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Introduction
Supernova SN1987A was the first supernova visible by the naked eye since 1600s
unique by many properties. For us the interesting anomaly is the triple-ring neb-
ula surrounding the supernova. Given it’s non-spherical but axially symmetrical
nature, one proposed explanation is binary merger of two progenitor stars.

Our goal is to create hydrodynamic simulation of the binary merger using
mesh-based Athena++ resulting in ejected mass in directions of the three rings.
The model is simplified, we simulate only the envelope of common envelope evo-
lution, the binary itself is in the excised inner region and approximated by spher-
ically symmetrical initial conditions and gravitational potential. The effects of
the spiral-in on the envelope is simplified into two stages, first is slow transfer of
angular momentum, and second is injection of energy corresponding to the final
collision of the binary.

Similar setup was used in previous work T. Morris and Ph. Podsiadlowski
2006 and Morris and Ph Podsiadlowski 2009 using particle-based GADGET. We
use the same two stages and similar initial conditions, with adjustments for static
gravitational field. We will simulate subset of their parameter study including the
SN1987A model specifically. We shall than compare results, mainly the amount
of ejected mass in given directions.

Section 1 introduces reader to SN1987A, its progenitor and binary mergers.
Section 2 introduces Athena++ hydrodynamic code and basic principles behind
it, which are used for our simulation. At the end follows quick overview of GAD-
GET for comparison. Section 3 describes specifics of our model of common en-
velope evolutions. Section 4 demonstrates the results gained from our simulation
and compares them.
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1. SN1987A and binary mergers

1.1 SN1987A
Type II Supernova SN1987A in Large Magellanic Cloud close to Milky Way was
the first supernova visible to the naked eye since 1604. Its unique proximity al-
lowed its study in great detail. It was the first case of neutrinos we measured com-
ing from a supernova, confirming role of neutrinos in star core collapse (Philipp
Podsiadlowski 1992). Most importantly for us, the supernova is surrounded by
complex nebula hinting at its past.

1.1.1 Progenitor
Its progenitor was blue supergiant Sk –69◦202. This on its own is unusual for
Type II supernova, which were though to come from red supergiants. Since then
observations of other supernovae with blue supergiant as a progenitor became
more common, with 1–3 % core–collapse supernovae being photometrically similar
(McCray and Fransson 2016). Still, good progenitor model must be able to
explain this anomaly.

1.1.2 Nebula
The supernova is surrounded by low-density complex axisymmetric nebula, whose
3D structure was measured from echoes of the supernova bouncing of the sur-
rounding gas (Sugerman et al. 2005). The major high-density features of the
full nebula is easily visible triple-ring nebula consisting of 3 axisymmetric rings,
bright equatorial ring and two dimmer rings north and south. Sizes and speeds
of these ring suggest that these rings are result of single astronomical event in
near past, 10’000s years ago.
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Figure 1.1: Rings of SN1987A taken by Hubble Space Telescope. (NASA, ESA,
and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and
Betty Moore Foundation) and P. Challis (Harvard-Smithsonian Center for As-
trophysics) 2017)

1.2 Possible models explaining anomalies
Philipp Podsiadlowski 1992 explored anomalies of SN1987A and possible expla-
nations, in short the main anomalies are:

• Compactness of the progenitor, Type II supernova are expected be result
of red supergiants, instead of relatively compact blue supergiant

• The surrounding nebula and its axisymmetricity, likely result of rapid ro-
tation flattening the envelope

• Chemical anomalies in both progenitor and the rings, they both contain
excess of s-process elements in the otherwise hydrogen-rich envelope

No single model so far can explain all these anomalies. Main problem lies with
the chemical anomalies. However models which can explain the most anomalies
are binary models: accretion and merger models. In this paper we focus on the
merger model.
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1.3 Binary mergers

1.3.1 Common Envelope
Many stars exist in close binaries. As one star ages and increases volume of its
envelope, in close binary system it may overflow its Roche lobe and start mass
transfer to the other star (Metzger and Pejcha 2017). With the mass transfer the
other star may overflow its Roche lobe as well, creating common envelope that is
not bound to either star on its own.

