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1 Introduction

Nanoporous materials play a crucial role in a wide range of applications in
chemical engineering, chemistry, and material science. The prime example of
such materials are zeolites, the crystalline aluminosilicates composed of co-
valently bound tetrahedral networks, acting as heterogeneous catalysts with
confinement-induced reactivity and selectivity, which are one of the most im-
portant industrial catalysts and are used nowadays, in particular, in crude
oil processing and petrochemistry. In addition, zeolites have already found or
are expected to find utilization in sustainable fields including production of
chemicals and fuels using abundant and renewable feedstocks (biomass con-
version), thermal energy storage, water purification and desalination, NOx
emission control from exhaust fumes and CO2 capture and conversion [Li
et al., 2017]. The advantages of zeolites are that they are environmentally
friendly, reasonably cheap, and thermochemically stable. The space of zeolite
framework topologies is large theoretically, however, only about 250 different
zeolite frameworks have been synthetized so far, mostly in a trial-and-error
fashion. This limited flexibility is partially offset by the possibility to tune the
character of the extra-framework cations, compensating the negative charge
of the framework, as well as to engineer the aluminum content and distri-
bution. In addition, the silicon or aluminum atoms can be isomorphously
substituted for other elements (such as B, Ge, Sn, Ti, etc.), which further
extends the versatility of zeolites. Lately, there is a growing demand for new
zeolites for much more diverse applications than before. Even though zeolites
have been studied for decades, understanding of their (trans)formation and
decomposition mechanisms at the molecular level is still lacking [Heard et al.,
2020].
Another very important and recently extremely popular class of nanoporous
materials are the metal-organic frameworks (MOFs), joining the family of
crystalline nanoporous materials rather recently. The MOFs are a subclass of
coordination polymers made of metal-containing (metal or metal oxide clus-
ters) nodes coordinated to the bridging organic linkers (such as carboxylic
acids or azols). Their strengths are the ease of their synthesis and the huge
tunability of their physiochemical properties (surface area, sorption capac-



ity, catalytic activity, etc.) thanks to a large variety of organic and metal-
containing building blocks that could be coordinated together [mof, 2012].
However, MOFs typically suffer from lower thermochemical stability and high
production costs which translates into a fact that MOFs have not been yet
commercialized in larger scale [Kokcam-Demir et al., 2020]. Similarly to zeo-
lites, a lot of effort has focused on synthetizing and designing MOFs (ideally
in silico) with targeted properties.

This habilitation thesis maps my efforts in developing and applying methods
that fill the gap in our current understanding of processes taking place in the
nanoporous materials (in particular zeolites and MOFs) at the atomistic level,
with the ultimate aim to enable the rational design of these nanoporous ma-
terials. This journey could be characterized as continuous attempt to strike
a balance between the complexity of the model system (i.e., typically more
complex means more realistic) and the complexity of the method (i.e., typi-
cally more complex means more accurate), so that our computational results
could be readily experimentally verifiable/falsifiable. In our earlier studies the
pendulum swung more towards the side of the method accuracy, as we tried
to describe as accurately as possible the physisorption (or weak chemisorp-
tion) of various small gas molecules in few reference nanoporous materials
(3.1), developing the dispersion-corrected density functional theory (DFT)
methods (2.1) and carrying out a lot of so-called static calculations (typi-
cally just local geometry optimization) on a set of reasonably representative
structures. Later, the pendulum swung more towards our aim to describe
more complex (realistic) systems, e.g., zeolites interacting with aqueous so-
lutions or modelling defective zeolites (3.2). To reliably model such systems,
a dynamical description, e.g., using (biased) ab initio molecular dynamics,
is often necessary, enabling a more thorough sampling of the configuration
space that accounts for temperature effects and which allows for more open-
ended search for accessible reaction/transformation paths. However, in both
of the above-mentioned directions, one was still limited, due to large compu-
tational costs, to a few assumingly representative systems. We tried to assess
this problem initially by extensive high-throughput-like DFT-based calcula-
tions for broader range of systems (3.3). However, to properly reconcile this
conflict between the complexity of model and the complexity of the method,
we have recently started to leverage the power of machine learning for our
purposes (via developing neural network potentials and ML-driven collective
variables - see Chapter 2.4), which are expected to allow us to carry out
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truly comprehensive studies of nanoporous materials such as zeolites under
realistic conditions maintaining an ab initio level of accuracy (3.3).

The habilitation thesis is composed of two parts - the first part focuses on
my efforts towards developing novel methods for simulation of (not only)
nanoporous materials (chapter 2), while the second part highlights some of
my application results in the field of nanoporous materials (Chapter 3). At
the end of each (sub)chapter, I provide, in a two short paragraphs,: i) a
specification of my own contribution to the particular topic including a list
of related articles co-authored by me, and ii) the importance, the broader
context and the future outlook of the particular methodological development
or the particular application finding. The articles on which this habilitation
thesis is based are attached at the end of the thesis in the Chapter 6.

The text of habilitation thesis discusses my more recent work in the broad
context of my career including my PhD years, which are summarized in
subchapters 2.1 and 3.1. The publications from my PhD years are not per se
a subject of thesis and none of them is included in the list of the attached
papers (Chapter 6).
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2 Methodological advances

“Work it harder, make it better
Do it faster, makes us stronger.”

— Daft Punk. “Harder, Better, Faster, Stronger.” 2007

2.1 "Better" - Dispersion corrections to DFT

The attractive Van der Waals (vdW) dispersion interactions, arising from
electrostatic interactions between fluctuating electron densities, are
omnipresent in molecules and materials. The dispersion interactions are es-
sential not only for description of binding in molecules and materials but
has been shown to influence wide range of seemingly unrelated properties
(spectroscopic, mechanical, electronic or kinetic) [Hermann et al., 2017, Xu
et al., 2020]. Hence, the need to describe them accurately straightforwardly
extends to nanoporous materials, be it in the context of adsorption, reactiv-
ity/catalysis, or phase transformation.

Unfortunately, proper description of dispersion interaction, which is a many-
body correlation effect, is difficult and necessitates deployment of high-level
correlated calculations, which can be, due to exorbitant computational costs,
applied only to rather small molecules (typically tens and up to very low hun-
dreds only if extensive supercomputer resources are available). Use in con-
densed systems, such as nanoporous materials, is thus mostly precluded and
approximate treatments, typically within the context of density functional
theory (DFT) methods, are necessary. This is still an active field of research
despite it maturing significantly in the recent years [Caldeweyher et al., 2019,
Hermann and Tkatchenko, 2020, Kim et al., 2020]. A useful classification of a
"zoo" of various approaches put forward in ref. [Hermann et al., 2017] is the
following: i) the exact treatment via the adiabatic-connection fluctuation-
dissipation theorem within DFT framework (with a necessity to approxi-
mately remove double-counting of correlation energy in the short-range), ii)
coarse-grained (e.g., atom-based) many-body vdW methods, iii) fine-grained
(infinitesimal) pairwise density functional approximations, and iv) coarse-
grained (e.g., atom-based) pairwise vdW methods. The last class of atom-
based pairwise vdW methods, represented by a family of DFT-D methods of
Grimme et al. [Caldeweyher et al., 2019], is cost- and implementation-wise
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least demanding, and despite a typically significant degree of semi-empiricism
involved, has been shown to provide acceptable accuracy in most applications
(excluding mostly extended low-dimensional systems or materials with non-
cubic symmetry) and is (unfortunately) still mostly a method of choice for
the majority of users in the (nanoporous) materials field. Our own approach,
the DFT/CC method [Bludský et al., 2008, Grajciar et al., 2010], falls also
within this last class of dispersion correction methods.

The DFT/CC method, introduced first by Bludský et al. [Bludský et al.,
2008], is a coarse-grained pairwise vdW-like method that expresses the vdW-
like correction ∆E to interaction energy between molecules (or material and
molecule) derived from a pure semi-local DFT functional (typically a PBE
functional was used) as a sum of atomtype-atomtype distance-dependent
pairwise corrections (generalization to angle dependence or different atom
types is straightforward):

∆E =
∑
i∈A

∑
j∈B

εAt(i),At(j), (2.1)

which is similar to the approach taken by the original DFT-D1 [Grimme,
2004] and DFT-D2 [Grimme, 2006] works by Grimme. In contrast to those
Grimme’s approaches, the goal of the DFT/CC method was not universality
but a very high accuracy for specific systems of interest with an ability to
correct for other deficiencies of semi-local DFT functionals beyond missing
dispersion and focusing on consistently accurate description of larger portions
of the potential energy surface (PES) beyond the equilibrium distances only.
To obtain the atomtype-atomtype correction functions εAt(i),At(j) a gridded
reference data (at highly-accurate correlated CCSD(T) level) were generated
and the correction functions were fitted on this reference data using a robust
reciprocal power Reproducing Kernel Hilbert Space (RKHS) interpolation
[Ho and Rabitz, 1996]:

εij(rij) =
∑
k=1

αijk q(r
2
ij, r

2
k), (2.2)

where k runs over the gridded reference points, αijk are coefficients to-be-fitted
and the kernel function is defined as:

q(r2ij, r
2
k) =

1

3r6>
− r2<

5r8>
, (2.3)
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with r< = min(r, r
′
) and r> = max(r, r

′
). This form of kernel function

guarantees correct r−6 asymptotics of the correction, as it constructed as
a vdW-like correction. From today’s perspective, our DFT/CC approach
could be considered as an early attempt at delta-machine learning approach
[Ramakrishnan et al., 2015] (which constructs a correction surface between
high- and low-level theories) that utilizes nowadays well-established and very
popular machine learning method (RKHS), which is today better known
under different names, i.e., as kernel ridge regression (KRR) or as a Gaussian
process regression (GPR) [Unke et al., 2021b]. Hence, it seems we were a bit
ahead of time with the DFT/CC approach.

