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Introduction
Since the first observation of a large 0.2 % magnetic-field-induced strain in un-
stressed Ni2MnGa single crystals (Ullakko et al., 1996) associated with the su-
perelastic motion of twin boundaries in the martensitic phase, this material has
become the subject of intense study for its attractive application possibilities
(Miyazaki et al., 2009) in micro-mechanical devices like micro-actuators or micro-
pumps. Structural transformations in Ni-Mn-Ga alloys are yet to be fully under-
stood. Therefore, we employ optical and magneto-optical spectroscopies that
provide direct insight into the electronic structure. An overview of this material
is provided in Chapter 1.

In Chapter 2, we derive a linear optical response of originally isotropic solids
that are magnetized in the direction of an external static homogeneous magnetic
field from symmetry arguments and microscopic models, using both classical and
semiclassical theories.

In Chapter 3, we describe polarization states of fully polarized light (idealized
as an ensemble of non-interacting transverse monochromatic plane waves), its
parameters and how it is transformed by optical systems.

Chapter 4 serves as an introduction to ellipsometry, which is an optical tech-
nique (Azzam and Bashara, 1977, p. v) based on exploiting the polarization
changes of the light that is reflected from or transmitted through the studied
sample. With the invention of computers, allowing for an effective implementa-
tion of theoretical models to obtain material properties via regression analysis,
it proved itself as a powerful non-invasive tool for material characterization. At
the beginning of the chapter, ellipsometric parameters are defined, and their rela-
tionships to specific polarization changes are explained. Then, after an overview
of common ellipsometer configurations, it is demonstrated how the ellipsometric
parameters can be obtained in practice from intensity measurements. At the end
of the chapter, for the simplest cases of optical systems, we will demonstrate how
to analyze the ellipsometric data via basic theoretical models to gain information
about the system properties.

In Chapter 5, these theoretical models are expanded to a stratified structure
consisting of N homogeneous layers with plane-parallel boundaries. A 4×4 ma-
trix formalism arising from the boundary conditions yields the theoretical values
of generalized ellipsometric parameters that are compared to the experimental
ones in order to obtain the off-diagonal relative permittivity tensor element spec-
tra via regression analysis.

Chapter 6 summarizes the data collection processes, leading to the relative
permittivity tensor spectra of the Ni-Mn-Ga layer in our samples. It also specifies
what assumptions were made and what laboratory equipment was used.

Finally, in Chapter 7, we present our experimental results on thin epitaxial
Ni-Mn-Ga films, prepared by magnetron sputtering and deposited on the Cr
layer and the MgO substrate. In the first part, the analysis is focused on the
spectral changes induced by the martensitic transformation, and in the second
part, we analyze the spectral changes with respect to thickness variation and
strain relaxation at room temperature.
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1. Ni-Mn-Ga

1.1 Crystallographic structure
Ni-Mn-Ga (or NMG for short) is a ternary intermetallic alloy. Stoichiomet-
ric Ni2MnGa is a full-Heusler alloy (Felser and Hirohata, 2015). High reso-
lution neutron powder diffraction measurements (Brown et al., 2002) showed
that its austenitic high-temperature phase (400 K–260 K) has a cubic L21 struc-
ture, belonging to the space group Fm3̄m (see Fig. 1.1a). Upon cooling, at
TP ≈ 260 K and TM ≈ 200 K, respectively, a pre-martensitic 6M and marten-
sitic 14M phases with orthorhombic super-cells (see Fig. 1.2), belonging to
the space group Pnnm, form. These low-temperature orthorhombic phases ex-
hibit displacive modulation along the [11̄0]cubic direction with 6 and 14 atomic
planes (110)cubic periods, respectively. Their lattice parameters were found to
be: acubic = 5.822 Å, the cell parameter of the cubic phase at room tempera-
ture (300 K), aortho6M = acubic/

√
2, bortho6M = (3/

√
2)acubic, cortho6M = acubic, the

super-cell parameters of the 6M orthorhombic phase and aortho14M = acubic/
√

2,
bortho14M = (7/

√
2)acubic, cortho14M = acubic, the super-cell parameters of the

14M orthorhombic phase. The lattice parameters of the marked variants in
Fig. 1.2 are geometrically related as follows: aortho6M ∥ aortho14M ∥ [11̄0]cubic,
bortho6M ∥ bortho14M ∥ [110]cubic and cortho6M ∥ cortho14M ∥ [001]cubic.

X-Ray diffraction (XRD) measurements (Martynov and Kokorin, 1992) of a
single Ni2MnGa crystal in the temperature range from 308 K to 77 K showed
orthorhombic 10M and 14M and tetragonal NM phases induced by stress in the
[110]cubic direction. These stress-induced phases were reported to be stable under
the temperatures of 298 K, 233 K and 193 K, respectively.

Each phase has a different number of possible unit cell orientations that are
called variants. A shape-memory effect (SME) is associated with the reversible
nature of the thermoelastic martensitic transformation in shape-memory alloys
(SMA). After being deformed by the martensite variant domain redistribution,
these alloys are able to return to their original shape when heated back to the
austenitic phase (Miyazaki et al., 2009, Ch. 2.1).

1.2 Magnetic properties
Ni2MnGa single crystals gain a ferromagnetic ordering at a Curie temperature
TC ≈ 376 K (Webster et al., 1984). Magnetization measurements (Webster et al.,
1984) as well as predictions (Kart et al., 2008) from density functional theory
(DFT) indicate that the magnetic moment is located predominantly on the Mn
sites, and its value was reported to be approx. 3.4µB. A smaller magnetic moment
of approx. 0.3µB per atom is located on Ni sites and even smaller, in the order of
−0.01µB per atom, is located on Ga sites. All in all, the total magnetic moment
per unit cell is expected to be slightly over 4µB.

Apart from the conventional SME, which is thermally-induced, ferromagnetic
SMA also exhibits a magnetic shape-memory effect (MSME). Two underlying
mechanisms of MSME, resulting in a reversible magnetic-field induced strain
(MFIS), were identified (Heczko, 2014):
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1. Magnetically-induced phase transformation happens due to the magnetiza-
tion difference between the martensitic and austenitic phases. It can occur
only if this difference is large, while transformation energy and thermal hys-
teresis are small. In practice, it can be accomplished at temperatures in the
vicinity of TM or in large magnetic fields.

2. Magnetically-induced reorientation (MIR) of martensitic variants originates
in the coupling of the magnetization direction to a certain crystallographic
direction or plane, i.e. the easy axis or plane of magnetization (e.g. the
short axis of the tetragonal unit cell). On applying the external magnetic
field, some variants have lower energy and grow at the expense of other less
favorable variants.

MSME enables significantly higher switching frequencies than conventional ther-
mally induced SMA. Therefore, ever since the first observation of a large MFIS
of nearly 0.2 % in unstressed Ni2MnGa by Ullakko et al. (1996), many studies fol-
lowed with currently the highest MFIS of 12 % reported by Sozinov et al. (2013)
in Ni46Mn24Ga22Co4Cu4 (a magnetic field in the order of 1 T).

1.3 Electronic structure
In order to characterize the structural changes, ab initio calculations of the elec-
tronic structure were made (Entel et al., 2006). The theoretical total electronic
densities of states (EDOS) for cubic and tetragonal phases (see Fig. 1.3) pre-
dict, above the Fermi energy EF , two significant peaks of minority-spin states
and practically no majority-spin states. Hence, we can expect dipole-forbidden
electron transitions between minority-spin d-states. Expected transition energies
for the cubic (austenitic) phase are approx. 2 eV, 3 eV, possibly even 1.6 eV (if
we consider the small peak right below the Fermi energy and the highest peak
above the Fermi energy). For the tetragonal (martensitic) phase, transitions are
expected at approx. 1.8 eV and 2.8 eV. Furthermore, while the highest minority-
spin EDOS peak below EF has the same magnitude for both phases, the highest
and the second highest minority-spin EDOS peaks above EF are evidently differ-
ent. Therefore, intensities of these transitions are also expected to change during
the martensitic transformation.

1.4 Stoichiometry
A study by Chernenko et al. (1995) revealed a strong sensitivity of the Ni-Mn-Ga
alloy to the stoichiometric composition. It was concluded that TM increases with
Ni excess at the expense of both Mn (this trend can be seen in Fig. 1.4) and Ga.
At constant value of Ni content, it increases with Mn excess. In other words, TM

is increasing with increasing Ni to Ga content ratio. Besides TM , composition
affects other material properties such as thermal hysteresis, transformation heat,
TC and lattice parameter.
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(a) (b)

Figure 1.1: (a) Cubic L21 structure of the full-Heusler alloy Ni2MnGa in the
austenitic phase. It consists of four interpenetrating fcc sublattices, namely,
two Ni sublattices (dark grey), one Mn sublattice (white) and one Ga sublattice
(grey). (b) Tetragonal cell generating the orthorhombic super-lattice of modu-
lated phases.

Figure 1.2: View of the Ni2MnGa crystal along the [001̄]cubic direction. Ni, Mn
and Ga atoms are, respectively, dark grey, white and grey. Keeping in mind
that the modulation of atoms in (110)cubic planes in the [11̄0]cubic direction is not
explicitly shown, the unit cells of cubic (a), tetragonal NM (b), orthorhombic
6M (c) and orthorhombic 14M (d) phases are marked out. Note that there are 3
tetragonal and 6 orthorhombic variants, i.e. unit cell orientations.
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(a) cubic (b) tetragonal

Figure 1.3: Total electronic density of d-states of cubic (a) and tetragonal (b)
Ni2MnGa obtained from the first-principles calculations by Entel et al. (2006)

Figure 1.4: Linear interpolations of the the martensitic transformation temper-
ature TM , the pre-martensitic transformation temperature TP and Curie tem-
perature TC as functions of Ni excess x for the stoichiometric composition
Ni2+xMn1−xGa. Data adapted from Vasil’ev et al. (2003).
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2. Light-Matter Interaction
In this chapter, we will introduce classical and semiclassical descriptions of light-
matter interaction in solids. The introduced models can be used for the analysis
of the measured optical and magneto-optical spectra. Relative permittivity ten-
sor spectra will be of particular interest as they provide direct insight into the
electronic structure.

We will limit our analysis only to time-harmonic plane waves, which can be
justified in linear media, where the Fourier components do not interact (Malý
and Trojánek, 2022).

2.1 Maxwell’s equations and material tensors
The classical description of the electromagnetic field in linear media (in the time
t domain) is provided by Maxwell’s equations (Born and Wolf, 1999, Ch. 1.1)

∇ × H⃗ − ∂D⃗

∂t
= j⃗, (2.1a)

∇ × E⃗ + ∂B⃗

∂t
= 0, (2.1b)

∇ · D⃗ = ρ, (2.1c)
∇ · B⃗ = 0. (2.1d)

The medium is characterized by a free charge density ρ, a free current density
j⃗ and material equations in the Fourier picture (i.e. the angular frequency ω
domain)

D⃗(ω) = εvacε̂(ω)E⃗(ω), (2.2a)
B⃗(ω) = µvacµ̂(ω)H⃗(ω), (2.2b)
j⃗(ω) = σ̂(ω)E⃗(ω), (2.2c)

where a relative permittivity tensor ε̂ binds an electric field E⃗ with an electric
induction (also called electric displacement density) D⃗. A relative permeability
tensor µ̂ binds a magnetic field H⃗ with a magnetic induction (also called magnetic
flux density) B⃗. The (scalar) permittivity and permeability of a vacuum, together
with the speed of light c, satisfy the identity

εvacµvacc
2 = 1. (2.3)

Eq. (2.2c) is Ohm’s law, which expresses via an electric conductivity tensor σ̂
the ability of the material to conduct electric current. Alternative formulation of
Eq. (2.2a)

D⃗(ω) = εvacE⃗(ω) + P⃗ (ω) (2.4)
defines an electric dipole moment density

P⃗ (ω) = εvacχ̂(ω)E⃗(ω), (2.5)
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where (electric) susceptibility tensor components χij simply relate to the permit-
tivity tensor as follows:

εij = δij + χij. (2.6)
The simplest case of magnetization dependence of material tensors is for an

originally isotropic material subjected to an external magnetic field. The relative
permittivity tensor must then be invariant under the spacial symmetry operations
of this field (generating a point group denoted in Schönflies notation as C∞h)
(Vǐsňovský, 2006, Ch. 1.2). Therefore, for the applied field as well as the induced
magnetization vector in the z-direction, it must hold

Ĉ
−1
∞ (ξ)ε̂Ĉ∞(ξ) = ε̂, ∀ξ ∈ R, (2.7)

where

Ĉ∞(ξ) =

⎛⎜⎝cos ξ − sin ξ 0
sin ξ cos ξ 0

0 0 1

⎞⎟⎠ (2.8)

is a matrix representation of a rotation about the z-axis by an angle ξ. Following
this symmetry requirement, the relative permittivity tensor reduces to

ε̂ =

⎛⎜⎝ εxx εxy 0
−εxy εxx 0

0 0 εzz

⎞⎟⎠ . (2.9)

Other symmetry requirements, such as invariance under identity and reflection
in the xy plane, which are described by their matrix representations

Ê =

⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠ and Σ̂h =

⎛⎜⎝1 0 0
0 1 0
0 0 −1

⎞⎟⎠ , (2.10)

respectively, are trivial and do not bring any new information. The reflection in
an arbitrary horizontal plane1, described by a matrix representation

Σ̂v(β) =

⎛⎜⎝cos 2β sin 2β 0
sin 2β − cos 2β 0

0 0 1

⎞⎟⎠ , β ∈ R, (2.11)

is equivalent to a magnetization reversal, i.e.

Σ̂−1
h (β)ε̂(M⃗)Σ̂h(β) = ε̂(−M⃗), (2.12)

and therefore the diagonal elements must be even in magnetization while the
off-diagonal elements must be odd, i.e.

εxx(M⃗) = εxx(−M⃗), (2.13a)
εzz(M⃗) = εzz(−M⃗), (2.13b)
εxy(M⃗) = −εxy(−M⃗). (2.13c)

1This operation is not part of the symmetry group C∞h of an axial vector oriented along the
z-axis.
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For an arbitrary orientation of magnetization a more general Onsager’s rela-
tion

εij(M⃗) = εji(−M⃗) (2.14)
can be derived (Vǐsňovský, 2006, Ch. 2.2). Also, it can be shown that bounded
linear systems obeying causality and time invariance satisfy Kramers-Kronig’s
relations (Vǐsňovský, 2006, Ch. 2.4)

Re{εij(ω)} = 2
π

p.v.
∫︂ ∞

0

ω′ Im{εij(ω′)}
ω′2 − ω2 dω′ , (2.15a)

Im{εij(ω)} = Im{εij(0)} − 2
π

p.v.
∫︂ ∞

0

ωRe{εij(ω′)}
ω′2 − ω2 dω′ . (2.15b)

In practice, one of the complex components can be calculated from the other using
Eqs. (2.15), where we integrate one of the components over a spectral range that
is sufficiently large, in order for the change of integration limits to be justified.