Stars in the common envelope will experience drag from the surrounding enve-
lope gas, slowing down the stars and causing them to spiral in. Which continues
until the stars’ cores merge. Alternatively one of them may explode earlier due
to accretion, which may be another possible explanation of SN1987A’s rings. We
focus on the merger model.

As the stars spiral inwards, they have to get rid of excess angular momentum
and kinetic energy into the surrounding envelope. The angular momentum is
transferred slowly during the whole spiral-in. The kinetic energy dissipated during
the early spiral-in is minimal, most of the kinetic energy is transferred in the last
stages of the spiral-in (T. Morris and Ph. Podsiadlowski 2007).

We can thus model the spiral-in transfer as firstly only transfer of angular
momentum. This happens slowly and so the angular momentum spreads over
the whole envelope to form flattened envelope. Then during the core merger
there is fast injection of energy into inner regions of the envelope.

1.3.2 Ejection of envelope
The energy is injected into the envelope near its core. Since the envelope is
flattened, the shock has easier path to outside of the envelope in the polar region.
Once it reaches the edge, the energy of the shock ejects some of the envelope’s
mass.

In the equatorial region, there is much more mass in the way which dissipates
the energy of the shock, leaving (almost) no remaining energy once the shock
reaches the edge of the envelope.

At the border of these two extremes, there are latitudes where the mass will
be already ejected outside of the envelope, but additional ejected mass can be
added from neighboring envelope. We would then expect that at such latitude
we would observe density peak, which could explain the non-equatorial rings of
SN1987A.

In cases with larger injection of energy, the shocks may not be dissipated
through the equatorial region and will reach the farthest edge of the envelope.
Since the outer regions of envelope are already loosely bound, this would result in
mass ejection of equatorial region as well. Though the equatorial ring of SN1987A
is expected to be result of later processes (T. Morris and Ph. Podsiadlowski 2006).
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(a) Overflow of Roche lobe.

(b) Binary spirals in, sharing the envelope.

(c) Binary merger, partially ejecting the envelope.

Figure 1.2: Common envelope evolution of binary merger.
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2. Hydrodynamic codes,
Athena++

2.1 Hydrodynamic equations
To simulate the evolution of binary merger, we will represent the envelope as a
fluid. We need to solve the equations of hydrodynamics, expressing conservations
of mass, linear momentum and energy:

∂ρ

∂t
+ ∇ · ρv = 0 (2.1)

∂ρv
∂t

+ ∇ · (ρvv + P I + T) = −ρ∇Φ (2.2)
∂E

∂t
+ ∇ · ((E + P )v + T · v) = −ρv · ∇Φ (2.3)

The energy density E is related to internal energy density e as E = e + 1
2ρv2.

Pressure P can be expressed as P = (Γ − 1)e. Γ = 5
3 is the adiabatic index. T is

the viscous stress tensor, which will be zero because our model will not contain
viscosity. Φ is the gravitational potential, we will be using point mass potential:

Φ = −GM

r
(2.4)

2.2 Athena++
Athena++ (Stone et al. 2020), is mesh–based magneto-hydrodynamic code. It
supports complicated mesh refinements, however we will be using a simple grid
in spherical coordinates with pure hydrodynamics.

In Athena++ the simulation is represented by grid of cells spanning the whole
simulated region. Each cell is defined by intervals in the 3 spacial coordinates,
resulting in cubes in Cartesian coordinates, and cube-like volume in spherical
coordinates. Each cell contains single value for each of conserved values: mass,
energy and linear momentum in each spacial direction. The values are normalized
by volume of the cell.