The DFT/CC method has been succesfully applied to study interactions of
hydrocarbons [Bludský et al., 2008] and adsorption of small gas molecules on
(hydro)carbons [Rubeš et al., 2010] and in extended materials (zeolites and
metal-organic frameworks) [Grajciar et al., 2012, 2015a] exhbiting unprece-
dented accuracy. It has been also later extended and coupled with vdW non-
local functionals [Hermann and Bludský, 2013] to improve originally rather
cumbersome way of creating atomtype-atomtype corrections functions for
systems with multiple atomic types. However, it appears that with the ad-
vent of machine learning, much more streamlined and automatized big data
extraction procedures are available and with the focus on universality rather
than specificity (at least in the vdW-corrected DFT field) the DFT/CC
method is now superseded with more clearly data-oriented approaches such as
machine learning thermodynamic perturbation theory [Herzog et al., 2022]
and by the universal vdW correction schemes [Hermann and Tkatchenko,
2020, Kim et al., 2020, Caldeweyher et al., 2019].

My contribution to the DFT/CC was in its extension: i) for description of
adsorption in complex materials (metal-organic frameworks) with multiple
atomic types, and ii) for an explicit use of DFT/CC as general correction
scheme to standard DFT moving beyond the vdW-correction only. Thus, e.g.,
I was able to achieve unprecedented level of accuracy for description of ad-
sorption of small molecules in computationally very challenging metal-organic
frameworks with open-metal sites as illustrated in Figure 1 (see Chapter 3.1
for more details). Also, it represented my first encounter with the machine
learning approaches that I built upon later down the line (see Chapter 2.4).
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Figure 1: The performance of the DFT/CC method tested on the 1-D dis-
sociation curves of various adsorption complexes of small molecules with the
paddlewheel model of the metal cluster in a reference MOF named CuBTC:
(a) water, (b) ethane and (c) carbon monoxide. Figure adapted from [Graj-
ciar, 2013].

2.2 "Stronger/Larger" - Large scale DFT calculations

The ability to routinely treat large nanoporous systems such as zeolites,
metal-organic frameworks, or covalent-organic frameworks at the standard
(semi-local) DFT level is still a challenge as many of those systems have
unit cells containing high hundreds to low thousands of atoms. In addition,
these systems are sparsely packed making the use of standard plane-wave
based periodic DFT implementations inefficient [Kudin and Scuseria, 2000].
In this context the use of compact localized atom-centered basis sets such as
Gaussian-type orbitals (GTOs) is more "natural" and allows for consistent
treatment of both molecular and periodic systems of any dimensionality (i.e.,
of 1D nanowires such as nanotubes or of 2D surfaces) without a need to use
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artificial 3D periodic models.

However, the use of GTOs comes with a caveat in a need to evaluate compu-
tationally expensive four-center electron repulsion integrals (ERIs) constitut-
ing the Coulomb (and exchange) contributions. One of the most successful
ways how to reduce the cost of ERI evaluations is to use a density fitting
(DF) procedure [Whitten, 1973] which approximates electron density ρ(r)
(a two-center entity) as linear combination of atom-centered GTOs from the
"so-called" auxiliary basis set ξα(r):

ρ(r) ≈ ρ̃(r) =
∑
α

cαξα(r), (2.4)

where linear expansion coefficients cα are obtained by minimizing the error
defined as (ρ − ρ̃|w|ρ − ρ̃) with respect to metric w. All-in-all this leads to
system of linear equations:

Vwc = γw, (2.5)

where γw is a vector with elements γwα = (ξα|w|ρ) and Vw is a matrix with
elements V w

αβ = (ξα|w|ξβ). Thus, DF turns the four-center ERIs into a sum of
two- and three-center ERIs that can be evaluated order of magnitude faster
[Eichkorn et al., 1995] for small and mid-size systems (tens to low hundreds
of atoms) as the cost of solving Equation 2.5 is small for those systems. How-
ever, the cost increases for very large systems as: i) inversion of Equation
2.5 scales as O(N3

aux) with the size of auxiliary basis set Naux, albeit with
very small prefactor, and ii) the memory demand scale as O(N2

aux) as the
matrix Vw is dense. The problem is compounded by the fact that auxiliary
basis sets are three to five times larger than orbital basis sets. In addition, in
periodic calculations even the need to evaluate large number of three-center
ERIs becomes a computational bottleneck very fast. Multiple workarounds
have been proposed in the literature based mostly on localizing the auxil-
iary basis set expansion such as using a metric w different than the optimal
Coulomb metric [Jung et al., 2005, Luenser et al., 2017] or explicitly parti-
tioning fitted densities into localized subsystems and fitting them separately
[Sodt et al., 2006, Pisani et al., 2008]. However, these approaches have their
own caveats such as increased error of the fit (using non-Coulomb metric) or
introduction of the structure-dependent error that can lead to discontinuities
in the potential energy surface.

Our approach for DF of large molecular and periodic systems is to use the
global Coulomb metric with a key ingredient being the continuous fast multi-
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pole method (CFMM) [Kudin and Scuseria, 2000]. The CFMM can evaluate a
large portion of Coulomb long-range interactions very efficiently using mul-
tipole expansions rather than by calculating costly ERIs and can achieve
near-linear scaling for evaluation of the Coulomb term. Our combination of
DF and CFMM for periodic systems was coined as DF-CFMM [Lazarski
et al., 2015, 2016] and the approach for large molecular systems was termed
as low-memory iterative density fitting (LMIDF) [Grajciar, 2015] as it in-
cluded also an implementation of the iterative solution of Equation 2.5 using
preconditioned conjugate gradient (CG) method. In the LMIDF, by evading
direct inversion of Equation 2.5 we alleviate a problem with O(N3

aux) scaling
of the direct solution and by using the CFMM to evaluate the majority of
the Vwc products on-the-fly, making the remaining part of the Vw matrix
sparse, we mitigate the O(N2

aux) memory demand. For the best conjugate-
gradient preconditioner (SP block), providing optimal trade-off between its
storage/calculations costs and the ability to decrease the number of CG itera-
tions (which necessitate repeated evaluation of theVwc products), we achieve
at least 7-fold reduction of memory demands compared to standard DF with
at least 13-times smaller prefactor for the O(N3

aux) step. The cost of the iter-
ative solution of Equation 2.5 is a modest increase (by a few tens of percent)
of total computation time due to repeated evaluation of the Vwc products,
which, however, decreases with the system size. The upshot is that using the
LMIDF one can routinely carry out calculation of very large molecules (or
molecular fragments) containing few thousands of atoms described by over
100,000 auxiliary basis functions on a single computational node equipped
with a memory of a standard size (high ones and low tens of GB per CPU
core). We demonstrated this by performing a DFT single point calculation
for a large chabazite zeolite fragment containing 2592 atoms with the elec-
tron density expanded using 121,248 auxiliary basis functions and all this
done on a single 12-core computational node with 128 GB of memory only
(see Figure 2). The ability to run such calculations on a single node is of
particular importance for studies that need to perform many runs in parallel
such as global structure optimization (see Chapter 2.3) or high-throughput
screenings (see Chapter 3.3).

Since their implementations DF-CFMM and LMIDF approaches have found
applications mostly in description of covalent organic frameworks [Gottschling
et al., 2020], molecular crystals [Stein and Heimsaat, 2019] and zeolites [Gra-
jciar, 2016]. In addition, I expect their potential to lie also in description of
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Figure 2: The example of an extremely large cluster (of the zeolite chabazite)
containing 2592 atoms and 121,248 auxiliary basis functions, for which a sin-
gle point DFT calculation could be performed, using the low-memory iter-
ative density fitting developed by me [Grajciar, 2015], on a single 12-core
CPU node equiped with 128 GB memory only. Figure adapted from [Graj-
ciar, 2015].

supramolecular systems possibly within the QM/MM or QM/QM framework
either as a one-off calculation or carried out within a high-throughput study.
Lastly, the DF-CFMM implementation has become a bedrock on which new
capabilities were built including calculation of stress tensors [Becker and
Sierka, 2019], wave-function-in-DFT embedding [Sharma and Sierka, 2022]
and implementation of real-time time-dependent DFT [Müller et al., 2020].

The development of the LMIDF was solely my own undertaking [Grajciar,
2015] and I implemented the most-complex and the most important part
of the analytical gradients, the Coulomb term gradients, for the DF-CFMM
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method [Lazarski et al., 2016]. The analytical gradients enable calculation
of forces acting on atoms and are needed for structure optimizations or the
molecular dynamics runs. Importantly, the implementation was done within
one of the leading quantum chemistry packages on the market, the TUR-
BOMOLE [TUR], which: i) enabled me to gain experience in developing
methods in the high-performance environment, ii) provided me with the
contacts in the method-development field, and iii) allowed my implementa-
tions to gain broader audiences. These developments were funded by internal
TURBOMOLE project and the Deutsche Forschungsgemeinschaft Grant No.
269386423, in both of which I was a principal investigator.

2.3 "Harder" - Global optimization in confined spaces

Reliable characterization of the atomic structures of nanoporous materials
and in particular of the structures of molecules and clusters embedded inside
the nanoporous materials is a key prerequisite for understanding their phys-
ical and chemical properties. One way how to solve this non-trivial problem
is to perform a global structure optimization (GSO) search [Wales, 2004],
in which a structure-dependent cost function E(x), typically a potential en-
ergy of a system, is globally minimized over a breadth of the structures
x providing the putative global minimum structure as well as a library of
low-lying local minima obtained during the optimization run. Since the cost
function E(x) over the structure space is typically highly non-linear and non-
convex, GSO algorithms are highly heuristic with many system-specific tun-
able hyperparametrs (convergence and acceptance criteria, moveclass types,
local minimization algorithm, etc.). The two main classes of these heuristic
GSO methods are Monte Carlo based methods such as basin-hopping [Wales
and Doye, 1997] or minima-hopping [Goedecker, 2004] and nature-inspired
GSO methods represented mainly by the genetic/evolutionary algorithms
[Heiles and Johnston, 2013]. The main application fields for GSO searches
are in structure determination of [Grajciar et al., 2018]: i) free-standing clus-
ters/nanoparticles, ii) external surfaces, and iii) surface-deposited/surface-
adsorbed clusters/molecules with a focus on globally optimizing the structure
of the clusters/molecules rather than allowing for a surface-reconstruction.
However, the application of GSO methods to structure determination of clus-
ters/molecules confined in the embedding matrix (e.g., nanoporous material
such as zeolites) has been largely nonexistent, with a single exception [Vil-
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helmsen et al., 2012] that basically just re-used the older GSO implementa-
tion for surface-deposited nanoclusters.

