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Abstract:

This thesis focuses on developing and improving task-oriented dialogue systems
design in the rapidly growing landscape of artificial intelligence and natural lan-
guage processing. We propose techniques that can substantially decrease devel-
opment and deployment costs, motivated by the desire to make these systems
more adaptable and scalable. We introduce multiple novel approaches to achiev-
ing these goals.

Firstly, we present a weakly supervised automatic data annotation pipeline
that can transform raw dialogue transcript into a refined set of semantically
coherent concepts, bypassing the need for exhaustive manual annotations in nat-
ural language understanding for a given domain and significantly streamlining
the development process.

We also explore the largely uninvestigated field of latent variable models in
task-oriented dialogue system modeling. These models offer excellent capabilities
with the potential to uncover the structure of behavioral patterns seen in the
dialogue through inspection of the latent space and comparison with actions
taken by the model. Furthermore, we explore the potential of these models to
form hierarchical representations using our proposed architecture.

Following recent progress in the field, we harness the power of pre-trained
large language models using in-context learning. We explore how easily language
models can transfer the learned knowledge to previously unseen domains. We also
propose a method based on retrieval-augmented LLM prompting that performs
well with merely a few training examples. It shows great promise in our human
evaluation trial, implying a substantial leap in efficiently using computational
resources to train conversational AI. This brings us closer to more flexible and
general-purpose systems.
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Abstrakt:

Tato práce se zaměřuje na vývoj a zdokonalování návrhu tzv. task-oriented di-
alogových systémů v rychle se rozvíjejícím prostředí výzkumu umělé inteligence
a zpracování přirozeného jazyka. Navrhujeme techniky, které mohou podstatně
snížit náklady na vývoj a nasazení těchto systémů, což je motivováno snahou o je-
jich větší přizpůsobivost a škálovatelnost. V práci představujeme několik nových
přístupů k dosažení těchto cílů.

Nejdříve představujeme automatickou metodu anotace dat, která dokáže ex-
trahovat sadu sémanticky koherentních konceptů (dialogových slotů) z prostého
přepisu zaznamenaných konverzací. Tímto přístupem snižujeme množství ma-
nuální anotace potřebné pro porozumění přirozenému jazyku v dané doméně a
výrazně tak zefektivňujeme proces vývoje.

Zkoumáme také modely využívající latentní proměnné v modelování task-
oriented dialogových systémů. Tato oblast je do značné míry neprobádána. Mo-
dely využívající latentní proměnné nabízejí možnost využití neanotovaných dat
s potenciálem odhalit strukturu vzorců chování pozorovaných v dialogu. Toho
lze dosáhnout prostřednictvím analýzy latentního prostoru a porovnání s akcemi
provedenými modelem. Dále zkoumáme potenciál těchto modelů pro vytváření
hierarchických reprezentací pomocí námi navržené architektury.

V návaznosti na nedávný pokrok v této oblasti také využíváme schopnosti
předtrénovaných velkých jazykových modelů (LLM) pomocí metody tzv. in-
context learning, tedy učení se z kontextu. Zkoumáme, jak snadné je pro jazykové
modely aplikovat znalosti získáné tréninkem v jedné doméně na dříve nevidě-
ných datech. Námi navržená metoda založená na učení z kontextu obohaceném o
příklady dosahuje pozitivních výsledků s použítím pouze několika tréninkových
příkladů. Ukázala se také jako velmi slibná při hodnocení v interakcích s lidmi.
Tento způsob použití modelů představuje podstatný skok v efektivním využívání
výpočetních zdrojů k trénování konverzační umělé inteligence. To nás přibližuje
k flexibilnějším a univerzálnějším systémům.

Klíčová slova: dialogové systémy, semi-supervised learning, jazykové modely,
hierarchické modely, clustering, variační autoenkodéry
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1
Introduction

Human language is a convenient and natural means of communication for human
beings. It is, therefore, desirable to implement an interface that mimics natural
language and allows humans to interact with computers like they would with
other human individuals.

To achieve this goal, we need to be able to transfer information between
human users and the computer. Humans most often use speech or writing to en-
code and transfer information, so various techniques have been invented that deal
with this kind of encoding, such as Automatic Speech Recognition (ASR), Optical
Character Recognition (OCR), and Text-to-speech Synthesis (TTS). However, to
efficiently transfer information, we need the ability to engage in a conversational
exchange. A conversation (dialogue) offers additional means of communication
such as clarification, information updates, or more effective encoding through
context reference, etc.

To perform meaningful dialogue, we need more than just mimicking the in-
terface. The computer should understand the process of gradual information
exchange and be able to capture the meaning of utterances in the context. More-
over, the system must provide relevant responses to engage in the conversation
successfully(Jurafsky, 2000; McTear, 2022).

In this work, we focus on this part of the problem, i.e. we do not care
about encoding or decoding natural language in a signal such as speech. Rather,
we assume textual interfaces for both input and output. Put simply, the task
of a Dialogue System (DS)(Jurafsky, 2000) is to generate the correct natural
language response r given the natural language user utterance u and context c.
Importantly, it is not always clear what we mean by a “correct utterance” in
a particular context. This can depend on several conditions, requirements, and
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constraints. In this work, we consider task-oriented dialogues, which are well-
defined in this aspect. This concept is introduced in more detail in Section 2.
We understand the dialogue as a turn-taking conversation, i.e. participants (user
and system) communicate in alternating turns. In this work, we exclusively focus
on two-party dialogues.

Considering the conversation history, the ultimate goal is to construct a di-
alogue agent that provides meaningful responses to all kinds of questions. Such
an agent would effectively pass the Turing test, the holy grail for Artificial Intel-
ligence (Pinar Saygin et al., 2000). The development of Large Language Models
(LLMs) and their instruction tuning brings us closer to achieving this goal (Roth-
man, 2021). Nevertheless, we do not need to achieve such complexity in many
real-life cases. For example, we can consider situated artificial agents which
solely focus on achieving a certain well-specified goal, such as ordering food or
reserving a flight ticket.

Dialogue systems promise a convenient means of communication between
humans and computers. They allow voice interaction, making it especially well
suited for applications that should not disrupt attention, such as car control.
Systems capable of human-like conversation and accomplishing given tasks have
huge potential to automate technical support processes and call centers or serve
as personal assistants.

Despite some successful dialogue system deployments, current dialogue sys-
tems still suffer from several drawbacks. Usually, the DSs are tailored to specific
applications, and applying them in other domains is hard. Typically, the system
is customized to handle a set of predefined domains with a high success rate. A
lot of effort goes into designing an ontology and handling domain-specific sce-
narios. Even in the era of large language models, this is still the case for the
predominant part of commercial applications. This results in bad scalability and
inflexible usage. Ideally, a system would learn common behavioral patterns re-
quired to finish the defined goal through conversational exchange successfully.
Given some description data, it could apply the learned knowledge to previously
unseen domains and applications. Although the LLMs make a huge step forward
in this ability, they still might require finetuning and are not yet suitable for
direct applications in the task-oriented world (Iizuka et al., 2023; Hudeček and
Dušek, 2023) which we also discuss in Chapter 7.

Another problem is that there seems to be a trade-off between interpretability
and performance or scalability of the systems in the case of neural network-based
models. In most cases, the more complex and capable the model is, the harder
it is to interpret its behavior and explain its decisions.
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This thesis proposes solutions to some of these problems, especially in the
task-oriented setting. We now outline the main goals we want to achieve and the
ways we address them in our experiments:

1. Limit the amount of supervision needed. Extending the system is
hard since it requires significant expert effort to design the schemas and
annotate the data. In Chapter 4, we propose an automatic data analysis
tool to gather information from dialogue corpora and suggest annotation
schema without direct supervision.

2. Enable the dialogue systems to leverage large unannotated data
sets and train more robust models. There has not been much work on
training task-oriented systems in an unsupervised way. We delve into this
problem and suggest using latent variable models in Chapter 5 and explore
the usage of pre-trained language models, which leverage large unannotated
corpora, in Chapters 6, 7.

3. Be able to train the systems with less data overall It is difficult for
the current system architectures to transfer the learned knowledge to new
domains. To explore this phenomenon more, we conduct experiments to
see if language models can transfer the knowledge in Chapter 6. We also
explore how to train LLMs with a limited number of examples in Chapter 7.

Scalability and domain adaptation go hand in hand. We focus on reducing
the annotation needed to train a system and on knowledge abstraction to make
transfer learning possible. To leverage larger data sets, we explore unsupervised
techniques that do not require annotation, making the data collection process
substantially easier.

In addition to the experimental chapters mentioned above, this thesis also
includes Chapters 2,3, which introduce the theoretical concepts and related from
which we take inspiration or use for comparison. Finally, Chapter 8 summarizes
our findings and proposes future research directions.
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2
Background

Before we introduce our work and delve into discussions, we will establish the
common theoretical background of the concepts we use. Some of the concepts
are well known, some less, but we consider it important to have this reference
point and provide at least a concise description. First, we briefly describe this
work’s basic concepts and foundational models in Section 2.1. We link to litera-
ture when needed. Next, we introduce methods from related research areas upon
which we build in our experimental chapters. Specifically, we first discuss pre-
trained language models (Section 2.2). Next, we introduce variational autoen-
coders (Kingma and Welling, 2014) and some architectures that build upon them,
such as variational recurrent neural networks (Chung et al., 2015) in Section 2.3.
We also describe the memory network architecture principal ideas (Weston et al.,
2015) in Section 2.4. Next, Section 2.5 describes some typical approaches to di-
alogue system implementations. Ultimately, we introduce the datasets we use
in this work for training and testing our models and evaluation metrics we are
working with in Sections 2.6.1 and 2.7 respectively.

2.1 Key concepts
In this section, we first introduce some key concepts necessary for understanding
this work and establish common ground.
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2.1.1 Neural Networks

The nature of many Natural Language Processing (NLP) tasks is statistical in
that we can identify patterns seen in data and aim to model the underlying
processes. Therefore, statistical methods in NLP have been extensively used for
decades (Manning and Schütze, 1999), with varying success. Although many
modeling approaches with various degrees of complexity have been proposed,
currently, Neural Network models dominate the field. Neural architectures are
well-known statistical models (Goodfellow et al., 2016) that can learn complex
data distributions from the presented training data. Essentially, these models
parameterize non-linear functions with millions of parameters learned by opti-
mizing loss objective over the training set using algorithms such as backpropa-
gation (Kelley, 1960).

Neural Networks for text processing Neural Networks (NN) are widely
used across various fields, and NLP is among the most prominent. However, it
is not straightforward how to represent words in NN. A simple one-hot vector
or bag of words representation is insufficient as it throws away a lot of useful
information about the relations between words, their position, etc. Traditional
statistical n-gram models (Jurafsky, 2000) address some of the issues but again
discard some positional information and are inherently limited by context size
(n-gram length). A breakthrough in this field, which allowed for successful NN
applications, dates back to the works of Mikolov et al. (2010) and Mikolov et al.
(2013), which build on the principle of word distributional hypothesis and intro-
duced the concept of word embeddings. Word embeddings are multi-dimensional
real vectors that capture important information about each word in some partic-
ular input corpora. When input to an NN, word embeddings accurately represent
the word and arguably capture the meaning. This principle was later improved by
introducing large-scale pre-trained neural language models such as ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2019b), which can create contextualized
high-dimensional representations. We introduce these principles in more detail
in Section 2.2.
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2.1.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks are a type of neural network well-suited for process-
ing sequential data (Goodfellow et al., 2016). Sequential data is ordered in time,
such as text or audio. RNNs can learn long-range dependencies between different
parts of the input sequence, which makes them well-suited for tasks such as ma-
chine translation, text summarization, and question answering. The motivation
for RNNs comes from human language being sequential by nature; therefore,
sequential dependencies must be handled.

The characteristic feature of an RNN is a recurrent connection incorporated
into the architecture. This means that the network’s output at a given time
step is fed back into the network at the next step. This allows the network to
encode some information and pass it for future processing, effectively allowing
for a concept of memory.

Basic RNN consists of 3 weight matrices: Wi to process the input, Wh to
process the hidden state, andWo to construct output. The computation of output
sequence y = {y0, ..., yn} from an input sequence x = {x0, ..., xn} proceeds in the
following steps:

1. An initial hidden state h0 is constructed.

2. For time step t, the first hidden state ht is obtained using the formula
ht = f(Whht−1 +Wixt). Then, the output is computed as yt = Woht.

Note that the output sequence has the same length as the input sequence, which
is useful for sequence tagging problems. However, RNNs can also be used for
sequence classification, in which case only the last hidden state is considered, or
the encoder-decoder setup can be used in which one network is used to encode
the sequence. The second one generates the output, which can be of different
lengths.

RNN cell improvements Vanilla RNNs are difficult to train and often fail to
memorize long-term dependencies correctly. Therefore, several extensions were
proposed such as LSTM (Hochreiter and Schmidhuber, 1997) or GRU (Cho et al.,
2014) These more complex types of RNNs can learn long-range dependencies
more effectively. LSTM and GRU cells have several gates that control how
information flows through the cell. These gates allow the RNN cell to learn
how to forget irrelevant information and remember important parts of the input.
NLP models often employ bidirectional RNNs to improve modeling capabilities
further, allowing for processing both left and right context.
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Training RNNs RNNs are trained using a technique called Backpropagation
Through Time (Werbos, 1990). Backpropagation Through Time is a method for
training neural networks that deal with sequential data. The basic idea is to
break the sequence into several time steps and then train the network on each
time step individually.

Encoder-Decoder RNNs with attention The encoder-decoder RNN is use-
ful for text-generation tasks like summarization or machine translation. However,
it isn’t easy to train RNN on longer sequences. Therefore, improvements were
proposed (Bahdanau et al., 2014; Luong et al., 2015) that allow the decoder net-
work to attend to the input sequence and bypass the need to memorize all the
information in the hidden state.

2.1.3 Transformer

The Transformer architecture is another neural network architecture capable of
processing sequential data. It was first proposed in Vaswani et al. (2017). Unlike
RNNs, the Transformer architecture does not work with a hidden state that is
being passed forward in time. Instead, the architecture is based solely on the
attention mechanism, which allows the model to learn long-range dependencies
between different parts of the input sequence. The high-level equation describing
the self-attention mechanism is formulated as follows:

Att(Q,K, V ) = softmax

(︄
QKT

√
dk
V

)︄

where Q, K and V are trainable square weight matrices corresponding to queries,
keys and values and with dimension dq, dk, dv respectively. The attention mech-
anism allows the model to focus on different parts of the input sequence when
producing the output sequence. For example, if the model is translating a sen-
tence from English to German, the attention mechanism can allow the model to
focus on the English words most relevant to the German words that need to be
produced.

The original Transformer architecture comprises an encoder and a decoder,
depicted in Figure 2.1. The encoder takes the input sequence and produces a
sequence of hidden representations. The decoder then takes these hidden repre-
sentations and produces the output sequence. The attention mechanism is used
at both the encoder and decoder to allow the model to use different parts of
the input sequence when producing the output sequence. The decoding process
might be autoregressive or non-autoregressive, depending on the use case.
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Figure 2.1: The Transformer architecture as proposed by Vaswani et al. (2017).
We can see the encoder (left) and decoder (right) stacks and their interconnec-
tion.

Both the encoder and decoder are a stack of self-attention layers. Each self-
attention layer takes the hidden representations from the previous layer and
produces a new set of hidden representations.

The decoder also includes an attention component that allows the model to
attend to the output sequence generated so far when producing the next token.
This allows the model to learn how to generate the output sequence consistently
with the input sequence and the prefix generated so far.
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The Transformer architecture has been shown to achieve state-of-the-art re-
sults on various natural language processing tasks. Moreover, the Transformer
architecture was used as a base for many models pre-trained on large natural
language corpora, allowing efficient transfer of the learned information to down-
stream tasks and thus revolutionizing the NLP field.

2.2 pre-trained Language Models (PLMs)
The appearance of PLMs marked a new era in NLP. Although Language Mod-
eling with neural networks has been in the community focus for some time with
transforming works such as Mikolov et al. (2010, 2013), it was not until RNN-
based models such as ELMo (Peters et al., 2018) and ULMFiT (Howard and
Ruder, 2018) were proposed that we were able to create PLMs that could be
fine-tuned for a variety of tasks with comparably low data requirements.

Shortly after ELMo, models based on the Transformer architecture started
to appear, such as BERT for efficient language encoding (Devlin et al., 2019b)
or GPT for generation (Radford et al., 2018). BERT introduced a novel ap-
proach to Transformer usage by employing only the encoder part of the original
Transformer architecture. Importantly, BERT pre-training introduced the task
of Masked Language Modeling, randomly masking some of the input tokens and
reconstructing them correctly at the output. Additionally, BERT is trained to
estimate the probability that two input sentences follow each other. These pre-
training techniques make BERT great at encoding natural language inputs into
useful representations. GPT, on the other hand, consists only of Transformer
decoder blocks. It is trained for next token prediction and can perform autore-
gressive Language Modeling. Therefore, GPT is a perfect candidate for a base
model to be fine-tuned on language generation tasks, including data-to-text,
summarization, etc.

Both BERT and GPT showed great potential for fine-tuning downstream
tasks and established themselves as strong baselines for many NLP tasks and
benchmarks. They are often referred to as foundational models because of their
language understanding and generation abilities and the potential to apply these
abilities to various tasks. From a certain point of view, the usability of PLMs
lies in the ability to create useful and contextual representations of input words
and phrases, often called (word) embeddings. This ability has been observed in
the word2vec model (Mikolov et al., 2013) and improved by ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019b), SBERT (Reimers and Gurevych, 2019b) and
others.
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Many model architectures based on Transformer blocks followed both for
encoders (Liu et al., 2019; Reimers and Gurevych, 2019b); decoders (Radford
et al., 2019; Brown et al., 2020) or even encoder- decoder (Raffel et al., 2020b;
Lewis et al., 2020). The NLP community largely adopted these models.

2.2.1 Large Language Models (LLMs)

The foundational models changed the NLP paradigm but still need substantial in-
domain data to perform some tasks well. Moreover, fine-tuning those larger mod-
els requires more computational resources. Therefore, more lightweight methods
were proposed to adapt the models to downstream tasks, such as Transformer
Adapters (Pfeiffer et al., 2020). However, as researchers started to scale up the
models with GPT-2 and GPT-3 leading the efforts (Radford et al., 2019; Brown
et al., 2020), new abilities emerged (Wei et al., 2022). With model sizes ex-
ceeding billions of parameters, the large pre-trained Transformer decoders can
perform many tasks not explicitly trained for (Brown et al., 2020). Such large
models can perform tasks like summarization, translation, question answering, or
even reasoning and arithmetics to some extent without any task-specific train-
ing. However, it is unclear how many examples of the abovementioned tasks
were seen during these models’ training phase. Those tasks can be presented to
the LLMs in textual task descriptions in the inference time. This approach of
in-context learning is frequently used with great success (Min et al., 2022; Dong
et al., 2022). The textual input for LLMs is frequently called a prompt.

On LM scaling Scaling laws in language models describe the relationship
between the size of a language model and its performance. It has been shown
that with the next token prediction objective (which virtually all LMs are trained
for), some abilities emerge when exceeding a certain size threshold (Kaplan et al.,
2020). However, bigger models must also be trained longer and with more data
(Hoffmann et al., 2022). In general, larger language models tend to perform
better than smaller models but also require more computational resources to
train. This line of research can help us understand how the size of a language
model affects its performance and predict the performance of a language model
before it is trained.

Instruction Tuning Although the LLMs have great abilities and potential to
accomplish various tasks, providing them with correct instructions is not always
straightforward. Therefore, significant effort was made to align the LLMs better
with the human requirements. Consequently, even rather inexperienced users can
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instruct the model to accomplish custom tasks according to their needs. For this
purpose, reinforcement learning techniques were explored (Ziegler et al., 2019;
Ouyang et al., 2022). Although these techniques proved to be quite effective,
the process is still very demanding in collecting user feedback. Consequently,
several datasets were proposed (Wang et al., 2022; Black et al., 2022) that contain
tasks like summarization, reasoning, etc. formulated using instructions in natural
language and desired outputs. These datasets allow tuning of the models using
reinforcement learning or supervised fine-tuning methods.

Prompt engineering vs. LLM fine-tuning The in-context learning ap-
proach has great advantages because it makes it possible to obtain great perfor-
mance from LLMs by simply formulating the task and desired output structure
in the LLM input (i.e. prompt). There are multiple strategies to formulate the
prompt of the in-context learning technique. We can include examples for better
model guidance or just formulate the instructions. These approaches are referred
to as few-shot or zero-shot settings, respectively. Although this approach might
be very efficient for some tasks, especially those that are well described in the
corpora available to the LLM during training (Wei et al., 2022), some more spe-
cific tasks might yield better results after fine-tuning of the model (Tu et al.,
2022). However, the LLM fine-tuning process is quite demanding regarding com-
putational resources. Therefore, alternative approaches were proposed, such as
LoRA (Hu et al., 2021) or Transformer Adapters (Pfeiffer et al., 2020). These
approaches make LLM fine-tuning much more accessible. In general, fine-tuning
and in-context learning can offer great performance and be beneficial in certain
situations (Mosbach et al., 2023).

2.3 Variational autoencoders
In neural network training, the network learns to create internal data represen-
tations to accomplish a given task. In the case of autoencoders, the task is to
encode an input x in a way that allows for its reconstruction into the original
form. The autoencoder model consists of an encoder function ϕenc, which en-
codes an input x into a latent representation z, and a decoder ϕdec, which models
the conditional re-generation probability p(x|z). In the case of sequence autoen-
coders, both the encoder and decoder can be realized with an RNN. However,
vanilla autoencoders often fail to extract global semantic features of natural lan-
guage sequences (Bowman et al., 2015); therefore, adjustments must be made to
obtain better representations. The technique proposed by Kingma and Welling
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Figure 2.2: Variational autoencoder latent space. Colors and different classes by
shapes distinguish the encoder distributions. It illustrates that we can smoothly
interpolate between two points in the latent space.

x x'z x x'~ z

(a) (b)

Figure 2.3: Illustration of differences between the architectures of a vanilla au-
toencoder (a) and its variational version (b). The VAE encodes the input by pre-
dicting parameters of probabilistic distribution from which the data are drawn
rather than encoding the data directly into a hidden representation, as done with
the vanilla autoencoder.

(2014) uses the Variational Autoencoder (VAE) framework to tackle this issue.
The architecture is modified so that ϕenc represents a recognition model q(z|x)
which parameterizes an approximate posterior distribution over z. Figure 2.3
illustrates the differences. VAEs impose prior distribution on the latent variable
z, which acts as regularization during training and makes drawing samples from
q possible. Consequently, the VAE latent space is smooth because it is possible
to interpolate between two points and obtain reasonable representations. The
latent space structure is depicted schematically in Figure 2.2. The modeled dis-
tributions are typically Gaussian; the prior is the standard normal distribution
N(0, 1). We can realize the encoder and decoder modules in VAE using neu-
ral networks. However, there is a drawback regarding the implementation of
sampling. The sampling operation is not differentiable and, therefore, cannot
be trained using standard approaches. A solution to this problem is to use the
reparameterization trick (Kingma and Welling, 2014). The reparameterization
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(a)

(b)

Figure 2.4: A schematic architecture of the VRNN model. The input in time
step t is input to the variational autoencoder (black dotted line). The VAE prior
is conditioned either on the previous hidden state (a) or previous latent variable
zt−1 (b) (red lines). To regenerate the output, the decoder from latent space
is used (blue dashed line). Finally, the hidden state update is based on latent
representation zt, previous hidden state, and current input (solid black lines).

trick exploits that a random variable under a certain conditional distribution
can be expressed as a deterministic transformation of some other variable with
an independent marginal distribution. Distributions that allow us to do such a
transformation include Gaussian, Logistic, or Gumbel (Jang et al., 2016).

