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Abstract

Most of the attention when analyzing the consequences of general relativity (and
even more so in modified theories of gravity) has been focused on highly symmet-
ric solutions. In the realm of black hole spacetimes this lead to static spherically
symmetric solutions (Schwarzschild geometry) or stationary solutions (Kerr ge-
ometry). In the realm of cosmology most of the attention has been devoted to
homogeneous and isotropic solutions represented by FLRW geometries. This at-
tention is natural both from historical perspective (highly symmetric solutions
were discovered first) and due to significant technical challenges connected with
obtaining and analyzing more general solutions. However, one has to ensure that
insights gained using highly symmetric solutions is fundamental to the theory
and translates to more general situations as well. This problem is exacerbated
by nonlinear character of general relativity. The aim of this thesis is to provide
overview of some recent work by the author related to these issues.





Chapter 1

Introduction

One of the most important strategies when investigating the impact of new the-
ories in physics is applying the theory in highly simplified scenarios, such as
situations with substantial degree of symmetry and with limited dynamics. This
is the case of general relativity as well and even more so of various modified
theories of gravity.

This avenue towards understanding of general relativity was started immedi-
ately after Albert Einstein finalized the theory when Karl Schwarzschild published
the first non-trivial solution at the beginning of 1916 [1]. This static spherically
symmetric solution provided both the necessary foundations for deriving exper-
imentally testable predictions and clear comparison with Newtonian picture es-
pecially with respect to solar system dynamics. At the same time it shed light
on the problem of coordinate vs. spacetime (curvature) singularities, albeit clear
resolution of this topic took some time. This was connected to the most impor-
tant aspect of Schwarzschild solution, namely its interpretation as a black hole
— a new object of immense interest in theoretical physics at first but later in
astrophysics as well.

It was clear that such a simplified situation might not correspond to generic
behavior of the theory. Two parallel routes were followed to provide generaliza-
tion. One of them led to a famous exact solution that relaxed spherical symme-
try by assuming only axisymmetry — the Kerr solution [2] for a rotating black
hole. However, even this (in some sense minimal) generalization took almost 50
years clearly showing that the complex nonlinear nature of Einstein equations
will not yield easily to our efforts. Moreover, even this did not immediately
convince the community that black holes are indeed objects of nature and not
only artificially contrived situations (opinion held by Einstein himself). The sec-
ond approach avoided looking for exact solution and instead employed tools of
mathematical relativity to follow geodesic congruences in the collapsing region
to establish generic appearance of spacetime singularities. The Penrose theorem
[3] thus proved that black holes are indeed occurring generically and was subse-
quently generalized (together with Hawking [4]) to treat the initial cosmological
singularity analogously. In the following, we will concentrate more on the first
approach to the problem — the role that exact solutions of reduced symmetry
might play in determining robust general relativistic predictions — since we will
not predominantly focus on the question of singularities. But the specific areas
we want to cover are still black hole physics and cosmology since they represent
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astrophysically important situations crucially affected by general relativity.
Ideally, the path towards generalizing the black hole solutions would start

at the Kerr solution and proceed towards generic twisting (rotating) spacetimes.
However, the mathematical and interpretational problems encountered are daunt-
ing and although substantial effort has been made over the years the progress is
extremely slow. That is why our focus will be on a well-established non-twisting
generalization of the Schwarzschild solution derived by Robinson and Trautman
[5]. This so-called Robinson–Trautman family of solutions contains other simple
important geometries, e.g. Vaidya solution [6] describing pure radiation gener-
alization of Schwarzschild solution or the C-metric [7] representing accelerated
black holes. Since the vacuum solutions of this family are governed by a single
partial differential equation (albeit of fourth order) for which many advanced
mathematical tools could be applied the research produced important analytical
results. The obvious criticism for this restricted geometry is that by not allowing
rotation it might not correspond to real astrophysical situations. However, a re-
cent investigation of nonlinear stability of the Schwarzschild solution [8] uncovered
a special role played by linearized Robinson–Trautman solutions. Furthermore,
the presence of exact gravitational waves in a generic Robinson–Trautman solu-
tion made it possible to model ring-down phase in the black hole mergers in order
to understand the physical nature of so-called anti-kick [9] which was appearing
in numerical simulations for pair of black holes of substantially different masses.
The dynamical nature of the Robinson–Trautman family provides opportunity
to study quasilocal horizons in a situation where event horizon might not be a
viable notion.

The Friedmann–Lemaître–Robertson–Walker (FLRW) geometry proved to be
extremely successful in providing cosmological model that captures the primary
features of our universe extremely well when combined with a cosmological con-
stant and cold dark matter (CDM). Nevertheless, it assumes homogeneity and
isotropy which are obviously valid maximally on average over sufficiently large
regions while the observed universe is manifestly inhomogeneous on the scales be-
low approximately 200Mpc (however inhomogeneities much bigger than this scale
have been observed). This can either be addressed by using linear perturbations
or proceeding towards inhomogeneous cosmological models thus accounting for
nonlinear effects. The nonlinearity of Einstein equations provides another signif-
icant technical obstacle when applying the averaging in order to derive homoge-
neous geometry from the inhomogeneous one. The averaged geometry does not
solve Einstein equations for averaged source distribution due to the appearance
of so-called correlation or backreaction terms generated by averaging the Einstein
tensor that depends on the geometry in a nonlinear way. But these extra terms
provided an opportunity to explain the dark sector of our universe without invok-
ing extra particles or fields. These hopes were reduced when it was shown that
any effect of nonlinearities is substantially restricted under certain assumptions
[10]. However, the general applicability of such analysis was contested [11]. Nev-
ertheless, in the upcoming era of precision cosmology even effects that are too
small to explain dark sector in its entirety will have to be taken into account to
properly explain observed data.

Remembering that homogeneous cosmological models were also used for rep-
resenting the interior geometry of stars it is not surprising that one of the motiva-
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tions for studying inhomogeneous perfect fluid solutions came from attempts to
create more realistic interiors of stars, apart from the obvious utility in cosmology.
The most frequently used inhomogeneous cosmological models are spherically
symmetric Lemaître–Tolman–Bondi model [12, 13, 14] and a broad Szekeres–
Safron family of solutions without symmetries whose dust subfamily was intro-
duced by Szekeres [15] and later generalized to perfect fluid by Szafron [16]. The
rich structure of different inhomogeneous cosmologies and relations among their
families and other solutions is presented in a book by Krasinski [17].

In the following chapters we show what insights can be gained from using
more general exact solutions. We are limiting ourselves here solely to four dimen-
sions and Einstein’s general relativity thus ignoring recent substantial interest
in Robinson–Trautman solutions in higher dimensions or alternative theories of
gravity.
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Chapter 2

Black holes without symmetries

As explained in the Introduction, the Robinson–Trautman family of geometries is
a useful tool for studying genericity of black hole features. Here we will describe
the main properties of this family and show what kind of results one can obtain
regarding the properties of black holes and related objects.