Therefore, the aim was to develop a tool for global structure optimization in
confined spaces, GOCONS, which allows for locating of the most stable struc-
tures of molecular and nanoparticular systems confined in host materials in
a computationally efficient way. The GOCONS tool has been implemented
as an extension of the DoDo program [Sierka, 2010] for global structure op-
timizations using genetic algorithm and being a part of the TURBOMOLE
program package [TUR]. The extensions over standard GSO methods for
surface-deposited clusters were: i) modification of the cut-and-splice crossover
operator that would reflect the fact that the stability of confined clusters is
not only a function of their structure but also of their location and orientation
within the host (in particular in case of the strong interaction with the en-
vironment), ii) robust and automatic definition of the void space in the host
used for generation of the candidate structures based on alpha shape theory
[Edelsbrunner et al., 1998] and weighted Voronoi decomposition, and iii) em-
ployment of the LMIDF [Grajciar, 2015] to enable running DFT calculations
within GOCONS in parallel even for such large cluster-host systems (see
Chapter 2.2). The applicability of the GOCONS tool was later demonstrated
for global structure determination of lead sulfide quantum dots confined in
the zeolite host with sodalite topology [Grajciar, 2016] (see Chapter 3.1 for
more details).

The GSO techniques are most relevant for systems at low temperatures, in
low pressure environments and without large solvent effects - for such systems
and conditions a putative global minimum along with few low-lying minima
do have outsize Boltzmann weights in the ensemble and thus represent the
system in question reasonably well. However, at increased temperatures and
pressures, with strong solvent effects or for systems undergoing reconstruc-
tion at such reactive operando conditions, the applicability of GSO is lim-
ited mostly to qualitative screening of candidate structures then needs to be
refined by methods able to describe the free energy surface quantitatively
such as molecular dynamics or Monte Carlo [Grajciar et al., 2018]. Since I
have been lately interested in complex systems characterized by strong sol-
vent effects at increased temperatures (see Chapter 3.2) my interest in GSO
has faded and when needed I opted out [Hou et al., 2020] for simpler and
more robust, albeit less fine-tuned and more brute-force, approaches such
as basin-hopping [Wales and Doye, 1997]. However, there have been lately
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few interesting GSO developments related to my current focus on using ma-
chine learning methods in chemistry (see Chapter 2.4) that may rekindle my
interest in GSO such as: i) a GOFEE method leveraging cheap machine learn-
ing surrogate models to speed up local optimizations while mostly retaining
the accuracy of the high-level (DFT) method [Bisbo and Hammer, 2020], or
ii) use of robust non-heuristic global optimizers based on covariance matrix
adaptation evolution strategy algorithm [Arrigoni and Madsen, 2021].

The development and the test applications of the GOCONS tool was solely
my own undertaking [Grajciar, 2016] done within the Deutsche Forschungs-
gemeinschaft Grant No. 269386423, in which I was the principal investigator.
In addition, thanks to this project I gained a broad overview of the GSO
field, of its strengths and weaknesses and it thus put me in good position to
write a review article that included GSO as a one of its main topics [Grajciar
et al., 2018].

2.4 "Faster" - Machine Learning Potentials and More

With the increasing availability of big data in chemistry, the application of
machine learning (ML) in chemistry has become a huge trend in the last
decade and despite a significant hype associated with it, its usefulness is
now largely undeniable. This is illustrated in multiple application domains
of ML in chemistry ranging from material design and retrosynthesis predic-
tions to autonomous experimentation [Moosavi et al., 2020, Strieth-Kalthoff
et al., 2020]. The most of ML algorithms can be thought as universal regular-
ized interpolators that are really good at inferring implicit knowledge from
(big) data and are very efficient in removing redundancies, i.e., in reducing
dimensionality of the data [Keith et al., 2021]. However, as interpolators,
ML algorithms can be prone to artifacts, still need significant number of of-
ten expensive data (from quantum chemistry calculations), are difficult to
interpret in order to gain some high-level conceptual insight and have lim-
ited extrapolation capabilities. Hence, the ML is not a "silver bullet" to our
experimental and computational limitations and problems but, if handled
cautiously and with a regard for its limitations, can be used, e.g.,: i) to de-
rive statistically significant predictive models from large data sets that could
allow for refinement and easier understanding of complex problems such as
zeolite synthesis design [Schwalbe-Koda et al., 2021, Jablonka et al., 2020],
or ii) to significantly accelerate computational simulations of atomistic sys-
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tems using machine learning potentials [Unke et al., 2021b] allowing us to
adopt more realistic models or to carry out high-throughput calculations on
large databases such as on a database of existing and hypothetical zeolites
containing more than three hundred thousand structures [Erlebach et al.,
2022].

The machine learning potentials (MLPs), also known as ML-based force
fields, represent the mapping E(x) between the (chemical) structures and
their potential energy and belong to a class of supervised ML as the refer-
ence (typically quantum chemical data) are needed for their training. There
are two big classes of MLPs, the kernel-based MLPs and the neural network
based (NN) MLPs [Unke et al., 2021b, Keith et al., 2021]. In both cases one
tries to find a general function approximator linking structure descriptors to
energy Ẽ(x). For the kernel-based methods such approximator is expressed
as a linear approximation:

E(x) ≈ Ẽ(x) = y(x) =
∑
i

ciK(x,xi), (2.6)

where ci are coefficients, and K(x,xi) is a non-linear kernel that evaluates
similarity between reference data points (structure descriptors) xi and the
previously unseen input (structure descriptor) X in some high-dimensional
"feature space" (see example of such kernel in Equation 2.3). This then leads
to a linear system for coefficients ci:

c = (K− λI)−1y, (2.7)

where strength of regularization (noise) is controlled by hyper-parameter λ.
Equation 2.7 is solved by matrix factorization which, however, scales unfa-
vorably with number of reference data points (O(N3) for standard Cholesky
decomposition or as O(N2) for iterative solvers). For neural network based
MLPs the general function approximator can be expressed as:

y = Wnhn−1 + bn

hi = σ(Wihi−1 + bi) (2.8)
h0 = σ(W0x + b0)

where hi denotes i -th "hidden" layer of the network, weights Wi and biases
bi are parameters of i -th layer and σ is a non-linear activation function. The
optimal values of weights Wi and biases bi are found, i.e., the NN-based
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MLPs are trained, by minimizing the loss function that evaluates the error
between the reference data and the MLPs’ predictions. This is typically done
iteratively using (stochastic) gradient descent.
Both kernel-based and NN-based MLPs have their strengths and weaknesses
and it is not possible to recommend any of those two as a general purpose
approach. The kernel-based MLPs are typically more data-efficient than NN-
based MLPs, i.e., they need less reference data to reach required accuracy.
One of the reasons it the fact that it is much more straightforward to in-
corporate known symmetries, conservation laws, invariances, or asymptotic
behaviors into kernel-based MLPs, i.e., into their kernels (e.g., see Eq. 2.3),
which all constrain the function space searched. However, NN-based MLPs
can handle much larger data sets and are more flexible, which becomes par-
ticularly important if a good similarity metric, i.e., a good kernel, is not
known a priori.

The MLPs are becoming increasingly popular in multiple areas of material
science as they enable rapid [Unke et al., 2021b, Artrith, 2019, Deringer et al.,
2021]: i) structural and spectroscopic (IR or Raman spectra) characterization
of the material including evaluation of the complete phase diagrams, ii) quan-
tification of the chemical reaction dynamics (e.g., via free energy profiles) for
realistic and complex systems (e.g., reactions at the liquid-solid interface), iii)
routine evaluation of the nuclear quantum effects, or iv) evaluation of trans-
port processes (e.g., diffusion) at the interfaces. The reason for the success
of MLPs is their ability to reach ab initio accuracy at the cost of the stan-
dard analytical reactive force fields (i.e., being few orders of magnitude faster
than DFT) using established and robust training and data curation proce-
dures. Also, the MLPs are inherently reactive as they are able to learn the
structure-energy map (see, e.g., Eq 2.6) without a need for an a priori expert
knowledge about particular chemical bonding patterns. However, many chal-
lenges in MLP development still remain [Poltavsky and Tkatchenko, 2021]
including the problems of accurately describing the long-range interactions
(i.e., combating the multiscale nature of real interactions), generating bal-
anced reference data sets that would deliver good performance across the
potential energy surface (PES), interpreting/explaining the MLPs, and most
importantly, the problem of limited MLP transferability and generality across
the configurational and chemical space. Hence, the vast majority of the MLP
studies still typically focuses on systems with rather low-dimensional config-
urational and chemical space such as simple metals, binary alloys, a single

21



chemical reaction, non-reactive interaction of a solvent with a simple surface
(metallic, alloy or simple oxide) or some more complex systems but staying
close to a specific thermodynamic state point [Artrith, 2019, Schran et al.,
2021]. This apparent curse of dimensionality could be behind the fact that
MLPs for nanoporous solids such as zeolites are, to our best knowledge, ba-
sically non-existent with one exception [Eckhoff and Behler, 2019].