VAE latent space discretization

Although VAE training yields robust representations that are also more inter-
pretable thanks to the regularized latent space, in some cases, we require the
latent representations to be discrete. The motivation is mainly to improve in-
terpretability and uncover underlying processes in sequential tasks. Incorpo-
rating discrete variables into neural network models is problematic because the
widely used backpropagation algorithm requires smooth differentiable functions
to propagate the gradients correctly. van den Oord et al. (2017) propose a vec-
tor quantization technique to discretize the latent variables in VAEs. Another
approach is to use the Gumbel-softmax distribution (Jang et al., 2016) that,
together with the reparameterization trick (Section 2.3), enables working with
categorical variables while not breaking the gradient flow in the network.
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2.3.1 Variational Recurrent Neural Networks

The VRNN model (Chung et al., 2015) exploits the idea of variational training
to model sequences with latent states. Intuitively, the VRNN model can be seen
as a recurrent network with a VAE in every timestep. The VRNN architecture
is depicted in Figure 2.4. It assumes that the sequence of observations was
generated from a sequence of unknown latent states and uses a VAE to model
these latent variables z. Formally, we want to estimate the joint probability
distribution of a sequence of observations and corresponding latent variables
p(x, z) = p(x|z)p(z). The conditional distribution p(x|z) is parameterized with
a neural network. However, we still need to estimate the posterior p(z|x) to
connect the latent variables with the observations. The VAE uses a variational
approximation q(z|x) that allows maximizing the evidence lower bound (ELBo)
of the log-likelihood of the data:

log p(x) ≥ −KL(q(z|x)||p(z))
+Eq(z|x)[log p(x|z)]

(2.1)

where KL is the Kullback-Leibler divergence.
We consider a prior network ϕprior and a posterior network ϕpost, which com-

pute the parameters of p(z) and q(z|x) respectively. In a VRNN, ϕprior and ϕpost
additionally depend on the RNN hidden state ht to allow for a context-aware
prior distribution. In each time step, we obtain the distribution parameters as
follows:

θq = ϕpost(ht, ϕenc(xt))
θp = ϕprior(ht)

(2.2)

where ϕenc is the encoder and θq, θp are parameters of the respective distributions.
With distribution parameters available, we can sample the latent variable and
predict the output:

zt ∼ p(z; θp)
xt = ϕdec(zt)

(2.3)

where ϕdec represents the decoder network. The update of the hidden state ht is
as follows:

ht+1 = RNN([ϕenc(xt), ϕz(zt)],ht) (2.4)

where [., .] is concatenation, ϕz(.) is a feature extractor, and RNN() is a step tran-
sition function of a recurrent neural network, in our case an LSTM (Hochreiter
and Schmidhuber, 1997).
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2.3.2 Latent Action Spaces via Variational
Auto-encoding – LAVA

The LAVA framework (Lubis et al., 2020) focuses on learning latent variables
in a way that they store dialogue-related actions. To achieve this, they employ
VAE-based model architecture. The architecture comprises an RNN utterance
encoder, VAE module, and RNN decoder. They train the model in multiple
stages and different variants. Specifically, they first pre-train the encoder module
using an autoencoding objective. Then, they use the pre-trained decoder and
train an additional encoding module for the next response prediction. In the
end, they use reinforcement learning to tune the model parameters further.

Formally, the authors first train an encoder-decoder network with an autoen-
coding objective version of ELBo parameterized by φ.

Lae(φ) = Eqφ(z|x)[log pφ(x|z)] − KL(qφ(z|x)||p(z)) (2.5)

where x represents dialogue utterance. Then, they train the response generation
network parameterized by θ using the lite ELBo objective (Lubis et al., 2020).

Llite(θ) = Eqθ(z|c)[log pθ(x|z)] − βKL(qθ(z|c)||p(z)) (2.6)

where c is a sequence of utterances representing the dialogue context. For the
second step, the decoder network pθ is initialized by pre-trained pφ.

2.3.3 Difficulties of the VAE training

For text VAEs (Bowman et al., 2016), the KL divergence term measured be-
tween the posterior and prior distributions often tends to zero. Consequently,
the modeled latent space degrades, and the latent variables do not contain use-
ful information. This phenomenon is called posterior collapse, where the model
ignores the latent variables and solely focuses on the decoder for maximum like-
lihood estimation. To address this issue, several modifications were proposed. A
common approach is to use warm-up or annealing schedules (Fu et al., 2019). In
this method, the weight of KL divergence in the loss function starts at zero and
gradually increases to its maximum value over several epochs. This allows the
decoder to learn useful information before the encoder starts learning the prior.
Another method is called free bits (Li et al., 2019). This method decouples the
optimization of the likelihood and the KL term. Each dimension in the latent
space can use a fixed capacity (bits) to encode the data before the KL term is
minimized.
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Figure 2.5: The end-to-end Memory Network model introduced in Sukhbaatar
et al. (2015). It shows the computation process of (a) a single-layer and (b) a
3-layer model version.

2.4 Memory Networks
The Memory Network model (MemNN) addresses the issue associated with RNN
networks, which typically suffer from catastrophic forgetting and exponential
decay of stored information (Neil et al., 2017). The Memory Network model was
originally introduced in Weston et al. (2015).

2.4.1 The Memory Network architecture

The key idea behind memory networks is to incorporate an external memory
component into the network architecture, allowing the model to store and access
information over long sequences of inputs. The memory component acts as a
separate storage module, similar to a computer’s memory, which the network can
read from and write to during its computation. The MN model architecture’s
main component is a memory array m = {m1, ...,mn}. The basic Memory
Network takes an input x and processes it in four processing steps:

1. The input x is processed with input feature map I to obtain internal rep-
resentations of the input I(x).

2. The memory array is updated using the generalization component G. In
this step, each memory entry gets updated following the equation mi =
G(mi, I(x),m).

3. The output features are computed with the output feature map using the
memory and transformed input o = O(I(x,m))

17



4. Finally, the output representation is used to decode the final response:
r = R(o)

The components I,G,O, and R can be represented with any function capable
of doing the task. However, in most cases in the literature, we see models that use
neural networks to instantiate these components. Consequently, the whole model
is end-to-end differentiable and thus trainable with algorithms such as backprop-
agation. In that case we talk about Memory Neural Networks (MemNNs). Al-
though various kinds of data can be input and output to MemNNs in general,
we consider only MemNNs that work with text in this work. Let us describe a
basic MemNN for text. When given text input, such a basic model can save each
text memory into a new memory slot. Therefore, old memories are not updated,
and new inputs are stored sequentially. The most interesting components of this
simple text model are O and R. The O module scores the saved memory vectors
given text input x and subsequently retrieves k supporting entries with the high-
est scores from the memory. The R module takes the input x and k retrieved
memories to produce a response. It generates an output by copying one of the
memories or creating new outputs, for example, with an auto-regressive RNN
decoder.

2.4.2 Multi-hop end-to-end MemNN

The MemNN architecture’s disadvantage is that it requires supervision at each
layer during training, as pointed out by Sukhbaatar et al. (2015). In this work,
the authors address this problem and present a fully end-to-end trainable memory
network model, which we call e2e MemNN. In the e2e MemNN, we input a set
of vectors x to be stored in the memory and a query q. Each input xi is then
embedded with two distinct embedding functions Em and Ec to obtain a memory
entry mi and corresponding output embedding ci, respectively. The query q is
then embedded with the different function Eq to obtain query embedding u.

Upon embedding the inputs, a memory distribution p is computed as a match
between u and each memory mi as softmax(uTmi). The memory distribution p

is then used to create an output o computed as a weighted sum over the output
embeddings ∑︁i pici. The output o is then used to produce the final answer, a
categorical label or textual response generated with an auto-regressive model.

The authors also introduce a multi-layer version of this model. In the multi-
layer version, each layer k has distinct embedding matrices Ek

m and Ek
c . The

output ok from layer k is used to form input query embedding uk+1 to the layer
k + 1: uk+1 = uk + ok. The multi-layer processing is sometimes referred to as
multi-hop where a hop refers to processing by one layer.
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Figure 2.6: The Mem2Seq model (Madotto et al., 2018) showing the memory
encoder with 3 hops (a) and 2 steps of the memory decoder (b)

2.4.3 Mem2Seq model

The Mem2Seq model (Madotto et al., 2018) is a task-oriented dialogue model
that builds on top of the end-to-end architecture introduced in Sukhbaatar et al.
(2015). The architecture is described in Figure 2.6. The model consists of encoder
and decoder parts. The encoder is a 3-hop memory network that encodes the
dialogue context. The more interesting part is the decoder, a recurrent neural
network enhanced with a memory network in every time step. This memory
network contains conversation history and knowledge base entries encoded as
memory vectors. At each step, the hidden state of the RNN is used as a query
vector. Then, a distribution over memory is computed, as described earlier. Also,
a distribution over vocabulary is computed from the RNN hidden state, similar
to standard RNN-based decoders. One special entry is added to the memory,
so-called sentinel. The vocabulary distribution generates the next token if the
highest probability is assigned to the sentinel token. Otherwise, the next token
is chosen according to the memory distribution. In other words, the model uses
the RNN state at each generation step to decide whether to copy something from
memory (conversation history + knowledge base info) or generate an arbitrary
new token from vocabulary distribution. This way, the model can use information
from the past effectively.
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USER: I would like a cheap restaurant. inform ( price = cheap )

SYSTEM: Golden plate is cheap. inform ( name = Golden plate )

USER: What is the cuisine? request ( cuisine )

SYSTEM: They serve chinese food. inform ( cuisine = chinese )

USER: Sounds good. Bye! goodbye ()

SYSTEM: Have a great day. goodbye ()

Table 2.1: Example of task-oriented dialogue in the restaurant reservation do-
main. Utterance representations as dialogue acts are depicted on the right. In-
tents are highlighted in orange, slot names in blue, and respective values in green.
Note that not all dialogue acts include slots and values.

2.5 Dialogue System implementations
First, we describe various approaches to constructing dialogue systems pipelines
and provide insights about approaches to modeling the underlying processes.
The architectures may vary greatly because of the varying use cases of Dialogue
Systems (DS). We thus introduce a classification of dialogue systems that re-
flects the expected capabilities. There are multiple approaches to defining a
dialogue system taxonomy in the literature. Here, we introduce the widely used
classification scheme (Jurafsky, 2000).

1. Question Answering (QA) - Although sometimes not mentioned in the
context of dialogue systems, the QA task can be seen as a simple conver-
sation. A QA system’s main task is to answer the user’s questions. The
topics may vary; good understanding and knowledge representation are
essential for this task. The dialogues are usually quite simple and often
consist of just one question and the respective answer.

2. Task-oriented DS - In this setting, the system’s goal is to complete a task
based on the user’s instructions. The successful completion may depend
on several attributes the system has to learn from the user utterances.
The system is also allowed to ask for additional information if needed
and typically works with some external source of information, such as a
database. Here, the dialogues are usually much more complex than in the
QA setting, and dialogue context has to be considered.

3. Chit-chat - Sometimes, we might be interested in a system that can talk to
the user casually and provide entertainment. Such systems might be com-
bined with task-oriented systems to serve as human-like virtual assistants
or use the dialogue to advertise products, etc. The context and knowledge
base are also important, but in most cases, there is no well-defined task to
be completed, so the evaluation is subjective.
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Another way of classifying the dialogues considers their domain of operation.
Single-domain systems can work only in one topic area, e.g. public transport
or restaurant information, whereas multi-domain systems can handle multiple
domains. These types of systems cannot give meaningful answers outside the
domains they are trained on. A dialogue system is considered open-domain if
it can have a conversation not limited to a predefined set of domains. In practice,
this is achievable only to some extent since the knowledge base of the program
is always limited. However, the systems can cover many domains with internet
access and smart information retrieval methods.

Here, we focus on the task-oriented DS and discuss it more deeply. From the
domain perspective, task-oriented DS are usually single or multi-domain systems.
Open-domain dialogue systems are rare, at least in the research community. We
can see a task-oriented dialogue as a composition of two tasks - slot-filling and
response generation. Task-oriented dialogue systems are widely used for vari-
ous applications, such as customer service, personal assistance, and information
retrieval. These systems aim to assist users in accomplishing specific tasks by
engaging in a natural language conversation. That means we have a predefined
set of semantic slots that must be filled with the right values. Each utterance
in the task-oriented dialogue is considered an action that potentially changes
the state of the conversation. Such actions can be represented using Dialogue
Acts (DA) (Core and Allen, 1997). To define the Dialogue Act, we first must
introduce the concept of slots and intents. To represent the meaning of user ut-
terances, annotation based on slots is commonly employed (Young et al., 2013).
Slots, which describe semantic concepts relevant to completing the task, serve
as a means of capturing the user’s desires as well as facilitating the system’s
communication with the user. Typical examples of slots include area, price, and
address, among others. By tracking slots and their values throughout the dia-
logue, a dialogue system can maintain a dialogue state, effectively planning the
next actions (Williams et al., 2013). The dialogue state represents explicitly all
the important knowledge known to the system at a specific point in the dia-
logue. Consequently, it can be utilized to communicate with external sources of
information and data, such as databases, structured knowledge bases, or various
APIs, to provide users with accurate and relevant information. Intent describes
the user’s intention expressed by a respective utterance. In other words, intent
represents what the user wants and what their wish is. Slots describe attributes
of this wish and ground it to an ontology.

DA is a tuple consisting of an intent and slot and the corresponding value.
If multiple slot values are present, all are considered to have the same intent.
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Figure 2.7: Overall architecture of task-oriented dialogue system pipeline. The
data flow is outlined with arrows. This work does not discuss ASR and TTS
modules (depicted in gray), often included with the rest of the components.

An example dialogue with respective DA representation is depicted in Table
2.1. Most dialogue system modules for limited domains can be implemented by
designing a set of rules and templates. Such systems can yield satisfying results
in some use cases. Nevertheless, they are inflexible and generally not considered
promising from the research point of view.

2.5.1 Dialogue System Architectures

A typical approach to task-oriented DS implementation is to create a modular
system with several modules that handle the conversation flow together. An
example of such architecture is depicted in Figure 2.7 We shortly discuss the
responsibilities of each component:

• Natural Language Understanding (NLU) The purpose of NLU is to
extract the meaning of input utterances in natural language and transform
it into a structured representation, i.e., dialogue acts. Basically, the NLU
module has three subtasks. (1) It has to determine the domain of the
utterance, (2) detect the user intent, and (3) capture any slot values, if
present.

• Dialogue State Tracking (DST) Dialogue state keeps track of the di-
alogue history, effectively providing the necessary context. Dialogue State
Trackers update the state with correct values after each turn.

• Dialogue Policy The core component of the DS is the dialogue policy. Its
responsibility is to decide which action the system should take at each turn.
In other words, Dialogue Policy’s responsibility is to guide the dialogue
to follow the desired path. Dialogue policy and the DST component are
sometimes called Dialogue Manager.
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• Natural Language Generation (NLG) When the decision on a system
action is made, the system needs to verbalize the action. In other words,
we need to create an utterance in natural language that expresses the
information in the system’s underlying representation.

The module-based approach is advantageous thanks to its good level of ex-
plainability. In case of low performance, we can track the respective modules’
outputs and find the source of problems. On the other hand, error accumula-
tion makes it difficult to recover from errors made by the modules early on in
the pipeline. Another disadvantage is how these systems are trained (Li et al.,
2017). Each component requires specific data annotation. Thus, obtaining a
dataset suitable for training all components can be difficult and costly. Also, the
system design itself is more complicated since it requires the implementation of
multiple models. Because of the drawbacks, many current research works focus
on dialogue modeling end-to-end, i.e., using systems without explicit components
(see Section 2.5.3) that can be trained jointly.

One commonly used concept in end-to-end dialogue modeling is that of delex-
icalization (Wen et al., 2015a). When using delexicalization, the slot values in
the text of the utterances are replaced by placeholders. This addresses the prob-
lem of data sparsity because the model can learn just the important concepts
and does not have to remember full ontology or use the correct values. Also,
delexicalized values are better suited for interaction with external interfaces –
we can fill (lexicalize) them later in a deterministic way to prevent the model
from hallucinating incorrect values. However, delexicalization also suffers from
several drawbacks. First, it is not straightforward to perform and requires ontol-
ogy knowledge. Second, the inverted lexicalization process is sometimes difficult
to implement and might require complex rules.

2.5.2 Modeling TOD without supervision

Here, we introduce some challenges concerning TOD modeling without external
structured supervision. We separately discuss selected components in the overall
pipeline (Section 2.5).

Natural Language Understanding (NLU) Recall that the purpose of the
NLU component in a traditional dialogue pipeline is to extract the meaning from
input utterances in natural language and represent it in a structured way. Doing
this unsupervised is challenging because we do not have the labeled data for
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training and do not know the structure itself in the first place. However, there
are some possible ways to approach this problem. Works focus on automated
annotation schema induction (3.3). Another way is to let the model handle NLU
implicitly, i.e., effectively omitting the NLU step.

Action Selection One of the tasks of the dialogue manager is to select the
next system action in a given situation. Most implemented systems implicitly
perform this task, i.e., there is no explicit representation of the system action,
just a surface realization (verbalized utterance). The reason for this option is
that it requires fewer supervised labels, which might be hard and costly to obtain.
However, modeling the information about system action can benefit the overall
performance (Liang et al., 2020). We explore the possibility of implicitly learning
this information by introducing a network bottleneck in Chapter 5.

Handling external interfaces Task-oriented dialogue systems must provide
accurate and complete information based on user requests, which requires inter-
action with external interfaces such as databases or some structured knowledge
base. To communicate with such external entities, we typically need to design
some representation with a predetermined structure so we can construct API
queries, etc. This can be troublesome in a setting where no supervision in the
form of labels is present. Without a known structure, it is very challenging to
design the communication protocol with external sources of information.

2.5.3 End-to-end dialogue modeling with Language
Models (LMs)

The pre-trained LMs can generate fluent, natural-sounding text and work with
structured data. It is desirable to leverage these properties for end-to-end dia-
logue modeling. However, their application is not straightforward. Task-oriented
dialogues require interaction with external interfaces, so there is a need to obtain
an intermediate structured representation to allow this interaction. A common
approach (depicted in Figure 2.8), pioneered in (Lei et al., 2018b), proposes to
split the generation into two steps: (1) belief state generation and (2) response
generation. In the first step, we decode a structured representation that can be
used to interact with external interfaces and extend the context. This represen-
tation must follow the exact structure to be easily parsable with a deterministic
function that constructs the query. Once generated, we can parse it, construct
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Figure 2.8: An explanation of two-stage LM-based dialogue model as described
in (Kulhánek et al., 2021)

the query, and retrieve results. In the subsequent step (2), the model has all
the needed information in the input and can generate the final response. Here,
we usually generate delexicalized (Section 2.5.1) utterances that are later post-
processed to fill in values from the retrieved results or generated state.

To train such an architecture, we can simply train the model jointly on be-
lief state generation and response generation, with appropriate loss masking if
needed. The database results are usually injected directly into the training data.
During inference, the model is conditioned only on the left context and, therefore,
can be applied for the 2-step generation process described above.

2.6 Datasets
We describe some of the most prominent datasets we use for our experiments.
Most of them are largely used in the dialogue community and provide common
benchmarks used for the evaluation. All these datasets have several task-oriented
dialogue characteristics that define the conversation according to (Young et al.,
2013):

1. Domain(s) define the topic (or range of topics) which are mentioned in
the dialogue. There can be several domains per dialogue.

2. Task: the users in each dialogue attempt to reach a certain goal (such as
booking a restaurant or finding a tourist attraction).

25



User I am looking for a Chinese restaurant

System The Golden Dragon is a nice place in the South

User Please, give me their phone number and address

Table 2.2: An illustration of the difference between inform and request slots.

3. Turns We consider turn-taking dialogues, i.e. the participating sides ex-
change utterances alternately. One such utterance exchange is called a
dialogue turn. Utterance is considered the linguistic realization of the
speaker’s thoughts and will. It can be spoken or written.

The meaning of each utterance can be represented in a structured way with
Dialog Act(s) (Weisser, 2016). It is a meta-information that emerges
from the respective utterance and qualifies it. It describes the beliefs,
desires, and intentions. Dialogue acts can be represented using Domains,
Intents, and Slots as described in Section 2.5. The slots can also be further
categorized. Typically, we define inform and request slots (Table 2.2).
Inform slots correspond to information provided by the user and inform
about constraints the user has, while request slots communicate the kind
of information that the user wants to obtain. The intent represents the
user’s intention, i.e., the sub-goal that the user wants to achieve with a
particular utterance. For an example of dialogue act annotation, we refer
to Figure 2.1 in Section 2.5. Slots represent the attributes that instantiate
the dialogue act. Each domain is associated with certain intents; each
intent can be combined with multiple slots. A slot, however, can be used by
multiple intents as well. We provide statistics about the dialogue datasets
we use in this work in Table 2.3 and some samples in Tables 2.4 and 2.5.

2.6.1 Datasets description

MultiWOZ (MW) is an established task-oriented dataset introduced by
Budzianowski et al. (2018a). It has been released in several versions; the stan-
dard most commonly used nowadays are MultiWOZ 2.1 and MultiWOZ 2.2.
MultiWOZ 2.2 is a version of the original dataset improved by (1) fixing some
annotation errors, inconsistencies, and ontology issues and (2) adding slot span
annotations for utterances. MultiWOZ contains over 10,000 annotated dialogues
and spans multiple domains – restaurant and hotel reservations, tourist attrac-
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tion search, and taxi and train reservations. While some of the dialogues use
only a single domain, most of them are multi-domain. For example, after finding
a restaurant, the user asks for a hotel and orders a taxi. This makes the dataset
more relevant to real-world use cases.

The data were gathered via a crowd-sourcing Wizard-of-Oz scheme described
in Wen et al. (2017c). As MW is used most in our work, we provide further
information on the data distribution in Figure 2.9 and a sample of the data in
Table 2.4.

DSTC2 (Henderson et al., 2014) was introduced as a part of a challenge to
improve state tracking within dialogue systems. It contains over 3,000 dialogues
covering a single domain around restaurant reservations. The dialogue corpus
was collected using Amazon Mechanical Turk1 with a POMDP-based spoken
dialogue system. It is the only human-machine dataset in our collection.

CamRest676 (CR) (Wen et al., 2017d) is another crowd-sourced dialogue
corpus gathered via the Wizard-of-Oz scheme. CamRest676, with its 676 con-
versations, is the smallest of the datasets used in this work, and it is also a
single-domain dataset focused on helping users to find a restaurant in Cambridge,
UK.

Schema-guided dialogue (SGD) is a large (more than 20,000 dialogues)
multi-domain (around 20 domains covered) dataset containing a total of 45
API services based on a pre-defined schema. First, the data was collected via
a simulator that interacts with the API services, and then the dialogues were
paraphrased using crowd-sourcing.

ATIS (AT) (Hemphill et al., 1990) contains utterances taken from conversa-
tions about flight searches and reservations. 2

Cambridge SLU (CS) (Henderson et al., 2012) resembles the CamRest 676
dataset but is larger and focuses only on other user parts of the conversations.
Therefore, Cambridge SLU is not a true dialogue dataset as it contains only
single utterances and can be used solely for the NLU task.

1https://www.mturk.com/
2There are multiple ATIS data versions available. We used one from https://www.kaggle.

com/siddhadev/atis-dataset-from-ms-cntk.
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Stanford Multidomain Dialogues (SMD) (Eric et al., 2017) contains con-
cise dialogues between a driver and an in-car virtual assistant about appoint-
ments, navigation, and weather. The dataset assumes interaction with the
database or external APIs. However, the information is provided with each
dialogue in the form of relevant Knowledge Base entries. We provide an example
from the data in Table 2.5.

2.6.2 Dataset limitations

Although the number of dialogue datasets is quite big, and there is arguably a
lot of variance with respect to the size, data collection approach, etc. there are
some limitations that are inherently present with this type of data. We want
the data to be used for two main purposes: training and evaluation. Both these
aspects are influenced by the static nature of the data. Dialogue is a dynamic
process that requires interaction. Hundreds of alternatives exist for a conversa-
tion representing a certain information exchange with different phrasing, length,
or turn ordering. All of this is impossible to capture in a static dataset. There-
fore, dialogue modeling should somehow consider this. A similar issue stems
from the fact that there are multiple valid responses under a specific dialogue
context, not only with respect to the phrasing but also considering dialogue acts.
Consequently, model evaluation with these data tends to penalize generated re-
sponses that are meaningful and relevant but do not correspond to the ground
truth found in the data.

Another consideration regards the focus of these datasets. We almost exclu-
sively work with task oriented datasets in this work. Therefore, the instances
contain some structured annotation, most frequently in a dialogue state. While
this addresses the above-mentioned issues to some extent, the conversations usu-
ally lack variability and do not exhibit user behavior like repetitions, small talk,
clarifications, hesitation, etc. Therefore, there is a substantial gap with respect
to real-world data distribution. On the other hand, the other type of dialogue
datasets tries to exhibit these properties but lacks any structure. Recently, some
efforts were made to join these two approaches (Sun et al., 2021).
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Data SGD MW DSTC CR SMD ATIS Total

Domains 18 7 1 1 3 1 19∗

Slots 145 29 10 7 15 79 166∗

Dialogues∗∗ 22.8 10.4 3.2 0.7 3 – 37.1
Turns∗∗ 463.3 143.0 51.0 5.5 16.1 4.9 662.8
Turns/Dial. 20.30 13.71 15.77 8.12 5.25 – 17.83
Avg. utt. length 9.86 13.23 8.47 10.71 9 11.37 10.49
Unique Words∗∗ 32.3 23.2 1.3 1.7 1.6 0.9 49.9

Table 2.3: Basic statistics of the datasets we use in this work. Overall and for
individual sources (number of domains and slots, total numbers of dialogues and
turns, average number of turns per dialogue, and average utterance length in
terms of words. Due to ontology overlap, ∗ is not a sum. ∗∗ in thousands.

