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1. Introduction
The problem of reinforcement learning is regarded as one of the most dif-

ficult in the field of machine learning. There are many approaches to solving
it. Some are based on computing a gradient to optimize the objective, some
are derivative-free. One such class of derivative-free optimization algorithms are
evolution algorithms. Their subclass of evolution strategies has been proved to
be a viable alternative to gradient approaches for (deep) reinforcement learn-
ing. Albeit the gradient approaches generally have a better sample utilization,
the evolution strategies are greatly parallelizable. Moreover, evolution strategies
have better exploration of possible solutions and their trained agents are usually
more diverse than those trained by gradient-based algorithms. They can even
incorporate techniques that vastly improve the exploration, such as searching for
novelty, instead of, or in addition to, just seeking a better performance. The
pinnacle of such algorithms for reinforcement learning is nowadays OpenAI-ES
as a purely objective-based algorithm, NS-ES as a purely novelty-based represen-
tative, and NSR-ES as an algorithm combining the searching for objective and
for novelty, to balance quality and diversity of the trained agents.

On a different note, transformer architecture is lately the go-to solution in
the field of neural networks and supervised learning for an ever-growing range of
problems. And recently, there have been attempts to reformulate reinforcement
learning as a sequence modeling problem and to leverage the capabilities of trans-
formers in such tasks to obtain a new approach for solving this class of problems,
yielding us models such as Decision Transformer or Trajectory Transformer. The
Decision Transformer was originally introduced as a model for offline reinforce-
ment learning using a supervised learning of sequence prediction, but the authors
claim it would function well even in the classical reinforcement learning tasks.

We decided to subject the combination of the evolution strategy algorithms
and the Decision Transformer to experiments, and test the ability of derivative-
free algorithms to train this more complicated and bigger — compared to the
models that had been experimented with in the literature so far, which were
simple feed-forward models — transformer architecture. For large and compli-
cated models it may be hard, or even almost impossible, to train them from
scratch using evolutionary approach — it might be virtually impossible to ran-
domly stumble on a model that does something interesting in the population.
Hence, shifting toward better performing models of the population may not be a
viable method of obtaining a well-trained agent for larger models. Therefore, we
wanted to experiment with first pretraining the agent using a supervised learning
of sequence prediction on data generated by a smaller model, which we can train
using some arbitrary reinforcement learning method.

Due to the original implementation of the algorithms, which we found to be
not so user-friendly and not really easily modifiable to incorporate custom models,
environments, and behaviors, we decided to reimplement the algorithms in a
much more user-friendly and versatile way and to provide even some replication
experiments for the original papers. Our implementation can be found here:
https://github.com/Mafi412/es_contra_dt

The goals of this thesis are then to test the viability of training a transformer
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architecture using evolution strategies; to evaluate the effectiveness of utilizing a
novelty search on this model architecture; to investigate the possibility of seeding
these algorithms with pretrained models; and to provide extensible, user-friendly,
and versatile implementation for the examined algorithms.

Let us outline the structure of this work here. In Chapter 2, we introduce some
basic topics and concepts this thesis works with, such as the problem of reinforce-
ment learning, evolution strategies, novelty search, and transformer architecture.
We follow up on this in Chapter 3, where we introduce the core algorithms —
OpenAI-ES, NS-ES, and NSR-ES — and Decision Transformer architecture. In
Chapter 4, we describe methods used and we go through interesting details of our
implementation. We then proceed to state the setup of our experiments, after
which we go through and discuss the results of the experiments, both in Chapter
5. We conclude in Chapter 6 by recapitulating and discussing the results and
laying out the possibilities for future work.
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2. Background
Let us begin by laying the foundations of fields used as building blocks for re-

search in this thesis. First, we will formulate a problem of reinforcement learning;
then we will take a look at evolutionary algorithms; and finally, we will conclude
this chapter by introducing transformers.

2.1 Reinforcement learning
As mentioned previously, this first section will introduce the concept of rein-

forcement learning (RL). For a deeper understanding, we recommend our readers
refer to the introductory book on this topic, ”Reinforcement Learning: An Intro-
duction” [1]. But we lay out the basic concepts here as well.
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Policy

Agent

Figure 2.1: Basic reinforcement learning setting

The basic setting of RL, which can be seen in figure 2.1, consists of an agent
perceiving observations and performing actions according to a policy in an envi-
ronment, obtaining a reward. The agent then tries to maximize its return. Let us
break down the concepts mentioned above: The environment is an entity with-
out its own goal (otherwise it could be perceived as another agent) with an inner
state. It changes the state based on the previous ones plus the agent’s actions
and returns the observation together with the reward based on the new state.
The agent is then another entity that processes the given observation to deter-
mine the action. The policy is realized by a function the agent uses to derive
the action from the observation, possibly some model, recently mostly a neural
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network (NN). Reward is a numerical signal from the environment to the agent
telling it whether it did something good or bad. One cycle of performing the
agent’s action in the environment and obtaining a new observation and a reward,
we call a timestep. One episode is then a sequence of timesteps, beginning in an
environment’s state and with an initial observation given to the agent, and ter-
minating by reaching some end conditions, like time running out, the agent doing
something really bad or really good, or anything the particular use case requires.
Or it might even not end at all. Lastly, the return is an aggregate of all the re-
wards obtained by the agent during one episode (so far). It might be a simple sum
of the rewards for finite environments (where the episodes are always finite), or
a discounted sum of the rewards for possibly infinite environments. (Sometimes
the words ”state” and ”observation” are used interchangeably, especially for the
deterministic environments, where what the agent gets from the environment as
observation is the full information about the environment’s state.)

Methods for solving this problem and training the agent to perform actions
yielding high return might construct a model of the environment [2], they may
just learn to predict a reward for a given action in a given state [3], or have no
understanding of the environment whatsoever [4]. They can leverage the model
of the environment to train without interacting with the real one [5]. They can
update the agent after every timestep (temporal difference methods - TD) [6], or
after each episode [4].

Recently, the model has been mostly implemented using a deep NN (DNN), as
was pointed out above. Such a subclass of methods is called deep reinforcement
learning, however, henceforth we will call it just RL in this work for simplicity,
because it is the subclass we research here. Such DNN based agents are nowa-
days trained mostly using gradient approaches, such as, e.g., Trust Region Policy
Optimization [7], and Proximal Policy Optimization [8].

2.2 Evolutionary algorithms
One large and quite a successful family of black-box optimization algorithms

is the family of evolutionary algorithms (EA). They consist of various metaheuris-
tics inspired by nature. Probably one of the most famous and the most simple
representative of this algorithm class is genetic algorithms (GA) [9]. They take
a population of individuals — those representing possible solutions to the given
problem, mostly in a form of a binary, an integer or a real-valued vectors —
evaluate each of them on how good they are based on the task at hand, yield-
ing us fitness (objective value) for each individual, then somehow recombine the
more successful of them via a crossover, and possibly mutate the results by slight
changes to create offsprings, hence forming a new population, or we might call
it a new generation. And then repeat this again, until a terminal condition is
met. We can see that this process is inspired by genes and their competition and
evolution in the real world.

For more information about this broad and diverse family of algorithms, which
the EAs are, we recommend the readers refer to a summary book, ”Evolutionary
Computation” [10]. From now on, we will focus on one specific subclass of EAs,
evolution strategies (ES).
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2.2.1 Evolution strategies
Introduced as a tool to deal with high-dimensional continuous-valued domains

[11], ES work again with a population of individuals — real-valued vectors. (How-
ever, in some cases, the population might consist of a single individual.) In each
generation, they derive a new set of individuals by somehow mutating the original
population; the new set is then evaluated, and a new generation is formed by a
subset of individuals from the set based on their fitness. Ergo, we might say they
are similar to GAs, except they do not use a crossover. Another difference may
be that while GAs tend mostly to derive the next generation by creating the same
number of new individuals as there were in the original population by crossover
and mutations, ES often deploy (µ, λ)-scheme or (µ + λ)-scheme, which means
that the population size is µ, number of newly generated offsprings is λ in every
iteration and we select µ best individuals from the offsprings in (µ, λ)-scheme,
or from both the previous population and the offsprings in (µ + λ)-scheme to
construct a new generation.

The main difference compared to GAs, however, is the mutation. In ES, the
mutation rate, or step size, is learned, or coevolved, with the population. The
basic example may be enlarging the size of mutation when many successful off-
springs are created (explore more) and shrinking it when few successful offsprings
are being made (exploit more). Another step is to coevolve every individual with
its own mutation rate. But we can take it step further and adapt mutation size
for every element of the individual-vector independently. Or we can mutate every
element with respect to the others, using their covariance defined by an underly-
ing covariance matrix, just as the Covariance Matrix Adaptation ES (CMA-ES)
algorithm does [12]. CMA-ES is an efficient method with strong results, yet it
requires keeping the covariance matrix, which is infeasible for higher-dimensional
problems because the size of the matrix grows quadratically with respect to the
dimension.

Natural Evolution Strategies (NES) [13] personify another approach to the
core idea of ES. The only individual in their population is a distribution whose
mean value is the candidate solution to the given problem. The distribution is
defined by some parameters, and those are the updatable entities the NES works
on. Thus, for example, for Gaussian distribution, NES would work on its mean
and covariance matrix. In each iteration, the algorithm then samples multiple
instances from the distribution, evaluates them, and estimates how to change the
parameters so that we obtained higher expected fitness for the samples using the
natural gradient, which renormalizes the update with respect to uncertainty. An
example of NES is, e.g., OpenAI-ES, which we will talk more about in Section
3.1.

2.2.2 Evolution strategies in reinforcement learning
As mentioned in Section 2.1, it has recently become quite common to imple-

ment RL agents (or more precisely, their policies) using DNNs. But what other
are the DNNs than parameterized functions with high-dimensional and (usually)
continuous-valued parameters? Therefore, we can represent the policy by its
DNN’s parameters and use some ES algorithm to optimize it. The fitness of an
individual is then obtained as a mean return of the individual (representing the
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agent’s policy) from several episodes. For this purpose, various ES algorithms
were proposed [14].

This approach to RL has its disadvantages. For example, in order to compute
individual’s fitness, we have to run the whole episodes. But what if we have an
infinite environment? Then we have to artificially make each episode finite by
adding some timestep limit. But then we solve a problem which is close to, but
not the same as the original one. Another disadvantage this approach has is that
its sample utilization is low compared to the gradient-based methods. What is
meant by that is, in essence, we are capable of extracting more information from
a timestep or an episode (a sample) using gradients.

However, ES bring along a lot of advantages as well. Many of the ES algo-
rithms are easily parallelizable, and much of the research in the area has been
focused on this aspect, yielding us algorithms with almost linear improvement
of performance when more computing power is used [15]. And because ES are
derivative-free algorithms, we can optimize not just classical smooth NNs, but
our models can even contain some discrete subfunctions or be otherwise non-
differentiable.

2.2.3 Novelty search
EAs in general, for us here specifically ES, bring with them another advantage.

They allow easy access to and incorporation of strong exploration tools, such as
searching not for the highest fitness, but for novelty.

The concept of searching not for objective, but just for novelty — the so-
called novelty search (NS) — was introduced [16, 17] as an instrument to deal
with deceptive objective functions and their treacherous local optima, and was
based on a reasoning that nature, more specifically evolution in the nature, does
not follow any specific objective, but is more open-ended, exploring all the pos-
sibilities. Therefore, the authors reasoned, if we are willing to forgo the search
for objective and instead search for some behavioral novelty, we can solve some
of the problems that proved too difficult for objective-based algorithms, hence
enlarging our toolbox for solving diverse problems.

