
DOCTORAL THESIS

Kristina Asimi

Promises in Satisfaction Problems

Department of Algebra

Supervisor of the doctoral thesis: doc. Mgr. Libor Barto, Ph.D.
Study programme: Algebra, Number Theory and

Mathematical Logic

Prague 2023

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

Dedication: Inspired by recent acknowledgments sections of my colleagues and
friends, I wanted to make a nice, funny, emotional acknowledgments/dedication
section myself, but unfortunately, as my friends know, I am not good in writing
and expressing my emotions. In fact, I am known for replying only with yes or
no or not replying at all, also known in our community as asimiing1. However, I
promise to try my best to elaborate.

I would like to express my sincere gratitude and appreciation to everybody
who has been a part of my PhD journey, however, in order to keep this section
shorter than the actual thesis, I will mention just some persons individually.

I am deeply grateful to my supervisor, Libor Barto, for his invaluable guidance,
support, and encouragement throughout my PhD journey. Thank you, Libor, for
your insightful comments, constructive feedback, patience; for all the beers we
drank, all the songs we sang and all the foosball games we played. I will still
remember you when you’re 64.

I am also very grateful to Victor Dalmau, for having me over in Barcelona
and for being so kind. Thank you, Victor, for building monster structures with
me, and for all the funny stories.

I would like to thank my MSc supervisor, Jovanka Pantović, for encouraging
me to apply for this PhD position and for introducing me to the wonderland of
CSP, during my studies back in Novi Sad. Thank you, Vanja, for believing in me
and for sending me to this wonderful journey, where, besides PCSP, I also got to
know a lot of amazing people.

The first time I walked into the PhD office of the Department of Algebra, I
met my PhD father Libor and my PhD brother Diego. Diego offered me liquorice
candy, I took one and regretted it later. That was the only time he gave me
something bitter. Since then, he was only making my bitterness a little bit
sweeter.

I would like to express my sincere appreciation to all the other CSP colleagues
who made my PhD journey better. Thank you, Michael, Kuba, Alex, Dima,
Attila, for all the coffees, beers, movie nights, amazing trips and board games
nights. Thank you, William, for listening to my first results and for telling me
I was doing a great job, even though I was not so sure. Thank you, Silvia, for
being a great friend and coauthor, for coming to Prague when I was stuck after
Covid, both emotionally and research-wise, I did not even know I needed you.
Thank you, Caterina, for your support and encouragement in all spheres of my
life. Thank you, Albert and Jakub, for popping up in Prague every now and then,
and for following my crazy trip ideas. Thank you, Pinsker, for all the songs.

I would also like to thank my other algebra friends. Thank you, Filippo and
Chiara, for filling the PhD office with joy and happiness. Thank you, Mikuláš,
for being my bro.

I also have to thank my biology friends, for being interested in my research
topics, for having me in their flat and accepting me in their lovely family. Espe-
cially thanks to Sanja, who was there since the beginning of my journey. Thank
you, Sanja, for your friendship, love, kindness, generosity, loyalty, encouragement,
for always believing in me, even when I felt small; thank you for all the memories
we have shared, the laughter we enjoyed, and the tears we have shed together.

1Asimiing is an example of pinskerism, for more information on this topic please ask me in
person.

ii

Finally, I would like to express my gratitude to my support from Serbia - to my
friends, who were listening to all my thoughts and feelings, and who would always
welcome me with such a joy; and to my family - Mom, Dad, brother Minja and
sister Katarina, for their unconditional love, unwavering support, and constant
encouragement throughout my academic journey. Their faith in me has been a
source of strength and inspiration, and I am forever grateful for their presence in
my life. Hvala, mama, tata, Minja i Juco, što ste uvek bili tu za mene, što sam
se posle svakog našeg susreta osećala bolje, to mi je dalo snagu da nastavim. I
am also grateful to our dogs, who helped me through the most stressful periods.

I would like to extend my sincere apologies to those who have supported me
throughout my journey but have not been mentioned explicitly. Please know that
your support has been deeply appreciated, and I apologize for any unintentional
omissions.

There, I did it my way.

iii

Title: Promises in Satisfaction Problems

Author: Kristina Asimi

Department: Department of Algebra

Supervisor: doc. Mgr. Libor Barto, Ph.D., Department of Algebra

Abstract: This thesis focuses on the complexity of the promise version of Con-
straint Satisfaction Problem (CSP) and its variants.