User I need to book a hotel in the east that has 4 stars.

System I can help you with that. What is your price range?

State restaurant {}, ..., hotel {"area": "east", "stars": "4" }

User That does not matter as long as it has wifi and parking.

System If you'd like something cheap, I recommend the Allenbell.

State restaurant {}, ..., hotel {"area": "east", "stars": "4",

"wifi": yes", "parking": "yes"}

...

Table 2.4: A simplified example taken from the MultiWOZ corpus. It shows a
snippet from a conversation between the customer and the agent about booking
a hotel. It also shows this corpus’ annotation schema for tracking belief state.

Driver What gas stations are here?

NLU {"poi_type": "gas stations" }

Car There's a Chevron

Driver That's good! Please pick the quickest route

to get there and avoid all heavy traffic!

NLU {"distance": "quickest",

"traffic_info": "avoid all heavy traffic"}

Car Taking you to Chevron

KB "items": [

{"distance": "5 miles",

"traffic_info": "moderate traffic",

"poi_type": "gas station",

"address": "783 Arcadia Pl",

"poi": "Chevron"}

...

]

Table 2.5: A simplified example taken from the SMD corpus with utterance-level
annotations. Compared to MultiWOZ, some of the slot values are open, such as
”avoid all heavy traffic”
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Figure 2.9: The distribution of respective domains in the MultiWOZ dialogue
dataset, showing how many of the dialogues contain the respective domain.

2.7 Evaluation metrics
Here, we provide a set of commonly used metrics to evaluate the quality of
dialogue modeling and response generation. We also use some less common
metrics for specific tasks. Those metrics are described together with experiments
in respective sections of this work.

2.7.1 NLU metrics

• F1 Score (F-score, F-measure) (Goutte and Gaussier, 2005) is a widely
used metric to evaluate binary classification. To measure F1 score, we first
compute the number of occurrences of True Positives (TP), False Positives
(FP), and False Negatives (FN). Subsequently, we can compute Precision
(P) and Recall (R) in the following way:

P = TP

TP + FP
;R = TP

TP + FN

The F1 score is then computed as a harmonic mean of P and R:

F1 = 2 · P ·R
P +R
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F1 score is sometimes used also to measure multiclass classification perfor-
mance. Usually, two ways of F1 generalization are used. Micro F1 score
averages per-class F1 scores with weights corresponding to the respective
class frequencies whereas Macro F1 score considers all classes equally im-
portant. F1 is a classification evaluation metric task, and in the context
of dialogue NLU it is frequently used to evaluate the performance of slot
filling.

• Intent Accuracy is the percentage of slot occurrences assigned into the
correct intent cluster under the reference mapping.

• Domain Detection Accuracy is simply the ratio of cases in which the
system correctly detects the domain.

• Entity Match Rate (EMR) (Wen et al., 2017d) calculates the last turn’s
entity in each dialogue. Using the final constraints, it verifies if a correct
entity would be retrieved from the database.

2.7.2 State tracking metrics

• Joint Goal Accuracy (JGA) (Mrkšić et al., 2017) is computed as the ra-
tio of dialogue turns for which the predicted belief state matches the ground
truth. We use fuzzy matching of the slot values so that capitalization or
minor typos do not influence the result.

• F1 score on the slot level can also be used to evaluate the performance of
state tracking.

2.7.3 Dialogue-level metrics

• The main overall measure for evaluating a task-oriented dialogue is the
dialogue success rate (Deriu et al., 2021). For MultiWOZ, we use the
standard evaluation of dialogue success as the ratio of dialogues where the
user reaches the desired goal, based on goal annotation provided with the
data (Nekvinda and Dušek, 2021a). The SGD dataset does not include goal
annotation but contains information about the requested slots. Therefore,
we compute SGD success rate as the proportion of dialogues in which (1)
the system captures all the informed slots correctly and (2) all the requested
slots are provided. For more details about the inform and request slots, we
refer the reader to Section 2.6.
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• BLEU score (Papineni et al., 2002) is largely used to evaluate response
generation in machine translation, summarization, and other tasks, includ-
ing dialogue generation. Although it has some flaws (Callison-Burch et al.,
2006) and was designed mainly for corpus-based evaluation, it is widely
used, so it is desirable to measure it for comparison with other works.

There are multiple different criteria for dialogue systems evaluation. In the
case of modular systems, the individual modules can be evaluated separately. It
is considerably harder to measure a system’s overall performance. The policy
module’s decision is difficult to evaluate without turn-level action annotations.
BLEU usage is controversial for dialogue systems since it often fails to capture the
semantics of the utterance, which is perhaps more critical than in the translation
task (Lowe et al., 2017). It is also common to measure Dialogue success rate.
However, it is not straightforward how to define dialogue success robustly. Many
systems use user simulators to allow the employment of reinforcement learning
techniques. In such scenarios, the user behavior is model-based and can be non-
deterministic. Therefore, defining success is challenging. Usually, it is based on
evaluating user and system dialogue acts, which rely on good and extensive data
annotation.

2.7.4 Human Evaluation

Due to the mentioned challenges, human evaluation remains the best way to
evaluate dialogue systems. Human evaluation plays a crucial role in developing
and refining dialogue systems. Automated tools or metrics often fail to capture
human communication’s nuanced responses and language variations.

Dialogue systems, including chatbots and virtual assistants, are directly de-
signed for human interaction, making their performances depend heavily on how
effectively they can understand and respond. Therefore, assessing their capabil-
ities requires a human-like understanding of the conversations.

Moreover, human evaluation is important to measure aspects beyond the
correctness of the system’s responses. For instance, the engagingness of the con-
versation or the appropriateness of the system’s tone requires human judgment.
Also, human evaluators can better identify and evaluate cultural and social as-
pects than automated methods.

While human evaluations are more time-intensive and costlier than auto-
mated ones, they offer a more detailed, insightful, and accurate assessment of
the dialogue system’s performance. Therefore, they are crucial for improving
these systems to make them more user-friendly and effective for human interac-
tion.
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3
Related Work

Here, we introduce some of the less-known models and approaches that address
the same tasks we are trying to solve. The purpose of this chapter is to put our
work in context, offer a comparison, and provide a broader intuition about what
our ideas are based on. In Section 3.1, we introduce traditional approaches to
task-oriented dialogue modeling, implementing components for natural language
understanding, dialogue state tracking, or dialogue policy. We follow with end-
to-end approaches in Section 3.2. Finally, we describe various methods focusing
on unsupervised approaches and transfer learning in Section 3.3.

3.1 Modular dialogue architectures
The traditional dialogue system implementation, especially for task-oriented dia-
logues, is based on modular architecture. The modular system consists of several
components connected to form a pipeline. First, the Natural Language Under-
standing (NLU) module parses the utterance and creates a structured represen-
tation. Based on NLU outputs, the dialogue management module determines
the next action. Dialogue Management usually consists of the state tracker that
updates the state based on NLU outputs and the policy module that chooses the
action. Finally, the language generation module is used to verbalize the chosen
action.
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3.1.1 Natural Language Understanding (NLU)

From the machine learning point of view, the intent and domain detection can
be seen as a classification task, and sentence-level classification can be utilized
(Yaman et al., 2008; Schapire and Singer, 2000). The slot-value filling can be ap-
proached as a sequence tagging problem. Many approaches have been proposed
to tackle this issue, ranging from SVM (Shi et al., 2016) and HMM (Surendran
and Levow, 2006) based taggers to various neural models (Adel et al., 2016;
Zhang et al., 2017; Mesnil et al., 2014). It is reasonable to model them jointly
because of the similar nature of these three sub-tasks. Modeling the intent detec-
tion together with slot filling proved to be beneficial for the model performance
(Zhang et al., 2017; Liu and Lane, 2016; Xu and Sarikaya, 2013). Slightly dif-
ferent approach was introduces in Liang et al. (2020) who introduce end-to-end
trainable systems that receives module-level supervision and hence can be seen as
a modular architecture. Some of the newer approaches allow to switch between
tasks with tree-based system (Xie et al., 2022).

3.1.2 Dialogue State Tracking (DST)

The most straightforward solution to this problem is a rule-based system that
tracks the current slot values based on NLU. However, the situation is usually
more complicated. We must consider a distribution of slot value probabilities,
and the update rules can be rather complex. Žilka et al. (2013) compares different
data-driven models for dialogue state tracking. Neural networks have also been
used to model the distributions (Mrkšić et al., 2017; Zhong et al., 2018) and deal
with multiple domain handling (Rastogi et al., 2017). Some recent works explore
the usage of language models for dialogue state tracking (Lee et al., 2021; Hu
et al., 2022b).

3.1.3 Dialogue Policy

The policy decision can thus be framed as a classification task (Gašić and Young,
2013). Learning the policy just from the offline data might not produce robust
policy due to low variability in the data. Therefore, many works model the
dialogue as a partially observable Markov decision process (Gašić et al., 2010;
Thomson and Young, 2010). Reinforcement learning techniques are then applied
to learn the policy and incorporate human feedback (Peng et al., 2017; Su et al.,
2016). Some approaches also try to model the actions in latent space and tune
them via RL (Lubis et al., 2022). Again, new line of works uses language models
and prompting methods such as Zhang et al. (2023).
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3.1.4 Natural Language Generation (NLG)

NLG is often realized with a set of handcrafted templates that are selected heuris-
tically (Rudnicky et al., 1999). The variability of the generated utterances is
limited, and the scalability is poor. Therefore, corpus-based methods have been
proposed (Oh and Rudnicky, 2000; Mairesse and Young, 2014). Neural network
based systems were proposed as well (Wen et al., 2015b, 2016). Another ap-
proach combines schemas and templates (Kale and Rastogi, 2020) or use more
sophisticated semantic representations (Balakrishnan et al., 2019)

3.2 End-to-end architectures
Various end-to-end solutions have been proposed to address the drawbacks of
modular system training (discussed in Section 2.5). This was made possible
largely thanks to the growing popularity of Neural Networks (NN) and the back-
propagation algorithm over the last decade (see Section 2.1.1). NN forms a
family of models that naturally allow us to combine and train multiple models
using a single training algorithm. Therefore, several solutions were proposed to
implement the respective modules using neural network-based models, intercon-
necting them to form the pipeline and train them jointly (Li et al., 2017; Wen
et al., 2017b). Although the end-to-end training improves the scalability of the
models, the proposed architectures still require multiple levels of data annotation
for training. To mitigate this problem, Serban et al. (2016) proposed a hierarchi-
cal end-to-end model that uses two levels of encoder-decoder Recurrent Neural
Networks (RNN), one operating on dialogue turn level for keeping long-term con-
text and one operating on word level for analyzing the current user input. It does
not follow the traditional pipeline scheme and thus does not require expert anno-
tations. However, it is unsuitable for practical use in task-oriented DS in its raw
form due to its low performance and insufficient robustness. The idea was further
extended by Williams et al. (2017b), who introduced the Hybrid Code Networks,
an architecture that uses multiple utterance representations customizable by the
developer. Despite good performance and flexibility, the proposed model again
required a non-trivial amount of data annotation. Lei et al. (2018b) devised a
novel idea to model the dialogue with an extended sequence-to-sequence model.
They use an encoder-decoder architecture based on RNN that generates a dia-
logue state before response generation. They summarize the dialogue history in
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the RNN hidden state and use a system of copy mechanisms to track the dialogue
state. The proposed dialogue state representation is greatly simplified and does
not require explicit NLU input. Thus, the annotation process is significantly
easier.

In recent years, the NLP world has witnessed the great success of attention-
based models (Transformers) (Vaswani et al., 2017) and their usage as pre-trained
language models (Devlin et al., 2019a). In dialogue systems, these models also
show prominent results in the open-domain setting (Wolf et al., 2019) or for
dialogue state tracking (Chao and Lane, 2019). The pre-trained models are nat-
urally utilizable for transfer learning, which proved useful in dialogue domain
adaptation task (Shalyminov et al., 2019b). Recently, attention-based architec-
ture was proposed that models latent dialogue actions (Bao et al., 2019).

Task-oriented dialogue modeling with the use of pre-trained language models
was researched by Zhang et al. (2019) or Peng et al. (2021a), who followed
the ideas of text-based state encoding and 2-stage generation proposed in the
Sequicity model (Lei et al., 2018b). This approach first uses a text-based model
to decode the structured belief state. The belief state is later used to retrieve db
information optionally, and finally, the model is called once more, conditioned on
the belief state and retrieved information to generate a response. Several other
improvements were proposed to the architecture that either improve contrastive
state training (Kulhánek et al., 2021) or redefine state tracking as generation of
belief state differences (Lin et al., 2020). Others also proposed combining the
purely generative models and retrieval-based approaches (Pandey et al., 2018;
Cai et al., 2019; Nekvinda and Dušek, 2022). The above-mentioned works fine-
tuned the model on the in-domain data, contrasting with the pure in-context
learning approach we apply in Chapter 7.

3.2.1 Instruction Tuning for Large Language Models

Here, we follow up on the introduction to Large Language Models (LLMs) in
Section 2.2. In particular, we discuss instruction-tuning techniques that aim
to make LLMs more accessible. The idea of using reinforcement learning tech-
niques to align model-based agents better with users’ intents was pioneered in
game agent development. (Christiano et al., 2017) and later explored for training
language models (Ziegler et al., 2019; Ouyang et al., 2022). Although these tech-
niques proved quite effective, the process is still very demanding in collecting user
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feedback. Consequently, several datasets were proposed (Wang et al., 2022; Iyer
et al., 2022; Black et al., 2022) that collected millions of instructions-based tasks
in natural language and can be applied to align LMs similarly to reinforcement
learning.

3.3 Unsupervised and transfer learning
methods

The research of methods that reduce the amount of supervision needed can be
divided into two paradigms. One research direction tries to construct a method
of unsupervised or weakly supervised data analysis, focusing on a certain part of
the dialogue pipeline. Such a method can provide artificial supervision for the
supervised models introduced earlier. The other option is to design a model that
inherently does not need supervision or requires less annotation.

3.3.1 Unsupervised analysis and labeling for NLU

Various methods have been proposed to deal with NLU without explicit su-
pervision. Chen et al. (2016) first proposed a model for zero-shot user intent
embedding prediction by training a convolutional neural network to score the
sentence-intent similarities. Recently, Shi et al. (2018) proposed an intent detec-
tion model using sentence clustering based on sentence-level features. They have
applied their method successfully for the task of intent detection.

Using semantic relations to perform language understanding in the unsuper-
vised setting was proposed by Heck and Hakkani-Tür (2012). Here, the authors
use the Semantic Web (Berners-Lee et al., 2001), a triple-based entity relations
database. Their approach relies heavily on structured web pages for the tar-
get domain. They exploit the structure to obtain semantic annotations in an
unsupervised setting.

Chen et al. (2014) combine the paradigms of semantic frame parsing with
distributional semantics to perform unsupervised semantic slot induction. The
authors further improve their model in Chen et al. (2015) where they select the
most prominent slot candidates using lexical knowledge graphs. However, both
approaches only output a ranking of potential slot candidates based on frames.
Since frame annotation is very fine-grained, this produces many candidates, re-
quiring their manual merging into slots for any practical use. In contrast, we
determine domain-relevant slots automatically. Coope et al. (2020) focus on a
few-shot setting and perform span extraction of slot values using pre-trained
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models in Chapter 4. Another direction of research focuses on zero-shot slot
filling. Bapna et al. (2017)’s recurrent-neural-network-based slot tagger is pre-
trained on multiple domains and takes a textual description of the target slot
on the input in addition to the user utterance. This way, adapting to a new
domain only involves providing new slot descriptions. Further works extend
this idea with more complex architectures (Shah et al., 2019; Liu et al., 2020).
An interesting follow-up work was presented in Yu et al. (2022) which discov-
ered dialogue schema slot candidates by analyzing attention spans of pre-trained
LMs and clustering the spans with the DBSCAN algorithm. Recently, Qiu et al.
(2022) proposed an alternative way to dialogue slot discovery by using pre-trained
sequence tagging models based on BERT taggers.

3.3.2 Dialogue structure discovery

Brychcín and Král (2016) focused on modeling the dialogue as a Markov decision
process using HMMs. By fitting the HMMs to the data, they explore the dialogue
dynamics and assign Dialogue Acts to the HMM states. Later, people based
the structure discovery on the VRNN-based models. In the DVRNN model
(Shi et al., 2019), the authors train an unsupervised VRNN model with discrete
latent states and explore transition probabilities of the neighboring latent states
to explore the dialogue structure. This approach is later improved by Qiu et al.
(2020), who propose to augment VRNN with the CRF layer in their SVRNN
model. Yet another work that combines LM-based representations and HMM is
presented in Lu et al. (2022).

3.3.3 Modeling dialogue generation with less supervision

Work regarding using semi-supervised or unsupervised methods for the dialogue
response generation task as a whole in the task-oriented setting has been lim-
ited so far. One of the main challenges is to model the dialogue state with no
supervision since it is structured and might be quite complex.

The method proposed by Jin et al. (2018) builds on Lei et al. (2018b)’s
sequence-to-sequence dialogue model (see Section 3.2) by introducing a posterior
regularization term in the loss function. The model has two modules, a teacher
and a student, to track the dialogue state and works semi-supervised. For su-
pervised data, both tracker modules are trained with supervised classification
loss. For unsupervised data, the teacher module can look at system responses,
therefore, it operates with more input information and makes more accurate
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predictions. The student module is then trained to minimize the KL divergence
loss. The teacher module is conditioned on the system response, so it cannot
be used when the model is deployed, but it helps to train the student even with
unlabeled data.

Wen et al. (2017a) introduced a model that learns latent intentions, bypassing
the explicit dialogue state modeling. Zhao and Eskenazi (2018a) approached
the problem differently. They designed a novel dialogue system model based
on VAEs. Their model uses supervised data from one domain to learn latent
action representations. Their recognition module is learned to map utterance
representations to the same feature space as the action representations. When
transferring to another domain, the model needs only a few seed responses to
adapt. Based on this idea, other works followed (Shalyminov et al., 2019b; Huang
et al., 2019).

3.3.4 Few-shot dialogue modelling

One of the first neural network based models focusing on learning dialogue from a
few in-domain examples was the Hybrid Code Networks (Williams et al., 2017a),
a trainable system based on recurrent neural networks with partially handcrafted
components. Another approach was proposed in Zhao and Eskenazi (2018a),
which used latent action representations to transfer domain knowledge. Latent
actions were also used in Huang et al. (2020) or Shalyminov et al. (2019a). More
recent approaches use the Transformer architecture and pre-trained language
models (Shalyminov et al., 2020) to leverage these models’ abilities obtained
during large-scale pre-training. Another example is Madotto et al. (2020) or Hu
et al. (2022a), which used LLMs and in-context learning to perform belief state
tracking. They did not use instruction-tuned models and formulated the task as
an SQL query generation. However, they omit the response generation as well
as database retrieval.
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4
Discovering dialogue slots

Getting raw, unlabeled data for dialogue system training is not difficult, espe-
cially if we restrict the target domain. In general, recording conversations in real
life or artificial conditions is sufficient. A requirement for dialogue state labels,
which we discuss in Section 2.5, makes this process much more costly. The sets
of slots and their values typically must be designed by domain experts. This
procedure consists of multiple tasks:

1. Determine which concepts need to be captured.

2. Define the captured concepts in a consistent way.

3. Label the occurrences of these concepts in the training data.

As mentioned, these steps require expert knowledge and sometimes non-trivial
domain understanding. While a dialogue system does not necessarily have to rely
on the usage of slots, both traditional pipeline systems (Young et al., 2013) and
end-to-end task-oriented architectures (Wen et al., 2017d) typically require such
annotation. While some systems presented in Section 3.1 use implicit, latent state
representation and do not require explicit labels, the behavior of such systems
is hard to interpret or control, which can be crucial in practical applications.
Moreover, slots enable communication with external interfaces, as discussed in
Section 2.5. Several works are aiming at keeping interpretability and reducing
the annotation needs by automating it (Chen et al., 2014, 2015) or transferring
annotation across domains (Zhao and Eskenazi, 2018b; Coope et al., 2020), but
they still require a significant manual effort. We present a novel approach to
discovering a set of domain-relevant dialogue slots and their values given a set
of dialogues in the target domain (such as transcripts from a call center). Our
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approach requires no manual annotation to tag slots in dialogue data. This
substantially simplifies the dialogue system design and training process, as the
developer no longer needs to design a set of slots and annotate their occurrences
in the training data. We present the overview of our method in Section 4.1. Next,
we go through the details of each stage. We discuss the experimental setup in
Section 4.6 and the results in Section 4.8.

Most of the contents of this chapter were published at ACL 2021 (Hudeček
et al., 2021). We also present extensions to the published content to remove
the requirement for third-party weak-supervision annotation models and put
our method in the context of instruction-tuned LLMs. These extensions are
discussed in Section 4.4 and reflected in the following experimental sections.
Our experimental code is available on GitHub1.

4.1 Method overview

NER

Frame parser

...

Merging & Selection

Merging

Selection

Tagger training
Unlabeled

Corpus

Weak supervision

Labeled
Corpus

Figure 4.1: Illustration of our pipeline. First, we analyze an unlabeled in-domain
corpus with supplied domain-agnostic linguistic annotation models, such as a
frame-semantic parser or NER. This results in slot candidates. Next, we itera-
tively merge and select slot candidates to obtain domain-relevant slots. Finally,
we use the resulting slot labels in the corpus to train a neural slot tagger.

Figure 4.1 depicts a diagram describing our approach. Our slot discovery
method has three main stages:

1. We obtain weak supervision labels from automatic generic annotation. We
obtain this annotation using domain-independent natural language taggers
such as a semantic frame parser or a named entity recognizer (NER). These
models can detect important and relevant concepts in natural language
utterances and subsequently group them using a set of pre-determined
generic labels. Nevertheless, the raw output of these models is not polished
and cannot be used for the dialogue system directly. For more details, see
Section 4.2.

1https://github.com/vojtsek/joint-induction
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2. We identify domain-relevant slots based on the annotation labels by itera-
tively (a) merging and (b) ranking and selecting the most viable candidates
(Section 4.4).

3. We use the discovered slots to train an independent slot tagger (Sec-
tion 4.5).

We refer to this approach as ”weak supervision” because it uses noisy labels
as input instead of the desired ones.

Consider an example in Figure 4.2. First, we note that it helps to use multiple
tagging models since a respective model might not capture some of the concepts.
The set of tagged words from all the sources covers all the dialogue slot values
(cheap, Georgetown). However, it contains irrelevant words (restaurant). This
behavior is expected since the tagging models are trained on generic open-domain
data and detect all semantic concepts mentioned in the utterances.

Therefore, to exploit the output of generic models, we need to polish and
customize it to the specific domain. Our method combines multiple sources of
semantic labels and selects only relevant slot candidates. Slots discovered by our
approach can then be used to design a schema relevant to a specific domain.

Figure 4.2: An utterance from the restaurant recommendation domain tagged
with generic semantic parser (green) and Named Entity Recognition system
(red). We provide a comparison with ground truth dialogue slot labels (blue).

4.2 Slot candidate identification by tagging
semantic concepts

Our approach to selecting candidates for our method requires an initial pool of
carefully chosen options representing coherent concepts. This step is critical to
ensure the effectiveness of our selection process. We strive to gather as many
candidates as possible to achieve this goal while preserving the above constraint.
One of the key features of our method is its ability to merge several concepts into
one, which means that we aim for high granularity and specificity in our input
labels. As a result, we need to ensure that each candidate represents a unique,
distinguishable concept.
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Given that we cannot rely on human annotations, we use an automatic pro-
cedure to gather the initial set of candidates. This procedure combines multiple
sequence tagging models to label the input corpus. This procedure aims to iden-
tify words or phrases in the text representing distinct concepts that can be used
as candidate labels. We can use any sequence tagging NLP model that meets the
following criteria: (1) a set of words with the same label indicates semantically
coherent, distinct concepts, (2) no additional annotation is needed, and (3) the
model is domain-independent.

For our experiments, we chose two types of taggers to obtain the input tags:
Frame Semantic Parser and Named Entity Recognition (NER). By leveraging
these models, we can quickly and accurately identify candidate labels that meet
our criteria.

.

Frame:
Direction

Frame: 
Location

FE:
Path

FE:
Perceiver

FE:
Sough Entity

FE:
Location

I need to find a restaurant in the northFind a hotel east of there.

Figure 4.3: An example of two Frames defined in the FrameNet dataset, together
with core Frame Elements and respective instances. In this example, we can see
that a semantic concept representing the location of some place can be captured
by multiple frames (Direction and Location). However, from the perspective of
dialogue systems, these differences are negligible. Therefore, we merge some of
the candidates to obtain a simpler schema.