In our case of simple spherical grid the cells are uniformly distributed for the
angular coordinates. For the radial direction, size of the cells is exponential, each
following cell is x-times longer than previous, x = 1.004 in our case. Inner region
of the spherical grid will have smaller cells than outer regions. Otherwise if the
radial direction would be uniform as well, the ratio of cell length and width would
vary drastically, because width in angular coordinates depends on distance from
center.

The whole grid is updated in a uniform timestep. During this step, new values
are computed from previous values of any given cell and its neighbours using a
Riemann solver. The length of the timestep is limited by sizes and velocities of
cells. Because each cell is updated only from its neighbours, no mass can cross
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the entire cell during a single timestep. This way we come to the upper limit on
timestep length τ :

For all cells: ∀i : τ ≤ di

vi

(2.5)

where i ∈ 1, 2, 3 is a index of a coordinate, di and vi are cell width and velocity
of a cell in given coordinate.

To improve stability, the timestep is further limited by a constant CFL num-
ber, which we set to C = 0.5:

For all cells: ∀i : τ ≤ C
di

vi

(2.6)

2.2.1 Polar averaging
Limitation of timesteps based of dimensions of cells works well with uniform
grids. However with spherical grid the cells in polar region are squished along
azimuthal direction. Thus even if the velocities in polar cells are smaller than
velocities in equatorial region, they still limit timesteps to a magnitude smaller,
simply because polar cells are smaller.

Figure 2.1: In polar region, width of azimuthal direction (blue) is relatively small,
as opposed to latitudinal direction in red, leading to small cross times.

Since we are not interested in polar region, we can increase timesteps by
unifying polar cells along azimuthal coordinate into several larger cells. This is
not directly possible in upstream version of Athena++, but we use modification
implemented by my advisor Damien Gagnier (Gagnier and Pejcha 2023). It does
not unify directly, but after each step it averages values along the conceptually
unified cells. Given that the problem is almost symmetrical, the cells should have
similar values, and the averaging should not have any effect outside of larger
possible timesteps.
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Figure 2.2: Polar averaging/unifying to increase width of azimuthal direction of
polar cells.

2.2.2 Simulation
The whole grid is divided into blocks, typically each block contains 64x64x64
cells. Each block, for a single timestep, can be computed independently. This
allows the computation to be distributed across multiple threads/computers using
OpenMPI. Each thread gets at least one block. Because the updates are local,
only the boundary cells must be shared after each update.

Each block contains two layers of boundary ghost cells in each coordinate
direction. Ghost cells are not modified directly by the update, but their values
are used to update cells which would otherwise lack neighbours. They convey
information about the outside region. If the outside region is another block,
ghost cells contain copy of boundary cells in the other block. If the outside
region is outside of the whole simulated region, then the ghost cells are set to
fulfill a boundary condition.

2.3 Riemann Problem
Single dimensional Riemann problem (Toro 2009) is characterized by two regions,
each with uniform initial conditions, divided by single discontinuity. The solution
contains several moving points of discontinuity, called shocks. Simplest example
is the shock tube problem, where initially the two regions differ by density.

In our simulation Riemann problem corresponds to two cells next to each
other, where the discontinuity separates them.
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2.3.1 Riemann Solvers
If the hydrodynamic equations are linear we can solve the problem exactly. In
general, the hydrodynamic equations are not linear, and thus we have to approx-
imate.

There are several Riemann solvers such as Roe, HLLE, HLLC, each approxi-
mating differently, resulting in different properties. We used the default solver in
Athena++ HLLC.

2.4 Alternative code – GADGET
GADGET (Springel 2005) is code supporting hydrodynamic simulations using
smoothed-particle hydrodynamics. It is used for papers T. Morris and Ph. Pod-
siadlowski 2006 and Morris and Ph Podsiadlowski 2009 which we try to replicate
using Athena++.

GADGET’s particles have a smoothing radii, each particle interacts with par-
ticles inside the radii. The smoothing radius is updated to contain almost con-
stant number of neighbours. From the radius and particles inside it, the local
density and pressure are computed. The pressures are then used to determine
acceleration of the corresponding particle.