The Robinson–Trautman geometry [5, 18, 19] is characterised by the proper-
ties of the principle null geodesic congruence which should be shearfree, twistfree
and expanding. The first two conditions on the congruence guaranteeing that
the resulting spacetime is algebraically special (minimally Petrov type II) and
it is non-rotating, therefore this family of geometries cannot contain the Kerr
solution. The last condition is hinting at the description of isolated systems and
our focus is primarily on black holes.

The overall qualitative picture of a generic dynamical black hole without sym-
metries belonging to this family is the following: initially we have a (nonlinearly)
deformed black hole that emits gravitational radiation which caries away the de-
viation from sphericity and the black hole settles down to final spherically sym-
metric state. This interpretation is based on the most important result connected
with this family of solutions — its asymptotic evolution — and was derived at
the beginning of nineties by Chruściel and Singleton [20, 21, 22]. In this series
of papers describing vacuum subfamily of Robinson–Trautman geometries it was
shown that given a smooth initial data on characteristic hypersurface this space-
time asymptotically approaches the Schwarzschild geometry. Note that the initial
data are not assumed to be small in any sense (e.g., being a small perturbation
of Schwarzschild data) or that this analysis is done within a family of exact so-
lutions (as opposed to treating the evolution only in linear order) and therefore
it is a truly nonlinear stability result for Schwarzschild solution albeit restricted
only to given family of geometries. We will shortly summarize the statement with
greater detail.

2.1 Robinson–Trautman solution
The vacuum Robinson–Trautman metric [5, 18, 19] (potentially with a nonzero
cosmological constant Λ) can be given in the following form

ds2 = −2H(u, r, x, y)du2 − 2dudr + r2

P (u, x, y)2 (dx2 + dy2) (2.1)
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with 2H = ∆( ln P ) − 2r( ln P ),u − 2m/r − (Λ/3)r2 and

∆ ≡ P 2(∂xx + ∂yy) , (2.2)

where we opted for real coordinates in the two-space spanned by x, y instead of
frequently used complex coordinate. This metric is determined by two functions,
P (u, x, y) and m(u) . In the vacuum case the function m(u) might be set to
a constant by suitable coordinate transformation [18, 19] and we consider this
to be satisfied for the coordinates of (2.1). Moreover, we consider this constant
to be positive m > 0. The Einstein equations for vacuum (potentially with a
cosmological constant) then reduce to a single nonlinear PDE — the Robinson–
Trautman equation

∆∆( ln P ) + 12 m( ln P ),u = 0 . (2.3)

These spacetimes are then generally of algebraic type II while the most important
member of this family, the Schwarzschild solution, is only type D.

The coordinates are adapted to the distinguished null congruence whose prop-
erties are determined by the definition of the Robinson–Trautman family. This
geodesic, shearfree, twistfree and expanding null congruence is generated by l = ∂r

with r being an affine parameter along this congruence, u is then a retarded time
and u = const hypersurfaces are null. Spatial coordinates x, y span the cross-
section of the congruence and the Gaussian curvature of these 2-spaces is given
by (for r = 1)

K(x, y, u) ≡ ∆( ln P ) . (2.4)

The asymptotic evolution result we want to describe is valid when the transver-
sal 2-spaces have spherical topology which leads to a subclass containing the
Schwarzschild solution (considering vanishing cosmological constant) correspond-
ing to K = 1.

2.1.1 Robinson–Trautman equation and Ricci flow
Since the parabolic Robinson–Trautman equation (2.3) essentially describes evo-
lution of a two-dimensional metric on a compact connected manifold it is natural
to compare it and the methods of its analysis to the Ricci flow equation as noted
already by Chruściel [20]. He concluded that although it is an equation of higher
order and therefore some tools relevant in the study of the Ricci flow are not di-
rectly applicable the resulting analysis of the Robinson–Trautman equation was
more straightforward. Let us show the comparison between these two equations
more explicitly.

Ricci flow describes evolution of geometry on a two-dimensional manifold with
one-parametric family of Riemannian metrics q[t] (with parameter denoted by t)
driven by the equation (here we use abstract tensors as usual in the mathematical
literature related to Ricci flow)

∂

∂t
q[t] = −2 Ricc(q[t]) , (2.5)

where Ricc(q[t]) is a Ricci tensor of q[t]. The two-dimensional metric in question is
in our case the transversal part of (2.1) (for r = 1) and the evolution parameter
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is the retarded time u

q
[u]
ij dxidxj = 1

P (u, x, y)2 (dx2 + dy2) , (2.6)

while the Ricci tensor can easily be determined

Ricc(q[u]) = 1
2RicciSc(q[u]) q[u] = K(u, x, y) q[u] (2.7)

and we have used the relation between the Ricci scalar (denoted as RicciSc(q[u]))
and the Gaussian curvature K (2.4). The tensorial Ricci flow equation for the
family of metrics (2.6) parametrized by u with the Ricci tensor (2.7) simplifies
into the following scalar equation

(ln P ),u = ∆ ln P . (2.8)

Thus we see that the two equations ((2.3) and (2.8)) differ by application of an
additional Laplacian, apart from unimportant constants. The heat-type equation
(2.8) has also seemingly different sign compared to (2.3) but one should not forget
that Laplacian ∆ has a negative spectrum on compact manifolds.

There is another significant type of geometric flow — Calabi flow — proposed
as a tool for construction of extremal Kähler geometries (manifolds with mutu-
ally compatible complex, Riemannian and symplectic structures). This flow is
equivalent to Robinson–Trautman equation in 2-dimensional case and the results
achieved by Chruściel [20] are still of fundamental importance in the study of
Calabi flow.

2.1.2 Asymptotic behavior
Now let us concentrate on the equation (2.3). For analysis of the behavior of the
function P which determines the dynamics of the Robinson–Trautman solution
it is useful to consider the transversal 2-spaces as being deformations of spherical
geometry and thus introduce the following notation

P = f(x, y, u) P0 , (2.9)

where f is a function on a 2-sphere S2 equipped with the standard metric on a
sphere determined by P0 = 1 + 1

4(x2 + y2) (leading to K = 1). Using advanced
tools of PDE analysis on the equation (2.3) together with the decomposition (2.9)
Chruściel and Singleton [20, 21, 22] proved that for arbitrary smooth initial data
f(x, y, u0) on an initial hypersurface u = u0, the Robinson–Trautman vacuum
spacetimes (2.1) exist globally for all u ≥ u0. Moreover, they asymptotically
converge to the Schwarzschild metric with the corresponding mass m as u → +∞.
This convergence proceeds exponentially fast since f has the following asymptotic
expansion

f =
∑︂

i,j≥0
fi,ju

je−2iu/m (2.10)

where fi,j(x, y) are smooth functions on S2 and fi,j = 0 for i ≤ 14 and j > 0. This
shows that for large retarded times u, the function P approaches P0 exponentially
fast and therefore the geometry corresponds to Schwarzschild solution.
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Figure 2.1: Conformal diagram of Robinson–Trautman spacetime with
Λ = 0 attached to the inner Schwarzschild solution. Initial data are
given on u = u0 hypersurface and the solution radiates away the deviation from
sphericity towards (incomplete) future null infinity J +. At u = ∞ the geometry
approaches Schwarzschild geometry close to the future event horizon EH and we
can attach inner Schwarzschild solution beyond this hypersurface. The past hori-
zon in Robinson–Trautman spacetime can only be localized as quasilocal horizon
QH.