2.2 Lorentz’s model
In the previous, section we discussed the general macroscopic properties of the
permittivity tensor originating from the linearity assumption as well as symme-
tries of polar geometry. Now we turn our focus to its spectral dependence, which
has origin in the electronic structure of the material. Lorentz’s model (Lorentz,
1906) treats atoms of a solid as small dipole oscillators consisting of a valence
electron that is bound to its positively charged nucleus. Assuming an infinite
mass of the nucleus, therefore, a stationary nucleus, a relative deviation of the
electron from its nucleus r⃗ satisfies the equation of motion (Nývlt, 1996, Ch. 3.2)

m
d2r⃗

dt2 = qE⃗ + q
dr⃗
dt × B⃗ext −mΓdr⃗

dt −mω2
0 r⃗, (2.16)

where the left-hand side term represents the effect of a net force on r⃗ via Newton’s
second law of motion. On the right-hand side, the first two terms introduce a
driving force, which is the Lorentz force. Considering that the electron velocity is
much smaller than the speed of light (Born and Wolf, 1999, p. 28), the magnetic
component of the incident wave can be neglected, and the two terms describe
the incident light via its electric field E⃗ and a static external magnetic field,
respectively. The third term describes a damping via a damping constant Γ and
the fourth term is a linear elastic force that binds the dipole together (ω0 is the
eigenfrequency of a free oscillator). After dividing by an effective mass of the
electron m and rearranging the terms in Eq. (2.16), it follows:

d2r⃗

dt2 + Γdr⃗
dt + ω2

0 r⃗ − q

m

dr⃗
dt × B⃗ext = q

m
E⃗. (2.17)
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Without any loss of generality we choose the z-axis to be parallel to the external
magnetic field (i.e. B⃗ext = (0, 0, Bz)) to obtain the set of equations

d2x

dt2 + Γdx
dt + ω2

0x+ ωc
dy
dt = q

m
Ex, (2.18a)

d2y

dt2 + Γdy
dt + ω2

0y − ωc
dx
dt = q

m
Ey, (2.18b)

d2z

dt2 + Γdz
dt + ω2

0z = q

m
Ez, (2.18c)

where
ωc = qBz

m
(2.19)

denotes the cyclotron frequency. We shall conveniently use matrix notation for
further manipulation with the set of equations above:⎛⎜⎜⎝

d2

dt2 + Γ d
dt

+ ω2
0 ωc

d
dt

0
−ωc

d
dt

d2

dt2 + Γ d
dt

+ ω2
0 0

0 0 d2

dt2 + Γ d
dt

+ ω2
0

⎞⎟⎟⎠
⎛⎜⎝xy
z

⎞⎟⎠ = q

m

⎛⎜⎝Ex

Ey

Ez

⎞⎟⎠ . (2.20)

For a harmonic field E⃗ = E⃗0 exp(iωt), we expect a harmonic solution in the form2

r⃗ = r⃗0 exp(iωt). (2.21)
Substitution of this ansatz to Eq. (2.20) yields⎛⎜⎝−ω2 + iΓω + ω2

0 iωcω 0
−iωcω −ω2 + iΓω + ω2

0 0
0 0 −ω2 + iΓω + ω2

0

⎞⎟⎠
⎛⎜⎝x0
y0
z0

⎞⎟⎠ = q

m

⎛⎜⎝Ex0
Ey0
Ez0

⎞⎟⎠ .
(2.22)

By inverting the matrix3 on the left-hand side,

⎛⎜⎝x0
y0
z0

⎞⎟⎠ = q

m

⎛⎜⎜⎜⎜⎝
ω2

0−ω2+iΓω

(ω2
0−ω2+iΓω)2

−ω2
c ω2

iωcω

(ω2
0−ω2+iΓω)2

−ω2
c ω2

0
−iωcω

(ω2
0−ω2+iΓω)2

−ω2
c ω2

ω2
0−ω2+iΓω

(ω2
0−ω2+iΓω)2

−ω2
c ω2

0

0 0 1
ω2

0−ω2+iΓω

⎞⎟⎟⎟⎟⎠
⎛⎜⎝Ex0
Ey0
Ez0

⎞⎟⎠ , (2.23)

and by comparing Eq. (2.5) to the expression of the electric dipole moment density
P⃗ as a product of the electric dipole density N and the electric dipole moment
of the system qr⃗, i.e.

P⃗ = εvacχ̂E⃗ = qNr⃗, (2.24)
2Note that the chosen time variation exp(iωt) leads to a complex refractive index for absorb-

ing materials in the form n − ik (Wooten, 1972), where n > 0, k > 0, and which subsequently
leads to a complex permittivity Re ε − i Im ε, if we want Im ε > 0.

3For a, b ∈ C satisfying the condition a
(︁
a2 + b2)︁ = 0 it holds⎛⎝ a b 0

−b a 0
0 0 a

⎞⎠−1

=

⎛⎝ a
a2+b2

b
a2+b2 0

−b
a2+b2

a
a2+b2 0

0 0 1
a

⎞⎠ .
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we have finally derived the susceptibility tensor

χ̂ = ω2
p

⎛⎜⎜⎜⎜⎝
ω2

0−ω2+iΓω

(ω2
0−ω2+iΓω)2

−ω2
c ω2

iωcω

(ω2
0−ω2+iΓω)2

−ω2
c ω2

0
−iωcω

(ω2
0−ω2+iΓω)2

−ω2
c ω2

ω2
0−ω2+iΓω

(ω2
0−ω2+iΓω)2

−ω2
c ω2

0

0 0 1
ω2

0−ω2+iΓω

⎞⎟⎟⎟⎟⎠ , (2.25)

where
ωp =

√︄
Nq2

εvacm
(2.26)

denotes the plasma frequency. Alternatively, using Eq. (2.6), we can rewrite this
result in terms of permittivity tensor elements as

εxx(ω) = εyy(ω) = 1 + ω2
p

ω2
0 − ω2 + iΓω

(ω2
0 − ω2 + iΓω)2 − ω2

cω
2
, (2.27a)

εxy(ω) = −εyx(ω) = ω2
p

iωcω

(ω2
0 − ω2 + iΓω)2 − ω2

cω
2
, (2.27b)

εzz(ω) = 1 +
ω2

p

ω2
0 − ω2 + iΓω . (2.27c)

Without the external magnetic field (ωc = 0), there is no induced anisotropy and
the scalar permittivity is given by Eq. (2.27c). A dispersive behavior of the real
part and a dissipative behavior of the imaginary part are good classical approxi-
mations of an interband electron transition at the frequency ω0 (see Fig. 2.1a).

2.3 Drude’s model
Drude’s model describes a solid as an ensemble of free electrons (Born and Wolf,
1999, Ch. 13.3). This situation is equivalent to Lorentz’s model, where the elec-
trons are not bound to their atoms, which corresponds to the eigenfrequency ω0
being set to zero, i.e.

εxx(ω) = εyy(ω) = 1 + ω2
p

−ω2 + iΓω
(−ω2 + iΓω)2 − ω2

cω
2
, (2.28a)

εxy(ω) = −εyx(ω) = ω2
p

iωcω

(−ω2 + iΓω)2 − ω2
cω

2
, (2.28b)

εzz(ω) = 1 +
ω2

p

−ω2 + iΓω . (2.28c)

This model is a great classical approximation of low energy absorption caused
by intraband transitions of conduction electrons in metals. Without the external
magnetic field (ωc = 0), the scalar permittivity is given by Eq. (2.28c). As can
bee seen in Fig. 2.1b, the imaginary part exhibits a decreasing behavior, while
the real part is an increasing function, and both complex parts diverge at zero
energy.
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(a) Lorentz’s model with ℏω0/e = 3 eV

(b) Drude’s model, i.e. ℏω0/e = 0

Figure 2.1: The relative permittivity tensor element εzz spectra (E = ℏω/e,
where ℏ is reduced Planck’s constant and e is the elementary charge) according
to classical models with set parameters ℏωp/e = 5 eV and ℏΓ0/e = 2 × 10−8 eV
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2.4 Semiclassical model of electron transitions
Important consequence of quantum electrodynamics is the association of a spin
angular momentum (SAM) of a photon with a polarization state (Zvezdin and
Kotov, 1997, Ch. 2.5.1). Considering the unit of angular momentum to be ℏ, a
photon is a spin-1 particle, and has two possible projections of its spin in the
direction of its propagation, namely, ±1. These projections can be identified
with the LCP (projection +1) and RCP (projection −1) polarization states4.
When a photon is absorbed, the angular momentum of matter must also change
accordingly, so that the total angular momentum is conserved. Together, the
splitting and the different populations of energy levels in matter with the selection
rules, following from the angular momentum conservation, give rise to magneto-
optical phenomena (Zvezdin and Kotov, 1997, Ch. 5). Following the work of Kahn
et al. (1969), we can distinguish two special cases of magneto-optical transitions:

Type I double transitions (or so-called diamagnetic transitions) are spin- as
well as electric-dipole-allowed transitions between an orbital singlet ground state
|g⟩ and two excited states |e−⟩ , |e+⟩ that originate from a splitting of a degener-
ated exited state |e⟩ caused by the effect of exchange field and spin-orbit coupling.
This type of transition is described by a center frequency ω0 = ω++ω−

2 , a frequency
half-width at half-maximum (HWHM) Γ0 of this transition in a Im{εxx(ω)} spec-
trum and an excited state frequency splitting ∆ω0 = ω+−ω−

2 , where ω+ and ω−
are the frequencies of the transitions |g⟩ → |e+⟩ and |g⟩ → |e−⟩ corresponding
to the absorption of LCP and RCP light, respectively. We also assume that the
energy level splitting does not change oscillator strengths f+, f− related to the
absorption of LCP and RCP light, respectively, and f+ ≈ f−. The spectral de-
pendence of the off-diagonal element of the permittivity tensor is then given by5

εxy(ω) = −iΓ0∆ω0 Im{εxx(ω0)}
(ω0 − ω)2 − (Γ2

0 + ∆ω2
0) + 2iΓ0(ω0 − ω)[︂

(ω0 − ω)2 − (Γ2
0 + ∆ω2

0)
]︂2

+ 4Γ2
0(ω0 − ω)2

.

(2.29)
As we can see in Fig. 2.2a, the imaginary part of Eq. (2.29) is an even function
of (ω0 −ω) and exhibits a dissipative behavior, while the real part is odd and has
a dispersive behavior.

Type II single transitions (or so-called paramagnetic transitions) are, on the
other hand, spin-forbidden as well as electric-dipole-forbidden transitions between
a ground state |g⟩ and an exited state |e⟩. This situation can occur when the spin-
orbit splitting of the ground state is negligible, i.e. ∆ω0 ≈ 0 (ω+ ≈ ω− ≈ ω0), and
it only affects the oscillator strengths, resulting in a nonzero relative magnetic
circular dichroism (also called fractional dichroism)

ξ = f− − f+

f− + f+
. (2.30)

The oscillator strength difference is a consequence of the difference in population
for finite temperatures in the ground state energy levels. In this case, it can be

4The concept of polarization will be explained in detail in the next chapter.
5We are using the time variation exp(iω) instead of the time variation exp(−iω) used by

Kahn et al. (1969). One is obtained from the other by a Hermitian conjugation.
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shown that the spectral dependence of the off-diagonal element of the relative
permittivity tensor is

εxy(ω) = 2iΓ0ξ Im{εxx(ω0)}
ω(ω2

0 − ω2 − Γ2
0) − iΓ0(ω2

0 + ω2 − Γ2
0)

(ω2
0 − ω2 + Γ2

0)
2 + 4Γ2

0ω
2

, (2.31)

and the parities of the imaginary and real parts are opposite to those in Eq. (2.29),
i.e. the imaginary part behaves dispersively, while the real part has a dissipative
shape (see Fig. 2.2b).

In practice, the magneto-optical transitions are more complex and do not fall
exclusively in either of those special cases, but rather manifest, to some extent,
a behavior of both.
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(a) Type I double transition with ℏ∆ω0/e = 0.01 eV

(b) Type II single transition with ξ = 0.01

Figure 2.2: The spectra (E = ℏω/e, where ℏ is reduced Planck’s constant and e
is the elementary charge) of the off-diagonal element of the relative permittivity
tensor εxy computed from the semiclassical model, where we set ℏω0/e = 3 eV,
ℏΓ0/e = 0.1 eV and Im{εxx(ω0)} = 10
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3. Description of Polarized Light
Polarization is a property of a vector wave that describes the behavior of its vector
with time at a fixed point in space. A mathematical description of polarized light
shall be introduced below. For more in-depth treatment, we refer to Azzam and
Bashara (1977, Ch. 1).

From Maxwell’s equations (2.1) in a non-absorbing isotropic homogeneous
medium with no free charges, a wave equation

∇2E⃗ − εµ

c2
∂2E⃗

∂t2
= 0 (3.1)

can be derived, where both the relative permittivity ε and the relative perme-
ability µ are real scalars. As was argued in Section 2.2, dedicated to the classical
model of electron transitions, when considering that the electron velocity is much
smaller than the speed of light the magnetic component of the incident wave can
be neglected (Born and Wolf, 1999, p. 28). We are particularly interested in a
solution of the wave equation that is also compatible with Maxwell’s equations
as a whole. Such a solution is the transverse monochromatic plane wave

E⃗(r⃗, t) = E0⃗ exp[i(ωt− γ⃗ · r⃗)] (3.2)

that is characterized by its angular frequency ω and its propagation vector γ⃗, and
it satisfies the two following conditions:

γ = ω

c
n, (3.3a)

0 = γ⃗ · E⃗. (3.3b)

We denoted n = √
εµ the real part of the index of refraction.

3.1 Jones formalism
Since we are only considering transverse waves, as required by Eq. (3.3b), the
choice of the Cartesian coordinate system with the z-axis oriented in the direction
of the propagation vector γ⃗, reduces the z-component of the electric field vector
to zero. The polarization state is then fully described by the complex vector E0⃗

in the xy-plane, and we can define the Jones vector

J⃗ =
(︄
E0x

E0y

)︄
=
(︄
axe

iδx

aye
iδy

)︄
∈ C2. (3.4)

As we can see, 4 real parameters, the amplitudes ax, ay and the phases δx, δy

of two orthogonal components of E0⃗ , are needed in order to provide a complete
description of the behavior in the transverse plane. The knowledge of the relative
phase difference δ = δy − δx is for most purposes sufficient, which reduces the
number of necessary parameters to 3. If we are interested in the polarization
states only, and we are not concerned about the absolute light intensity, the
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number of parameters can be then reduced to 2 by normalizing the Jones vector,
i.e. setting

⃓⃓⃓
J⃗
⃓⃓⃓2

= J⃗
+
J⃗ =

(︂
J∗

x J∗
y

)︂(︄Jx

Jy

)︄
= |Jx|2 + |Jy|2 = 1, (3.5)

where the symbols ∗ and + denote the complex and Hermitian conjugations,
respectively.