For us to be capable of defining novelty, we first need to be able to define
something which we will define the novelty on. Such a concept is a behavior,
or a behavior characteristic in other words. Behavior describes what an agent
does in an environment. It might be the last state when the episode ends. It
might be a sequence of actions the agent performed during the whole episode.
Or anything else that comes in mind and proves useful for the search, as long as
it provides some metric that can be used to compute distance, or similarity, of
two behaviors. Even though we do not really care for the objective in the NS,
the behavior should still somehow align with it. So if we wanted to train some
robot to walk, we should probably not choose ”how many times did the robot
turn around” as a behavior but rather, for example, its final position in space.

Now that we have a behavior, we can run almost any EA just with the follow-
ing alterations: The behaviors of agents from past populations are stored in an
archive. The novelty of an individual can then be defined as the mean distance
of its behavior characteristic from its k-nearest neighbors from the archive. And
wherever we used a fitness in the algorithm, we now use the novelty instead.
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Hence, we get simple, yet possibly effective algorithms, as was shown through
experiments by the original authors [17]. However, as anyone could probably
guess, although there are many environments solvable by search for novelty alone,
there are many more environments where it is handy to search for both the fitness
(to obtain high-performing agents) and the novelty (to escape local optima and
diversify the agents). For such occasions, there exist quality-diversity algorithms
(QD) [18] which do exactly that by computing both the novelty and the fitness
of an individual and combining the two information together to decide how good
the given individual is.

2.3 Transformers
The field of NNs has been around for quite some time. NNs are (mostly lay-

ered) oriented graphs with artificial neurons for nodes. The artificial neuron is
then basically a function taking values on the incoming edges as input, aggregat-
ing them using a linear combination with a bias constant and passing the result
through some non-linearity-introducing function (called activation), then sending
it along the outgoing edges, as can be seen in figure 2.2.

Input_1

Input_2

Input_n

Weight_2

We
igh
t_n

f(x)

bias

Output

Weight_1

Neuron

Figure 2.2: Artificial neuron

Of course, the neuron shown in figure 2.2 is the basic building block of NNs,
but we can include others, like pooling layers [19] that with a little computational
cost reduce the dimensionality of its input, or recurrent cells mentioned later in
this work.

The DNNs got their attribute ”deep” first by stacking a large amount of
neuron layers, but then the term DNN was being used as a designation for all
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the modern NN architectures and nowadays there is little distinction being made
between NNs and DNNs.

In recent years, transformers have surged as the state-of-the-art neural ar-
chitecture for numerous tasks of supervised learning. It all started with their
introduction as a new sequence-to-sequence architecture [20], as an alternative
to recurrent NNs (RNN). Since then they have yielded great results in natural
language processing (NLP) tasks, fueling even the current surge of chatbots, and
they even got adapted, e.g., to image recognition [21]. As a rule of thumb, they
seem to have a great generalization power; the greater the larger the model em-
ployed. However, they also require a lot of training data to achieve these great
results.

RNN cell RNN cell

x1 x2

r1 r2

Inner state1 Inner state2

Figure 2.3: RNN cell usage for sequence processing

Before delving into the inner workings of transformers, let us take a brief look
at their predecessors, the RNNs. Processing a sequence generally requires being
able to interconnect multiple elements of the sequence, which can be arbitrarily
distant from one another, to produce an answer. However, the classical feed-
forward (FF) NNs cannot do anything like this. Hence, the RNNs were born.
They consist of recurrent cells which take an input, output a result of similar
operations like the classical FF layer does, but in addition to that they keep an
inner state, or memory, and use that as well to compute the output, not just the
inputs themselves. The inputs and the memory are used not only to produce the
output, but also to update the memory itself. The intended use is then to feed
the sequence elements to the RNN cell one by one, using the memory altered by
the previous computations to have an effect on the current calculation and inject
some knowledge based on the previous elements of the sequence, as can be seen in
figure 2.3. It is good to realize that there is one and the same cell in the picture

9



with the same parameters being used twice. For further explanation of RNNs,
we highly recommend the article ”Fundamentals of RNNs” [22].

Yet still, from the given facts on RNNs we can see that, for example, in NLP,
when we want to translate a sentence, when processing any given word, we have
access only to the information on those words that came before in the sequence.
This has been partially dealt with by feeding the sequence in both the original
and the reversed order to the RNN, and combining the results. But there exists
another huge problem. When we process the last element of the sequence, the
complete information of the whole sequence has to be stored in the fixed size
memory. Thus, the RNNs struggle with long-distance relations in the sequence
and long sequences in general — even though it has, in theory, unlimited length
of input sequence. So, we can see that the RNNs have a few afflictions. And it is
those the authors of transformers set out to deal with.

Figure 2.4: Basic transformer block [23]

The transformers interlace FF layers — which are fully connected layers of
basic neurons shown in figure 2.2 — with self-attention layers, as can be seen in
figure 2.4. (In practice, there are also residual connections and layer normaliza-
tions to stabilize the training, but we do not talk about them here for simplicity.)
And it is the self-attention to which the transformers owe their success, so let us
focus our attention on providing a high-level overview of its function. For each
element of an input sequence, the self-attention constructs a ”key”, a ”query”,
and a ”value” using fully connected layers of neurons. Then, to compute an el-
ement of an output sequence on the same position, it takes a combination of all
the values, each weighted proportionally to the product of the query belonging
to the given position and a key corresponding to the value; hence combining the
information from the whole input sequence to produce every single element of the
output sequence, as shown by the following equation.
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outputi =
n∑︂

j=1
softmax

(︂{︂
queryT

i · keyk; k = 1, . . . , n
}︂)︂

j
· valuej

We can, of course, use a mask and for every element hide the part of the
sequence that is behind the element, and so using just information that came
before in the sequence to derive the output element. This is called causal masking,
and such a transformer that uses this masking we then call a causal transformer.

The part of an input sequence the transformer performs its computation on is
called a context window, and the maximal size of the sequence it can process at
once is called a (maximal) context length. The layers of transformer do not really
care for the length of an input sequence, but transformers tend to perform worse
on input longer than what they trained on, and so they are mostly artificially fixed
to some maximal context length. This is done by cropping the input. Another
aspect contributing to the fixation of context length is that for causal transform-
ers, it is often computationally advantageous to precompute the attention mask,
which we could not do if the context length was unrestricted. Moreover, the
longer the context, the more expensive the (self-attention) computation.

It would be infeasible and unnecessary to train the key, query, and value
encoders for every position of the input sequence, so it is important to note that
just one encoder is trained for each of the three and then used on every position
of the sequence, just like there is only one RNN cell used for every input in the
RNNs, as shown in figure 2.3. The same is true even for the FF subnetworks that
can be seen in figure 2.4, those share parameters as well and are basically one
and the same subnetwork used multiple times.

However, this only worsens the problem that the self-attention layer in its
computation does not have any way of finding out the positions of the individual
input elements and of using this information in its computation. Therefore, we
add a positional encoding to the input of the model. (Not every self-attention
layer, just the whole model.) This can be realized by concatenating the input
element with its positional encoding, but mostly the encoding and the element
are sumed together, as shown in figure 2.5. The positional encoding can be either
learned, or we may use some of the predefined ones, like, e.g., sinusoids of different
frequencies, as shown in the original paper [20].

The last thing we should mention are embeddings. Not always are the elements
of the input sequence in such a format that we could plug them into the model
straight away without any alteration. As an example, we might use text data. We
first have to transform textual data into numerical data. Other example might
be pictures, like the ones outputed by Atari games environments as observations,
where we need to transform the grid, multidimensional data to vectors. For
that, there are embeddings. Those might be world embeddings or character-
level embeddings for text, like, e.g., those produced by Word2vec [24], image
embeddings computed by convolutional NN (more on convolutions, for example,
in book ”Convolutional Neural Networks in Visual Computing” [25]), or simply
a result of passing the input vector through a FF layer. (Just a side note, we can
either use a pretrained embedding (like the aforementioned Word2vec) or train
our own from scratch.) The same applies for the output of the model, where a
similar, yet inverse process may occur, where we can construct a word from a
numerical vector, or embed the resulting vector into the right dimensions, into
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the right shape. We call such a process a decoding.
The usage of transformer for sequence processing would then look as shown

in figure 2.5.

Transformer
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of Input_1

Embedding

Input_1
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of Output_n

Embedding

Input_n

Position of
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Decoding Decoding

Output_nOutput_1

Figure 2.5: Transformer usage for sequence processing
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3. Related work
In this chapter, we outline key concepts of the three algorithms and one model

which are closely related to our work. The first one is a specific ES proposed by
OpenAI [15] — since the release of the article, it has received the name OpenAI-
ES in the literature. In the second section we introduce NS-ES and NSR-ES,
being NS and QD versions of the aforementioned OpenAI-ES [26]. And in the last
section we show a variant of a transformer architecture adjusted for RL known
as a Decision Transformer (DT) [27].

3.1 OpenAI-ES
OpenAI-ES is a representative of neuro-evolutionary strategies, which means

it is an ES working on vectors of NN parameters as individuals. It also belongs
to the class of NES mentioned in Section 2.2.1, so the sole individual in each gen-
eration is, in fact, a distribution over the NN parameters, the distribution being
a Gaussian, from which the offsprings are sampled each timestep, which are then
evaluated, and their evaluation is used to update the parameters of the distribu-
tion. However, the authors did not find benefits in evolving the covariance matrix
of the distribution nor the individual deviations (or variances), so those are kept
fixed and identical to simplify the program and the inter-process communication.
Hence, the distribution can then be represented only by its mean, which is an
individual in the space of searched NN parameters. The algorithm is designed in
such a way that it is highly parallelizable.

Its core algorithm is rather simple. It is all the details that make it work so
well — as one might say, the devil really is in the details. But at its core we have
several workers; in each iteration, every worker samples a noise from a multi-
variate normal distribution with zero mean and the unit matrix as its covariance
matrix; each worker then adds the sampled noise multiplied by the noise deviation
hyperparameter to the parameters of the current solution, being the current mean
of the search distribution, and evaluates the modified individual by its rollout in
the environment. They then cache the returns as a fitness and send it to every
other worker. When this evaluation phase is over, each worker then reconstructs
all the perturbations (noises) tried this iteration — that is possible because of
the known seeds for every worker — and uses the perturbations to estimate the
natural gradient. This is done by taking average of all the perturbations, each
multiplied by the fitness the individual modified by the respective noise obtained
during evaluation, and dividing the whole average by the noise deviation to renor-
malize the update with respect to uncertainty. This natural gradient is then used
to shift the mean of the search distributions in the parameter space by adding
it (multiplied by a learning rate) to the parameters of the mean. This concludes
the update phase, and a new iteration begins by the evaluation phase with the
updated search distribution.