Differences:
GADGET:

• Self-gravity: One of GADGET’s purposes is to simulate interacting galaxies,
it thus supports self-gravity, gravity caused by the particles themselves,
using tree data structures for approximation of distant regions.

• GADGET’s particles can move arbitrarily far, not limited by a simulated
region.

• Particles have minimal mass, decreasing this mass leads to more particles,
which are computationally expensive.

• Introduces artificial viscosity that would not exist in real system.

Athena++:

• Arbitrarily big ratio of densities. Each cell can have almost arbitrarily small
or big density.

• Ghost cells allow easy boundary conditions.

• Uses Riemann solvers which can more accurately simulate shock fronts.

• Missing self-gravity in spherical coordinates. We have to use gravitational
potential of a single point mass.

• Limited to the simulated region. Increasing the region size, while keeping
the resolution constant is computationally expensive.
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3. Model
We are simulating simplified model of binary merger inside of common envelope.
We simulate only the envelope, the binary itself is in the excised inner region
of spherical coordinates. The initial conditions and gravitational potential are
spherically symmetrical.

The simulation is conceptually divided into two active phases:

• Spin-up - during first phase we slowly increase the angular momentum of the
envelope, excluding the outer regions that exceed local keplerian velocity.
This corresponds to the slow transfer of angular momentum over the whole
spiral-in.

• Energy injection - during short second phase, we in single step inject energy
into inner cells right above the excised region. This corresponds to the final
collision of binary which we approximate as instantaneous.

• Observation - after previous active phases we simulate and observe until
the distribution of ejected mass stabilizes.

These steps and initial conditions are taken from T. Morris and Ph. Podsiad-
lowski 2006, which we compare to. Unlike them we approximate the gravitational
potential as result of single point mass with 20 solar masses .The gravitational po-
tential is greater in inner regions, however the outer regions we are most interested
in should not be affected much by the difference to self–gravity. Unfortunately
Athena++, unlike GADGET, does not support self-gravity (dynamic gravity field
caused by particles themselves) in spherical coordinates.

We expect (1.3.2) that the energy injection will cause shocks that will propa-
gate through the envelope and cause ejection of mass in direction of non-equatorial
rings. The equatorial ring can be explained by later solar wind of the blue giant,
which is not part of this simulation (T. Morris and Ph. Podsiadlowski 2006).

3.1 Shared parameters of models
Chosen units of mass, distance and time of the simulation are M⊙, R = 1500R⊙
and a year respectively. Where R is the radius of initial envelope.

Initial masses of the stars are 15M⊙ and 5M⊙, with initial distance 2500R⊙ in
case of SN1987A. However we simulate only the envelope. The excised inner re-
gion corresponding to the core contains 8M⊙. The simulated region corresponding
to the envelope contains 12M⊙.

The excised inner region corresponding to the core covers radii r < 1
10R and is

assumed to have a reflecting surface not allowing for mass transfer. The simulated
region containing the envelope covers radii between 1

10R < r < 20R.
The gravitational potential is static and is modelled with point mass in coor-

dinate center representing total mass of the system 20M⊙.
All specified years in figures are specified after the energy injection.
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3.2 Initial Conditions of the common envelope
We start the common envelope with stable spherically symmetrical conditions,
with adiabatic index of the gas Γ = 5/3.

Stable spherically symmetrical conditions must fulfill following equations:

dP

dr
= −ρ

dΦ
dr

P = KρΓ (3.1)

Where K is a constant.
Fitting density profile is modified from Gagnier and Pejcha 2023:

ρ(r)
ρ(rin) =

(︄
1 + (κ − 1)

1
r

− 1
rin

1
R

− 1
rin

)︄n

(3.2)

K = GM

(n + 1)ρ(rin)
1
n (κ − 1)

(︃ 1
R

− 1
rin

)︃
(3.3)

Where κn = ρ(R)
ρ(rin) specifies ratio of densities on the surface of the inner region

and surface of the envelope, R is the envelope radius, rin is the radius of excised
region

Outside of the envelope the density is set to minimum. The density profile is
modified by random seed perturbations of ±0.1%, to dissipate waves that would
otherwise appear and persist with fully axially symmetrical initial conditions.

