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Abstract: Visual localization is the problem of estimating the 6 degrees of freedom
camera pose from which a query image was taken relative to a known reference
scene representation. It is the key for applications such as Augmented, Mixed,
and Virtual Reality, as well as autonomous robotics such as drones or self-driving
cars.

This thesis focuses on a visual localization pipeline, especially on its pose verifi-
cation and reranking step. The pipeline uses 3D point clouds and 2D-3D corre-
spondences between the query image and 3D scene points for candidate camera
poses estimations. The thesis explores point cloud rendering approaches as they
are utilized in the pipeline and the verification step—the render of the discretized
scene from a given candidate position is compared to the actual query image to
asses if the given couple depicts the same place.

One of the main challenges of such rendering is occlusion handling. Due to the
sparsity of points employed for otherwise continuous real world representation,
information about what lies in the front and what is hidden can be easily lost
when projected to the 2D image. Rendering approaches explored in this thesis
focus on the challenge directly or as a component of a novel view synthesis DNN-
based renderer. Rendering influence on localization performance is investigated.
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Abstrakt: Vizuálńı lokalizace je problém odhadováńı parametr̊u šesti stupň̊u vol-
nosti pozice kamery, z ńıž byla poř́ızena dotazovaná fotografie, přičemž pozice je
vztažena ke známé reprezentaci referenčńıho prostřed́ı. Řešeńı tohoto problému
je kĺıčové v aplikaćıch jako jsou rozš́ı̌rená, smı́̌sená a virtuálńı realita, stejně tak
v oblasti autonomńı robotiky zahrnuj́ıćı drony a samořiditelné automobily.

Tato práce se soustřed́ı na vizuálńı lokalizačńıho algoritmus, zejména na jeho ver-
ifikačńı a přeřazovaćı krok. Tento algoritmus interně využ́ıvá tř́ı dimenzionálńı
mračna bod̊u a hledáńı korespondenćı mezi těmito body a dotazovanou fotografiı
pro nalezeńı odhad̊u kandidátńıch pozic kamery. Práce zkoumá př́ıstupy k ren-
derováńı mračen bod̊u a jejich využit́ı v rámci algoritmu a jeho verifikačńıho
kroku – render diskretizovaného prostřed́ı z konkrétńı kandidátńı pozice se v něm
porovnává s danou dotazovanou fotografiı za účelem určeńı toho, zda oba pohledy
zobrazuj́ı to samé mı́sto.

Jedna z hlavńıch výzev renderingu diskretizovaného prostřed́ı jsou okluze. Kv̊uli
ř́ıdkosti bod̊u využitých jako reprezentace jinak spojitého reálného světa může
být informace o tom co lež́ı v popřed́ı a co v pozad́ı lehce ztracena při promı́tnut́ı
bod̊u na dvou dimenzionálńı obraz. Př́ıstupy k renderováńı zkoumané v této
práci se soustřed́ı na renderováńı bod̊u př́ımo nebo jako komponentu rendereru
“nových pohled̊u” využ́ıvaj́ıćı hlubokých neuronových śıt́ı. Je zde prověřen vliv
těchto renderovaćıch př́ıstup̊u na přesnost lokalizace.

Kĺıčová slova: mračna bod̊u, rendering, neurálńı rendering, lokalizace
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Introduction
In recent years, robots and other technological aids have been spreading into more
and more areas of human endeavor. Nowadays, people encounter such machines
in public spaces like museums, airports, hospitals, and others.1 Instead of just
moving inside of a stationary protective box in a manufacturing facility, public
spaces place high demands on the accuracy of localizing where the robot is, as
the cost of a mistake can be high.

The problem of visual localization can be described as a task of finding
the position of a camera that took a query photo relative to a reference scene
representation.2 By the position in visual localization 6 parameters are meant
(degrees of freedom—DoF), 3 of which are an absolute position in reference coor-
dinate system and the rest are the orientation of the camera. A scene in general
visual localization is a set of RGB images, possibly associated with per-pixel
depth information (denoted as RGBD). In the settings of this thesis, an “ex-
plicit” scene representation is used, unless otherwise said. In other words, a 3D
colored point cloud obtained from the “implicit” representation based wholly on
images [Tewari et al., 2020] is used.

As indicated, a solution to the problem is of great importance in autonomous
robotics, namely self-driving cars, terrestrial or aerial drones, and robots, also in
augmented, mixed or virtual reality applications. All of these examples interact
through various means with the surrounding environment suggesting that they
are dependent upon location.

In our day-to-day lives, people typically meet so-called network-based posi-
tioning algorithms based on measuring radio signals from various sources. These
sources include Wi-Fi, Bluetooth Low Energy (BLE), Global Navigation Satel-
lite Systems (GNSS, such as GPS, Galileo), and cellular networks [Trogh et al.,
2019]. All of these positioning data sources suffer from shared limitations—they
can provide only 3 degrees of freedom position estimation, and the accuracy of
such estimation can vary a lot. Degradation outdoors comes from signal block-
age or reflection due to high obstacles near the query position, solar storms, and
indoors from signal damping through walls. Under the best circumstances for
a single query, GNSS can result in positioning within a few centimeters,3 other
methods can provide an estimate with uncertainty measured in even hundreds of
meters. Network-based methods find usage where an exact position is not that
crucial, such as in asset tracking, analyzing traffic patterns, transportation plan-
ning, security, surveillance, and population movements tracking during disasters
as a more specific example [Trogh et al., 2019].

Network-based localization methods typically build upon the triangulation of
a few measurements of time-of-flight or signal strength from several sources, such
as satellites, cell towers, and access points, possibly combined with other tech-
niques to reach better accuracy. On the other hand, visual localization uses the
rich visual information encoded in images to estimate the source camera’s pose.

1https://spring-h2020.eu/about-spring
2https://www.visuallocalization.net
3https://www.gps.gov/systems/gps/performance/accuracy
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One family of localization approaches that can be easily compared to network-
based methods relies on establishing an ideally high number of correspondences
between features of a query image and those of the scene representation. These
correspondences are then used to estimate the query image’s camera pose with
respect to the scene, typically more robustly due to the large amount of them.
Arguably, besides the different numbers of DoF these methods output, visual
localization may provide more reliable and accurate poses.

The applications mentioned require higher accuracy, 6 DoF positions, and
fairly often they require good performance either directly indoors or at least
working reliably under various troublesome conditions for network-based meth-
ods. The visual localization has the potential to fulfill these requirements accu-
rately up to a few centimeters and degrees.4

Visual localization brings its own challenges stemming mainly from the scene
representation. 1) Illumination changes caused by artificial lighting and changes
of the night and day in the scene representation data, especially in query images,
pose a significant problem for both indoor and outdoor localization. The former
type is a more challenging problem than the latter, as indoors more complexities
arise. 2) Furniture, equipment, and people add high dynamics as they move
significantly more than objects in urban settings. Also, previously unseen objects
may be added to the environment. All of these may cause occlusions of possibly
essential parts of the scene from the localization perspective. 3) Moreover, most
areas in buildings that stay the same (walls, floors) are largely textureless, which is
problematic for many feature-extracting approaches. Combined with dynamically
moving objects that are, on the contrary, more likely to be textured and thus
resulting in better features to be worked with, feature matches are often clustered
in small unreliable areas leading to unstable pose estimates. 4) Even in cases when
features are more reliable, another issue arises as interiors are frequently highly
symmetric with repetitive elements on large (corridors, rooms, . . . ) and small
(chairs, tables, doors, . . . ) scales. 5) Finally, due to inherently smaller distances
measured in interiors compared to outdoors, a slight change in viewport leads to
a substantial change in resulting view [Taira et al., 2018].

Traditionally, camera position estimates can be computed during Structure-
from-Motion (SfM) [Schönberger and Frahm, 2016] or (Visual) Simultaneous Lo-
calization and Mapping, (V)SLAM, see Durrant-Whyte and Bailey [2006]. The
former is being used for creating a 3D point cloud model of a given scene from
reference photos alongside pose estimations of reference cameras relative to the
model built and nowadays may rather be used solely for 3D model creation, along-
side modern 3D scanners, such as LiDAR (an acronym for “light detection and
ranging”). The latter is typically used by mobile robots moving within a partic-
ular environment. When computed in real-time, the SfM and the VSLAM pro-
cesses are equivalent, sharing the same technical aspects and functionalities [Ya-
suda et al., 2020]. Currently, state-of-the-art approaches use matches between a
2D image and a 3D environment model, producing several candidate poses for a
query image. Computed poses are verified and ranked based on sparse evidence,
e.g., on the number of inlier matches found by, e.g., RANSAC algorithm [Fischler
and Bolles, 1981]. Due to the inherent candidate pose instability and imperfec-
tions mentioned in the previous paragraph caused by the presence of repeated

4https://www.visuallocalization.net/benchmark
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Figure 1: A render of one of the datasets’ point cloud. We can see an issue with
using OpenGL’s point primitive. Closer surfaces (the column, for instance) to
the camera are not continuous but have holes and points that should be occluded
by closer surfaces being visible. Fixed screen space point primitive is thus not a
reliable way of rendering a point cloud without per-render pre-computations to
set the correct pixel primitive.

structures and global ambiguities, a (weighted) inlier count has been shown as
not a good decision criterion [Sattler et al., 2016]. Because of that, InLoc pa-
per authors [Taira et al., 2018] proposed to compare the query photo against a
render of the scene from the candidate pose. The paper showed the pixel-wise
comparison to lead to a significantly better overall pose accuracy.

This thesis focuses on the verification step of the InLoc localization pipeline
as realistic rendering of point clouds5 is a problem of its own. Arguably, the most
widespread solution for a point cloud rendering is the usage of the modern graph-
ics APIs native primitive, such as GL_POINTS for OpenGL and WebGL. From a
realistic rendering standpoint, this poses a problem because “points are raster-
ized as screen-aligned squares of a given window-space size”.6 Since this primitive
has a fixed size in the screen space, rendering of, for instance, a long hallway
view results in nonuniform “surface” coverage. It does not matter whether the
point cloud has a uniform spatial point density produced by a LiDAR sensor or
a nonuniform one produced by SfM. Walls farther from the camera may seem
like a solid surface, whereas closer ones can contain holes. The closer to the
perspective camera, the bigger the viewing angle of a point pair separated by
a fixed-length line segment perpendicular to the viewing direction is. With a
specific distance-independent screen space point dimension, it happens that the
two point primitives visually split with no overlap at a certain distance from the
camera, see Fig. 1. Transversely, such holes may influence pixel-wise compari-

5Point clouds are being used here primarily because they are the direct output of SfM
or triangulation of RGBD photo database and creation of a mesh from such a point cloud
is an unnecessary computational burden with an uncertain result when used without human
intervention.

6https://www.khronos.org/opengl/wiki/Primitive
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son in the pose verification step in InLoc as per-pixel computation of descriptor
distances between the render and the real query image would either be skipped
because of missing 3D structure in the render or would result in the usage of a
bad descriptor of a point that should not be visible as it should be occluded by
closer points (“surfaces”) with, in general, different colors and neighborhoods.

The thesis explores three approaches to tackle the problem of realistic point
cloud rendering. 1) Neural rendering approach that uses a deep generative model
to deal with occlusions, 2) a rendering approach called ray marching paired with
modeling points as spheres having the source point’s color and radius equal to
the distance to the nearest neighbor to avoid holes in the resulting renders of
flat surfaces, and 3) surface splatting algorithm [Zwicker et al., 2001] that models
points as oriented colored disks with radii determined the same way as for ray
marching-based renderer. Several evaluations and experiments are performed for
all the renderers and applied to the InLoc dataset from the original InLoc article,
a dataset from the ARTwin project,7 and the Phototourism dataset.8

Thesis Contribution
In the thesis, we generalize the original InLoc implementation to tackle a general
dataset format as the original source codes are hardcoded towards the InLoc
dataset. We also add generation of proxy data objects needed for InLoc runtime
missing in the original implementation and provide generation scripts for the
dataset format out of all three dataset types we study in the thesis and on which
we demonstrate these capabilities.

We supply all the necessary transformations between various data formats
used by the neural model and other renderers. We utilize GPU-based C++ &
OpenGL surface splatting implementation and enhance it with the ability to
render headlessly (without a window) both RGB and depth information based on
views’ camera parameters and a point cloud file. To our best knowledge, such a
headless surface “splatter” did not exist before. We also provide GPU-based C++

& CUDA & OpenGL ray marching renderer with both headless and windowed
FPS camera modes with the same dataset generation component shared with
the previous splatter. As for the splatter, such implementation was not available
before, considering the performance. Both C++ renderers are shown to process
tens of millions of points in a competitive time.