A pseudocode of the core algorithm, as introduced in the paper, can be found
in Algorithm 1. We remind the reader that by computing returns using function
F , we mean running a rollout of the agent in the environment and returning its
mean return as a fitness.
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Algorithm 1 OpenAI-ES core algorithm
Input: Learning rate α, noise std. deviation σ, initial policy parameters θ0
Initialize: n workers with known random seeds, and initial parameters θ0

1: for t = 0, 1, . . . do
2: for each worker i = 1, . . . , n do
3: Sample ϵi ∼ N (0, I)
4: Compute returns Fi = F (θt + σϵi)
5: end for
6: Send all scalar returns Fi from each worker to every other worker
7: for each worker i = 1, . . . , n do
8: Reconstruct all perturbations ϵj for j = 1, . . . , n using known ran-

dom seeds
9: Set θt+1 ← θt + α 1

nσ

∑︁n
j=1 Fjϵj

10: end for
11: end for

In a practical implementation of OpenAI-ES, each worker instantiates a huge
block of a Gaussian noise at the beginning and in every iteration draws the noise
from there, which impacts a theoretical independency of the noises, but proved
not to be a problem in practice. Next important detail is that it uses a virtual
batch normalization (VBN) [28] of input (observations) in its agents to improve
the reliability of training. And to reduce variance, it employs antithetic, otherwise
known as mirrored sampling [29]. Ergo, for every tested noise ϵ it also tests its
opposite noise −ϵ. The last really important detail is that it uses fitness shaping
by applying a rank transformation [13] to the returns. For any more details or for
discussion of the design choices, we refer our readers to the original paper [15].

3.2 NS-ES and NSR-ES
The previous method is a typical — and quite a powerful and a successful

— representative of an objective-based neuro-ES. However, as we commented
in Section 2.2.3, not every problem is solvable just by following the information
contained in the fitness function. Could we modify this great algorithm so that
it searches for novelty instead? And it is exactly the answer to this question that
is given in the paper introducing our other two algorithms [26].

First of all, the article presents the NS variant of OpenAI-ES, which they call
NS-ES in the paper. For novelty to actually work, we need some diverse behaviors
kept in the archive. Therefore, it is better to have a real population, not just the
one sole individual the OpenAI-ES operates on. But because in the OpenAI-ES
paper, they call ”population” all the individuals derived by mutation from the sin-
gle base individual every generation (which is not an arbitrariness, it is grounded
in a terminology of the NES algorithm class the OpenAI-ES is a member of, as
mentioned in the previous section), the authors of NS-ES decided to go with the
term meta-population. Which is usually not large, the authors declare to use a
meta-population of size 5 in their experiments. In each iteration, they choose
one individual of meta-population with probability proportional to the novelty
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of the individual computed in relation to the archive. The chosen individual is
then worked with and updated just as in OpenAI-ES, the only difference being
the usage of novelty instead of fitness during updates. The last detail that needs
to be mentioned is how the archive is updated and what behaviors it contains.
Every time an individual of the meta-population is updated, its behavior in the
environment is recorded and added to the archive, so the archive contains the be-
haviors of all the past and present members of the meta-population. To conclude
this algorithm, let us just quickly state the update rule as a variation on the one
used in Algorithm 1. It is the same, just the fitness Fj = F (θt + σϵj) is replaced
by the novelty computed with respect to the archive A, written as N(θt +σϵj, A).
(We just have to keep in mind that in reality, we do not use the novelty itself for
the update, but a rank derived from the novelty):

θt+1 ← θt + α
1

nσ

n∑︂
j=1

N(θt + σϵj, A)ϵj

This leads to the following pseudocode, Algorithm 2:

Algorithm 2 NS-ES core algorithm
Input: Learning rate α, noise std. deviation σ, initial policy parameters θm

0
for every m ∈ {1, . . . , p}
Initialize: n workers with known random seeds, initial meta-population of
size p with parameters θm

0 , and behavioral archive A populated by behaviors
of initial meta-population

1: for t = 0, 1, . . . do
2: Choose a value for m from set {1, . . . , p} with respective probabilities

P (k) = N(θk
t ,A)∑︁m

l=1 N(θl
t,A) for every k ∈ {1, . . . , p}

3: for each worker i = 1, . . . , n do
4: Sample ϵi ∼ N (0, I)
5: Compute novelty scores Ni = N(θm

t + σϵi, A)
6: end for
7: Send all scalar novelty scores Ni from each worker to every other worker
8: for each worker i = 1, . . . , n do
9: Reconstruct all perturbations ϵj for j = 1, . . . , n using known ran-

dom seeds
10: Set θm

t+1 ← θm
t + α 1

nσ

∑︁n
j=1 Njϵj

11: for k ∈ {1, . . . , p} \ {m} do
12: Set θk

t+1 ← θk
t

13: end for
14: Add behavior of θm

t+1 to archive A
15: end for
16: end for

As the next step, the authors wanted to derive a QD modification of OpenAI-
ES. The first one they came up with was an algorithm they called NSR-ES with
the ”R” standing for ”Reward” (fitness). It is almost identical to the NS-ES,
except for the fact that for update it uses mean of fitness and novelty. So during
data collection, or the rollouts in the environment to be more specific, they record
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the behavior and the return obtained, they compute novelty of the behavior, after
the data collection is finished, they rank-normalize both novelties and fitnesses
independently and then create the final weight for the update as mean of the
novelty-rank and fitness-rank of the tested individual. The update rule - again,
with us keeping in mind we use ranks in practice, not the raw fitness and novelty
- looks as follows:

θt+1 ← θt + α
1

nσ

n∑︂
j=1

F (θt + σϵj) + N(θt + σϵj, A)
2 ϵj

The NSR-ES is the QD algorithm we use in our work because of its implemen-
tational simplicity and because it is fully sufficient for our purposes. Neverthe-
less, the authors derived one more QD algorithm, NSRA-ES, where ”A” stands
for ”Adapt”. Again, this is almost identical to NSR-ES; just the update rule is
different:

θt+1 ← θt + α
1

nσ

n∑︂
j=1

(wF (θt + σϵj) + (1− w)N(θt + σϵj, A)) ϵj,

where w stands for an adaptive weight, initially set to 1.0, but adaptively modified
according to the following rules: It is decreased towards zero if the performance
of the whole algorithm stagnates across a fixed number of generations (signalizing
reaching a local optimum, and so even the need for increased exploration) and
continues to be decreased until the performance increases again, at which point
the w begins to get increased towards 1.0 again. And even though this is a much
stronger algorithm than NSR-ES, it is also more complicated to implement, and
mainly, in most of our experimental setting it would work just as OpenAI-ES,
because there is not much deception in the environment we are working on in
this thesis, hence the w would be most of the time set to 1.0. Therefore, we use
NSR-ES as a representative of QD methods.

For both previously mentioned algorithms, NSR-ES and NSRA-ES, the pseu-
docode would be almost identical to the one in Algorithm 2. The only differences
would be that in the data collection part, they would gather the information on
fitness of the individuals in addition to the novelty scores, and in the update
section the corresponding update rule described above would be used.

3.3 Decision Transformer
As mentioned in Section 2.1, in the RL we want the agent to choose actions

at timesteps zero, one, and so on, such that it maximizes its return. This can
be, however, viewed as a sequence modeling problem. And then, naturally, the
best sequence processing architecture available, the transformer, comes into focus.
Thus, the Decision Transformer (DT) was introduced [27].

Its main idea is that we want the agent’s policy to produce an action based on
not just the last observation, but the whole history (or the part which squeezes
into its context window) of past observations and undertaken actions. This would
help mainly in non-deterministic environments, where the current state-of-the-art
architecture is RNN. RNNs, however, as mentioned in Section 2.3, have significant
problems with clarity of information kept from distant past, and hence long-term

16



relationships in the environment. Therefore, we want to employ transformers to
deal with these problems, just as they have dealt with them in the NLP. And
to have some way to affect the agent’s performance, we add conditioning on
return-to-go, which is a return we want to obtain from now until the rest of the
episode.

So, let us take a look at the proposed architecture itself. DT consists of a
causal transformer, embeddings for observations / states, actions, and returns-
to-go, position encoder, and linear decoders to transform the output of the trans-
former to actions, as shown in figure 3.1.

Figure 3.1: Decision Transformer architecture [27]

Every timestep we feed the model with a sequence of past triplets return-
to-go, observation, and action performed, adding the current return-to-go and
observation (and possibly a placeholder for the yet unperformed action). They get
embedded by their respective embeddings, the positional encoding is added, and
everything is then fed through the transformer. We then decode the last output
state of the transformer to obtain the action to carry out. An important difference
from the usual transformer is that every part of the timestep triplet, meaning
return-to-go, observation, and action belonging to one particular timestep, shares
one positional encoding, as opposed to the classical transformer, where every
input sequence element gets its own. A pseudocode for the action inference by
DT can be seen in Algorithm 3. Returns-to-go are constructed in a kind of
recursive way. The user has to supply the original one for the first timestep
(which has the meaning as the desired performance of the model, in other words
target return), while for all the following timesteps the return-to-go is constructed
by subtracting the last reward obtained from the return-to-go belonging to the
previous timestep.

In the original paper, the authors analyze the influence of the target return on
the DT’s performance. They tried the architecture only in an offline RL setting,
which means that the agent is shown some diverse dataset of trajectories (rollouts
in the environment) and it should learn to interpolate the best possible behavior
in an situation without additional learning, or data. In this setting, they observed
that the model is quite capable of matching the target return up to the highest
return seen in the dataset. (So, when prompted with some target return, it will
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Algorithm 3 Action prediction using Decision Transformer
# returns to go, observations, actions : input sequences
# timesteps : sequence of timestep indices the values
# in the other input sequences correspond to
# EncodeTimesteps: positional encoding function
# Embed*: embedding layers / NNs
# Stack: interleaves the sequences
# Transformer: causal transformer
# GetLastActionState: gets the hidden state in the output
# sequence from which the action should be inferenced
# DecodeAction: linear decoder (FF layer)

1: function DT(returns to go, observations, actions, timesteps)
# compute positional encodings and the embeddings
# for the input sequences with the respective
# positional encodings added to each element

2: pos encodings = EncodeTimesteps(timesteps)
3: obs embeds = EmbedObservations(observations) + pos encodings
4: act embeds = EmbedActions(actions) + pos encodings
5: rtgs embeds = EmbedRtgs(returns to go) + pos encodings

# interleave the embedded sequences
6: input embeds = Stack(rtgs embeds, obs embeds, act embeds)

# use transformer to get hidden states
7: transformer output = Transformer(input embeds)

# select the correct hidden state for action prediction
8: last action state = GetLastActionState(transformer output)

# predict and return the action to be taken
9: return DecodeAction(last action state)

10: end function

end the episode with a return close to the desired one. And what more, on some of
the environments tested the DT was sometimes capable of extrapolation and was
able to match the target return even for values higher than the highest seen in the
training dataset. However, in other environments the performance deteriorated
for target returns higher than the highest trained on.

The last mention in this section should be about existing DT’s alternatives
like Trajectory Transformer [30]. So, as we can see, there exist multiple different
approaches to solving the sequence modeling version of RL using a transformer.
Nevertheless, at the time of preparation of this work, Trajectory Transformers
and DTs reported comparable results; thus we chose to work with DT in this
thesis.
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4. Approach
In this chapter, we first go through our goals, our approach to the given

problem, and the methods used; then we take a look at interesting implementation
highlights.

4.1 Methods
In Section 2.2.2, we described that the ES are being used more and more

often as a full-fledged alternative to the gradient methods mainly due to their
parallelizability on the RL problem, where the agent, or its policy, to be more
specific, is often realized by a NN. In Section 2.3, we pointed out the qualities of
transformer architecture, and we have seen how they can be taken advantage of
for the RL in Section 3.3. Yet at the time the work on this thesis commenced,
we had not found any paper that attempted to interconnect these two research
topics. Therefore, we set out to do just that.

