceptive Ad fibers known to express both LVA
and HVA calcium channels 2. In line with our observations on recombinant VGCCs, acute
application of 30 uM S13 resulted in a significant reduction of both LVA and HVA calcium
currents (Figure 7A). The maximal steady-state inhibition was 62% and 64% for LVA and
HVA currents, respectively (Figure 7C). Our findings, showing that S13 effectively inhibits
LVA calcium currents, confirm its action on native Cay3.2 channels since Cay3.2 is the primary
T-type channel isoform responsible for carrying LVA currents in DRG neurons 2. On the other
hand, the HVA calcium conductance in rodent DRG neurons comprises a combination of N-
type (39%), P/Q-type (20%), L-type (22%), and R-type (19%) currents '4. Therefore, our
observation that S13 blocked 64% of the total HVA current suggests that S13 is also effective
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on multiple native HVA channels, as none of them individually accounts for more than 40% of
the total HVA current conductance. In contrast, S13 had very minimal effects on total voltage-
activated sodium and potassium currents (Figure 7B), causing only 8% and 9% inhibition,
respectively (Figure 7C). Nonetheless, we note that S13 induced a mild yet consistent
slowdown of the inactivation kinetics of the sodium current. Altogether, these findings confirm
that S13 primarily functions as a broad-spectrum VGCC blocker, effectively reducing the

calcium conductance in nociceptive DRG neurons.

S13 shows antinociceptive effects in a preclinical pain model of SNL-induced mechanical
hyperalgesia. The data above revealed that pronociceptive VGCCs are the primary target of
S13. Therefore, we sought to determine whether treatment with S13 would demonstrate
efficacy in a preclinical rat model of neuropathic pain induced by spinal nerve ligation (SNL).
SNL induces partial denervation of the sensory zone of the spinal nerve, resulting in mechanical
allodynia as evidenced by a pronounced decreased of the paw withdrawal thresholds (PWT)
within 10 days post-surgery (Figure 8A). In this allodynic state, intrathecal treatment of male
animals with S13 (10 pg/5ul) resulted in a significant increase in PWT within 1 h after
treatment (Figure 8A). The reversal of allodynia persisted for approximately 3 h post-
treatment, as evidenced by the increase of the PWT integral compared to vehicle-treated
animals (Figure 8B). We then conducted a similar experiment with female rats to determine
whether there were any sex-based differences in the analgesic effects observed for S13. As
shown in Figure 8C-D, S13 was also effective at reversing mechanical hyperalgesia in female
rats, indicating that its analgesic actions in rats are independent of sex. Collectively, these data

demonstrate the antinociceptive potential of S13 in experimentally induced neuropathic pain.
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CONCLUSIONS

Previous studies have documented the analgesic effects of mixed VGCC blockers. For
example, A-1264087, which acts as a mixed blocker of Ca,2.1, Ca,2.2, and Ca,3 channels, has
been shown to mitigate SNL-induced mechanical hyperalgesia *> 32, Similarly, TROX-1
exhibits inhibition of Ca,2.1, Ca,2.2, and Ca,2.3 channels with comparable efficacy *! and has
been demonstrated to reverse inflammatory-induced hyperalgesia and nerve-injury-induced
allodynia 2%, In addition to these synthetic compounds, the natural product physalin F serves
as a dual blocker of Cay2.2 and Cay2.3 channels, offering relief from mechanical hyperalgesia
in rodent models of neuropathic pain **. Moreover, indirect modulation of Ca,2.2 channels with
a peptidomimetic was shown to be analgesic in models of neuropathic and inflammatory pain
13 In this study, we introduce S13, a promising quinoline-based compound that exhibits activity
against several pronociceptive VGCCs. S13 effectively inhibits voltage-activated calcium
currents in nociceptive DRG neurons while sparing sodium and potassium currents. Notably,
S13 demonstrates substantial potential as an analgesic agent in a preclinical rat model of SNL-
induced neuropathic pain, successfully alleviating mechanical allodynia in both male and
female animals. These findings further underscore the therapeutic promise of broad-spectrum
calcium channel blockers in mitigating neuropathic pain and suggest that the quinoline
backbone structure may serve as a valuable platform for the development of novel derivatives

with analgesic properties for further preclinical investigation.
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MATERIAL AND METHODS

Synthesis of quinoline-based compounds. See Supplemental information.