Therefore, in our work, we embarked on the development of the linear scal-
ing reactive MLPs for various classes of zeolites. Our MLPs are NN-based
using the message-passing graph convolutional SchNet architecture [Schütt
et al., 2018] with a end-to-end trainable environment representation that
can seamlessly incorporate multiple atom types and that has been shown to
provide high accuracy and high data efficiency. We generated a large, cu-
rated library (few hundred thousand structures) of density functional theory
(DFT) energetic and force data for siliceous materials [Erlebach et al., 2022],
germanosilicates, aluminosilicates zeolites with water [Saha et al., 2022] and
silicious materials with platinum clusters. The library was created by a strat-
egy [Erlebach et al., 2022] that attempts to optimally cover the important
parts of the configurational space including not only structures close to equi-
libria both also non-equilibrium structures necessary for description of bond-
breaking events, making our NN-based MLPs truly reactive. Figure 3 show-
cases and briefly explains the strategy for a case of siliceous zeolitic materials.
The resulting NN-based MLPs are able to retain the accuracy of DFT cal-
culations across the complex zeolitic classes considered, e.g., outperforming
specialized ReaxFF force fields by order(s) of magnitude in accuracy, while
speeding up the calculations in comparison to DFT by at least three orders
of magnitude. In addition, our tests show that our NNPs are qualitatively
correct even in the parts of the configurational space sparsely covered by
the database, i.e., they seem to exhibit transferability and generality across
rather broad configurational and chemical space, defying thus the curse of
dimensionality to the extent that we can start working with realistic zeolitic
models under realistic conditions (such as zeolites undergoing decomposition
under hot liquid water conditions).

Using our newly developed NNPs we have been already witnessing intriguing
results such as: i) revision of the Deem zeolite database (330 thousand hy-
pothetical zeolites) revealing more than 20 thousand additional hypothetical
frameworks in the thermodynamically accessible range for zeolite synthesis
[Erlebach et al., 2022], ii) reactive diffusion and sintering of sub-nanometer
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Figure 3: Illustration, for siliceous zeolites, of a strategy to create a library of
DFT energetic and force data in a way to optimally cover the important part
of configurational space including both close to equilibrium and and activated
structures close to transition state of bond-breaking events. One starts by (a)
generating structurally diverse subset of zeolites selected by farthest point
sampling (FPS) (b), followed by DFT single-point calculations on an FPS
sparsified set of configurations. The MLP trained on the initial database are
(c) iteratively refined by active learning. (d) The final MLP is then used for
the production calculations. Figure taken from [Erlebach et al., 2022].

Pt clusters in the silicious zeolite associated with intermittent breaking of the
windows connecting the zeolite cages obtained from multi-nanosecond long
molecular dynamics (MD) simulations, iii) effects of minor topology varia-
tions on germanium distribution for particular Si/Ge ratios in germanosili-
cate zeolites with profound effects on their delamination propensity obtained
from comprehensive Monte Carlo simulations, and iv) effect of heteroatom
concentration on proton solvation, water diffusion and stability of acidic ze-
olites [Saha et al., 2022]. Hence, our reactive zeolite NNPs seem to facilitate
accurate simulations of even the largest zeolitic frameworks under realistic
conditions (including temperature, pressure, heteroatom concentrations, or
solvent effects), making them a new standard in the field. We expect that
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future NNP simulations with our potentials will enable not only high through-
put calculations for the targeted catalyst design but also provide atomic-level
insights into zeolite synthesis and stability. This assumption is supported by
the impact that the dissemination of our NNP-related work recently had on
the rate of establishing of not only new academic collaborations but in par-
ticular new partnerships with industry partners, including the partnerships
with the world-leading (petro)-chemical corporations.

However, even the acceleration of 3-4 orders of magnitude compared to
DFT is not sufficient to directly probe reactive events such as those tak-
ing place during the zeolite synthesis. One of the most common ways how
to increase the chance of observing such events is to accelerate sampling
using enhanced sampling methods that bias the simulations along a low-
dimensional representation of the reactive event [Chipot and Pohorille, 2007],
i.e., along the collective variable (CV). But guessing a "good" collective
variable a priori is often a formidable task that is, however, amenable to
acceleration/automatization by machine-learning, specifically by applying a
dimension-reduction method to extract the essential information from the
system [Sidky et al., 2020]. Despite the sustained effort in the recent years
multiple questions remain open such as: i) the way how to efficiently featurize
the atomic structures retaining inherent invariances, a property essential for
the efficiency of the whole dimensionality reduction method, or ii) the ability
to deploy these data-driven methods for reactions with high barriers. Lastly,
most of the development is oriented towards applications in biomolecular sys-
tems with their applicability in the material science context being unclear.
Building on our experience with end-to-end trained representations and
message-passing neural networks, we managed to develop new neural net-
work potential collective variables (NNP-CVs) coupling learned SchNet-based
representations of the structures with variational autoencoder [Sípka et al.,
2023]. Our approach is unique because it is using robust, well-scalable, in-
herently invariant representation of the structure that are generated auto-
matically (no need to hand-pick the important descriptors as in previous
attempts) and that are expected to be "aware" of the underlying potential
energy surface. We tested it for enhanced sampling of reactive events in large
nanoporous systems, i.e., in zeolites. This combination of our NNPs with
our automatically determined NNP-CVs is expected to enable us to simulate
(catalytic) materials under in operando conditions, e.g., making it possible
to realistically simulate synthesis of zeolites, a process of high importance
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and equivalently high lack of atomistic insight. And all that done without
much of an a priori bias.

The above described development of machine learning potentials (so far pub-
lished here [Erlebach et al., 2022, Saha et al., 2022]) and associated machine
learned collective variables (so far published here [Sípka et al., 2023]) was
conceived, conceptualized and supervised by me as a primary investigator
heading a small group of very skillful postdocs and doctoral students. These
developments were funded by my junior group leader research project by
Charles University (Primus/20/SCI/004).
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3 Applications

“Fall in love with some activity, and do it! Nobody ever figures out what life
is all about, and it doesn’t matter. Explore the world. Nearly everything is
really interesting if you go into it deeply enough.”

— Richard Feynmann

3.1 Accurate description of adsorption in nanoporous
materials: a static approach

3.1.1 Benchmarking adsorption on coordinatively unsaturated metal
sites

One of the most important classes of MOFs are the MOFs which contain
in their metal-containing building units some metals ions that are not coor-
dinatively saturated by organic linkers (see Figure 4). These coordinatively
unsaturated sites (CUS) are in as-synthesized samples typically occupied by
a solvent molecule, which is removed by heating. Activated CUS, which are
regularly distributed throughout the MOF sample, show enhanced adsorp-
tion energies and are catalytically active - thus they are considered as very
promising materials for catalytic, sensing, gas separation and gas sorption
applications [Kokcam-Demir et al., 2020].
However, from the computational perspective, CUS-containing MOFs turned
out to be particularly challenging to describe accurately for multiple reasons
[Odoh et al., 2015]: i) a large unit cell sizes basically precluding application of
other than DFT level of theory, ii) a need to include long-range van der Waals
(vdW) interactions missing in the standard semi-local DFT functionals (see
also Chapter 2.1), iii) description of transition metal cations by standard
semi-local DFT functionals is often just semi-quantitative, suffering, e.g.,
from problems with incomplete cancellation of electron self-interaction, and
iv) the presence of multiple metal ions in the metal (or metal oxide) node
with unpaired electrons that can couple, and which therefore have to be de-
scribed by multireference calculations, or at least the validity of the standard
single-reference approach should be tested. These compounded challenges ne-
cessitated a general approach for correcting standard (and computationally
convenient) semi-local DFT functionals, which we tried to provide within the
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Figure 4: An example of the metal-organic framework with the coordina-
tively unsaturated metal sites - namely the CuBTC formed by benzene-1,3,5-
tricarboxylate linkers and copper metal ions: (a) CuBTC unit cell, (b) paddle-
wheel (PDWL) unit, and (c) copper(II) formate model. Figure adapted from
[Grajciar, 2013].

context of the DFT/CC scheme (see Chapter 2.1 for more details).
Amongst the reported CUS-containing MOFs, the CuBTC MOF, Cu3(1,3,5-
benzenetricarboxylate)2, also known as HKUST-1, is considered in the lit-
erature as a reference CUS-containing MOF [Kokcam-Demir et al., 2020],
which we also chose for our studies, in which we investigated how small gas
molecules adsorb in CuBTC MOF. The metal-containing node of CuBTC
MOF, also known as a paddlewheel (PDWL) unit, contains two CuII cations
that are coordinated to benzenetricarboxylate ligands (see Figure 4) and
contain two unpaired electrons that can couple either ferromagnetically or
antiferromagnetically leading to single-reference triplet and multi-reference
singlet ground state, respectively. We also note, that a half of our studies
were carried out in collaboration with experimental investigators [Grajciar
et al., 2011, Rubeš et al., 2012, 2013], highlighting our aim to overlap with
experiment where possible and providing an extremely important "reality
check" to our simulation work.

First part of our studies focused on benchmarking the accuracy of DFT func-
tionals of different level of sophistication (LDA, GGA, meta-GGA and hybrid
exchange-correlations DFT functionals) for description of interaction of wa-
ter [Grajciar et al., 2010] and carbon monoxide [Rubeš et al., 2012] with the
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CUS site in CuBTC at the zero-coverage limit, i.e., with a single adsorbate
bound to the CUS site. For the benchmarking, we employed a copper formate
cluster models (see Figure 4), which were trackable by the "golden standard"
method of the quantum chemistry, namely the CCSD(T) method. Luckily,
employing multi-reference calculation (at the CASPT2-level), we found out
that the interaction energies are mostly independent of the PWDL spin state,
which allowed us to employ single-reference methods (describing PDWL in
a triplet state) throughout our following works on the CuBTC described in
this Chapter 3.1. The extensive benchmarking studies of various exchange-
correlations DFT (XC-DFT) functionals showed that failures of XC-DFT
functionals in description of small molecules interaction with CUS sites can
be related not only to lacking ability to account for the vdW interactions but
also to unrealistic charge and spin distribution that is expected to stem from
the incomplete cancellation of the self-interaction, which was supported by an
improved performance of XC-DFT functionals with increased admixture of
the exact exchange (such as BHLYP). Such multifactorial nature of the stan-
dard XC-DFT functional failure represented a good case for our pragmatic
but accurate DFT/CC approach (Chapter 2.1), which can not only effectively
correct for these deficiencies but can be also straightforwardly extended be-
yond the limited cluster models to full periodic MOF models. Importantly,
comparison with the available experimental data for zero-coverage limit con-
firmed that using DFT/CC approach for description of adsorption on CUS
sites, we can truly achieve "chemical" accuracy of description (i.e., errors
within 1 kcal/mol).
In the follow-up study [Grajciar et al., 2015a], we extended our benchmark-
ing to other transition metals (iron, in particular), larger set of small gas
molecules (CH4, H2, N2, CO2, CO, NH3, H2O) and other adsorption sites
(mostly vdW-interaction dominated) in the CUS-containing CuBTC MOF.
On average, we saw some improvement in adsorption description accuracy
with the quality of the XC-DFT functional (going from GGA and meta-GGA
to hybrid or even double-hybrid). However, none of the XC-DFT functionals
could be recommended for general use, rather a metal- and MOF-topology-
dependent benchmarking of XC-DFT functionals is suggested considering all
the relevant adsorption sites present in the MOF material. Alternatively, the
DFT/CC method could be leveraged for this purpose as we exemplified in
our investigations of coverage effects described below (Chapter 3.1.2).
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3.1.2 Coverage effects in MOF models