We chose a state-of-the-art ES for RL — OpenAI-ES — and chose DT from
the fairly equivalent alternatives mentioned in Section 3.3 as a representative of
transformers specifically adjusted for RL, and proceeded to try and train the
latter using the former. We decided to include NS techniques as well, and thus
we included training using NS-ES and NSR-ES algorithms.

Yet, because the transformers are a bit more complicated and rather larger
models than just the ordinary FF models used in the papers introducing OpenAI-
ES and NS-ES with NSR-ES, we thought it might be advantageous to first pre-
train the DT before feeding it to the ES. (After all, the DT was introduced as
an offline RL model, meaning it was trained in a supervised-like manner in the
original paper.) The reason for this is as follows: When having a large and com-
plicated model, where the probability is low that a random sampling around a
random initial model will yield us models such that the information obtained
from their fitness is well illuminating as to in which direction to best shift the
weights of the model, then we may utilize another approach than ES to get a
model that is no longer random and does something interesting, though perhaps
basic in the environment, and improve this model further by the means of ES. We
achieved this by having a smaller pretrained model (like a classical FF NN) —
which can be trained using any arbitrary RL algorithm, be it a gradient one or an
ES — and using this smaller model to generate trajectories, or rollouts, that are
then cut to chunks the size of the context length of our DT (by sliding a window
over the trajectories), shuffled, and stacked into batches, which are then fed to
the DT’s supervised training. This should help change the weights of DT from
random to relatively reasonable and make the job of ES easier, since it does not
start with a completely randomly behaving model. Just a quick side note, this is
not equivalent with the offline RL from the original paper [27] — the data are not
that diverse, because they are generated by a single model. It is more a behavior
cloning than an offline RL. For our purposes, however, this is fully sufficient. The
high-level overview of the algorithm for pretraining DT as described above can
be seen in Algorithm 4.

Let us now dive deeper into the individual steps of the algorithm. As for
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Algorithm 4 Pretraining the DT
Input: RL algorithm A, DT m, smaller model m′, environment e

1: Train m′ utilizing algorithm A in environment e
2: Create a generator g using m′ and e, which generates trajectories of m′ in e
3: Train m on sequence prediction task using trajectories generated by g

the step 1, we utilized SAC algorithm [31] to train a simple FF agent with two
hidden layers consisting of 256 neurons each for the Humanoid environment based
experiments. For the Atari environment, we prepared to use an already pretrained
agent [32], yet we did not utilize this in the end for reasons mentioned in Section
4.2.

For step 2, we collect trajectories of the rollouts of the model in our environ-
ment. We then slide a window of width of the context length of the DT, sliding
it just by one step every time, hence collecting overlapping slices of the whole
trajectory.

We then shuffle the slices and arrange them in batches. These batches are
then used in step 3 to train the transformer to predict the next token of the
subsequence. We interlace the data generation and the training of the DT, ergo
there is an opportunity for parallelization in this approach.

The last design decision that had to be made for utilizing the pretrained
agent is the following: For the NS-ES and NSR-ES, that have a meta-population
from which they choose an agent to further train every iteration, we decided
to initialize the whole meta-population by the pretrained agent, ergo we have a
meta-population consisting of the same agents. We argue that this is not such
a problem for two main reasons. First, the environment evaluation is usually a
bit different every time due to different start conditions etc., thus the behaviors
of the agents will be different. And second, the job of any NS algorithm is to
diversify the population, therefore we should soon enough end up with a diverse
meta-population. Of course, trying out different seeding strategies remains a
possible topic for future work.

4.2 Implementation highlights
Here in this section, we want to highlight details of our implementation of

OpenAI-ES and details of models used.
We found the official OpenAI implementation to be neither user-friendly nor

well-commented (nor completely adherent to the original paper - they deviate,
e.g., in the way the multiprocessing data sharing works), did not have any inten-
tion of running the algorithm on Amazon Elastic Compute Cloud (for which the
original code is written), wanted to have more control of the model, and needed
to be able to tweak it to incorporate NS and environments used, plus to accom-
modate the use of DT as a policy model. Therefore, we decided to reimplement
the algorithm from scratch. Although it brought along some (in future fixable)
disadvantages, like having to rely on a single multi-processor machine instead of
a cluster, it yielded much more readable, versatile and easily expandable code
(planned to be released as a public package in the future), gave us a deeper un-
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derstanding of the details of the algorithm — ergo, we could better understand,
anticipate, summarize, and comment on the results of our experiments — and
allowed for seamless integration of DT and NS techniques. Our implementation
can be found here: https://github.com/Mafi412/es_contra_dt

The current implementation is based on the Python multiprocessing package
and shared memory, thus it cannot be used to compute on a cluster and requires
a single machine with multiple processors. This was not such a huge problem
with most of our experiments, yet we reached its limits when experimenting with
larger model and computationally slower environment, where one iteration of
the algorithm ran a full day on thirty processors (where our maximal capacity is
currently circa sixty processors per machine), which was unfeasible and we had to
remove similar experiments from our work to put them off for later. We intend to
update the implementation in the future, in order for it to reach its full potential.
Then, we believe, it will help further experiments and new improvements in the
area, because of much better readability and versatility (compared to the original
code by OpenAI).

As mentioned above, our implementation is quite versatile. It is easy to use
with custom models and environments — and even behavior characteristics for
novelty-based searches. We define an abstract wrapper class for both the envi-
ronments and the models, where the custom entities are held inside as a field,
and it suffices to override and implement a few methods, which are then used
in rollouts. Thanks to the model wrapper class, one can even easily integrate
the use of the VBN of input into their model — without which the OpenAI-ES
has proved to be brittle in the original paper — because the wrapper contains
the VBN parameters and keeps track of it during training. As for how to add
the custom behavior to the training, we derived a new abstract class for envi-
ronment from the previous one, where we add one another method returning
the agent’s behavior in the environment so far. Therefore, the responsibility for
keeping track of the behavior lies on the environment, which makes sense, be-
cause the behavior is defined with respect to the environment. The behaviors
then have their own abstract class from which they should inherit. It imple-
ments basic comparison method, and the custom behaviors should then override
this method. Therefore, it is easy to implement a new behavior. We even pre-
pared some general behavior characteristics to be readily available. We have,
for example, CombinationBehaviorCharacteristic which takes multiple arbitrary
behaviors with corresponding weights and then sums the values from each in-
dividual comparison of each individual subbehavior multiplied by the respective
weight. We have UniformCombinationBehaviorCharacteristic which is derived
from the previous one and just weights all the subbehavior values equally. These
are composite behaviors, so they require some basal behavior characteristics that
they can combine. Ergo, we prepared some quite universal basal behavior char-
acteristics. We have multiple behaviors working with sequences of taken actions,
we have behaviors comparing the final or the average states, and we can use the
fitness as a behavior characteristic, comparing two fitnesses using their ratio.

The next thing we would like to highlight are some differences in our and
OpenAI’s implementation, so let us go through them here:

• First and foremost, in the paper [15], they mention the use of the weight
decay as a form of keeping the effect of newly added noises still significant
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enough. So after every update, we decay the weights of the model; therefore,
it would not happen that there could be weights grown to such sizes that the
newly added noise does practically not change the function of the model.
This reasoning for the use of weight decay makes sense and tells us why we
want to use preciselly weight decay. Nevertheless, in their implementation
they use L2-regularization. This is fine for some optimizers, as for, e.g.,
SGD or SGD with momentum it is virtually the same as weight decay (when
rescaled by the learning rate). However, as mentioned in paper ”Decoupled
Weight Decay Regularization” [33], it is not the same, for example, for
ADAM optimizer, which is nonetheless exactly the one they are using in
their experiments. Our implementation, on the other hand, remains true
to the original paper and uses proper weight decay.

• As mentioned in Sections 3.1 and 3.2, during update the gradient estimate
should be normalized with respect to the uncertainty, it should be a natural
gradient estimate, thus the dividing the average of the weighted noises by
the standard deviation should be used. Despite that, in the original OpenAI
code this is not done, while we have it implemented theoretically correctly.
They probably hid this into the value of learning rate (which is different
from ours in our experiments); however, then the learning rate and the noise
deviation are unnecessarily coupled hyperparameters. We did not find any
justification for why they omitted this detail.

• In their code, the original authors wait for the workers to collect both
at least some number of episodes and at least some number of timesteps
before concluding the iteration, computing an update, and beginning a new
iteration. Nevertheless, because of their hyperparameter setting, where
they require just ten times more timesteps than episodes, we decided not
to undergo the work required to implement the lower bound on collected
timesteps. The reason is that in the environments we used in experiments,
one episode was at least around fifteen timesteps long, even with a random
model. Even in most other environments, there is no problem with this
simplification. Nonetheless, it remains an open question for us whether to
include this functionality when we remake the multiprocessing to be capable
of operating on cluster and not just the single machine.

• During rollouts, they add noise to the outputs of the network. However,
because we did not find sufficient reasoning for this in the paper, did not
see the point in it, and believe it — contrary to their claims and reasoning
for this in the paper — rather obscures the true performance of the new
parameters with added noise, we decided to leave our implementation with-
out it at first. And because it had shown performance comparable to their
implementation, we decided not to include it even in the final version.

• In their policy, they clip the observation after the normalization by the VBN
by an arbitrary values of −5, 5 before feeding it to the model. Ablation
study of this bit had shown it has no effect on the result, so we removed it
from the code, because we did not find any reasoning for the exact values
used and wanted to show the good functionality of the algorithm for any
arbitrary model in an arbitrary environment, where it would be non-trivial
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— more so without the knowledge of a reason why there were the exact
values for clipping used in the original paper — to derive come constants
to be used as bounds on the observation.

• The last distinction to be mentioned is purely aesthetic. It is the ranking
used to rank the fitnesses and/or novelty scores to use them during the
update. In the OpenAI’s code, they use a centered rank, the idea of which
is to take the ranking from [0, 1] and center it by subtracting 0.5, obtaining
ranks from [−0.5, 0.5], whereas even though we use a centered rank as well,
we understand it a bit different and in the end arrive at the final interval
[−1, 1]. Thus, every our rank is twice theirs. The difference is really purely
aesthetic because using their ranking is equivalent to using ours with half
the learning rate. We decided to use the ranks from [−1, 1], because of the
interpretation of the ranks. For the best individual, its rank is 1, which
means we want to go ”1 full step” (modified in reality by learning rate) in
its direction from the current individual, whilst we want to get a full step
away from the worst, hence the rank of −1.

To conclude this section, the last thing we want to discuss are our observations
regarding DTs. We did use the original implementation in this case, but had to
slightly modify some minor details, and thoroughly rewrite the training code to
work with our data. Some other details we did not fancy, yet still we decided to
keep them there to preserve the original architecture for the sake of reproducibility
and comparability and just comment them here.

• The original authors provide two DT implementations, one for Atari games
environments, the other for Gym MuJoCo (Multi-Joint dynamics with Con-
tact) environments, together with an example of usage in the form of the
code for the offline RL with their dataset. For the MuJoCo model, we can
see that for sequences shorter than the context length, they add padding to
the left and use masking in order for the self-attentions not to use this por-
tion of the input. However, this is completely unnecessary, because we have
a causal transformer, therefore we already have a mask in use. If only they
padded the sequence from the right instead of from the left, they would not
have to create and add another mask and it would make much more sense.
The only reason we were able to come up with why they might want to do
it their way is so that they would then always have the output action on
the same spot of the output for every input sequence. Nonetheless, this is
really meaningless, since we always know the length of our input sequence
when feeding it to the model, and then it is trivial to extract the right token
from the output.