The first study concerns the Promise Constraint Satisfaction Problem (PCSP),
which extends the traditional CSP to include approximation variants of satisfi-
ability and graph coloring. A specific PCSP, referred to as finding a valid Not-
All-Equal solution to a 1-in-3-SAT instance, has been shown by Barto [LICS ’19]
to lack finite tractability. While it can be reduced to a tractable CSP, the latter
is necessarily over an infinite domain (unless P=NP). We say that such a PCSP
is not finitely tractable and we initiate a systematic study of this phenomenon
by giving a general necessary condition for finite tractability. Additionally, we
characterize finite tractability within a class of templates.

In the second study, we focus on the CSP in the context of first-order logic.
The fixed-template CSP can be seen as the problem of deciding whether a given
primitive positive first-order sentence is true in a fixed structure (also called
model). We study a class of problems that generalizes the CSP simultaneously
in two directions: we fix a set L of quantifiers and Boolean connectives, and we
specify two versions of each constraint, one strong and one weak (making the
promise version). Given a sentence which only uses symbols from L, the task
is to distinguish whether the sentence is true in the strong sense, or it is false
even in the weak sense. We call these problems Promise Model Checking Prob-
lems, and they are a generalization of Model Checking Problems. We classify the
computational complexity of Promise Model Checking Problems for the existen-
tial positive equality-free fragment of first-order logic, i.e., L = {∃,∧,∨}, and
we prove some upper and lower bounds for the positive equality-free fragment,
L = {∃,∀,∧,∨}.

In addition to the aforementioned studies, we introduce the framework of the
Left-Hand Side Restricted PCSP (a generalization of the Left-Hand Side Re-
stricted CSP) and study its complexity.

Keywords: Constraint satisfaction problem, promise constraint satisfaction prob-
lem, finite tractability, model checking problem

iv

Contents

Introduction 3

1 Finitely tractable PCSPs 9
1.1 Introduction . 9

1.1.1 Symmetric Boolean PCSPs allowing negations 9
1.1.2 Contributions . 11

1.2 Preliminaries . 11
1.2.1 PCSP . 11
1.2.2 Polymorphisms . 12
1.2.3 Notation for tuples . 13

1.3 Finitely tractable PCSPs . 14
1.3.1 Finite tractability depends only on h1 identities 14
1.3.2 Necessary condition for finite tractability 14
1.3.3 Sketch of the proof of Theorem 2 16

1.4 Case (1): PCSP((r-in-s,≤(2r − 1)-in-s), (̸=, ̸=)) where 1 < r < s/2 16
1.5 The other cases . 23

1.5.1 Case (2): PCSP((≤r-in-s,≤(2r− 1)-in-s), (̸=, ̸=)) where s
is even, 1 < r = s/2 . 23

1.5.2 Case (3): PCSP((r-in-s,≤(2r− 1)-in-s), (̸=, ̸=)) where s is
even, 1 < r = s/2, and r is even 25

1.5.3 Case (4): PCSP(r-in-s, not-all-equal-s) where r ≤ s/2, s >
2, and r is even or s is odd 27

1.6 Conclusion . 30
1.A Basic cases . 32

2 Fixed-Template Promise Model Checking Problems 36
2.1 Introduction . 36

2.1.1 Contributions . 37
2.2 Preliminaries . 38
2.3 Promise model checking . 39

2.3.1 Model checking problem 39
2.3.2 Promise model checking problem 40
2.3.3 Interesting fragments . 41

2.4 Existential positive fragment . 42
2.4.1 Characterization of templates and p-{∃,∧,∨}-definability . 42
2.4.2 Complexity classification 43

2.5 Positive fragment . 44
2.5.1 Witnesses for quantified formulas 44
2.5.2 Characterization of templates and p-{∃,∀,∧,∨}-definability 45
2.5.3 Membership . 46
2.5.4 Hardness . 48
2.5.5 Summary and examples 51

2.6 Conclusion . 52

1

3 PCSP seen from the other side 53
3.1 Preliminaries . 53

3.1.1 Relational structures and homomorphisms 53
3.1.2 Homomorphism problem 54
3.1.3 Graph minors and tree width 54
3.1.4 Parameterized complexity theory 56

3.2 Complexity of the left-hand side restricted CSP 57
3.3 Left-hand side restricted PCSP 59

3.3.1 Homomorphic relaxations 60
3.3.2 Sufficient condition for hardness 61
3.3.3 Approximating clique . 65

3.4 Conclusion . 66

Bibliography 67

List of Figures 72

List of publications 73

2

Introduction
In this chapter we introduce the constraint satisfaction problem (CSP) and its
promise variants, which will be the focus of this thesis. At the end of this chapter
we also describe the organization of the thesis.