Frame Semantic Parser The parser is based on the FrameNet project (Baker
et al., 1998). FrameNet is a lexical database of the English language (although
similar datasets exist in other languages) that aims to represent the usage of
words in actual texts. It contains over 200,000 utterances with over 1,200 frames,
each representing one semantic concept. From the NLP perspective, it can be
approached as a task of Semantic Role Labeling. Each frame is formed by one
or more frame elements, which together form an instance of a certain semantic
situation (e.g., Locale, Offenses, Size,...). See Figure 4.3 for the example of
FrameNet instances. We take the individual Frame Elements as a source for our
slot candidates.
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I want to leave from Edinburgh Waverley.
O O O O O B I

Table 4.1: An example of BIO tagging to identify named entities.

Named Entity Recognition (NER) is a well-established task of labeling
occurrences of certain named entities in the input text data. Typically, the NER
labels word spans that belong to a particular entity in the annotated utterance.
A common approach to identify the spans is BIO tagging (Ramshaw and Marcus,
1995). See the example in Table 4.1. It fits our requirements well because the
task is universal, and the named entities definition is not specific to any particular
domain.

4.3 Unsupervised candidate identification
The approach introduced in this chapter is limited by the requirement of third-
party models to gather the initial set of candidates. Therefore, we experiment
with alternative ways of obtaining slot candidates completely unsupervised. This
can lift the requirement of using generic models fine-tuned on out-of-distribution
data.

4.3.1 Memory Networks for candidates identification

The end-to-end Memory Networks architecture described in Chapter 2.4 suits our
needs for an unsupervised slot candidate identification. We train the Mem2Seq
(see Sec. 2.4.3) model on the target dataset to learn the copy behavior. We then
use the trained model to obtain a set of slot candidates. To achieve this, we let
the model generate the test dialogues individually and inspect its behavior.

The Mem2Seq model’s knowledge base entries represent entities or their prop-
erties, such as addresses. Furthermore, the model saves the conversation context
via the memory mechanism. The content of the memory is further used to copy
its entries directly to the produced response. Specifically, during the response
generation process, the model decides whether the new token will be generated
from decoder vocabulary distribution or copied from memory. The intuition is
that when a certain token should appear in the generated response, the model
decides to copy it rather than generate it to prevent mistakes. We save each
token that is copied into the produced response rather than generated. These
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Prompt Extract important concepts or objects

from the following utterance.

Yield all the concepts in one-level JSON dictionary.

Include only entities and concepts that

are mentioned in the utterance.

Don't provide the intent.

See the following examples:

---------- Example ------

Utterance: "I am looking for a theater

that is reasonably priced."

Output: {'venue': 'theater', 'price': 'reasonable'}

-------------------------

Now complete the following example:

Utterance: "I am looking for a cheap hotel."

Output:

Table 4.2: The prompt, which is used to obtain slot candidates from the input
utterance. It contains an example to specify the desired output structure

tokens will likely be slot candidates as they supposedly correspond to entities
and slot values mentioned in the context. We then run k-means clustering to
obtain a set of slot candidates. This way, we obtain multiple groups of word
forms that can be used as input for our slot discovery pipeline.

We also note the similarity of this approach to the two-step generation process
used in multiple architectures (Lei et al., 2018b; Peng et al., 2021b). In the first
step of this process, the model generates placeholders such as [address] instead
of specific values. This delexicalized utterance is then lexicalized in the second
step by replacing the placeholders with actual values, e.g. using the database.
This is almost exactly what happens in the Mem2Seq model. Only the two steps
are joined in one, so the model puts the database values indirectly. Also, the
lexicalization procedure of placing values instead of placeholders is learned rather
than hardcoded.

4.3.2 LLMs for candidate identification

Another way of obtaining the slot candidates is by employing Large Language
Models. These models can be instructed in the input text (prompted) to perform
virtually any task (see Section 2.2). In our case, we instruct the model to ex-
tract the potential slot candidates directly from the input utterance. We use two
models: Tk-Instruct-11B (Wang et al., 2022), which is T5 encoder-decoder archi-
tecture (Raffel et al., 2020a) tuned on a dataset of over 5M task instances with
instructions and ChatGPT which is a closed source product introduced by the
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OpenAI company2. The used prompt is given in Table 4.2. We use both models
in parallel to obtain two sets of candidates. We then use a clustering procedure
similar to the process described in 4.3.1. Note that although the model catego-
rizes the extracted words as part of the output, the category names are arbitrary
and inconsistent among examples. For example, the model can categorize a word
Italian once as food_type and on another occasion as nationality. Therefore, we
do not use them to obtain the slot groups directly. This leaves us with a set of
slot candidates again used as input to our pipelined method.

4.4 Selection of slot candidates
In the previous step, we obtained a superset of all the slot candidates using weak
supervision from the tagging models. Subsequently, we need to identify domain-
relevant slots based on candidates provided by the automatic annotation. To
achieve this, we design an iterative slot discovery procedure – in each iteration,
we: (1) merge similar candidates, (2) rank candidates’ relevance and eliminate
irrelevant ones. Once no more frames are eliminated, the process stops and we
obtain slot labels, which are used to train a slot tagger (see Section 4.5).

We refer to the automatically tagged tokens as (slot) fillers, and the tags
are considered slot candidates. To be able to select relevant candidates, we
need to represent them in continuous space. We use word embedding vectors
and compute slot embeddings e(sk) for each distinct slot candidate sk as word
embedding averages over all respective slot fillers, weighted proportionally by
filler frequency. The merging step requires the slot embeddings to be re-computed
after each iteration. We will now describe the individual steps.

4.4.1 Candidate Merging

Since automatic annotation may have a very fine granularity, multiple slot can-
didates often capture entities/objects of the same type. This is the case for
frame-semantic annotation, which we mostly use in our experiments. With a
frame parser, for instance, the frames Direction and Location both relate to the
concept of area, which can be represented as a single slot. Thus, we must merge
similar slot candidates subsets s1 . . . sn under a single candidate. We further use
a syntactic parser to obtain dependency relations in which the slot fillers appear
in the data and use this information to get more accurate similarity scores. We

2https://openai.com/blog/chatgpt
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measure the similarity of slot candidates s1, s2 as:

sim(s1, s2) = sime(e(s1), e(s2)) + simctx(s1, s2) (4.1)

where sime is a cosine similarity and simctx(s1, s2) is a normalized number of
occurrences of s1 and s2 with the same dependency relation. If the similarity
exceeds a pre-set threshold Tsim, the candidates are merged into one.

4.4.2 Candidate Ranking and Selection

In this step, we aim to eliminate irrelevant slot candidates and exclude them from
the selection process. To achieve this, we rank the slot candidates with respect
to their importance computed from the data. We hypothesize that different slots
are likely to occur in different contexts (e.g., addresses are mentioned more when
the system provides information to the user rather than stated by the user).
Some slots can occur rarely but still be relevant. However, such rare slots would
be overshadowed by more frequent slot candidates. To preserve relevant slots
that only occur in rarer contexts, we cluster the data into multiple clusters and
then rank the candidates within each cluster separately. Finally, we filter the
candidates according to a threshold. Specifically, we consider all candidates with
a score higher than the chosen threshold relevant and select them for the next
iterations. The threshold is determined as an α-fraction of a given cluster mean
where α is chosen empirically. If a slot candidate is selected in at least one of
the clusters, it is considered viable overall.

Clustering the data The data clustering step aims to distinguish contexts
in which the candidates appear. We simplify the notion of context to the head
verb connected with the respective slot filler word. We process the data with a
generic semantic role labeling tagger to obtain verb dependency relations. Each
occurrence of a filler is thus associated with a head verb whose semantic argument
the corresponding word is, if such exists. To give an example, consider verb-filler
pairs such as want-chinese or reserve-hotel. We then compute embeddings of
the formed pairs. To do this, we take an embedding of both the head verb and
the fillers and average them. The pairs are then clustered using agglomerative
(bottom-up) hierarchical clustering with average linkage according to the cosine
distance of their embeddings. Note that fillers for the same slot candidate may
end up in multiple clusters. This does not mean that the respective slot candidate
is split – it is just ranked for relevance multiple times (with respect to multiple
contexts). The process stops when a predetermined number of clusters is reached.
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Candidate Ranking criteria We need a function that computes a score for
each candidate to rank the candidates. Since it is unclear how to compute the
score, we combine multiple attributes to compute the final score. Specifically, we
compute the following characteristics for each candidate:

• Frequency frq(s) is used since candidates that occur frequently in the
data are likely important.

• Coherence coh(s) is the average pairwise similarity of all fillers’ embed-
dings:

coh(s) =

∑︂
(v,w)∈C2

s

dcos(e(v), e(w))

|C2
s |

(4.2)

where C2
s is a set of all pairs of fillers for the slot candidate s. We fol-

low Chen et al. (2014)’s assumption that fillers with high coherence, i.e.,
focused on one topic, are good slot candidates.

• TextRank (Mihalcea and Tarau, 2004) is a keyword extraction algorithm
similar to the well-known PageRank (Page et al., 1999). It constructs a
graph where nodes represent words and edges represent their co-occurrence.
The dominant eigenvector of the adjacency matrix of this graph then gives
the individual words’ scores.

The final score is a simple sum of rankings with respect to all three scores. For
TextRank and frequency, we use a placeholder representing the slot candidate
instead of the respective fillers. Therefore, we obtain scores relevant to candidates
rather than the individual words.

4.5 Training a standalone tagger
The steps described in Sections 4.2, 4.3 and 4.4 can give us a good set of dialogue
slots. However, directly using the merged and filtered slots may result in low
recall since the original annotation models used as weak supervision are not
adapted to our specific domain. Therefore, we use the obtained labels to train
a new, domain-specific slot tagger to improve performance. The tagger has no
access to better labels than those derived by our method; however, it has a
simpler task, as the set of target labels is now much smaller, and the domain is
much narrower.
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The motivation for training a tagger is two-fold. First, its usage makes it pos-
sible to discard a dependency on the candidate identification models in runtime.
Thus, the method is simpler to apply. Second, although the selection process
can yield a good set of slot candidates, we experimentally discovered that the
quality of the taggers used for initial input labeling can be insufficient, especially
for some domains. Therefore, directly using the merged and filtered slots may
result in low recall since the original annotation models used as weak supervision
are not adapted to our specific domain.

We model the slot tagging task as sequence tagging, using a convolutional
neural network that takes word- and character-based embeddings of the tokens
as the input and produces a sequence of respective tags (Lample et al., 2016).3

The output layer of the tagger network gives softmax probability distributions
over possible tags.

Increasing recall To further increase recall, we add an inference-time rule
– if the most probable predicted tag is ‘O’ (i.e., no slot) and the second most
probable tag has a probability higher than a preset threshold Ttag, the second
tag is chosen as a prediction instead. As we discuss in Section 4.8, this threshold
is crucial for achieving substantial recall improvement.

Tagging model robustness We only use 10% of the original in-domain train-
ing set (with labels from Section 4.2) to train the slot tagger model. The rest
of the training set is used for a grid search to determine model hyperparameters
(hidden layer size, dropout rate, and Ttag threshold). We choose the param-
eters that yield the best F1 score when compared against the automatic slot
discovery results (i.e., no manual annotation is needed here; the aim is a good
generalization and improved robustness of the resulting model).

4.6 Experimental setup
In this section, we provide a quantitative analysis of the results with respect to
the NLU performance and quality of the discovered slots. We also evaluate the
application of this method as a module in the end-to-end dialogue system model.

3https://github.com/deepmipt/ner
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Datasets We use multiple datasets to evaluate the proposed method exten-
sively and gain more insights. The datasets vary in several properties, like do-
main count or collection process. This means we can compare the results on
different data distributions and tasks with different complexities. For more de-
tailed dataset descriptions, please refer to Section 2.6. Here, we provide only a
concise list with basic descriptions.

• CamRest676 (CR) is dataset of 2,744 user utterances, all in the restau-
rant reservation domain.

• Cambridge SLU (CS) is in the same domain as CamRest676 but only
focuses on NLU annotation of 10,569 user utterances.

• MultiWOZ is a multi-domain dialogue corpus. For experiments in this
chapter, we picked only single-domain dialogues from two domains – hotel
reservation and attraction recommendation – to form WOZ-hotel (WH)
with 14,435 utterances, 9 slots, 3 intents and WOZ-attr (WA) with 7524
utterances, 8 slots and 3 intents respectively.

• ATIS (AT) is focused on flight search and contains nearly 5,000 utterances.

3rd party models As sources of weak supervision providing slot candidates,
we mainly use the frame semantic parsers SEMAFOR (Das et al., 2010) and
open-sesame (Swayamdipta et al., 2017) – a union of labels provided by both
parsers is used in all our setups. In addition, to explore combined sources on the
named-entity-heavy ATIS dataset, we include a generic convolutional NER model
provided by SpaCy.4 To provide features for slot candidate merging and selection,
we use AllenNLP (Gardner et al., 2017) for SRL and FastText (Bojanowski et al.,
2017) as pre-trained word embeddings.

4.6.1 Training details

• Slot merging and selection parameters were set heuristically in an initial
trial run on the CamRest676 data and proved stable across domains.

• Slot tagger hyperparameters are chosen according to grid search on a por-
tion of the training data.

• Since the models are rather small concerning the number of parameters, it
is sufficient to use a regular desktop PC. In our experiments, we require
about 4 GB of RAM and use Intel Xeon E5-2630 v4 CPUs.

4https://spacy.io
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• Our slot candidate selection step takes roughly 1 hour. The tagger model is
lightweight, with only 150k parameters. Its training requires 10-30 minutes,
depending on the exact configuration and data size.

• We conduct a hyperparameter search using a basic grid search algorithm.
We tested hidden size values ∈ [50, 200], dropout ∈ [0.5, 0.85] and the
threshold Ttag ∈ [0.05, 0.3]. Therefore, we ran 4 × 8 × 6 = 192 search trials.

• The best parameters were determined by tagger accuracy on the validation
set: hidden_size = 250, dropout = 0.7, Ttag = 0.3, Tsim = 0.9.

• For data without explicit train:validation:test splits we use ratio of sizes
8:1:1.

4.6.2 Evaluated systems

We test multiple variants of our system. This gives us an idea about the contri-
butions of all the individual methods we propose. Here we give an overview of
all the system variants:

• Ours-full is the full version of our method (full annotation setup and trained
slot tagger).

• Ours-nothr does not use the recall-increasing second-candidate rule in the slot
tagger.

• Ours-notag excludes the slot tagger. This means that the outputs of input
taggers are used directly to annotate the data.

• Ours-nocl further excludes the clustering step; slot candidate ranking and se-
lection is performed over all candidates together.

We also compare to previous work of Chen et al. (2014)5. This method is similar
to the variant Ours-nocl but does not merge similar frames and uses different
ranking criteria. Essentially, they use the outputs of the input tagger directly
after the selection step without further processing.

To put our results into perspective, we also include two supervised models
for comparison: Tag-supervised is the same model that we use as our slot tag-
ger (see 4.5), but it is trained on supervised data with all ground truth labels
available. The other supervised baseline is called Dict-supervised. It uses a sim-
ple dictionary of slot fillers obtained directly from the training data. We use
straightforward word matching based on regular expressions to tag occurrences
of these values.

5We use our re-implementation of their approach.
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Original annotation: 

Original annotation: 

       User input 1: I would like an expensive restaurant that serves Afghan food.

     Our annotation: 

       User input 2: How about Asian oriental food.

     Our annotation: 

Expensiveness
slot-0

Locale
slot-1

Origin Food
slot-1

Figure 4.4: A sample of a dialogue from CamRest676 data, with labels from
a frame-semantic parser (middle) and our slot tagger (bottom). Although
“Afghan” food is not in the frame parser output, our tagger could recognize
it. The second utterance successfully captures the change in value for slot-1
(corresponding to food type). This shows that our model can categorize entities
(both “Afghan” and “Asian” relate to the same slot).

Apart from evaluating the tagging performance with respect to NLU, we are
also interested in the intrinsic evaluation of the verb-slot pair clusters formed
for slot ranking. Specifically, we ask how well these clusters are formed and
if they are meaningful. We compare to gold-standard intent annotation with
respect to the following baselines: (1) a majority baseline (assigning the most
frequent intent class to all instances), and (2) a simple method that represents
the utterances as averages of respective word embeddings and performs sentence-
level intent clustering. All the slots in a given utterance are assumed to have the
same intent.

4.7 Evaluation
We need a way of comparing the predicted structure to the ground truth to eval-
uate the discovered set of slots. Therefore, we construct a handcrafted mapping
between our discovered slots and the respective ground-truth slots. Importantly,
this mapping is only needed for evaluation; our method does not depend
on it. The mapping is domain-specific, but it is very easy to construct even
for an untrained person – the process takes less than 10 minutes for each of our
domains. It amounts to matching slots from the domain ontology against slots
output by our approach, represented by the FrameNet labels. We provide an
example of such a reference mapping in Table 4.3.

We use some common metrics described in Section 2.7 for quantitative evalua-
tion. Specifically we use Intent Accuracy, Joint Goal Accuracy and Entity
Match Rate. We also use some metrics specific to this part of the work:
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Ours-full output CambridgeSLU ontology
Expensiveness ↦→ Pricerange

Origin + People_by_origin ↦→ Food
Direction + Part_orientational ↦→ Area

Contacting + Artifact ↦→ Phone
Locale_by_use ↦→ Type

Table 4.3: An example of reference mapping between the output of Ours-full
represented by FrameNet labels (left) and ground-truth CambridgeSLU ontology
(right). Frames merged by our method are shown on a single line, separated by
“+”.

• Slot F1 score: To reflect slot tagging performance, we measure precision,
recall, and F1 for every slot individually. An average is then computed
from slot-level scores, weighted by the number of slot occurrences in the
data. We measure slot F1 on standalone user utterances (slot tagging) and
in the context of a dialogue system (dialogue tracking).

• Slot-level Average Precision (AP). The slot candidates picking task
is a ranking problem, and we use the average precision metric follow-
ing Chen et al. (2014). Considering a ranked list of discovered slots
l = s1, . . . , sk, . . . , sn we compute AP:

AP (l) =
∑︁n
k=1 P@k(l)1k

# mapped slots
(4.3)

where 1k is an indicator function that equals one if slot k has a reference
mapping defined and P@k(l) is precision at k of the ranked list l.

• Slot Rand Index (RI) is a clustering metric used to evaluate slot can-
didate merging. RI is the proportion of pairs of slot candidates correctly
assigned to the same or different slots (following the reference mapping).6

• Normalized Mutual Information (NMI) is the mutual information
between two clusterings normalized into the (0, 1) interval. Thanks to the
normalization, it is suitable for comparing two clusterings with different
numbers of clusters.

For slot tagging and ranking evaluation, we sampled a random data order 50
times and performed 5-fold cross-validation for each permutation. For the dia-
logue generation evaluation, we trained the models 100 times and used averaged
results. All results are given with 95% confidence intervals.

6We compute RI on a union of labels with a ground-truth slot mapping and all labels
selected by our method. Labels without ground-truth mapping are assumed to form single-
item “pseudo-slots”.
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Figure 4.5: The comparison of outputs of our tagger and the parser. The plots
show a number of cases in which the respective approach encounters more TPs,
FPs, or FNs than the other.
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4.8 Results
We evaluate our approach to slot discovery by comparing the resulting slot labels
to gold-standard supervised slot annotation.

Slot tagging is evaluated in Table 4.4. Ours-full (slot selection + trained
tagger) outperforms all other approaches by a large margin, especially regarding
recall.

The performance cannot match the supervised models, but it is not far off in
some domains.7 Chen et al. (2014)’s method has a slightly higher precision, but
our recall is much higher than theirs. Note that Chen et al. (2014) do not reduce
the set of candidates. They only rank them so that a manual cut-off can be made.
In contrast, our method reduces the set of candidates significantly. A comparison
between Ours-notag and Ours-full shows that applying the slot tagger improves
both precision and recall. Tagger without the threshold decision rule (Ours-
nothr) mostly performs better than the parser; however, using the threshold is
essential to improve recall. Experiments on ATIS with NER as an additional
annotation source proved that our method can benefit from it. As discussed
above, using the trained tagging model is crucial to improve the recall of our
method. In Figure 4.5, we compare the results with and without the tagger. We
change the value of the prediction threshold and measure the number of cases in
which the tagging model encounters more true positives, false positives, or false
negatives, respectively. As the results show, lowering the threshold increases the
number of cases in which the tagger finds more correct slot values (and therefore
improves recall), while it does not affect the number of false positives much (and
therefore retains precision).

Performance of unsupervised candidate identification We separately
evaluate the setup in which we used unsupervised sources of candidate identifi-
cation described in Section 4.3. In Table 4.5, we present the performance of the
overall pipeline for various candidate identification methods with and without ap-
plying our full pipeline (see 4.1). We can see that applying our pipeline improves
the performance, especially the overall recall. We also compare the pipeline
performance with various candidate identification methods in Figure 4.6. This
comparison shows that the FrameNet-based candidate identification mechanism
outperforms unsupervised variants.

7Note that our measurements of slot F1 only consider the ‘O’ tag as negative (the average
is computed over slots only). This results in lower numbers than those reported in literature
(Goo et al., 2018), but we believe this reflects the actual performance more accurately.
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method ↓ / dataset→ CS WH WA AT
Tag-supervised∗ 0.724 ± .003 0.7420.7420.742 ± .008 0.7310.7310.731 ± .002 0.8480.8480.848 ± .003
Dict-supervised∗ 0.7530.7530.753 ± .005 0.7500.7500.750 ± .018 0.665 ± .003 0.678 ± .002
weak supervision → frames frames frames frames,NER
Chen et al. 0.590 ± .001 0.382 ± .001 0.375 ± .001 0.616 ± .001
Ours-nocl 0.393 ± .011 0.122 ± .001 0.266 ± .008 0.677 ± .002
Ours-notag 0.664 ± .007 0.388 ± .002 0.383 ± .002 0.648 ± .003
Ours-nothr 0.569 ± .031 0.485 ± .032 0.435 ± .002 0.698 ± .004
Ours-full 0.6920.6920.692 ± .008 0.5480.5480.548 ± .004 0.4390.4390.439 ± .001 0.7100.7100.710 ± .002

Table 4.4: F1 score values with 95% confidence intervals for slot tagging perfor-
mance comparison among different methods. The measures are evaluated using
a manual slot mapping to the datasets’ annotation, which is unnecessary for the
methods. ∗Note that supervised setups are not directly comparable to our ap-
proach.

method Precision Recall F1
Mem2Seq 0.72 0.22 0.31
LLM-ChatGPT 0.76 0.23 0.35
LLM-Tk-instruct 0.78 0.08 0.14
Mem2Seq+Ours 0.92 0.26 0.38
LLM-ChatGPT+Ours 0.67 0.29 0.39
LLM-Tk-instruct+Ours 0.49 0.17 0.22

Table 4.5: Cluster assignment accuracy of our methods if we interpret the clus-
tering as user intent detection. Majority is a majority baseline, and Embedding
refers to an average sentence embedding clustering approach.
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Figure 4.6: Comparison of our pipeline performance with different input sources.
Note that FrameNet achieves both the best performance and the best trade-off
between Precision and Recall

4.8.1 Error analysis

We conducted a manual error analysis of slot tagging to gain more insight into
the output quality and sources of errors. We found that the tagger can generalize
and capture unseen values.

One source of errors is the relatively low recall of the frame-semantic parsers.
We successfully addressed this issue by introducing the slot tagger. However,
many slot values remain untagged. This is expected as the input linguistic an-
notation quality inherently limits our method’s performance. The candidate
merging procedure causes another error (see also below). Due to frequent co-
occurrence, two semantically unrelated candidates might be merged, and there-
fore, some tokens are wrongly included as respective slot fillers. Nevertheless,
the merging step is required to obtain a reasonable number of slots for a dialogue
domain.

Our approach does leave some room for improvements, especially regarding
the consistency of results across different slots, which can be imbalanced.
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dataset price area request type food day people stars stay
CR 0.54 0.76 0.76 – 0.59 – – – –
CS 0.63 0.84 0.48 0.81 0.64 – – – –
WH 0.21 0.52 0.11 0.13 – 0.15 0.82 0.82 0.34

Table 4.6: Per-slot F1 scores of the Ours-full method evaluated on selected
datasets with slot intersection. For some slots, the performance varies a lot
among datasets due to different ranges of values and contexts. The measures are
evaluated using a manually designed slot mapping to the datasets’ annotation,
which is unnecessary for the methods.

method CR CS WH WA AT

Chen et al. 0.315 0.272 0.269 0.393 0.2670.2670.267
±.002 ±.001 ±.001 ±.002 ±.003

Ours-nocl 0.5190.5190.519 0.376 0.069 0.176 0.069
±.003 ±.003 ±.074 ±.016 ±.008

Ours-full 0.5200.5200.520 0.4000.4000.400 0.3170.3170.317 0.4030.4030.403 0.208
±.004 ±.003 ±.008 ±.006 ±.018

Table 4.7: Slot candidate ranking average precision for all datasets

Slot candidate ranking results are given in Table 4.7. Our pipeline signif-
icantly outperforms Chen et al. (2014)’s approach on 4 out of 5 datasets. We
can also see that the slot-verb pairs clustering step is important – in the abla-
tion experiment where we do not perform clustering (Ours-nocl), performance
falls dramatically on the WOZ-hotel, WOZ-attr, and ATIS data. This is be-
cause, without the clustering step, many context-irrelevant slot candidates are
considered, hurting performance.