After a thorough benchmarking described above we focused on employing
the DFT/CC scheme to more realistic and more challenging models, namely
to studying absorption behavior in CuBTC MOF across a much broader cov-
erage range (i.e., across broader partial pressure range of the adsorbing gas).
The challenge lies in a need to describe adsorption in a consistently accu-
rate fashion across various types of adsorbate-adsorbent interactions (e.g.,
interaction with CUS and vdW-dominated interactions with organic linkers)
and in addition including lateral interactions, i.e., adsorbate-adsorbate in-
teractions. The coverage effects were studied for an important example of
hydrocarbon sorption separation (propane vs. propene [Rubeš et al., 2013])
and for sorption of important greenhouse gases - methane [Chen et al., 2011]
and carbon dioxide [Grajciar et al., 2011]. In CO2 and propane/propene cases,
we carried out an extensive enumeration of various representative structures
of adsorbates at various loadings manually, however, for the methane case,
we took a more thorough and comprehensive approach. We joined forces with
the experts in classical force field simulation of adsorption from University in
Edinburgh (group of prof. Tina Düren) collaborating within MACADEMIA
FP7 program, with whom we generated a simplified potential energy sur-
face of methane at the DFT/CC level, that was used within grand-canonical
Monte Carlo simulations to provide comprehensive information on adsorption
behavior of methane in CuBTC covering range of temperatures and pressures
(e.g., calculating adsorption isotherms).
For all adsorbates considered, we achieved a quantitative agreement be-
tween our theoretical predictions and the experimental measurements (mi-
crocalorimetry, adsorption isotherms and neutral diffraction). Based on this
agreement, we could reliably explain the adsorption mechanism for each of
the adsorbates almost up to saturation, highlighting the remarkable role of
lateral interactions and framework topology (e.g., presence of pores of dif-
ferent sizes or CUS site orientation and separation allowing for cooperative
adsorption), which defied simple explanations based on standard adsorption
models (such as Langmuir, Freundlich or BET models). In addition, proposed
mechanisms differed qualitatively from previous (incorrect) predictions from
classical force fields, despite the disturbing fact that some of the classical
force field macroscopic predictions, such as adsorption isotherms, were rea-
sonable. Lastly, we confirmed our previous observations (Chapter 3.1.1) that
the ab initio method employed for description of adsorption matters and that
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the accuracy provided by DFT/CC scheme is essential to provide reliable de-
scription in line with the experiment.

Our work on adsorption in CUS-containing MOFs: i) provided a first bench-
marking of performance of XC-DFT functionals for description of this chal-
lenging systems including the role of multi-reference effects and dispersion
interactions, ii) generated an effective and pragmatic corrections (within the
DFT/CC scheme) that provided, up to that point, unparalleled accuracy in
description of adsorption of small gas molecules in these systems, and iii)
stimulated a big push towards development of more complex classical force
field that could effectively describe interaction with the CUS sites [Odoh
et al., 2015]. The importance of our contribution to the field is also illus-
trated by the fact that our six articles on the topic accrued almost five hun-
dred citations so far. However, this very competitive field of research started
to focus lately rather on the ability of simulations to rapidly screen MOFs
for particular properties, including adsorption-related ones, developing, e.g.,
very pragmatic ways on how to describe adsorbate-CUS interaction using
rather simple empirical analytical forms "embeddable" within the classical
force fields [Chen et al., 2012, Vanduyfhuys et al., 2015, Campbell et al.,
2018]. Such ab-initio derived force fields typically fit rather simple analyti-
cal formulas using the reference data from the scans of the potential energy
surface, an approach reminiscent of the DFT/CC scheme, however, imple-
mented on top or within the classical force field framework rather than being
considered as a DFT correction. Despite a loss of accuracy compared to
the DFT/CC scheme, such approaches definitely provide a marked improve-
ment over previous classical force fields, are orders of magnitude faster and
are more straightforwardly extendable/transferable to other topologies and
metal centers (however, the transferability of the accuracy can be question-
able). All this makes these approaches better suited for rapid high-throughput
screening studies, in which the correct description of trends rather than the
absolute accuracy is of a priority. On the other hand, for particularly chal-
lenging problems such as description of MOFs with metal nodes containing
multiple spin-coupled transition metals [Odoh et al., 2015], I would person-
ally see the wave-function-in-DFT embedding methods [Graham et al., 2020,
Sharma and Sierka, 2022] as the most elegant and robust framework that
would be up to the task. Lastly and rather surprisingly, this field has yet to
be "discovered" by the machine learning potentials developers/users, with
the only harbinger of this trend being now a rather old study by Eckhoff and
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Behler [Eckhoff and Behler, 2019].

The work presented in these two subchapters (3.1.1 and 3.1.2) represented
a new topic in my PhD group (within MACADEMIA FP7 program) that
was driven mostly by me, which is illustrated by me being a first author on
half of the referenced articles [Grajciar et al., 2010, 2011, 2015a]. Also the
collaborative effort with prof. Düren group [Chen et al., 2011] was conceived,
initiated and pushed forward by me. On the remaining two articles I assumed
a supporting role [Rubeš et al., 2012, 2013]. Our efforts were capped by a
chapter in the book on MOF modeling [Grajciar et al., 2015b].

3.1.3 Embedding environment effects in zeolitic models

Zeolites, similarly, to MOFs, also have handles that can modulate their ad-
sorption properties - there are multitude of framework topologies available,
and the concentration and the type of charge-compensating cations may be
also varied. There are multiple potential and realized applications of zeo-
lites, in which ability to tune the zeolitic embedding environment is useful,
ranging from separation and energy storage application to catalysis or even
electronic and optical applications [Li et al., 2017]. Since zeolites are already
commercialized, cheap and reasonably thermochemically stable, one of the
key application the zeolites are nowadays considered for is carbon separation
and carbon capture, which is illustrated by the fact that zeolite 13X (sodium
exchanged zeolite with FAU topology) serves as a benchmark material in the
development of new materials for carbon capture and storage [Fu and Davis,
2022]. Hence, understanding the role of the embedding zeolitic environment
(topology, cation type and concentration) in CO2 adsorption in zeolites was
both intriguing and very important.
In particular, we investigated how cation type (Li vs. Na) effects the low-
coverage adsorption heats of CO2 in FAU zeolite [Thang et al., 2014] and how
different cation concentrations and distributions (assuming similar cation
concentrations) give rise to very different adsorption heat profiles as a func-
tion of CO2 coverage in Na-FER zeolite [Nachtigall et al., 2012]. Again, this
work was carried out it in close collaboration with the experimental col-
leagues, whose data confirmed the ability of the DFT/CC scheme to deliver
quantitative accuracy for the description of the weakly bound molecules in
nanoporous materials and which allowed us to provide mechanistic interpre-
tation of the adsorption including the emergence of the so-called dual cation
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sites (see Figure 5), that were able to explain the observation of surprisingly
high absorption heats of CO2 in the experiment at low CO2 coverages. These
observations, along with the related earlier investigations within the group
[Nachtigallová et al., 2006, Zukal et al., 2010], allowed us to propose a general
model of absorption of CO2 in zeolites [Grajciar et al., 2012] that consisted
of: i) the effect from the bottom - interaction of CO2 molecule with the pri-
mary extra-framework cation that is modulated by cation size, charge and its
coordination to the framework, ii) the effect from the top - a secondary in-
teraction of CO2 with other nearby cations creating a bridging dual cationic
sites or even multiple cation sites at extremely high cation concentrations,
and iii) dispersion interactions mostly modulated by the framework density
and the size of the channels or cages, in which the CO2 molecule interacts
with the cations. This absorption model not only allowed to interpret the
available experimental data spanning the zeolite topologies, cation types and
concentrations on an equal atomistic footing [Grajciar et al., 2012] but also
allows to devise a guiding principle for designing zeolitic materials for partic-
ular separation, sequestration or purification application (e.g., homogenous
absorption heats for a broad range of CO2 partial pressures vs. high zero-
coverage heats).
I will also briefly mention a related work of mine [Grajciar, 2016], which
investigated how extra-framework cation type influences the structure and
the optical properties of a small lead sulfide quantum dots embedded in the
zeolitic framework - such embedded quantum dots were reported to exhibit
extremely high nonlinear optical properties [Kim and Yoon, 2012]. After ex-
tensive global structure optimizations with a newly developed tool (see Chap-
ter 2.3), followed by the expensive relativistic calculations at the hybrid DFT
level, I managed to reliably compare with the available experimental spectra
establishing a structure-property relationship for these materials highlight-
ing a pronounced role of the cation type in both the structure and optical
properties of the QD.