Many computational problems, including various versions of logical satisfia-
bility, graph coloring, and systems of equations can be phrased as Constraint
Satisfaction Problems (CSPs) over fixed templates (see [BKW17a]). There are
several (equivalent) formulations of the notion of the CSP. One of them is via
homomorphisms of relational structures: a template A is a relational structure
with finitely many relations and the CSP over A, written CSP(A), is the problem
to decide whether a given finite relational structure X admits a homomorphism
to A. Another formulation is as follows: a template is a relational structure A,
and the CSP over A is the problem of deciding whether a given {∃,∧}-sentence is
true in A. Here, an {∃,∧}-sentence is a sentence of first-order logic that uses only
the relation symbols of A, the logical connective ∧, and the existential quantifier
∃.

The complexity of CSPs over finite templates (i.e., templates whose domain is
a finite set) is now completely classified by a celebrated dichotomy theorem inde-
pendently obtained by Bulatov [Bul17] and Zhuk [Zhu17, Zhu20]: every CSP(A) is
either tractable (that is, solvable in polynomial-time) or NP-complete. The land-
mark results leading to the complete classification include Schaefer’s dichotomy
theorem [Sch78] for CSPs over Boolean structures (i.e., structures with a two-
element domain), Hell and Nešetřil’s dichotomy theorem [HN90] for CSPs over
graphs, and Feder and Vardi’s thorough study [FV98] through Datalog and group
theory. The latter paper also inspired the development of a mathematical theory
of finite-template CSPs [Jea98, BJK05, BOP18], the so called algebraic approach,
that provided guidance and tools for the general dichotomy theorem by Bulatov
and Zhuk.

The algebraic approach has been successfully applied in many variants and
generalizations of the CSP such as the infinite-template CSP [Bod08] or valued
CSP [KKR17]. The object of the thesis is the study of the computational com-
plexity of promise variants of the CSP.

Constraint Satisfaction Problem (CSP)
A common formal definition of an instance of the CSP over a finite domain is as
follows.

Definition 1. An instance of the CSP is a triple (V,D,C) where

• V is a finite set, called the set of variables,

• D is a finite set, called the domain,

• C is a finite list of constraints, where each constraint is a pair C = (x,R)
with

– x a tuple of variables of length n, called the scope of C, and

3

– R an n-ary relation on D, called the constraint relation of C.

An assignment, that is, a mapping f : V → D, satisfies a constraint C = (x,R)
if f(x) ∈ R, where f is applied component-wise. An assignment f is a solution
if it satisfies all constraints. The problem is to decide whether the given instance
have a solution.

There are various computational problems that arise from the CSP framework.
The problem as defined above is the decision problem. (A related problem, the
search problem, is to find a solution if at least one solution exists.)

One can define the same problem in different ways. In Chapters 1 and 3 of
the thesis we will regard it as a homomorphism problem, while in Chapter 2 as a
model checking problem.

A homomorphism is a relation-preserving map between two relational struc-
tures and it only makes sense if the structures have the same number of relations
and the corresponding relations are of the same arity, in which case we say that
the structures are similar. We will write A → B to denote that there is a homo-
morphism from A to B.

Definition 2. The CSP over a relational structure A, written CSP(A), is the
following problem. Given a finite relational structure X similar to A, decide
whether there is a homomorphism from X to A.

The search version of the problem is to find such a homomorphism if you know
that at least one exists.

Finally, we give the logical formulation of CSP.

Definition 3. The CSP over A is the problem of deciding whether a given {∃,∧}-
sentence is true in A.

Here, an {∃,∧}-sentence is a sentence of first-order logic that uses only the
relation symbols of A, the logical connective ∧, and the quantifier ∃.

It is not difficult to see that all these definitions of the CSP are equivalent.
Not only that the three definitions of decision versions of CSP are equivalent, but
also the decision and the search version of CSP are equivalent ([BJK05]).