Supposing no depolarization is present, the effect of a polarization device on
a polarization state can be described using matrix notation as

J⃗f = MJ⃗ i, (3.6)

where
M =

(︄
Mxx Mxy

Myx Myy

)︄
∈ C2×2 (3.7)

is the Jones matrix. J⃗ i, J⃗f are the Jones vectors of the initial and the final
polarization states, respectively.

The optical system can be modeled as a series of such polarization devices,
and the total effect is determined by the product of the Jones matrices of all the
polarization elements. Examples of common polarization devices (Azzam and
Bashara, 1977, Ch. 2.2.3) and their Jones matrices are provided in Table 3.1.
The origins of the polarization effects can vary (Zvezdin and Kotov, 1997). For
example, let us suppose that polarized light travels a finite distance through a
material in a direction, along which optical properties are constant. This type
of transmission device can then absorb, retard or both absorb and retard each
of the basis polarization states1 differently, causing changes in the ratio of their
amplitudes and their phase difference. Special cases of these phenomena include
linear and circular dichroisms (abbr. LD and CD), where, in the first case, the
linear polarizations are absorbed differently for different values of azimuth and, in
the second case, the right and left circular polarizations are absorbed differently.
The other special phenomena are the linear and circular birefringences (abbr. LB
and CB), where either the linear or circular components are delayed differently
relative to each other.

3.2 Polarization ellipse parameters
It can be shown (Born and Wolf, 1999, ch. 1.4.2) that in the transverse plane
(i.e. xy-plane, when considering propagation along the z-axis), the electric field
vector E⃗ satisfies the equation of an ellipse(︄

Re{Ex}
ax

)︄2

− 2
(︄

Re{Ex}
ax

)︄(︄
Re{Ey}
ay

)︄
cos δ +

(︄
Re{Ey}
ay

)︄2

= sin2 δ, (3.8)

which is inscribed into a rectangle with the sides 2ax and 2ay. The sides of the
rectangle are parallel to the coordinate axes and the diagonal makes an angle
ψ ∈ [0, π/2] with the x-axis (see Fig. 3.1). There are other important parameters

1Basis states are discussed in Section 3.5.
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Table 3.1: Jones matrices of common polarization devices in both linear polar-
ization states and circular polarization states bases

Pol. device Ph. M [M]BCP

linear polarizer1 LD
(︄

1 0
0 e−α

)︄
e− α

2

(︄
cosh α

2 sinh α
2

sinh α
2 cosh α

2

)︄

circular polarizer2 CD e− β
2

(︄
cosh β

2 −i sinh β
2

i sinh β
2 cosh β

2

)︄ (︄
1 0
0 e−β

)︄

linear retarder3 LB
(︄

1 0
0 e−iΓ

)︄
e−i Γ

2

(︄
cos Γ

2 i sin Γ
2

i sin Γ
2 cos Γ

2

)︄

circular retarder4 CB ei Θ
2

(︄
cos Θ

2 − sin Θ
2

sin Θ
2 cos Θ

2

)︄ (︄
1 0
0 eiΘ

)︄
Notes:
1 for α ∈ R and α > 0 the polarization axis is parallel to the x-axis
2 for β ∈ R and β > 0 the LCP component is exponentially attenuated
3 for Γ ∈ R and Γ > 0 the fast axis is parallel to the x-axis; the linear retarder is usually
referred to as a phase-plate
4 for Θ ∈ R and Θ > 0 there is a phase difference between CP components of transmitted
light causing azimuth change by Θ/2, hence this device is also referred to as a rotator

of the ellipse. Namely, the lengths of its major and minor semiaxes a and b,
respectively, the azimuth θ ∈ [0, π), which represents the angle the major semiaxis
makes with the x-axis, and the ellipticity ϵ ∈ [−π/4, π/4], whose sign is indicative
of either anticlockwise (− sign) or clockwise (+ sign) sense, in which the ellipse is
traced when looking in the opposite direction than the z-axis. These parameters
are related to one another by the set of equations (Born and Wolf, 1999, pp.
26-27):

a2
x + a2

y = a2 + b2, (3.9a)

tanψ = ay

ax

, (3.9b)

tan ϵ = ± b

a
, (3.9c)

tan 2θ = tan 2ψ cos δ, (3.9d)
sin 2ϵ = sin 2ψ sin δ. (3.9e)

We can express the normalized Jones vector using the azimuth and the ellipticity
as (Azzam and Bashara, 1977, p. 27)

J⃗ =
(︄

cos θ − sin θ
sin θ cos θ

)︄(︄
cos ϵ
i sin ϵ

)︄
=
(︄

cos θ cos ϵ− i sin θ sin ϵ
sin θ cos ϵ+ i cos θ sin ϵ

)︄
, (3.10)

where we simply rotated the normalized Jones vector with the given ellipticity
by the azimuth.

3.3 Complex polarization parameter
An alternative representation of the polarization states is using the mapping onto
the complex plane (Azzam and Bashara, 1977, ch. 1.7) by defining the complex
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polarization parameter as a ratio of the Jones vector components

χ = Jy

Jx

= ay

ax

ei(δy−δx) = tanψeiδ. (3.11)

Using Eqs. (3.9) and goniometric function identities

tan 2ξ = 2 tan ξ
1 − tan2 ξ

, (3.12)

sin 2ξ = 2 tan ξ
1 + tan2 ξ

, (3.13)

we can derive the equations

tan 2θ = 2 Reχ
1 − |χ|2

, (3.14a)

sin 2ϵ = 2 Imχ

1 + |χ|2
, (3.14b)

relating the azimuth and the ellipticity to the complex polarization parameter.
The inverse relation

χ = tan θ + i tan ϵ
1 − i tan θ tan ϵ (3.15)

can be simply obtained from Eq. (3.10).
From Eqs. (3.8) and (3.6), the effect of a polarization device can also be

expressed with the Jones matrix elements in the following way:

χf = Myx +Myyχi

Mxx +Mxyχi

. (3.16)

3.4 Special polarization states
It is illustrative to highlight the values of the parameters we previously defined for
a few special cases that are listed in Table 3.2. These states are usually referred to
using their abbreviations. Namely, L*P are the Linearly Polarized states that are
either Horizontal, Vertical, Diagonal or Antidiagonal (the corresponding letter is
substituted for the asterisk). The remaining two states are the Right and Left
Circularly Polarized states.

3.5 Basis states of polarization
We previously described a polarization state as a pair of two complex numbers
E0x, E0y in the transverse plane. In doing so, we implicitly chose the basis BXY =
(x⃗, y⃗), consisting of two orthonormal linear polarization states

x⃗ =
(︄

1
0

)︄
and y⃗ =

(︄
0
1

)︄
.

Sometimes, however, the choice of a different basis might prove itself useful when
taking into consideration the symmetry of the problem at hand. The Jones vector
can be expressed using different superpositions of base vectors, e.g.

J⃗ = E0xx⃗+ E0yy⃗ = E1b⃗1 + E2b⃗2. (3.17)
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The representation of the Jones vector[︂
J⃗
]︂B

=
(︄
E1
E2

)︄
(3.18)

with respect to the basis B =
(︂
b⃗1, b⃗2

)︂
is related to the representation with respect

to the basis BXY via the transformation relation (Azzam and Bashara, 1977,
Ch. 1.6.5) [︂

J⃗
]︂B

= B−1J⃗ , (3.19)
where

B =
(︄
b1x b2x

b1y b2y

)︄
. (3.20)

The transformation relation between the bases BXY and B for the Jones matrix
representation is

[M]B = B−1MB. (3.21)
The complex polarization parameter in the basis B, defined as

[χ]B = E2

E1
, (3.22)

can be computed from the complex polarization parameter in the basis BXY as
follows:

[χ]B = −b1y + b1xχ

b2y − b2xχ
. (3.23)

3.5.1 Circular polarization states basis
In many cases, the circular polarization states basis BCP =

(︂
r⃗, l⃗
)︂
, where

r⃗ = 1√
2

(︄
1
i

)︄
and l⃗ = 1√

2

(︄
1

−i

)︄
(3.24)

are the RCP and LCP states, respectively, might prove itself useful. The repre-
sentation of the normalized Jones vector of given azimuth and ellipticity in this
basis (Azzam and Bashara, 1977, p. 28)

[︂
J⃗
]︂BCP = 1√

2

(︄
(cos ϵ+ sin ϵ)e−iθ

(cos ϵ− sin ϵ)eiθ

)︄
(3.25)

provides, together with the linear representation in the form of Eq. (3.10), a
quick insight into the changes of azimuth and ellipticity caused by the polariza-
tion devices in Table 3.1. The relationships between the complex polarization
parameter in the basis BCP , the azimuth and the ellipticity are expressed by the
set of equations (Azzam and Bashara, 1977, Ch. 1.7.2)

[χ]BCP = cot
(︃
ϵ+ π

4

)︃
e2iθ, (3.26a)

θ = 1
2 arg [χ]BCP , (3.26b)

tan ϵ = 1 − [χ]BCP

1 + [χ]BCP
. (3.26c)
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Figure 3.1: Polarization ellipse that is traced in the xy-plane by the end point of
the electric field vector as time passes

Table 3.2: Special polarization states and their parameters

Pol. state xy-plane ψ θ δ ϵ J⃗ χ

LHP 0 0 — 0
(︄

1
0

)︄
0

LVP π
2

π
2 — 0

(︄
0
1

)︄
∞

LDP π
4

π
4 2mπ 0 1√

2

(︄
1
1

)︄
1

LAP π
4

3π
2 π + 2mπ 0 1√

2

(︄
1

−1

)︄
−1

RCP π
4 — π

2 + 2mπ π
4

1√
2

(︄
1
i

)︄
i

LCP π
4 — −π

2 + 2mπ −π
4

1√
2

(︄
1

−i

)︄
−i

Note: m ∈ Z
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4. Ellipsometry
This chapter will provide an introduction to ellipsometry and will be mainly
focused on methods and configurations relevant to our experimental work.

By the words of Azzam and Bashara (1977, p. v): ”Ellipsometry is an optical
technique for the characterization of, and observations of events at, an interface
or film between two media and is based on exploiting the polarization transfor-
mations that occur as a beam of polarized light is reflected from or transmitted
through the interface or film.”

4.1 Generalized complex ellipsometric parame-
ters

In the previous chapter, we described the effect of the non-depolarizing linear
optical system on the polarization state of the uniform transverse monochromatic
EM plane-wave via Eq. (3.6), i.e.(︄

Ef
0x

Ef
0y

)︄
=
(︄
Mxx Mxy

Myx Myy

)︄(︄
Ei

0x

Ei
0y

)︄
,

from which the elements of the Jones matrix can be expressed as

Mxx =
(︄
Ef

0x

Ei
0x

)︄
Ei

0y=0
, Mxy =

(︄
Ef

0x

Ei
0y

)︄
Ei

0x=0
, (4.1a)

Myx =
⎛⎝Ef

0y

Ei
0x

⎞⎠
Ei

0y=0

, Myy =
⎛⎝Ef

0y

Ei
0y

⎞⎠
Ei

0x=0

. (4.1b)

Another way to describe the polarization change is via Eq. (3.16)

χf = Myx +Myyχi

Mxx +Mxyχi

,

which is a bilinear transformation, containing neither the absolute phase nor the
absolute amplitude (i.e. the intensity of light). For a unique description of this
bilinear transformation, 3 complex parameters are needed (Azzam and Bashara,
1977, Ch. 3.2). One of the ways these so-called generalized complex ellipsometric
parameters can be defined in the linear polarization states basis BXY = (x⃗, y⃗) is:

ρ = Myy

Mxx

=
⎛⎝Ef

0y

Ei
0y

⎞⎠
Ei

0x=0

(︄
Ei

0x

Ef
0x

)︄
Ei

0y=0
= tan Ψei∆, (4.2a)

ρxy = Mxy

Myy

=
⎛⎝Ef

0x

Ef
0y

⎞⎠
Ei

0x=0

=
(︂
χiy

f

)︂−1
= tan Ψxye

i∆xy , (4.2b)

ρyx = Myx

Mxx

=
⎛⎝Ef

0y

Ef
0x

⎞⎠
Ei

0y=0

= χix
f = tan Ψyxe

i∆yx . (4.2c)
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As indicated above, the interpretation is straightforward. Firstly, ρ is the ratio
of the relative LVP and LHP complex amplitude changes between the initial
and final states. Secondly, the initial LVP state (χiy

i = ∞) is transformed by
the optical system to the final state χiy

f , which corresponds to the inverse value
of ρxy. Thirdly, the initial LHP state (χix

i = 0) is transformed to the final
state χix

f , which corresponds to ρyx. Finally, Ψ,∆,Ψxy,∆xy,Ψyx and ∆yx simply
provide an alternative expression of the respective complex numbers and are
called generalized ellipsometric angles.

The bilinear transformation can be rewritten in terms of these parameters as

χf = ρyxρ+ χi

ρ−1 + ρxyχi

. (4.3)

When the two eigenpolarizations of the optical system are known, the Jones
matrix representation in the basis of these eigenpolarizations B =

(︂
b⃗1, b⃗2

)︂
is

diagonal, i.e. (︄
Ef

1
Ef

2

)︄
=
(︄
M11 0

0 M22

)︄(︄
Ei

1
Ei

2

)︄
, (4.4)

and the bilinear transformation becomes linear, i.e.

[χf ]B = M22

M11

[︂
χi
]︂B

= [ρ]B[χi]B. (4.5)

In other words, the polarization transformation is in this case uniquely determined
by two complex polarization parameters χ1 and χ2 (represented in the basis
BXY ) and [ρ]B, a complex ellipsometric parameter given by the ratio of diagonal
elements of the Jones matrix represented with respect to the eigenpolarizations
basis B. It is important to note that the linear polarization basis is usually chosen
in such a way that x⃗ = s⃗ is normal to the plane of incidence on an interface of the
optical system (i.e. senkrecht polarization) and y⃗ = p⃗ is in the plane of incidence
(i.e. parallel polarization). The keyword generalized refers to the situation when
the Jones matrix in the linear polarization basis (s⃗, p⃗) is not diagonal.