0.2 0.4 0.6 0.8 1.0
r/R

10 17

10 14

10 11

10 8

10 5

10 2

101

/M
R

3

Figure 3.1: Initial distribution of density.
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3.3 Parameter study
To consider the validity of the model, and to compare with T. Morris and Ph.
Podsiadlowski 2006, we evaluate the model with several different angular momen-
tums and injected energies.

Since we are using the exact same values of angular momentum and injected
energy, we will use the same dimensionless constants α for injected energy and β
for angular momentum. Even though they do not have a special meaning in our
units.

We spin-up using two angular momentums used in T. Morris and Ph. Pod-
siadlowski 2006. β = 0.817 is momentum corresponding to SN1987A modelled
with star masses M1 = 8M⊙ and M2 = 12M⊙ and initial orbital period of 10
years.

β 0.588 0.817
L 8.360 11.616

Table 3.1: Transfered angular momemtum in our models. Angular momentum
expressed in units of the simulation (M⊙15002R2

⊙ · year−1).

The energies are expressed as ratio α to binding energy, but because we do
not have self–gravity we cannot directly translate this ratio, because our binding
energy is around twice as much. We assume that ejected mass is proportional to
the binding energy of outer regions of the envelope, and thus mostly unaffected
by self–gravity. Thus for α ratios we do not use our total binding energy, but we
use the binding energy of corresponding envelope with self–gravity in T. Morris
and Ph. Podsiadlowski 2006.

α
β 0.588 0.817

0.25 6.17 5.14
0.33 8.15 6.79
0.40 9.88 8.23
0.50 12.35 10.29

Table 3.2: Injected energies in the simulation’s units (M⊙15002R2
⊙ · year−2).

Unlike T. Morris and Ph. Podsiadlowski 2006, we consider only the case when
the energy is injected directly after the spin–up.

3.4 Spin-up
All angular momentum contained in the original binary will be transferred into
the envelope. For point masses orbiting on circular orbits, we get:

L = M1M2

(M1 + M2)
1
2
R

1
2 G

1
2 (3.4)

Where M1 and M2 correspond to their initial masses, and R is their initial
distance.
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Interestingly, while the T. Morris and Ph. Podsiadlowski 2007 paper uses
identical expression, G is already expanded with units claimed to correspond
to M1 = M5 = 5M⊙, M2 = M15 = 15M⊙, R = A2500 = 2500R⊙. However
the expanded value of G corresponds to values M5 = 8M⊙ and M15 = 12M⊙
which are masses of central mass and envelope mass. This value for angular
momentum of SN1987A is then also used in their other papers. While we note
this discrepancy, we will use angular momentum used in the T. Morris and Ph.
Podsiadlowski 2006 paper so that we can compare results.

During spin-up we increase azimuthal velocity of each cell by constant angular
acceleration dω

dt
= 1, ∆vϕ = ∆ωr. The acceleration is not applied to cells whose

total velocity already exceeds local keplerian velocity. We want to prevent adding
angular momentum into parts of envelope that are already escaping, which have
no physical reason to gain so much additional angular momentum.

∆vφ =
⎧⎨⎩r∆ω = r∆t if |v| <

√
GM

0 otherwise
(3.5)

This will leave us with inner envelope orbiting with the same angular velocity,
and outer envelope limited by local keplerian velocity. This spin-up procedure
mirrors the spin-up in T. Morris and Ph. Podsiadlowski 2006 applied to mesh
based code. It is common to spin-up limited only by azimuthal velocity, however
this leads to outer parts of envelope reaching escape velocity.