The statistical, visual, and computational comparisons of renderers’ perfor-
mance are performed, showing the benefits of the splatter and marcher over the
baseline, boosting localization as a whole, and the pose verification step solely.
We also show that these renderers lead to better training of the neural model with
notably better scores for all compared areas. Furthermore, we show the benefits
of neural rendering in the pose verification step of the InLoc pipeline as it further
pushes localization scores for a query image set.

Based on the results, the pros and cons of all approaches are outlined. On top
of these considerations, we propose which approach to use for varying problem
settings. See the Conclusion chapter for more details.

7https://artwin-project.eu
8https://www.cs.ubc.ca/research/image-matching-challenge/2021/data
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Thesis Structure
The thesis is divided into three chapters. The first chapter, Visual Localiza-
tion, presents the visual localization methods and presents the InLoc localization
pipeline and the reason why the method is chosen for further investigation. The
second chapter, Point Cloud Rendering, presents the theory behind rendering
points and how it compares to rendering triangles, it introduces various tradi-
tional methods for visualizing points as well as neural rendering techniques with
their classification. Finally, the chapter presents in detail the Neural Rerender-
ing In the Wild, Surface Splatting, and ray marching with signed distance fields
methods that are further examined in the third chapter, Camera Pose Verification.
This last chapter then gets to experiments conducted through the description of
datasets examined and notes on the implementation of the localization pipeline,
all renderers, and transformations of data to formats expected by all compo-
nents. For the experiments, the comparison of renderers is carried out, and their
influence on localization is examined.

Enclosed to the thesis, there are source codes for all renderers, evaluations,
and datasets’ transformations. Repositories for these can be found also at Github:
https://github.com/Auratons/inloc, https://github.com/Auratons/neur
al_rendering, https://github.com/Auratons/renderer_ray_marching, and
https://github.com/Auratons/renderer_surface_splatting.

6

https://github.com/Auratons/inloc
https://github.com/Auratons/neural_rendering
https://github.com/Auratons/neural_rendering
https://github.com/Auratons/renderer_ray_marching
https://github.com/Auratons/renderer_surface_splatting


1. Visual Localization
As stated in Introduction, visual localization is the task of finding the position
of a camera that took a query photo relative to a reference scene representation,
and it is one of the fundamental problems in computer vision.

Compared to network-based localization methods, such as GNSS, visual local-
ization, even though being able to work in network-denied environments, comes
with its own set of problems that any successful method must consider. For both
outdoor and indoor localization, to which the field is typically separated due to
different localization complexity, illumination changes throughout the day and
artificial lighting influence present in the environment’s representation data pose
one class of such problems. Further, it must cope with transient dynamic ob-
jects that can be present in both query and database data, possibly occluding
important feature-rich areas but having nothing to do with the long-term visual
appearance of the given location. Outdoors, seasonal and weather-caused changes
must be handled as well. For indoors, more problems stem from textureless areas
such as walls, ceilings, and floors; from repetition and symmetry on both the
global level with corridors, for example, and the local level, such as door handles.
Also, compared to outside, with typically longer distances between objects, inside
small change of viewing position leads to a vastly different view.

In this chapter, we present previous work on the matter and describe the
InLoc method explored in the thesis, explaining why this very method is chosen.

1.1 Related work
There are three main method categories for visual localization, as of Torsten Sat-
tler [2018], Sattler et al. [2019a], Sattler et al. [2021], Humenberger et al. [2021]:
methods based on structure, image retrieval, and pose regression.

Structure-based methods

Structure-based methods are the traditional way of estimating poses where a 3D
model (the structure) is pre-created in order to later find 2D-3D correspondences.

The 3D model is typically created by Structure-from-Motion [Schönberger
and Frahm, 2016; Schönberger et al., 2016], by computing local sparse features
(keypoints with descriptors, Se et al. [2002] used SIFT [Lowe, 2004] descrip-
tor, Robertson and Cipolla [2004] was pre-SIFT, using image rectification) per
database image with known focal length, match them against each other across
images, and triangulate resulting 3D points from these matches. Since the model
already contains pre-computed features, matching against a query image’s fea-
tures can then be performed. Since the 2D-3D matches are determined, the cam-
era pose is computed using the perspective-n-point (PNP) solver [Kneip et al.,
2011]. Because of the possible presence of outlier matches, a RANSAC loop [Fis-
chler and Bolles, 1981] is utilized to increase robustness. Other examples of this
approach are Sattler et al. [2011, 2017].

With the growing size of a 3D point cloud, the runtime gets prolonged. To
mitigate matching speed deterioration, these methods also get paired with image
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retrieval, described next, to find the most relevant images from the SFM model.
Examples of these methods are Taira et al. [2018, 2019]; Peng et al. [2021].

Image retrieval-based methods

Image retrieval can be used to speed up the structure-based method family and
make mapping and localization more robust. That is because the restriction
of matching to the parts of the scene visible in the given query photo helps to
avoid global ambiguities in the scene, e.g., caused by similar structures found in
unrelated parts of a scene [Taira et al., 2019]. It can also be used on its own for a
closely related task to visual localization called place recognition, which strives to
find the approximate location of a query photo within a database of geo-tagged
images. Unlike visual localization, place recognition does not need an explicit
model representation, so no depth values nor point clouds are necessary for these
methods to work. Because of less input information, the location obtained by the
retrieval and interpolating of several geo-tags or camera poses is, in general, less
accurate [Torii et al., 2011; Sattler et al., 2019b].

In both cases, the goal is to gather a set of images that are the most similar ac-
cording to a selected criterion—here, a retrieved image is considered relevant if it
sees the same scene—followed by an optional re-ranking step. Historically, image
retrieval methods have used variants of Bag of Visual Words [Sivic and Zisserman,
2003] and Vector of Locally Aggregated Descriptors (VLAD) [Jégou et al., 2010],
newer approaches utilize features extracted by a Deep Neural Network (DNN)
as such features encode high-level semantics better than sparse features such as
SIFT [Gordo et al., 2016; Kendall and Cipolla, 2017; Hausler et al., 2021].

Pose regression-based methods

This category of methods uses a DNN for regressing the query pose end-to-end
from an RGB image directly to a 6 DoF pose. Based on the assumption that
features obtained by a Neural Network (NN) trained for a general vision task
also include some helpful information for pose estimation, transfer learning is
leveraged for the pose regression.

PoseNet [Kendall et al., 2015] is an example of such an approach using an im-
age classification CNN architecture, like VGGNet or ResNet, with fully connected
layers to regress the pose at the end of the architecture. Regression-based meth-
ods are generally less accurate than structure-based localization (for PoseNet,
by order of magnitude). However, their advantage lies in short, constant infer-
ence time and smaller memory and computation power requirements using just
a single forward pass, even without requiring the camera intrinsics parameters,
which may be inaccurate and unavailable [Shavit and Keller, 2022]. The accuracy
problem is inherent here, as end-to-end learning imposes a tight coupling with
the database coordinates. Thus, such a network can be seen as a compressed
version of the database itself, which limits the generalization power of the net-
work [Humenberger et al., 2021]. As the approach is still interesting for other use
cases, many improvements were presented, such as Kendall and Cipolla [2017];
Brahmbhatt et al. [2017]; Valada et al. [2018] and Radwan et al. [2018].

8



Figure 1.1: Given a database of geometrically-registered RGBD images, InLoc
predicts the 6 DoF camera pose of a query RGB image by retrieving candidate
images, estimating candidate camera poses, and selecting the best matching cam-
era pose. Image taken from Taira et al. [2018].

1.2 InLoc
This visual localization method, so-called Indoor Visual Localization with Dense
Matching and View Synthesis, falls amid two-staged structure-based approaches
combined with image retrieval. The first stage finds correspondences between a
query image features and model of a scene, and the second estimates the camera
pose. The method’s input is a database of RGBD images with known focal
lengths (from EXIF data, for instance), and the method internally uses a point
cloud 3D scene representation. The method focuses on indoor localization and
addresses several issues presented in Introduction. Visual representation of the
method with a short summary can be seen in Fig. 1.1.

All of illumination changes (1), textureless areas (3) leading to lack of sparse
local features, such as SIFT [Lowe, 2004], repetitive elements in indoor set-
tings (4) leading to similar repetitive features being produced, and even viewpoint
changes (5) are overcome by utilizing multi-scale dense CNN features computed
densely on a regular grid by NetVLAD [Arandjelović et al., 2015]. These features
are used for database image retrieval, as N = 100 best matching images are cho-
sen based on sorted normalized L2 distances of the extracted database feature
vectors and the query feature vector.

In the next stage, candidate images are re-ranked by another feature match-
ing in the geometric verification process and pose estimation. Firstly, features
are extracted by VGG [Simonyan and Zisserman, 2014] model on conv5 and sub-
sequently on conv3 layer restricted by previously found matches are used for
finding geometrically consistent sets of correspondences with RANSAC [Fischler
and Bolles, 1981]. Based on the number of RANSAC inliers, top M = 10 candi-
date database images are kept. It is to be noted that these features are obtained
with no additional computation burden as VGG is used internally by NetVLAD.

9



As database images used as input to the method are RGBD and hence they
have associated 3D points, the query camera pose is then estimated by finding
pixel-to-pixel correspondences between the query and the top M database images
followed by P3P-LO-RANSAC [Lebeda et al., 2012].

To further cope with self-similarity found in indoor locations, counting the
number of inliers as positive evidence to decide whether two views are taken from
an exact location is not the only decisive criterion. Negative evidence is also used
in the form of the portion of the view rendered from the candidate query pose
that does not match the query photo. Authors of the paper refer to this as explicit
pose estimate verification based on view synthesis. Verification is done pixel-wise
to obtain consistent and inconsistent pixels between the render and the query
photo. To keep invariance to illumination changes and small misalignments, pixel
comparison operates with RootSIFT local patch descriptors [Arandjelović and
Zisserman, 2012]. The final image-render similarity is the median of descriptor
distance across the entire image while ignoring areas with missing 3D structure
resulting in background-filled regions in renders.

This thesis further examines the view synthesis part of the verification process
as it changes the rendered source imputed to the RootSIFT descriptor computa-
tion process. In further chapters, three rendering techniques alternative to the
baseline GL_POINTS rendering approach are described in detail.

The decision to use the InLoc method in the thesis was driven by the fact that
it is the first method of its kind, state-of-the-art of its time that puts basis or plays
a role of a baseline for other subsequent state-of-the-art methods [Hyeon et al.,
2021]. Further, its source codes are public,1 whereas a subsequent paper [Taira
et al., 2019] presenting some improvements does not provide source codes.

1http://www.ok.sc.e.titech.ac.jp/INLOC
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2. Point Cloud Rendering
As stated in Gross and Pfister [2007], using point primitives for rendering has
been driven by two main reasons. Over the years, there was a dramatic increase
in the polygonal complexity of models being rendered, leading to the overhead
of managing and processing extensive mesh connectivity information. Further,
modern 3D scanners (LiDAR, stereo camera setup) or photogrammetry methods
(SfM) produce both geometry and appearance of complex, real-world objects
in the form of a point cloud. Points in a point cloud play the role of (discrete)
building blocks for 3D scenes, similar to how pixels are the digital ones for images.

Points are the simplest graphic primitive, generalizing pixels towards irreg-
ular samples of geometry and appearance. They differ from triangles typically
used in computer graphics by carrying all attributes needed for processing and
rendering with themselves the same way as pixels do. That results in transforma-
tion of rendering pipeline, the terms vertex and fragment coincide in one entity.
Even though the presence of just one such entity may lead to simpler graphical
pipelines, it is not without issues [Schütz et al., 2021].

1) Straightforward points projection leaves empty spaces in the image that
need to be filled for close-up views as it may lead to problems with occlusions
and visibility or depth perception—with less dense sampling, a render can end up
with just many points scattered across the background with no notion of what
is closer and farther. Thus, point clouds typically require a denser sampling
compared to triangle meshes. 2) Points do not possess any topology or con-
nectivity information. This fact is an advantage and disadvantage at the same
time, compared to meshed that contain this type of information, but only as a
result of 3D reconstruction algorithms with point clouds being an input that typ-
ically still require some prior assumptions on topology and sampling. It is, for
instance, possible to stream and render point clouds progressively, and change of
topology (e.g., by filtering) is more straightforward than for meshes where one
needs to recompute connectivity information [Gross and Pfister, 2007]. On the
other hand, effective point processing typically needs elaborate data structures,
including KD-trees [Bentley, 1975] or spatial hashing [Gaede and Günther, 1998].

Over the years, many approaches have been devised for processing point prim-
itives and tackling the issues presented in the preceding paragraphs. In the thesis,
we take advantage of having point clouds-based datasets. We found out that for
large indoor areas, it may be tricky to come up with sufficiently good mesh that
can be further used for the localization verification step rendering, as it can be
seen in Fig. 2.1. Proceeding with point cloud-based rendering techniques, we work
with three of them together with the mentioned baseline GL_POINTS approach;
see their descriptions in the following sections.