4.2 Ellipsometer configurations
There are several possible experimental configurations of an ellipsometer (Azzam
and Bashara, 1977, ch. 3). In the most basic configuration PSA, unpolarized light
emitted from a source L is polarized by a linear polarizer P and interacts with a
sample S, after which light passes through an analyzer A (another linear polar-
izer) and is finally detected by a detector D. Additional polarization devices are
often placed in the optical system (see Fig. 4.1), such as compensators C (linear
retarders) and phase modulators M (devices with time-varying phase retardation
caused by either stress or alignment). The polarization state can be determined
by the configuration, in which the outgoing intensity vanishes (null ellipsometry),
or, in the case of photometric ellipsometry, it is deduced from a variation of the
detected intensity as a function of configuration parameters, such as angle of inci-
dence, phase retardation and orientations of polarizers or other optical elements
with respect to coordinate axes. Depending on the parameter that is being varied,
we talk about Rotating Polarizaer (RPE), Rotating Analyzer (RAE), Rotating
Compensator (RCE) or Phase Modulation (PME) Ellipsometries.
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Figure 4.1: Ellipsometer configuration with two compensators (one before and
the other after the sample)

4.2.1 RAE of a sample with linear eigenpolarizations in
PSA configuration

Supposing the Jones matrix of a sample is diagonal, the polarization axes of a
polarizer and an analyzer make the angles β, α, respectively, with the x-axis.
Using the Jones formalism, we can compute the polarization transformation for
an ellipsometer in the PSA configuration as(︄

Ef
0x

Ef
0y

)︄
=
(︄

cos2 α sinα cosα
sinα cosα sin2 α

)︄(︄
Mxx 0

0 Myy

)︄(︄
Ei

0 cos β
Ei

0 sin β

)︄
(4.6)

= Ei
0Mxx

(︄
cos β cos2 α + ρ sin β sinα cosα
cos β sinα cosα + ρ sin β sin2 α

)︄
. (4.7)

The intensity detected by the detector is proportional to the norm of the Jones
vector of the final state, therefore,

I = I0

[︃
cos2 β cos2 α + |ρ|2 sin2 β sin2 α + 1

2 sin 2β sin 2αRe{ρ}
]︃
. (4.8)

By setting β = π/4 and varying α, we obtain the intensity dependence

I(α) = A cos2 α +B sin2 α + C sin 2α +D, with A,B,C,D ∈ R, (4.9)

that can be fitted to the data. From the ratios

B

A
= |ρ|2, (4.10)

C

A
= Re{ρ} (4.11)

of the fitted coefficients A,B and C the values of |ρ| and Re{ρ} can be extracted,
leaving only the sign of Im{ρ} unknown. This problem can be solved by adding
another element to the system, as can be seen in the example in Sec. 4.2.2.

4.2.2 RAE of a sample with general elliptic eigenpolariza-
tions in PSA and PSCA configurations

Let us consider an ellipsometer in the PSCA configuration (see Fig. 4.2) with
all its elements fixed except for the analyzer A, which can be rotated about the
z-axis by an angle α. The polarization axis of the polarizer P and the fast axis
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of the compensator C are parallel to the y-axis. The polarization transformation
can be computed using the Jones formalism in the following way:(︄

Ef
0x

Ef
0y

)︄
=
(︄

cos2 α sinα cosα
sinα cosα sin2 α

)︄(︄
e−iΓ 0

0 1

)︄(︄
Mxx Mxy

Myx Myy

)︄(︄
0
Ei

0y

)︄
(4.12)

= Ei
0yMyy

(︄
ρxye

−iΓ cos2 α + cosα sinα
ρxye

−iΓ cosα sinα + sin2 α

)︄
. (4.13)

Again, we calculate the norm of the transformed Jones vector to obtain the
intensity variation

I = I0
[︂
sin2 α + (Re{ρxy} cos Γ + Im{ρxy} sin Γ) sin 2α + |ρxy|2 cos2 α

]︂
. (4.14)

Measuring the intensity for different values of the angle α both in the PSA and
PSCA configurations and fitting an intensity function

I(α) = A sin2 +B sin 2α + C cos2 α +D with A,B,C,D ∈ R (4.15)

to these measurements allows for the determination of the generalized complex
ellipsometric parameter ρxy. By comparison to Eq. (4.14), we gain the relation

K = B

A
= Re{ρxy} cos Γ + Im{ρxy} sin Γ (4.16)

that binds the fitted coefficients A and B to ρxy through the linear retardance Γ.
To extract both complex parts of ρxy, first, we determine the ratio K in the PSA
configuration when Γ = 0, to determine the real part

Re{ρxy} = KP SA, (4.17)

then, the imaginary part can be computed from the measurement in the PSCA
configuration (Γ ̸= 0) as follows:

Im{ρxy} = KP SCA −KP SA cos Γ
sin Γ . (4.18)

The polarization change caused by the sample induces the azimuth and ellipticity
changes

θiy = 1
2 arctan 2 Re{ρxy}

1 − |ρxy|2
, (4.19)

ϵiy = 1
2 arcsin 2 Im{ρxy}

1 + |ρxy|2
, (4.20)

respectively. These changes are usually referred to via the underlying phenomena
that is being observed. When the optical anisotropy is induced by an external
magnetic field and we observe polarization changes in the reflection setting, i.e.
the magneto-optical Kerr effect (MOKE), they are referred to as the Kerr azimuth
θKy = θiy and the Kerr ellipticity ϵKy = ϵiy. Note that if we continued to follow
the convention of describing the polarization state, when it is observed against
the direction of propagation, we could account account for the change in the
clockwise and anticlockwise directions due to the reflection by changing the sing
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of Eqs. 4.19 and 4.20. However, in Chapter 5, a fixed coordinate system is used,
therefore, we will lean towards the definition without the sign change.

Supposing the polarization change is small, the absolute values |ρxy|, |ρyx| are
also small, and therefore its squares can be neglected (we can set C ≈ 0 in Eq.
(4.15)). It is also justified to use approximate relations

θiy ≈ Re{ρxy}, (4.21)
ϵiy ≈ Im{ρxy}, (4.22)

following from Eqs. (3.14a), (3.14b) or (3.15).
In the case of normal incidence (φ(0) = 0), the Jones matrix of a sample M

must be invariant under the rotation operation, i.e.(︄
cos ξ sin ξ

− sin ξ cos ξ

)︄(︄
Mxx Mxy

Myx Myy

)︄(︄
cos ξ − sin ξ
sin ξ cos ξ

)︄
=
(︄
Mxx Mxy

Myx Myy

)︄
, (4.23)

therefore

Mxx = Myy, (4.24)
Mxy = −Myx, (4.25)

and subsequently from Eq. (4.2)

ρxy = −ρyx (4.26)

must hold.

Figure 4.2: Reflection RAE setup in PSCA configuration
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4.3 Analysis of ellipsometric measurements
The main goal of the analysis of ellipsometric data is to gain information about
the sample properties. Only in a few special cases does the electro-magnetic
theory provide a direct expression into which the data can be simply plugged and
the unknown properties obtained.

One such example is a planar interface between two isotropic media (indexed i
and j), where the reflection and transmission are governed by the Fresnel complex-
amplitude reflection r and transmission t coefficients for s⃗ and p⃗ polarizations
(Azzam and Bashara, 1977, Ch. 4.2)

r(ij)
s = N (i) cosϕ(i) −N (j) cosϕ(j)

N (i) cosϕ(i) +N (j) cosϕ(j) , r(ij)
p = N (j) cosϕ(i) −N (i) cosϕ(j)

N (j) cosϕ(i) +N (i) cosϕ(j) , (4.27a)

t(ij)
s = 2N (i) cosϕ(i)

N (i) cosϕ(i) +N (j) cosϕ(j) , t(ij)
p = 2N (i) cosϕ(i)

N (j) cosϕ(i) +N (i) cosϕ(j) , (4.27b)

where N denotes relevant complex indices of refraction and ϕ are angles of devi-
ation from the normal of the interface in the relevant medium. The ratio of the
amplitude reflection coefficients yield the ellpsometric parameter of the interface

ρ(ij) =
r(ij)

p

r
(ij)
s

and with the help of Snell’s law N (i) sinϕ(i) = N (j) sinϕ(j), one can derive an
explicit expression for the relative permittivity of the second medium

ε(j) = ε(i) sin2 ϕ(i)

⎡⎣1 +
(︄

1 − ρ(ij)

1 + ρ(ij)

)︄2

tan2 ϕ(i)

⎤⎦. (4.28)

This expression is sufficiently accurate in many practical applications when mul-
tiple reflections need not to be considered, such as for absorbing bulk materials.

We will now add complexity to our previous example by considering a thin
non-amplifying isotropic laterally infinite film (medium 1) with two plane-parallel
boundaries between two isotropic half-spaces (media 0 and 2). For each interface
(01 and 12), the Fresnel amplitude coefficients still apply individually. The mul-
tiple reflection in the film manifests itself in the form of a geometric series1 in the
expressions for the global reflection coefficients for s and p polarizations (Azzam
and Bashara, 1977, Ch. 4.3)

rs = r(01)
s + t(01)

s t(10)
s r(12)

s e−2iβ
∞∑︂

m=0

(︂
r(10)

s r(12)
s e−2iβ

)︂m
, (4.29a)

rp = r(01)
p + t(01)

p t(10)
p r(12)

p e−2iβ
∞∑︂

m=0

(︂
r(10)

p r(12)
p e−2iβ

)︂m
, (4.29b)

where
β = ω

c
N (1)d (4.30)

1We implicitly assume full coherence of the interfering waves. Throughout this thesis we
focus on monochromatic plane-waves, which are fully coherent.

28



is the phase thickness of the film (d is its thickness). After evaluating the sums
and further algebraic manipulation from this model, one obtains the ellipsometric
parameter

ρ = rp

rs

=
r(01)

p + r(12)
p e−2iβ

1 + r
(01)
p r

(12)
p e−2iβ

1 + r(01)
s r(12)

s e−2iβ

r
(01)
s + r

(12)
s e−2iβ

. (4.31)

The unknown parameters of the film (thickness d and relative permittivity ε(1))
cannot be simply expressed from Eq. (4.31), but one has to employ numerical
methods.

It is common practice to extract unknown information about the system
through a regression algorithm (see Fig. 4.3) that compares the experimental
data to the theoretical model. More complex theoretical models can contain
multiple isotropic or anisotropic layers (their thicknesses and permittivity ten-
sor elements), such as the one introduced in Ch. 5. Other models can include
surface oxidation or roughness (Hilfiker and Tompkins, 2016, Ch. 8) and more.
For the regression analysis to be successful, the number of unknown properties
should not exceed the amount of information stored in the experimental data.
This requirement is, in most cases, met quite easily, while the problem is strongly
overdetermined. When fitting the data, one should also consider the global be-
havior of an estimator like Mean Squared Error (MSE), which quantifies the
agreement between the model data and the experimental data. The majority of
local minima of MSE are usually distinguishable by eye from the desired global
minimum.

Figure 4.3: Regression algorithm flowchart for the analysis of ellipsometric data
using a theoretical model with free and fixed parameters
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5. Propagation of Light in
Stratified Media
In this chapter, we will compute the magneto-optical response of a stratified struc-
ture consisting of N homogeneous layers with plane-parallel boundaries using a
4×4 matrix formalism introduced by Yeh (1980) that was originally intended to
describe non-absorbing birefringent layered media (permittivity is a real symmet-
ric tensor) and was later generalized to absorbing layered magnetically ordered
media by Vǐsňovský (1986). A brief overview of the latter formalism is provided
below. For a more in-depth discussion, we refer to the textbooks (Yeh, 2005;
Vǐsňovský, 2006).

5.1 Monochromatic plane-wave solution
Without any loss of generality, we can choose a Cartesian coordinate system
defined by the unit vectors x⃗, y⃗ and z⃗, where the z-axis is normal to the interfaces
and the x-axis is normal to the plane of incidence (see Fig. 5.1). We also assume
that the half-spaces denoted by 0 and N + 1 are isotropic, and the incident
light is coming from the half-space 0. Each layer is characterized by its relative
permittivity tensor

ε̂(n) =

⎛⎜⎝ε
(n)
xx ε(n)

xy ε(n)
xz

ε(n)
yx ε(n)

yy ε(n)
yz

ε(n)
zx ε(n)

zy ε(n)
zz

⎞⎟⎠ ,∀n ∈ {1, ...,N } (5.1)

and its thickness d(n).
As was discussed in the first chapter, at optical frequencies, the effect of

the magnetic field of incident light can be neglected. The relative permeability
tensor therefore assumes for all layers a simple form µ

(n)
ij = δij. From Maxwell’s

equations

∇ × B⃗ − 1
c2
∂

∂t

(︂
ε̂E⃗
)︂

= 0, (5.2a)

∇ × E⃗ − ∂B⃗

∂t
= 0, (5.2b)

∇ ·
(︂
ε̂E⃗
)︂

= 0, (5.2c)

∇ · B⃗ = 0, (5.2d)

a wave equation for the electric field in the n-th layer

∇2E⃗
(n)

− ∇
(︃

∇ · E⃗
(n)
)︃

− ε̂
1
c2
∂2E⃗

(n)

∂t2
= 0 (5.3)

can be derived. A monochromatic plane-wave solution in the n-th layer of
Eq. (5.3)

E⃗
(n) = E⃗

(n)
0 exp

[︂
i
(︂
ωt− γ⃗(n) · r⃗

)︂]︂
(5.4)
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Figure 5.1: Stratified structure consisting of N (generally anisotropic) layers
between two isotropic half-spaces

obeys the vector eigenmode equation

γ(n)2E⃗
(n)
0 − γ⃗(n)

(︃
γ⃗(n) · E⃗

(n)
0

)︃
− ε̂(n)ω

2

c2 E⃗
(n)
0 = 0, (5.5)

where
γ⃗(n) = ω

c

(︂
N (n)

x x⃗+N (n)
y y⃗ + +N (n)

z z⃗
)︂

(5.6)

is the propagation vector in the n-th layer.
It is important to note that Eqs. (5.2) take into account only the linear re-

sponse. Therefore, the Fourier components do not mix, and we can solve the
problem individually for each frequency and propagation vector. Also, to avoid
any confusion, we need to keep in mind that the chosen time variation exp(iωt)
in Eq. (5.4) leads to a complex refractive index in the form ReN (n)

i − i ImN
(n)
i ,

which subsequently lead to the complex permittivity tensor element in the form
Re ε(n)

ij − i Im ε
(n)
ij .