Compound preparation. All compounds were dissolved in DMSO at a stock concentration of
30 mM, aliquoted, and stored at -20°C. For patch clamp recordings, compounds were diluted
directly into the bath solution at the desired concentration, ensuring that the final DMSO

concentration never exceeded 1/1000.

Heterologous expression of voltage-gated calcium channels. Human embryonic kidney tsA-
201 cells were grown in DMEM high glucose medium supplemented with 10% (v/v) heat-
inactivated fetal bovine serum and 1% penicillin/streptomycin (all media purchased from
Invitrogen) and maintained under standard conditions at 37°C in a humidified atmosphere
containing 5% COas. Cells were transfected using the calcium/phosphate method with plasmid
cDNAs encoding for the human Cay1.2 and Cay2.1 (along with Ca,f and Caya28-1 ancillary
subunits), Cay3.1, Cay3.2, and Cay3.3 channels. Patch-clamp recordings were performed 72h
after transfection. The CHO cell line stably expressing the rat Ca,2.2 channel is a generous gift

from Dr. Klugbauer (University of Freiburg) and was previously described *°.

Isolation of DRG neurons. Lumbar [4-L6 dorsal root ganglia (DRGs) from adult C57 male
and female mice were harvested has previously described *® and dissociated enzymatically with
I mg/mL collagenase (Sigma-Aldrich) in DMEM medium for 1 h at 37°C, followed by
mechanical trituration. Cells were seeded onto 12 mm glass coverslips coated with Poly-L-
Lysine (Sigma-Aldrich) in DMEM medium supplemented with 10% FBS and 1% penicillin-
streptomycin (Thermo-Fisher). The cells were maintained at 37°C in 5% CO» for 24 h before

patch-clamp recordings.

Whole-cell patch clamp recordings (manual). Whole-cell patch clamp recordings were
performed at room temperature (18-22 °C) using an Axopatch 200B amplifier in voltage-clamp
mode and acquisition was performed using pClamp 10 (Axon Instruments). The linear leak
component of the current was corrected using a P/4 subtraction protocol and current traces were
digitized at 10 kHz and filtered at 2 kHz. Recording of recombinant VGCCs was performed in

a bath solution containing (in millimolar): 5 BaCl,, 5 KCl, 1 MgCl, 128 NaCl, 10 TEA-CI, 10
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D-glucose, 10 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.2 with
NaOH). Patch pipettes were filled with a solution containing (in millimolar): 110 CsCl, 3 Mg-
ATP, 0.5 Na-GTP, 2.5 MgCl,, 5 D-glucose, 10 EGTA, and 10 HEPES (pH 7.4 with CsOH),
and had a resistance of 2—4 MQ. For recording of VGCCs in DRG neurons, the extracellular
solution contained (in mM): 2 CaCl,, 160 TEA-CI, 10 Glucose and 10 HEPES (pH 7.4). The
intracellular solution contained (in mM): 134 CsCl, 10 EGTA, 10 HEPES, 4 Mg-ATP and 0.1
Leupeptin (pH 7.2). For recording of voltage gated sodium channels in DRG neurons, the
extracellular solution contained (in mM): 128 NacCl, 2 CaCl,, 5 KCl, 1 MgCl,, 10 TEA-CI, 10
Glucose and 10 HEPES (pH 7.4). The intracellular solution contained (in mM): 110 CsF, 2.5
MgCl,, 5 Glucose, 10 EGTA, 10 HEPES, 3 Mg-ATP, 0.5 Na,-GTP (pH 7.4). For recording of
voltage-gated potassium channels in DRG neurons, the extracellular solution contained (in
mM): 138 NaCl, 2 CaCly, 5 KCI, 1 MgClz, 10 Glucose and 10 HEPES (pH 7.4). The
intracellular solution contained (in mM): 140 KCl, 4 NaCl, 1 MgCl,, 10 EGTA, 10 HEPES and
2 Nax-GTP (pH 7.4).