An example of a CSP is k-coloring. It is a problem of deciding whether the
vertices of a given graph can be colored by k different colors so that no adjacent
vertices are assigned the same color. The search version of this problem is to
find such a coloring given that it is possible. Formulated as a homomorphism
problem, k-coloring is the problem of deciding whether a given graph admits a
homomorphism to the k-clique (complete graph on k vertices). The complexity
of this problem depends on k. More specifically, it is solvable in polynomial time
for k = 2 and it is NP-complete for k > 2.

Promise Constraint Satisfaction Problem (PCSP)
In the previous subsection we saw that finding a 100-coloring of a graph is, in
general, hard. A natural question is whether we can do something to get a possibly
simpler problem. For example, if we knew that a 3-coloring exists, would this
make finding a 100-coloring easier? This gives rise to the Promise Constraint
Satisfaction Problem (PCSP).

4

A template for the PCSP is a pair (A,B) of similar structures such that A has
a homomorphism to B, and the PCSP over (A,B) is the following problem: given
a finite relational structure X such that X → A, find a homomorphism X → B.
(Notice here that we are not given a homomorphism X → A, we just know that
it exists.) As you may notice, this is the search version of the problem. As for
the CSP, here we also have a decision version, which is the problem to distinguish
between the case that a given finite structure X admits a homomorphism to A
and the case that X does not have a homomorphism to B (the promise is that one
of the cases takes place). Unlike in the non-promise setting, here we do not know
whether the decision and the search versions are equivalent. There is always a
reduction from decision to search, but the other direction is open. Throughout the
thesis we will consider the decision version of PCSP and we will write PCSP(A,B)
for the PCSP over (A,B). The PCSP framework generalizes that of CSP (take
A = B) and includes important approximation problems. For example, if A = Kk

(the clique on k vertices) and B = Kl, k ≤ l, then PCSP(A,B) is a version of the
approximate graph coloring problem, namely, the problem to distinguish graphs
that are k-colorable from those that are not even l-colorable. The classification
of the complexity of this problem is an open problem after more than 40 years of
research. On the other hand, the basics of the algebraic approach to CSPs can
be generalized to PCSPs [AGH17, BG18, BKO19, BBKO18].

The previous example shows that a full classification of the complexity of
PCSPs over graph templates is still open and so is the analogue of Schaefer’s
Boolean CSP, PCSPs over pairs of Boolean structures. However, strong partial
results have already been obtained. Brakensiek and Guruswami [BG18] proved a
dichotomy theorem for all symmetric Boolean templates allowing negations, i.e.,
templates (A,B) such that A = ({0, 1};R0, R1, . . .), B = ({0, 1};S0, S1, . . .), each
relation Ri, Si is invariant under permutations of coordinates, and R0 = S0 is the
binary disequality relation ̸=. Ficak, Kozik, Oľsák, and Stankiewicz [FKOS19]
later generalized this result to all symmetric Boolean templates.

To prove tractability or hardness results for PCSPs, a very simple but useful
reduction is often applied: If (A,B) and (A′,B′) are similar PCSP templates and
there exist homomorphisms A′ → A and B → B′, then the trivial reduction
(which does not change the instance) reduces PCSP(A′,B′) to PCSP(A,B); we
say that (A′,B′) is a homomorphic relaxation of (A,B). In fact, all the tractable
symmetric Boolean PCSPs can be reduced in this way to a tractable CSP over a
structure with a possibly infinite domain.

An interesting example of a PCSP that can be naturally reduced to a tractable
CSP over an infinite domain is the following problem: an instance is a list of
triples of variables and the problem is to distinguish instances that are satisfi-
able as positive 1-in-3-SAT instances from those that are not even satisfiable as
Not-All-Equal-3-SAT instances. This computational problem can be formulated
as PCSP(A,B) where A consists of the ternary 1-in-3 relation over {0, 1} and B
consists of the ternary not-all-equal relation over {0, 1}. It is easy to see that
A → C → B where C is the relation “x + y + z = 1” over the set of all inte-
gers. Therefore, PCSP(A,B) is reducible (by means of the trivial reduction) to
PCSP(C,C) = CSP(C) which is a tractable problem. The main result of [Bar19]
is that no finite structure can be used in place of C for this particular template
– we call such a PCSP not finitely tractable.