Using the complex indices of refraction Ni and Einstein’s summation conven-
tion, we can rewrite Eq. (5.5) in Cartesian components as(︂

N
(n)
i N

(n)
i −N

(n)
i N

(n)
j − ε

(n)
ij

)︂
E

(n)
0j = 0, i, j ∈ {x, y, z}. (5.7)

For this system of equations to have a solution, its determinant must be zero⃓⃓⃓⃓
⃓⃓⃓N

(n)2
y +N (n)2

z − ε(n)
xx −N (n)

x N (n)
y − ε(n)

xy −N (n)
x N (n)

z − ε(n)
xz

−N (n)
y N (n)

x − ε(n)
yx N (n)2

x +N (n)2
z − ε(n)

yy −N (n)
y N (n)

z − ε(n)
yz

−N (n)
z N (n)

x − ε(n)
zx −N (n)

z N (n)
y − ε(n)

zy N (n)2
x +N (n)2

y − ε(n)
zz

⃓⃓⃓⃓
⃓⃓⃓ = 0. (5.8)
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The boundary conditions on each interface require a continuity of propagation
vector components parallel to the interface, i.e. ∀n ∈ {0, ...,N + 1}:

γ⃗(n) · x⃗ = ω

c
Nx, (5.9)

γ⃗(n) · y⃗ = ω

c
Ny, (5.10)

where Nx = 0 (since we have chosen the x-axis to be normal to the plane of
incidence) and Ny = N (0)

y . Therefore, only the z-component of the propagation
vector

γ⃗(n) = ω

c

(︂
Nyy⃗ + +N (n)

z z⃗
)︂

(5.11)

is layer-dependent. This substantially simplifies the condition for the determinant⃓⃓⃓⃓
⃓⃓⃓N

2
y +N (n)2

z − ε(n)
xx −ε(n)

xy −ε(n)
xz

−ε(n)
yx N (n)2

z − ε(n)
yy −NyN

(n)
z − ε(n)

yz

−ε(n)
zx −N (n)

z Ny − ε(n)
zy N2

y − ε(n)
zz

⃓⃓⃓⃓
⃓⃓⃓ = 0 (5.12)

and produces an algebraic equation of the 4th order. Therefore, we have four
eigenvectors (modes) E⃗(n)

0j = E
(n)
0j e⃗

(n)
j that are characterized by their complex

amplitude E(n)
0j at the interface between the n-th and the (n + 1)-st layer (i.e.

z = z(n)) and the unit polarization vector

e⃗
(n)
j = C

(n)
j

⎛⎜⎜⎜⎝
−ε(n)

xy

(︂
ε(n)

xy −N2
y

)︂
+ ε(n)

xz

(︂
ε(n)

zy −NyN
(n)
zj

)︂(︂
ε(n)

zz −N2
y

)︂(︂
ε(n)

xx −N2
y −N

(n)2
zj

)︂
− ε(n)

xz ε
(n)
zx

−
(︂
ε(n)

xx −N2
y −N

(n)2
zj

)︂(︂
ε(n)

zy −NyN
(n)
zj

)︂
+ ε(n)

zx ε
(n)
xy

⎞⎟⎟⎟⎠ , (5.13)

which follows from Eq. (5.7) for eigenvectors. C(n)
j is the corresponding normal-

ization factor. The electric field in each layer can be written as a superposition
of these modes, i.e.

E⃗
(n)(z) =

4∑︂
j=1

E
(n)
0j e⃗

(n)
j exp

[︃
iωt− i

ω

c

(︂
Nyy +N

(n)
zj (z − z(n))

)︂]︃
, z(n−1) ≤ z ≤ z(n).

(5.14)
The magnetic flux density of the electric field amplitude eigenvectors can be found
using the Faraday law, i.e. Eq. (5.2b), as follows:

−iγ⃗(n)
j × E⃗

(n)
j + iωB⃗

(n)
j = 0, (5.15)

B⃗
(n)
j = 1

c

(︂
Nyy⃗ +N

(n)
zj z⃗

)︂
× E⃗

(n)
j . (5.16)

The magnetic flux density in the n-th layer can also be written as such superpo-
sition of eigenvectors

B⃗
(n)(z) = 1

c

4∑︂
j=1

E
(n)
0j b⃗

(n)
j exp

[︃
iωt− i

ω

c

(︂
Nyy +N

(n)
zj (z − z(n))

)︂]︃
, z(n−1) ≤ z ≤ z(n),

(5.17)
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where

b⃗
(n)
j =

(︂
Nyy⃗ +N

(n)
zj z⃗

)︂
× e⃗

(n)
j (5.18)

= C
(n)
j

⎛⎜⎜⎜⎝
(︂
ε(n)

xx −N2
y −N

(n)2
zj

)︂(︂
N

(n)
zj ε

(n)
zz +Nyε

(n)
zy

)︂
+ ε(n)

zx

(︂
Nyε

(n)
xy +N

(n)
zj ε

(n)
xz

)︂
N

(n)
zj

[︂
−ε(n)

xy

(︂
ε(n)

zz −N2
y

)︂
+ ε(n)

xz

(︂
ε(n)

zy +NyN
(n)
zj

)︂]︂
−Ny

[︂
−ε(n)

xy

(︂
ε(n)

zz −N2
y

)︂
+ ε(n)

xz

(︂
ε(n)

zy +NyN
(n)
zj

)︂]︂
⎞⎟⎟⎟⎠

(5.19)

is the polarization vector of the j-th magnetic flux density eigenvector in the n-th
layer.

5.2 Vǐsňovský-Yeh’s 4×4 matrix formalism
Boundary conditions require continuity of the tangential components of the elec-
tric field and the magnetic flux density. Therefore, the set of conditions

E⃗
(n−1)(z(n−1)) · x⃗ = E⃗

(n)(z(n−1)) · x⃗, (5.20a)

B⃗
(n−1)(z(n−1)) · y⃗ = B⃗

(n)(z(n−1)) · y⃗, (5.20b)

E⃗
(n−1)(z(n−1)) · y⃗ = E⃗

(n)(z(n−1)) · y⃗, (5.20c)

B⃗
(n−1)(z(n−1)) · x⃗ = B⃗

(n)(z(n−1)) · x⃗, (5.20d)

must be met ∀n ∈ {1, ...,N + 1}. Substituting corresponding Eqs. (5.14) and
(5.17) to these continuity conditions yields

4∑︂
j=1

E⃗
(n−1)
0j (z(n−1))e⃗(n−1)

j · x⃗ =
4∑︂

j=1
E⃗

(n)
0j (z(n))e⃗(n)

j · x⃗ exp
(︃
i
ω

c
N

(n)
zj d

(n)
)︃
, (5.21a)

4∑︂
j=1

E⃗
(n−1)
0j (z(n−1))b⃗

(n−1)
j · y⃗ =

4∑︂
j=1

E⃗
(n)
0j (z(n))b⃗

(n)
j · y⃗ exp

(︃
i
ω

c
N

(n)
zj d

(n)
)︃
, (5.21b)

4∑︂
j=1

E⃗
(n−1)
0j (z(n−1))e⃗(n−1)

j · y⃗ =
4∑︂

j=1
E⃗

(n)
0j (z(n))e⃗(n)

j · y⃗ exp
(︃
i
ω

c
N

(n)
zj d

(n)
)︃
, (5.21c)

4∑︂
j=1

E⃗
(n−1)
0j (z(n−1))b⃗

(n−1)
j · x⃗ =

4∑︂
j=1

E⃗
(n)
0j (z(n))b⃗

(n)
j · x⃗ exp

(︃
i
ω

c
N

(n)
zj d

(n)
)︃
, (5.21d)
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where d(n) = z(n) − z(n−1) is the thickness of the n-th layer. The last step is to
rewrite this set of equations into one matrix equation⎛⎜⎜⎜⎜⎜⎝

e⃗
(n−1)
1 · x⃗ e⃗

(n−1)
2 · x⃗ e⃗

(n−1)
3 · x⃗ e⃗

(n−1)
3 · x⃗

b⃗
(n−1)
1 · y⃗ b⃗

(n−1)
2 · y⃗ b⃗

(n−1)
3 · y⃗ b⃗

(n−1)
3 · y⃗

e⃗
(n−1)
1 · y⃗ e⃗

(n−1)
2 · y⃗ e⃗

(n−1)
3 · y⃗ e⃗

(n−1)
3 · y⃗

b⃗
(n−1)
1 · x⃗ b⃗

(n−1)
2 · x⃗ b⃗

(n−1)
3 · x⃗ b⃗

(n−1)
3 · x⃗

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
E

(n−1)
01

E
(n−1)
02

E
(n−1)
03

E
(n−1)
04

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
e⃗

(n)
1 · x⃗ e⃗

(n)
2 · x⃗ e⃗

(n)
3 · x⃗ e⃗

(n)
3 · x⃗

b⃗
(n)
1 · y⃗ b⃗

(n)
2 · y⃗ b⃗

(n)
3 · y⃗ b⃗

(n)
3 · y⃗

e⃗
(n)
1 · y⃗ e⃗

(n)
2 · y⃗ e⃗

(n)
3 · y⃗ e⃗

(n)
3 · y⃗

b⃗
(n)
1 · x⃗ b⃗

(n)
2 · x⃗ b⃗

(n)
3 · x⃗ b⃗

(n)
3 · x⃗

⎞⎟⎟⎟⎟⎟⎠

× exp

⎛⎜⎜⎜⎜⎜⎝
iω

c
N

(n)
z1 d

(n) 0 0 0
0 iω

c
N

(n)
z2 d

(n) 0 0
0 0 iω

c
N

(n)
z3 d

(n) 0
0 0 0 iω

c
N

(n)
z4 d

(n)

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
E

(n)
01

E
(n)
02

E
(n)
03

E
(n)
04

⎞⎟⎟⎟⎟⎟⎠ .

(5.22)

Defining the dynamical matrix

D(n) =

⎛⎜⎜⎜⎜⎜⎝
e⃗

(n)
1 · x⃗ e⃗

(n)
2 · x⃗ e⃗

(n)
3 · x⃗ e⃗

(n)
3 · x⃗

b⃗
(n)
1 · y⃗ b⃗

(n)
2 · y⃗ b⃗

(n)
3 · y⃗ b⃗

(n)
3 · y⃗

e⃗
(n)
1 · y⃗ e⃗

(n)
2 · y⃗ e⃗

(n)
3 · y⃗ e⃗

(n)
3 · y⃗

b⃗
(n)
1 · x⃗ b⃗

(n)
2 · x⃗ b⃗

(n)
3 · x⃗ b⃗

(n)
3 · x⃗

⎞⎟⎟⎟⎟⎟⎠ (5.23)

and the propagation matrix

P(n) =

⎛⎜⎜⎜⎜⎜⎝
ei ω

c
N

(n)
z1 d(n) 0 0 0
0 ei ω

c
N

(n)
z2 d(n) 0 0

0 0 ei ω
c

N
(n)
z3 d(n) 0

0 0 0 ei ω
c

N
(n)
z4 d(n)

⎞⎟⎟⎟⎟⎟⎠ (5.24)

of the n-th layer allows us to write the set of equations arising from the continuity
conditions at the interfaces simply as

D(n−1)E⃗
(n−1)
0 = D(n)P(n)E⃗

(n)
0 . (5.25)

In other words, we derived the relation

E⃗
(n−1)
0 = T(n−1,n)E⃗

(n)
0 , (5.26)

connecting complex amplitudes of eigenvectors of both E⃗ and B⃗ at the opposite
interfaces of the n-th layer via a transfer matrix

T(n−1,n) =
(︂
D(n−1)

)︂−1
D(n)P(n). (5.27)

For the amplitudes in the half-space N + 1 at the interface z = z(N ), the corre-
sponding propagation matrix is the identity matrix, i.e.

E⃗
(N )
0 = T(N ,N +1)E⃗

(N +1)
0 =

(︂
D(N )

)︂−1
D(N +1)E⃗

(N +1)
0 . (5.28)
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The recurrent substitution of Eq. (5.26) into itself for n = 1, . . . ,N + 1 yields a
relation

E⃗
(0)
0 = T(0,1)E⃗

(1)
0 = T(0,1)T(1,2)E⃗

(2)
0 = T(0,1)T(1,2) . . .T(N ,N +1)E⃗

(N +1)
0 (5.29)

= ME⃗
(N +1)
0 , (5.30)

binding the amplitudes in the half-spaces 0 and N + 1. We have denoted the
above matrix product

M =
N +1∏︂
n=1

T(n−1,n), (5.31)

which we will refer to as the matrix of the multilayer.

5.2.1 Isotropic layers
If the n-th layer (or the half-space) is isotropic, the relative permittivity can be
described by a scalar

ε(n) = N (n)2 = N2
y +N (n)2

z (5.32)
that determines the eigenvalues

N
(n)
±z = ±

√︂
N (n)2 −N2

y = ±N (n) cosϕ(n) (5.33)

of the index of refraction for the propagation along the z-axis in the positive (+)
and the negative (−) sense. Eq. (5.7) assumes the form

⎛⎜⎝N
2
y +N (n)2

z −N (n)2 0 0
0 N2

z −N (n)2 −NyN
(n)
z

0 −NyN
(n)
z N2

y −N (n)2

⎞⎟⎠
⎛⎜⎜⎝
E

(n)
0x

E
(n)
0y

E
(n)
0z

⎞⎟⎟⎠ =

⎛⎜⎝0
0
0

⎞⎟⎠ (5.34)

and yields the eigenspaces

M⊥
± =

⎧⎪⎨⎪⎩p
⎛⎜⎝1

0
0

⎞⎟⎠+ q

⎛⎜⎝ 0
∓ cosϕ(n)

sinϕ(n)

⎞⎟⎠
⃓⃓⃓⃓
⃓⃓ p, q ∈ C

⎫⎪⎬⎪⎭, (5.35)

whose elements are orthogonal to the propagation vectors

γ⃗
(n)
± = ω

c
N (n)

⎛⎜⎝ 0
sinϕ(n)

± cosϕ(n)

⎞⎟⎠ , (5.36)

respectively. We can choose normalized bases of these eigenspaces, namely

e⃗
(n)
1 =

⎛⎜⎝ p
q cosϕ(n)

−q sinϕ(n)

⎞⎟⎠ , e⃗
(n)
3 =

⎛⎜⎝ −q∗

p∗ cosϕ(n)

−p∗ sinϕ(n)

⎞⎟⎠ ∈ M⊥
+, (5.37)

e⃗
(n)
2 =

⎛⎜⎝ p
q cosϕ(n)

q sinϕ(n)

⎞⎟⎠ , e⃗
(n)
4 =

⎛⎜⎝ −q∗

p∗ cosϕ(n)

p∗ sinϕ(n)

⎞⎟⎠ ∈ M⊥
−, (5.38)
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such that for two numbers p, q ∈ C obeying the normalization condition

pp∗ + qq∗ = 1 (5.39)

they represents orthonormal polarization vectors (px⃗+ qy⃗) and (−q∗x⃗+p∗y⃗) that
are rotated about the x-axis by ϕ(n) in the positive sense (anticlockwise when
facing the x-axis), in the case of the polarization vectors e⃗(n)

1 , e⃗
(n)
3 of the forward-

propagating modes, or rotated in the negative sense (clockwise when facing the x-
axis), in the case of the polarization vectors e⃗(n)

2 , e⃗
(n)
4 of the backward-propagating

modes.
After the computation of the magnetic flux density polarization vectors

b⃗
(n)
1 =

⎛⎜⎝ −q
p cosϕ(n)

−p sinϕ(n)

⎞⎟⎠ , b⃗
(n)
3 =

⎛⎜⎝ −p∗

−q cosϕ(n)

q∗ sinϕ(n)

⎞⎟⎠ , (5.40)

b⃗
(n)
2 =

⎛⎜⎝ q
−p cosϕ(n)

−p sinϕ(n)

⎞⎟⎠ , b⃗
(n)
4 =

⎛⎜⎝ p∗

q∗ cosϕ(n)

q∗ sinϕ(n)

⎞⎟⎠ (5.41)

from Eq. (5.18), the dynamical matrix of an isotropic layer

D(n) =

⎛⎜⎜⎜⎝
p p −q∗ −q∗

N (n)p cosϕ(n) −N (n)p cosϕ(n) −N (n)q∗ cosϕ(n) −N (n)q∗ cosϕ(n)

q cosϕ(n) q cosϕ(n) p∗ cosϕ(n) p∗ cosϕ(n)

−N (n)q N (n)q −N (n)p∗ N (n)p∗

⎞⎟⎟⎟⎠
(5.42)

can be obtained.