Whole-cell patch clamp recordings (automated). Some of the recordings of recombinant
Cay3.2 and Ca,2.2 channels (presented in Figure 5) were conducted using the SyncroPatch
384PE (Nanion) at room temperature (18-22°C). Pulse generation and data acquisition were
carried out with PatchControl384 v1.9.7 software (Nanion) and the Biomek v1.0 interface
(Beckman Coulter). The extracellular solution contained (in mM): 10 CaCl,, 140 NaCl, 4 KCl,
1 MgCly, 5 Glucose and 10 HEPES (pH 7.4). The intracellular solution contained (in mM): 10
CsCl, 110 CsF, 10 NaCl, 10 EGTA, and 10 HEPES (pH 7.2).

Electrophysiological analysis. The voltage dependence of activation of recombinant Cay3.2
and Cay2.2 channels was determined by measuring the peak of the currents in response to
depolarizing steps from a holding potential of -120 mV (Ca,3.2) and -100 mV (Ca,2.2). The
current-voltage relationship (//V) curve was fitted with the following modified Boltzmann

equation (1):

A 1) = Gmax — ¥ —VTeY)
T+ o (vo.sk— %)
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with I(V) being the peak current amplitude at the command potential V, Gy the maximum
conductance, V., the reversal potential, Vo 5 the half-activation potential, and 4 the slope factor.
The voltage dependence of the whole-cell calcium conductance was calculated using the

following modified Boltzmann equation (2):

Gmax

5—V)

2 )=
1+ exp (Vo. T

with G(V) being the conductance at the command potential V. The voltage dependence of the
steady-state inactivation was determined by measuring the peak of the current amplitude in
response to a 200 ms depolarizing step to +10 mV (Cav3.2) and +40 mV (Ca,2.2) applied after
a 1 s-long conditioning prepulse ranging from -120 mV to +80 mV. The current amplitude
obtained during each test pulse was normalized to the maximal current amplitude and plotted
as a function of the prepulse potential. The voltage dependence of the steady-state inactivation

was fitted with the following two-state Boltzmann function (3):

Imax

3 IV)= -
1+ exp =V05) kVO'S)
with /max corresponding to the maximal peak current amplitude and Vo s to the half-inactivation

voltage.

Cytotoxicity assay. Cervix cancer (Hela), hepatocellular carcinoma (Hep G2), acute
lymphoblastic leukemia (CCRF-CEM), and acute promyelocytic leukemia (HL-60) human cell
lines were purchased from ATCC (LGC Standards Sp. z 0.0., Poland). HeLa cells were cultured
in DMEM high glucose medium, CCRF-CEM and HL-60 cells in RPMI-1640 medium (Dutch
modification), and Hep G2 cells in aMEM medium supplemented with 10% (v/v) heat-
inactivated fetal bovine serum (FBS) and 2 mM glutamine at 37°C in a humidified atmosphere
containing 5% CO;. All media and supplements were purchased from Sigma-Aldrich. The
CellTiter-Glo® 2.0 Cell Viability Assay kit (Promega) was used to measure the cytotoxicity of
tested compounds. Following the seeding of cells (20 pL) into white 384-well plates (Thermo

Fisher Scientific Nunc™), cells were grown for 24 h before the addition of compounds or
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DMSO (used as a vehicle control) into each well. Post 72 h treatment, CellTiter-Glo® reagent
(20 pL) was added to each well, and the content was mixed on an orbital shaker in the dark for
2 min at 400 rpm. Subsequently, the luminescent signal was allowed to stabilize for 10 min at
room temperature. Luminescence readings were taken using a microplate reader (Cytation 3,
BioTek, USA). In this assay, the luminescence directly correlates with the cell number.
Cytotoxicity is expressed using ICso values, representing the concentration of a tested
compound that reduces the number of viable cells by half. The data were normalized, and ICso
values were calculated using nonlinear regression analysis, assuming a sigmoidal

concentration-response curve with a variable Hill slope (GraphPadPRISM® 7 software).

Molecular docking analysis. Protein and ligand preparation and docking were conducted
using the Schrodinger Docking Suite (Schrodinger Release 2023-2: Schrodinger, LLC, New
York, NY, 2023). Ligands were prepared using LigPrep with possible ionization states at pH
7.0 3. The cryo-EM structure of Ca,2.2 (PDB ID: 7mix '?) was prepared using the Protein
Preparation Wizard **. The homology model of Cay3.2 was described previously °. Docking
was conducted using Glide in Standard Precision (SP) mode with enhanced sampling (4x) to
obtain up to 100 poses per site ''. Schrodinger Induced-Fit Docking (IFD) was used for flexible
receptor docking *’. In this approach, 20 docking runs are each followed by optimization of the
amino acid positions and conformations within 5 A of the newly docked site, and the resulting

ligand-receptor complexes are ranked by the energies of the resulting induced-fit complexes.