5

In Chapter 1, we initiate a systematic study of this phenomenon. As the
main technical contribution, we determine which of the “basic tractable cases” in
Brakensiek and Guruswami’s classification [BG18] are finitely tractable. It turns
out that finite tractability is quite rare, so the infinite nature of the 1-in-3 versus
Not-All-Equal problem is not exceptional at all.

Model checking problem
Another way to generalize CSP is to allow different sets of connectives and quan-
tifiers.

The model checking problem [MM18] takes as input a structure A (often
called a model) and a sentence ϕ in a specified logic and asks whether A ⊨ ϕ,
i.e., whether A satisfies ϕ. We study the situation where A is a fixed finite
relational structure, so the input is simply ϕ, and the logic is a fragment of the
first-order logic obtained by restricting the allowed quantifiers to a subset L of
{∃,∀,∧,∨,=, ̸=,¬}. Thus, for each A and each of the 27 choices for L, we obtain
a computational problem, which we call the L-Model Checking Problem over A
and denote L-MC(A).

For the case L = {∃,∧}, the problem L-MC(A) is exactly CSP(A). For the
case L = {∃,∀,∧}, the problem L-MC(A) is the so called quantified CSP, another
well-studied class of problems, see the survey [Mar17]. It was widely believed that
this class exhibits a P/NP-complete/PSPACE-complete trichotomy [Che12]. A
recent breakthrough [ZM20] shows that at least three more complexity classes
appear within quantified CSPs, and ongoing work suggests that even 6 is not the
final number. In any case, the full complexity classification of {∃,∀,∧}-MC(A)
is a challenging open problem.

The remaining 27 − 2 choices for L do not need to be considered separately.
For instance, {∃,∧,=}-MC(A) is no harder than {∃,∧}-MC(A) because equalities
can be propagated out in this case, and {∀,∨}-MC(A) is dual to {∃,∧}-MC(A) so
we get a P/coNP-complete dichotomy for free, etc. Moreover, some choices of L,
such as L = {∃,∨}, lead to very simple problems. It turns out that, in addition
to L = {∃,∧} and L = {∃,∀,∧}, only two more fragments need to be considered
in order to fully understand the complexity of L-MC(A), namely L = {∃,∧,∨}
and L = {∃,∀,∧,∨} [Mar08].

The former fragment was addressed in [Mar08]: except for a simple case solv-
able in polynomial time (in fact, in L, the logarithmic space), all the remaining
problems are NP-complete. The latter fragment turned out to be more challeng-
ing but, after a series of partial results [Mar08, MM12, MM10] (see also [Mar10,
CM21]), the full complexity classification was given in [MM11, MM18]: each
problem in this class is in P (even L), or is NP-complete, coNP-complete, or
PSPACE-complete.

Promise model checking problem
As one may assume from the name, the promise model checking problem is a gen-
eralization of the CSP in the two directions considered above. The generalization
of Promise CSP over (A,B) to an arbitrary choice L ⊆ {∃, ∀,∧,∨,=, ̸=,¬} is
referred to as the L-Promise Model Checking Problem over (A,B) and is denoted

6

L-PMC(A,B). Similarly as in the special case A = B, which is exactly L-MC(A),
it is sufficient to consider only four fragments. A full complexity classification for
{∃,∧}-PMC (i.e., Promise CSP) is much desired but widely open, and {∃, ∀,∧}-
PMC is likely even harder. Chapter 2 concentrates on the remaining two classes
of problems, {∃,∧,∨}-PMC and {∃,∀,∧,∨}-PMC.

Our motivation was that these cases might be substantially simpler, as indi-
cated by the non-promise special case, and at the same time, the investigation
could uncover interesting intermediate problems towards the grand endeavor of
understanding the sources of tractability and hardness in computation. We be-
lieve that our findings confirm this hope.
Example. Consider structures A and B with a single relation symbol = interpreted
as the equality on a three-element domain in A and as the equality on a two-
element domain in B. For L = {∃,∀,∧,∨}, both L-MC(A) and L-MC(B) are
PSPACE-complete problems, see [Mar08].