In addition, we include a detailed evaluation of the contribution of the indi-
vidual slot candidate ranking scores. Results in Table 4.8 suggest that all of our
proposed scores improve the performance.

Slot merging evaluation is shown in Table 4.9. Although candidates in the
CamRest676 data are merged into slots reasonably well, other datasets show a
relatively low performance. The low RI scores result from errors in candidate
ranking, which wrongly assigned high ranks to some rare, irrelevant candidates.
These candidates do not appear in the reference mapping and are assumed to
form singular “pseudo-slots”. However, they are typically joined with similar
candidates in the merging process. This leads to many pairs of candidates merged
into one slot by our approach but appearing separately in the reference mapping.
Nevertheless, this behavior barely influences slot tagging performance as the
candidates are rare.
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configuration F1 score
Ours-full 0.663 ± 0.012
Ours -frq 0.600 ± 0.008
Ours -coh 0.582 ± 0.012
Ours -TextRank 0.514 ± 0.006

Table 4.8: Ablation study of slot ranking features on CamRest676. The full
model is compared to variants left out of the scores.

method CR CS WH WA AT

RI Rnd 0.466 0.268 0.155 0.153 0.178
Ours 0.587 0.319 0.168 0.188 0.171

NMI Rnd 0.212 0.137 0.061 0.128 0.171
Ours 0.359 0.207 0.101 0.117 0.194

Table 4.9: Slot merging evaluation using RI and NMI on selected datasets, com-
paring our approach (Ours) with a random baseline (Rnd).

Clustering evaluation: Table 4.10 suggests that our clustering performs bet-
ter than simple baselines and can yield useful results for intent detection. Never-
theless, intent detection is more complex and presumably requires more features
and information about the dialogue context, which we reserve for future work.
The complexity is also suggested by the naive embedding clustering performing
worse than the majority baseline in 4 out of 5 cases.
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method CR CS WH WA AT
Majority 0.592 0.530 0.883 0.612 0.7270.7270.727
Embedding 0.535 0.551 0.873 0.595 0.705
Ours 0.7050.7050.705 0.6130.6130.613 0.8820.8820.882 0.6990.6990.699 0.677

Table 4.10: Cluster assignment accuracy of our methods if we interpret the clus-
tering as user intent detection. Majority is a majority baseline, and Embedding
refers to an average sentence embedding clustering approach.

4.9 Dialogue generation application
To verify the usefulness of the labels discovered by our method, we use them
to train and evaluate an end-to-end task-oriented dialogue system. We choose
Sequicity (Lei et al., 2018b) based architecture for our experiments, an LSTM-
based encoder-decoder model that uses a system of copy nets and two-stage
decoding. First, it decodes the dialogue state so the database can be queried
externally. Sequicity generates the system response conditioned on the belief
state and database results in the subsequent step. This architecture works with
a flat representation of the dialogue state, i.e. the state is represented as a
sequence of tokens – slot values.

The basic architecture is further extended by Jin et al. (2018). They propose
to model the dialogue state explicitly in a semi-supervised way. They extend
the end-to-end encoder-decoder dialogue response generation model of Lei et al.
(2018b) by introducing an additional decoder with access to posterior informa-
tion about the system response. This allows them to train a state representation
with a reconstruction loss on unsupervised examples, using the state as a limited
memory for essential concepts (roughly corresponding to slots). Their method
can be applied fully unsupervised, but it still requires some in-domain annota-
tions to perform well. The default Sequicity model uses gold-standard dialogue
state annotation. However, a compatible state representation is directly obtain-
able from our labels simply by concatenating the labels aggregated in each turn
from user utterances. Whenever a new value for a slot is found in user input by
our tagger, it is either appended to the state representation or replaces a previous
value of the same slot.

We run three versions of the Jin et al. (2018)’s model: Jin et al. supervised
is a model that is trained fully on supervised data to provide perspective on
the achieved performance. Jin et al. unsupervised is, on the contrary, fully
unsupervised, i.e. we provide no labeled examples during the training phase to
give a fair comparison against our model. Finally, Jin et al. weak-labels does not
use supervised labels but presents labels obtained by our method.
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method Slot F1 Joint Goal Accuracy Entity Match Rate
Jin et al. supervised 0.967 ± .001 0.897 ± .002 0.869 ± .004
Jin et al. unsupervised 0.719 ± .002 0.385 ± .003 0.019 ± .002
Jin et al. weak-labels 0.709 ± .011 0.335 ± .008 0.269 ± .012
Ours-full (unsupervised) 0.7560.7560.756 ± .004 0.4650.4650.465 ± .007 0.3680.3680.368 ± .008

Table 4.11: Evaluation on the downstream task of dialogue generation on Cam-
Rest676 data. We evaluate with respect to three state tracking metrics. The
best results in an unsupervised setting are presented in bold.

4.9.1 Results

We explore the influence that our labels have on sequence-to-sequence dialogue
response generation in an experiment on the CamRest676 data (see Table 4.11).
We can see that our method provides helpful slot labels that improve dialogue
state tracking performance. Our approach significantly improves all metrics com-
pared to Jin et al. (2018)’s system used in a fully unsupervised setting. We
achieve better results than Jin et al. (2018)’s system, especially regarding entity
match rate, suggesting that our model can provide consistent labels throughout
the dialogue. To make a fair comparison, we further evaluate Jin et al. (2018)’s
system in a setting where it can learn from the labels provided directly by weak
supervision (i.e., the frame-semantic parser, not filtered by our pipeline). We
observe an improvement in entity match rate, but it does not match the im-
provement achieved with our filtered labels. Surprisingly, slot F1 and joint goal
accuracy even decreased slightly, which suggests that label quality is impor-
tant and the noisy labels obtained directly from weak supervision are not useful
enough.

4.10 Conclusion
In this chapter, we propose a pipeline method that analyzes a set of clusters
of semantically related values and yields a set of candidates for dialogue slots
relevant to the given task. The methods can take unstructured conversation
data as inputs and require no data labels as inputs.

We show that our pipeline can work with various candidate identification
methods and improve their performance regardless of the particular setup. The
method also compares favorably to similar proposed approaches.
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The analysis shows that our method is rather sensitive to the quality of input
clusters, i.e. the performance of the initial source of the candidate annotation
(weak supervision, Mem2Seq, LLMs). Our method is easy to apply and provides
a reasonable performance, improving with the increasing quality of input slot
candidates.

For future work in this area, we can consider applying better methods for
text representations and parsing, which would likely improve the qualitative per-
formance. It is also desirable to address the need for setting empirical thresh-
olds, especially in the slot candidate selection and merging phase, exploiting the
power of pre-trained language models. Overall, the method is model-agnostic in
the sense that various components of the pipeline can be swapped with better-
performing models, which would likely improve the quantitative performance.
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5
Dialogue modeling with less

supervision

Dialogue modeling is a complicated task requiring the ability to communicate
in a natural language and handle discrete decision processes representing the
conversation logic. Various architectures have been proposed over the years (see
Sections 2.5, 3.2), mostly relying on explicit data annotation on multiple levels
to guide the model training process. One of the biggest challenges is to model
task-oriented dialogue that requires interaction with external interfaces such as
databases or API services. This aspect puts a hard constraint on the dialogue
system architecture – it requires some explicit representation that allows one
to communicate with external systems. Achieving this in a fully unsupervised
setting is challenging due to lack of model guidance in the form of structured
labels. However, we explore multiple viable approaches to this problem in this
chapter.

First, we discuss the challenges of unsupervised task-oriented dialogue mod-
eling in more detail in Section 5.1. Next, we propose our architecture that uses
latent representations and explore its abilities and performance in Section 5.2.1.
Finally, we explore extensions to the latent variable models by proposing hierar-
chical architecture.

In this chapter, we present a modeling approach that we previously published
in Hudeček and Dušek (2022) and propose alternative unpublished extensions of
a different base architecture using latent representations (Lubis et al., 2022). Our
experimental code is available on GitHub1.

1https://github.com/vojtsek/to-vrnn
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5.1 Challenges of TOD interaction with
external interfaces under less supervision

There are multiple challenges to overcome when we try to model TOD with-
out guidance in the form of labels (Section 2.5.2). This chapter addresses the
challenges of action selection and interface interaction. To enable the model to
interact with external sources of information via API, we annotated points in
the training dialogues where interaction with an external API is needed. There-
fore, the model can learn to construct the database queries ad-hoc using special
outputs. A turn-level annotation of database queries would represent a similar
amount of annotation used in supervised training. It thus would not lead to our
desired setting, where the model is trained without labeled data. To support
database access while avoiding costly turn-level annotation, we follow Bordes
et al. (2017) and insert sparse database queries and results into the training
data, forming special dialogue turns. Specifically, we identify turns that require
database results, e.g. to inform about entity attributes or the count of matching
entities, and insert a query-result pair in front of those turns (see Table 5.1).
We argue that this is the minimal level of supervision required to successfully
operate a task-oriented system with database access; it is significantly lower than
the full dialogue-state supervision used by most systems. Moreover, this kind
of supervision is readily available in a realistic setting (such as using call center
recordings and agent activity logs). In practice, database queries are only in-
serted for 24% turns on average. Per-dataset query counts are 36%, 23%, and
11% for CamRest676, MultiWOZ, and SMD, respectively. Note that this ap-
proach still covers the task of an explicit state tracker since the necessary entity
values are provided when needed. Database query results can be stored and used
in follow-up questions to maintain consistency. .
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Turn 1

user: Is there a moderately priced restaurant serving italian food

anywhere in town?

system gold: query (italian moderate)

action: QUERY()

Turn 2

user/database: pizza express, Regent Street City Centre, 01223 324033, C.B 2, 1

D.B, centre

system gold: Pizza express serves Italian food and is located in the town

centre and is in the moderate price range .

action: OFFER()

Turn 3

user: what is the address and phone number ?

system gold: their address is Regent Street City Centre. Their phone number

is 01223 324033. can I help with anything else ?

action: GIVE_DETAILS()

Table 5.1: An example dialogue drawn from the CamRest676 validation set
illustrates our injection of database interaction turns. We show the user in-
put, inserted database queries/results (color-coded), the gold-standard system
response, and system action annotation based on manual rules. A database
query is constructed in the first turn, and the second turn illustrates how the
result is retrieved and fed as input.

5.2 Task-Oriented dialogue with TO-VRNN
The VRNN model architecture (see Section 2.3.1) is designed to model sequences
of observations coupled with latent states. It is a generative model that can learn
the conditional generative distribution of observations given the state. More-
over, although VRNN does not require a fixed set of states, it can be adjusted
to model discrete states. The VRNN is great for modeling the discrete decision
processes behind conversation exchanges, thanks to the above-mentioned prop-
erties. However, we propose some extensions for task-oriented dialogue modeling
to distinguish between the user and system roles and incorporate the possibility
of handling interaction with external interfaces.

5.2.1 TO-VRNN model description

We extend the VRNN model introduced in Chapter 2.3.1 to fit the task-oriented
setup. Figure 5.1 depicts our model’s architecture. Following the original VRNN
architectures (Section 2.3.1), we employ a turn-level RNN that summarizes the
context in its hidden state. In each dialogue turn, we model user and system
utterances with separate autoencoders to account for different user and system
behaviors. This contrasts with the original model described in 2.3.1, which con-
tains only one autoencoder in every time step. We can divide the processing of
one turn into two stages. First, the user utterance, modeled with a standard
vanilla autoencoder, is processed, and the last encoder hidden state ϕuenc(xtu)
provides the encoded representation used as an input for the next stage.
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Can I have the phone number?

Sure, the phone number is ...

Training
Can I have the phone number?

Sure, the phone number is ...

Inference

U:

S:

Figure 5.1: Visualization of our model architecture (one dialogue turn), described
in Section 5.2.1. Yellow boxes represent the turn-level VRNN’s hidden state ht.
The user utterance is represented as the last hidden state of the encoder network
ϕuenc, which is trained as an autoencoder along with the decoder ϕudec. The system
utterance, encoded by the network ϕsenc, is an input to the posterior network
ϕpost that helps to train the prior network ϕprior to construct meaningful latent
variables zs, which initialize the system utterance decoder ϕsdec. The training
uses the whole architecture, including the posterior network ϕpost, while only the
part shaded in green is used for inference. LCE stands for cross-entropy loss,
LKL for KL-divergence loss.

Next, the system part is used, which is realized by VAE with discrete latent
variables zs conditioned on the context RNN’s hidden state ht−1 and the user
utterance encoding ϕuenc(xtu). The system module is trained as the VAE compo-
nent in the VRNN model (2.3.1) and creates latent representations interpreted
as system actions. This predicted latent variable is then used as an input to the
system decoder that generates the realization of the latent action in the form
of natural language. Our model can thus be seen as a VRNN extended by an
additional encoder-decoder module for input pre-processing.

To finalize the turn-processing step, we need to save the information into the
turn-level network so it becomes part of the encoded context. The turn-level
network state update looks as follows:

ht+1 = RNN([ϕuenc(xtu), ϕz(zts)],ht) (5.1)

In other words, we use representations from both user and system modules to
pass the information necessary to update the overall state.

For word-level encoding and decoding modules (ϕuenc, ϕsenc, ϕudec, ϕsdec), we use
an RNN with LSTM cells. We further experiment with attention (Bahdanau
et al., 2014) over user encoder hidden states in the system decoder. We train
the model by minimizing a sum of the cross-entropy reconstruction loss on user
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utterances and the variational lower bound (Equation 5.2) on system responses.

log p(x) ≥ −KL(q(z|x)||p(z))
+Eq(z|x)[log p(x|z)]

(5.2)

The final objective is presented in Equation 5.3. There, φ and ψ represent the
parameters corresponding to system and user modules, respectively. xs and xu
are system and user utterances and u is the encoded representation of the user
utterance.

LTO−V RNN(φ, ψ) = Eqφ(z|xs)[log pφ(xs|z)]
−KL(qφ(z|xs)||p(z))

+log pψ(xu|u)
(5.3)

This objective directly extends the original training objective presented in 2.3.1.
When running in inference mode, only the prior distribution p(z) is consid-

ered, which does not require the system utterance on the input. Therefore, the
model can generate the system response only with a user utterance on the input.

Latent Variables We use a set of n K-way (K = 20;n = 1, 3, 5) categorical
variables to achieve good interpretability, following Zhao et al. (2018). Each
variable is represented as a one-hot vector of length K, and we use n such vectors.
Multiple ways exist to incorporate trainable discrete variables into a differentiable
network (see Chapter 2.3). We use the Gumbel-Softmax distribution and the
reparameterization trick (Jang et al., 2017). We always take the item with the
maximum probability concerning the predicted softmax distribution instead of
sampling from it during inference.

5.2.2 TO-VRNN Experiments

In this section, we evaluate the quality of responses generated by our model. We
also inspect the model performance concerning dialogue success. We focus on
theoretical modeling and the feasibility of the proposed approach at this stage,
which we believe is sufficiently demonstrated by corpus-based evaluation comple-
mented by manual checks. Detailed interpretation of the learned representations
follows in Section 5.2.4.
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Data

We evaluate the model performance on three datasets: CamRest676 (Wen et al.,
2017d), MultiWOZ 2.1 (MW)(Budzianowski et al., 2018b; Eric et al., 2020) and
Stanford Multidomain Dialogues (SMD) (Eric et al., 2017) We use standard splits
for MultiWOZ 2.1 and SMD. We split CamRest676 in the 8:1:1 ratio, following
previous work. Detailed descriptions are given in Section 2.6.

Database queries To include database information in the dialogues as de-
scribed in Section 5.1, we first identify all turns in the original datasets where
database information is required, using handcrafted rules. These rules are very
simple, and their creation requires minimal effort: whenever database results
are provided in the data (based on simple pattern matches over system actions),
we prepend a database query based on the ground truth state. The assump-
tion is that these queries would naturally be available in a real-world scenario –
database queries induced by human operators can be logged along with client-
operator conversations. We then create special database query turns based on
the respective state annotation (see example in Table 5.1). Note that database
query parameters are the only annotation used to train our models apart from
utterance texts; no other dialogue state annotation from the original datasets is
used.

Experimental Setup

We evaluate two versions of our model: one that uses the attention mechanism
(attn) and one without it (noattn). The number and size of the variables are set
based on a few cursory checks on the training data. Our models use ten latent
variables by default; we discuss the influence of the number of latent variables
in Table 5.5. Since our approach is the first to be evaluated in a task-oriented
setting with minimal supervision, comparing it to prior works is difficult. Setups
with full dialogue-state supervision are not comparable, and dialog-state metrics
are not applicable without turn-level supervision. Therefore, we compare our
models to standard architectures, such as vanilla LSTM or Transformer encoder-
decoder, predicting sequentially using the same amount of supervision as our
approach. We also compare to the HRED/VHRED models, perhaps the closest
prior work to our approach. To put the results into perspective, we also include
scores for fully supervised state of the art on our datasets. However, note that
these scores are not directly comparable.
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Training details The model is trained with gradient descent using the ADAM
optimizer. We set the hyperparameters according to the BLEU and perplexity
results obtained during a grid search considering the system responses on the
development set. The utterance encoder and decoder hidden sizes are 250; the
context-LSTM hidden size is 100. The latent variables are 20-dimensional vec-
tors; their number differs across experiments. For the RNN components, we use
a dropout probability of 0.3. The total model size is 7,047,529 parameters. The
training time is 3-8 hours using one GPU, depending on the dataset. The train-
ing is sensitive to some parameters, such as the Gumbel-softmax temperature,
but otherwise, the model trains easily using conventional optimization methods.
To address the issue of posterior collapse (see Section 2.3.3), we experiment with
various approaches to KL annealing. We use a liner annealing schedule in our
experiments, increasing the β annealing coefficient from 0 → 1.

Metrics We use common metrics described in Table 5.2. To evaluate the
quality of individual responses, we compute BLEU score and perplexity on the
test set. Without dialogue-state supervision, we cannot measure task-oriented
metrics such joint goal accuracy. Therefore, we decided to measure dialogue
success and entity match rate, which we adjusted to the minimally supervised
case (details follow). We also measure the database query accuracy.

5.2.3 Results

Response quality

Our architecture performs substantially better than (V)HRED, which commonly
fails to acquire the necessary knowledge, especially on larger datasets. The
attention-based versions perform better on BLEU but lose slightly on perplexity.
Comparing HRED and VHRED shows that using the variational approach im-
proves overall performance. While the GPT-2 PLM outperforms our approach
on perplexity, it is worse on BLEU score despite its huge capacity.

We compare to other relevant related works:

1. Shi et al. (2019) do not use their model for response generation, but they re-
port a negative log-likelihood of approximately 5.5·104 when reconstructing
the CamRest676 test set. Our TO-VRNN-noattn model obtained 0.87 ·104,
which suggests a better fit of the data.2

2This comparison is only approximate since the exact data split is not described by Shi
et al. (2019) – we can only use a test set of the same size, not the exact same instances.
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2. Wen et al. (2017a) measure response generation BLEU score on fully delex-
icalized CamRest676 data. Their best-reported result is 24.60, while our
model gets 27.23 (30.10 with attention).

Our models can generate relevant responses based on manual checks in most
cases. As expected, only the models, including database turns, can predict cor-
rect entities (cf. Section 5.2.3). A relatively common error is informing about
wrong slots, e.g., the model provides a phone number instead of an address or,
even more frequently, provides wrong slot values (cf. Table 5.3).

Dialogue success The conventional definition of dialogue success or success
rate reflects the ratio of dialogues in which the system captures all the men-
tioned slots correctly and provides all the requested information. We follow
previous works (Nekvinda and Dušek, 2021b) and report corpus-based success
scores instead of using a user simulator. However, measuring success rate with-
out turn-level labels is not straightforward. We approximate tracking slot values
turn-by-turn by checking for correct slot values upon database queries only, and
we use this information to measure dialogue success. Note that this is not equiv-
alent to having state tracking labels available at all turns, but we consider it a
reasonable approximation given our limited supervision – database queries are
crucial for presenting the correct entities to the user, which in turn decides the
dialogue success.

The generated query attributes directly show the captured slots.
Success rate results are shown in Table 5.4. Our system is not competitive

with a fully supervised model but outperforms the baselines (VHRED, GPT).
Upon inspection, we see that the system can often recognize correct slots. How-
ever, it has difficulties capturing the right values. However, the scores are promis-
ing, considering the minimal supervision of our training.

Matching database entities Table 5.2 shows the performance of our mod-
els for entity matching. We observe that the model performance without the
database information is poor. However, including the database information im-
proves the performance substantially, especially in the case of CamRest676 data.
The MultiWOZ data is much more complex – it contains more slots and multi-
ple domains that can also be combined in an individual dialogue. Nevertheless,
we can still observe an improvement when we include the database queries. We
also note that using attention improves EMR substantially – the latent variables
alone cannot hold all information about particular values (cf. Section 5.2.4).

72



model CamRest676 MultiWOZ 2.1
db BLEU Ppl MI EMR BLEU Ppl MI EMR

LSTM 7 3.90 5.34 – – 0.92 8.23 – –
Transformer 7 4.98 7.72 – – 0.95 6.95 – –
GPT-2 7 15.40 1.18 – – 9.40 2.77 – –
GPT-2 3 13.89 1.80 – – 9.56 2.43 – –
HRED 7 2.70 13.92 – 0.02 2.98 29.61 – 0.01
VHRED 7 4.34 11.76 0.21 0.02 4.65 32.74 0.15 0.01
VHRED 3 8.50 10.23 0.17 0.36 3.82 16.61 0.07 0.04
TO-VRNN-noattn 7 12.98 4.64 0.29 0.01 7.18 9.16 0.42 0.02
TO-VRNN-noattn 3 15.10 4.45 0.34 0.24 11.3 5.17 0.27 0.05
TO-VRNN-attn 7 17.37 5.07 0.16 0.09 12.28 10.19 0.06 0.04
TO-VRNN-attn 3 17.10 4.23 0.22 0.81 11.86 6.03 0.05 0.08
supervised ∗ 3 25.50 – – – 19.40 2.50 – –

model SMD
db BLEU Ppl MI

LSTM 7 1.62 7.84 –
Transformer 7 1.53 6.33 –
GPT-2 7 9.26 2.46 –
GPT-2 3 4.54 2.02 –
HRED 7 1.25 12.50 –
VHRED 7 3.75 11.94 0.20
VHRED 3 3.94 11.86 0.19
TO-VRNN-noattn 7 7.35 6.18 0.53
TO-VRNN-noattn 3 9.24 6.01 0.47
TO-VRNN-attn 7 12.30 6.36 0.04
TO-VRNN-attn 3 12.40 6.11 0.11
supervised∗ 3 14.40 – –

Table 5.2: Model performance in terms of BLEU for generated responses, Per-
plexity (Ppl), and Mutual Information (MI) between the generated response and
the latent variables zs. We do not evaluate the database-enriched models on
SMD as SMD’s database structure does not map easily to our annotation style.
We measure MI only for the models that use latent variables explicitly. The db
column indicates systems that use database information. ∗Note that the super-
vised state-of-the-art scores are not directly comparable, as the systems use full
turn-level supervision.(Qin et al., 2020);
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Turn 1

user: Is there a moderately priced restaurant serving italian food

anywhere in town?

system gold: query italian moderate

system hyp: query italian moderate

Turn 2

user/database: pizza express, Regent Street City Centre, 01223 324033, C.B 2, 1

D.B, centre

system gold: Pizza express serves Italian food and is located in the town

centre and is in the moderate price range .

system hyp: Pizza hut Cherry Hinton is a Italian restaurant in the centre

part of town

Turn 3

user: what is the address and phone number ?

system gold: their address is Regent Street City Centre. Their phone number

is 01223 324033. can I help with anything else ?

system hyp: the phone number is 01223 324033. Is there anything else I can

help you with ?

Table 5.3: Predicted outputs or our VRNN model for a conversation snippet
presented in Section 5.1.

model success query acc.