2.1 Related Work
Tewari et al. [2020] defined rendering as transforming a scene definition, includ-
ing some of the cameras, lights, surface geometry, and material, into a simulated
camera image. The process can be organized in two ways [Marschner and Shirley,
2021]. Object-order rendering considers each object; for such, all the pixels it in-
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Figure 2.1: A render of one of the meshes created from the raw datasets’ point
cloud, camera pose is the same as for Fig. 1. The mesh was created semi-manually,
meaning that boxes, for instance, were meshed separately and then placed at the
right place of the resulting mesh. We can see some disadvantages of using meshes
in complex environments. Despite long processing time and laborious manual
work, the result is not compelling compared to renders using point primitives.

fluences are found and updated. In image-order rendering, the loop goes the
other way round, each pixel is considered, and for such, all the objects that influ-
ence it are found, and the pixel value is computed. From these two approaches,
image-order rendering is simpler to implement and more capable in the effects
that can be incorporated and usually (though not always) takes more execution
time compared to the second approach. Object-order rendering is also known
as rasterization, whereas under image-order rendering, there are more possible
approaches, such as ray-casting and ray-tracing.

Rasterization is typically hardware-accelerated because it has good memory
coherence [Tewari et al., 2020], which is also one of the reasons for one of the
previous claims about execution speed comparison. (Though modern GPU cards
already have hardware support for ray-tracing as well.1) The rasterization, as a
representative of the object-order methods, requires an explicit scene represen-
tation, such as mesh or point cloud, whereas the other methods work with both
implicit and explicit representations.

Ray-casting and ray-tracing are, in some sense, orthogonal methods within
image-order realm; see Fig. 2.2. Ray-casting computes a ray (coming from the
camera center through a specific pixel of the screen) intersections with the rep-
resentation of the scene to project the scene onto the screen. In ray-tracing, the
primary ray is considered to be coming from the scene, through the screen to
the camera center, conveying color information gathered from all physics-based
interactions of light with objects in the scene. Reflections and refractions are

1https://developer.nvidia.com/rtx/ray-tracing
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Figure 2.2: A demonstration of the difference between ray-casting and ray-tracing,
together with an illustration of the recursive nature of the ray-casting algorithm.
Taken from https://cg.informatik.uni-freiburg.de/course_notes/grap
hics_01_raycasting.pdf.

simulated by recursively casting new rays from the intersections with the geom-
etry [Whitted, 1979]. The advantage of this rendering process is the realism of
the simulation of real-world optical effects. While rasterization and ray-casting
are a simple, one-way processes, ray-tracing is an inherently recursive problem.
Hence it is a more complex task.

For rendering points with the classical approaches, surface splatting was pro-
posed as a forward-projection approach that uses a z-buffer algorithm for visibility
resolution of points that are exchanged for oriented ellipses. Splatting can pro-
cess point clouds without additional acceleration data structures such as spatial
hierarchies, which are often required in ray-tracing approaches [Gross and Pfister,
2007]. The initial article is mainly a mathematical model and a CPU demonstra-
tor that was later revisited by several papers that enhanced some of its features
and ported it to GPUs [Botsch et al., 2005, 2004; Zwicker et al., 2004; Sigg et al.,
2006; Weyrich et al., 2007]. Splatting can also be enriched with ray-tracing again
to simulate more complex visual effects [Adams et al., 2005]. Also, further GPU-
related enhancements were proposed with better data structures suited for the
usage [Dachsbacher et al., 2003].

Another family of methods takes a vastly different approach than the classical
rendering described above—while traditional computer graphics methods focus on
modeling scenes from a physics perspective, simulating light transport and other
effects, machine learning can be used for modeling the distribution of real-world
imagery. The models utilized for this task are called generative models, succes-
sors of the work on Generative Adversarial Neural Networks (GANs) [Goodfellow
et al., 2014], and can generate high-resolution images [Radford et al., 2016; Brock
et al., 2018] or videos [Vondrick et al., 2016; Clark et al., 2019]. More specifically,
the field of so-called neural rendering combines generative machine learning tech-
niques with knowledge from classical computer graphics. It is defined as “deep
image or video generation approaches that enable explicit or implicit control of
scene properties such as illumination, camera parameters, pose, geometry, ap-
pearance, and semantic structure” [Tewari et al., 2020]. GANs produce random,
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realistically-looking images that resemble the training set [Ruthotto and Haber,
2021] statistically. As the definition of neural rendering states, user controllability
is important—if used by an artist, outputs reflecting design ideas are preferred
over some random imagery. For applications in the neural rendering field, GANs
thus needed to be extended by the conditioning of output to enable guidance of
the rendering process.

Further citing Tewari et al. [2020], neural rendering techniques can be classi-
fied along different axes:

• Control. This axis distinguishes neural rendering approaches based on
what properties from the definition are controllable and how they condition
the network’s output. A general solution enabling to control everything is
an open research problem. Typically only a subset of controllable properties
is approached in subproblems like novel view synthesis, relighting, or face
and bodies animation. The conditioning can be performed by passing the
scene parameters as input to some network layer or concatenating them to
activations of an inner one, by tiling scene parameters over all pixels of an
input image resulting in packed input volume, it can also employ an image-
to-image transformation DNN that fuses “guide image” into to the output
one. Also, a more traditional approach uses scene parameters as an input
to a graphical layer.

• Computer Graphics Modules. The separation along this axis is based
on how much of the classical rendering pipeline is integrated into the specific
method. The simplest way to achieve that is to use a non-differentiable com-
puter graphics (CG) component in the network architecture, which would
present the render as an input to subsequent differentiable layers of a given
architecture. When the module is at the beginning of the architecture,
the task transforms into well-researched image-to-image translation. Fully
differentiable CG modules also exist.

• Explicit vs. Implicit Control. Here, the criterion is based on a type of
control signal. Explicit control from a user perspective means manual edit-
ing capability of scene parameters in a semantically meaningful manner. By
implicit control, a representative sample as input is meant. The difference
also translates to training data as explicit control needs richer annotations,
whereas implicit one performs well with less supervision.

• Multi-modal Synthesis. Not only from an art perspective, often it is
beneficial to have multiple outputs from which a user can choose. Espe-
cially when only a subset of scene properties is controllable, within the rest,
there lies an output space of possible results from which a given model can
sample. This sampling capability adds complexity to the architecture, re-
quiring some stochasticity or structured variance built-in, leading to GAN
or variational auto-encoders (VAEs) variants.

• Generality. Does the rendering approach perform well over multiple scenes
or objects without retraining the underlying model? Object-specific ap-
proaches still produce higher quality outputs at the cost of lengthy per-
instance retraining. General models are still an open research area.
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Methods spread across this classification landscape solve various subtasks of
the neural rendering field. Given the model this thesis utilizes, the novel view
synthesis task is described next.

Novel view synthesis generates a view of a scene, represented by a fixed set
of input images, from previously unexplored camera poses. Challenges tied to
this task are inferring the scene’s 3D representation, given sparse observations in
the form of images and deducing of occluded or unseen areas of the scene. For
the scene reconstruction, the aforementioned SfM is being utilized, followed by
MultiView Stereo (MVS) Furukawa and Ponce [2010]; Schönberger et al. [2016]
or variational optimization Hiep et al. [2009].

The classical computer vision approach towards novel view synthesis utilizes
so-called image-based rendering (IBR) methods [Debevec et al., 1998; Chaurasia
et al., 2013; Debevec et al., 1996; Gortler et al., 1996] where views from new
viewports are generated by warping input pixels into the outputs using proxy
geometry. These methods are sensitive to the scene database size as IBR may
fail with insufficient number of source photos, resulting in ghosting-like artifacts
and holes [Tewari et al., 2020]. These approaches also do not handle multiple ap-
pearances well [Meshry et al., 2019]. Neural networks and rendering alternative
approaches have been proposed to mitigate these issues, such as Hedman et al.
[2018]; Eslami et al. [2018]; Meshry et al. [2019]; Pittaluga et al. [2019]; Riegler
and Koltun [2020a,b]. These methods build on IBR and image-to-image trans-
lation using explicit scene models. Learned implicit scene representation can be
leveraged as well, see the Neural Radiance Fields Martin-Brualla et al. [2020];
Mildenhall et al. [2020] and Sitzmann et al. [2019].

The Neural Radiance Fields, together with the Gaussian Splatting neural
model [Kerbl et al., 2023] combining the neural field with the splatting idea
explored in the thesis represent the recent progress in the field nicely, alleviating
some of the issues of the previous models. However, they were not yet available
when the work on the thesis was started, they are not considered.

2.2 Neural Rerendering In the Wild
According to the neural rendering techniques classification, the Neural Rerender-
ing In the Wild (NRIW) method [Meshry et al., 2019] can be shortly described
as a method explicitly controlling camera parameters, pose, and illumination,
using non-differentiable CG module preprocessing an input, producing multiple
modalities, and being scene-specific. More specifically, the authors tackle what
they define as total scene capture with a deep generative model that can

1. perform novel view synthesis for a given scene,

2. can capture and render various appearances of the scene, e.g., all weather
and illumination conditions,

3. and finally, it should understand the location and appearance of transient
objects in the scene, such as people and vehicles, for reproducing or omitting
them.
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Figure 2.3: Both neural networks are trained in a staged approach that pre-trains
the appearance encoder Ea using a triplet loss, subsequently the rerenderer R is
trained with standard reconstruction and GAN losses (right), and finally, fine-
tuned together with Ea. Taken from Meshry et al. [2019].

Following [Dechamps, 2020] in need of realistic point cloud renders, we utilize
the model for both indoor and outdoor rendering.

“In the Wild” is related to unstructured photo collections from the internet
NRIW can work with. The method starts with building a proxy explicit 3D
colored point cloud representation from a collection of scene photos {Ii} by uti-
lizing Structure-from-Motion (SfM) and MultiView Stereo (MVS) implemented
by COLMAP [Schönberger and Frahm, 2016; Schönberger et al., 2016]. Authors
prefer point clouds over generating a mesh in a possible next step, even though
meshes generate more complete renderings, as meshes “also tend to contain pieces
of misregistered floating geometry which can occlude large regions of the scene”.

In the next stage, an aligned dataset of deferred-shading deep buffers Bi is
generated. Such a buffer, in general, may contain per-pixel albedo, normal, depth,
and any other derivative information. Authors use a combination of rendered and
real images {Ii}, together with albedo and depth representations, all depicting
the same view. By the rendered image, a point splatting with a z-buffer with a
radius of 1 pixel render of the scene point cloud from a position vi recovered for
the respective real image Ii by SfM is meant. Even though this may resemble
an image-to-image translation paradigm, it is not the case as such a model is
uni-modal, not including appearance modeling. Image-to-image translation also
fails to understand transient objects in the scene.

The aligned dataset is used to train a multimodal image translation model.
Its goal is to learn a latent appearance vector za

i that captures variations in the
output domain Ii that cannot be inferred from the input domain Bi. The method
computes za

i as Ea(Ii, Bi), where Ea is an appearance encoder of input Ii and Bi

(the buffer is used for allowing the network to learn more complex appearance
models by correlating the lighting in the real image with scene geometry in the
corresponding buffer). Lastly, a rerendering network R produces a scene rendering
conditioned on both deep buffer Bi and the latent appearance vector za

i . Fig. 2.3
presents a visual overview of the process.
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The training process works as follows—to stabilize the joint training of R
and Ea, and improve the model expressiveness, pre-training the appearance en-
coder Ea on a proxy task is first performed. In a staging manner, rendering
network R is then trained using fixed Ea weights, allowing R to find the correla-
tions between output images and the embedding produced by the proxy task Ea

training. Finally, both networks are jointly fine-tuned.
The appearance pre-training works on a proxy task that optimizes embed-

dings of the input images in the appearance latent space based on a suitable
distance metric. Similar images under the metric should also have similar em-
beddings. The metric itself should ignore viewport as appearance is independent
of it. For that, authors use neural style-transfer triplet loss—for each image Ii,
sets of k closest and farthest neighboring images with respect to the metric below
are found. From those, one positive Ip and one negative In image is sampled,
respectively. The loss then is:

L(Ii, Ip, In) =
∑︂

j

max
(︂
∥gj

i − gj
p∥2 − ∥gj

i − gj
n∥2 + α, 0

)︂
,

where gj
i is the Gram matrix of activations at the j-th layer of a VGG network

of image Ii, and α is a separation margin.
Lastly, semantic conditioning performed by concatenating a semantic label-

ing Si of image Ii to the deep buffer Bi is used to account for transient objects.
The authors argue that it discourages the appearance encoder network from en-
coding variations caused by the location of transient objects in the appearance
latent space or associating such objects with specific viewports.