5.2.2 Eigenmode polarization vector normalization
Omitting the normalization factors in Eqs. (5.13) and (5.19) is equivalent to
dividing the normalized vectors by their normalization factors. The denormalized
dynamical matrix of the n-th layer

˜︁D(n) = D(n)
(︂
C(n)

)︂−1
(5.43)

relates to the normalized one via the normalization coefficient matrix

C(n) =

⎛⎜⎜⎜⎜⎜⎝
C

(n)
1 0 0 0
0 C

(n)
2 0 0

0 0 C
(n)
3 0

0 0 0 C
(n)
4

⎞⎟⎟⎟⎟⎟⎠ . (5.44)

Therefore, for the transfer matrix from Eq. (5.27), it follows:

T(n−1,n) =
(︂˜︁D(n−1)C(n−1)

)︂−1 ˜︁D(n)C(n)P(n) (5.45)

=
(︂˜︁C(n−1)

)︂−1(︂˜︁D(n−1)
)︂−1 ˜︁D(n)P(n)C(n) (5.46)

=
(︂
C(n−1)

)︂−1 ˜︁T(n−1,n)C(n), (5.47)
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where we have utilized the matrix identity

(AB)−1 = B−1A−1 (5.48)

for the product of invertible matrices A and B as well as the fact that diagonal
matrices commute.

Finally, we can show that the multilayer matrix is dependent only on the
normalization coefficients of the two half-spaces surrounding the multilayer, for
the rest of the coefficients is canceled out in the product

M =
N +1∏︂
n=1

(︂
C(n−1)

)︂−1 ˜︁T(n−1,n)C(n) (5.49)

=
(︂
C(0)

)︂−1 ˜︁T(0,1)C(1)
(︂
C(1)

)︂−1 ˜︁T(1,2)C(2) . . .
(︂
C(N )

)︂−1 ˜︁T(N ,N +1)C(N +1) (5.50)

=
(︂
C(0)

)︂−1
(︄N +1∏︂

n=1

)︄
C(N +1). (5.51)

5.2.3 Generalized complex ellipsometric parameters
Assuming that the multilayer is illuminated from the half-space 0 and there is no
incident light from the half-space N + 1 (i.e. E(N+1)

02 = E
(N+1)
04 = 0), the complex

amplitudes are bound by Eq. (5.29) in the following form:⎛⎜⎜⎜⎜⎜⎝
E

(0)
01

E
(0)
02

E
(0)
03

E
(0)
04

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
E

(N +1)
01
0

E
(N +1)
03
0

⎞⎟⎟⎟⎟⎠ , (5.52)

from which global reflection coefficients

r21 =
⎛⎝E(0)

02

E
(0)
01

⎞⎠
E

(0)
03 =0

= M21M33 −M23M31

M11M33 −M13M31
, (5.53a)

r41 =
⎛⎝E(0)

04

E
(0)
01

⎞⎠
E

(0)
03 =0

= M41M33 −M43M31

M11M33 −M13M31
, (5.53b)

r43 =
⎛⎝E(0)

04

E
(0)
03

⎞⎠
E

(0)
01 =0

= M43M11 −M41M13

M11M33 −M13M31
, (5.53c)

r23 =
⎛⎝E(0)

02

E
(0)
03

⎞⎠
E

(0)
01 =0

= M23M11 −M21M13

M11M33 −M13M31
(5.53d)
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and global transmission coefficients

t11 =
⎛⎝E(N +1)

01

E
(0)
03

⎞⎠
E

(0)
03 =0

= M33

M11M33 −M13M31
, (5.54a)

t31 =
⎛⎝E(N +1)

03

E
(0)
01

⎞⎠
E

(0)
03 =0

= −M31

M11M33 −M13M31
, (5.54b)

t33 =
⎛⎝E(N +1)

03

E
(0)
03

⎞⎠
E

(0)
01 =0

= M11

M11M33 −M13M31
, (5.54c)

t13 =
⎛⎝E(N +1)

01

E
(0)
03

⎞⎠
E

(0)
01 =0

= −M13

M11M33 −M13M31
(5.54d)

are derived. The above coefficients relate the complex amplitudes of incident
(E(0)

01 , E
(0)
03 ), reflected (E(0)

02 , E
(0)
04 ) and transmitted (E(N +1)

01 , E
(N +1)
03 ) orthogonal

pairs of eigenmodes in one or both half-spaces via the Jones reflection and trans-
mission matrices (︄

E
(0)
02

E
(0)
04

)︄
=
(︄
r21 r23
r41 r43

)︄(︄
E

(0)
01

E
(0)
03

)︄
, (5.55)

(︄
E

(N +1)
01

E
(N +1)
03

)︄
=
(︄
t11 t13
t31 t33

)︄(︄
E

(0)
01

E
(0)
03

)︄
. (5.56)

The generalized complex ellipsometric parameters in the eigenmode basis1

ρ2343 = r23

r43
, ρ4121 = r41

r21
, (5.57)

ρ1333 = t13

t33
, ρ3111 = t31

t11
(5.58)

are in exact agreement with Eqs. (4.2) after setting p = 1, q = 0 (choosing a
linear basis Bxy = (x⃗, y⃗) = (s⃗, p⃗) of both isotropic half-spaces) and the indices
transformation (1, 2 → x and 3, 4 → y), i.e.

ρ2343 = rxy

ryy

= ρxy, ρ4121 = ryx

rxx

= ρyx (5.59)

in the reflection case and

ρ1333 = txy

tyy

= ρxy, ρ3111 = tyx

txx

= ρyx (5.60)

in the transmission case.

1These eigenmodes are the eigenvectors of isotropic half-space and are not to be confused
with the eigenpolarizations of the polarization system, in which the reflection and transmission
matrices would be diagonal.
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6. Experimental Setups and
Numerical Computations
This chapter provides information about experimental setups and equipment used
for data collection as well as the details of and approximations employed during
computations of material properties via a regression analysis.

All our samples consist of 3 layers with plane-parallel boundaries, namely,
the NMG layer of various compositions and thicknesses (medium 1), the 20 nm
thick Cr layer (medium 2) and the MgO substrate (medium 3). For computation
purposes, the surrounding medium (i.e. half-spaces 0 and 4) is considered to be
a vacuum, although the ellipsometric measurements themselves were executed at
atmospheric pressure.

First, we assume that all layers are homogeneous and isotropic, and the optical
constants of both Cr and MgO are known. From the ellipsometric data in the
zero external magnetic field, we compute the diagonal elements of the relative
permittivity tensor of the NMG layer

ε̂(1)(0) =

⎛⎜⎝ε
(1)
xx (0) 0 0

0 ε(1)
xx (0) 0

0 0 ε(1)
xx (0)

⎞⎟⎠ . (6.1)

Then, we make an assumption that by applying the external magnetic field
parallel to the surface normal of the sample (parallel to the z-axis, i.e. in the
out-of-plane configuration), the Cr and MgO layers remain unchanged, while the
NMG layer is magnetized in the direction of the field. In this way, the symmetry
of the relative permittivity tensor of the NMG layer is changed from spherical (a
point group denoted in the Schönflies notation as Kh) to that of an axial vector
M⃗ = (0, 0,M) (a point group C∞h), which corresponds to the form expressed
by Eq. (2.9). While also assuming that the magnetically induced anisotropy has
a negligible effect on the diagonal elements and manifests itself only in the off-
diagonal elements, we can approximate the relative permittivity tensor of the
NMG layer as (Vǐsňovský, 2006, Ch. 1.6.1)

ε̂(1)(M) =

⎛⎜⎝ ε(1)
xx (M) ε(1)

xy (M) 0
−ε(1)

xy (M) ε(1)
xx (M) 0

0 0 ε(1)
zz (M)

⎞⎟⎠ ≈

⎛⎜⎝ ε(1)
xx (0) ε(1)

xy (M) 0
−ε(1)

xy (M) ε(1)
xx (0) 0

0 0 ε(1)
xx (0)

⎞⎟⎠ .
(6.2)

From this point forward, our references to either diagonal or off-diagonal elements
will be meant in the sense of the above approximation.

6.1 Optical spectroscopic RCE
For the determination of the diagonal elements of the relative permittivity ten-
sor of the NMG layer, a commercial ellipsometer J.A. Woollam RC2 with its
software CompleteEASE, allowing both hardware control and subsequent data
analysis. The ellipsometer has two rotating compensators (both before and after
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the sample) and a silicon CCD spectrometer combined with an InGaAs diode
array, allowing for measurements in the spectral range from 193 nm to 1690 nm
(i.e. 0.73 eV to 6.47 eV) with a resolution of 1 nm in the spectral range from
1000 nm to 1690 nm and a resolution of 2.5 nm in the spectral range from 193 nm
to 1000 nm.

The spectra of ellipsometric angles Ψ(ω),∆(ω) were acquired for multiple
angles of incidence. CompleteEASE also possesses a library of spectra of the
optical constants of many materials (including Cr and MgO) and allows a user to
build a model of stratified structure and to account for other parameters, such as
roughness or supposed absorption out of the measured spectral range. Through
the regression analysis, one gains the spectral dependence of the optical constants
of the NMG layer.

6.2 Magneto-optical spectroscopic RAE
A laser-driven lamp Energetiq EQ-99X-FC-S was used as a time-stable source of
polychromatic light. It emits in the spectral range from 190 nm to 2500 nm (i.e.
0.50 eV to 6.53 eV) with a broadband optical power of 95 mW.

A sample was mounted on a pole of an electromagnet, which generates a mag-
netic field oriented parallel to the normal of the surface of the sample, inducing
a uniform magnetization (in the same direction) of the originally isotropic NMG
layer. In Section 4.2.2, we showed that a sample with general elliptic eigenpo-
larizations has nonzero generalized complex ellipsometric parameters ρxy and ρyx

that, in the case of normal incidence, differ only in signs and can be obtained via
Eqs. (4.17) and (4.18) from the measurement of the intensity dependence on the
analyzer angle described by Eq. (4.15) in both PSA and PSCA configuration. Al-
ternatively, polar MOKE at normal incidence can be described using Eqs. (4.19)
and (4.20), by the Kerr azimuth θK and the Kerr ellipticity ϵK , respectively.

In the RAE ellipsometer, a computer-controlled motorized rotational mount
Thorlabs K10CR1/M enables the analyzer angle α to be set with the precision
of ±0.14°. In each of the intervals [−5°,−2°] and [2°, 5°], for 20 evenly equidis-
tantly distributed values of the angle α, intensity spectra were measured us-
ing a spectrometer. Namely, for the temperature-dependent measurements (see
Sec. 7.1.2), the spectrometer Ocean Insight QE Pro with the spectral range from
196 nm to 990 nm and the full-width at half-maximum (FWHM) resolution of
1.6 nm was used. For the two different composition series of samples with vary-
ing thickness (see Sec. 7.2.2), the spectrometer Ocean Optics USB2000+ with
the spectral range from 190 nm to 892 nm and the FWHM resolution of 1.6 nm
was used. The former of the two spectrometers has a thermoelectric cooling de-
vice, which dramatically reduces the effects of thermal noise and provides the
spectrometer with an overall stability during longer measurements.

As was demonstrated in Sec. 2.1 from symmetry arguments, the linear polar
MOKE and consequently the off-diagonal elements of the permittivity tensor are
odd in magnetization. Leveraging this property, measurements were made for
magnetic fields ±1.1 T and the ratio given by Eq. (4.16) was averaged over both
field orientations

Kavg = 1
2(K(M) −K(−M)), (6.3)
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in order to dispose of optical effects that are even in magnetization.

6.3 Off-diagonal element spectra calculation of
the NMG layer relative permittivity tensor

Finally, we will employ the model from Chapter 5 to compute the off-diagonal
elements via a regression analysis. Fixed input parameters of our model are

1. d(1), d2), d(3) – thicknesses of each of the three layers,

2. ε(2)(ω), ε(3)(ω) – scalar relative permittivity spectra of Cr and MgO layers,
respectively,

3. ε(1)
xx (ω) – spectra of the diagonal elements of the relative permittivity tensor

of the NMG layer obtained from the optical spectroscopic RCE measure-
ments and its regression model

4. θK(ω), ϵK(ω) Kerr azimuth and Kerr ellipticity spectra from the magneto-
optical spectroscopic RAE in polar geometry at normal incidence.

The remaining input material property spectra are the off-diagonal elements of the
relative permittivity tensor of the NMG layer ε(1)

xy (ω). For each energy E = ℏω,
we set this off-diagonal element to an arbitrary initial value and let it vary as a
free parameter until the minimum of the MSE is reached. In this case, the MSE
quantifies the difference between measured θK(ω), ϵK(ω) and expected values that
are obtained from the model generalized complex ellipsometric parameter (5.59)
using Equations (4.19) and (4.20).

This model was implemented in a proprietary multi-paradigm programming
language and numerical computing environment MATLAB R2021b developed by
MathWorks.
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7. Discussion of Results
The experimental part of this thesis is concerned with two main objectives. The
first objective is to measure and study the optical and magneto-optical responses
of a NMG thin film sample upon heating and cooling across the martensitic trans-
formation. The second objective is to extend previous measurements (Makeš,
2021) on NMG films with a varying thickness to different stoichiometric compo-
sitions and evaluate their effects on the strain relaxation process.