Similarly, as in our studies of adsorption in CUS-containing MOFs, the
DFT/CC scheme provided an unparalled accuracy for description of CO2 ad-
sorption in zeolites. This was recognized in the field, with our reference data
being used for fitting classical force fields [Fang et al., 2013] of improved
quality and applying these force fields across zeolite topologies and cation
concentrations [Fang et al., 2013, Yang et al., 2021]. This again followed a
general trend in the field mentioned above (Chapter 3.1.1) that preferred the
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Figure 5: An example of a dual CO2 adsorption complex in a sodium-
exchanged MFI zeolite. Figure adapted from [Grajciar, 2013].

ability to rapidly screen adsorption properties of various zeolites, that can
be fed into multi-scale screening protocols [Farmahini et al., 2021], at the
expense of absolute accuracy. However, one of the outstanding issues for car-
bon capture is the CO2 adsorption in humid conditions [Fu and Davis, 2022]
as water has significant detrimental effects on adsorption performance both
due to adsorption site blocking or due to hydrolytic degradation of zeolite.
Investigation of such zeolite-water interactions is currently one of my key
research interests (see Chapters 3.2 and 3.3 for details).

In the work on the embedding environment effects on the CO2 adsorption
in zeolites I mostly followed up on body of earlier related work in the group
[Nachtigallová et al., 2006, Zukal et al., 2010] and contributed to it both
from the supporting [Nachtigall et al., 2012, Thang et al., 2014] and the
main author role [Grajciar et al., 2012]. The study on the structure and
optical properties of PbS QDs embedded in zeolite cavities of different cation
composition was my own single-author work [Grajciar, 2016].

3.2 Towards reactivity and dynamical models

An increased sophistication of experimental investigations, able to probe
nanoporous systems under realistic operando conditions, have been highlight-
ing for some time now the very dynamical nature of the nanoporous systems
undergoing significant changes under operation conditions, e.g., with (cat-
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alytically) active species being often created only transiently. In addition,
complex effects of solvent and reactive species concentration as well as tem-
perature or pressure on material stability and reaction rates have been ob-
served [Kalz et al., 2017, Reuter et al., 2017]. These reports suggest, that for
many systems, a move beyond simple descriptive models, based on probing
the potential energy surface at 0 K and low reactant or solvent concentration
is a must [Grajciar et al., 2018] (see Figure 6) since under realistic conditions:
i) the structure of active site may change, ii) new energetically feasible reac-
tion pathways may become available, or iii) the relative preference of com-
peting reaction pathways may be significantly altered. However, employing
a computational model that could account for realistic operation conditions,
e.g., global structure optimization or (biased) ab initio molecular dynamics
(AIMD), significantly increases computational demands, which significantly
limits the breadth of the systems and problems that could be investigated.
Nevertheless, even employing realistic models within such limited scope may
be sufficient to provide significant new insights and help novel concepts to
materialize, as we exemplified in our investigations into zeolite interaction
with (liquid) water [Heard et al., 2019b].
The major challenge in the zeolite science is the durability of zeolite-based
catalysts in technological processes. Numerous chemical processes, includ-
ing biomass conversion and crude oil processing, involve aqueous media at
elevated temperatures and pressures, rendering zeolite hydrolysis the criti-
cal factor in catalyst durability [Heard et al., 2020]. In addition, the (par-
tial) zeolite hydrolysis could be also reigned in and adopted for synthesis of
novel zeolite structures (using so-called ADOR method [Roth et al., 2013])
or for introduction of mesoporosity, which diminishes the diffusion limita-
tions and thus improves the catalytic performance of zeolites [Verboekend
and Pérez-Ramírez, 2011]. Despite a large body of available experimental
work on the topic [Heard et al., 2020], a deeper mechanistic understanding
of the hydrothermal zeolite (in)stability and the role of various factors (e.g.,
concentration of defects, framework composition and topology, partial water
pressure, temperature, etc.) is still mostly missing, impairing the ability to
rationally design zeolitic materials with desired level of water tolerance. Our
work tried to contribute to providing answers to these unresolved questions,
employing realistic zeolitic models in aqueous media treated typically dy-
namically (using (biased) AIMD), allowing for more open-ended exploration
of reactive events taking place at the zeolite/water interface.
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Figure 6: Schematic of the various computational methods applied to hetero-
geneous catalysis, which lie between an idealised UHV model and a realistic,
operando model. Figure taken from [Grajciar et al., 2018].

Our investigations fall roughly into two broad classes: i) quantifying the ef-
fect of temperature and water concentration in zeolitic pores on hydrolytic
mechanisms [Heard et al., 2019b, Jin et al., 2021b,a], and ii) determining
the character of active species under realistic conditions including the pres-
ence of liquid water [Heard et al., 2019a, Liu et al., 2020, Jin et al., 2022,
Jin, 2022]. In the first class of studies, we managed either to discover novel
energetically favorable hydrolytic mechanisms (see Figure 7) or at least to
observe significant modulation of the "known" mechanisms under increased
water concentration. A common thread in these studies was the "emergent"
collective/cooperative nature of those mechanisms that is difficult to predict
a priori, and which justifies the use of open-ended dynamical description of
the zeolite/water interface. The collectiveness was exhibited not only by the
water molecules (e.g., shuffling the proton via Grotthuss mechanism towards
to-be-broken Al-O, Si-O or Ge-O bonds) but also, e.g., by the germanium
heteroatoms in the zeolitic framework, which upon mild clustering, opened
hitherto unreported low-energy hydrolytic pathways [Jin et al., 2021b]. Al-
ternatively, the collectivity may also manifest in a more subtle ways such
as modification of activation barriers and reaction energies for the "known"
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Figure 7: Scheme summarizing how by varying water loading and germanium
content one may open up very distinct mechanistic pathways for zeolite de-
composition. Figure taken from [Jin et al., 2021b].

competing reactive pathways as we witnessed in our study of zeolite hydrol-
ysis in alkaline aqueous solution [Jin et al., 2021a], in which increased water
concentration in nanopores starts to favor hydrolytic mechanism in which
sodium hydroxide acts as a catalyst rather than as a reactant. Importantly,
such observations are not only theoretical curiosities but have been supported
by water adsorption measurements [Jin et al., 2021b] and NMR spectroscopy
[Heard et al., 2019b] of our experimental collaborators and have important
practical consequences on how one thinks about zeolites and their interaction
with water. In particular, our work on hydrolytic lability of aluminosilicate
zeolites under ambient conditions [Heard et al., 2019b] changed the tradition
view of zeolites as stable and rigid frameworks towards a much more dynam-
ical picture of fast (Si-O and Al-O) bond-forming and bond-breaking system
creating transient defects that can affect many of the defining properties of
zeolitic frameworks such as their catalytic activity or molecular sieving.
Partial zeolite hydrolysis leads to creation of defective sites, many of which
may become either the initial sites for further decomposition or active sites for
a sought-for reactive transformation [Heard et al., 2020]. Hence, in the second
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class of studies we tried to determine the character of active species, i.e., of
the Brønsted acid site pair [Heard et al., 2019a] and of the elusive framework-
associated octahedral aluminum species [Jin et al., 2022, Jin, 2022], in the
presence of liquid water. We also complemented this class with a study of
the effect of various active site species on the zeolite reactivity using a nucle-
ophilic double-bond-attack test reaction [Liu et al., 2020], limiting ourselves
to a static 0 K description. In the first character-of-active-species investi-
gation [Jin et al., 2022, Jin, 2022] we were, in collaboration with our ex-
perimental colleagues, able to determine the plausible structure of the long
sought-for but elusive framework-associated octahedral aluminum species,
Al(Oh), and explained why it can be formed only under sufficient water
solvation reverting back to the tetrahedral coordination upon drying. The
structure of Al(Oh) species also explained why it can be formed only in ze-
olites with sufficiently high concentration of aluminum. The essential role of
water in determination of the active species was also confirmed in our inves-
tigation [Heard et al., 2019a] on how increased water concentration stabilizes
canonical aluminum distributions (so-called Loewenstein distributions) over
the non-canonical Al-O-Al non-Loewenstein pairs of aluminums. This ob-
servation has an important consequence as a mechanistical justification for
the experimentally observed validity of the so-called Loewenstein rule that
"forbids" formation of the Al-O-Al aluminum pairs, i.e., the formation of
the non-Loewenstein pairs. Lastly, we tried to screen multiple conceivable
acidic active sites in a zeolite for their activity in a particular test reaction
(tetrahydropyranylation), comparing it with the experimental catalytic tests
[Liu et al., 2020]. To reliably explain the experimental observations for the
most of the samples, we either had to consider the existence of defective ac-
tive sites or the existence of significant diffusion barriers experienced by the
bulky products. These results highlight the complex nature of the processes
taking place under operando conditions, in which a simplified model of the
nanoporous material with an idealized active site, on which the reaction pro-
ceeds at 0 K under ultra-high vacuum, is insufficient not only for quantitative
but also for qualitative understanding of reactivity of and in the nanoporous
materials.

Our work focused on simulation of zeolitic materials in interaction with water
at operando conditions [Heard et al., 2020]. It highlighted the potential of
advanced simulation techniques (such as biased AIMD) to reveal unexpected
mechanistic routes at realistic conditions and dynamical character of zeolitic

37



surface with defects formed often transiently and in low concentrations hardly
accessible to experimental observations. I expect that these observations of
dynamical nature of zeolites and the complex character of the zeolite-water
interactions will be of great importance to our understanding of zeolite be-
havior not only in established fields such as in petroleum refinement but also
in evolving fields such as bio-refinery catalysis or in synthetic manipulations
enabling access to new zeolitic materials. However, due to significant compu-
tational costs of these advanced simulation techniques, our work had to be
limited only to a very small subset of conditions and systems. A way how
to move beyond this "looking through a peephole" approach, leveraging the
power of machine learning, was discussed from a methodological point of view
in Chapter 2.4 with some relevant applications mentioned in the following
Chapter 3.3.

The push towards adopting advanced simulation techniques able to describe
zeolites under realistic conditions in our group has been conceived and ini-
tiated by me. This is also reflected in me being the first author on the re-
view article summarizing use of these techniques and highlighting their best
practices in heterogenous catalysis [Grajciar et al., 2018]. I am a correspond-
ing author on the two articles referenced in this section [Jin et al., 2021b,
Liu et al., 2020] and I made sizable contributions (e.g., discovery and quan-
tification of the new transformation routes, guidance of the PhD students,
co-drafting manuscript, etc.) to other three standard articles [Heard et al.,
2019b, Jin et al., 2021a, 2022] and one review article on zeolite-water inter-
actions [Heard et al., 2020]. In the remaining article [Heard et al., 2019a] I
assumed mostly a consulting role.