Spin-up without self-gravity is slower. Without self-gravity, more mass in
initial conditions is concentrated in lower radii. Thus even when our angular
acceleration is larger than in T. Morris and Ph. Podsiadlowski 2006, it will take
longer time to add same amount of angular momentum. Our main goal is to
add angular momentum in quasi-stable manner, secondarily we want to achieve
similar envelope shapes.

The achieved envelope shapes (Figure 3.2) closely mirror the ones in T. Morris
and Ph. Podsiadlowski 2006, though the envelope is less flat – our maximum
∼ 1.6R half-width vs their ∼ 1.2R. Which might be caused by the lack of self-
gravity.
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(a) β = 0.235

(b) β = 0.588
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(c) β = 0.817

Figure 3.2: Shapes of envelopes (density distribution) after spin-up, correspond-
ing to values used in T. Morris and Ph. Podsiadlowski 2006, in this paper we use
only the last two. Specified years correspond to how long was the spin-up.

3.5 Injection of energy
Injection of energy follows directly after spin-up. The energy is injected in in-
ner region with r < 2/15R. Even though large part of this region is cut out of
our model, this region still contains more mass than in T. Morris and Ph. Pod-
siadlowski 2006 because of different stable solution (initial conditions) without
self-gravity. The energy is distributed proportionally to mass.

3.6 Observation

3.6.1 Ejected mass
Mass of a cell is considered to be ejected, if it has energy to escape the gravita-
tional potential and thus unbound. There are several ways how to decide whether
mass in unbound. However given the dominance by radial kinetic energy, the mea-
sure of ejected mass is mostly equivalent to alternative measurements of ejected
mass. This may be inaccurate in early stages of energy deposition when the path
is obstructed my non escaping cells, but later they are different only by a single
layer of cells, once the escaping mass is not obstructed. For easiest computation
we use E + Ep, the energy of the cell as simulated by Athena++ with added
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potential energy. Mass that escaped the simulated region is considered ejected as
well, with assumption for simplicity that its polar angle θ is constant.

3.7 Model details
We have chosen spherical coordinates with resolution 768 for radial, 256 for az-
imuthal, and 192 for polar coordinate. The azimuthal angle resolution is reduced
in ratio to polar angle resolution, because the problem is almost azimuthally sym-
metrical, and thus the minor differences are due to initial perturbations, and we
can sacrifice these details which should not influence the global picture.

For polar angle and radial resolutions we try to create cells with squarish
proportions, this is clearly unachievable to do in spherical coordinates with uni-
form division of dimensions. Thus we use grid ratio of 1.004 for radial direc-
tion - which means that cells intervals in radial direction can be described using
rj+1 − rj = 1.004(rj − rj−1). This results in ratios of roughly 1:1 at the original
surface, 1:2 at the inner boundary and at the envelope boundary, and 1:3 at the
outer boundary which we consider close enough.

Details of exact settings can be seen in Athena++’s input file supplied in
Attachment A.3. Athena++’s problem generator for this model is supplied in
Attachment A.2, which describes initial conditions and implements spinning up
and energy injection.

We modified Athena++’s code in several way, as can be seen in patch files
in Attachment A.1. We use Athena++ version from February 3rd 2023 (specifi-
cally commit f16e877a35db84615d50e75db40fe066f3867ec7) as base code. These
modifications include the polar averaging, and ability to save/end simulation at
specific time – used for images at time of energy injection.

3.7.1 Boundary conditions
Inner boundary is reflective. No mass can pass through, into the excised inner
region. Outer boundary is outflowing so that the ejected mass can freely pass to
region outside of the simulation.

3.8 Numerical Instabilities
The combination of our initial conditions and longer timesteps achieved with
polar averaging can result in numerical instabilities.