The parabolic PDE (2.3) has evidently very nice behavior in the positive re-
tarded time direction but not in the opposite direction similarly to the behavior of
the canonical parabolic PDE — the heat equation. This means that the solution
cannot be extended up to past null infinity J −. We can schematically summarize
the situation on the conformal diagram in figure 2.1 where the canonical exten-
sion beyond u = ∞ is included. This extension can only be made with finite level
of smoothness for generic Robinson–Trautman geometries.

This overall picture stays the same upon including cosmological constant [23,
24] (with obvious changes to conformal boundary) or outgoing pure radiation [25]
(where the spacetime approaches the Vaidya solution [6]). In these situations the
extensions, with Schwarzschild–(anti-)de Sitter and Minkowski respectively, can
be made with varying levels of smoothness and in special cases even smooth but
not analytic.

2.1.3 Horizons

The impossibility of extending the Robinson–Trautman (RT) solution towards
past null infinity J − means that the past horizon can only be localized as a
quasilocal horizon QH as indicated on figure 2.1. For vacuum solutions this was
studied using the so-called Penrose–Tod equation which encodes the demand of
vanishing expansion of a null congruence that is normal to the surface which
should be a slice of the full horizon hypersurface. In the case of vacuum RT and
a horizon hypersurface described by equation r = R(u, x, y) the Penrose–Tod
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equation has the following form for the slice determined by u = u1

∆ ln R + 2m

R
− K = 0 , (2.11)

where all the dependence on retarded time was replaced by the fixed value u1.
This is a quasilinear elliptic PDE and its analysis was performed in [26] where
the existence, uniqueness and character of the horizon was shown. This analysis
was subsequently generalized to RT spacetimes with cosmological constant [27]
where some of the mathematical tools from the vacuum case were not applicable.
The results were influenced by the value of cosmological constant in a natural
way.

Considering both the event horizon (indicated as EH in figure 2.1, where the
inner Schwarzschild solution is attached) and quasilocal horizon (QH in figure
2.1) we have nice explicit examples for more recent specific definitions of hori-
zons that employ quasilocal characterization. Namely, the hypersurface EH is
satisfying conditions of being an isolated horizon [28] since it is in equilibrium
situation while retaining nontrivial radiation close to it (indicated by the wavy
lines in figure 2.1) thus being non-stationary there [29]. The past horizon (QH)
is an example of horizon in fully dynamical situation and satisfies conditions of a
dynamical horizon [30], namely it is spacelike. Both of them satisfy conditions of
an earlier definition of a trapping horizon [31] which contains useful local criteria
for classifying the horizons into inner/outer and future/past.

2.1.4 Relation to stability of symmetric solutions
What the overall picture of evolution of RT solution exactly tells us regarding the
stability of Schwarzschild solution? We can consider fully nonlinear (smooth) de-
formation away from Schwarzschild solution that fits into the (vacuum) Robinson–
Trautman class. This means that we can describe it by smooth initial data for
Robinson–Trautman geometry on some initial hypersurface u = u0. Then the
asymptotic results mentioned in section 2.1.2 show that such a deformation will
settle exponentially fast to the Schwarzschild solution by radiating away the non-
sphericity via gravitational waves. This is valuable non-perturbative result, but it
is restricted only within non-rotating family of solutions. Obviously, rotating gen-
eralization would represent more realistic situation but mathematical problems
involved are so far insurmountable on this route that employs exact solutions.

Let us note that recently an alternative path showing nonlinear stability of
Schwarzschild solution was successfully completed [32]. This approach uses the
results regarding linear stability of the Kerr family around Schwarzschild geom-
etry and newly developed mathematical techniques for controlling nonlinearities
in the full set of Einstein equations.

Using the generalizations of Robinson–Trautman solution including cosmolog-
ical constant [23, 24] or outgoing null radiation [25] appropriate stability results
can be formulated in these situations. Moreover, as mentioned in these works,
these results show the validity of no-hair conjecture as well, namely the final
states of the evolution are simple symmetric geometries described by mass and
cosmological constant.

Interesting case arises when we consider ingoing null radiation within RT
family as briefly analyzed in [25]. This can represent a situation when radially
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incoming null fluid (radiation) which is not spherically symmetric forms a black
hole or a naked singularity (being a generalization of spherically symmetric sit-
uation represented by ingoing Vaidya geometry). Since this represents a time
reversed version of the outgoing radiation case the future development is essen-
tially described by the Robinson–Trautman equation (2.3) with an opposite sign
in front of the u-derivative term. This leads to the blow up of the solution by
gradually increasing deviations from sphericity beyond any bound and the so-
lution can not be extended towards future null infinity. Therefore spherically
symmetric collapse of a shell of null dust is not stable within RT family of solu-
tions. The only possibility how to prevent such instability is then necessarily an
inclusion of rotating modes that would absorb the divergent behavior.

10



2.2 Recent developments
Here we will summarize recent developments regarding Robinson–Trautman (RT)
solutions with other sources or in non-standard setups as recently obtained by
the author and collaborators.

2.2.1 RT with scalar field
In [33] an explicit four-parametric family of solutions in Robinson–Trautman
class with free massless minimally coupled scalar field was derived and presence
of quasilocal horizons was analyzed for this geometry of generic algebraic type II.
Subsequently, asymptotic behavior, energy content of the spacetime and special
cases of this geometry were analyzed in [34].

Although scalar field source is usually easily handled in highly symmetric
situations and an aligned null radiation solution in RT class exists it proved
nontrivial to derive first pure scalar field solution in RT family of geometries. The
main reason being that aligned scalar field (its gradient pointing in the principal
null direction of the geometry) is incompatible with the scalar field equation of
motion in RT geometry. Most matter sources were primarily included to RT
solution by considering their aligned setup and this turned out to be impossible
for scalar field. Moreover, to accommodate the nonaligned scalar field source the
Robinson–Trautman line element had to be modified to admit sources of more
general Ricci type as subsequently confirmed in the classification of RT geometries
[35].

The generic solution derived in [33] has some surprising properties. Unlike the
vacuum RT solutions it can be extended to both positive and negative infinities
of retarded time. Furthermore, although in early retarded times the singularity is
present there is no quasilocal horizon covering it. Only later it becomes covered
by such horizon. This behavior is similar to an appearance of naked singularities
in the Vaidya spacetime for certain intensity of null radiation flux [36]. Even
these singularities are later covered. The analysis of the horizon performed in
[33] heavily relied on a mathematical procedure developed in [37].