Animals. All experiments and procedures were performed in accordance with the guidelines
recommended by the National Institutes of Health, the International Association for the Study
of Pain, and the National Center for the Replacement, Refinement, and Reduction of Animals
in Research (NC3Rs) guidelines. Pathogen-free adult male and female Sprague-Dawley rats
(100-150 g; Charles River Laboratories, Wilmington, MA) were used for behavioral
experiments. Animals were housed in the New York University’s Kriser Dental Center Animal
Facility in light/dark cycle (12-h light: 12-h dark cycle; lights on at 07:00 h) and temperature
(23 +3°C) controlled rooms, with standard rodent chow and water ad /ibitum. The Institutional
Animal Care and Use Committees of the College of Dentistry at New York University

approved all experiments.
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L5/LL6 spinal nerve ligation. Male and female rats (~150 g) were deeply anesthetized with
isoflurane (4% for induction and 2% for maintenance). The lower half of the animal’s back
was shaved. After surgical preparation, the left L5 and L6 spinal nerves were exposed by
removing the paraspinal muscles and ligated with a 5-0 silk suture in a region distal to the DRG
17 After hemostasis was confirmed, muscle and fascia were closed in layers using 5-0
absorbable suture, and the skin was closed with wound clips. Animals were allowed to recover

for 10 days.

Intrathecal administration. Ten days after spinal nerve ligation, S13 was injected
intrathecally (10 pg/5 pL) between L4/L5 intervertebral level into isoflurane anesthetized rats

(4% for induction and 2% for maintaining) and behavior was measured every hour for 6 hours.

Measurement of mechanical allodynia. Mechanical allodynia was assessed by measuring
rats’ paw withdrawal threshold in response to probing with a series of fine calibrated filaments
(von Frey, Stoelting, Wood Dale, IL). Rats were placed in suspended plastic cages with a wire
mesh floor, and each von Frey filament was applied perpendicularly to the plantar surface of
the paw. The “up-down” method (sequential increase and decrease of the stimulus strength)
was used to determine the withdrawal threshold Dixon’s nonparametric method was used for
data analysis, as described by Chaplan et al. 3. Data were expressed as the paw withdrawal

threshold. Mechanical allodynia was manifested as a decrease in paw withdrawal threshold.
Data analysis and statistics. Data values are presented as mean + S.E.M for n measurements.

Statistical significance was evaluated by one-way or two-way ANOVA followed by a Turkey’s

test with GraphPad Prism 7 and datasets were considered significantly different for p<0.05.
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FIGURE LEGENDS

Figure 1. Synthesis of quinoline-based compounds. (A) Schematic diagram of the various
quinoline-based compounds synthesized and tested for their effects on voltage-gated calcium

channels. (B) Chemical characteristics of synthesized compounds.

Figure 2. Screening of quinoline-based compounds on recombinant Cay3.2 channels. (A) Mean
percentage of current inhibition produced by acute application of 30 puM quinoline-based
compounds (n = 4-6 per compound). T-type currents were elicited by a step depolarization to
-20 mV from a holding potential of -100 mV. (B) Summary of the structure-activity

relationship (SAR). The structure of surfen (S4) is shown as reference compound.

Figure 3. In vitro cytotoxicity of quinoline-based compounds. (A) Structures of the four most
potent compounds (S5, S6, S12, and S13) for their blocking activity on recombinant Ca,3.2
channels. The structure of S4 (surfen, reference compound) is shown for comparison. (B)
Corresponding mean half-maximal cytotoxic concentration (ICso) on several human cancer
cells and primary fibroblasts (n = 3 per compound). CCRF-CEM, human lymphoblastic
leukemia; HeLa, human cervical carcinoma; HepG2, human liver cancer; HL-60, human

promyelocytic leukemia.