It is important to point out the limitations imposed by the experimental tech-
niques and the mathematical model described in Chapter 6. This model assumes
perfectly homogeneous laterally infinite layers with plane-parallel boundaries and
a linear response of each medium. It also considers the sandwitched structure as
a whole, but in reality, the penetration depth is in the order of tens of nanome-
ters due to the relatively high absorption that is characteristic of metals, and
therefore parts of the structure past the penetration depth influence the optical
response in an indirect manner, such as causing a substrate-induced strain in
the probed depth (described by the z-axis). Moving on to the other two spatial
dimensions (the xy-plane), previous studies (Thomas et al., 2008a; Onderková,
2020) of surface morphology by means of scanning electron microscopy (SEM)
and atomic force microscopy (AFM) revealed macroscopic twin variants on a scale
of a few micrometers and even finer structures like nanotwinning on a scale of
tens of nanometers. With that being said, our light trace in reflection ellipsom-
etry setups is a few mm in diameter, is of different shapes for various angles of
incidence (i.e. differently elongated ellipses), and there is also a possible shift of
the probed surface area (caused both by the change of shape and by the sample
manipulation between experimental setups). As for the temporal dimension, the
time periods needed for temperature stabilization, measurement preparation and
the measurement itself were in the order of minutes. Hence, we are not taking
into account any possible relaxation processes, such as those observed on bulk by
Dejneka et al. (2012) that were reported to be in the order of hours. The afore-
mentioned relaxation process of the real part n of the complex refractive index
to its equilibrium value n0 with respect to time t was fitted to an exponential
relation

n(t) = n0 ∓ n1 exp
(︃

− t

τ

)︃
, (7.1)

where τ is the relaxation time and n1 is the excitation amplitude. The signs
correspond to either heating (−) or cooling (+). In the same paper, it was shown
for the incident light energy of 2 eV that both n1 and τ tend to decrease with in-
creasing temperature, and while at room temperature and above, τ is in the order
of tens of minutes, the excitation amplitude is very small (n1 ≲ 0.01). Supposing
our film sample undergoes both qualitatively and quantitatively identical relax-
ation process as the one described on bulk, it might cause fluctuations of n up to
0.01 in magnitude for temperatures lower than 42 °C. For higher temperatures,
the excitation amplitude becomes zero. However, further investigations into the
relaxation process would be necessary for more conclusive results, and the ques-
tion remains whether the relaxation process in thin films really is analogous to
that in bulk. To conclude, we need to keep in mind that all phenomena in the
delineated scope of the above space-time imprecision are beyond the resolution
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of our chosen method.
As we discussed in Sec. 1.3, from the ab initio calculations by Entel et al.

(2006), the electron transition energies are expected to be at around 1.8 eV and
2.8 eV in the austenite phase, and, in the martensite phase, they are expected to
be at around 2 eV and 3 eV. Moreover, a change in the transition intensities during
the phase transition is expected as well. These predictions are in agreement with
the optical conductivity measurements by Zhou et al. (2002) on bulk Ni2MnGa,
which revealed two electron transitions at the energies of 1.8 eV and 3.2 eV.

7.1 Thermally-induced martensitic transforma-
tion in 400 nm thin Ni-Mn-Ga film

For our first objective, a film (grown epitaxially using magnetron sputtering on the
20nm Cr layer and the MgO substrate at 550 °C) with the nominal composition
Ni47Mn32Ga21 and the nominal thickness of 400 nm was used1. The sample was
mounted on a Peltier device. The current through the device was manually set
using the Keathley 2461 SourceMeter at the beginning and adjusted throughout
each measurement, which caused temperature fluctuations of about 0.5 °C. The
temperature was measured by the Keithley 2000 multimeter calibrated at room
temperature.

A study (Thomas et al., 2008a) of a 470 nm Ni52Mn23Ga25 film2 deposited at
400 °C directly on MgO substrate concluded from XRD results that at 27 °C the
film was in the 14M orthorhombic (with a monoclinic distortion of about 2.7°)
martensitic phase, and at 63 °C it was in the cubic austenitic phase, therefore, at
least some portion of the film undergoes phase transition. Furthermore, it was
argued that a complete martensitic transformation is hindered by the presence
of the substrate, and a thin constrained austenitic layer remains at the film-
substrate interface. The study also found the transformation temperatures from
a linear extrapolation of a low-field (0.01 T) magnetization curve. Namely, during
heating, the transformation from martensite to austenite starts at 48 °C and ends
at 53 °C, and during cooling, it starts at 46 °C and ends at 41 °C. Its Curie
temperature was found to be 79 °C.

The magnetometry measurement of our sample, kindly provided by Verbeno
(2021), indicates at least a partial phase transition. Using linear extrapolation,
the transformation temperatures were determined. In this case, the transforma-
tion takes place during heating from 42 °C to 50 °C and during cooling from 44 °C
to 36 °C with the temperature hysteresis of 8 °C.

7.1.1 Optical measurements in zero magnetic field
Our temperature-dependent spectra (Figs. 7.1 and 7.2) of the diagonal element
of the relative permittivity tensor εxx in the zero magnetic field exhibit a charac-
teristic metallic behavior (see Sec. 2.3 and Fig. 2.1b). Bound electron transitions

1Nominal thickness was derived from the epitaxial growth time during magnetron sputtering
and the nominal composition is the composition of the crystal used as a target for sputtering.

2Thickness was obtained from SEM, and the composition was determined by electron dis-
persive X-ray (EDX) measurement with the accuracy of about 0.5 at. %.
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(see Sec. 2.2 and Fig. 2.1a) are indeed observed at the expected energies. The
dissipative behavior of Im εxx in the vicinity of the interband transition of bound
electrons at the energies of 1.8 and 3.2 eV is harder to identify by eye, therefore,
we will focus our analysis on the Re εxx spectral peaks at the energies of 1.5 eV
and 2.7 eV, originating in the dispersive behavior around these transition energies.
At these two spectral peaks of Re εxx, the temperature-induced changes are the
most noticeable. While at 1.5 eV(and practically for all lower energies), the real
part tends to increase with increasing temperature, at 2.7 eV it decreases with
increasing temperature. The real part spectrum of Beran et al. (2015) exhibits
an increase for all energies in the 1.2 eV to 6.5 eV range. The same observation
was made by Zhou et al. (2002), i.e. an increase of the real part in the spectral
range from 1.2 eV to 4 eV, and in addition, in the spectral range from 0.5 eV to
1.2 eV, a decrease of the real part was observed. In other words, our thin film
spectra behave in the opposite way with changing temperature than those mea-
sured on bulk, and also the energy, at which the increase becomes a decrease,
and vice versa, with increasing temperature, is shifted from 1.2 eV to 1.5 eV. Al-
though our measurements qualitatively differ, as we just explained, the changes
are quantitatively similar, roughly 0.6 at the energies of interest (see Figs. 7.3
and 7.4).

By comparing Fig. 7.3a with Fig. 7.3b and Fig. 7.4a with Fig. 7.4b, we can
notice that the shape of the hysteresis in the case of the real part is different for
each of the two energies, but in the case of the imaginary part, the shape remains
roughly the same.

The temperature dependences of the real and imaginary parts of the complex
refractive index N (see Fig. 7.5) have the same trends (regardless of the energy)
as Im εxx. As we can see in Fig. 7.5a, during cooling (blue data points), ReN
at 2 eV follows the same trend (an increase with increasing temperature) as was
observed by Dejneka et al. (2012), and the significant non-monotonicity of the
trend during heating (red data points) could be caused by the time relaxation
discussed earlier.
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(a) Cooling

(b) Heating

Figure 7.1: Spectral dependence of the real part of the diagonal element of the
relative permittivity tensor upon heating (a) and subsequent cooling (b)
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(a)

(b)

Figure 7.2: Spectral dependence of the imaginary part of the diagonal element of
the relative permittivity tensor upon heating (a) and subsequent cooling (b)
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(a) (b)

Figure 7.3: Temperature dependence of the real part of the diagonal element of
the relative permittivity tensor at 1.5 eV (a) and at 2.7 eV (b). Magnetometry by
Verbeno (2021).

(a) (b)

Figure 7.4: Temperature dependence of the imaginary part of the diagonal ele-
ment of the relative permittivity tensor at 1.5 eV (a) and at 2.7 eV (b). Magne-
tometry by Verbeno (2021).

(a) (b)

Figure 7.5: Temperature dependence of the real (a) and the imaginary (b) part
of the complex refractive index at 2 eV. Magnetometry by Verbeno (2021).
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7.1.2 Magneto-optical measurements in polar geometry
From the temperature-dependent polar MOKE spectra (Figs. 7.6 and 7.7), we
can observe three characteristic peaks of the Kerr azimuth at 1.55 eV, 2.6 eV and
3.75 eV, out of which, in our chosen sign convention, the first two are positive and
the third one is negative. Similarly, three peaks of the Kerr ellipticity, shifted
with respect to the peaks of the Kerr azimuth to higher energies by 0.5 eV, can
be observed at 2 eV, 3 eV and 4.3 eV, where again the first two are positive and
the third is negative. Both types of the MOKE spectra in the measured spectral
interval have one valley, in the case of the Kerr azimuth, it is at 2.16 eV and in
case of the Kerr ellipticity, it is at 2.3 eV.

The spectral structure of the Kerr azimuth in polar geometry is very simi-
lar both in shape and in magnitude to that reported on bulk Ni50.1Mn28.4Ga21.5
crystal in the martensitic phase (Veis et al., 2014; Beran et al., 2015) with an
important difference, i.e. bulk spectra have a negative peak at 2.16 eV instead of
a positive valley.

The temperature hysteresis is apparent for all of the Kerr azimuth extrema.
The peak of the Kerr azimuth at 1.55 eV (see Fig. 7.8a) follows the magnetometry
curve provided by Verbeno (2021) the most precisely. During the martensite to
austenite transition upon heating, the magnitude of the Kerr azimuth increases
by about 0.01° at 1.55 eV, 2.16 eV and 3.75 eV, while at 2.6 eV it decreases only
by 0.001 eV. Further heating past the martensitic transformation results in an
overall decrease in the magnitude of the Kerr azimuth, which is to be expected
since approaching the Curie temperature causes magnetic ordering to gradually
disappear together with the magneto-optic effects. The temperature hysteresis of
the Kerr ellipticity spectra (Fig. 7.7) is much less apparent due to the chaotic be-
havior of gradual changes during the heating process at 2 eV and 2.3 eV (Figs. 7.9a
and 7.9b, resp.), but it is clearly visible at 3 eV and 4.3 eV (Figs. 7.9c and 7.9d,
resp.).

Another thing to notice is that the three Kerr ellipticity spectra belonging
to the temperatures 56.4 °C, 58.4 °C and 60.4 °C during heating stand out from
their temperature-adjacent measurements (see Fig. 7.7a and the corresponding
data points in Fig. 7.9). Interestingly enough, during the cooling process (see
Fig. 7.7b), no such striking difference between adjacent temperatures in the Kerr
ellipticity spectra was observed.

This sudden spectral change in the Kerr ellipticity during heating could be
attributed to increased surface roughness, to which the Kerr ellipticity measure-
ments are more sensitive, as opposed to the Kerr azimuth, due to the presence
of the compensator in the experimental setup. The supposed surface roughness
might originate from the propagation of the phase boundary from the stress-
induced austenite up to the surface, leaving progressively less space for the align-
ment of the remaining martensitic variants, until the film is fully transformed
into the austenitic phase. However, in the zero magnetic field series of measure-
ments, the fitted values of surface roughness are all in the range of 5 nm to 6 nm,
and one would also expect to observe an increase in depolarization, which is not
the case, as the depolarization at 6.47 eV remains in the range from 1 % to 3 %.
Therefore, the supposed increased surface roughness seems to only appear during
heating while simultaneously being exposed to the external magnetic field. An-
other possible explanation might be that the sample, under the aforementioned
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conditions, finds itself in a metastable state with its properties resembling neither
the austenitic nor martensitic phases.

The spectra of the off-diagonal element of the relative permittivity tensor
(Figs. 7.10 and 7.11) have similar structure to the previously discussed MOKE
spectra, with Re{εxy} mirroring the behavior of θK and Im{εxy} mirroring the
behavior of ϵK . To be exact, Re{εxy} has two positive peaks at 1.5 eV, 2.5 eV, one
negative peak at 3.5 eV and a valley at 2.15 eV. − Im{εxy} has two positive peaks
at 1.9 eV, 3 eV, one negative peak at 4.2 eV and a valley at 2.3 eV. Temperature
hystereses of these extrema of both parts (Figs. 7.12 and 7.13) are completely
analogous to their corresponding counterparts in MOKE spectra (Figs. 7.8 and
7.9). According to Kramers-Kronig’s relations (2.15), one should observe inflec-
tion points of the real part at the extrema of the imaginary part and vice versa.
Indeed, this requirement is clearly satisfied for all pairs of related spectra.
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(a)

(b)

Figure 7.6: Temperature dependence of the Kerr azimuth spectra in polar geom-
etry upon heating (a) and subsequent cooling (b)
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(a)

(b)

Figure 7.7: Temperature dependence of the Kerr ellipticity spectra in polar ge-
ometry upon heating (a) and subsequent cooling (b)
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(a) Peak at 1.55 eV (b) Valley at 2.16 eV

(c) Peak at 2.6 eV (d) Peak at 3.75 eV

Figure 7.8: Temperature dependence of the absolute value of the Kerr azimuth at
the energies of 1.55 eV (a), 2.16 eV (b), 2.6 eV (c) and 3.75 eV (d). Magnetometry
by Verbeno (2021).
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(a) Peak at 2 eV (b) Valley at 2.3 eV

(c) Peak at 3 eV (d) Peak at 4.3 eV

Figure 7.9: Temperature dependence of the absolute value of the Kerr ellipticity
at the energies of 2 eV (a), 2.3 eV (b), 3 eV (c) and 4.3 eV (d). Magnetometry by
Verbeno (2021).
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(a)

(b)

Figure 7.10: Spectral dependence of the real part of the off-diagonal element of
the relative permittivity tensor upon heating (a) and subsequent cooling (b)
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(a)

(b)

Figure 7.11: Spectral dependence of the imaginary part of the off-diagonal ele-
ment of the relative permittivity tensor upon heating (a) and subsequent cooling
(b)
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(a) Peak at 1.5 eV (b) Valley at 2.15 eV

(c) Peak at 2.5 eV (d) Peak at 3.5 eV

Figure 7.12: Temperature dependence of the absolute value of the real part of the
off-diagonal element of the relative permittivity tensor at the energies of 1.5 eV
(a), 2.15 eV (b), 2.5 eV (c) and 3.5 eV (d). Magnetometry by Verbeno (2021).
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(a) Peak at 1.9 eV (b) Valley at 2.3 eV

(c) Peak at 3 eV (d) Peak at 4.2 eV

Figure 7.13: Temperature dependence of the absolute value of the imaginary part
of the off-diagonal element of the relative permittivity tensor at the energies of
1.9 eV (a), 2.3 eV (b), 3 eV (c) and 4.2 eV (d). Magnetometry by Verbeno (2021).
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7.2 Substrate-induced strain relaxation in thin
Ni-Mn-Ga films of various thicknesses and
stoichiometric compositions

One of the key differences between single crystal samples and epitaxial films is the
presence of a substrate during crystal growth. The character of the substrate-film
interface and its following effects on the rest of the film are determined by the
choice of materials and the physical conditions during the deposition process.