CamRest676

VHRED 0.21 0.91
TO-VRNN-noattn 0.28 0.84
supervised SotA (Peng et al., 2021b) 0.73 N/A

MultiWOZ

TO-VRNN-noattn 0.10 0.98
supervised SotA (Peng et al., 2021b) 0.85 N/A

Table 5.4: Dialogue success and query accuracy comparison for VHRED, TO-
VRNN-noattn using the database and a state-of-the-art supervised system.
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BLEU Ppl MI

TO-VRNN-noattn-1z 25.20 4.25 0.46
TO-VRNN-noattn-3z 26.80 4.24 0.26
TO-VRNN-noattn-5z 27.23 4.20 0.38
TO-VRNN-noattn-12z 29.83 4.12 0.35

Table 5.5: Evaluation of the model performance with different numbers of latent
variables concerning automatic measures of BLEU, Perplexity (Ppl), and Mutual
Information (MI) on the CamRest676 data.

Database query accuracy Further, we evaluate the accuracy of the database
querying. This metric measures if the system queries the database at appropriate
turns. The query’s content is not considered in this case, as it is already consid-
ered in the success rate. On MultiWOZ, we get a near-perfect accuracy, while
our approach loses to VHRED on CamRest676 (see Table 5.4). We hypothesize
that different dialogue structures can cause such discrepancies among these two
datasets. The dialogues in CamRest676 usually contain just zero or one query
during a dialogue, so our model might generate more queries than necessary.

5.2.4 Latent Variable Interpretation

Explaining and interpreting the model behavior is crucial, especially in a setting
without full supervision. Therefore, we design experiments to evaluate the model
behavior and investigate whether the model captures salient dialogue features in
the latent variables obtained during training on CamRest676 and MultiWOZ.
While the latent variables seem to be mainly useful for interpretability or struc-
ture induction, they are likely also contributing to the performance as smaller
latent spaces yield lower performance, as shown in Table 5.5.

Mutual Information

Finally, we compute mutual information (MI) between the generated text and
latent variables as well as among the latent variables themselves (see Table 5.2).3

We see that using attention dramatically affects the amount of MI between the
latent variables and the generated text. Since attention bypasses the latent
vectors, the decoder does not need to use them to store information.

3Since we measure MI between categorical variables, we quantize the continuous variables
used in the VHRED model.
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config CamRest676 MultiWOZ 2.1.
gold domain action

random 0.17 0.14 0.09
majority 0.42 0.33 0.32
HRED 0.65 0.45 0.44
VHRED 0.52 0.36 0.32
GPT-2 0.65 0.60 0.55
TO-VRNN-attn 0.63 0.68 0.66
TO-VRNN-noattn 0.75 0.70 0.69
TO-VRNN-manual 0.59 – –

Table 5.6: Accuracy of the domain and action decision-tree classifiers based
on latent variables. For details about the manual annotation process, see Sec-
tion 5.2.4.

Clustering the actions

First, we want to assess whether similar variables represent similar actions. We
follow Zhao et al. (2018) and define utterance clusters according to the model’s la-
tent variables. As a baseline, we consider random cluster assignment. A stronger
approach computes sentence representations using a BERT model tuned for sen-
tence representations (Reimers and Gurevych, 2019a) and then clusters the ob-
tained sentence embeddings using K-means clustering.

We then use the homogeneity metric (Rosenberg and Hirschberg, 2007) to
evaluate the clustering quality for the reference classes determined by manually
annotated system actions (which are used for evaluation only). Homogeneity
reflects the information the clustering provides (and, by extension, the latent
vectors used) and is normalized to the interval [0, 1]. The reason for choosing
this metric is that it is independent of the number of labels and their permuta-
tions. If all clusters only contain instances of a single class, we get the maximum
homogeneity.

We provide the results in Table 5.7. The clusters formed on the CamRest676
data are more homogeneous than MultiWOZ, likely because of the greater da-
taset complexity in the latter case. In all cases, our clusters are much more
homogeneous than clustering formed by random assignment. We also compare
favorably to a stronger baseline based on the clustering of the sentence repre-
sentations. These results suggest that the representations formed by our model
correspond much better to the true actions seen in the data.
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Figure 5.2: A visualization of a decision tree trained on the CamRest676 data
to predict a system action from the contents of the latent variables. Each node
represents a decision based on one latent variable value, and the leaf node colors
represent different system actions. When the condition in a given node is fulfilled,
the algorithm proceeds into the right subtree, left otherwise. For clarity, we
limit the maximum tree depth to 4. The limit slightly lowers the accuracy – the
pictured tree achieves an accuracy of 73% on the CamRest676 data.

Predictive power of the variables

To evaluate the predictive power of the obtained latent representations, we train a
simple classifier that predicts the system action and current domain, using solely
the obtained latent representations as input features. CamRest676 data does not
include system action annotation. Hence, we manually designed a set of rules
to determine system actions. An example of this rule-based action annotation
is shown in Table 5.1. For MultiWOZ, we predict both system action and the
domain of the utterance.

To put our results into perspective, we include several baselines: trivial ran-
dom and majority class baselines and classifiers using representations obtained
with other methods (HRED, VHRED, GPT). We use a decision tree (DT) clas-
sifier trained with the CART algorithm4 and the gini split criterion due to its
good interpretability. The results are shown in Table 5.6. Our classifier beats
the random and majority baselines in all cases. It also outperforms classifica-
tion based on (V)HRED and GPT representations. This demonstrates that our
approach produces high-quality interpretable representations. We also observe
that using attention harms the performance of the action classifier as it makes

4https://scikit-learn.org/stable/modules/tree.html
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it possible for the models to bypass the latent variables. On CamRest676, the
latent variables explain most of the annotated actions. Overall, we can observe
that any hidden state taken from some trained model can explain some portion
of the data. However, using our approach seems to perform better in this aspect.
We also notice the influence of the number of latent variables on the performance.
In general, increasing the number of latent variables leads to a substantial per-
formance improvement, which suggests that all the variables contribute with
relevant information (see Table 5.6).

The information about domains and system actions is stored in categorical
variables. It can be extracted by a simple classification model such as the de-
cision tree, which allows us to interpret and explain the behavior of our model.
For illustration, in Figure 5.2, we plot a DT with limited depth that achieves
73% accuracy when predicting the system action on the CamRest676 data. The
aim is that latent variables hold high-level information, such as intents, actions,
or domains. This helps interpretability but is insufficient for generating appro-
priate and factually correct responses – here, we need to incorporate correct slot
values. This detailed information is captured and carried over via the attention
mechanism in TO-VRNN-attn. Potential alternatives are copy mechanisms (Lei
et al., 2018a) or delexicalization on the generated outputs (Henderson et al.,
2014; Peng et al., 2021b).

Manual interpretation

To explore the interpretability of our representations even further, we manually
annotate the latent variables to obtain a simple handcrafted classifier. Specif-
ically, we draw a set of pairs of utterances and corresponding latent represen-
tations from the validation set. We present the discrete representation vectors
to an expert annotator to assign an action that each vector represents based on
the sampled utterances. This way, we obtain a mapping from the space of latent
vectors to actions. We then apply this mapping to predict actions on the test
set (the TO-VRNN-manual entry in Table 5.6). Note that in this approach, we
only allow assigning an action to a whole vector, unlike in the case of a decision
tree classifier, which can take individual components into account. As the results
show, this approach works well despite the above limitation.
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Source CamRest action MW action MW domain

TO-VRNN-noattn 0.65 0.34 0.39
sent-repr 0.45 0.33 0.30
random 0.20 0.02 0.01

Table 5.7: Homogeneity for TO-VRNN-noattn configuration using the database
vs. a clustering of sentence representations and random baseline.

5.3 A Hierarchical Variational Model for TOD
(HVTOD)

A structured representation of utterances in the dialogue with dialogue acts
(Chapter 2.1) is hierarchical because it is a composition of several concepts that
can constrain each other. Specifically, each utterance is characterized on the top
level by its domain. Each domain is connected with some intents and system
actions, typically further connected with certain slots. To reflect this hierarchical
nature of the dialogue acts, we thus need some model that would structure its
representations accordingly. Since we are interested in latent representations,
VAE architecture is a good option thanks to reasons discussed in 5.1.

VAEs for hierarchical architecture were successfully applied in the computer
vision domain (Vahdat and Kautz, 2020; Li et al., 2020b). We take inspiration
from these works and apply the hierarchical variational autoencoder architecture
to the dialogue domain. We hypothesize that this structure will allow the model
to work with different levels of abstraction and thus represent the decision process
more accurately and with greater detail. Note that there is no guarantee that
the learned representations in different layers will also differ. We want to explore
this question to see if the model can learn to leverage this structure by itself.

5.3.1 HVTOD model architecture

The proposed HVTOD architecture is based on the LAVA framework (Lubis
et al., 2022, see Section 2.3.2). The authors propose an architecture in LAVA
that uses latent representations of dialogue actions computed with VAE. They
use context encoded with an RNN encoder as an input into the VAE. We extend
the architecture so that instead of just one VAE. We use a set of VAEs stacked on
top of each other to model the latent variables. The overall model architecture
is depicted in Figure 5.1. In the input, we have a set of dialogues D where
each dialogue d with n turns consists is represented as a sequence of altering
system and user utterances d = (s1, u1, ..., sn, un). Similarly to LAVA, our model
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Figure 5.3: The architecture of our HVTOD model. The dialogue context is first
processed with a recurrent network encoder to obtain a hidden representation.
This representation then serves as an input to the hierarchical system of varia-
tional encoders stacked on each other. The latent variables are merged to form
the decoder’s initial hidden state.

encodes the context Ct = (s1, u1, ..., st, ut) with RNN-based utterance encoder to
obtain a hidden representation of the context h0 = RNNϕu

enc
(Ct). The obtained

representation h0 is subsequently used as input to a hierarchical L variational
autoencoder system. The autoencoders are stacked on each other. Therefore,
we refer to l-th VAE as VAE on level l or sometimes just layer l. Formally,
each level l computes parameters of posterior distribution q(zl|Ct) to sample the
latent variable as follows:

hl = el(hl−1)
zl ∼ p(zl|Ct) = ql(hl)

(5.4)

where el, Al are trainable matrices. In other words, each latent variable zl on
level l is sampled from a distribution conditioned on context and preceding VAE
layers q(zl|Ct, h1, ..., hl−1). We use Gumbel-softmax distribution to obtain dis-
crete vectors similar to the previous section. To form the output, we aggregate
the information on each layer in an output variable gl as follows:

gl = Dl(zl) + α · gl+1, αl ∈ [0, 1] (5.5)

Where Dl is a trainable linear projection, and αl is a scaling coefficient increased
during training. All αl are set to 1 in the trained network. The output from
the bottom hidden layer g1 generates the response st+1 using an RNN decoder
parametrized by ϕsdec.
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5.3.2 HVTOD training

In the LAVA framework, there are multiple stages of training. Here, we want to
focus on unsupervised pre-training with an auto-encoding objective. However,
we also evaluate the model performance in a supervised setting to understand
the behavior better.

~

~

~

Figure 5.4: Our hierarchical variational model during training. At this stage,
the top layer is used completely; the second layer is faded-in with increasing
coefficient α while the bottom layer is not used yet, so it is effectively disconnected
from the computation graph.

Training stages

We start the training with autoencoding. For the auto-encoding pre-training, we
take an utterance x as input and follow the traditional approach to VAE training.
We minimize the Evidence Lower Bound objective (ELBo), which we extend to
reflect multiple levels of VAEs. The full minimalization objective, therefore, is:

L = Eq(z1|X1),...,q(zL|XL)[log p(x|z1, ...zL)] −
L∑︂

l=0
DKL[q(zl|X l)||p(z)] (5.6)

Where XL = x, z1, ..., zL−1.
The second stage is fine-tuning the pre-trained model. We assume that the

pre-training task helps to learn the network to create useful representations that
can contribute to additional stages of training. To confirm this, we employ the
second stage of training in which we use supervision in the form of belief state
labels, which we include in the input. While in the autoencoding (AE) stage, the
model learns to reconstruct the input utterance. During fine-tuning (FT), the
model takes dialogue context and predicts a system response. FT stage utilizes
the decoder pre-trained in the AE stage, and the encoder part is trained from
scratch.
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Training specifics

Training the network comprising multiple VAEs is challenging due to VAE train-
ing issues (Section 2.3). To simplify the training process, we incorporate the
layers one by one. Only the top layer is initially trained; more layers are added
later. To achieve this, we introduce a fade-in coefficient α (Li et al., 2020b) that
is being annealed from 0 → 1 for each layer over a predetermined number of
steps and serves to incorporate a new layer during training smoothly. Once the
previous layer l−1 is trained, the new layer’s output gl is multiplied by the fade-
in coefficient, which is initially less than one and increases over time to ensure
a smoother transition when incorporating this layer. This process is depicted in
Figure 5.4.

Furthermore, we experiment with an additional training objective – place-
holder predictions. Since we work with delexicalized data, we can train the net-
work to predict which placeholders are present in the utterance. We include this
additional pseudo-supervision in the form of so-called placeholder loss Lpl, which
is computed simply as binary cross-entropy for each placeholder prediction.

5.3.3 Experiments

We are interested in evaluating two aspects of the proposed model. First, we
explore how the multi-layer architecture contributes to the overall performance.
Next, we evaluate the properties of learned latent variables. We use MultiWOZ
2.1 (See 2.6.1) for training and evaluation. We delexicalize (see Section 2.5.1)
the utterances for training.

Unsupervised HVTOD

The second stage of HVTOD training, the fine-tuning, needs labels as supervi-
sion. We are interested in the task of dialogue response generation when no labels
are available. Therefore, we also train an unsupervised variant of the model. We
base this stage on the auto-encoding objective and employ the same mechanism
as auto-encoding but train the model to predict the next response instead of
reconstructing it.

Technical Details

For training the model, we use a single GPU, NVIDIA A30. We train the model
for 100 epochs using the ADAM optimizer while we observe a decline in the val-
idation loss. The learning rate is set to 10−3. We use discrete latent variables
of dimension 20 to represent latent dialogue actions. We determined the param-
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no layers placeholder loss Success-unsup BLEU-unsup
1 7 0.20 ± 0.06 15.36 ± 0.90
1 3 0.34 ± 0.06 16.43 ± 0.62
2 7 0.32 ± 0.07 16.39 ± 0.67
2 3 0.33 ± 0.07 16.31 ± 0.45
3 7 0.35 ± 0.03 16.67 ± 0.48
3 3 0.35 ± 0.02 16.92 ± 0.84

Table 5.8: The results of HVTOD architecture after fine-tuning on dialogue
response generation in an unsupervised setting, i.e. without belief state labels as
inputs. We provide means and standard error intervals computed over five runs.

eters by empirical experiments using grid search. To get a fair comparison, we
adjust the number of latent variables used according to the number of layers in
the model hierarchy. We adjust the number so that each configuration effectively
has the same dimension of the latent space. In the supervised training stage, we
represent the belief state as a one-hot discrete vector corresponding to specific
slots.

5.3.4 HVTOD performance

We evaluate the performance of HVTOD with a different number of layers and
with or without the placeholder loss for dialogue response generation in unsu-
pervised (Table 5.8) and supervised (Table 5.9) setting. All variants are first
trained with an autoencoding objective. We also evaluate the model quality
after pre-training in Table 5.10.

Note that when we increase the number of layers, we decrease the dimension
of the latent space accordingly. Therefore, all the compared models have the
same number of parameters.

Autoencoding

We can see that in the autoencoding setting (Table 5.10), the increased num-
ber of layers helps to improve the performance concerning dialogue success and
BLEU. Moreover, the dialogue success is also improved by including our addi-
tional placeholder loss.

Supervised fine-tuning The results of supervised fine-tuning are given in
Table 5.9. This way, we achieve much higher scores, as expected. Also, we can
see that the placeholder loss contributes to the overall model performance as
does the number of used layers.

83



no layers placeholder loss Success-ft BLEU-ft
1 7 0.44 ± 0.08 17.37 ± 0.53
1 3 0.52 ± 0.07 18.62 ± 0.52
2 7 0.51 ± 0.03 19.17 ± 0.26
2 3 0.55 ± 0.04 19.74 ± 0.36
3 7 0.52 ± 0.04 19.36 ± 0.72
3 3 0.55 ± 0.04 19.63 ± 0.41

Table 5.9: The results of HVTOD architecture after fine-tuning on dialogue
response generation using belief state labels as inputs. We provide means and
standard error intervals computed over five runs

Unsupervised response generation

For the unsupervised response generation (Table 5.8), we observe the benefits of
using the placeholder loss when only one-level hierarchy is used. Surprisingly,
we do not observe a similar effect when more layers are employed. Nevertheless,
there are performance gains when using placeholder loss in the supervised setting
(Table 5.9). This behavior shows that unsupervised dialogue response generation
does not benefit from placeholder loss when more layers are employed. This
suggests that one of the layers in a multi-layer hierarchy can capture information
that can be gained from placeholder loss.

5.3.5 Latent space inspection

We inspect the structure of the learned latent space by transforming the variables
using the t-SNE algorithm (Van der Maaten and Hinton, 2008) into 2-dimensional
latent space and plotting them colored by their assignment to respective do-
mains (Lubis et al., 2022). For autoencoding (Figure 5.5), the placeholder loss
shapes the latent space to form more spread homogenous clusters, specifically on
layer 1. The same influence is even more visible when we visualize latent spaces
after training the model for dialogue response generation (Figure 5.6). Although
the influence on latent space shape is clear, there is no significant difference in
the final performance of the respective models. We also observe that although
each layer contains useful information, there is some overlap between the layers.
This suggests that it might be useful to enforce disentanglement of the latent
variables somehow.
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No. of layers placeholder loss Success BLEU
1 7 0.46 ± 0.02 55.39 ± 1.43
1 3 0.58 ± 0.03 55.86 ± 1.17
2 7 0.50 ± 0.02 59.07 ± 1.31
2 3 0.62 ± 0.01 62.42 ± 1.16
3 7 0.53 ± 0.02 58.84 ± 1.46
3 3 0.62 ± 0.01 64.50 ± 0.96

Table 5.10: The results of HVTOD architecture after pre-training with the unsu-
pervised autoencoding objective. We provide means and standard error intervals
computed over five runs. Note that dialogue success, in this case, indicates the
reconstruction quality, but the model cannot be used for response dialogue gen-
eration since it’s only trained on autoencoding.

5.3.6 Conclusion

In this section, we introduced HVTOD, a hierarchical variational model for task-
oriented dialogue. We wanted to assess the contributions of hierarchical struc-
ture to the overall model performance. Although the layer representations are
not guaranteed to be distinct, we show that the model can leverage the benefits
introduced by hierarchical structure since the variant with more layers outper-
forms the baseline (1-layer) variant with the same number of parameters. The
visualizations of latent spaces also uncover that the learned representations are
structurally different.
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(a) level 1 (b) level 1 + placeholder loss

(c) level 2 (d) level 2 + placeholder loss

(e) level 3 (f) level 3 + placeholder loss

Figure 5.5: Visualization of t-SNE projections of latent variables after the au-
toencoding stage, sorted left-to-right. In the bottom row, we have a version using
the additional placeholder loss. The colors correspond to respective domains.
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(a) level 1 (b) level 1 + placeholder loss

(c) level 2 (d) level 2 + placeholder loss

(e) level 3 (f) level 3 + placeholder loss

Figure 5.6: Visualization of t-SNE projections of latent variables after training
for unsupervised dialogue response generation, sorted left-to-right. In the bot-
tom row, we have a version using the additional placeholder loss. The colors
correspond to respective domains.
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5.4 Conclusion
In this chapter, we have presented the latent variable models trained with vari-
ational training methods. The TO-VRNN model (presented in Section 5.2.1) is
based on recurrent architecture augmented with variational autoencoders. The
HVTOD model (Section 5.3.1) encodes the whole dialogue context in each step
and uses a hierarchical structure to model the latent space. Both models show
promising performance, although the HVTOD model performs better overall.
Moreover, we experiment with interpreting the representations formed in the
latent space and observe that both models create representations that carry im-
portant and relevant information.
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6
Sequence-to-Sequence

Task-Oriented Dialogue
Modeling

Using end-to-end trainable models instead of modular architectures (see Sec-
tion 2.1) can can potentially offer more flexibility with respect to domain trans-
fer, as only a single module needs to be adapted to new domains or use cases. In
task-oriented dialogue, end-to-end implementations are dominated by sequence-
to-sequence architectures based on language models (LM, Section 3.2). The
LM-based approaches have taken over the benchmarks1, demonstrating state-of-
the-art performance.

However, these competitive models are fine-tuned on a large in-domain da-
taset, and domain transfer performance is not evaluated. In this chapter, we
raise the question of how well these models can transfer the obtained skill of
leading the dialogue to other domains. In other words, we want to discover if the
models learn useful skills that can be beneficial in other domains or if the demon-
strated behavior merely reproduces the patterns seen in the training portion of
the data. We hypothesize that pre-training of these models can help to improve
the performance. To confirm this hypothesis, we first describe our approach to
end-to-end modeling with the GPT-2-based model (Kulhánek et al., 2021) in
Section 6.1. We then describe our newly assembled and unified multi-domain
dataset, designed for domain transfer experiments in Section 6.2 and detail our
experimental results with AuGPT on this data in Section 6.3.

1https://github.com/budzianowski/multiwoz#trophy-benchmarks
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The work presented in this chapter was published at the LREC conference
and covered by Hudeček et al. (2022) 2. For modeling, we use the AuGPT
model (Kulhánek et al., 2021) to the development of which we contributed3.
The published experiments in Hudeček et al. (2022) are further extended to
determine if the model can learn from smaller training sets (6.3.3). We released
the code for data preparation on GitHub4.

6.1 AuGPT Model Description
We choose the AuGPT model introduced by Kulhánek et al. (2021). The ar-
chitecture utilizes the GPT-2 model (Radford et al., 2019) for both belief state
prediction and response generation, following the two-step method described in
Section 2.5.3. GPT-2 is a pre-trained language model based on a Transformer de-
coder. Therefore, it is suitable for modeling sequences in natural language. When
evaluated with automatic measures, the model performs well, and it showed
promising behavior in human-judged interactive evaluation during the DSTC 9
(Gunasekara et al., 2020) challenge. AuGPT directly builds on the small version
of the model, resulting in a 124M parameter model. Additionally, AuGPT intro-
duces multiple training improvements. Instead of solely using cross-entropy loss
for language modeling, AuGPT uses an additional training objective for state
corruption detection. During training, the model is randomly presented with
corrupted versions of the belief state (Peng et al., 2021b). For corruption, por-
tions of the belief state are replaced with random values. Several strategies can
be used to create the corrupted versions; AuGPT corrupts half of the samples
by randomly applying one or more of the following modifications:

• Replace the belief state b with another belief state, sampled uniformly
randomly from the training data.

• Replace the delexicalized response with a different randomly chosen one. If
this change is combined with the first one, the delexicalized response and
the belief state are taken from the same random sample.

• A different valid value is uniformly sampled for each slot in the belief state.
In this case, the domain names and order are unchanged (i.e., the active
domain is the same).

2This was a joint effort in which the author of this thesis focused on the data processing
pipelines and AuGPT model training.

3The author of this thesis contributed to the model design and data preparation for the
training

4https://github.com/ufal/diaser
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The model learns to predict if the presented belief state corresponds to the re-
spective context in the training example. This modification aims to improve the
robustness of the belief state prediction. Since GPT can work with any natural
language sentences, applying this model to our dialogue datasets is straightfor-
ward.

6.2 Diaser corpus introduction
Motivated by the questions raised in this chapter, we created a collection of sev-
eral well-established task-oriented dialogue datasets spanning several domains
to yield one larger multi-domain corpus which we call Diaser. Specifically,
we used: MultiWOZ 2.2 (MultiWOZ), Schema-guided dialogue (SGD),
DSTC2 (DSTC) and CamRest676 (CamRest). For more details about the
aforementioned datasets, please refer to Section 2.6. The merging process yields
a dataset with over 37,000 dialogues, comprising more than 660,000 turns.

6.2.1 Theoretical motivation

We aim to cover as many domains as possible in a unified corpus. Our source
dataset choice is thus mainly based on the level of annotation available – all source
datasets include semantic annotation on the turn level and explicit database
interaction. Despite the dataset similarities, important differences need to be
resolved.