3.8.1 Spin-up instability
Specifically in our simulations during spin-up we encountered cells with minimal
density but with total momentum in magnitude of neighboring cells. As far as we
know, no cells contained physically impossible values, and their minimal density
makes them inconsequential to validity of any results. However this instability
causes two problems:

• The cell has large velocity and so crossing time across the cell is very small.
Since the simulation is limited by crossing time, following timesteps can be
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several orders of magnitude smaller than previous. In the better case, these
shorter steps stabilize the instability into normal values.

• In the worse case, following steps result in NaN, which propagate through
the whole simulation and ruin any useful values.

There are several possible causes and corresponding solutions:
• Our initial conditions as shown in Figure 3.1 contain sharp decrease of

density at the star’s surface and then set density outside to minimal floor
density. All the spin-up instabilities appear at this density boundary.
This could be rectified by adding stellar atmosphere which would make the
density decrease slower. Though its mass should be negligible to the mass
of the star. We tried to introduce atmosphere which would decrease expo-
nentially from some small, but large above floor density, value of density of
original initial conditions. However the amounts we introduced were insuf-
ficient. For the few values we tried, there were still occasional instabilities,
only more unreliable. Thus we moved on to find more reliable solution.

• Second possible culprit is the implementation of spin-up itself. Angular
momentum is added as a source term throughout the whole envelope, in-
cluding cells neighboring the unstable cells. However the instability still
occurs even if we disable source terms of angular momentum for ∼ 10 steps
before the instability. Thus we concluded that it is unlikely to be caused
directly by the spin-up via some local anomaly, which would quickly dis-
appear. Instead it is likely causes by global distribution of mass / angular
momentum.

• Third possible solution is to change numerical methods to more stable vari-
ant. This however has direct negative of increased time complexity to com-
pute and thus slower simulation.
In our case we replaced the default ODE integrator vl2 with integrator rk3.
It is roughly 50% slower, but we also increased CFL number from 0.3 to
0.5, which in total keeps the run-time just a bit slower. With this change
we never encountered numerical instabilities during spin-up.

3.8.2 Expansion instability

Later we encountered second numerical instability resulting in NaN in the
last stage of observation. This instability happened in polar region, thou-
sands of simulation steps / few years after the injection of energy – the last
applied source term.
Unfortunately we discovered this instability too late and had not enough
time to debug it, find reliable solution, and rerun the simulation in reason-
able time. Thus we are missing results for one combination of parameters.
Since no source terms were applied for long time before the instability, we
assume that the reason for instability is similar to the spin-up instability,
and it does not influence the validity of other simulations as long as conta-
gious NaNs are avoided.
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Figure 3.3: Propagation of NaNs through the simulated region.
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4. Results
Figure 4.1 shows final ejected mass for each model. All specified years in figures
are specified after the energy injection. In comparison to T. Morris and Ph.
Podsiadlowski 2006, our model predicts ejection of mass further from the equator,
above 45◦ while they predict angles bellow 45◦. This may be influenced by the
lack of self–gravity and resulting less flat spun-up envelope.

Unlike them we predict peaks even for lower energies, though still muted.
The exact energies do not influence the ejection peak, only the amount of mass
ejected.

We predict mass ejection in the equatorial region for the same simulations
– this is not directly relevant to the non-equatorial rings, however it suggests
we have chosen correct corresponding amount of energy in our model without
self-gravity.

Interestingly, the ejected mass is not fully symmetrical in north and south
hemisphere. This is clearly visible at peaks of α = 0.5, β = 0.588.