During magnetron sputtering in high vacuum (10−9 Pa), by means of which
our samples were grown on MgO substrate with a 20 nm thick Cr layer, several
factors have a significant influence on the film properties. The deposition tem-
perature influences the phase, the crystallographic quality of the film and also
influences the chemical composition of the film, which varies from the chemical
composition of the target due to the different enthalpies of vaporization of each
element present in the target, specifically (Zhang et al., 2011), the lowest en-
thalpy of vaporization is 225 kJ mol−1 for Mn, then, it is 256 kJ mol−1 for Ga and
379 kJ mol−1 for Ni. A nominal composition and a nominal thickness are derived
from the chemical composition of the target and the deposition time, respectively.

An adaptive X-ray analysis (Thomas et al., 2008b) of the same NMG film on
MgO substrate as in the previous paper by Thomas et al. (2008a) revealed a biax-
ial tensile stress of about 100 MPa (equivalent to a uniaxial compressive stress of
138 MPa). The stress increased the martensistic transformation temperature of
about 63 °C and caused a tetragonal distortion of the cubic lattice3. At 51 °C, us-
ing linear extrapolation of a dependence of lattice parameter on tilt angle towards
the surface normal, an in-plane (xy-plane) lattice parameter a∥ = 0.583 nm and
an out-of-plane lattice parameter a⊥ = 0.579 nm of constrained austenite with
tetragonal distortion were obtained. Therefore, in this case, the in-plane tensile
strain

Ξ∥ = a∥ − a0

a0
(7.2)

is approximately 0.2 %. The strain is thought to originate from a substrate-film
lattice parameter misfit during deposition as well as from a difference in linear
thermal expansion coefficients of each material, changing the strain accordingly
to the present temperature.

Taking into account the relationships between unit cell orientations (Backen
et al., 2010), i.e. a cube-on-cube growth between the NMG and Cr layers, where
Ni-Mn-Ga(100)[001]∥Cr(100)[001], and a 45° relative rotation between the unit
cells of Cr and MgO, where Cr(100)[011]∥MgO (100)[001], the in-plane strain
originating from the lattice mismatch can be estimated as

Ξ(mismatch)
∥ = 2aCr − aNMG

aNMG
+

√
2aMgO − 2aCr

aCr
. (7.3)

After substituting the cubic lattice parameters aNMG = 0.5822 nm (Martynov
and Kokorin, 1992), aCr = 0.2885 nm (Koumelis, 1973) and aMgO = 0.4194 nm
(Thomas et al., 2008a), the two addends in Eq. (7.3) yield the in-plane strain

3A stress free lattice parameter is a0 = 0.582 nm (Martynov and Kokorin, 1992).
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estimations of −0.9 % and 2.8 %, respectively. Although the total in-plane strain
of 1.9 % is practically the same as in the case without the Cr layer, i.e.

Ξ(mismatch without Cr)
∥ =

√
2aMgO − aNMG

aNMG
, (7.4)

supposing at least partial relaxation takes place in the Cr layer by introducing
lattice dislocations, the in-plane strain of the NMG layer is reduced.

A study conducted by Ranzieri et al. (2013), using XRD, AFM and trasmission
electron microscopy (TEM), found critical ranges of thicknesses for ultra-thin
Ni52.5(9)Mn19.5(7)Ga28.0(5) films deposited onto MgO at around 420 °C. Films with
thicknesses below 40 nm remain in the austenitic phase. Films with thicknesses in
the range from 40 nm to 100 nm contain, besides the austenite, also martensitic
orthorhombic 14M variants with their cortho14M axes perpendicular to the film-
substrate interface and in films with thicknesses above 100 nm, the variant of
orthorhombic 14M martensite with the cortho14M-axis parallel to the interface can
be then found as well.

Now let us present our findings on two series of samples with varying film
thickness. Each series has different nominal composition, namely, Ni47Mn32Ga21
and Ni48Mn30Ga22, and their nominal thicknesses are in the range from 10 nm to
700 nm. The following spectra were acquired at room temperature.

7.2.1 Optical measurements in zero magnetic field
In all of the following diagonal relative permittivity tensor element spectra εxx

in the zero magnetic field (Figs. 7.14 and 7.15), we can clearly observe a metallic
behavior (see Fig. 2.1b) with two bound electron transitions at around the ex-
pected energies of 1.8 eV and 3.2 eV for the samples with thicknesses of 100 nm
and above. For thinner samples, transition energies are notably higher. This
energy shift can be easily identified in the Re εxx spectra.

First of all, the spectral changes with varying thickness seem to be much more
dramatic compared to the temperature-induced spectral changes of the 400 nm
thick Ni47Mn32Ga21 sample discussed in Sec. 7.1.1. To be exact, due to the
thickness variation in the range from 10 nm to 700 nm, Re εxx at the energies of
1.5 eV and 2.7 eV changes by approx. 30 and 10, respectively. As can be seen
in Fig. 7.16, there is a correlation between the thickness dependences of Re εxx

and of the out-of-plane lattice parameter a⊥ of the Ni50Mn25Ga25 composition
series. Both Re εxx and a⊥ increase with increasing thickness in the range from
10 nm to 50 nm until the constrained austenite is relaxed enough to allow the
formation of the 14M martensite with its short axis cortho14M perpendicular to the
film-substrate interface. However, between 50 nm and 100 nm, Re εxx continues
to increase for energies below some critical energy Ec, e.g. at 1.5 eV (Fig. 7.16a),
while for higher energies, e.g. at 2.7 eV (Fig. 7.16a), it decreases to the local
minimum at 100 nm, following the a⊥ trend. In our case, Ec is approx. 2.2 eV
and 2.5 eV for the Ni47Mn32Ga21 and Ni48Mn30Ga22 composition series, respec-
tively. This behavior was previously observed on thin films (Makeš, 2021) with
the nominal stoichiometric composition Ni50Mn25Ga25 and the critical energy of
1.8 eV. Interestingly enough, bulk Ni50Mn25Ga25 spectra (Zhou et al., 2002) ex-
hibit the same behavior when undergoing austenite to martensite transition with
the critical energy of 1.2 eV.
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(a) Ni47Mn32Ga21 composition series

(b) Ni48Mn30Ga22 composition series

Figure 7.14: Thickness dependence of the real part of the diagonal element of the
relative permittivity tensor spectra for two different composition series of samples
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(a) Ni47Mn32Ga21 composition series

(b) Ni48Mn30Ga22 composition series

Figure 7.15: Thickness dependence of the imaginary part of the diagonal element
of the relative permittivity tensor spectra for two different composition series of
samples
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(a) at 1.5 eV

(b) at 2.7 eV

Figure 7.16: Thickness dependence of Re εxx for three different composition series.
* marks the data extracted from Makeš (2021), and its XRD measurements (**)
of the out-of-plane lattice parameters a⊥ were provided by Heczko (2023).
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7.2.2 Magneto-optical measurements in polar geometry
The following polar MOKE spectra (Figs. 7.17 and 7.18) were measured earlier
using a different spectrometer (see Sec. 6.2) without a thermoelectric cooling
device, thus exhibiting a higher level of noise. Irrespective of the exact thick-
ness and composition, the previously identified Kerr azimuth spectral structure,
characterized by two positive peaks and a positive valley in between for lower
energies and one broad and high-magnitude negative peak at higher energies, is
still recognizable.

On the other hand, we can notice much more dramatic spectral changes caused
by the thickness variation as opposed to the temperature-induced spectral changes
of the 400 nm Ni47Mn32Ga21 in the 20 °C to 70 °C range (see Sec. 7.1.2). For a
more rigorous analysis of the Kerr azimuth peak energy shift, the 2nd order
polynomial was fitted to the data in the vicinity of the extremum using the
Savitzky-Golay method and the corresponding energy obtained by computing
the first derivative. Subsequently, in Fig. 7.19, we can see that the thickness
dependence of the Kerr azimuth peak energy is strongly (negatively) correlated to
the thickness dependence of the out-of-plane lattice parameter as the constrained
austenite relaxes up to the critical thickness of 50 nm. The 3rd peak (Fig. 7.19c) is
being shifted the most (by about 0.6 eV to 0.8 eV) between 10 nm and 50 nm and
its overall thickness dependence fits to the out-of-plane lattice parameter trend the
best. Beyond 50 nm, the peak energy changes are much smaller. It is important
to note that the MOKE spectral peak energies and their thickness dependeces
imperfectly reflect the underlying changes in the magneto-optical transitions. In
order to gain a better insight into the nature of the observed spectral changes, one
would need to employ a microscopic theory, like the one introduced in Sec. 2.4,
to find the specific magneto-optical transitions and their parameters.

Besides the Kerr azimuth peak energy shift, there is also a relative magnitude
change between the 1st and 2nd peak. In bulk spectra (Beran et al., 2015), this
change was associated to the martensitic tranformation, where in the case of
austenite, the 2nd peak was higher, and in the case of 10M martensite, the 1st
peak was higher. In our case, the 2nd peak is higher for samples with thicknesses
in the range from 10 nm to 50 nm, and in the range from 100 nm to 700 nm,
it is the other way around. More specifically, as we can see in Fig. 7.20, the
linear interpolations of the 1st and 2nd peak magnitude trends cross each other
at approx. 40 nm (Fig. 7.20a) in the Ni47Mn32Ga21 case and at approx. 80 nm
(Fig. 7.20b) in the Ni48Mn30Ga22 case. On the Ni50Mn25Ga25 composition series
(Makeš, 2021), the crossing was observed at approx. 50 nm. Examining the
behavior of each peak magnitude individually, we see that the 1st peak magnitude
has an increasing trend (Fig. 7.21a) for lower thicknesses. At the local minimum
of a⊥ at 100 nm, depending on the composition series, there is either no local
minimum whatsoever or a very shallow one. However, the thickness dependences
of the 2nd and 3rd peak magnitudes (Figs. 7.21b and 7.21c) clearly follow the
Ni50Mn25Ga25 out-of-plane lattice parameter trend with pronounced local minima
at 100 nm.
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(a)

(b)

Figure 7.17: Thickness dependence of the Kerr azimuth spectra in polar geometry
of the Ni47Mn32Ga21 (a) and Ni48Mn30Ga22 (b) composition series of samples.
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(a)

(b)

Figure 7.18: Thickness dependence of the Kerr ellipticity spectra in polar geome-
try of the Ni47Mn32Ga21 (a) and Ni48Mn30Ga22 (b) composition series of samples.
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(a) the 1st peak

(b) the 2nd peak

(c) the 3rd peak

Figure 7.19: Thickness dependence of the polar Kerr azimuth peak energy E for
three different composition series. * marks the data extracted from Makeš (2021),
and its XRD measurements (**) of the out-of-plane lattice parameters a⊥ were
provided by Heczko (2023).
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(a) Ni47Mn32Ga21 composition series

(b) Ni48Mn30Ga22 composition series

Figure 7.20: Thickness dependence of the polar Kerr azimuth peak magni-
tude |θK | for two different composition series. XRD measurements (**) of the
Ni50Mn25Ga25 out-of-plane lattice parameters a⊥ were provided by Heczko (2023).
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(a) the 1st peak

(b) the 2nd peak

(c) the 3rd peak

Figure 7.21: Thickness dependence of the polar Kerr azimuth peak magnitude
|θK | for the Ni47Mn32Ga21, Ni48Mn30Ga22 and Ni50Mn25Ga25 composition series.
* marks the data extracted from Makeš (2021), and its XRD measurements (**)
of the out-of-plane lattice parameters a⊥ were provided by Heczko (2023).
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Conclusion
Numerous optical spectroscopic measurements were performed, both in zero mag-
netic field and in the out-of-plane (polar) magnetic field configuration, to study
the optical and magneto-optical responses of thin Ni-Mn-Ga films, epitaxially
grown on the stress-mediating Cr layer and the MgO substrate. From the ac-
quired ellipsometric data within the spectral range from 0.7 eV to 6.4 eV, rela-
tive permittivity tensor spectra were computed via regression analyses. Spectral
changes were studied in two distinct situations. One of them was a thermally-
induced martensitic transformation of a 400 nm thick Ni47Mn32Ga21 film in a
temperature range from 20 °C to 70 °C. The other situation was a thickness vari-
ation of Ni47Mn32Ga21 and Ni48Mn30Ga22 sample series at room temperature in
a thickness range from 10 nm to 700 nm.

Our results agree with previously published studies by exhibiting two apparent
bound electron transitions roughly at the energies of 1.8 eV and 3.2 eV. The polar
magneto-optical Kerr effect spectra resemble those reported on bulk as well as on
epitaxial films.

At several selected energies, temperature dependeces across the phase tran-
sition of the 400 nm thick Ni47Mn32Ga21 film showed various hysteresis shapes,
which were compared to the magnetization curve of this film. The polar magneto-
optical Kerr effect and the off-diagonal relative permittivity tensor elements were
found to behave in almost identical manner, yet the off-diagonal element spectra
will be indispensible for future analyses of the magneto-optical transitions using
a microscopic theory.

The thickness-varied spectra exhibit a significant shift of the spectral struc-
tures to higher energies for the thinnest of samples. A critical thickness of 50 nm
was identified, at which there is a change in the thickness trends. At selected
energies or at spectral peaks, these trends were compared to X-ray diffraction
measurements of the out-of-plane lattice parameter and a strong correlation was
found.
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Makeš (2021), and its XRD measurements (**) of the out-of-plane
lattice parameters a⊥ were provided by Heczko (2023). . . . . . . 66

7.20 Thickness dependence of the polar Kerr azimuth peak magnitude
|θK | for two different composition series. XRD measurements (**)
of the Ni50Mn25Ga25 out-of-plane lattice parameters a⊥ were pro-
vided by Heczko (2023). . . . . . . . . . . . . . . . . . . . . . . . 67

7.21 Thickness dependence of the polar Kerr azimuth peak magnitude
|θK | for the Ni47Mn32Ga21, Ni48Mn30Ga22 and Ni50Mn25Ga25 com-
position series. * marks the data extracted from Makeš (2021), and
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