It is not hard to see that every L-sentence true in A is also true in B. In this
sense, the relation in A is stronger than the relation in B. On the other hand,
there are L-sentences true in B that are not true in A, e.g., ϕ = ∀x∃y∀z (z =
x) ∨ (z = y). Therefore, L-PMC(A,B) could potentially be easier than the above
non-promise problems – instances such as ϕ need not be considered (there is no
requirement on the algorithm for such inputs). Nevertheless, the problem remains
PSPACE-complete, as shown in Proposition 53.

Other side
So far we have considered CSPs over fixed templates, namely the right-hand side
structure is fixed, the input is on the left-hand side, and the question is whether
there is a homomorphism from the left-hand side structure to the right-hand side
one, or, in the search version, to find such a homomorphism. Actually, CSP in
its full generality has neither of the two structures fixed, i.e., the input is a pair
of structures and the question is whether there is a homomorphism from the left-
hand one to the right-hand one. This problem is also known as the homomorphism
problem.

Several well-known NP-complete problems can be viewed as restrictions of the
homomorphism problem.

For example, the 3-coloring problem is equivalent to the homomorphism prob-
lem where the right-hand side input structure is a 3-clique (triangle), and it is
NP-complete. On the other hand, the homomorphism problem where the left-
hand side input structure is a k-clique is equivalent to the so-called k-Clique
problem, the problem of deciding whether a given graph contains a k-clique. For
every fixed k the k-Clique problem is solvable in polynomial time, but if we
restrict the left-hand side to the class of all cliques, we get the so-called Clique
problem, which is NP-complete.

For classes C and D of structures, let Hom(C,D) denote the restriction of the
homomorphism problem to input structures A ∈ C and B ∈ D. If either C or D
is the class of all structures, we will use ′−′.

7

Left-hand side restricted CSP
If we restrict the left-hand side structure, we get the so-called left-hand side
restricted CSP. It is a problem of the form Hom(C,−). It is proved in [Gro07]
that under some complexity theoretic assumption from parameterized complexity
theory, Hom(C,−) is solvable in polynomial time if and only if C has bounded tree
width modulo homomorphic equivalence.

Left-hand side restricted PCSP
As mentioned before, an example of a CSP seen from the other side is Clique.
We can approximate this problem by asking the following question: for an input
graph G, decide whether it has a k-clique or not even an l-clique, where l ≤ k.
Furthermore, we generalize this problem to general relational structures in the
following way. Let C be a class of pairs of structures (A,B) such that there is
a homomorphism from A to B. Then PHom(C,−) is the following problem: for
(A,B) ∈ C and a relational structure D similar to A (and B), decide whether
there is a homomorhpism from B to D or not even from A to D. Chapter 3 deals
with complexity of this newly defined problem.

Thesis outline
The main part of the thesis is divided into three independent chapters.

In Chapter 1, we define finitely tractable PCSPs and not finitely tractable
PCSPs, we initiate a systematic study of this phenomenon by giving a general
necessary condition for finite tractability and characterizing finite tractability
within a class of templates - the ”basic” tractable cases in the dichotomy theorem
for symmetric Boolean PCSPs allowing negations by Brakensiek and Guruswami
[BG18]. These results have been published in [AB21].

In Chapter 2, we study a class of problems that generalizes the CSP simulta-
neously in two directions: we fix a set L of quantifiers and Boolean connectives,
and we specify two versions of each constraint, one strong and one weak. Given a
sentence which only uses symbols from L, the task is to distinguish whether the
sentence is true in the strong sense, or it is false even in the weak sense. We call
these problems promise model checking problems.

We classify the computational complexity of these problems for the existential
positive equality-free fragment of first-order logic, i.e., L = {∃,∧,∨}, and we
prove some upper and lower bounds for the positive equality-free fragment, L =
{∃,∀,∧,∨}. The results in this chapter have been published in [ABB22].

In Chapter 3, we introduce the framework of left-hand side restricted PCSPs
and we provide some initial results. The main technical contribution is a sufficient
condition for W[1]-hardness. This is an unpublished joint work with Libor Barto
and Victor Dalmau.

8

1. Finitely tractable PCSPs

1.1 Introduction
Throughout this chapter we will regard the constraint satisfaction problem as a
homomorphism problem: a template A is a relational structure with finitely many
relations and the CSP over A, written CSP(A), is the problem to decide whether
a given finite relational structure X (similar to A) admits a homomorphism to A.