As shown in [34] the generic RT solution with scalar field asymptotically set-
tles to Minkowski geometry since all the scalar field content is radiated away.
This picture is confirmed by analyzing the Bondi mass which contains only the
scalar field contribution and asymptotically vanishes. This shows that the no-
hair theorem for scalar field is satisfied since the scalar field is present only in the
dynamical phase of the spacetime while it vanishes when approaching the final
stationary state. At the same time the results provide additional information to-
wards understanding the limits of cosmic censorship hypothesis of Roger Penrose
due to the appearance of naked singularity.

Ideally, one would like to understand behavior of this solution in light of the
numerical approaches to the scalar field spacetimes. These studies show that
based on the initial data the solution evolves either towards black hole as a final
state or the scalar field disperses leading to the Minkowski geometry. Our RT
scalar field solution seemingly belongs to the second alternative suggesting that it
automatically contains only weaker scalar field. But other properties concerning
singularity and quasilocal horizon hint at much more complex situation which
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deserves dedicated attention in the future.
Special subcases of the general solution arising when some of the parame-

ters vanish were shown to correspond to previously known spherically symmetric
solutions, the dynamical Roberts solution [38] and limiting case of the Janis–
Newman–Winicour solution [39] (which was originally discovered by Fisher much
earlier [40]). This shows that the discovered RT-scalar field solution generalizes
previous symmetric solutions. Finally, a phantom scalar field version was ana-
lyzed briefly in [34] and it was shown to represent a dynamical appearance and
disappearance of a wormhole throat.

This research was published in the following papers:
[33] T. Tahamtan and O. Svítek: Robinson-Trautman solution with scalar hair,
Phys. Rev. D 91(10):104032, 2015
doi: https://doi.org/10.1103/PhysRevD.91.104032

[34] T. Tahamtan and O. Svítek: Properties of Robinson–Trautman solution with
scalar hair, Phys. Rev. D 94(6):064031, 2016
doi: https://dx.doi.org/10.1103/PhysRevD.94.064031

2.2.2 RT with nonlinear electrodynamics

Apart from the inclusion of Maxwell field (see e.g. [18]) Robinson–Trautman
geometry can accommodate also nonlinear electrodynamics (NE) as a source as
shown in [41] (additionally a cosmological constant was included). The main fo-
cus has been on traditional NE models (e.g. Born–Infeld) that were developed
in order to deal with the singular field of a point charge. New RT solutions were
obtained from the spherically symmetric ones by the use of a newly developed
generating technique. The resulting algebraic type II solutions asymptotically
approach the corresponding spherically symmetric geometries which can be again
interpreted as showing the nonlinear stability of such solutions within these RT
generalizations. Although the electromagnetic field is non-divergent the space-
time contains curvature singularity. Therefore the presence of horizons was an-
alyzed using previously developed tools [37, 33] leading to natural conditions on
the existence of horizon that depend on the value of cosmological constant and
charge.

Another interesting class of nonlinear electrodynamics models considered re-
cently are those removing curvature singularity while preserving horizon thus
leading to so-called regular black holes. These models use magnetic charge to
achieve this behavior. However for these models the generating method devel-
oped in [41] fails which might indicate that they may be restricted to spherically
symmetric situations only.

Although the NE solutions in RT geometry obtained in [41] are of algebraic
type II they do not contain electromagnetic radiation and so there appears to be
further room for generalization. This together with the problem of NE models
generating regular black holes prompted further study of the Robinson–Trautman
spacetimes coupled with NE [42] where a well-posed RT solution with NE was as
well derived (which is not possible in the Maxwell case).

12



This research was published in the following paper:
[41] T. Tahamtan and O. Svítek: Robinson–Trautman solution with nonlinear
electrodynamics, Eur. Phys. J. C 76(6):335, 2016
doi: https://dx.doi.org/10.1140/epjc/s10052-016-4175-9

2.2.3 Thin-shell wormhole in RT
The investigation of a bridge-type wormhole within Robinson–Trautman class
supported by the continuously distributed phantom scalar field performed in [34]
motivated our interest in using RT geometry for investigating the other type of
wormhole — a thin-shell one. In [43] two identical copies of vacuum RT solutions
were glued together in a mirror setup to produce a wormhole throat. The junction
condition were shown to produce two streams of a perfect fluid on the throat
whose densities are negative since the matter supporting the wormhole cannot
satisfy energy conditions.

The asymptotic behavior of the vacuum RT solutions is employed to show that
this wormhole asymptotically settles down to thin-shell Schwarzschild wormhole
with a throat approaching the position of horizon from above. This can again
be interpreted as showing a nonlinear stability of such spherically symmetric
wormhole within the RT geometry. Since the outer spacetime is standard RT
solution usually describing outer geometry of a black hole the gravitational waves
produced by this newly constructed dynamically evolving wormhole throat are
indistinguishable from the corresponding black hole version of RT spacetime.
Finally, the construction is shown to be easily generalized to RT spacetimes with
cosmological constant, Maxwell field or nonlinear electrodynamics sources.

This research was published in the following paper:
[43] O. Svítek and T. Tahamtan: Nonsymmetric dynamical thin-shell wormhole
in Robinson–Trautman class, Eur. Phys. J. C 78(2):167, 2018
doi: https://dx.doi.org/10.1140/epjc/s10052-018-5628-0
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Chapter 3

Inhomogeneous cosmologies and
averaging

In this part we will comment on two main aspects that one has to tackle when
deviating from strictly homogeneous isotropic cosmology as modeled by FLRW
solution which is still part of the most successful picture of our universe — the
ΛCDM model — consistent with observations. One concerns the question of av-
eraging the inhomogeneities in both matter content and geometry consistently
in order to explain the overall situation in terms of the averaged homogeneous
model. The other is the application of exact inhomogeneous cosmological mod-
els and their proper analysis. Such models can provide insight into structure
formation on non-perturbative level.

We are leaving out one complicated issue from our following discussions al-
though it has attracted attention recently. When the inhomogeneous geometry is
involved we have to account for the position of the observer and understand how
the local geometry might influence our interpretation of the observed data. Evi-
dently even this problem can best be addressed via exact inhomogeneous models.

In the upcoming sections we will comment on specific inhomogeneous cosmo-
logical models and the averaging techniques that can be applied in cosmology.

3.1 Inhomogeneous cosmological models and
their properties

We first introduce the main models used in the literature and point out their most
interesting features. We start with the spherically symmetric LTB model since
it is easily understandable while it still contains crucial novel features stemming
from inhomogeneity. These features are carried over to more complex geometries
lacking symmetry.