Unfortunately simulation (α = 0.40, β = 0.588) could not be finished in time
because of encountered numerical instabilities (see 3.8.2).
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(a) α = 0.25, β = 0.588 (b) α = 0.25, β = 0.817

(c) α = 0.33, β = 0.588 (d) α = 0.33, β = 0.817

(e) α = 0.40, β = 0.817

(f) α = 0.50, β = 0.588 (g) α = 0.50, β = 0.817

Figure 4.1: Final distribution of ejected mass as function of polar angle sin θ,
which is zero at the equator. Bins correspond to cells of the simulation, so 192
bins are constant width in θ and not in sin θ. The ejected mass is divided by sin θ
to allow for ”visual” integration. The black line corresponds to 45◦ angle.
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Further in Table 4.1 we show total ejected mass for each simulated case. We
can compare with Table 4.2 with results from T. Morris and Ph. Podsiadlowski
2006. For SN1987A (α = 0.40, β = 0.817) we predict almost the same ejected
mass. Though that seems to be just luck. For other ejected masses the prediction
often differs by factor of two. For lower energies we have tendency to under
estimate and for higher energies to over estimate in comparison. So far it is
unclear what might be the reason behind this pattern.

α
β 0.588 0.817

0.25 0.17 0.12
0.33 0.69 0.26
0.40 — 0.61
0.50 2.38 1.66

Table 4.1: Total ejected mass measured in M⊙.

α
β 0.588 0.817

0.25 0.21 0.18
0.33 0.42 0.38
0.40 0.63 0.58
0.50 1.00 0.89

Table 4.2: Total ejected mass measured in M⊙ for comparison from T. Morris
and Ph. Podsiadlowski 2006, table 3.

22



4.1 SN1987A Model
The values β = 0.817, α = 0.40 correspond to SN1987A with assumption of solar
masses 8 and 12 of initial stars, and initial orbital period of 10 years. As SN1987A
is our main goal of study, we will focus on it further.

In Figure 4.2 we focus on density distribution roughly decade after the energy
injection to observe the overall structure. In second subfigure we excise region
that is gravitationally bound so that more of the color range is used for the ejected
mass. From these we can see that mass is easily ejected at the polar region, and
that it visibly amasses around the 45◦ latitude, forming the future ring.

For focus on dynamic evolution, video of mass, energy, escaped mass at each
saved timestep of SN1987A model is shown in Attachment A.4.

(a) Full density distribution.
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(b) Density distribution of only ejected mass, to focus on the rings.

Figure 4.2: Ejected mass in SN1987A model few years after energy injection.
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Conclusion
Using mesh based hydrodynamic code Athena++ we simulated common envelope
of binary merger to find ejection of mass which will result in non-equatorial rings
of triple ring nebula observed around SN1987A. Using Athena++ we can predict
the creation of non-equatorial rings, however we did achieve different results to
T. Morris and Ph. Podsiadlowski 2006. Our peaks of ejected mass are at higher
latitudes above 45◦, while their are slightly under. We do agree on when mass
is ejected in the equatorial region. We generally predict different total masses
ejected by order of 2. For lower energies we have tendency to under estimate and
for higher energies to over estimate in comparison. It is unclear what causes this
pattern.

Athena++ unfortunately does not support self gravity in spherical coordi-
nates. This might explain difference in latitude of ejected mass. It also means
that a lot of values could not be computed directly from our model, and we had
to use the direct values from T. Morris and Ph. Podsiadlowski 2006.

Since mesh based code is limited by the simulated region, we can only predict
latitude distribution and total amount of ejected mass. It might be interesting to
predict long term development of these ring. Which could be achieved by shifting
the simulated region to follow the ring.
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A. Attachments

A.1 Code modifications - patches
Patches to the Athena++ repository. First one allows saving/exiting when
specific condition is met — instead of only outputting at specific time intervals.
Second one implements code averaging.
We use Athena++ version from February 3rd 2023 (specifically commit
f16e877a35db84615d50e75db40fe066f3867ec7) as base code.

A.2 SN1987A problem generator
Problem generator to simulate SN1987A, belongs to ”src/pgen/” of Athena++
repository.

A.3 Input files
Input files for each simulation.

A.4 SN1987A 2D in time
Video of mass, energy, escaped mass at each saved timestep of simulation
corresponding to SN1987A.
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