The main task when merging datasets is to unify the different domain-specific
ontologies, i.e., the different sets of concepts included in the dialogue acts. More
precisely, the unified dataset ontology contains all the possible domains with
corresponding slots and associated value sets. We cannot consider the slots
independently from the domain they belong to. Indeed, a slot that represents the
price range will not have the same range of values when relating to a restaurant
or a flight ticket. We identified two main problems related to this issue:

1. Name reference ambiguities We must design the final ontology so that
different slot names refer to different concepts (with due precaution for
label choice) and merge different slot names associated with the same value
set under a single label. For example, in MultiWOZ, there are two different
slot names day and book-day for the same value set (weekdays) and usage
contexts. But in SGD, these slot names may be misleading since we can
find a slot named start-day and another called day; the former refers to a
calendar date while the latter refers to a weekday.
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Data SGD MultiWOZ DSTC CamRest Total

Domains 18 7 1 1 19∗

Slots 145 29 10 7 166∗

Dialogues∗∗ 22.8 10.4 3.2 0.7 37.1
Turns∗∗ 463.3 143.0 51.0 5.5 662.8
Turns/Dial. 20.30 13.71 15.77 8.12 17.83
Avg. utt. length 9.86 13.23 8.47 10.71 10.49
Unique Words∗∗ 32.3 23.2 1.3 1.7 49.9
Shannon ent. 8.96 8.54 7.04 7.69 9.01
Cond. ent. 4.76 4.41 2.14 2.95 4.83

Table 6.1: Composition of our dataset, with basic statistics, overall and for
individual sources (number of domains and slots, total numbers of dialogues and
turns, average number of turns per dialogue, and average utterance length in
terms of words. ∗ is not a sum due to ontology merging. ∗∗ in thousands.

2. Absence of ontology/database When the SGD dataset was collected,
the authors used API calls instead of a database lookup. They also didn’t
provide an overall ontology. Therefore, no database-related metadata was
released with the corpus, forcing us to create an ontology and a database
for the data based on values occurring in the conversations.

6.2.2 Details of the merging approach

Here, we present details on how we merged the data into a common format,
including handling different ontologies. Quantitative statistics of the final dataset
are shown in Table 6.1. Full technical documentation can be found in the data
repository.5 Here we list an overview of all the required merging steps:

Matching belief representations. In DSTC and CamRest, belief state an-
notations are extracted from the user and the system utterance. In contrast,
in the MultiWOZ and SGD datasets, the belief state is only extracted from the
user utterance. We had to filter automatically the annotations from DSTC and
CamRest until they matched the MultiWOZ belief state representation.

Adding meta features from the original datasets. DSTC2, CamRest, and
MultiWOZ contain the goal of the dialogue (also called task) as a dialogue act
with the constraints (e.g. expensive restaurant south) and the information the
user needs to obtain from the system (e.g. phone number and address). They
also contain a short text summarizing this goal for crowd workers. We include
both versions of the task description with each dialogue.

5https://github.com/ufal/diaser
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Intent SGD MultiWOZ DSTC CamRest all

inform 151,467 84,259 33,451 5,786 274,963
request 81,786 31,888 13,620 1,516 128,810
offer 67,095 4,497 23,763 0 95,355
bye 35,089 12,380 0 0 47,469
else 31,030 13,779 0 0 44,809
select 33,820 2,834 243 0 36,897
confirm 30,327 0 5,756 0 36,083
thank 23,172 9,064 0 0 32,326
negate 132,01 4,399 4,413 0 22,023

total 435,957 163,100 81,346 7,312 718,645

Table 6.2: Most frequent intents in our unified schema, for each source dataset
individually and overall (with absolute numbers of occurrences).

Unifying annotation structure. The final dataset structure is similar to the
structure of SGD and MultiWOZ 2.2. We create a Turn object that contains
either the user utterance and dialogue acts or the system utterance. Two consec-
utive entries for the user and system share the same turn number – we consider a
Turn as an exchange between the user and the system (i.e. a pair or utterances).

Ontology unification. One of the most difficult parts of this work was uni-
fying the ontologies of each original dataset because they were not built on the
same dimensions. This concerns slot, domain, and intent names.

After indexing all annotations from the different datasets, we merged them
manually using MultiWOZ as a golden reference to create the mapping. We
always check the meaning in context and match slots/intents with the same
semantics.

Slot co-reference Some source corpora (MultiWOZ and SGD) include co-
reference between slots. For example, start-time can take the value “sooner than
that” or the slot hotel-name can take the value “event you mentioned earlier”.
This is a problem if we assume a self-contained ontology that captures all the
possible values from the corpus. However, as these co-references are impossible
to include in the ontology easily, we leave these values unchanged and the slot
co-references are carried over to the unified data.
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Slot SGD MultiWOZ DSTC CamRest all

name 65,999 42,215 3,135 2 111,351
area 8,133 48,285 37,697 4,178 98,293
date 81,600 20,872 0 0 102,472
price 1,950 33,084 32,267 4,032 71,333
type 41,146 28,562 0 0 69,708
leave 32,625 26,684 0 0 59,309
arrive 26,180 26,228 0 0 52,408
food 13,501 20,963 3,007 571 38,042
book 17,618 11,723 0 0 29,341

total 298,752 232,388 76,106 8,783 532,257

Table 6.3: Most frequent slots in our unified schema, for each source dataset
individually and overall (with absolute numbers of occurrences).

6.3 Experiments
In this chapter, we want to explore if sequence-to-sequence LM-based architec-
tures can robustly learn the dialogue modeling capabilities and how well they can
transfer them to other domains. To answer these questions, we conduct a series
of experiments to train the model using only a small portion of the training data
or even a different dataset with shared characteristics such as a task-oriented
approach, regular user-system interaction, etc.

We divide the results into two sections. First, we describe the performance
of the AuGPT model when trained and evaluated on various datasets. In the
second section, we show the results when the model is pre-trained on a certain
dataset and then fine-tuned using only a small portion of training data from the
target dataset.

We are interested in the overall performance of the models. Therefore, we
measure Joint Goal Accuracy and Slot-F1 and BLEU for response generation (see
Section 2.7). We do not compute the dialogue success as it is not well-defined
on all the sub-datasets.

6.3.1 Experimental setup

For training, we follow (Kulhánek et al., 2021) with the training setup – We use
PyTorch framework (Paszke et al., 2019) and run the training for 8 epochs on the
MultiWOZ data when all the training examples are used. The AuGPT model
described in Section 6.1 consists of 12 transformer blocks with a model layer size

94



training evaluation metrics
DSTC MW SGD DSTC MW SGD Slot F1 JGA BLEU

7 3 7 7 3 7 0.89 0.53 18.61
7 7 3 7 3 7 0.16 0.02 4.01
3 3 7 7 3 7 0.89 0.55 19.67
3 7 3 7 3 7 0.17 0.03 5.68
7 3 3 7 3 7 0.89 0.52 19.92
3 3 3 7 3 7 0.90 0.54 21.09

7 3 7 7 7 3 0.04 0.01 5.63
7 7 3 7 7 3 0.59 0.21 28.17
3 3 7 7 7 3 0.03 0.01 5.51
3 7 3 7 7 3 0.58 0.21 27.96
7 3 3 7 7 3 0.63 0.23 27.54
3 3 3 7 7 3 0.63 0.22 27.72

3 3 7 3 3 3 0.28 0.12 15.30
3 7 3 3 3 3 0.55 0.22 27.28
7 3 3 3 3 3 0.65 0.25 25.13
3 3 3 3 3 3 0.70 0.28 29.73

Table 6.4: Performance of the AuGPT model trained and evaluated on various
subsets of the unified dataset, namely DSTC, MultiWOZ (MW), and SGD. We
omit CamRest since the data are very similar to DSTC.

equal to 768, having 124 million parameters in total. For the state corruption
detection task, we use a dropout of 0.1 with label smoothing of 0.1. We use the
AdamW optimizer (Loshchilov and Hutter, 2019) and employ mixed-precision
training (Micikevicius et al., 2017).

For the data, we follow the dataset discussed in Section 6.2. We use different
subsets for training and testing the model, as described for each experiment
individually.

6.3.2 Influence of training data on the target
performance

In Table 6.4, we can see a general pattern in the results, suggesting that the model
fails to generalize across different datasets when a subset of data we evaluate is
not included in the training. A significant drop in performance can be observed
across all recorded metrics. We use DSTC, MultiWOZ (MW), and SGD. We
omit CamRest since the data are very similar to DSTC.
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Let us first observe some global properties. Regarding the F1 slot score
and joint goal accuracy, the explanation for the poor model’s accuracy can be
found in a substantially different distribution of slots across SGD/MultiWOZ
datasets and DSTC. Some slots are present in just one of the datasets, others
are mentioned in different contexts or with different frequencies. Training on
MultiWOZ provides us with the highest scores on slot F1 and joint goal accuracy.
Training on both SGD and MultiWOZ brings only a very marginal improvement.
The large difference in performance can also be seen in terms of BLEU, which
suggests a vastly different language used in each dataset.

The performance of the model evaluated on MultiWOZ is analogous. Training
the model solely on SGD gives us a model that cannot generalize to MultiWOZ
data. Concatenating the MultiWOZ datasets with SGD/DSTC, or both during
training, leads to a little improvement, predominantly in terms of BLEU score.
We get the best results when using all three datasets for training and obtain
the model with better generalizing capabilities supported by the BLEU score of
21.09.

The model evaluation on SGD data mostly follows the same pattern. How-
ever, in this case, it is quite interesting to observe that training the model on
all three datasets is not beneficial, and the performance stagnates, although the
training set is much larger.

Finally, if we evaluate all three datasets, it is clear that the best-performing
model is obtained when we train it on the full data. Table 6.4 shows that
including SGD data is crucial for achieving higher BLEU values while training
on MultiWOZ helps the model predict slot values.

6.3.3 Domain adaptation with a small in-domain set

Table 6.5 presents results for domain adaptation experiments. We first train
the AuGPT model on the MultiWOZ dataset and then use a small portion of
the SGD data to adapt the model to this different dataset. The results show
that although on MultiWOZ helps slightly to improve the final BLEU score, the
performance of belief state tracking is not significantly improved, and the results
are overall rather negative.
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pre-training fine-tuning ft-ratio Slot-F1 JGA BLEU

– SGD 100% 0.59 0.21 28.17
– SGD 10% 0.47 0.15 20.13

MultiWOZ SGD 10% 0.46 0.16 19.46
– SGD 5% 0.29 0.08 14.65

MultiWOZ SGD 5% 0.29 0.12 15.16
– SGD 1% 0.07 0.03 6.37

MultiWOZ SGD 1% 0.06 0.01 8.40
– SGD 0.5% 0.04 0.04 3.43

MultiWOZ SGD 0.5% 0.04 0.02 5.95

Table 6.5: Performance of the AuGPT model trained and evaluated on various
subsets of the unified dataset.

6.3.4 Dynamics of Successful and Failed Dialogues

We also perform a detailed quantitative analysis of errors made by the trained
models. We evaluated the AuGPT model trained on the MultiWOZ data with
respect to the dialogue success rates. We only chose the MultiWOZ data due to
the additional annotation available in MultiWOZ. Specifically, MultiWOZ also
has user and system dialogues act annotated, which we use in this analysis. We
consider dialogue success as defined in Section 2.7.

In Figure 6.1, we provide a histogram of dialogue state tracking errors in
successful and failed dialogues. We further identify four reasons that can cause
an error:

1. A domain is wrongly identified.

2. An intent is detected wrongly.

3. An inform value is captured incorrectly.

4. A request was not answered.

We go turn by turn and identify the errors in the dialogue state predicted by
the system compared to the expected state. “All failed” and “all success” cor-
respond to failed and successful dialogues. It is thus an evaluation concerning
the dialogue as a whole, unlike the turn-level methods, such as evaluating the
system’s response generation. In particular, we show the count of cases where
some information is understood wrongly by the system (positive values) or is
missing completely (negative values). We can see that in successful dialogues,
the system might make some mistakes at first but can recover eventually. On
the other hand, most dialogue failures are caused by missing information in the
second half of the dialogue, which suggests that the recovery is not certain.
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Figure 6.1: Distribution and types of dialogue failures that occurred with the
GPT2-based model on the MultiWOZ data. The horizontal axis corresponds to
turn numbers. Positive values represent cases where the information is captured
wrongly, while negative values represent cases where particular information is
missing. The source of error (incorrect domain or intent, missing information, or
not providing a request) is depicted as color-coded.

We made some observations:

• For both successful and unsuccessful dialogues, the first turn concentrates
the most errors.

• Generally speaking, the failed dialogues show much superfluous information
in the first five speech turns, especially regarding the user’s intent. On the
other hand, from approximately the fourth speech turn onwards, there is a
lot of missing information, especially at the level of the dialogue domain.
If we add the missing information with the superfluous information, the
error distribution peaks between turns three and seven of the dialogue.

6.4 Conclusion
In this work, we unified a large task-oriented dialogue corpora at both data and
annotation levels, which requires a complex process of merging ontologies. We
showed that additional data from other sources helps train LM-based end-to-end
dialogue models when converted to a unified format in specific cases. However, it
is not a general rule. Although the new dataset is still far from perfect coverage, it
is a step towards wider and more authentic data. We also performed experiments
to explore the ability of LM-based systems to adapt to new domains easily with
a small number of in-domain examples. The negative results suggest that using
in-domain data for domain adaptation is not straightforward.
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7
Large Language Models for

Task-Oriented Dialogue

As described in the previous chapter, pre-trained language models perform very
well in end-to-end dialogue modeling. Despite this success, the widely used ap-
proach of fine-tuning pre-trained LM on a particular dataset still does not guar-
antee easy transferability of the learned knowledge, as we also show in Chapter 6.
Large Language Models (LLMs) increased the model size by order of magnitude
compared to the previous generation of pre-trained LMs. Undeniably, LLMs
have transformed the NLP field, showing outstanding performance across many
NLP benchmarks such as Winograd Challenge (Levesque et al., 2012) or GLUE
(Wang et al., 2018). Instruction fine-tuning of LLMs can align the model outputs
with human preferences (Ouyang et al., 2022; Wang et al., 2022) and improve
the LLMs’ communication capabilities substantially.

State-of-the-art LLMs are good at understanding user needs and can provide
relevant answers. Consequently, we have seen many chatbot applications both
inside and outside academia (ChatGPT1, Claude2 or Bard3) which build upon
the raw power of instruction-fine-tuned LLMs.

In this chapter, we explore the abilities of LLM to model task-oriented dia-
logue using in-context learning. We introduce an LLM-based TOD conversation
pipeline which resembles other approaches based on LMs (Peng et al., 2021a;
Yang et al., 2021) in Section 7.2. The method uses state tracking and response
generation as two main, separate steps while keeping the role of a dialogue policy

1https://openai.com/blog/chatgpt
2https://www.anthropic.com/index/introducing-claude
3https://blog.google/technology/ai/bard-google-ai-search-updates/
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implicit (see also Sections 2.5.3, 6.1). However, instead of fine-tuning LMs, it
intentionally relies almost exclusively on using pre-trained LLMs as-is so we can
test their out-of-the-box capabilities. The dialogue context and domain descrip-
tion are introduced to the model only by including them in the input prompt.
We experiment with zero-shot and few-shot approaches (see Section 2.2.1) and
describe the experiments in Section 7.3. In the zero-shot setting, the model re-
ceives a domain description only; in the few-shot setting, it additionally uses a
few retrieved examples (see Section 7.2.1 for details). We evaluate the perfor-
mance regarding response generation and dialogue success and discuss the results
in Section 7.4. To obtain more insights, we also perform a human evaluation to
test more real-world scenarios and present the analysis in Section 7.5.

This work was published at the SIGDial 2023 conference (Hudeček and Dušek,
2023) and was extended in this chapter with more details and additional exper-
iments. Our experimental code is available on GitHub4.

7.1 Motivation
Given the millions of daily interactions with LLM-based chatbots, these models
can handle users’ needs satisfactorily, at least to some extent. However, these
chatbots are tuned using unstructured open-domain conversations. We aim to
evaluate these systems on task-oriented dialogues, where the system has to follow
a predetermined structure and handle external sources of information, such as
APIs or databases. We ask to what extent LLMs can handle these applications
off-the-shelf, i.e., without fine-tuning. This approach, frequently referred to as
in-context learning or prompting, is a common way to work with LLMs and offers
competitive performance. Moreover, TOD systems output in-domain informa-
tion with a predetermined structure and lend itself well to evaluation, thanks
to pre-existing annotated data sets. We avoid fine-tuning techniques and focus
on zero-shot or few-shot settings using in-context learning, as this approach has
lower hardware requirements and barrier of entry and better flexibility or even
performance in certain tasks (Su et al., 2022). It is important to note that we
cannot exclude the possibility that some models were exposed to our selected
datasets during training (Golchin and Surdeanu, 2023). However, evaluating
this setting is important as the real-world use cases might largely rely on this
approach.

4https://github.com/vojtsek/to-llm-bot
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Figure 7.1: A detailed description of our proposed pipeline. (0) As a prepro-
cessing step, we encode a subset of the training set that will be used to retrieve
few-shot examples. Given a user input, we: (1) Detect the domain, retrieve rel-
evant examples (in the few-shot setting), and construct an initial prompt. (2)
Infer the belief state using LLM. Based on that, we retrieve database information
and construct another prompt that includes the state and database results. (3)
We ask the LLM to provide a final response.

Our experiments show that LLMs are not very good at state tracking, and
their performance falls behind state-of-the-art, task-specific trackers. However,
if provided with correct belief states, some yield interesting response generation
performance comparable to earlier fine-tuned state-of-the-art models. Moreover,
our human evaluation experiments show that LLMs are generally good with
human interactions, and their performance cannot be assessed only based on
automatic evaluations.

7.2 Method
An overall description of the proposed pipeline is shown in Figure 7.1. The
system consists of a pre-trained LLM and an (optional) context store in a vector
database. Three LLM calls are performed in each dialogue turn, with specific
prompts (see Section 7.2.1). First, the LLM performs domain detection and state
tracking (Section 7.2.2). The updated belief state informs a database query,
the results of which are used in the subsequent LLM-based response generation
step 7.2.4. In the few-shot setting, the context store stores a limited number of
examples from the training set, which are retrieved based on similarity with the
conversation context and included in LLM prompts (see Section 7.2.3).
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Prompt Determine which domain is considered in the following

dialogue situation.

Choose exactly one domain from this list:

restaurant, hotel, attraction, taxi, train

Answer with only one word, the selected domain from the list.

You have to always select the most probable domain.

------- Example 1: --------

Customer: I need a cheap place to eat

Assistant: We have several not expensive places available.

What food are you interested in?

Customer: Chinese food.

Domain: restaurant

------ Example 2: --------

Customer: What is the address?

Assistant: It's 123 Northfolk Road.

Customer: That's all. I also need a train from London.

Domain: train

-----------

Now complete the following example:

Customer: I am looking for a cheap place to stay.

Domain:

Output: hotel

Table 7.1: A prompt used for domain detection for MultiWOZ. It contains task
definition, domains description, static examples and user utterance, coded by
respective colors.

7.2.1 Prompt construction

We aim to compare the raw capabilities of the selected LLMs. Therefore, we do
not focus on prompt engineering techniques and choose universal prompts for all
LLMs in this work. We choose simple, plain language statements as prompts,
with no specific vocabulary, based only on a few preliminary tests. We define
a single domain detection prompt (Table 7.1) for all examples, plus a pair
of prompts for each domain in the given dataset: a state tracking prompt
(Table 7.2) and a response prompt (Table 7.3).

The domain detection prompt includes a task description and two static ex-
amples of domain detection. In addition to general instructions, each state track-
ing prompt contains a domain description, a list of relevant slots, the dialogue
history, and the current user utterance. The response prompts do not contain
the per-domain slot list but include the current belief state and database results.
In the few-shot setting, each tracking and response prompt contains positive and
negative examples retrieved from the context store (see Section 7.2.3).
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Prompt Definition: Capture entity values from last utterance

of the conversation according to examples.

Capture pair "entity:value" separated by colon and no spaces

in between. Separate entity:value pairs by hyphens.

If not specified, leave the value empty.

Values that should be captured are:

- "pricerange": the price of the hotel

- "area" that specifies the area where the hotel is located

(north/east/west/south/centre)

- "internet" that specifies if the hotel has internet (yes/no)

- "parking" that specifies if the hotel has parking (yes/no)

- "stars" that specifies the quality of the hotel (1/2/3/4/5)

- "type" that specifies the type of the hotel

(hotel/bed and breakfast/guest house)

[history]

Customer: "I want a cheap place to stay."

Output: pricerange:"cheap"

Table 7.2: A zero-shot version of the prompt used for state update prediction for
MultiWOZ 2.2. It contains task definition, domain description, dialogue history
and user utterance, coded by respective colors.

Prompt Definition: You are an assistant that helps people

to book a hotel.

The user can ask for a hotel by name, area, parking,

internet availability, or price.

There is also a number of hotel in the database currently

corresponding to the user's request.

If you find a hotel, provide [hotel_name], [hotel_address],

[hotel_phone] or [hotel_postcode]

Do not provide real entities in the response! Just provide

entity name in brackets, like [name] or [address].

If booking, provide [reference] in the answer.

[history]

Customer: "I want a cheap place to stay."

State: hotel { pricerange: "cheap"}

Database: hotels: 23

Output: We have 23 [pricerange] hotels available,

do you have a location preference?

Table 7.3: A zero-shot version of the prompt for response prediction for Multi-
WOZ 2.2. It contains task definition, domain description, dialogue history, user
utterance and belief state with database results, coded by respective colors
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7.2.2 Domain Detection and State Tracking

We prompt the LM twice at each turn during state tracking, first to detect the
active domain and then to output a belief state update. We then use the outputs
to update the accumulated global belief state.

The two prompting steps are used since we need the models to operate in
a multi-domain setting, i.e., handle conversations spanning multiple domains.
Therefore, we need to be able to detect the current active domain. We achieve
this by first prompting the LLM with a domain detection prompt (using a single
prompt for all examples). This prompt (see Table 7.1) is static, i.e., it remains
the same for each example.

Once we obtain the active domain prediction, we can include manually de-
signed domain descriptions in a second prompt that handles belief state predic-
tion. We ask the model to predict values that changed or appeared in the current
turn. An example of a prompt used for state tracking is provided in Table 7.2.
For the few-shot variants, we retrieve few-shot examples from the context store
(Section 7.2.3), limited to the active domain. For this purpose, each conversation
snippet contained in the context store comes from a single-domain conversation.

Our preliminary experiments showed that LLMs consistently struggle to out-
put all active slot values at every turn. Therefore, we model only state updates,
following the MinTL approach (Lin et al., 2020). Here, the model only generates
the slot-value pairs that have changed in the current turn. The global belief state
is then accumulated using these turn-level updates. To obtain machine-readable
outputs useful for database queries or API calls, we specify in the prompt that
the model should provide JSON outputs, and any provided few-shot examples
are formatted accordingly. The current belief state is used to query the database
for entries matching all user-specified slots in the active domain. Given the be-
lief state and database results, the response generation is straightforward. The
prompt for the LLM includes dialogue history, user utterance, belief state, and
database results (and retrieved examples in the few-shot setting). It requests the
model to provide a fitting system response. We generate delexicalized responses
(see Section 2.5.1).

In addition to simplifying the task for the model, delexicalized outputs allow
us to evaluate the success rate and compare it to previous works. The prompt
specifies that the model should provide entity values as delexicalized placeholders,
and any few-shot examples are constructed accordingly.
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7.2.3 Context Storage

It has been shown that enriching prompts with specific examples (i.e. few-shot
prompting) boosts LM performance (Madotto et al., 2020; Brown et al., 2020).
To apply this knowledge efficiently in our pipeline, we introduce a storage that
contains encoded dialogue contexts. This context storage is optional and is only
required for the few-shot prompting variant. We use dialogue context taken from
a fixed-length history window as the key to be encoded in the vector database.
Once the relevant examples are retrieved, we include them in the prompt to
guide the model better. Some LLMs rely on negative (counter-) examples as
well (Wang et al., 2022). Therefore, we follow Peng et al. (2021a)’s consistency
classification task approach to produce negative examples: We take some of the
retrieved belief state examples, corrupt them by replacing some of the correct
slot values with random values, and present them as negative in the prompt for
the Tk-Instruct model. When constructing the context store, we employ only a
few training examples, ensuring we evaluate in a truly few-shot setting.

7.2.4 Response Generation

The prompt used for the final response generation in a zero-shot version is de-
picted in 7.3. In the few-shot version, examples are also included. The model
is instructed to provide delexicalized responses (see Section 2.5.1) to be able to
place correct values from database results. Also, the standardized evaluation
scripts work with delexicalized utterances.

7.3 Experimental Setup
To obtain a broad overview of the current LLMs’ capabilities, we compare several
models spanning different numbers of trainable parameters and different training
methods. We also experiment with four variants of the base setup, using either
zero-shot or few-shot operations and either predicted or oracle belief states.

7.3.1 Tested Models

We chose the following five instruction-tuned models for our experiments, span-
ning different sizes (within the limitations of hardware available) and using freely
available models and the paid ChatGPT API. We directly indicate the model
name’s specific model variant (i.e., model size, given by the number of parame-
ters).
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• Tk-Instruct-11B5 (Wang et al., 2022) is based on the T5 encoder-decoder
architecture (Raffel et al., 2020a). It was tuned on a dataset of over 5M
task instances with instructions.