• Another thing regarding passing an input sequence to the model is keeping
data from the past to be used in the future input. In the original code, the
authors do not deal with sequences already longer than the context window.
They always just append the new data to the list, keeping the whole history
and passing it whole to an inference function, which just crops the sequence
to the required length (not modifying the data stored) and passes it to the
transformer. This proved to be no problem in MuJoCo environment, but
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for some reason leads to a severe slowdown in Atari environment. Thus, we
keep the stored sequence cropped to match the context length in the Atari
version of DT. (We did not use this DT version in the experiments in the
end because of the time concerns regarding the rollouts of DT agents in
Atari environments, but the implementation is prepared for future experi-
ments with the upgraded implementation of the ES or on a more powerful
machine, and we regard this detail important for anyone who would decide
to experiment with DT themselves.)

• In the original training loop for the MuJoCo version of DT, besides the fact
they utilize their offline RL benchmark dataset, they also differ from our
modification in what they do with the data before it is fed to the model.
They take full advantage of having the entire dataset up front and compute
the mean and standard deviation of the states encountered in the data.
They then utilize this and normalize the data before those are passed to
DT. They save the values of mean and deviation and use the normalization
with these values even during inference. Compared to that, we do not use
any normalization. This is for two main reasons. First, we generate the
training data on fly, so we cannot precompute the values. We could have
used the VBN, which is later used in ES training anyway, but we wanted the
pretrained agent to be as generic and basic regarding the input modification
as possible, so that the experiments could show the ability of OpenAI-ES
to further train any pretrained agent. And this is the second reason why
we chose not to perform any normalization during the pre-training.

• To conclude the remarks on DTs, we would like to discuss the functionality
of return-to-go tokens. In the original experiments of the authors, they
showed quite a good correlation between the desired return given to the
model and the model’s final performance, as discussed in Section 3.3. This
is a result of the offline RL setting, for in offline RL datasets there are
diverse trajectories generated by diverse policies. However, in our setting,
the training data was generated by a single policy (the smaller model),
as mentioned in Section 4.1. And as could be expected, this resulted in
almost complete non-responsiveness of the model to the desired return.
And just as a little foreshadowing, this is not something the ES would fix
in the pretrained agents in the current form, nor is it capable of teaching
the DT to take the desired return into account when training them from
scratch. Hence, the DTs trained by the OpenAI-ES or ”fine-tuned” by it
are completely desired return agnostic and do not respond in any way to
return-to-go tokens; they just learn to ignore it, for they are not incentivized
during the training to care about them, they just want to obtain highest
return possible. Yet, we have an idea for how to deal with this, which is
presented in Chapter 6 as a possibility for a future work.
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5. Experiments
Here in this chapter, we first walk through the setting of our experiments and

mention some details that are common throughout the experiments. We then dive
straight into the individual experiments, starting with the plain ES, continuing
with the NS variant, and concluding with a section concerning the QD algorithm.
Each of these experimental sections consists of three subsections. First, we discuss
experiments on a FF network same as in the original paper — which is partially
a correctness check of our implementation, partially a replication experiment of
the original study, and partially a way to familiarize ourselves with the algorithm
behavior before proceeding to a more complex model. We then focus on the
performance of the algorithms on DT without pretraining. And finally, we take
a look at how much the given algorithm is capable of exploiting a pretrained
model (again DT) for its purposes. The only exception to this scheme is the first
experimental section, Section 5.2, which discusses the ES, for we have another
subsection in this section regarding a few hyperparameter values search studies for
those hyperparameters that differ between our and the original implementation.

5.1 Experiments setup
Let us begin by describing the experiments and their setting. The basic idea

is, as stated in Section 4.1, to test the ability of the three algorithms mentioned
in Chapter 3 — OpenAI-ES, NS-ES, and NSR-ES — to train DT architecture to
perform well in a given environment. We chose MuJoCo [34] Humanoid locomo-
tion environment available in OpenAI Gym [35] as a testbed of these algorithms,
for it is one of the more complicated environments for a continuous control, and
thus a good benchmark of the algorithm performance. Another reason is that
Humanoid is the environment used in the original papers for both OpenAI-ES,
and NS-ES and NSR-ES. We tried to perform experiments on Atari environments
[36] as well, but, as mentioned in Section 4.2, this had to be postponed for future
work due to time constraints and a lack of a suitable computing power.

As mentioned previously, we begin testing individual algorithms by reexamin-
ing their performance on a FF model, as used in the original papers. This model
has two hidden layers consisting of 256 neurons, each with tanh as the activation
function. This yields a model with 166,144 parameters. Compared to this, the
DT used for the Humanoid has 825,098 parameters, whence we can see the rise
in complexity originating from the growth of network size alone when deploying
the DTs. The DT hyperparameters used are identical to those used by the au-
thors in the DT paper and their experiments. (For Atari, the DT has 2,486,272
parameters.) For each experiment, we conducted three runs of the training and
aggregated the results in our plots. For every run of each of the experiments
presented, 30 workers were used utilizing 30 CPU cores (with one master han-
dling synchronization, evaluation, and saving the agent) to give a context to the
wall-clock time plots. As we already mentioned in Section 4.2, with the current
algorithms the DT learns to ignore the return-to-go tokens. Still, we assume it
might have had some minor influence on the training, and therefore we disclose
the desired return all the DT models were fed at the beginning of each episode,
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whose value was 7000 for the Humanoid DT.
The last thing to be mentioned regarding all the experiments are the algo-

rithm hyperparameters used. In most cases, they are identical to those used in the
original implementations. Nevertheless, there are some differences. We will post-
pone talking about number of iterations to the individual experiment sections,
but there are two other significant distinctions, both further explained in Section
5.2.2: Instead of ADAM optimizer, we use SGD with momentum (SGDM); and
we deploy different learning rate (called stepsize in original implementation). All
the hyperparameters used can be found in the source codes as default values of
the input arguments in the training scripts, denoted as train *.py, the only excep-
tions being the experiments with pretrained agents, which use a different learning
rate and noise deviation, those both having a value 0.01 instead of the default
one, and turn off the VBN by setting the update vbn stats probability hyper-
parameter to −1. Without turning off the VBN, the pretrained agent suddenly
starts getting completely different inputs and thus cannot function properly.

To conclude this setup section of this chapter, we will talk about the behavior
characteristic used for the experiments using novelty (those testing NS-ES and
NSR-ES). Even though we implemented multiple characteristics, as mentioned
in Section 4.2, for Humanoid experiments we still used a simple characteristic
utilizing the agent’s final coordinates and comparing them using the Euclidean
metric, because that is the one being used in the original paper. This works
well in the NS setting, nonetheless it brings along some disadvantages for QD
approaches. But this will be further discussed in the respective section.

The source code and experiment results in the form of logs, plots, trained
agents, and video recordings of rollouts of the trained agents can be found here:
https://github.com/Mafi412/es_contra_dt

5.2 Evolution strategy
This section is dedicated to experiments with OpenAI-ES. First, we try to

replicate the results of the original paper with the FF model; then we talk through
a few case studies explaining our different setting of some of the hyperparameters
as compared to the original one; after that, we take a look at the performance
of the algorithm on an agent with DT as its policy; and we conclude by the last
subsection, where we experiment with pretraining this agent first, then training
it further using the ES.

Before diving into the individual experiments of this section, we briefly talk
about the exploration capabilities of ES, which are often mentioned as one of
their advantages over the gradient optimization techniques. These can be further
enhanced by utilizing the NS, but even when using plain ES, when running the
algorithm several times (with different seeds), the resulting agents may differ in
what approach they adopt to obtain high fitness, because the best direction in
which to move in the parameter space is estimated using random samples. In
the Humanoid environment, this would mean that the agents learn distinct styles
of moving forward. And really, when experimenting with OpenAI-ES on both
the FF model and the Decision Transformer, we can see that the agents learn
distinctive gaits. We can see this in the videos disclosed in the data section of
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our GitHub repository1 or when we simulate the trained agents stored ibidem.
The only exception is the training of the pretrained agent, but here it could have
been expected, as the experiment does not run for a long time (in a manner
of iterations) and to completely change the gait, the agent would probably first
have to substantially decrease its return, whence we see that the ES would rarely
allow for relearning the manner of moving while still utilizing the pretrained
model. Thus, we can observe only the refinement of the pretrained gait in all
three runs of this experiment.

5.2.1 Feed forward network
In this subsection, we show the results of our replication experiment for the

OpenAI-ES algorithm applied to the FF model, as done in the original paper.
From Figure 5.1, we can see that the results are overall very good and the trained
agents are quite high-performing. And, as mentioned previously, we can observe
quite distinct behaviors in the resulting agents from the three runs as well. The
recordings of rollouts of the three agents can be found on the GitHub repository
referenced in this work. Hence, we can confirm the result of the original paper
and state that OpenAI-ES is fully capable of standing toe-to-toe with gradient
methods as an approach to solving RL problem.

Here, we can see one great strength of the ES being used for RL. If the
environment has short episodes for random or not-so-well-performing agent, then
before the agent learns to do something interesting and the episodes start to get
longer, one of the biggest benefits of gradient TD methods — being able to learn
timestep-to-timestep instead of just after the whole episode is concluded — is not
so profoundly emphasized. So the ES have virtually no disadvantages in this part
of the training, while bringing along the advantages of the parallelization and
the aforementioned ability to obtain diverse agents. We can see that most of the
training is spent — in terms of both the runtime and the wall-clock time — in the
second, the ”fine-tuning” part of the training. We hypothesize that an approach
combining ES in the beginning of the training — providing initial exploration
and parallelization boost to the training — and gradient based TD in the later
stages of the training — fine-tuning the agent pretrained by the ES part — can
provide the exploration benefits of ES and sample efficiency of gradient methods,
which proves useful in case only a limited number of CPUs are available.

The last point we would like to raise in this subsection is the correlation
between the fitness of the mean of the search distribution and the fitness of the
population sampled from the distribution. What can be observed in figures 5.1a
and 5.1b is the fact that the mean of the distribution, representing the current
solution of the algorithm, is better than 97.5 % of the individuals sampled, whence
we can conclude that the search seems to be more about getting away from the
bad solutions than going towards the best, at least in this instance. Ergo, we
get this interesting lag in the plots between the fitness of the mean of the search
distribution and the mean fitness of the population sampled from the distribution.

1Recordings of the agents trained during a specific experiment and during a specific run of
the experiment can be found in the respective data directory with logs and checkpoints of the
given experiment and run. This can then be found using a guide contained in the repository’s
ReadMe file.
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(a) Evaluation results (b) Population fitnesses

(c) Runtimes (d) Wall-clock times

Figure 5.1: OpenAI-ES on a FF model
In Figure 5.1a, we can see the results of evaluations after every iteration of the
ES. Figure 5.1b shows the fitness values of the whole populations throughout

the iterations (mean and percentile interval with standard width, ranging from
2.5 to 97.5 percentiles). Data plotted in Figure 5.1c are then the runtimes of the
populations (again mean and 95% interval). And finally Figure 5.1d represents

the wall-clock time it took the individual iterations to finish.

5.2.2 Feed forward network — Case studies
In this subsection, we show the results of experiments explaining our choice

of values for those hyperparameters, whose values differ from those used in the
original paper. These hyperparameters are mainly the learning rate, where we
generally use the value 0.05 instead of 0.01, the optimizer used, instead of ADAM
we use SGDM, and the size of population. All these experiments are performed
with the FF model and Humanoid environment just as in the previous section,
Section 5.2.1. All the hyperparameters — except those being examined — are
set to their default values.