3.1.1 LTB solution
One of the first and most extensively studied inhomogeneous cosmological models
is the Lemaître–Tolman–Bondi solution [12, 13, 14] which preserves spherical
symmetry and is sourced by a dust. One can imagine this cosmological model as
being composed of concentric spherical shells of dust with varying density that
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evolve under their own gravity. This makes it obviously ideal starting point for
models of a star interior as well.

Potential role of this model in describing general structure formation was
studied in [44, 45, 46] and with attention to formation of voids in [47] (see as well
[48] for broader context).

The Lemaître–Tolman–Bondi (LTB) metric can be described by the line ele-
ment in comoving coordinates

ds2 = −dt2 + (R′)2

1 + 2E(r)dr2 + R2[dθ2 + sin2(θ)dϕ2] , (3.1)

where E(r) is an arbitrary function and by prime we denote partial derivative with
respect to r. Einstein equations with dust source imply the following equation
for the function R(t, r) which describes the dynamics of the model

R,t
2 = 2E + 2M

R
+ Λ

3 R2 , (3.2)

here M = M(r) is another arbitrary function resulting from integration. The
dust source energy density ρ satisfies

κρ = 2M ′

R′R2 , (3.3)

with κ being a gravitational constant.
The arbitrary function E(r) has a geometrical interpretation, it determines

a local curvature of the t = const hypersurfaces (e.g., they have flat geometry
for E(r) = 0) which can vary for different values of r. The function M(r) can
be interpreted as a gravitational mass contained within the comoving spherical
shell at any given r. The density defined in equation (3.3) can evidently diverge
if either R = 0 or R′ = 0. The condition R = 0 corresponds generically to a
curvature singularity which should be absent for all times other than potential
Big Bang and/or Big Crunch if the model describes cosmology. Special behavior
of function M can render the singularity absent and density finite even for R = 0.
The other possibility (R′ = 0 when M ′ ̸= 0) is an effect of inhomogeneity and the
associated divergence of density (and Kretschmann scalar) is driven by collision of
neighboring dust shells leading to the name shell-crossing singularity. This type of
singularity is highly undesirable because density additionally changes sign in this
location. Ensuring the absence of shell-crossing singularities constitutes crucial
part of deriving useful inhomogeneous models for cosmology.

If we formally integrate the equation (3.2) we obtain
R∫︂

0

dR̃√︃
2E + 2M

R̃
+ 1

3ΛR̃
2

= t − tB(r) , (3.4)

where tB(r) is the third free function of r arising as an integration "constant"
(called the bang time function). This brings another aspect missing in the FLRW
picture, in the LTB model the Big Bang does not need to happen simultaneously
but rather the timing depends on the radial coordinate r. This claim is of course
made with respect to the comoving synchronous coordinates used in (3.1). The
above formulas are invariant under transformation r̃ = g(r). We can use this
freedom to fix one of the functions E(r), M(r) and tB(r).
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3.1.2 Lemaître model
This is a generalization of the LTB model to admit perfect fluid source which
was described already by Lemaître [12]. The metric in the comoving coordinates
takes the form

ds2 = −eC(t,r)dt2 + eA(t,r)dr2 + R2(t, r)
(︂
dϑ2 + sin2 ϑ dφ2

)︂
, (3.5)

where R(t, r) is an areal radius of a sphere {t = const, r = const} as was the
case in LTB model. The normalized 4-velocity of the fluid is uµ = e− C

2 δµ
0 . The

Einstein equations including the cosmological constant term read

κp = − 2M,t

R2R,t

, (3.6)

κρ = 2M,r

R2R,r

, (3.7)

where the newly introduced function M(t, r) satisfies

2M(t, r) = R + e−CRR,t
2 − e−ARR,r

2 − 1
3ΛR3 , (3.8)

p is the pressure and ρ the energy density. Generally, the pressure p(t, r) and
the energy density ρ(t, r) are functions of both coordinates t and r. The function
M(t, r) is referred to as the Misner–Sharp mass [49] and describes energy content
within a sphere of given radius on a given time-slice. The limit case of zero
pressure leads to the LTB solution.

Since one of the possibilities of curing the shell-crossing singularity would be
the pressure holding the shells of matter apart the Lemaître solution is ideal tool
to study such scenario. However, only limited results are available so far due to
the nonlinearity of the above system of PDEs. Addition of purely homogeneous
pressure to LTB model was thoroughly discussed in [50].

3.1.3 Szekeres solution
The Szekeres spacetime is an exact dust solution of Einstein equations without
any symmetries (no Killing vectors exist). It was found by Szekeres [15] and
generalized by Szafron [16] for an energy momentum tensor describing a perfect
fluid.

The general metric in the comoving coordinates takes the form

ds2 = −dt2 + e2β
(︂
dx2 + dy2

)︂
+ e2αdz2 , (3.9)

with both α and β being functions of all the coordinates. The comoving syn-
chronous coordinates imply uµ = δµ

0 as a four-velocity describing the motion
of the dust. There are two major subfamilies of these solutions depending on
whether β,z = 0 or β,z ̸= 0. Since the second case (β,z ̸= 0) includes the LTB
spacetime as a spherically symmetric limit it has attracted more attention and it
will be our main focus here as well.

The metric of the β,z ̸= 0 subfamily of Szekeres spacetimes can be written as

ds2 = −dt2 +

(︂
R′ − RE ′

E

)︂2

ϵ + 2E (r) dr2 + R2

E2

(︂
dp2 + dq2

)︂
, (3.10)
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where
E (r, p, q) ≡ S

2

[︄(︃
p − P

S

)︃2
+

(︃
q − Q

S

)︃2
+ ϵ

]︄
, (3.11)

E ′ = S ′

2

[︄
1 − (p − P )2

S2 − (q − Q)2

S2

]︄
− P ′

S
(p − P ) − Q′

S
(q − Q) (3.12)

and f , P , Q, S are arbitrary functions of r and prime denotes a derivative with
respect to r. The parameter ϵ takes three discrete values −1, 0, 1 and determines
the geometry of the two-spaces of constant t and r which can be hyperbolic, planar
or spherical. The resulting type of Szekeres spacetime is then quasi-hyperbolic,
quasi-planar or quasi-spherical. A dynamical equation for the function R(t, r)
follows from Einstein equations

R,t
2 = 2M (r)

R
+ 2E (r) + ΛR2

3 (3.13)

and an equation describing the density profile has the following form

κρ = 2
M ′ − 3M E ′

E

R2
(︂
R′ − RE ′

E

)︂ , (3.14)

where M(r) is again an integration function and Λ is a cosmological constant.
Integration of (3.13) leads to the appearance of a bang time function tB (r) sim-
ilarly to the LTB case. Indeed one clearly sees that the line element (3.1) was
generalized into (3.10) by introducing the function E . So it is not surprising how
similarly the equations describing dynamics look, compare (3.2) resp. (3.3) with
(3.13) resp. (3.14). This similarity immediately raises the question whether shell-
crossing singularities can appear here as well. They can indeed appear if R′ = RE ′

E
which corresponds to the vanishing of the denominator in (3.14). Therefore when
using Szekeres solution in cosmology the avoidance of shell-crossing singularities
represents important aspect which is harder to ensure than in spherically sym-
metric LTB solution due to increased complexity.