• ChatGPT is a product introduced by OpenAI.6 Although the exact train-
ing process and architectures were not published, it most probably uses a
similar architecture and fine-tuning techniques as InstructGPT (Ouyang
et al., 2022), with additional human feedback. We use the gpt-3.5-turbo
model and API version 0301.

• Alpaca-LoRA-7B 7 is a version of the LLaMa model (Touvron et al.,
2023) using the LoRA method (Hu et al., 2021) for fine-tuning on the
Stanford Alpaca project data (Taori et al., 2023). LoRa keeps the base
model parameters frozen but adds smaller weight matrices to transform its
outputs.

• GPT-NeoXT-Chat-Base-20B8 is based on the GPT-NeoX open-source
language model (Black et al., 2022) and fine-tuned with over 40M dialogue-
style instructions.

• OPT-IML-30B9 (Iyer et al., 2022) is based on the Transformer decoder
OPT model (Zhang et al., 2022) and trained with a custom set of instruc-
tions, including the fine-tuning set from the Tk-Instruct model.

7.3.2 Evaluated variants

We test four setup variants for each pair of model and dataset. Specifically, we
use zero-shot (without examples) or few-shot (including examples) prompts (-zs-
vs. -fs-) and either generated or oracle belief states (-gbs vs. -obs). For retrieval
in the few-shot setting, we store just 10 examples per domain in the context store
by default. We experiment with increasing this number in Section 7.4.4. Using
the oracle belief state allows us to focus on evaluating the LLM’s ability to guide
the dialogue.

5https://huggingface.co/allenai/tk-instruct-11b-def-pos-neg-expl
6https://openai.com/blog/chatgpt
7https://huggingface.co/tloen/alpaca-lora-7b
8https://huggingface.co/EleutherAI/gpt-neox-20b
9https://huggingface.co/facebook/opt-iml-30b
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7.3.3 Experiment Details

Due to the expensiveness of the LLM runs (hardware requirements for the freely
available models and actual cost for ChatGPT), we did not perform a grid search
but used a limited set of preliminary experiments to determine hyperparameters.
Based on this, we used the context of two preceding utterances (one user + one
system) as the context store keys (cf. Section 7.2.3). We retrieve two examples
for few-shot prompts and make one corrupted variant for negative examples.
To corrupt an example, we randomly switch some of the slot values, similarly
to Kulhánek et al. (2021), Section 6.1. In the context store, we encode few-
shot examples using the multilingual embedding model provided by Reimers and
Gurevych (2020)10 and store them in the FAISS database (Johnson et al., 2019).
To perform the LLM calls, we use the Huggingface library11 and the OpenAI
API.12

7.3.4 Evaluation Measures

We evaluate the system outputs on multiple levels using automatic metrics and
human evaluation. Results are given in Sections 7.4 and 7.5, respectively.

Automatic Metrics

We first follow the LLM calls in automatic evaluation and evaluate domain de-
tection, state tracking, and response generation. We also evaluate the overall
dialogue-level performance. Please see Section 2.7 for details about the used
metrics.

For domain detection, we compute detection accuracy. For state tracking,
we compute micro-F1 score and Joint Goal Accuracy (JGA). To evaluate
response generation, we follow related works and use BLEU score. The main
overall measure for evaluating a task-oriented dialogue is the dialogue success
rate (Deriu et al., 2021).

10https://huggingface.co/sentence-transformers/all-mpnet-base-v2
11https://huggingface.co
12https://platform.openai.com
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Human Evaluation

For human evaluation, we perform a small-scale in-house interaction study on
MultiWOZ. The annotators were given goal descriptions sampled from the Mul-
tiWOZ test set and concise instructions on how to proceed. Since the MultiWOZ
goal often involves tasks in multiple domains, we ask annotators to evaluate each
domain in the dialogue distinctly. At the end of each dialogue, the annotators
are asked to answer these questions:

1. How many of the sub dialogues/domains were handled successfully? (cor-
responding to dialogue success)

2. How many clarifications or corrections were needed?

3. Was all the provided information captured correctly? (corresponding to
JGA)

More details on the annotation process and instructions are given in Section 7.5.1

Figure 7.2: Domain detection accuracy concerning different models for Multi-
WOZ 2.2 and SGD data, which consist of 7 and 18 domains, respectively.

7.4 Automatic Metrics Results

7.4.1 Domain detection

We report the domain detection accuracy on MultiWOZ and SGD in Figure 7.2.
We observe that the domain detection accuracy varies quite a lot for most mod-
els. This presumably affects the quality of the retrieved few-shot examples and
the appropriateness of the subsequent prompts. However, it is important to
note that domain detection is turn-based, and arguably, some situations (e.g.,
providing an address, saying goodbye, etc.) are always handled similarly, even

108



though they belong to different domains. Therefore, not all the retrieved ex-
amples from misclassified domains necessarily contain unrelated contexts. To
explore this, we measure the performance of all models in case an oracle domain
is given to them (Figure 7.3). Interestingly, using the Oracle domain did not
improve performance; it even worsened in some cases. This suggests that the
model-predicted domain is generally good enough, and additionally, providing
the domain information does not contribute to the final system performance.
The negative influence on performance might be caused by forcing the system to
filter out relevant examples. The conversation snippets are domain-independent
in multiple cases so that the retrieval might perform better even with a wrongly
selected domain. Forcing the ground truth domain examples in these cases can
be potentially harmful.

Figure 7.3: The influence of using oracle domain to retrieve examples. Interest-
ingly, the oracle domain does not improve the performance, suggesting that the
model-based detection is good enough for retrieval.

7.4.2 Response Generation

BLEU scores are low overall, far below the supervised state-of-the-art. Tk-
Instruct and ChatGPT are the strongest here and perform roughly on par. This
behavior is likely because the models were not fine-tuned on the particular data-
sets, therefore, they do not resemble the wording and phrasing used in this data.
Nevertheless, this observation does not necessarily imply that the generated re-
sponses are incorrect.
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model few oracle MultiWOZ 2.2
shot BS BLEU JGA Slot-F1 Success

Supervised SotA 7 7 19.90♣ 0.60♦ – 0.82♥

Alpaca-LoRA-7B-zs-gbs 7 7 1.61 0.06 0.07 0.04
Tk-Instruct-11B-zs-gbs 7 7 2.48 0.04 0.04 0.04
GPT-NeoXT-20B-zs-gbs 7 7 0.52 0.03 0.02 0.04
OPT-IML-30B-zs-gbs 7 7 0.56 0.02 0.04 0.03
ChatGPT-zs-gbs 7 7 4.17 0.13 0.40 0.31
Alpaca-LoRA-7B-zs-obs 7 3 1.73 – – 0.08
Tk-Instruct-11B-zs-obs 7 3 2.66 – – 0.18
GPT-NeoXT-20B-zs-obs 7 3 0.60 – – 0.06
OPT-IML-30B-zs-obs 7 3 0.54 – – 0.06
ChatGPT-zs-obs 7 3 3.76 – – 0.47

Alpaca-LoRA-7B-fs-gbs 3 7 5.53 0.06 0.08 0.06
Tk-Instruct-11B-fs-gbs 3 7 6.56 0.16 0.33 0.19
GPT-NeoXT-20B-fs-gbs 3 7 2.73 0.05 0.04 0.05
OPT-IML-30B-fs-gbs 3 7 4.40 0.03 0.03 0.04
ChatGPT-fs-gbs 3 7 6.77 0.27 0.51 0.44
Alpaca-LoRA-7B-fs-obs 3 3 5.96 – – 0.41
Tk-Instruct-11B-fs-obs 3 3 6.91 – – 0.46
GPT-NeoXT-20B-fs-obs 3 3 2.92 – – 0.28
OPT-IML-30B-fs-obs 3 3 5.40 – – 0.28
ChatGPT-fs-obs 3 3 6.84 – – 0.68

Table 7.4: Evaluation of the chosen LLMs concerning widely used TOD measures
on the MultiWOZ dataset. For each model, we provide multiple variants. We
use either zero-shot or few-shot prompts (-zs- vs. -fs-) and either generated or
oracle belief state (-gbs vs. -obs). The few-shot variants use 10 examples per
domain in the context storage, two selected for the prompts. We also provide
supervised state-of-the-art results to put the numbers in context: ♣Sun et al.
(2022), ♦Huang et al. (2023), ♥Feng et al. (2023).
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Figure 7.4: The influence of using oracle domain to retrieve examples. Interest-
ingly, the oracle domain does not improve the performance, suggesting that the
model-based detection is good enough for retrieval.

7.4.3 Belief State Tracking

The belief state tracking results overview is given in Tables 7.4 and 7.5 (JGA and
Slot-F1). A huge gap exists between the state-of-the-art supervised fine-tuned
models’ performance and the LLM results. Also, our instruction-tuned LLMs
fall short compared to Hu et al. (2022a), who used few-shot in-context learning
to formulate state tracking prompts for big LLMs such as OpenAI davinci-

codex (Chen et al., 2021) with 175B parameters and reported JGA 43.13% with a
comparable number of examples used for few-shot retrieval. However, our models
are generally an order of magnitude smaller, and we also use fewer examples in
the prompt. We hypothesize that the performance could be further improved by
careful model-specific prompt customization and perhaps task re-formulation;
nevertheless, this is not the goal of this work. We intentionally focus on the
universal framing of the task since we want to explore the general ability of the
models to follow instructions.

When comparing the results among the models, ChatGPT outperforms the
rest of the models by a large margin. Interestingly, the few-shot vs. zero-shot
setting does not influence the results much for tracking, except for the GPT-
NeoXT model.
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model few oracle Schema Guided Dialogues
shot BS BLEU JGA Slot-F1 Success

Supervised SotA 7 7 29.90∗ 0.30† 0.60∗ –

Alpaca-LoRA-7B-zs-gbs 7 7 2.79 0.02 0.01 0.11
Tk-Instruct-11B-zs-gbs 7 7 4.16 0.05 0.03 0.10
GPT-NeoXT-20B-zs-gbs 7 7 0.45 0.01 0.01 0.17
OPT-IML-30B-zs-gbs 7 7 1.63 0.01 0.01 0.17
Alpaca-LoRA-7B-zs-obs 7 3 2.76 – – 0.23
Tk-Instruct-11B-zs-obs 7 3 5.21 – – 0.24
GPT-NeoXT-20B-zs-obs 7 3 0.83 – – 0.22
OPT-IML-30B-zs-obs 7 3 1.94 – – 0.22
Alpaca-LoRA-7B-fs-gbs 3 7 6.32 0.04 0.01 0.09
Tk-Instruct-11B-fs-gbs 3 7 6.66 0.06 0.05 0.10
GPT-NeoXT-20B-fs-gbs 3 7 1.62 0.04 0.02 0.09
OPT-IML-30B-fs-gbs 3 7 0.82 0.06 0.07 0.08
Alpaca-LoRA-7B-fs-obs 3 3 6.99 – – 0.25
Tk-Instruct-11B-fs-obs 3 3 8.56 – – 0.25
GPT-NeoXT-20B-fs-obs 3 3 1.97 – – 0.24
OPT-IML-30B-fs-obs 3 3 0.56 – – 0.22

Table 7.5: Evaluation of the chosen LLMs concerning widely used TOD measures
on the SGD dataset. For each model, we provide multiple variants, as described
in Table 7.4. We also provide supervised state-of-the-art results to put the num-
bers in context: ∗Zhu et al. (2022), †Feng et al. (2021).
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7.4.4 Dialogue-level performance

Results for dialogue success are provided in Tables 7.4 and 7.5, and there is
again a large gap between prompted LLMs and supervised custom models’ per-
formance. ChatGPT seems to outperform other models, similarly to state track-
ing (cf. Section 7.4.3). In most cases, adding the retrieved few-shot examples
helps. The contribution of retrieved examples is more obvious when we supply
the oracle belief state, which helps consistently for all the models.

We also explore the influence of the context storage size on the dialogue
success rate. The results are given in Figure 7.5. The biggest improvement can
be achieved by supplying just a few examples instead of zero-shot prompting,
but increasing the size of the example pool for retrieval does not yield further
performance gains.

Figure 7.5: The influence of the number of examples per domain available for
few-shot retrieval and response generation performance of the model in terms of
the dialogue success on MultiWOZ 2.2 data with the oracle state supplied. Note
that this does not represent the number of examples selected for the prompt,
which is fixed to two.

113



domain Attraction Taxi Train Hotel Restaurant
success 0.65 0.81 0.86 0.64 0.82

Table 7.6: Dialogue success of ChatGPT model when restricted to single domain
dialogues in MultiWoz.

7.4.5 Single-domain performance

We evaluated the performance of the ChatGPT model when restricted to single-
domain dialogues on MultiWOZ in Table 7.6. The average success rate is 0.76,
which performs better then in case of the automatic metrics. This outcome is
expected as single-domain dialogues are typically shorter and easier to manage.
However, this observation can also give us interesting insights into the differ-
ent performance values on the individual domains, which does not necessarily
correlate with the number of slots or average dialogue length.

7.5 Model Analysis

7.5.1 Human Evaluation

We employed 6 annotators with a background in linguistics and NLP and let them
interact with the two strongest models in terms of automatic metrics: ChatGPT
and Tk-Instruct. We present the results in Table 7.8. We can see that in a
real interaction with a human user and allowing for clarification or correction,
the models perform better than the strict automatic evaluation. Furthermore,
the models are often successful in multiple sub-dialogues, even if a part of the
dialogue fails. The experiment also confirms the superior performance of Chat-
GPT on dialogue success and JGA. Not surprisingly, given the above results,
conversations with ChatGPT also required fewer clarification turns than with
Tk-Instruct.

7.5.2 Error Analysis

To better understand the models’ behavior, we manually inspect a random sam-
ple of ca. 20 dialogues for each model, chosen from cases where the automatic
success metric was not satisfied. In general, we can split most erroneous behav-
iors into two distinct groups, which we call prompt-recoverable and inherent.
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Goal You are looking for a train.

The train should depart from Cambridge and should leave

after 9pm on thursday and should go to Stansted Airport.

Once you find the train you want to

make a booking for 2 people

Make sure you get the reference number

Customer i need to find a train

from cambridge to stansted airport

Assistant what day will you be leaving?

Customer i need to leave on thursday after 9pm.

Assistant there is one on Thursday at 21:08,

would you like me to book it for you?

Customer yes please, for 2 people

Assistant Okay a honda will pick you up, the contact is [phone].

Do you need anything else?

Customer i need to book the train for 2 people

Assistant a honda will pick you up from cambridge

and the contact number is [phone].

Customer i need a reference number for the train

Assistant TR8383 leaves Cambridge at 21:08 and

arrives at Stansted Airport at 21:36.

Table 7.7: A sample evaluation conversation between human and LLM-based
(ChatGPT) agent. The sample includes a textual goal description that instructs
the user. The slot values are lexicalized in the assistant’s responses. Here, the
system fails to provide the requested information due to irrelevant examples
(from taxi domain) in the retrieved context. The slot values are highlighted for
both informed and requested values.
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ChatGPT Tk-Instruct

dialogues 25 25
subdialogues 52 48
clarify / dial 1.08 1.68
succesful subdialogues 81% 71%
succesful dialogues 76% 64%
correctly captured 88% 66%

Table 7.8: Human evaluation results for ChatGPT and Tk-Instruct-11B models.
We evaluate the conversation on the sub-dialogue level i.e. each domain in the
dialogue is evaluated separately.

Prompt-recoverable errors can be likely fixed by specific prompt engineer-
ing with some effort. These kinds of errors happen with all of the tested models.
Examples of such errors are invalid structure of the generated dialogue state,
copying slot values instead of using canonical values from the ontology, failure
to delexicalize some of the values, etc. Most of these errors can also be fixed
in postprocessing – for example, we can employ more robust parsers or fuzzy
matching of slot values.

Inherent errors, on the other hand, are likely not easily fixable by prompt
modifications. They are not distributed evenly across the tested models and
seem to constitute a more challenging problem.

Perhaps the most important error, common to all the models, is hallucina-
tion, i.e., the model’s output responses are not grounded in the context (such
as offering entities that are not included in the database results). This happens
in about 10-20% of the inspected dialogues. Some models (GPT-NeoXT, OPT-
IML) tend to generate more content than requested. This happens in more than
50% of their failed dialogues. This sometimes means continuing the conversa-
tion for a few more turns (including hallucinating user turns), but the models
also often generate unrelated text or even code snippets, see Table 7.7. With
Tk-Instruct, we observed that in ca. 10% cases, it copies the belief state from
the example given in the prompt instead of generating a relevant one. Another
issue is that the models tend to repeat their previous responses as illustrated in
Table 7.9.
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Goal You are looking for information in Cambridge

You are looking for places to go in town.

The attraction should be a swimming pool and

should be in the north.

Make sure you get entrance fee.

You are also looking for a train.

The train should go to Cambridge and leave on Saturday.

The train should depart from London Liverpool Street

and should arrive by 20:00.

Make sure you get travel time and train ID.

Customer I would like to go swimming in the northern cambridge

Assistant There is a swimming pool in the north.

Would you like more information on it?

Customer I would like to know the entrance fee

Assistant The entrance fee for the pool is 4 GBP.

Can i help you with anything else?

Customer I am looking for a train from

london liverpool street to cambridge.

i would like to get there by sunday 20:00

Assistant you can take train which arrives at Cambridge at 19:07

The price of the ticket is 3 GBP.

Customer what is the train id and the travel time?

Assistant TR2855 arrives at Cambridge at 19:07 on sunday.

Customer and the travel time

Assistant TR2855 arrives at Cambridge at 19:07 on sunday.

Customer how long will it take?

Assistant it will take you 88 minutes to get there.

Table 7.9: A sample evaluation conversation between human and LLM-based
(ChatGPT) agent. The sample includes a textual goal description that instructs
the user. The slot values are lexicalized in the assistant’s responses. Although
the systems fails initially and the customer needs to ask repeatedly about the
duration of travel, it can get the desired information in the end. The slot values
are highlighted for both informed and requested values.
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7.6 Discussion
We present an experimental evaluation of instruction-tuned LLMs applied to the
established task of task-oriented dialogue modeling, with five LLMs evaluated
on two datasets. We find that current LLMs have difficulties concerning belief
state tracking. The LLM-based state trackers struggle even when provided with
in-context few-shot examples. Some problems arise because the LLM might
not provide correctly formatted outputs. These errors might be accounted for
by restricting the decoding techniques and robust parsing mechanisms. On the
other hand, a non-trivial portion of errors come from hallucinated slot values
that are not present in the conversation. This behavior is harder to address
successfully.

If provided with a correct belief state, the models can interact with the user
well, provide useful information, and fulfill the user’s needs. While the perfor-
mance does not match the supervised state of the art on the evaluated datasets, it
is important to note that these models were not fine-tuned on in-domain data and
work with just a domain description or a few examples (which improves perfor-
mance). Moreover, few-shot examples improve the model performance and access
to the oracle belief state. Therefore, carefully picking representative examples
and combining the LLM with an in-domain belief tracker can be a viable choice
for a task-oriented dialogue pipeline. Also, our evaluation experiments suggest
that LLM-based systems are surprisingly good in human interaction, surpassing
the results suggested by the corpus-based automatic evaluation metrics.

Limitations One of the drawbacks of our work is the reproducibility. Closed
models like ChatGPT are available only via API, and their behavior can change
with time as out-of-date model are deprecated, making the experiments impos-
sible to reproduce. To address this, we include more models for the evaluation.
Another problem is the rapid development in this field of study. New and stronger
LLMs frequently appear, quickly making some of our results obsolete. However,
our experiments aim to put the LLM performance in context and show that de-
spite their great capabilities, the approach of in-context learning is unlikely to
solve the problem of task-oriented dialogues in the near future.

It would also be desirable to focus more on prompt engineering techniques
since the LLMs are arguably sensitive to the choice of the right prompt, which
is model-specific.
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8
Conclusion

In this thesis, we discussed the problems of data annotation needed for task-
oriented dialogue modeling. We proposed multiple approaches to address how
current systems rely on extensive data annotation. Specifically, we explored a
way to mitigate the need for data annotation in Chapter 4 and discuss this in Sec-
tion 8.1. We also proposed novel approaches to dialogue modeling in Chapters 5,
6 and 7. Some results are very promising and competitive with state-of-the-art,
but we also present some negative results. We conclude from these experiments
in Sections 8.3 and 8.2. Finally, we discuss possible future research directions in
this field in Section 8.4.

8.1 Decreasing the amount of required
supervision

Automatic data labeling procedures are desirable since they can save expensive
resources by providing valuable insights into the gathered conversation data.
In Chapter 4, we proposed a pipeline method for the unsupervised discovery of
dialogue slot schema and automatic labeling. The method iteratively refines a set
of input candidates to obtain semantically coherent concepts that are suitable to
use as slots to guide a dialogue system in a particular domain. The candidates are
identified with arbitrary generic open-domain taggers such as NER or semantic
parsers. The pipeline is generic because it can take an arbitrary set of input
candidates, regardless of the candidate identification method. We showed that
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the method can successfully exploit the inputs and refine the initial candidate
pool to outperform other approaches. Moreover, we have shown that the outputs
of our pipeline can be used as a noisy supervision for training task-oriented
dialogue system models.

8.2 Training dialogues from unlabeled data
The ultimate goal is to train task-oriented dialogue models solely from an unla-
beled input corpus. As an intermediate step toward this goal, we introduced a
novel usage of latent variable models for TOD generation in Chapter 5. In par-
ticular, we focused on latent system action modeling and providing the model
with a means to communicate with external interfaces using sparse annotation.
Modeling task-oriented dialogue this way is challenging, and achieving competi-
tive performance with state-of-the-art supervised models is hard. However, our
latent action models based on variational training show promising performance
when outperforming other baseline approaches, even with many more parame-
ters when the same amount of training data is presented. Moreover, our model
creates representations in a discrete latent space that can be used to predict the
system’s actions successfully.

8.3 Less data for end-to-end TOD models
Another direction is using full supervision but minimizing the required training
data. We explored this path in Chapters 6 and 7. First, we investigated to
what extent pre-trained language models can transfer the obtained knowledge
to previously unseen domains when initially fine-tuning them on different data.
The power of pre-trained large language models is great, and they can achieve
good performance with only a fraction of the training set available to them.
We observed the importance of examples in the in-context learning approach.
Although LLMs seem to struggle with the belief state tracking task, this can likely
be fixed with fine-tuning techniques or different task formulation. Moreover,
based on our observations in human evaluation, using LLMs promises to bridge
the gap between academic datasets and real-world use cases as LLMs can handle
various conversation behaviors very well.
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8.4 Future research directions
Thanks to the tremendous recent progress in large language models pre-training
and applications, unsupervised dialogue modeling will likely improve greatly in
the near future. LLMs can be used to obtain better representations and, together
with contrastive learning objectives, achieve previously unseen performance in
dialogue structure discovery and schema induction. Therefore, our method pro-
posed in Chapter 4 can be improved with stronger and more capable initial can-
didate identification and representation models. Moreover, our method works
globally for arbitrarily large datasets. With the growing size of the context win-
dow that can be input to LLMs, we can explore approaches that analyze much
larger subsets of datasets simultaneously, thus providing more context and infor-
mation for the model decision.

The modeling capabilities of the Transformer-based models will likely achieve
significant improvements in human-machine interaction with little to no need to
provide in-domain data examples. Their performance can contribute to creating
more powerful latent variable models, which we discussed in Chapter 5. First,
submodules of the pre-trained models could be used to model more capable
systems based on the VAE architecture, as proposed, for example, in Li et al.
(2020a). Moreover, the low-parameter fine-tuning approaches such as LoRA (Hu
et al., 2021) can be modified similarly to VAE and model distribution parameters.
We can then sample from these predicted distributions and perhaps introduce
an additional control over the model behavior and explain its actions.

As for using the pre-trained LLMs, which we discussed in Chapter 7, we
can expect a lot of applications based on in-context learning augmented with
retrieval mechanisms to guide the model with certain dialogue flows. For task-
oriented dialogue, in particular, some challenges need to be addressed, such as
the tendency of LLMs to produce answers not grounded in the context introduced
in prompt, so-called hallucinations. The models also tend to deviate from the
desired output structure, which can be addressed by finetuning them with proper
data. Nevertheless, we might experience a paradigm shift when a possible future
architecture communicates with APIs directly via in-line function calls instead
of explicitly modeling the belief state, similar to the approach proposed in Schick
et al. (2023). Apart from the performance gains, this would greatly simplify the
interaction with various interfaces.

One way or the other, we are living in exciting times, not only for NLP
but also for image processing, multimodal systems, embodied agents, speech
technologies, and much more. As these technologies integrate more and more,
there is an even more exciting future ahead of us.
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