2.3 Surface Splatting
Surface splatting, presented by Zwicker et al. [2001], is an efficient technique for
rendering high-quality images of point clouds (point-sampled surfaces), supported
by rigorous mathematical analysis around resampling. In contrast to ray-tracing,
it is a forward-projection approach that uses z-buffer to resolve visibility. It can
avoid aliasing artifacts brought alongside discretizing otherwise continuous space
by a screen space formulation of the Elliptical Weighted Average (EWA) filter for
irregularly spaced point samples without global texture parameterization.

It can be seen as a resampling process in signal processing [Gross and Pfis-
ter, 2007], effectively the method strives to reconstruct initially hole-free surfaces
sampled in the form of a point cloud. To do so, the method uses a combination
of an object-space reconstruction filter and a screen-space filter for each point
primitive. The mathematical object-space reconstruction filter (footprint func-
tion ρi(x) of a point x) resembles typically an elliptical disk, a so-called splat
whose position, orientation, and axes are usually chosen to provide a good ap-
proximation to the underlying source geometry. After a perspective projection of
all splats to the screen space, the EWA filter mentioned above is used to avoid
frequencies higher than the Nyquist frequency of the pixel sampling grid, and all
contributions from the overlapping splats are combined.

The basic idea of splatting compared to a naive approach is shown in Fig. 2.4.
The naive method does not work generally as it leads to holes in reconstructed
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Figure 2.4: Point rendering by surface splatting compared to a naive approach
that is used, for instance, by GL_POINTS OpenGL primitive. (a) Naive forward
projection and rendering of point samples assigning the projected point’s color
to the closest pixel in the screen space. (b) By splatting footprint functions,
each pixel gets color decided upon a combination of contributions scree-space
neighboring points. Taken from Gross and Pfister [2007].

surfaces in the rendered image if the surface is not sampled with sufficient fre-
quency. Also, another disadvantage happens when more than one point gets
projected to the same closest pixel—then the rendering result depends on the
order in which the points are processed. Surface splatting alleviates the problems
by distributing the color of each projected point among more neighboring screen-
space pixels with a suitable footprint function. The desirable footprint function
is usually smooth, decays quickly with increasing distance from the projected
center, and has local support as indicated by the ellipses in Fig. 2.4.

For a single channel of a possible multiple-channel (taken independently) im-
age, image function ϕ(x, y) taking a pixel position and returning color could be
defined according to previous thoughts as

ϕ(x, y) =
∑︂

i

ciρi(x, y) , (2.1)

where the sum is carried over the indices of all points {pi} of the surface, ρi are
individual footprint functions, and ci are channel color values of a given point.

The definition Eq. (2.1) has an issue with reproducing surfaces with constant
color and thus can lead to visible artifacts. Also, footprint functions are truncated
to finite support. Both leads to the below presented normalized image function
used by surface splatting

ϕ(x, y) =
∑︂

i

ci
ρi(x, y)∑︁
k ρk(x, y) . (2.2)

The image function defined by Eq. (2.2) leads to a two-pass algorithm for ren-
dering Algorithm 1. In the first pass, all points are iterated over and their splat
footprints ρi and channel values ci are computed. The footprint functions are
evaluated at each pixel, or rasterized, and their contributions are accumulated
in a buffer. At each pixel (x, y), the buffer stores the sum of the weighted con-
tributions from the right side of Eq. (2.1), normalization factor sum from the
denominator of Eq. (2.2) and the depth for z-buffering. In the second pass, all
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Algorithm 1 Pseudocode of the splatting algorithm.
1: procedure splat rendering(p[], c[], w[], z[])
2: for all points i in p[] do
3: rho i ← footprint(p i)
4: c i ← shade(p i)
5: rasterize(rho i, c i, c[], w[], z[])
6: end for
7: for all points [x, y] do
8: c[x, y] /= w[x, y]
9: end for

10: end procedure

pixels are processed by normalization of the accumulated contributions by the
accumulated normalization factor.

How usable footprint functions are found and look is beyond the scope of this
work as it requires signal-processing theory, Gaussian functions, and the Nyquist
theorem. We utilize a GPU implementation by Sebastian Lipponer.2

2.4 Ray Marching with Signed Distance Fields
This method is an example of a ray-casting approach, in which a finite series of
steps along a ray cast from a camera through a pixel is undertaken, until the
ray hits an object or the maximum number of permitted steps is exceeded. This
very simple idea is fundamental in computer graphics and dates back to works
like Tuy and Tuy [1984]; Perlin and Hoffert [1989]. Building on the idea, many
effects, such as lights, shadows, and transparency, can be incorporated, to name a
few [Akenine-Möller et al., 2018]. This thesis implements a variant of the method
using signed distance functions (SDF).

In a given scene consisting of solid bodies, a signed distance function is a
scalar function S(P ) defined at every point P in a (2D or 3D) space, such that

S(P ) = 0 when it is on the surface of a body,
S(P ) > 0 when it is inside any body,
S(P ) < 0 when it is outside all bodies [Evans, 2006].

(2.3)

A scene SDF defines the scene implicitly. An object SDF is the SDF of a scene
containing only that one object. Object SDFs can be computed analytically for
simple shapes; see work of Inigo Quilez,3 or tabulated in grids, octrees, or other
spatial data structures. A scene SDF can then be constructed by combining SDFs
of objects in the scene. For simple analytically-describable shapes, an insight
into how such a scene can be built may be given through Constructive Solid
Geometry (CSG), a method of creating complex geometric shapes from simple
ones via boolean operations, see the left of Fig. 2.5. This process has its mirror in
combining SDFs; see code example in Listing 2.1. As an example, an SDF for the
simplest 3D object, a sphere positioned at the origin and with a defined radius, is

2https://github.com/sebastianlipponer/surface_splatting
3https://iquilezles.org/articles/distfunctions
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Figure 2.5: Left: CSG is built upon three primitive operations: intersection (∩),
union (∪), and difference (−). Taken from https://en.wikipedia.org/wiki/Co
nstructive_solid_geometry. Right: Demonstration of ray marching where at
each step algorithm proceeds along given ray by a distance to the closest surface
as it is a safe way how to find a hit, based on some threshold distance. Taken
from https://jamie-wong.com/2016/07/15/ray-marching-signed-distanc
e-functions/.

SDF_sphere(vec3 pos) -> length(pos) - RADIUS. In general, SDF does not
need to be based on Euclidean distance and may be exact or approximate. The
only theoretical requirement is Eq. (2.3) and from a practicality perspective,
evaluation of such a function should be reasonably quick. The algorithm utilizing
a scene SDF is outlined in Algorithm 2. The visual representation of the simplest
form of the algorithm proceeding along a ray is to be found in the right of Fig. 2.5.

Listing 2.1: Code example showing how SDFs of simpler object can be combined
together to gradually build a scene SDF.
def SDFintersect ( obj1 SDF , obj2 SDF ) :

return max( obj1 SDF , obj2 SDF )

def SDFunion ( obj1 SDF , obj2 SDF ) :
return min( obj1 SDF , obj2 SDF )

def SDFdi f f e rence ( obj1 SDF , obj2 SDF ) :
return max( obj1 SDF , −obj2 SDF )

In this thesis, we utilize scene representation relying on translated sphere
SDFs with radii precomputed beforehand to be dependent on the distance to the
closest neighbor for a given point primitive. Scene SDF for such a scene would
be then a minimum of all point SDFs in the scene (following again Listing 2.1).
This naive declaration is not scalable to millions of points a scene produced by a
LiDAR or SfM may contain, even though only the simplest point primitives are
used for the rendering process. To increase significantly rendering performance
with sufficient reality reproduction capabilities, we take advantage of a spatial 3D
KD-tree [Bentley, 1975] implemented in NVIDIA CUDA4 toolkit that can quickly

4https://developer.nvidia.com/cuda-toolkit
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Algorithm 2 Pseudocode of the ray marching with SDF.
1: procedure ray march(ray origin, ray direction)
2: dist ← 0
3: for i in range(MAX STEPS) do ▷ Hyperparameter to stop traversal
4: current pos ← ray origin + dist ∗ ray direction
5: closest ← SDFscene(current pos)
6: if closest.dist < MIN HIT DIST then ▷ Float comparison
7: return closest.color
8: end if
9: if dist > MAX DIST then ▷ No hit along the ray

10: return BACKGROUND COLOR
11: end if
12: dist ← dist + closest.dist
13: end for
14: end procedure

return the closest point for a given location. Since the exact sphere SDF contains
its radius and KD-tree built on top of the source point cloud returns the distance
to the sphere center (point) itself, not the distance to the sphere’s surface, we
take N closest points, instead of just one, compute exact SDF for those with their
respective radii, and then take the point at the minimal distance determined. The
same KD-tree is pre-build once at the start of the rendering process and is also
used for radii computation instead of computing those exhaustively.
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3. Camera Pose Verification
In the chapter, datasets, their transformations, and experiments performed upon
them with the introduced methods’ implementations are all presented. We use
the generalized InLoc pipeline with a modified pose verification step. The syn-
thesized image leveraged for pixel-wise computation of similarity with the given
query image is swapped with views generated by renderers presented in the pre-
ceding chapter, depicting the scene’s point cloud from estimated query positions.
Apart from how the synthesized image is generated, the rest of the verification
process is then performed as described in the original InLoc article, using namely
the RootSIFT descriptors.

While discussing concrete details of datasets’ definitions and algorithms’ in-
puts, more technical aspects are taken into account—among them, of utmost
importance are conventions used by coordinate systems in which points of ex-
plicit scene representations are expressed/expected to be and by matrices related
to cameras taking database images. These pose a crucial difference between what
a dataset provides, or localization pipeline expects and must be addressed by im-
plementation to obtain valid localization results.

Coordinate system conventions address the decision of assigning positive di-
rections, labels, and meanings in the human sense (up, right, forward) to the
orthogonal frame of a 3D space, because without that an oriented triplet repre-
senting a point is meaningless. These conventions can be arbitrary depending on
whether they come from computer vision, rendering, or another field. Examples
of such conventions, linked to standard computer graphics libraries/tools that
use/expect them, can be found in Fig. 3.1. In this thesis, computer vision and
rendering conventions are used. In the figure Fig. 3.1, these are found alongside
OpenCV and OpenGL labels, respectively. Even though both are right-handed,
they understand x, y, and z point components differently. In rendering, the pos-
itive x-axis points to the right, the positive y-axis up, and the positive z-axis
towards a viewer looking at the coordinate system frame. In computer vision,
the positive x-axis points to the right, the positive y-axis to the bottom, and the
z-axis away from the same viewer as before. Transformation matrices operating
over both notations are thus related by inverting the y and z axes columns. As an
example, since a camera in rendering is typically placed along z-xis, failing to take
this relation into account when displaying a 3D model defined in computer vision
notation in a visualization tool that uses rendering notation results in rendering
half-space “away” from the model. For instance, in the case of other notations
used by a produced model, a rendered view can be unexpectedly rotated.

Matrix conventions in the context of the thesis are related to terms coming
from the graphics pipeline—world space and view space. In the case of datasets
described below, world space is a space of the whole scene representation with
the origin and orientation of the coordinate frame chosen arbitrarily in relation to
the scene. The randomness in the coordinate frame placement is especially true
in the case of SfM-generated scene models, where the algorithm decides these
parameters. When preparing a model manually, e.g., in the game industry, the
frame is typically artificially placed meaningfully concerning the model produced,
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Figure 3.1: Examples of various camera / coordinate frame conventions used by
common programmatic tools in fields dealing with computer graphics. Taken
from https://medium.com/check-visit-computer-vision/converting-cam
era-poses-from-opencv-to-opengl-can-be-easy-27ff6c413bdb.
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e.g., along the outer edges of a cube model. View space is a space of a camera
looking at a portion of the scene—origin is the center of the camera with the
coordinate frame oriented in a specific way alongside the optical axis of the camera
depending on the exact graphics pipeline/tool used. Visualisation Fig. 3.1 can be
used here as well—the square pyramids depict view frustums of virtual cameras,
with the z-axes being their optical axes.

Provided both spaces are same-handed, the matrix inverse relates transfor-
mations between them. In homogeneous coordinates, both transformations are
represented by 4×4 matrices, and the implementation must correctly distinguish
between the actual meaning of these 16 real numbers, including how the matrix is
stored on the disk. We refer to them as the view matrix transforming from world
to view space and camera pose representing the opposite, inverse transformation.
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3.1 Datasets
Several image collections were used for measuring localization performance, both
indoors and outdoors. To ensure continuity and comparability with previous
works of Taira et al. [2018]; Dechamps [2020], we utilize the open-source InLoc
Dataset presented in the original Inloc paper [Taira et al., 2018]. Another closed-
source, indoor dataset is a 3D scanner-generated digital twin of a SIEMENS
manufacturing facility that is targeted by several use cases of the Industry &
Construction 4.0 Solutions project called ARTwin, financially supported by the
European Union’s Horizon 2020 research and innovation program. Finally, an out-
door dataset is covered by the inclusion of the open-source Phototourism dataset
from the Image Matching Challenge 2021.1

3.1.1 InLoc Dataset
The dataset consists of a database of Faro 3D scanner-generated RGBD scans
that are geometrically registered to the floor plan of two buildings of Washington
University in St. Louis. The test set is a composition of RGB photos taken by a
hand-held device (an iPhone).