3.3 High-throughput calculations, material design and
beyond

The rational design of novel materials, including novel nanoporous materials,
is a holy grail of the material science. Despite a significant progress in re-
cent years, thanks to, e.g., the development of automatized experimentation
or ML-accelerated computational screenings [Schmidt et al., 2019, Burger
et al., 2020], this goal is still mostly elusive.
Zeolitic nanoporous materials are unfortunately no exception to this, despite
being particularly rewarding targets for targeted property (reactivity, selec-
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tivity, adsorption capacity, etc.) design with multiple parameters that could
be tuned such as framework topology and dimensionality, heteroatom type
and concentration or character and concentration of the charge-compensating
cations. The topology parameter appears to be particularly underleveraged
as only about 250 zeolite topologies have been synthetized so far despite
tens to hundreds of thousands hypothetical zeolitic topologies being pro-
posed as thermodynamically accessible [Deem et al., 2009]. Moreover, most
of the newly obtained zeolitic topologies are synthetized in a trial-and-error
fashion. There are few exceptions to this rule such as the ADOR protocol
[Roth et al., 2013] (including my very minor contribution), which allows for
the generation of new topologies with targeted pore sizes by chemo-selective
partial hydrolysis of germanosilicate zeolites followed by targeted reconden-
sation of non-hydrolyzed parts of the parent zeolitic structure.
A way how to accelerate the material design is to transfer this endeavor from
lab to the computer, i.e., to leverage the computer-aided in silico design.
This is typically realized by screening large number of candidate structures
in a high-throughput fashion for a desired property/behavior. The candidate
structures are mostly taken either from the existing databases or generated
using computationally-cheap analytical force fields, but more comprehensive
first principles-based investigations have also emerged with the increased per-
formance of and accessibility to high performance computing resources [Li
et al., 2018]. With the advent of machine learning, the generation of the
structural databases can be accelerated, and high-throughput screening and
analysis can be made more robust, efficient, and statistically significant.
In the zeolite science, the ML application has been centered so far around
agglomeration and classification/interpretation of the existing data [Muraoka
et al., 2019, Schwalbe-Koda et al., 2021] (e.g., the zeolite synthesis parame-
ters) or around identification of the most relevant structural descriptors for
various properties, e.g., mechanical [Evans and Coudert, 2017] or catalytic
[Zhu et al., 2022]. However, the ML has not been yet utilized in the zeo-
lite field (or even in other nanoporous material field such as metal-organic
frameworks besides one exception [Eckhoff and Behler, 2019]) to accelerate
atomistic simulations, i.e., to generate new structural and energetic data.
Hence, most of the existing screening studies in zeolites still rely heavily on
specialized analytical force fields. We have benchmarked some of those an-
alytical force fields in number of occasions, such as in the study of zeolite
2D-layer interaction and (re)ordering in the context of the ADOR protocol
[Grajciar et al., 2013] or when developing our neural network potentials for
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(alumino)silicate zeolites [Erlebach et al., 2022, Saha et al., 2022], and the
general outcome is that they are unreliable, providing only very qualitative
description at best, but mostly fail to do even that. And as I have illustrated
in previous chapters (chapters 3.2 and 3.1), it seems clear that achieving
reasonable level of accuracy accompanied by adoption of realistic models is
essential for reliable description of nanoporous materials. Such reliable de-
scription, if significantly accelerated, could then allow for reliable predictions
in the context of the computer-aided material design.

We followed two different routes towards achieving the goal of realizing the
comprehensive high-throughput-like but reliable simulations of zeolitic ma-
terials. Initially, we carried out extensive first-principles based studies eval-
uating the Lewis and Brønsted acidity of selected zeolites as well as their
two-dimensional analogues [Ho et al., 2018, Thang et al., 2019], with the aim
to quantify how much and if the 3D-to-2D transformation affects the intrinsic
zeolite acidity strength. In both studies we considered two to three zeolite
topologies and for each topology we considered all the symmetrically inequiv-
alent acid sites. This amounted to hundreds of acid sites that were screened
with DFT calculations. Multiple effects of the zeolite transformation to the
layered form, such as change in cation coordination and cation distribution
around particular aluminum site or emergence of new acid sites on the exter-
nal surface, were encountered and their aggregate result on macroscopically
observable acidity descriptors (e.g., OH stretching vibration and IR spectrum
of the adsorbed CO probe) was quantified and compared favorably with ex-
perimental observations. Another important conclusion of these studies was
that all sites (a few hundreds of them) needed to be considered in order to
get not only statistically relevant but also (and most importantly) experi-
mentally observed results, which are that the Brønsted acidity of three- and
two-dimensional zeolites is basically the same. Focusing only on a subset of
seemingly representative sites, as is often done in first-principles calculations
to save the costs, could lead to qualitatively different conclusions, as many
of such sites do exhibit pronounced changes upon 3D-to-2D transformation -
these effects, however, average out if all aluminum sites are considered. This
stresses the need for comprehensive screening. However, such screening even
for only slightly more complex systems then considered in these studies (such
as water-zeolite systems discussed in Chapter 3.2) is prohibitively costly.
Therefore, we adopted a novel machine learning potential (MLP) method-
ology that has been shown to be able to accelerate the calculations by few
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orders of magnitude while being able to retain first principles accuracy (see
Chapter 2.4 for more details). However, the majority of existing MLP ap-
plications focus on acceleration of simulations: i) close to the specific ther-
modynamic state point (e.g., equilibrium dynamics at a well-defined non-
reactive solid-liquid interface), or ii) for a particular reaction in question
(e.g., quantifying non-classical quantum effects), or iii) for simple, mostly
elemental, systems (e.g., such as evaluating elemental phase diagram). In
contrast, our aim was to generate a more general (so-called global) MLP that
would cover larger fractions of the configuration space and chemical space at
once, i.e., covering not only close-to-equilibrium structures but also higher-
energy transition states (including bond-breaking and bond-forming events)
and describing multielemental systems in multitude of reactive scenarios. Up
to now we have managed to generate MLPs for multiple systems including
(see Figure 8) : i) siliceous zeolites (including silica glass) [Erlebach et al.,
2022], ii) germanosilicate zeolites, iii) siliceous zeolites with hydroxylated
defects (e.g., OH-group-terminated silica surface), iv) platinum and silver
clusters embedded in (defective) siliceous zeolites, v) aluminosilicate zeolites
in acidic form (with hydrogen cation as a charge-compensating cation) inter-
acting with neutral/acidic/basic aqueous solution [Saha et al., 2022], and vi)
aluminosilicate zeolite in sodium form interacting with neutral/acidic/basic
aqueous solution. With the exception of the germanosilicate MLPs, which
are non-reactive by construction, all potentials were constructed and suc-
cessfully tested against first principles calculations (see, e.g., Figure 9) for
treatment of reactive events, such as zeolite melting, reactive platinum clus-
ters agglomeration with intermittent breaking of the framework or proton
solvation and partial zeolite hydrolysis. Moreover, the MLPs for more com-
plex systems such as the MLP for aluminosilicate zeolites in sodium form in
interaction with water is generated in a way that it covers also (defective)
siliceous systems or aluminosilicate systems in acidid form, i.e., our MLPs
truly tend towards global MLPs.
Our first testing grounds was the development of the MLP for general poten-
tial surface (PES) modelling of silica [Erlebach et al., 2022] covering a broad
range of silica densities from siliceous zeolites with large pores through denser
zeolitic frameworks and silica glass towards very dense silica polymorphs such
as quartz or even octahedrally coordinated stishovite. We thoroughly tested
the accuracy of the potential in multiple out-of-domain generalization tests,
with the DFT calculations serving as a reference, such as cristobalite and ze-
olite melting, Stone-Wales defect formation [Klemm et al., 2020], evaluation
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Figure 8: Overview of the application fields for which we have generated our
neural network potentials with the examples of the particular application
goals.

of the vibrational density of states for glass and cristobalite or evaluation
of the single-point energies for close-to-equilibrium structures randomly cho-
sen from the Deem zeolite database [Deem et al., 2009]. In all instances,
our MLPs retained the DFT-level of accuracy. In contrast, other popular
and for silica specialized reactive (ReaxFF) or non-reactive (SLC) analyti-
cal force fields exhibited at least on order of magnitude larger errors with
respect to the DFT reference than our MLP (see Figure 9). Interestingly,
even in some cases of extrapolation or sparse interpolation (i.e., in parts of
the PES sparsely covered by the training data), our MLP showed qualitative
agreement with the reference calculations demonstrating unexpected robust-
ness of the underlying NNP architecture, which could help in explaining the
experienced ability to generate more global MLP and which also allows for
straightforward improvement and extension by active learning. Having the
reliable silica MLP trained, we applied it for high-throughput reoptimization
of the IZA (International Zeolite Association) and Deem zeolite databases
which contain roughly 330 thousand real and hypothetical zeolite structures.
These databases are used as an input to evaluate the correlation between
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the zeolite density and energy, a central quantity used by experimentalists to
estimate the synthetic feasibility of new candidate zeolitic structures [Henson
et al., 1994]. The database reoptimization at the MLP level revealed more
than twenty thousand additional hypothetical zeolites within the synthetic
feasibility range as compared to the results obtained with the state-of-the-art
analytical force field. In addition, the revised Deem database provides essen-
tial input for the future screening studies on structure-property correlations
in zeolites inching us closer towards the ultimate goal of computer-aided de-
sign and discovery of zeolites.
We made a significant step towards more complex and truly realistic systems
with the development of the NNP for all aluminosilicate zeolites in the pro-
tonic form in reactive interaction with the water solution [Saha et al., 2022].
We showcased its potential by determining the effect of aluminum content,
water loading and temperature on water dynamics and proton solvation in
one of the industrially most important acidic zeolites, the faujasite (FAU).
This computational screening across multiple variables showed, e.g., that dif-
fusivity of confined water can change by as much as an order of magnitude as
a function of the aluminum content or that FAU samples with very high con-
centration of Brønsted acid sites appear to be on average less acidic then the
samples with lower Brønsted acid site concentration (i.e., they solvate less
protons). In addition, we managed to observe unexpected "new" chemistry in
the MLP simulations such as formation of the peculiar "pinned" hydroxonium
species residing over 6-membered rings abundant with aluminum or witness
the formation of the 3-membered ring defects containing non-Loewenstein
Al-O-Al aluminum pairs in samples with very high aluminum content. These
observations seem to be supported by the preliminary DFT tests and could
be related to some of the experimental observations from neutron diffraction
and stability tests of acidic forms of FAU zeolite with very high aluminum
content [Lee et al., 2013, Czjzek et al., 1992]. Hence, such results indicate that
we may be able to generate more global MLPs that go beyond a straightfor-
ward acceleration of simulations nearby known thermodynamic state points
but could be used also for exploration of new effects and transformations
such as those needed to explore zeolite synthesis pathways.