Let us start by talking about the learning rate. In the original implementation,
they use the value 0.01 for the learning rate, however they also have a different
update step. They use different optimizer — which we will get to later; they use
L2-regularization while we utilize proper weight decay; and they do not normalize
the gradient by the uncertainty while we do, dividing the weighted sum of the
noises by the noise deviation. Therefore, we decided to search for our own best
value for the learning rate. We ran several runs of the program, each with different
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Figure 5.2: Various learning rates
This figure depicts a mean and 95% interval of the fitness of the whole

population derived from the solution model using noise for various learning
rates.

value of the learning rate. Every run was given the same seed, and the optimizer
used was SGDM, which is the default optimizer for our experiments.

In Figure 5.2 — which shows the development of the population fitness — we
can observe that the value for the learning rate used in the original paper, that
being 0.01, is completely unusable because it is unable to train the agent and
improve its performance with our implementation. We can see that initially the
best performing value is 0.08, nonetheless it is outclassed in the later training by
the value 0.05, which is slower (but still the second fastest) to begin improving
the agent, but then quickly takes over and outperforms the aforementioned value.
Hence, the value of 0.08 of the learning rate is not suitable for the fine-tuning
part of the training, where the overall strategy is discovered and it is only further
refined. Moreover, the swift rise of the agent trained with the learning rate of
0.08 towards higher fitness might be explained simply by a favorable seed. This
conclusion supports the fact that even though 0.08 initially performs well and
0.05 is overall the best, the run with learning rate of 0.06 — this value being in
between the former two — is worse than the runs with both the values 0.05 and
0.08. Thus, we decided to use the value 0.05 for the learning rate hyperparameter
in all our experiments.

Another matter we discuss here is our choice of the optimizer used for the
training. In the original work, they use ADAM optimizer, however when we tried
to run the training with this optimizer using our implementation, it turned out
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Figure 5.3: Various optimizers
This figure depicts a development of the fitness of the whole population derived

from the solution model using noise, more specifically its mean and 95%
interval, throughout the iterations for runs with various optimizers.

it does not work quite well. We examined our implementation of the optimizer,
went through its computation step-by-step, but we still did not find anything
wrong with it. So we do not really know the reason our implementation of the
algorithm does not work with our implementation of the ADAM optimizer. The
only idea we have regarding this issue is that it may be possible that this problem
is caused by us using the proper weight decay, while they use the L2-regularization
instead. And although, by the logic of why we should be using it, the weight decay
is more correct, it might theoretically happen that the L2-regularization helps the
optimizer. Still, this seems improbable, since then not even the other optimizers
would most likely function well. Or maybe, this could be caused by us using
the natural gradient, as opposed to their use of the classical one. Regardless of
the reason behind the non-functionality of the ADAM, this led to experimenting
with various optimizers. We ran experiments with ADAM, SGD, and SGDM
optimizers. Results in the form of population fitness of these runs can be found
in Figure 5.3.

We can see that while ADAM is completely useless with our implementation,
the other optimizers perform better. SGD shows better results than ADAM, but
it is quite unstable. However, if we add a momentum to the SGD, thus obtaining
SGDM, we can see that the training is much more stable and even much faster.
Therefore, we chose SGDM as the default for all our experiments.

The last thing to be discussed in this subsection is the size of the population.
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When we use a larger population, the iteration becomes longer as more episodes
must be processed. But we also get a better estimation of the best direction in
which to move in the parameter space, and the training algorithm requires fewer
iterations to reach the same result. Nonetheless, this does not always have to be
true. We do not have hard data to support this hypothesis, yet from some short
experiments we have done it appears there might be such a thing as too large a
population because from some population size, the performance begins to decrease
again. We hypothesise this may be caused by having too many bad-performing
agents and too few high-performing ones, therefore it is not clear enough what
to try to move from and what to move towards in the parameter space. Another
possible cause of this worsening of the performance for bigger populations is the
manner in which the individuals of the population are created. They are sampled
from the search distribution, yet in the practical implementation they are created
by adding some noise to the mean of the population. The noises, however, are
predefined in a shared table of noises, whence they are drawn. Thus, when we
have too many individuals, their noises become highly dependent, which may, in
theory, cause the observed problems.

What we wanted to know is how the algorithm behaves with a smaller pop-
ulation than the one used in the original implementation, because when moving
from FF model to DT, we get roughly five times more parameters. Hence, we
need roughly five times larger population to get a good enough estimation of the
best direction to move the parameters in. But this would mean a substantial
increase in the time the algorithm would run. As a result, we wanted to gain an
understanding of what happens when we decrease the population size. Therefore,
we ran an experiment with half the population size compared to the default for
the FF model and compared the result with the best of the experiments shown
in Section 5.2.1. The results of the evaluation of the means of the search distri-
butions of the runs and the time-related data about the individual iterations of
the runs can be found in Figure 5.4.

In figures 5.4a and 5.4b we can observe that the run with the smaller popu-
lation eventually reaches the point where the coarse gait is learned as well (with
half the population size in twice as many iterations - roughly around the 100th
iteration instead of around the 50th one), and then even the fine-tuning phase
seems similar. So, with a smaller population, it will take longer to reach the same
result. Still, as can be seen in Figure 5.4c, every iteration lasts only half as long
with respect to the wall-clock time. This has little consequence for the initial
phase of the training, yet it has a profound effect since the coarse gait is learned
and the episodes become longer. This may lead us to propose a learning sched-
ule, where initially the population is large, so the initial improvement is reached
swiftly; yet as time passes, or when large enough initial improvement is reached,
the population decreases in size, so that one iteration takes less time. Again,
this applies only to those environments, where the episodes are shorter for ran-
dom or not-so-well-performing agents and longer for better agents. Nevertheless,
taking into account our observation that there can be such a thing as too large
a population, and because with too little a population we do not have enough
information to effectively estimate the gradient, this would probably require a
lot of domain knowledge and experimentation with the hyperparameters setting
before the training itself, and ergo it is not a viable training approach in real-life
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(a) Evaluation results

(b) Runtimes (c) Wall-clock times

Figure 5.4: Various population sizes
Figure 5.4a shows us the evaluation fitness after each iteration; Figure 5.4b

contains a mean and 95% interval of the runtimes of the whole population each
iteration; and Figure 5.4c shows us the wall-clock time of each iteration — all
for runs with standard and half population sizes. For the standard population

size, the best run observed in Section 5.2.1 has been chosen.

scenarios.
Still, we managed to show that smaller population might be enough for a

successful training and so for the experiments with DT we use population size
only twice the size used in experiments with the FF model.

5.2.3 Decision Transformer — Without a pretrained agent
Here, we will walk through the results of the experiments concerning the

application of OpenAI-ES to training DT from scratch.
As can be observed in Figure 5.5a, the OpenAI-ES easily copes with even a

more complex model such as DT, even though its population size is only double
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(a) Evaluation results (b) Wall-clock times

Figure 5.5: OpenAI-ES on a DT
Figure 5.5a shows us the evaluation fitness of the solution model after each

iteration. Figure 5.5b shows us the wall-clock time each iteration needed to run.

compared to the population size in the case we trained the FF model, while it
has approximately five times more parameters to set and a more complicated
architecture overall. As we have seen in Section 5.2.2, if we had used larger
population, we would have reached the leap in the evaluation fitness sooner than
roughly around iteration 75 (for the best run) or 120 (for the others), which values
can be seen in Figure 5.5a, nonetheless this would be at the cost of the higher
wall-clock time duration of the training. And as we can see in Figure 5.5b, for the
DT the duration of one iteration is significantly longer than for the FF model,
because every model inference, every decision, which action to perform, takes
longer. More profoundly so, when the coarse gait is learned and the episodes
themselves become longer. Still, we have to keep in mind that utilizing twice
as many CPUs would result in about half the wall-clock time required. And by
every other increase in the computing power, the wall-clock time required would
decrease accordingly. Yet, if there is a limit on the computing power available, as
in our case, this shows us one limitation of using ES for the RL: When increasing
the population size, we might reach a point where the episode duration combined
with too large a population size makes learning from each timestep (by utilizing
gradient TD methods) more favorable, compared to learning from the whole
episodes (utilizing a population-based search, although parallelized).

5.2.4 Decision Transformer — With a pretrained agent
In this last subsection of the section dealing with OpenAI-ES, we focus on the

ability of the aforementioned algorithm to further train or fine-tune a pretrained
model. Generally, we would probably want to use the ES to train the model
from scratch, so that the previously mentioned exploration, or let us call it the
diversification, capability of the model is fully utilized, and because — as we
commented previously — the ES is at its strongest when the episodes are short.
Even so, as mentioned in Section 4.1, there might be problems when training
large and complicated models by ES from scratch. Therefore, we want to try and
utilize a pretrained agent for further training by the ES. The pretrained agent
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(a) Evaluation results (b) Population fitnesses

Figure 5.6: OpenAI-ES on a pretrained DT
Figure 5.6a shows us the evaluation fitness of the solution model after each

iteration. Figure 5.6b depicts a development of the fitness of the whole
population derived from the solution model using noise, more specifically its

mean and 95% interval, throughout the iterations.

used in the experiments has mean fitness around the value 4.
Figure 5.6a shows us that even though initially the performance of the trained

agent decreases almost to the level of a random agent, it is later improved above
the performance of the original agent. The initial worsening of the agent may be
explained if we take a closer look at the early iterations in Figure 5.6b showing
the fitnesses of the whole populations sampled from the search distribution. We
can see that the fitness of the population is quite poor in the early stages. This
shows us that although the agent was well-performing, it was not robust in the
sense that adding a small noise to its weights would almost always completely
break its performance. If we extend this idea, we can see that not only does
the OpenAI-ES give us a high-performing agent, but the agent is quite robust as
well, which might be a desirable property, e.g., when transferring the model to
a system with lower precision where rounding of the weights might be expected,
like when an agent is trained on a powerful computer but is deployed in a field
on some mobile device.

If we come back to the fact that the agent had to be worsened in order to
be improved again, an obvious question arises. Is there a benefit in seeding the
algorithm by a pretreined agent compared to not doing so? This can be answered
by comparing figures 5.6a and 5.5a. We can observe that the improvement comes
much sooner when the pretrained agent is provided, around the 25th iteration,
instead of roughly the 75th in the best observed case without the pretrained
agent. So, this approach seems to be quite successful. Moreover, Figure 5.6b,
nicely shows us that with the same pretrained model being passed to the algorithm
as a starting point for further improvement, all three runs are almost the same
despite not having the same seed, whence we can see that the training itself is
quite robust.

Be as it may, this approach has its disadvantages as well. First of all, we need
to have the pretrained agent. The next problem with this approach is that it does
not allow the ES to produce diverse agents with different seeds. Yet, the biggest
disadvantage is that it forces us to use different hyperparameter values than we
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would otherwise use. We have to decrease the value of the learning rate and the
noise deviation so that the pretrained model is not completely randomized and
broken in the first few steps, thus the further learning and fine-tuning will be
slower. We also have to turn off the use of VBN, which can further harm future
training efforts. Ergo, this approach is possibly viable only in the case mentioned
in Section 4.1, when we have a model too big and too complicated for it to be
easily capable to arrange its weights such that it does something interesting in
the environment. Yet still, experimenting with this approach provides us with
valuable insights.