Figure 4. Pharmacological evaluation of S13 across recombinant voltage-gated calcium
channels. (A) Representative time course of current inhibition along with whole-cell current
traces recorded from cells expressing LVA (Cay3.1, Ca,3.2, and Cay3.3) and HVA (Cay1.2,
Ca,2.1, and Ca,2.2) channels in response to a step depolarization to -20 mV (LVA channels)
and +10 mV (LVA channels) from a holding potential of -100 mV, before (black traces) and
after (blue traces) acute application of S13 (30 uM). (B) Corresponding mean percentage of
maximal current inhibition (n = 4-6 per channel). (C-D) Corresponding dose-response curves

of S13 for Ca,3.2 and Ca,2.2 channels (n = 16-25 for each concentration).

Figure 5. Effects of S13 on the gating properties of recombinant Ca,3.2 and Ca,2.2 channels.
(A) Mean current-voltage (//V) relationships of recombinant Ca,3.2 channels recorded by

automated patch-clamp in cells pre-treated for 2 min with vehicle (DMSO) and 30 uM S13
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(blue symbols). The continuous lines represent the fit of the //V curves with the modified
Boltzmann Eq. (1). (B) Corresponding mean maximal macroscopic conductance values (Gmax)
obtained from the fit of the I/} curves. (C) Corresponding mean normalized voltage
dependence of activation of Ca,3.2 channels fitted (continuous lines) with the modified
Boltzmann Eq. (2). The inset shows the mean half-activation potential values obtained from
the fit of the conductance curves. (D) Mean normalized voltage dependence of steady-state
inactivation of Ca,3.2 channels fitted (continuous lines) with the two-state Boltzmann Eq. (3).
The inset shows the mean half-inactivation potential values obtained from the fit of the
inactivation curves. (E-H) Legend same as (A-D) but for recombinant Cay2.2 channels.
Statistical significance was evaluated by one-way ANOVA in comparison to vehicle-treated

cells.

Figure 6. Molecular docking of S13 on Cay2.2 and Ca,3.2 channels. (A-B) Cay2.2 structure
(PDB ID: 7mix) '? and Ca,3.2 homology model ° with top docking poses from Glide enhanced
sampling (black lines) and from induced-fit (black sticks). The docking scores are given in
kcal/mol, bold for induced-fit results. (C-D) Close-up views of best induced-fit poses for each
structure (view rotated by 90° from top panels), with potential contacts within 4 A shown as
dashed lines. Domains colored as indicated, key helices labeled for domain I in lower panels.
(E) Close-up view from the extracellular side showing best induced-fit pose for Cay2.2 overlaid
with structures of Cay2.2 with bound PD173212 (PDB ID: 7vfv) and “blocker 1 (PDB ID:
7vfw) 8. (F) Close-up view as in (E) showing best induced-fit pose for Ca,3.2 overlaid with
structures of Cay3.1 with bound Z944 (PDB ID: 6kzp) °! and Ca,3.3 with bound mibefradil,

otilonium bromide, or pimozide (PDB IDs: 7wlj, 7wlk, 7wli, respectively) '°.

Figure 7. Effects of S13 on native voltage-gated calcium (Cay), sodium (Nay), and potassium
(Kv) channels in DRG neurons. (A) Representative calcium current traces recorded in medium-
sized DRG neurons in response to a step depolarization to -40 mV (LVA) channels, left panel)
and +10 mV (HVA channels, right panel) from a holding potential of -100 mV, before (black
traces) and after (blue traces) acute application of S13 (30 uM). (B) Legend same as (A) but
for sodium (left panel) and potassium (right panel) currents elicited by a step depolarization to

-10 mV and +50 mV, respectively. (C) Corresponding mean percentage of current inhibitions.
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Figure 8. Analgesic effect of S13 on nerve injury-induced mechanical hyperalgesia. (A)
Mean paw withdrawal threshold (PWT) in adult male rats before (BL, base line), and after 10
days following spinal nerve ligation (Pre-drug). A single intrathecal injection of S13 (10 pg/5
pL, blue circles) produced a significant reduction of mechanical allodynia, which was not
observed in control animals injected with saline (open circles). (B) Corresponding mean
integral of the PWT measured over 6h following drug treatment. (C-D) Legend same as (A-
B) but for female rats. Statistical significance was evaluated by two-way ANOVA followed
by Turkey’s post hoc test in comparison to vehicle-treated animals (panels A and C), and by

Mann-Whitney test (panels B and D).
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