This chapter concerns one generalization of the basic CSP framework, the
Promise CSP (PCSP).

A template for the PCSP is a pair (A,B) of similar structures such that A has
a homomorphism to B, and the PCSP over (A,B), written PCSP(A,B), is the
problem to distinguish between the case that a given finite structure X admits
a homomorphism to A, written X → A, and the case that X does not have a
homomorphism to B, written X ̸→ B, (the promise is that one of the cases takes
place). Obviously, PCSP(A,A) is CSP(A).

A powerful tool used in determining the computational complexity of a PCSP
is homomorphic relaxation: (A′,B′) is a homomorphic relaxation of (A,B) if A′ →
A → B → B′, and in that case PCSP(A′,B′) is not harder than PCSP(A,B).

Since we already know ”a lot” about CSP, a common way to prove that some
PCSP(A,B) is tractable is to find a structure C such that A → C → B and such
that CSP(C) is tractable. In [Bar19] Barto found an example of a PCSP template
such that such a ”sandwitched” structure has to be infinite – this PCSP is not
finitely tractable in the sense of the following definition.

Definition 4. We say that PCSP(A,B) is finitely tractable if there exists a finite
relational structure C such that A → C → B and CSP(C) is tractable. Otherwise
we call PCSP(A,B) not finitely tractable. (We assume P ̸= NP throughout the
thesis.)

In this chapter, we initiate a systematic study of this phenomenon. As the
main technical contribution, we determine which of the “basic tractable cases” in
Brakensiek and Guruswami’s classification [BG18] are finitely tractable.

1.1.1 Symmetric Boolean PCSPs allowing negations
We now discuss the classification of symmetric Boolean templates allowing nega-
tions from [BG18]. It will be convenient to describe these templates by listing the
corresponding relation pairs, that is, instead of (A = ({0, 1};R1, R2, . . . , Rn),B =
({0, 1};S1, S2, . . . , Sn)) we describe this template by the list (R1, S1), (R2, S2), . . . ,
(Rn, Sn). Recall that the template is symmetric if all the involved relations are
symmetric, i.e., invariant under any permutation of coordinates, and the template
allows negations if (̸=, ̸=) is among the relation pairs, where ̸== {(0, 1), (1, 0)} is
the disequality relation.

It may be also helpful to think of an instance of PCSP(A,B) as a list of
constraints of the form Ri(variables) and the problem is to distinguish between
instances where each constraint is satisfiable and those which are not satisfiable
even when we replace each Ri by the corresponding “relaxed version” Si. Allowing

9

negations then means that we can use constraints x ̸= y – we can effectively negate
variables.

The following relations are important for the classification.

• odd-in-s = {x ∈ {0, 1}s : ∑︁s
i=1 xi is odd},

even-in-s = {x ∈ {0, 1}s : ∑︁s
n=1 xi is even}

• r-in-s = {x ∈ {0, 1}s : ∑︁s
n=1 xi = r}

• ≤r-in-s = {x ∈ {0, 1}s : ∑︁s
i=1 xi ≤ r},

≥r-in-s = {x ∈ {0, 1}s : ∑︁s
i=1 xi ≥ r}

• not-all-equal-s = {x ∈ {0, 1}s : ∑︁s
i=1 xi ̸∈ {0, s}}

The next theorem lists some of the tractable cases of the classification, which
are “basic” in the sense explained below.

Theorem 1. PCSP((P,Q), (̸=, ̸=)) is tractable if (P,Q) is equal to

(a) (odd-in-s, odd-in-s), or (even-in-s, even-in-s), or

(b) (≤r-in-s,≤(2r − 1)-in-s) and r ≤ s/2, or
(≥r-in-s,≥(2r − s+ 1)-in-s) and r ≥ s/2, or

(c) (r-in-s, not-all-equal-s)

for some positive integers r, s.

It is proved in Appendix 1.A that every tractable symmetric Boolean PCSP
allowing negations can be obtained by

• taking any number of relation pairs from one of the following three items:

(a) (odd-in-s, odd-in-s), or (even-in-s, even-in-s)
(b) (≤r-in-s,≤(2r − 1)-in-s) and r ≤ s/2, or

(≥r-in-s,≥(2r − s+ 1)-in-s) and r ≥ s/2, or
(s

2 -in-s, not-all-equal-s) and s is even
(c) (r-in-s, not-all-equal-s)

where r and s are positive integers,

• adding any number of “trivial” relation pairs (P,Q) such that P ⊆ Q, and
Q is the full relation or P contains only constant tuples, and

• taking a homomorphic relaxation of the obtained template.