Development of our new reasonably global MLPs supplemented with our ML-
based collective variables (see Chapter 2.4 for more details) indeed appears
to open up a possibility to simulate (nanoporous) materials under realistic
condition retaining the first principles accuracy and also being able to carry
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Figure 9: Example of energy errors with respect to DFT reference for the out-
of-domain generalization tests for our MLPs for siliceous systems with com-
parison to the other specialized analytical force fields and a semi-empirical
method XTB-GFN0. Figure taken from [Erlebach et al., 2022].

out large-scale screenings of the conceivable material and reaction system
targets, with a bonus of providing the atomic-level resolution and insight.
The MLPs accelerate the simulations while ML-based collective variables ac-
celerate sampling of the rare events (e.g., chemical reactions) along relevant
degrees of freedom, determination of which is made basically automatically,
solving to some degree the well-known ”chicken-and-egg” problem [Rohrdanz
et al., 2013] of determining a good collective variables without an apriori
knowledge of a transformation/reaction path. Hence, the targeted zeolite de-
sign might be actually within our reach now. In addition, our approach of
generating more global MLPs is expected to be extensible beyond the zeolite
field, opening up the option of the on-demand training of the NNPs for a
particular application - such assumption is demonstrated by our newly es-
tablished partnerships and on-demand NNP development projects (for the
time being within the zeolite field) with the world-leading (petro)chemical
companies. Next, multiple new advanced neural network architectures have
been proposed recently such as equivariant NNs [Schütt et al., 2021, Batzner
et al., 2022], including also easily parallelizable implementations able to treat
hundreds of thousand atoms [Musaelian et al., 2022], or physically-motivated
NNs including long-range interactions [Unke et al., 2021a, Frank et al., 2022].
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The adoption of these architectures is expected to further improve the perfor-
mance of our NNPs in particular for tensorial properties (e.g., such as forces,
polarizabilities or NMR tensors) and also it should decrease the amount of
the reference data needed to cover the desired parts of the chemical and
configurational space thanks to the improved data-efficiency of these new
architectures. Lastly, improved data-efficiency should also allow for more ef-
ficient application of the ∆-learning strategies [Ramakrishnan et al., 2015],
i.e., composite strategies able to achieve the accuracy of the computationally
much more expensive first principles methods such as hybrid DFT or post-
HF methods, if that turns out to be necessary for a particular application.
These strategies work by constructing ML-based correction surfaces to com-
putationally less expensive baseline methods, such as our NNPs, with the
corrections being evaluated using a much smaller and/or sparser grid of the
expensive higher-level data points, since one assumes that: i) the correction
surface is smoother than the baseline model, or that ii) the improvement in
description is desired only for a specific subset of the configuration space,
e.g., a specific chemical reaction. Alternatively, the free energy perturbation
approach could be applied in the latter case as well.

The above described application of the machine learning potentials and ML-
driven collective variables (so far published here [Erlebach et al., 2022, Saha
et al., 2022, Sípka et al., 2023]) was conceived, conceptualized and super-
vised by me as a primary investigator heading a small group of very skillful
postdocs and doctoral students1 and funded by my junior research group
project by Charles University (Primus/20/SCI/004). In addition, the high-
throughput-like DFT based studies on Lewis and Brønsted acidity of selected
three- and two-dimensional zeolites [Ho et al., 2018, Thang et al., 2019] were
also driven and supervised by me as indicated by me being a corresponding
author on both publications. These high-throughput-like DFT based stud-
ies were generated within the standard Czech Science Foundation project
(No. 17-01440S), on which I was a co-investigator at the Faculty of Science,
Charles University.

1The ML-based development and publications were also mentioned in Chapter 2.4
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4 Conclusions and outlook

This habilitation thesis recapitulates my more than a decade long effort to
understand various processes taking place in nanoporous materials, in par-
ticular zeolites and metal-organic frameworks, at the mechanistic level using
simulations with the atomistic resolution and first principles accuracy. This
effort involved multiple diverse methodological advances (Chapter 2) that
were typically leveraged for diverse problems of interest (Chapter 3), albeit
all within the field of nanoporous materials. The diversity in the methods
developed and the applications pursued stems, in my opinion, from my in-
herent novelty-seeking character, due to which I am eager to try out new
ways of solving scientific questions or look at existing problems from the
unorthodox viewpoints - all this provides me with a broader overview and a
broader toolkit of methods, but it clearly comes at some efficiency costs com-
pared to somebody specialized in a very narrow field. The common thread
in my scientific endeavors was the striving for a reasonable mix of general-
ity, elegance and practicality in the methods developed (Chapter 2) and for
the deployment of those methods for applications, in which our simulations
could be readily experimentally verifiable/falsifiable. The latter "imperative"
represents my effort to try to simulate something "real", i.e., adopting a rea-
sonably realistic model for a problem in question. This "imperative" to adopt
realistic models, with a tacit assumption of using methods able to deliver at
least qualitatively correct description, has guided my scientific path start-
ing with simple models for a particular nanoporous material (see Chapter
3.1 describing our work on (physi)sorption of small molecules in MOFs and
zeolites), continuing with more complex models but still being limited to a
particular system (see Chapter 3.2 describing our work on various aspects
of water-zeolite interaction) and recently aiming for a more comprehensive
description of nanoporous materials under realistic in operando conditions
covering a much broader structure/topology space (see Chapter 3.3 describ-
ing our attempts towards accelerating simulations using machine learning
(ML)).
Some of the main results of from the methodological side (Chapter 3) can be
summarized as follows:

• Development of molecular and periodic DFT implementations able to
efficiently (both CPU-time- and memory-wise) treat large nanoporous
or even mesoporous materials.

46



• Development of global structure optimization tool for determination of
structure of molecules/clusters embedded in nanoporous materials.

• Development of ML-based tools for accelerated simulations of
nanoporous materials, namely the development of machine learning
potentials (MLPs) to speed up the sampling of the potential energy
surface and the development of approaches to accelerate and automa-
tize sampling of the rare events such as the generation of the collective
variables based on variational autoencoders.

Many of these methodological advances were leveraged later for numerous
application studies, in many of which the use of advanced simulation tech-
niques accompanied with an adoption of reasonably complex model system
was rewarded with novel unexpected insights into: i) adsorption in zeolites
and metal-organic frameworks, ii) hydrolytic stability of zeolites and iii) spe-
ciation of the catalytically active site in zeolites under operando conditions.
In particular, the herein presented work:

• Unraveled the dynamical nature of zeolites, the emergence of transient
active sites under operando conditions and the complex collective char-
acter of the zeolite-water interactions, which are difficult to predict
a priori using "chemical" intuition. This justified the resolve to use
the advanced open-ended dynamical methods for description of these
interfaces.

• Generated state-of-the-art reactive MLPs for multiple systems span-
ning increasingly complex configuration and chemical space starting
with silicious zeolites in vacuum, continuing with platinum clusters
embedded in silicious zeolites and going (for the time being) all the
way to aluminosilicate zeolites in both acid or sodium form interact-
ing with neutral/acidic/basic aqueous solution. Using these MLPs, we
were, e.g., able to reveal more than twenty thousand additional zeolite
framework candidates within the synthetic feasibility range.

Hence, the focus of my application work shifted from specific simple systems
that we could treat with quantitative accuracy (close to golden-standard of
CCSD(T) post-HF method) to a comprehensive set of complex systems that
we could treat at least qualitatively correct with MLPs (with a semi-local
DFT level accuracy). However, I expect, supported by some of our own recent
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developments and related works in the field [Ang et al., 2021, Chmiela et al.,
2018], that in the very near future, one might not need to compromise much
between the complexity of the model and the complexity of the methods,
i.e., for a particular (complex) system of interest one could obtain results
of almost arbitrary accuracy or at least able to reach the chemical accuracy
(1 kcal/mol). The solution, in my opinion, lies in composite strategies (e.g.,
similar to ∆-learning or free energy perturbation mentioned in Chapter 3.3),
in which: 1) a global MLP, such as our own, would be used for pre-screening
of broad configuration and chemical spaces, searching for a limited subset of
relevant reactions, and/or close-to-optimal compositions and conditions, and
2) a local "correction"-MLP for these relevant reactions and conditions would
be trained using a very limited set of expensive higher-level data points, which
could be generated, e.g., using various embedding strategies such as mechan-
ical embedding [Sauer, 2019] or rather density-in-wavefunction [Sharma and
Sierka, 2022] embedding. In addition, it is not unreasonable to expect break-
throughs in the development of ML-accelerated quantum chemical methods
such as ML-based exchange-correlation DFT functionals [Pederson et al.,
2022] in the near future. Therefore, being a bit techno-optimistic, I think
that machine learning has truly a transformative potential for our ability to
realistically simulate and eventually design (nanoporous) materials and that
in the rather near future most of the consequential (nanoporous) material
studies will be ML-accelerated in one way or the other.
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