277 RGBD panoramic images have ground truth poses in the global coordi-
nate system spanning across the floor plan. Each RGBD panoramic scan is a
point cloud (scan) having roughly 40 million colored points. The final dataset
is generated by obtaining 36 perspective RGBD images from each panorama by
extracting standard perspective views (60◦ FoV) with a sampling stride of 30◦ in
yaw and ±30◦ in pitch directions, resulting in cca 10 thousand perspective images
in total, examples are in Fig. 3.2. This dataset contains all troublesome elements
for indoor localization, namely repetitive patterns (such as stairs and pillars),
global and local similarities (doors, windows), furniture changing positions in the
test set, people moving across the scene, and textureless, highly symmetric areas
(walls, floors, corridors, classrooms, open spaces).

The original query set consists of 356 photos taken by an iPhone 7 at various
lighting conditions within a day, capturing a variety of occluders and layouts
(people, furniture), also covering only a subset of the floor plan data, with the
rest playing the role of confuser at search time. Ground truth poses for the test
set are not publicly accessible, and evaluation can be done only indirectly via
submission to the Visual Localization2 page.

The structure of the dataset’s database folder is as follows—scans/<FLOOR>
folders, where FLOOR is one of DUC1, DUC2, CSE3, CSE4, and CSE5, rep-
resenting five floors of the two mentioned buildings (CSE, DUC), contain files
named <NAME_WITH_SCAN_NUMBER>.ptx.mat storing RGB and XYZ information
of scanned points in Matlab file format. Every floor has its specific number of
scans, uniquely numbered within a building. Final dataset’s perspective views
are stored in folders cutouts/<FLOOR>/<SCAN_NUMBER> containing JPG perspec-
tive RGB images of size 1600 × 1200 pixels and MAT files containing bundled
RGB perspective image (RGBcut) and the respective scan points (XYZcut).
Files alignments/<FLOOR>/transformations/<NAME_WITH_SCAN_NUMBER>.txt

1https://www.cs.ubc.ca/research/image-matching-challenge/2021
2https://www.visuallocalization.net
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Figure 3.2: Samples from InLoc dataset database images.

contain 4 × 4 transformation matrices that convert 3D homogeneous points in
original .ptx.mat files to the global coordinate system of the floor plan.

The dataset’s query folder contains one subfolder named iphone7 with the
query set of photos taken by the iPhone camera. Photos are stored as JPG
files of size 4032 × 3024 or 3024 × 4032 pixels, so both landscape and vertical
acquisition modes were used. As the database is landscape, for InLoc algorithm
processing, all images are made landscape, and the ones where the view was
changed by rotation are remembered. Notably, even though sharing the same
aspect ratio with the database after such operation, which InLoc localization
pipeline can handle, resizing to the matching dimensions is also used to speed up
the localization performance.

3.1.2 ARTwin Dataset
The dataset consists of registered 360◦ RGB panoramic images across two halls of
a SIEMENS manufacturing facility together with point clouds for both produced
by merging 3D data from a NavVis 3D scanner.

Over the two halls, 29 and 53 panoramic images were obtained. The final
dataset used in this thesis contains roughly 4 thousand processed images and
it is generated in accordance with InLoc Dataset except for a difference in the
necessity to remap 360◦ spherical panorama to 2D surface again, examples are
in Fig. 3.3. Hall point clouds are not matched to a common coordinate system
as they overlap when displayed together, so for localization disambiguation one
hall is lifted along the z-axis.

The raw dataset contains all the intermediate files, photos and logs from the
acquiring process together with processed and merged results mentioned above.
The structure of the relevant processed data is proc/<HALL_ID>, IDs of the halls
are 2019-09-28_08.31.29 and 2019-09-28_16.11.53. Within each of these
folders, there is processed point cloud <HALL_ID>.ply and pano folder with JPG
panoramic scans alongside pano-poses.csv. Poses are in the form of 3D scanner
position and orientation quaternion per panoramic scan.

3.1.3 Phototourism Dataset
The smallest datasets taken from the Image Matching Challenge (IMC) data,
photo-tourism image collections depicts several popular landmarks, collected from
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Figure 3.3: Sample flattened images from ARTwin dataset, on the left hall
2019-09-28_16.11.53 is presented, on the right 2019-09-28_08.31.29.

the Yahoo Flickr Creative Commons 100M (YFCC) dataset. Namely, Hagia
Sophia Interior, Pantheon Exterior, and Grand Place Brussels collections were
used. These datasets have around 1 000 photos each coming, using the terminol-
ogy from Meshry et al. [2019], “from the wild” as they were taken by many au-
thors, at various distances and with sensor sizes varying considerably, see Fig. 3.4.

The dataset per given collection used in the thesis is built on top of raw images
by running COLMAP software. Structure of the COLMAP produced dataset is
described in its documentation.3 Shortly, there is dense/sparse/cameras.bin
file with parameters of cameras capturing wild images retrieved by SfM method
implemented in COLMAP, dense/sparse/images.bin file with retrieved 3D po-
sitions and orientation quaternions of each image in a common coordinate system
of dense/fused.ply point cloud. This point cloud is generated by SfM from im-
plicit scene representation contrary to the previously mentioned datasets that
represent a 3D scanner-generated approach.

Putting everything together—all scene point clouds for all datasets explored
in the thesis are placed in the right-handed coordinate system, though conven-
tions of the coordinate frames vary, described side-by-side in Table 3.1. In order
to properly render a virtual view, related camera poses must be preprocessed
accordingly. Another side-by-side comparison of the datasets can be found in Ta-
ble 3.2 presenting their basic statistical features.

3https://colmap.github.io/format.html
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Figure 3.4: Sample images from Phototourism dataset taken “from the wild”,
stretching various aspect ratios, sizes, time of the day of the aquisition, and
varying lighting conditions present in the data. In the top row there are images
of Grand Place in Brussels, below of interior of Hagia Sophia Grand Mosque in
Istanbul, and in the bottom of Pantheon in Rome.
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Table 3.1: Comparison of conventions and notations found in scene representa-
tions of all datasets explored in the thesis.

ARTwin InLoc Dataset IMC
Right-handed coordi-
nate system, scans use
convention where in
order to be rendered
by an OpenGL camera
to match database im-
ages, in sequence, x-
y and y-z axes must
be switched. There is
no notion of global CS
where both hall point
clouds can be placed,
so an artificial trans-
lation along z-axis is
performed on the hall
labeled 53 for localiza-
tion disambiguation.

Right-handed coordi-
nate system, scans use
convention where in
order to be rendered
by an OpenGL camera
to match database im-
ages, in sequence, x-
y and y-z axes must
be switched. For each
scan, a transforma-
tion from local to the
defined global CS is
known.

Right-handed coordi-
nate system, model
in computer vision
(CV) notation. To
render properly by
an OpenGL camera
to match database
images, y and z axes
must be inverted.
COLMAP-generated
per-view matrices are
view matrices.

Table 3.2: Comparison of various features of all datasets used in the thesis. InLoc
test set specified here is generated from the dataset so that we have the ground
truth poses, otherwise the online evaluation tool would need to be used. Number
of points in a scan refers to the mean of points count for iInLoc and ARTwin
datasets, and to the number of points in the whole scene model for the rest.
Dimensions are specified in thousands of pixels and for Phototourism datasets it
is not applicable as source photos have various dimensions.

InLoc ARTwin Hagia Sophia Pantheon Grand Place
Train Size 7 977 2 423 670 1 078 821
Val Size 1 995 379 167 269 205
Test Size 356 150 50 50 50
Scan Points 40M 27M 5M 5M 4M
Dims [k pix] 1.6x1.2 1.6x1.2 - - -
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3.2 Implementation
For purposes of the thesis, several code projects are leveraged, either built from
the ground up by the author or based on top of the previous work of others.
Localization InLoc framework is based on the work of the article author Hajime
Taira and further enhancements done by Pavel Lucivnak and Bastien Dechamps
spread across several code repositories. From renderers, for Neural Rerendering
in the Wild, the authors’ implementation with surrounding scripts written by
Bastien Dechamps is used as the base of further work. For surface splatting, the
great work of Sebastian Lipponer, with some tweaks, is leveraged. Finally, the
ray marching renderer based on OpenGL is entirely the author’s work.

Aside from the localization algorithm and renderers, scripts transforming
dataset formats, described in Table 3.1, into notations and conventions used by
the InLoc pipeline and renderers themselves as described in Table 3.3 are also
added; for more information, see below.

To be runnable in CIIRC computational cluster environment, which dis-
tributes jobs submitted by users by Slurm4, batch job shell scripts are written.
Slurm is an open-source, fault-tolerant, and highly scalable cluster management
and job scheduling system for clusters of Linux-running machines. Slurm re-
quires the batch job scripts to specify memory, CPU, and GPU requirements for
encompassed computation. Specifying these in the code results in less time for
experiment reproduction; it can also be immediately seen whether one has enough
resources to run it in the first place. These bounds vary greatly for algorithms
and models utilized in this thesis, from a few GB of RAM to almost 400 GB for
InLoc processing the InLoc dataset, zero to eight GPUs for NRIW training, and
typically a few CPU cores.

Alongside these shell scripts, an attempt to have a reproducible experimental
pipeline was made using Docker/Singularity and DVC.

Docker5 is an industry-grade platform allowing to build, test, and deploy ap-
plications quickly and robustly. Docker is an example of container-based virtual-
ization, where a container is a running “image” that packs everything the software
needs for running, including libraries, system tools, code, and runtime. This ap-
proach is suitable for computational cluster environments as the code can be
executed without relying on cluster administrators to install necessary packages
globally for all users, which often leads to software version collisions. Container-
ization is a more lightweight virtualization technique compared to classical virtual
machines resulting in quick startup times, lower memory requirements overhead,
and a more user-friendly working experience suitable for both development and
productionalisation. Technically, this is enabled by sharing underlying OS ker-
nel by all running containers, contrary to virtual machines that are ran on bare
metal with the so-called hypervisor, emulating their own OS kernels separated
from other virtual machines running on the same hardware. To be more specific,
the thesis relies on GPU-based computations; to be able to run GPU workloads in
a container, there is an exception to the mentioned advantage of container-based

4https://www.schedmd.com
5https://www.docker.com
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virtualization to avoiding cluster administrators globally changing the cluster—
suitable GPU drivers must be installed. Especially for all the renderers described
to be able to use off-screen headless rendering (rendering to textures and saving
them without displaying them on a monitor) on NVIDIA GPU cards used by
the CIIRC computational cluster, a driver with bug-less EGL6 support must be
used, which is something not every driver version satisfies. CUDA and OpenGL
libraries are then owned by each container, communicating with the shared driver
on the operating system level.

Singularity7 is a containerization platform similar to Docker, with one notable
exception leading to the adoption of the tool by computational cluster adminis-
trators (including CIIRC’s) instead of the otherwise industry-leading and widely
used Docker—it does not require administrative privileges from its users. For
this thesis, descriptions of Docker images to be built are written where applica-
ble. Once built, images are transformed into Singularity variants runnable on the
cluster. This functionality is supported natively by singularity binary as it is
a common use-case for the tool.

Data Version Control (DVC8) should help traceable and reproducible science
by leveraging the Git version system to also version data, intermediate results, tie
them with the exact code that produced them and thus track all ideas and exper-
iments. It also can manage workflows which is valuable for defining reproducible
data pipelines. The advantages of this tool are simplicity as it uses Git—which is
a standard tool in code development—and workflow management is done through
simple shell scripting that is well suited for the Slurm environment with running
various Singularity containers as scheduled jobs. Though the idea is promising
in the recent growth of Machine Learning Operations (MLOps), the tool proved
unsuitable when used for datasets consisting of an enormous number of smaller
files which is often the case in computer vision. DVC uses hashes to check con-
sistency and the necessity to recompute some steps in a workflow, so it may take
many hours to run even elementary transformations. The overhead of these hash
computations is considerable, leading to the decision not to use DVC after all.