5.3 Novelty search
In this section, we experiment with our implementation of NS-ES. We begin

by training the FF model, hence replicating the experiments from the original
study; we then move on to experimenting with DT; and we conclude this section
by taking a look at how well is the NS-ES able to exploit a pretrained model.

Before we dive into the experiments themselves, let us note one thing. The
Humanoid environment is not a deceptive one. That means, in short, that the
optimization of the fitness function is directly correlated with the optimization of
the desired objective, that the fitness function does not lead us to a suboptimal
local optimum, from which we cannot get by following the fitness alone. In the
case of Humanoid environment, this means that fitness leads us to run further and
further along the x-coordinate, the objective is to get as far in this direction as
possible, and there is nothing stopping us from going in that direction. However,
in the paper introducing among others NS-ES, the authors introduced a new
deceptive environment, where they used Humanoid environment as a basis but
added a small three-sided enclosure near ahead of agent’s starting position. This
then acted as a trap for the agents that tried to learn only how to go further
along the x-coordinate. In this setting, the ES was unable to get around the
trap, while the NS and QD algorithms were able to eventually circumvent the
enclosure. Nevertheless, we are not attempting to show the capabilities of the
given algorithms to solve a deceptive problem, but the ability to train the DT
towards the goal of the NS, so whether the NS-ES will yield us agents moving in
some direction, not just along the x-coordinate. Still, we have to keep in mind that
when deploying an optimization algorithm, even a NS algorithm which does not
use an objective in its process, we ultimately want to solve the original problem.
Therefore, unlike in the aforementioned paper, we kept the reward to care only
about the advancement made in the positive direction along the x-axis, while
their reward is indifferent to the direction traveled. Thus, in the sense of the
environment objective, fitness is what we are interested in, but in the sense of
moving in any direction, the best observable and plottable indicator is probably
the time the agent stayed on its feet (runtime), at least in the initial phase of the
training.

5.3.1 Feed forward network
We begin by replicating the experiments by the original authors on the FF

model with our implementation of NS-ES.
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(a) Evaluation results (b) Population novelty scores

(c) Runtimes (d) Wall-clock times

Figure 5.7: NS-ES on a FF model
Figure 5.7a shows us the evaluation fitness of the solution model after each

iteration. Figure 5.7b depicts a development of the novelty scores of the whole
population derived from the solution model using noise, more specifically its

mean and 95% interval, throughout the iterations. Figure 5.7c contains a mean
and 95% interval of the runtimes of episodes performed by the agents of the

population each iteration. And finally, Figure 5.7d shows us the wall-clock time
each iteration needed to run.

As we can see in Figure 5.7a, we again obtained agents capable of moving in
the environment, even though it took more iterations than when using OpenAI-
ES, because of the meta-population, when we suddenly have not only one, but
in our case five agents to train. By taking a look at the video recordings of the
rollouts of the best agents in each run2, we will find out that the best does not
move straight forward along the x-axis, but walk sideways. Still, they are able
to obtain relatively high returns. The jaggedness, or non-smoothness of the plot
showing the evaluation fitness, as well as all the others from Figure 5.7 is caused
by switching between the agents from the meta-population between iterations.

From Figure 5.7b, which shows us the mean novelty score of the whole pop-
ulation together with its percentile interval, we can observe an interesting thing:
The surges in the novelty scores appear to correspond to the surges in the fitness
of the evaluated agents. This is true, nevertheless we should realize there are
novelty spikes even at iterations, that do not yield great results in the sense of

2Recordings can be found using a guide contained in the repository’s ReadMe file.
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(a) Evaluation results (b) Runtimes

Figure 5.8: NS-ES on a DT
Figure 5.8a shows us the evaluation fitness after each iteration and Figure 5.8b

contains a mean and 95% interval of the runtimes of episodes of the whole
population each iteration.

the fitness of the evaluated agent. They do, however, correspond to the spikes
in runtimes in Figure 5.7c, which is the best indicator of how well does the cor-
responding agent walk for the initial phase of the training, as mentioned in the
introduction of Section 5.3. This initial correspondence between higher novelty
and longer-lasting agents can be explained by the fact that in this environment,
once the agent starts walking instead of falling immediately, its fitness will sub-
stantially increase and simultaneously its novelty will increase. This is because
all the previous agents ended near around the origin, so wherever the walking
agent ends up, it is far away from the previous end positions.

As can be deduced from the jagged nature of the graphs even towards the end
of the training, and as can be confirmed by the recordings of the rollouts of the
final agents, the search does not train all the members of the meta-population
equally to do something interesting. In fact, some remain quite clunky and ca-
pable of only short episodes up until the end of the training. For all the agents
to become proficient in the environment, we would need to let the algorithm run
longer. The reason why not all the agents from the meta-population are trained
equally well is that initially once an agent learns to walk in any direction, its
novelty raises, and because of the novelty-based probabilistic selection of agent
to train further next iteration, it has higher chance of being chosen again and
further improved, while the rest of the agents, which are still clumped around
the origin, has smaller chance of being chosen for training, to learn to walk, and
hence to escape from the origin.

5.3.2 Decision Transformer — Without a pretrained agent
In this subsection, we show and discuss the experiments with training DT

using NS-ES algorithm.
We chose to use a smaller number of iterations (around 2

3 of the number used
for the FF model — 400 instead of 600), because of the time complexity of the
training the bigger, more complex model utilizing larger population. In Section
5.2.3, we can see this proved to be no major problem for the OpenAI-ES (using
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the same fraction of the iterations provided to the FF model, 2
3); however, for the

NS-ES we see that much more training is needed to improve the more complicated
model like DT. Nonetheless, because of the time constraints, we had to give up
letting the algorithm run longer. Yet, in Figure 5.8a we can see gradual improving
of the returns, and in 5.8b it is possible to observe that the mean runtime slowly
grows as well compared to the initial runtime. Nevertheless, the improvement is
negligible, and further work would be required to indisputably confirm that it is
possible to train DT utilizing only a novelty signal. Yet, if we take a closer look
at the rollout recordings of the final agents3, we find that even though the agents
mostly did not learn to walk in any direction, they still mostly learned to each
fall in a different direction than the rest. And in a few rare instances, there even
are some hints of walking, or let us rather call it directed movement. Ergo, the
NS-ES seems to be at least partially successful.

5.3.3 Decision Transformer — With a pretrained agent
Here, we go through the results of experimenting with the use of a pretrained

agent using a NS-ES algorithm for further training.
From Figure 5.9 we can observe that providing the NS-ES with a pretrained

agent does not help the algorithm to make any progress. On the contrary, when
compared to the runs without the pretrained agent discussed in Section 5.3.2,
it shows complete lack of any progression being made. Even when visually in-
specting the rollouts of the trained agents4, we can see that most are completely
random. Yes, in every run there is that one rare case of agent that seems like it
might start doing something interesting just after the next training iteration, but
it does not do so at the moment.

We can only guess what the reason for this non-functionality is. Our main
hypothesis is that by seeding the pretrained agent to the whole population, as
we did, we filled the behavior archive by five (meta-population size) behaviors
of ”going forward”, essentially. Ergo, moving forward is not the preferred way
and much more novel than that would be even just falling on the spot (which is
the behavior of a random agent in this environment). Initially, random agent’s
behaviors are thus more desirable and trained towards, which breaks the pre-
trained agent. This phase can be seen in the initial part of Figure 5.9c. This
would explain why the seeding by a pretrained agent does not help the search.
Still, it does not explain the complete lack of progress throughout the runs of the
algorithm. To explain this, we have to hypothesize even more: Even after the
initial phase is over, after we end up with a random agent, moving forward is
not as desirable as walking in any other direction. However, as we have seen in
Section 5.2.4, where the pretrained agent was being used with OpenAI-ES, the
pretrained agent is not robust and by adding a small noise we completely disrupt
its function. Even so, in the aforementioned section we ended up with similar
final agents with the same, only improved gait as the pretrained agent. That
hints on the fact that although the pretrained agent is not robust, its gait might
be something as a ”attractor point” the agents in the vicinity of the pretrained

3Again, the recordings can be found in the respective data directory with logs and check-
points. This can then be found using a guide contained in the repository’s ReadMe file.

4This can again be found using a guide contained in the repository’s ReadMe file.
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(a) Evaluation results (b) Runtimes

(c) Population novelty scores

Figure 5.9: NS-ES on a pretrained DT
Figure 5.9a shows us the evaluation fitness after each iteration. Figure 5.9b

contains a mean and 95% interval of the runtimes of episodes performed by the
agents of the population each iteration. Figure 5.9c depicts a development of

the novelty scores of the whole population, more specifically its mean and 95%
interval, throughout the iterations.

agent (in the parameter space) will incline towards. This leads us to believe that
the algorithm must first really break away from the pretrained model by making
it completely random in order to be able to begin to learn to reliably walk in
other direction.

Still, these are just theories, and even though we are quite confident in our
explanation of why the seeding by the pretrained agent does not improve the
training, and could propose some solutions to this, like adding many dummy
behaviors of random agents before the training, so that we prevent the quick
degradation of the pretrained agent, we have much less confidence in the second
explanation of why the training does seem to not work at all.

5.4 Quality-diversity
Here in the last section of this chapter, we will take a look at the QD algo-

rithm NSR-ES and its ability to train DTs. As before, we begin by reevaluating
its performance on FF model; then we proceed to the DT model without any
pretraining; and we conclude by examining the performance when seeded with a

39



pretrained agent.
Again, it is important to mention that we do not have a deceptive environ-

ment, so instead of the ability to overcome local optima, we investigate whether
we can get a population of high-performing, yet diverse agents. Still, we should
say that a different behavior characteristic would be suitable for this, we believe,
because by utilizing the fitness, which is basically the distance traveled along the
x-axis, we have a strong pressure on the direction of agent’s movement, and it is
our end objective. However, by utilizing the novelty based on final coordinates,
we do not provide a means of diversifying this objective. It would be good for the
deceptive problem, but for this it is not really that much suitable. Nonetheless,
we kept this behavior characteristic to remain consistent with the previous exper-
iments and the original paper. Despite that, in the initial phase of the training,
when the progress made in any direction is not that substantial, we can see the
diversification of the direction of the agent’s movement, but still containing a
positive component in the x-axis enforced by the fitness, as we will see in Section
5.4.2.

5.4.1 Feed forward network
This first subsection is again dedicated to the replication experiments of those

done by the original authors of NSR-ES algorithm. We test the algorithm by once
more training the FF model. As we can see in Figure 5.10a, we again obtain high-
performing agents, even though it takes longer (with respect to the number of
iterations needed) compared to OpenAI-ES algorithm and Figure 5.1a. This is the
price to be paid for having a whole meta-population of agents to train instead
of just one sole agent, as is the case in OpenAI-ES. It is also caused by the
novelty being involved in assigning weights to the individuals of the population
in each iteration, not just the fitness. Still, because in this case the behavior and
objective are at least partially aligned (running further means both higher fitness
and higher novelty score), the penalty for the added objective is not so grave.

The confirmation of the alignment of the fitness and the novelty in this case
can be observed in a correspondence that can be seen between figures 5.10b and
5.10c. There, we can see a partial correlation between the peaks of the population
fitness and of the population novelty.

Just as in Section 5.3, where the NS-ES was tested, we can see the plots
are quite jagged and non-smooth. Again, this is caused by having the meta-
population and not every agent of the meta-population being trained equally.
Even in the final meta-population, there are agents that fail to walk in any di-
rection. Yet, even in these cases we can see the influence of the novelty in that
they fall orderly each in a different direction to reach different final coordinates.