If one selects ϵ = 1 the geometry of two-spaces spanned by p, q becomes
spherical and the spacetime is filled with spherical shells of dust which do not
have common center and the distribution of the energy density on a given shell
is not homogeneous but rather has a dipolar character. That is why the overall
geometry is called quasi-spherical. Similar geometrical picture can be built for
quasi-planar case ϵ = 0 with planar foliations and quasi-hyperboloidal (sometimes
called quasi-pseudospheric) case ϵ = −1 with hyperboloidal foliations [51].

Although this solution has generally no spacetime symmetries the three-spaces
of constant t (spatial sections) are conformally flat. The metric (3.10) is invariant
with respect to rescaling of the radial coordinate r (followed by suitable redefini-
tions of functions) so the overall number of unspecified functions reduces from 6
to 5.

The Szafron solution [16] providing a perfect fluid generalization can be de-
scribed using the same line element but the dynamical equation (3.13) would
contain one more term containing a time integral of an expression involving pres-
sure. As was the case for the Szekeres spacetime there are two branches of the
solution determined by β,z = 0 or β,z ̸= 0. Since the branch corresponding to
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β,z ̸= 0 contains Lemaître solution as a spherically symmetric limit it deserves
more interest and in the following we will have this branch on our mind when
mentioning Szafron solution (frequently called Szekeres-Szafron solution because
it contains the dust version as well).

19



3.2 Recent developments related to inhomoge-
neous cosmological models

Here we will comment on two important aspects related to inhomogeneous cos-
mological models briefly described above. The first one is the proper description
of these cosmologies using initial data that do not lead to shell-crossing singu-
larities. The second is the analysis of the presence and properties of quasilocal
horizons in these models.

3.2.1 Initial data for Szekeres spacetime
In [52] we have carried out an investigation of the possibility to provide useful
characterization of the Szekeres spacetime using only the initial data. This work
was motivated by previous research [53] providing description in terms of initial
and final data. This work concentrated on the quasi-spherical Szekeres spacetime
and the initial data were composed from the function E (see (3.10)), radial density
profile and the value of the maximum it attains on each shell (but not the position
of the maximum). This reflects the fact that the density distribution has dipolar
character on each spherical shell. Note that in this way only three functions were
specified compared to 5 physical degrees of freedom of the Szekeres spacetime.
Nevertheless, this limited set was sufficient for our analysis. The sign of function
E determines the character of the evolution of the spacetime in the sense that
when E < 0 the universe first expands and then collapses — being referred to as
an elliptic evolution type. Similarly for E = 0 we have a parabolic and for E > 0
a hyperbolic evolution. Thus specifying the initial value of function E enables
one to control the type of evolution that results.

The prime concern in [52] was to derive conditions that the selected set of
functions should satisfy in order to avoid shell-crossing singularity. Furthermore,
in the special case of E = 0 it was explicitly proven that if the conditions are
satisfied on the initial spatial slice they will automatically be satisfied throughout
the evolution. In this case we also developed useful approximation scheme which
simplifies the understanding of the evolution when the initial inhomogeneity is
small and can be helpful for estimating the results in complex scenarios without
explicitly solving the nonlinear equations.

This research was published in the following paper:
[52] D. Vrba and O Svítek: Modelling inhomogeneity in Szekeres spacetime, Gen.
Rel. Grav. 46(10):1808, 2014
doi: https://dx.doi.org/10.1007/s10714-014-1808-x

3.2.2 Horizons in inhomogeneous cosmologies
The existence and properties of horizons in inhomogeneous perfect fluid cosmolo-
gies was studied in [54] using their quasilocal characterization. Trapping hori-
zon definition by Hayward [31] was employed to study horizons in Lemaître and
Szafron spacetimes.

Due to spherical symmetry of the Lemaître solution the research led to deeper
results for this case. In this spacetime an explicit equation governing both fu-
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ture (in the collapsing phase) and past horizons (in the expanding phase) was
derived as well as conditions for being outer or inner horizons. In the special case
when Misner–Sharp mass [49] is constant along the horizon hypersurface it was
shown that such horizon has a null character and the perfect fluid on the horizon
has negative pressure. Interestingly, the intrinsic and extrinsic geometry of the
horizon in Lemaître spacetime is the same as in the LTB solution.

In the general case of the Szafron spacetime only conditions on the existence of
the horizon were derived. These conditions take into account on which side of the
shell-crossing condition R′ ≶ RE ′

E we stay, if we are in collapsing or expanding
phase and whether the neighboring shells are approaching each other or vice
versa. Simplified conditions were derived for special cases of spacetime or horizon
geometry when the symmetry is enhanced. Evidently, avoidance of shell-crossing
singularities has direct effect on the structure of horizons within the cosmological
model.

This research was published in the following paper:
[54] E. Polášková and O. Svítek: Quasilocal horizons in inhomogeneous cosmo-
logical models, Class. Quant. Grav. 36(2):025005, 2019
doi: https://dx.doi.org/10.1088/1361-6382/aaf77e
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3.3 Averaging in cosmology
Standard homogeneous cosmology is so far extremely successful when combined
with the cosmological constant and the cold dark matter. Any alternative models
are best compared when translated into the homogeneous setting which can be
achieved by averaging. Even when we take homogeneous cosmology as a best
model we know that matter distribution is highly inhomogeneous and therefore
homogeneous description can work only as a model describing the average dis-
tribution (with suitably large averaging scale on the order of hundreds of mega-
parsecs).

However, averaging is nontrivial in general relativity for two main reasons.
First, the theory is described in terms of tensorial fields and dynamical curved
geometry making it difficult to develop consistent averaging procedure. And
second, Einstein equations are highly nonlinear resulting in the appearance of
additional nontrivial terms arising due to these nonlinearities and potentially
giving rise to new phenomena.

Let us schematically show how to treat the averaging of Einstein equations.
Let us assume that gµν is a metric describing inhomogeneous cosmology. We will
denote by ⟨·⟩ a suitable averaging procedure applicable to tensors, therefore ⟨gµν⟩
denotes the averaged metric that describes slowly varying geometry or ideally
a completely homogeneous one. Since Einstein tensor is nonlinear in metric we
have in general

Gαβ(⟨gµν⟩) ̸= ⟨Gαβ(gµν)⟩ . (3.15)
So when we average the Einstein equations for the inhomogeneous metric gµν

Gαβ(gµν) = κ Tαβ (3.16)

and we want to interpret it in terms of the averaged (potentially homogeneous)
metric ⟨gµν⟩ we can rewrite the result in the following way

Gαβ(⟨gµν⟩) = κ ⟨Tαβ⟩ + (Gαβ(⟨gµν⟩) − ⟨Gαβ(gµν)⟩)⏞ ⏟⏟ ⏞
Cαβ

, (3.17)

where we denoted by Cαβ a so-called correlation (or backreaction) term that
effectively provides an additional source term for the averaged metric. The im-
portance of the correlation term in cosmology was already noted in 80’ by Ellis
[55]. Originally it was hoped that such term can help explain the dark sector of
cosmology but, as mentioned in the Introduction, this is now heavily disputed.
We have not commented about the averaging of the energy momentum tensor
Tµν but it is usually much simpler, especially for perfect fluid.