3.2.1 InLoc localization pipeline
The implementation of the pipeline9 is based on the Matlab sources written by the
article’s author.10 The source code is unified for better readability and verifiability;
it is also generalized, as the original implementation targets specifically the InLoc
dataset,11. Furthermore, as the original code lacks computation of scores and
evaluation for a general dataset, the proposed approach of Pavel Lucivnak for the
former is leveraged and further developed,12 13

The outline of the implementation is depicted by Fig. 3.5. Cutouts for a
6EGL is an interface between Khronos rendering APIs such as OpenGL ES or OpenVG and

the underlying native platform window system, https://www.khronos.org/egl.
7https://sylabs.io
8https://dvc.org
9https://github.com/Auratons/inlocciirc_demo

10https://github.com/HajimeTaira/InLoc_demo
11https://github.com/HajimeTaira/InLoc_dataset
12https://github.com/lucivpav/InLocCIIRC_demo
13https://github.com/lucivpav/InLocCIIRC_dataset
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dataset is a folder structure containing 3 files per database (DB) image—pose
file, the image itself, and a so-called “XYZcut”. The cut is a M × N × 3 array
with XYZ coordinates of a surface that would be hit first by a ray cast from
the center of the camera that took the DB image of size M × N (ignoring color
dimension) through given pixel. Computation of the cuts is not part of the source
InLoc pipeline implementation, so one method of getting the cut from a particular
renderer-generated depth map and known camera parameters is implemented.14

The InLoc dataset contains default XYZCuts. However, as mentioned, there is
no generation script enclosed. The method implemented in the thesis uses depth
maps to reproject from 2D to 3D space. Since these depend on the renderer, all
XYZCut are recomputed per rendering approach. The default cuts were checked
for the depiction of the background—when the ray does not hit anything in the
given view frustum, the respective coordinate is a triplet of NaNs. Since OpenGL-
based renderers typically output zero as the depth value of these ”not hit” cases,
reprojected points close to the origin of the cut are filtered.

A database and query image similarity score used later for image retrieval is
computed as cosine similarity of normalized feature vectors. The original imple-
mentation using the matrix multiplication of query and database features stacked
onto each other has immense memory requirements depleting all resources when
executed on the considerably extensive InLoc dataset, thus some allowed linear
algebra adjustments are made, lowering the requirements to reasonable numbers.

For the image retrieval step, we use 100 closest database images to every given
query photo based on the similarity score, which is the same number of candi-
dates as the origin article. For all these candidate poses, after transforming them
into formats expected by the renderers explored in the thesis, we produce can-
didate renders and use those in the standard pose verification process described
in Section 1.2 based on the RootSIFT descriptors. After reranking the candi-
date positions based on the image-render similarity, 10 best sorted candidates
are outputted as in the original article.

Evaluation is done by comparing angular and spatial L2 distances between
the candidate and the query’s true pose, if known. Specifically, for the InLoc
dataset, the ground truth poses for the query set are not publicly disclosed. Only
an online evaluation tool https://www.visuallocalization.net/submissio
n/ returning the fraction of correctly localized queries within the distance and
angular threshold can be used.

3.2.2 Neural Rerendering in the Wild
For the Neural Rerendering in the Wild, the original implementation is also used15

without any substantial changes, just minor technical enhancements, such as
support for alpha channel processing, etc.16

All scripts needed on the path from a raw dataset to “Aligned Dataset” and
“Cutouts” in Fig. 3.6, Fig. 3.8 and Fig. 3.7 are also implemented in the repository.
Aligned dataset is expected as input to the NRIW training process after packing
into a TFRecord, similar to Cutouts being expected by the InLoc pipeline.

14https://github.com/Auratons/inlocciirc_dataset
15https://github.com/google/neural_rerendering_in_the_wild
16https://github.com/Auratons/neural_rendering
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DB Cutouts
Query Images

File Lists DB & Query Lists Compute Features
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reformatted

Figure 3.5: InLoc algorithm. The implementation outline uses terminology from
the article. Rectangles represent file(s) on the disk, dark green ones denote al-
gorithm inputs, and the rest are intermediate outputs except algorithm outputs
with a border drawn. Blue nodes of the outline denote processing steps. “DB
cutouts” are a database (DB) format the implementation expects. “File Lists”
step scans the database and query, storing valid found examples and query images
into a file for further reference. The “Renderer” step highlighted with border is
the main concern of the thesis.
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For ARTwin, spherical photos need to be unrolled to 2D with the exact sam-
pling approach as for the InLoc dataset, resulting in the set of reference images.
To be able to reuse scripting written initially for the IMC raw dataset, the cre-
ation of COLMAP-like camera and image information structure is implemented
alongside unrolling in preprocess script. For depth information used within the
aligned dataset, the point cloud is rendered via the load data script for ARTwin
and IMC data and the render InLoc DB script for the remaining dataset. These
scripts utilize the Pyrender python package internally, transversely GL_POINTS
OpenGL primitive for rendering. The approach is a common baseline with pre-
vious works on the topic. To generate an aligned dataset with point cloud ren-
ders provided by other renderers, the “Generate matrices” step is used, for both
splatting and marching, as they share technically the same headless rendering
component mentioned below.

The aligned dataset is a structure containing, in the simplest case, a triplet
of an image, a color render of the underlying scene representation by a renderer,
and the respective depth map. The triplet forms a deep buffer mentioned in the
article. In the original article, the authors also use semantic masking in their deep
buffers. However, when rendering a novel view not seen in the training data, the
semantic mask cannot be obtained from an actual photo. Authors thus train a
separate segmentation network between the partial deep frame buffers and the
semantic masks Si to tackle this issue. However, this makes the network more
complex and lowers the prediction time performance. Semantically segmenting
the point cloud might be used, but following Dechamps [2020], the additional
complexity is avoided.

The model is then trained with the same staged approach, where the appear-
ance encoder is first pretrained on a proxy task with the triplet loss. As in the
original article, 256 × 256 central crops of the deep buffers are used. For all the
datasets, the whole train/val sets are used as the model is scene-dependent, which
is especially true for the InLoc dataset, where the test set covers only a portion
of the database.

Finally, the training parameters are also used following the article, only with
scaled batch sizes according to GPU memory available in the CIIRC cluster DGX
nodes. That means training on 8 GPU for around four days for the complete
staged pipeline, with the Adam optimizer set with with parameters β1, β2 set to
0, 0.99, respectively, and the learning rate equal to 0.001.

3.2.3 Spherical Ray Marcher
The spherical ray marcher is, on the high level, an OpenGL17 application with
both interactive and headless rendering capabilities. Interactive rendering in-
cludes FPS camera moved by keyboard, displaying real-time point cloud on user’s
monitor. Headless mode generates specific view renders on the fly, without a
monitor, directly to files on the disk, and it serves for dataset generation.

The final texture depicting the requested view is computed from the main ray-
casting loop implemented in CUDA18 due to usage of a KD-tree implementation

17https://www.opengl.org
18https://developer.nvidia.com/cuda-toolkit
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Figure 3.6: ARTwin dataset pathway. The schema displays transformations the
ARTwin dataset undergoes in order to get either “Aligned Dataset” expected by
the Neural Rerendering in the Wild DNN training or “Cutouts” for the localiza-
tion pipeline. Rectangles represent file(s) on the disk, dark green ones denote
algorithm inputs, and the rest are intermediate outputs except algorithm out-
puts with a border drawn. Blue nodes of the outline denote processing steps.
The dashed paths are used to incorporate additional steps needed for non-default
renderers. The default rendering with Pyrender is implemented in the load data
script.
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Figure 3.7: InLoc Dataset pathway. The schema displays transformations the
InLoc dataset undergoes in order to get either “Aligned Dataset” expected by
the Neural Rerendering in the Wild DNN training or “Cutouts” for the localiza-
tion pipeline. Rectangles represent file(s) on the disk, dark green ones denote
algorithm inputs, and the rest are intermediate outputs except algorithm out-
puts with a border drawn. Blue nodes of the outline denote processing steps.
The dashed paths are used to incorporate additional steps needed for non-default
renderers. The default rendering with Pyrender is implemented in the render
InLoc db script.
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Figure 3.8: IMC Dataset pathway. The schema displays transformations the IMC
dataset undergoes in order to get either “Aligned Dataset” expected by the Neural
Rerendering in the Wild DNN training or “Cutouts” for the localization pipeline.
Rectangles represent file(s) on the disk, dark green ones denote algorithm inputs,
and the rest are intermediate outputs except algorithm outputs with a border
drawn. Blue nodes of the outline denote processing steps. The dashed paths
are used to incorporate additional steps needed for non-default renderers. The
default rendering with Pyrender is implemented in the load data script.
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based on the FLANN19 project. As the NRIW training and cutout computations
require depth maps, the implementation also provides outputting depth texture
alongside any RGB render.

The algorithm needs radii for points to be rendered; the implementation20

can compute those based on a distance to the nearest neighbor and cache them
alongside the input point cloud. From this process, one hyperparameter stems
out as the maximal displayable diameter. For outliers, radii may be too large,
causing vast portions of a resulting render to be hidden behind giant spheres.
The maximum can be determined as a percentile of cached radii for a given point
cloud. Requested renders are expected to be specified by the respective camera
poses and camera calibration matrices.

3.2.4 Surface Splatting
For surface splatting, Sebastian Lipponer’s implementation was used21 as a base,
the project22 was enhanced with the same headless rendering capability as in
the case of the ray marching, expecting the same per-render format of camera
poses and camera calibration matrices. Also, a mechanism for loading the radii
of the point cloud being rendered was added, further reusing the component from
the spherical ray marcher. Furthermore, for the same NRIW training process
reason, the depth buffer content is made accessible as another output from the
renderer. The original implementation produced only RGB outputs. Finally, a
bug in camera handling of the underlying interactive rendering library GLviz of
the same author was identified and resolved23 to have rendered views for the same
camera poses unified across all renderers used. The bug is not apparent when
using the FPS camera to explore the displayed scene model. However, when
comparing generated views to the outputs of a computer-vision grade renderer,
it becomes obvious.

The algorithm needs not only per-point radii but also normal vectors in order
to orient splats properly. For computing those, Meshlab24 and, for automation,
Pymeshlab25 tools were used. The maximal diameter hyperparameter is used in
the same sense as for the Marcher.

19https://github.com/flann-lib/flann
20https://github.com/Auratons/renderer_ray_marching
21https://github.com/sebastianlipponer/surface_splatting
22https://github.com/Auratons/renderer_surface_splatting
23https://github.com/Auratons/glviz
24https://www.meshlab.net
25https://pymeshlab.readthedocs.io
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Table 3.3: Comparison of input format expectations of algorithms used in the
thesis from the transformations perspective. The upper row presents the algo-
rithms, and the lower one contains abbreviations of conventions, where RC means
rendering convention, CP means camera pose matrix. InLoc pipeline is agnostic
to matrix convention as far as it is consistent with data generation. NRIW itself
is trained only with images, noteworthy those are generated by the preceding
rendering approaches with their conventions.

Marching Splatting Pyrender InLoc Pipeline NRIW
CP, RC CP, RC CP, RC Agnostic –
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3.3 Experiments
We explore the rendering performance of various renderers used in the thesis,
both in terms of the rendering quality compared to the respective real image and
the actual time it takes to render an image of a given size. Underlying dependency
on point cloud density is also touched. Finally, the influence of the renderers used
for pose verification in the InLoc localization pipeline is examined.

3.3.1 Comparison of renderers
For statistical comparison of an RGB rendering produced by given renderer to
the respective real-world image captured by a camera, we utilize two metrics—
pixel-wise L1 loss and Peak Signal to Noise Ratio (PSNR). The final metric value
across a dataset is computed as the mean value of the loss per photo.

Since many models needed to be trained in a considerably costly process, only
Image Matching Challenge data is used. The results can be seen in tables Ta-
ble 3.4, Table 3.5, and Table 3.6. We compare not only three non-neural renderers
plus three neural models trained on those renderers’ data but also point cloud
density. The density generally affects rendering times for non-neural renderers
and transversely affects complete render times for a neural model inference.

Table 3.4: Comparison of L1 (the smaller, the better) and PSNR (the bigger the
better) metrics over the IMC Hagia Sophia collection. For the neural models,
the point cloud of a given density is used for training and inference. Column
Renderer uses notation P (Pyrender), S (Splatter), M (Marcher), and three N
variants standing for NRIW trained on the respective renderer.

Dataset Density [%] Points [M] Renderer L1 PSNR
Hagia Sophia 25 1.25 P 39.93 13.94

S 43.01 13.00
M 35.83 14.69
N-P 22.66 18.62
N-S 21.80 18.73
N-M 21.99 18.67

50 2.49 P 36.19 14.66
S 36.56 14.51
M 34.25 15.12
N-P 21.85 18.88
N-S 21.20 19.01
N-M 20.78 19.32

100 4.98 P 36.04 14.70
S 35.11 14.91
M 37.19 14.37
N-P 22.37 18.78
N-S 22.85 19.29
N-M 22.66 18.89
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Table 3.5: Comparison of L1 (the smaller, the better) and PSNR (the bigger,
the better) metrics over IMC Grand Place collection. For the neural models, the
point cloud of a given density is used for both training and inference. Column
Renderer uses notation P (Pyrender), S (Splatter), M (Marcher), and three N
variants standing for NRIW trained on the respective renderer.