Still, in each of the three runs there are two agents from the meta-population,
that managed to learn to walk. (In run number 3, the second walking agent still
falls after a while, but it walks.) And even in each of these pairs, we can see
the influence of including the novelty score for update, for the two agents of the
pair almost never walk along the x-axis, not straight forward, but rather a bit
diagonally, so their final position is as distinct from the other one as possible, but
they still cover a lot of distance even in the x-axis direction. Even so, it might
be quite interesting to try another behavior characteristic in the future work,
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(a) Evaluation results

(b) Population fitness (c) Population novelty scores

(d) Runtimes (e) Wall-clock times

Figure 5.10: NSR-ES on a FF model
Figure 5.10a shows us the evaluation fitness of the solution model after each

iteration. Figures 5.10b and 5.10c depict a development of the fitness and the
novelty scores, respectively, of the whole population, more specifically their
mean and 95% interval, throughout the iterations. Figure 5.10d contains a

mean and 95% interval of the runtimes of episodes performed by the agents of
the population each iteration. And finally, Figure 5.10e shows us the wall-clock

time each iteration needed to run.
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(a) Evaluation results (b) Runtimes

Figure 5.11: NSR-ES on a DT
Figure 5.11a shows us the evaluation fitness of the solution model after each

iteration and Figure 5.11b contains a mean and 95% interval of the runtimes of
the population each iteration.

for example, a characteristic on the sequences of actions performed — which is
already prepared in the implementation — to see whether we will get agents going
straight forward, but each with clearly distinctive gait. We hypothesize that this
would only strengthen the innate ability of ES to produce diverse behaviors and
thus may prove to be highly successful in achieving its goal of training meta-
population of high-performing, yet diverse agents.

5.4.2 Decision Transformer — Without a pretrained agent
In this subsection, we cover the experiments concerning the effectivity of ap-

plying NSR-ES to train a DT.
We again, just as in Section 5.3.2 with NS-ES, reduced the number of timesteps

compared to the case with the FF model for the same reasons as mentioned in
the aforementioned section (300 as compared to 400). And just as in Section
5.3.2, this number of iterations proved to be lacking, and experiments lasting
more iterations would be needed to fully and with no doubt confirm the effec-
tiveness of utilizing NSR-ES to train the DT. Yet, unlike in Section 5.3.2, we can
see in Figure 5.11a and Figure 5.11b that there are clear improvements in the
meta-population in case of both the evaluation fitness and the population run-
time, respectively. And when we take a look at the rollouts of the members of the
final meta-population, we can see that, even though they all fall in the end, they
fall each in a distinct direction, and we can even observe a slight movement of
torso forward along an x-axis almost in every case which gives them some reward,
even though they fall back after that. So we have even a visual confirmation that
the algorithm relatively successfully trains them towards both the goals, to be
distinct and to obtain a reward.

5.4.3 Decision Transformer — With a pretrained agent
In this last subsection of the final section of this chapter concerning experi-

ments carried out, we will take a closer look at the ability of NSR-ES to exploit
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the pretrained DT to enhance the training.
From Figure 5.12a, we can observe that — unlike with NS-ES in Section 5.3.3

— the NSR-ES can benefit from having a pretrained agent. And even though
without the pretrained agent the number of iterations used was not enough as
seen in Section 5.4.2, when seeded with the pretrained agent it proved to be
capable of obtaining high-performing agents in the same number of iterations.
Yet, the novelty-based part of the algorithm might seem not to work as perfectly,
as the objective-based one, for the best agents are very similar in all three runs,
as can be seen by taking a quick glance at their rollouts, and they are again,
just like in Section 5.2.4, very similar to the pretrained model as well. They did
not manage to alter the gait of the pretrained agent, they again just perfected
it. However, if we take a closer look at the whole final meta-population, we can
see that there really are different gaits in development; they only did not get the
chance to get perfected more than the ”dominant” gait of the pretrained model.
In data of run 1, there can be even observed a completely distinct gait, where the
agent learned to walk sideways. In the other two runs, 2 and 3, on the other hand,
there are multiple agents with gait similar to the ”dominant” one, but again, just
as in the experiments with the FF model in Section 5.4.1, they walk not straight
forward, but at least a bit diagonally, to end in another final position and hence
gain higher novelty.

In Figure 5.12b, we can once more see — and hence confirm what we ob-
served in Section 5.2.4 — that the pretrained agent was not robust and almost
the whole population obtained by adding noise to the pretrained agent did not
perform very well. In Figure 5.12c, in initial phase we can see similar dynamics
to those observed in Section 5.3.3 in Figure 5.9c, which is a manifestation of the
initial archive being filled by behaviors ending further away from the origin, but
behaviors of later models ending near the origin. Nevertheless, unlike in Fig-
ure 5.9c, we have a completely different later phase, where we again learn to do
something interesting and, therefore, start to obtain higher novelty score once
more.

Ergo, we believe, we can confidently say that NSR-ES is fully capable of ex-
ploiting a pretrained model for further training. And once again just as in Section
5.4.1, it might be interesting to try to utilize other, e.g., action sequence-based
behavior characteristic to obtain a meta-population of diverse high-performing
agent obtained from a single pretrained model.
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(a) Evaluation results

(b) Population fitness (c) Population novelty scores

(d) Runtimes (e) Wall-clock times

Figure 5.12: NSR-ES on a pretrained DT
Figure 5.12a shows us the evaluation fitness of the solution model after each

iteration. Figures 5.12b and 5.12c depict a development of the fitness and the
novelty scores, respectively, of the whole population, more specifically their
mean and 95% interval, throughout the iterations. Figure 5.12d contains a

mean and 95% interval of the runtimes of episodes performed by the agents of
the population each iteration. And finally, Figure 5.12e shows us the wall-clock

time each iteration needed to run.
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6. Discussion
In this last chapter, we would like to conclude by recapitulation and further

discussion of the results of this work and by providing possible directions and
ideas for future work.

We managed to reimplement the algorithms and replicate the results of both
the original papers about OpenAI-ES [15], and NS-ES and NSR-ES [26], respec-
tively, as shown in Sections 5.2.1, 5.3.1, and 5.4.1. In our implementation, we
focused on user-friendliness and versatility, so that the code could be easily used
for experimenting with different models, environments, and behavior characteris-
tics for the novelty-based searches, as described in more detail in Section 4.2. In
the future, we plan to extend and upgrade our implementation, so that it is fully
capable of working on a cluster, instead of just a single multi-processor machine.
Still, with the current implementation we were unable to perform training in
Atari games environment, for it took too long, almost one whole day for a single
iteration, the reason being too large a population required, quite a big model,
and a slower environment. And even though we were limited by the maximum
number of cores on a single machine due to our implementation, and it would
surely be better with more workers, there is always some upper limit on the com-
putational power available, so there will always be this problem of utilizing ES to
train large models. When one evaluation is too long and when many evaluations
are needed to make one update step, the whole training will take too long.

We verified that the OpenAI-ES algorithm, as well as its variants NS-ES and
NSR-ES performing NS, and QD search, respectively, are overall successful even
in training larger and more complicated model, like the DT architecture, in the
RL setting. In Section 5.2, we found out that OpenAI-ES had no problem training
the DT, be it with or without a pretrained agent being seeded to the algorithm.
Only a few problems arose for this ES. Once the agent learns to last longer in
the environment and the episodes get longer, so does even the wall-clock time
needed for one iteration. In case of a small FF model, this increase is not so
perceptible, yet for the DT it is very significant. This, however, would not be
such a big problem if we were able to utilize a whole cluster for the training, so it
is not something insurmountable. The second problem is that when providing a
pretrained agent to the algorithm, the training algorithm loses its innate ability
to create distinct agents in multiple runs, it always just perfects the pretrained
agent in the same way. Thus, seeding by a pretrained agent greatly reduces
the iterations needed to obtain a high-performing agent, but we lose one of the
biggest advantages of ES, its exploration, or rather diversification. And of course,
we have to pretrain the model, but that may be much easier than training it from
scratch using ES in some cases.

As for the NS-ES, as shown in Section 5.3, we found out that in order to
successfully train DT it would need much more iterations than what we provided
to train any of the agents from the meta-population to successfully walk in any
direction. Still, we can observe traces of future gaits that are being learned, and
we can see that the training for novelty has its effect on the final meta-population.
However, in the case of providing the training with a pretrained agent, we observe
remarkably bad performance. The fact that the NS is not capable of exploiting
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the pretrained agent to improve its search is explainable by many things, yet why
no progress is visible at all even after many iterations remains largely a mystery,
even though we have tried to propose an explanation for this as well.

Finally, we found the NSR-ES to be highly capable of successfully training
DT, as documented in Section 5.4. Although the training from scratch would
again require some more iterations, we were able to observe a clear progress.
And when provided with the pretrained agent, the algorithm proved to be able
to fully exploit it and train high-performing agents, even showing the capability
to diversify the agents based on the behavior characteristic used.

Still, there are many possibilities for future research in this area. Aside from
the ideas and suggestions proposed throughout Chapter 5, we lay out some others
here. We could start by pointing out that our environment, just as environments
used in the original paper for DT, was fully observable. It would be interesting to
test whether having the transformer’s context window, in other words, memory,
helps us in partially observable tasks.

Another possible direction of the future research might be testing other EAs,
to see whether they are able to deal with DTs and train this more complex
architecture. For example, we could experiment with the GAs, mentioned at the
beginning of Section 2.2, just as they were applied to training a FF model in the
literature, be it as an objective-based search [37], or a novelty-based search [38].

We would like to conclude by pointing out the following. We managed to train
the DT to perform well in the environment overall. Still, we did not manage to
train the DT in its intended form, where it would respond to the desired return
and the return-to-go tokens, in general. We could have removed the return-to-
go tokens, thus saving a third of the space, and the result would probably not
change much. Yet, the return-to-go tokens help DT to learn well in an offline
manner, as stated in the original paper. And in particular, we believe it to be
interesting to explore agents that we could tell how well we want them to perform
and the agent would behave exactly as well or as badly as we want it to — all this
using a single set of weights, a single agent. Therefore, we propose an approach
that might achieve training and obtaining exactly such an agent which would
manage to respond to the desired return and the return-to-go tokens. We would
only modify the current algorithms, like OpenAI-ES, in the following manner.
Each evaluation now consists of several subevaluations, each subevaluation gets a
desired return sampled from a N (µ, σ), a normal distribution centered at a value
µ with variation σ. The value of µ would be computed from the returns obtained
last iteration. The exact computation remains to be decided in a future work, but
the resulting value should be somewhere between the best return obtained and the
mean return obtained during the last iteration, so an improvement is gradually
made. The variation σ would be a hyperparameter, or it could be a variation of
the returns obtained last iteration. The fitness of an individual would not be the
mean of its returns obtained, as is the case in OpenAI-ES, but rather a decreasing
function of absolute values of the differences between the return obtained and
the desired return in each subevaluation; therefore, the larger the differences, the
smaller the fitness. This might be, e.g., minus a weighted sum of the differences,
but again, the exact function used remains for a future investigation. Another
approach could be to use a multi-objective ES, where one objective would be
to maximize return obtained (based on subevaluations with the same desired
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returns for all the individuals, the desired return probably being a mean of the
previous iteration returns plus some constant, or the best return observed during
the last iteration), and the other objective would then be to maximize the fitness
described above.
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