The other problem mentioned above concerns correct averaging when tensorial
fields are involved. Some of the first proposals applied averaging of tensors naively
(we consider tensor Q in an abstract form and omit indices)

⟨Q(x)⟩ =

∫︁
Ω

Q(x + x′)√−g dx′4

∫︁
Ω

√
−g dx′4 (3.18)

resulting in objects that could not be interpreted as tensors since the procedure
adds together tensors at different points of a curved manifold. One of the first
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attempts to correct this issue was due to Brill and Hartle [56] who employed a so-
called bilocal operator bα′

β (x, x′) that facilitated parallel transport along geodesic
from arbitrary point x′ to a reference point x where the integration of tensorial
objects defined at the same point can be performed. Primed indices refer to
components with respect to basis at point x′. The averaging prescription for a
second rank covariant tensor Qµν is thus given by

⟨Qµν(x)⟩ = 1
VΩ

∫︂
Ω

bα′

µ (x, x′) bβ′

ν (x, x′) Qα′β′(x′)
√︂

−g(x′) dx′4 . (3.19)

Brill and Hartle used this prescription when studying gravitational geon. Later
it was used by Isaacson [57, 58] when studying high-frequency approximation for
gravitational waves on curved background. More recently this averaging approach
was further developed, e.g. in the theory of Macroscopic gravity [59, 60] where
the averaging is extended to Cartan structure equations as well. These tensorial
averaging schemes have attained high level of mathematical rigor, but due to
their complexity they were successfully applied mostly in simplified situations.

Substantial simplification can in principle be achieved by concentrating on
averaging of scalar quantities which will be our main topic in the next section.
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3.4 Recent developments in averaging methods
Here we will shortly describe two new approaches to averaging in cosmology and
previous research that motivated them.

3.4.1 Averaging using Cartan scalars
In paper [61] we have developed an averaging scheme based on Cartan scalars.
This work was motivated by the averaging method using curvature scalars devel-
oped in [62] and based on the classification of geometries by such scalars [63].

The averaging scheme developed in [62] is based on characterizing the space-
time geometry using a set of scalars built from Riemann tensor and a finite
number of its covariant derivatives

I =
{︂
R, RµνRµν , CµναβCµναβ, Rµναβ;δR

µναβ;δ, Rµναβ;δγRµναβ;δγ, · · ·
}︂

. (3.20)

It was shown in [63] that such characterization is locally determining the geom-
etry of spacetime unless the geometry belongs to the Kundt class (characterized
by shear-free, twist-free and non-expanding geodesic congruence) which exhibits
degeneracy. Averaging the set of scalars I we obtain a new set ⟨I⟩. However, the
nonlinearities inherent in the definition of the set I mean that we are not guar-
anteed that there is a metric associated to the averaged set ⟨I⟩ since relations
among the members of I will not be preserved upon averaging. To deal with
this problem all the elements of I that are not algebraically independent or can
be derived using so-called syzygies (e.g. relations characterizing algebraic types)
are removed to obtain reduced set IR. This set is then averaged ⟨IR⟩ and the
relations that enabled the reduction are subsequently used to generate the full
set of scalars. This set automatically satisfies the same algebraic relations and
syzygies as the original spacetime and describes large-scale geometry.

Motivated by this result, we have employed Cartan scalars to average a space-
time geometry [61]. These scalars were originally developed by Cartan [64] to
solve the problem of equivalence of geometries and adapted to general relativistic
context by Karlhede [65]. Cartan scalars are essentially tetrad projections of Rie-
mann tensor and a finite number of its covariant derivatives and therefore they
are a true scalars only with respect to the frame bundle of the manifold. However,
fixing the tetrad we have scalars on the manifold as well. As was the case for the
curvature scalars even for Cartan scalars one can reduce the set to functionally
independent quantities using relations stemming from Cartan structure equa-
tions on the frame bundle. This reduced set can be averaged and subsequently
expanded back by applying the relations. The Cartan-Karlhede algorithm then
guarantees the existence of geometry described by this new set of scalars. Al-
though explicit construction of the metric from the full set of Cartan scalars is
possible the procedure is quite difficult. Apart from geometry itself, one is usually
interested in averaging Einstein equations as well. Fortunately, Einstein tensor
can be written as a sum of certain Cartan scalars and therefore its average is
constructed trivially and the correlation term is vanishing by this construction.

Due to the technically difficult construction of a metric out of Cartan scalars
we have proposed an alternative approach to the problem. Compare the generated
set of scalars for averaged geometry with Cartan scalars of known (potentially
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homogeneous) cosmological models and determine the best fit. Although this
seems by no means unambiguous procedure, when applied in cosmology we are
anyway led towards homogeneous models thus making the task much clearer.
This approach additionally enables one to easily identify the correlation term. In
the examples presented in [61] the correlation term gives rise to effective positive
cosmological constant or spatial curvature term.

This research was published in the following paper:
[61] P. Kašpar and O. Svítek: Averaging in cosmology based on Cartan scalars,
Class. Quant. Grav. 31:095012, 2014
doi: https://dx.doi.org/10.1088/0264-9381/31/9/095012

3.4.2 Averaging in LRS class of spacetimes
One of the most influential recent methods for averaging specifically in cosmo-
logical context was developed by Buchert [66, 67]. It is based on 3+1 splitting
of spacetime which is well defined by the assumed perfect fluid flow and involves
only spatial averaging. It focuses on averaging of certain projections of Einstein
equations only thus describing backreaction on fluid flow expansion but not its
shear. The spatial averaging does not commute with the evolution of quantities
in time which has to be taken care of.

The appeal of such restricted averaging approach led us to consider averaging
limited to the (class II dust-filled) locally rotationally symmetric (LRS) space-
times [68]. LRS spacetimes are characterized by existence (in the neighborhood
of each point) of nontrivial subgroup of Lorentz group which leaves the Riemann
tensor and its covariant derivatives up to third order invariant. This can be
understood as a presence of local axis of symmetry at each point providing ad-
ditional vector field on the spacetime apart from the fluid flow. The presence of
additional structure allows the description of these spacetimes in terms of scalars
constructed by suitable projections. These can be spatially averaged similarly
to Buchert’s method. However, apart from nontrivial commutation relations be-
tween time-evolution and averaging we have additional commutation relations
between averaging and evolution along the additional vector field representing
the local symmetry of LRS spacetimes. Subsequently, all the Einstein equations
including constraints can be averaged and the backreaction terms for all the quan-
tities appear explicitly. Importantly, the averaged constraints are shown to be
preserved during evolution. The full set of averaged equations is not closed but
we provide suggestions for resolving this issue — an infinite hierarchy of equations
that can be truncated when only finite precision is sufficient or when invoking
additional relations for higher order correlation terms. The averaging method is
applied to approximate LTB (so-called onion) model showing that backreaction
in the equation for shear (optical scalar of the fluid flow) is dominant over the
backreaction in the equation for expansion. This would suggest that at least in
this specific case the Buchert approach might omit significant effect.