Dataset Density [%] Points [M] Renderer L1 PSNR
Grand Place 25 1.09 P 60.81 10.59

S 38.61 14.25
M 39.74 14.04
N-P 25.33 18.23
N-S 23.75 20.01
N-M 23.82 19.94

50 2.19 P 57.32 11.20
S 39.85 14.05
M 40.39 13.88
N-P 26.44 17.92
N-S 23.21 20.12
N-M 23.05 20.20

100 4.37 P 57.33 11.23
S 37.85 14.52
M 39.90 13.74
N-P 25.63 18.25
N-S 22.98 19.86
N-M 23.11 20.03

The metric values for an image pair in the tables are, analogously to how
similarity in the InLoc verification step is computed, determined over positions
of pixels of the rendered image that are not of the background color.

We can see performance gains from using neural models across the tables.
Further, ray marching and point splatting methods are better than basic Pyren-
der, as discussed below. The relative difference also translates to neural models.
It suggests that for methods presented in the thesis, the difference in the quality
of training data used for training notably positively impacts the NRIW model.
It also suggests that it can positively influence the pose verification step explored
further in this chapter. Splatter and Marcher are close in performance, and it
cannot be decided which is better, notably because they work similarly.

There are no such considerable differences between point cloud densities for
the other data dimensions. The absence of substantial metric difference means
that for a given scene/environment it may make sense to explore and use less
than the full number of points if the time needed for producing one virtual view
is essential. For subsequent experiments, in order to reduce the size of the space
explored, we use only full-size point clouds at our disposal.

The biggest difference in L1 metric between Pyrender and other non-neural
renderers visible in data for Grand Place and Pantheon can be again explained
by the screen space point size by which the renderer is parametrized. The size
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Table 3.6: Comparison of L1 (the smaller, the better) and PSNR (the bigger, the
better) metrics over IMC Pantheon Exterior collection. For the neural models,
the point cloud of a given density is used for both training and inference. Column
Renderer uses notation P (Pyrender), S (Splatter), M (Marcher), and three N
variants standing for NRIW trained on the respective renderer.

Dataset Density [%] Points [M] Renderer L1 PSNR
Pantheon 25 1.18 P 50.68 11.31

S 38.20 14.24
M 39.32 13.94
N-P 22.87 18.91
N-S 20.35 20.65
N-M 21.28 21.00

50 2.35 P 49.22 11.50
S 42.39 13.19
M 40.10 13.76
N-P 23.10 18.75
N-S 21.04 19.94
N-M 20.99 20.18

100 4.70 P 49.16 11.53
S 39.06 14.07
M 40.67 13.64
N-P 18.86 22.84
N-S 17.70 22.92
N-M 18.24 21.72

is almost view-dependent as for different views, there may be different screen
space GL_POINTS dimensions needed for getting flat-like surfaces, whereas for
Splatter and Marcher, fixed per-point diameter can be determined, making this
parametrization whole scene-dependent. It is also not that easy to determine the
size in the case of Pyrender programmatically and in the aforementioned cases,
the size was less suitable in total when combining views over the data as a whole,
resulting in occlusion problem with visible points from normally non-visible parts
of the scene that transversely taints metric computation; this effect is described
in Introduction. For Splatter and Marcher, per-point diameters based on nearest
neighbors within a given (simplified) point cloud are used with the 90-th per-
centile used for maximal point diameter rendered to filter out outliers that cause
huge splats and spheres, respectively. These outlier points are more prevalent for
point clouds generated by SfM and MVS, compared to scanner-generated ones.

For visual comparison, several dimensions are explored. In Fig. 3.9, point
cloud density visual qualities are visualized using Pyrender across IMC collections
and point cloud densities explored, with one image example per given image col-
lection. The point cloud simplification method used for obtaining smaller density
point clouds is the so-called voxel downsampling that should preserve point cloud
structure. The method relies on decimating neighboring points into one point in
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the resulting smaller point cloud based on fixed-size volumes called voxels. The
impact on visual representation is noticeable, especially on the Grand Place ren-
der of the lowest density point cloud, as the background intentionally displayed
in contrasting colors shines through the building uniformly across facade.

For more complex point clouds with hidden structures behind a camera facing
simple surfaces such as a facade or a boundary of one vast internal space, such
background visibility could easily be substituted by points of those otherwise
non-visible scene portions. The problem should be resolved by using Splatter
and Marcher renderers—it is, as can be seen on the per-collection example image
comparison matrices Fig. 3.10, Fig. 3.11, and Fig. 3.12. Again, for the Pyren-
der image produced by the sparsest point cloud, “background” is more visible,
especially in the case of the Grand Place example and in the case of the Pan-
theon example, a hidden structure example in the form of a column in front of
the temple. As far as the Hagia Sophia image is concerned, the view depicts the
surface sufficiently far away from the camera, so the background is not visible in
this case. For the two non-neural renderers, the background visibility problem is,
as expected, not present in any visibly excessive amount. The smaller sparsity
influences those as well, though—using fewer points leads to more blurry renders,
as the diameters of the remaining points are bigger. On the other hand, the
rendering is faster and, as visible, still more continuous.

The neural rendering approach is represented by just one unspecified model
in Fig. 3.10, Fig. 3.11, and Fig. 3.12 as visually the results of differently trained
models’ outputs are relatively similar; instead, the density dimension is displayed.
The relative differences are illustrated on InLoc dataset in Fig. 3.13. The notable
feature of the neural rendering method is the ability to fill (to some extent) por-
tions of resulting render image without any respective point information, namely
sky or gaps between screen space points, masking Pyrender’s flaws. Splats and
spheres are far better, but not perfect, rendering primitive from this perspective.
However, there is always some space between neighboring elements stemming
from the inability to cover a surface using circular objects with no overlaps or
gaps. A neural renderer can mask those as well. This has an influence on the
pose verification step explored in the following subsections.

Influence of the training data on outputs of the NRIW model is explored
in Fig. 3.13).26 Two views from the database are displayed with all non-neural
and neural renderers. In the first one with chairs, one point with a compara-
tively larger diameter than most others is near the left-down corner of the Splat-
ter and Marcher image. These bigger splats and spheres result in artifacts in
neurally-generated images, as depicted in the second image row. These patches
are something that the screen space renderer does not suffer from, as all points
are of the same screen size. The advantage of variable diameters is visible in the
second view. With the same number of points, the text on the board is sharper.
Also, the floor gets some coverage compared to the Pyrender-generated image.
The background-filled portions of Splatter-generated images are caused by the
concrete actual point-splatting implementation, both Splatter and Marcher use
the same underlying diameters.

26As the ARTwin dataset is not publicly available, it is excluded from visualizations here as
its display is minimized in the thesis.
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Figure 3.9: Visual comparison of point cloud density influence on rendering. The
renders are produced by Pyrender (GL_POINTS) with contrastive background color
to present the differences better. Point cloud simplification is done by Open3D’s
voxel downsampling to preserve the original structure with fewer points. The
downsampling method proceeds in two steps; firstly, points are bucketed into
3D volumes called voxels, each resulting in exactly one point of the simplified
output by averaging all points inside the source voxel in the second step. Since
Pyrender has a fixed point size in screen space, its disadvantage can be seen—
closest portions of the scene look sparser than the farther portions.
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Figure 3.10: Visual comparison of various renderers and point cloud densities
for the Hagia Sophia Collection. Contrastive background color is displayed,
Open3D’s voxel downsampling is used for point cloud simplification.
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Figure 3.11: Visual comparison of various renderers and point cloud densities
for Grand Place Brussels Collection. Contrastive background color is displayed,
Open3D’s voxel downsampling is used for point cloud simplification.
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Figure 3.12: Visual comparison of various renderers and point cloud densities for
Pantheon Collection. Contrastive background color is displayed, Open3D’s voxel
downsampling is used for point cloud simplification.
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Figure 3.13: Visual comparison of various renderers for the InLoc dataset. For
the indoor color profile, the default black background color is contrastive enough.
The full point cloud was used for the visualizations. In the left-most column,
repeated reference images for two different views are displayed. In the remaining
columns, for a given view, up there always is an image generated by a non-neural
type of renderer below which there is a render generated by NRIW trained on
the data prepared by the respective non-neural renderer above.
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The computation rendering performance relative comparison is explored
in Table 3.7. Relative because computational time measurements are complex,
and in a compute cluster environment that multiple users actively use, they are
also inherently affected by many external entities. The influence can be alleviated
to some extent by using proper OS time measuring clock type, but it is always
better to ideally use the machine alone for the measuring task, which is hard
to ensure on the cluster. This complexity is to be seen in the table with times
varying across comparable output render dimensions and renderer types.

Across the datasets, the most consistent results are for C++ Splatter imple-
mentation. The smallest standard deviations show implementation consistency.
The point cloud size influence is also visible, as for bigger renders and tens of
millions of points, the rendering times get considerably higher.

The second most consistent results are for Pyrender rendering that internally
also uses the standard OpenGL rendering pipeline and the standard and basic
GL_POINTS rendering primitive. Since the implementation wrapper is in Python,
we can see much higher standard deviations.

From the neural models, only one is picked for the measurements. The model
size and inference implementation are the same for a dataset, not depending on
the actual rendered data with which the model was trained. The times are com-
parable, though the second biggest standard deviations can be seen. The reason
for shorter rendering times for the ARTwin dataset is unclear—the implemen-
tation is in Python, using many software layers underneath, including NVIDIA
driver, so there may be the source of the difference, alongside demonstrating the
complexity of time measurements. The times are considerably higher compared
to those mentioned in the original paper, but that is to be linked to much higher
render dimensions. Moreover, the entire neural rendering process includes ren-
dering a given point cloud by some non-neural renderer before inference occurs,
which may even double the rendering time in actual use cases.

C++ implementation of the Marcher does not use the standard OpenGL ren-
dering pipeline but CUDA parallelization over pixels. Most notably, it iterates
over points in the view frustum, so its rendering computational performance de-
pends on the 3D structure of a given view of the scene. The view dependency
is visible in the table, as the standard deviations are the biggest among renderer
types. The implementation may hit some memory caching or another problem
around the InLoc database scan size, as the mean rendering time and the standard
deviation are orders of magnitude higher than everything else.

3.3.2 Comparison of localization approaches
In the localization pipeline, XYZcuts are a vital part of the database represen-
tation based on which a query image pose is calculated. Although there are
XYZcuts present in the InLoc raw dataset, for other datasets explored in the
thesis, they are not. Even for the InLoc dataset, some misalignments are hidden
in verified scan poses, also noted in the InLoc algorithm Github repository issue.
Thus, a way of computing this 3D data representation is devised and applied
to all datasets, including the InLoc one. The process poses dependence of the
localization pipeline on a non-neural renderer—as specified in InLoc localization
pipeline, the XYZcut is computed utilizing the depth map produced by a renderer
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Table 3.7: Measured mean rendering times for the renderers, collected with the
thread CPU time clock, translating to the sum of the system and user CPU time of
the main thread from which rendering is initiated. It does not include time elapsed
during sleep, so it tries to avoid measuring disturbance from other processes
running on the CPU. The clock is thus a rough approximation of what could be
achieved when maximal performance is sought, and a real-time OS is used. The
neural model is not distinguished here as the model size is the same even though
tough weights vary based on the training data used. The neural rendering time
represents solely the network inference, though preceding it, there must be an
aligned triplet generated, which includes invocation of some non-neural renderer
that takes also some time, as can be seen in the table. The dimension is the
biggest one present in the data being rendered. The measurements were taken
on an Intel Xeon E5-2698 and NVIDIA Tesla V100 GPU.

Dataset Points [M] Dimension Renderer Time [ms] σ [ms]
Hagia Sophia 5 1248 Neural 1 361 139

Pyrender 783 111
Splatter 156 13
Marcher 1 031 397

Grand Place 4 1168 Neural 1 280 147
Pyrender 679 82
Splatter 123 7
Marcher 1 448 570

Pantheon 5 1248 Neural 1 439 156
Pyrender 857 108
Splatter 173 4
Marcher 446 127

ARTwin 27 1600 Neural 871 140
Pyrender 1 380 145
Splatter 1 072 21
Marcher 679 382

InLoc 40 1600 Neural 1 749 328
Pyrender 1 447 93
Splatter 1 340 51
Marcher 2 054× 103 1 684× 103
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per localization database image. The depth map is used to transform per-pixel
3D points placed on a default plane in the distance of one from a camera center
perpendicular to the given database image camera’s optical axis.

In this section, three concepts are thus examined. Firstly, the influence of
a non-neural renderer-based database representation on the whole localization
process is explored on IMC image collections, end-to-end. Secondly, the influ-
ence of given database representation with fixed pose verification step renderer,
including neural ones, on the localization performance is inspected on ARTwin
data. Finally, the influence of solely pose verification renderer choice for one fixed
database representation is considered for the InLoc dataset.

In Table 3.8, we can explore the localization on IMC image collection from the
smallest datasets on top to the biggest at the bottom of the table. The overall
rates of correctly localized queries are much smaller compared to ARTwin and
InLoc data. That may be caused by the combination of three factors—several
folds smaller dataset sizes; varying database image dimensions, some of which
are as small as 100 pixels in each dimension; varying sensor types, sizes, and all
adversarial effects of manual acquisition, such as extensive blur. The absolute
error sizes, when compared to the size of the scene models, are relatively still
small because, contrary to the other two datasets, IMC data cover enormous
external or internal spaces over much bigger scale than mostly close looks at
either manufacturing equipment or corridors and other, in nature, office spaces.

The table shows that the splatting InLoc variant is predominantly the most
precise one with the most outliers on smaller precision thresholds among the
smallest Hagia Sophia collection. The second most precise localization variant
seems to be the Pyrender one. However, we will see that comparison to the march-
ing variant may be affected by a small dataset size. The medians and means of
Euclidean and angular distances support the thesis of database size influence on
localization performance (aside from the simple idea that more database images
mean a higher chance of retrieving one captured more closely, thus triangulating
a more precise pose). The bigger the dataset size is, the smaller these statistics
are. Also to be noted is the fact that having fewer database images to perform
the image retrieval has a bigger influence on angular precision than Euclidean one.

Considering fixing the pose verification step and observing localization per-
formance with varying database representations, Table 3.9 presents the results
on the ARTwin dataset. The general positive impact of using neural rendering
approach for pose verification is shown. Across the pose verification variants, the
radii-based renderers perform better than the Pyrender ones, no matter whether
neural or non-neural variant is considered. This further support the claim that
better training data generation process positively affects neural model perfor-
mance, though the percentual margin may not be that significant as these models
can compensate for many imperfections in the deep buffer.

Further, for the candidate pose generation InLoc localization pipeline part,
with a bigger dataset the marching-based InLoc Base variant shows its better per-
formance rather closing to the splatting variant, both outperforming the Pyrender
variant. From a median error point of view, having a bigger dataset is also ben-
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Table 3.8: Evaluation of localization performance on IMC collections using the
InLoc pipeline fully based on a given type of non-neural renderer, including the
pose verification step. The performance is constituted by a percentual rate of
correctly localized queries at a given precision threshold. General statistics of
calculated poses in the form of mean and standard deviation for distance and
angular distance are also displayed.

Collection Precision + Statistics Pyrender Splatter Marcher
Hagia Sophia 2.50 m, 7.5◦ 2 0 0

5.00 m, 10.0◦ 4 4 2
7.50 m, 15.0◦ 18 16 20

10.00 m, 20.0◦ 52 44 50
15.00 m, 30.0◦ 86 90 90
20.00 m, 30.0◦ 86 90 90
Median [m] 2.44 2.10 2.37

σ [m] 2.07 1.80 2.21
Median [◦] 19.88 20.28 20.07

σ [◦] 21.09 19.50 21.42

Grand Place 2.50 m, 7.5◦ 2 4 2
5.00 m, 10.0◦ 8 8 6
7.50 m, 15.0◦ 38 46 46

10.00 m, 20.0◦ 72 76 74
15.00 m, 30.0◦ 90 88 88
20.00 m, 30.0◦ 90 88 88
Median [m] 1.63 1.50 1.75

σ [m] 2.17 1.45 2.29
Median [◦] 16.29 15.65 15.84

σ [◦] 23.71 19.18 27.89

Pantheon 2.50 m, 7.5◦ 14 26 22
5.00 m, 10.0◦ 34 44 44
7.50 m, 15.0◦ 72 82 82

10.00 m, 20.0◦ 88 92 90
15.00 m, 30.0◦ 100 98 96
20.00 m, 30.0◦ 100 98 96
Median [m] 1.50 1.09 1.48

σ [m] 3.24 1.79 3.02
Median [◦] 10.04 11.99 10.52

σ [◦] 21.80 5.44 19.08
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Table 3.9: Evaluation of localization performance on the ARTwin dataset. The
performance is constituted by a percentual rate of correctly localized queries at
a given precision threshold. InLoc Base refers to a renderer type on which the
localization database is constructed, pose verification renderer is denoted as P
(Pyrender), S (Splatter), M (Marcher), and three N variants standing for NRIW
trained on training data generated by the respective renderer.

Pose Verification InLoc Base 0.25 m, 2◦ 0.50 m, 5◦ 5.00 m, 10◦

P Pyrender 40.0 48.7 62.7
Splatter 40.1 49.9 62.6
Marcher 39.9 49.2 63.1

S Pyrender 41.2 51.4 62.8
Splatter 40.0 53.3 64.7
Marcher 40.9 53.5 63.9

M Pyrender 41.0 50.7 65.3
Splatter 42.1 53.1 65.8
Marcher 41.3 52.7 65.5

N-P Pyrender 43.8 51.9 68.3
Splatter 44.0 51.8 70.1
Marcher 44.2 52.8 69.2

N-S Pyrender 45.6 55.1 72.7
Splatter 45.9 59.3 73.4
Marcher 45.7 59.5 74.6

N-M Pyrender 45.9 55.0 71.9
Splatter 46.2 60.5 73.8
Marcher 47.2 58.9 74.7

eficial. The mean of median Euclidean distance errors across the table is only
0.26 m, and the mean of median angular distance errors is as low as only 0.64◦.
These results are much better compared to those obtained on IMC collections,
but as described in the paragraphs devoted to Table 3.8, ARTwin dataset consists
of more database images with the same dimensions, consistent quality, and sen-
sor parameters ensured by the image acquisition process. The scanner used for
dataset generation uses more “normal” 2D cameras to create 360◦ RGB scans, so
when the InLoc database is created, there are sometimes visible minor artifacts of
this two-way process. An example of such an artifact together with localization
visualization is in Fig. 3.14. In the light of such minor defects, the absolute errors
are even more impressive.

Finally, for the InLoc dataset, the results are presented in Table 3.10. The
percentual rates are comparatively worse than the one from previous research;
the reason is that I faced a lot of issues around the InLoc dataset, including the
mentioned skewed database positions, and I was not able to resolve it properly.
Though lower in absolute numbers, the distortion is the same across all results;
thus, the relative comparisons still pose valuable insights. Based on the outcomes
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Figure 3.14: The first column shows the query photo, the second render of the
best candidate position, the third a blend of the two preceding columns and the
last column shows the database photo obtained from the image retrieval step.
The upper row shows an error of 0.01 m and 0◦, the second an error of 0.18 m
and 1◦. On the query image of the second row, there is also visible the relic of the
reprojection from panorama photo to 2D photo on the tubes in the foreground.

Table 3.10: Percentual rate of correctly localized query images within the dis-
played distance and angular distance for the DUC1 floor. The table explores the
behavior of fixed candidate positions localization part and multiple pose verifi-
cation rendering methods denoted as P (Pyrender), S (Splatter), M (Marcher),
and three N variants standing for NRIW trained on training data generated by
the respective renderer.

Rate [%] P S M N-P N-S N-M
0.25 m, 2.0◦ 22.2 19.2 22.7 26.8 21.2 29.8
0.50 m, 5.0◦ 28.3 26.3 30.3 31.8 24.2 38.9
5.00 m, 10.0◦ 37.4 36.4 41.9 43.4 31.8 51.0

of preceding experiments, with fixed localization dataset generation via splatting,
we compare the performance of various pose verification approaches on the page
https://www.visuallocalization.net.

For the InLoc dataset, the Marcher renderer performs best, outperforming
both remaining non-neural renderers. The dominance over this dataset gets trans-
lated over to neural models as well. Even more than in the case of the ARTwin
dataset, we can see the benefit of neural rendering in this case: ray marching
varies between 7.1 % to 9.1 % for three precision thresholds. All three neural
models show a positive impact over non-neural variants.

The splatting-based variants are the least performing among others on this
dataset. The reason may be hidden in Lipponer’s implementation, as some ar-
tifacts are visible in Fig. 3.13. That may arise from the number of points in
the scan, as it is the highest among all the datasets in the thesis, or the format
of the scans themselves, generated by Matlab in the raw dataset data and later
transformed into PLY file format.

Despite all the complications with the InLoc dataset, radii-based renderers
shown their value and benefits over all datasets, as well as neural rendering that
further pushes localization performance rates.
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Conclusion
This thesis examines the usage of various rendering techniques in the InLoc algo-
rithm solving the visual localization problem and its verification step. The point
cloud rendering approaches, and later localization performance are evaluated on
three different dataset types covering both exteriors and interiors; the InLoc im-
plementation is generalized so that a general dataset, not only the one that InLoc
was released with, can be input for localization.

Four different rendering approaches are utilized—as a baseline approach, the
default OpenGL point rendering primitive GL_POINTS is used, further, point splat-
ting and ray marching with signed distance fields are explored. Finally, aside from
the three classical rendering approaches, a neural rendering deep neural network
model is compared with the previous ones. As not all mentioned renderers were
in existence prior to the thesis with sufficient performance to be able to render
point clouds of sizes present in the datasets, third-party point splatting C++ im-
plementation within a graphical interface is enhanced with headless rendering
capabilities, the capability to read external point clouds and camera parameters,
and output depth information for renders. The ray marching renderer is imple-
mented in C++ and CUDA from scratch, eventually reusing the same components
from the splatter enhancements. To the best of our knowledge, previously, there
were no such implementations with these capabilities being able to render tens
of millions of points in a reasonable time.

We considered the renderers from various angles—rendering performance from
visual and statistical perspective, from computational performance, and finally,
from influence on the localization performance. We show that aside from com-
putational perspective, the four renderers split roughly into three groups: the
predominantly least performant algorithm is Pyrender, followed by the Splatter
and Marcher implementations with the NRIW model on the top.

Pyrender suffers from its slower implementation in Python and from the prim-
itive it uses as the points have fixed size in the screen space, which defies per-
spective drawing principles, leading to visual artifacts in the form of occlusion
problems.

Splatter and Marcher are less easy to separate. Their principle is similar
as it uses diameters assigned to points and renders them as splats or spheres.
In practical use cases, there are differences, however. The Splatter requires a
normal vector per point on top of diameters to properly put a face to the splats.
In the case of all datasets explored in the thesis, we did not encounter a situation
where a dataset would simultaneously explore one space from the inside and
outside. However, if this happens, Splatter would require additional functionality
to dynamically compute normals per view or switch directions based on some
condition fulfillment. On the other hand, Splatter shows less dependency on
the view frustum contents, whereas Marcher performs much less consistently.
For some views, the rendering time may be considerably longer than for others.
There is room for improvements in the implementation that may mitigate this
issue, including the possible memory caching boundary hit, causing extremely
prolonged rendering times in some cases. Visually, Splatter can represent corners
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and edges with less blur. Finally, both renderers increase the performance of the
InLoc pipeline when used for the dataset’s transformation into the InLoc format
and for training a neural model used in the verification step.

The NRIW model further pushes localization performance due to its more
realistically-looking rendering capabilities that get exploited in the verification
step of the localization pipeline. The disadvantages and the price for the local-
ization precision gains are speed, as the model needs, on top of its own slower
runtime, a proxy render of a point cloud from a candidate position generated
by another non-neural renderer, and also its scene dependency that requires
training for every dataset explored. There has been considerable progress in
the neural rendering field since work on the thesis started, so future work may
explore these advancements. For instance, the Neural Radiance Fields (NeRF)
models [Martin-Brualla et al., 2020; Mildenhall et al., 2020] and the Gaussian
Splatting model [Kerbl et al., 2023] push neural rendering performance further.
The latter model is highly related to the point splatting rendering approach ex-
plored here in the thesis.

To summarize, when maximal localization performance is sought, Splatter and
Marcher help the localization pipeline’s frontend, together with neural rendering
based on the same. For concrete use cases, other differentiating factors can help
to choose a specific renderer. When the time of answering a localization query
is to be minimized, it may be worth sacrificing some precision by either using
the non-neural renderers for the whole pipeline or, as we show, by lowering the
number of points in the scene model that is from both statistical and visual point
of view comparable with the advantage of faster rendering times. Future work
may analyze the effect of lowering the resolution of the database and query images
to inspect the computational performance further.
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Hajime Taira, Ignacio Rocco, Jiŕı Sedlár, Masatoshi Okutomi, Josef Sivic,
Tomás Pajdla, Torsten Sattler, and Akihiko Torii. Is this the right place?
geometric-semantic pose verification for indoor visual localization. CoRR,
abs/1908.04598, 2019. URL http://arxiv.org/abs/1908.04598.

Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lombardi,
Kalyan Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason M. Saragih,
Matthias Nießner, Rohit Pandey, Sean Ryan Fanello, Gordon Wetzstein, Jun-
Yan Zhu, Christian Theobalt, Maneesh Agrawala, Eli Shechtman, Dan B. Gold-
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