This research was published in the following paper:
[68] P. Kašpar and O. Svítek: Averaging in LRS class II spacetimes, Gen. Rel.
Grav. 47(2):4, 2015
doi: https://dx.doi.org/10.1007/s10714-014-1844-6
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Chapter 4

The relation between black hole
solutions and cosmological
models

Black hole solutions containing pure radiation have a preferred null direction along
which the null matter radiates. The simplest example is the spherically symmetric
Vaidya spacetime. Removing all the symmetries while keeping twistfree geometry
we have a pure radiation generalization of Robinson–Trautman solution where the
pure radiation direction coincides with the principle null congruence defining the
geometry.

On the other hand, dust-filled cosmological models naturally have a well de-
fined timelike vector field of the dust flow — we have spherically symmetric LTB
models or the Szekeres class generally lacking any symmetries.

Obvious question then arises whether null dust black hole solutions can be
obtained by pushing the speed of the timelike dust flow in cosmological models
towards the speed of light in some well-defined limiting procedure. There is indeed
such possibility. Gleiser [69] found that quasi-spherical Szekeres model turns to
pure radiation Robinson–Trautman solution and Hellaby [70] later identified this
limit as a generalization of the Kinnersley rocket solution [71]. Vaidya spacetime
was shown to be a null limit of certain LTB solutions by Lemos [72].

4.1 Recent developments
Motivated by the above mentioned research we have described the limiting process
in greater detail generalizing it to non-zero cosmological constant and proposed
how to treat the reverse process (going from pure radiation to timelike dust) in
[73]. The extra information needed for the reversal helped to clarify how to treat
functional dependencies correctly during the limiting procedure.

Although the limiting procedure is not unique we have shown using results
of Geroch [74] that considering the geometrical and physical properties of the
spacetimes under consideration the arbitrariness of the process is largely removed.
Additionally, employing general arguments about spacetime limits investigated in
[74] we have shown that since the Szekeres solution is of algebraic type D its null
limit can maximally be of type D as well [73]. This clearly restricts the resulting
geometries to a subclass of Robinson–Trautman family that lacks gravitational
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radiation. Such limitation seems quite natural since one would need very specific
property of the geometry of the cosmological model that would transform into
exact gravitational waves upon taking the null limit. Therefore, attempts to
generalize this relation between geometries towards type II Robinson–Trautman
solution are unlikely to succeed.

This research was published in the following paper:
[73] C. Hellaby and O. Svítek: Reversing the null limit of the Szekeres metric,
Class. Quant. Grav. 38(3):035004, 2021
doi: https://dx.doi.org/10.1088/1361-6382/abcc0c
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Chapter 5

Conclusion

In the previous chapters we have shortly described recent research of the author
and its background focusing on black hole spacetimes and cosmology. In both
areas the presented research extended description of more generic situations lack-
ing symmetries and/or describing inhomogeneous matter distribution. These are
important both from astrophysical and mathematical point of view since they can
uncover which features are robust and which are merely a coincidence of highly
symmetric models. This is especially true in nonlinear theory such as general rel-
ativity. At the same time certain important aspects might be missing in highly
symmetric situations.

In chapter 2 the main results concerned scalar field generalization of the
Robinson–Trautman family of solutions which helped in better understanding the
applicability of no-hair theorem and cosmic censorship hypothesis. Asymptotic
behavior of Robinson–Trautman equation was successfully used when studying
nonlinear electrodynamics generalization of Robinson–Trautman geometry and
nonlinear stability of thin-shell wormhole.

In chapter 3 new results concerning Szekeres spacetime were provided. Its
characterization using initial data was developed which avoids the shell-crossing
singularity (undesirable feature absent in homogeneous cosmology) and existence
of horizons for the perfect fluid generalization was analyzed. Averaging problem
in cosmology was tackled by focusing on averaging of scalar quantities. Two new
approaches were developed, one using averaging of Cartan scalars and the second
employing scalar quantities characterizing LRS class II dust cosmologies.

Finally, in chapter 4 a bridge between solutions covered in previous two chap-
ters was presented consisting from limiting procedure taking dust-filled cosmo-
logical models to pure radiation filled black hole spacetimes.

29



30



Appendix A

List of summarized papers

In the order of appearance in the text:
• T. Tahamtan and O. Svítek: Robinson-Trautman solution with scalar hair,

Phys. Rev. D 91(10):104032, 2015
doi: https://doi.org/10.1103/PhysRevD.91.104032

• T. Tahamtan and O. Svítek: Properties of Robinson–Trautman solution
with scalar hair, Phys. Rev. D 94(6):064031, 2016
doi: https://dx.doi.org/10.1103/PhysRevD.94.064031

• T. Tahamtan and O. Svítek: Robinson–Trautman solution with nonlinear
electrodynamics, Eur. Phys. J. C 76(6):335, 2016
doi: https://dx.doi.org/10.1140/epjc/s10052-016-4175-9

• O. Svítek and T. Tahamtan: Nonsymmetric dynamical thin-shell wormhole
in Robinson–Trautman class, Eur. Phys. J. C 78(2):167, 2018
doi: https://dx.doi.org/10.1140/epjc/s10052-018-5628-0

• D. Vrba and O Svítek: Modelling inhomogeneity in Szekeres spacetime,
Gen. Rel. Grav. 46(10):1808, 2014
doi: https://dx.doi.org/10.1007/s10714-014-1808-x

• E. Polášková and O. Svítek: Quasilocal horizons in inhomogeneous cosmo-
logical models, Class. Quant. Grav. 36(2):025005, 2019
doi: https://dx.doi.org/10.1088/1361-6382/aaf77e

• P. Kašpar and O. Svítek: Averaging in cosmology based on Cartan scalars,
Class. Quant. Grav. 31:095012, 2014
doi: https://dx.doi.org/10.1088/0264-9381/31/9/095012

• P. Kašpar and O. Svítek: Averaging in LRS class II spacetimes, Gen. Rel.
Grav. 47(2):4, 2015
doi: https://dx.doi.org/10.1007/s10714-014-1844-6

• C. Hellaby and Otakar Svítek: Reversing the null limit of the Szekeres
metric, Class. Quant. Grav. 38(3):035004, 2021
doi: https://dx.doi.org/10.1088/1361-6382/abcc0c
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