In this sense, Theorem 1 provides building blocks for all tractable templates.

10

1.1.2 Contributions
Some of the cases in Theorem 1 are finitely tractable: templates in item (a) are
tractable CSPs (they can be decided by solving systems of linear equations of the
two-element field), templates in item (c) for r odd and s even are homomorphic
relaxations of (odd-in-s, odd-in-s), and templates in item (b) for r = 1 or r =
s − 1 as well as all templates with s ≤ 2 are tractable CSPs (reducible to 2-
SAT) [Sch78, BKW17a]. Our main theorem proves that all the remaining cases
are not finitely tractable. In fact, we prove this property even for some relaxations
of these templates:

Theorem 2. The PCSP over any of the following templates is not finitely
tractable.

(1) (r-in-s,≤(2r − 1)-in-s), (̸=, ̸=) where 1 < r < s/2,
(r-in-s,≥(2r − s+ 1)-in-s), (̸=, ̸=) where s/2 < r < s− 1

(2) (≤r-in-s,≤(2r − 1)-in-s), (̸=, ̸=) where s is even, 1 < r = s/2
(≥r-in-s,≥(2r − s+ 1)-in-s), (̸=, ̸=) where s is even, 1 < r = s/2

(3) (r-in-s,≤(2r − 1)-in-s), (̸=, ̸=) where s is even, 1 < r = s/2, and r is even
(r-in-s,≥ (2r − s + 1)-in-s), (̸=, ̸=) where s is even, 1 < r = s/2, and r is
even

(4) (r-in-s, not-all-equal-s) where s > r, s > 2, and r is even or s is odd

Note that the templates in the last item do not contain the disequality pair;
the special case with r = 1 and s = 3 is the main result of [Bar19]. Disequalities
in the other items are necessary, since otherwise the templates are homomorphic
relaxations of CSPs over one-element structures.

In Theorem 8 we provide a general necessary condition for finite tractability
of an arbitrary finite-template PCSP in terms of so called h1 identities. Showing
that templates in Theorem 2 do not satisfy this necessary condition forms the
bulk of the chapter.

The necessary condition in Theorem 8 seems very unlikely to be sufficient for
finite tractability. Nevertheless, we observe in Theorem 5 that finite tractability
does depend only on h1 identities, just like standard tractability [BKO19], see
Theorem 3 and the discussion following the theorem.

1.2 Preliminaries

1.2.1 PCSP
For every positive integer n we let [n] = {1, 2, . . . , n}.

A relational structure (of finite signature) is a tuple A = (A;R1, R2, . . . , Rn)
where A is a set, called the domain, and each Ri is a relation on A of arity
ar(Ri) ≥ 1, that is, Ri ⊆ Aar(Ri). The structure A is finite if A is finite. Two
relational structures A = (A;R1, R2, . . . , Rn) and B = (B;S1, S2, . . . , Sn) are
similar if they have the same number of relations and ar(Ri) = ar(Si) for each
i ∈ [n]. In this case, a homomorphism from A to B is a mapping f : A → B
such that (f(a1), f(a2), . . . , f(ak)) ∈ Si whenever i ∈ [n] and (a1, a2, . . . , ak) ∈ Ri

11

where k = ar(Ri). If there exists a homomorphism from A to B, we write A → B,
and if there is none, we write A ̸→ B.

Definition 5. A PCSP template is a pair (A,B) of similar relational structures
such that A → B.

The PCSP over (A,B), written PCSP(A,B), is the following problem. Given
a finite relational structure X similar to A (and B), output “Yes.” if X → A and
output “No.” if X ̸→ B.

We define CSP(A) = PCSP(A,A).

Definition 6. Let (A,B) and (A′,B′) be similar PCSP templates. We say that
(A′,B′) is a homomorphic relaxation of (A,B) if A′ → A and B → B′.

Recall that if (A′,B′) is a homomorphic relaxation of (A,B), then the trivial
reduction, which does not change the input structure X, reduces PCSP(A′,B′) to
PCSP(A,B).

1.2.2 Polymorphisms
A crucial concept for the algebraic approach to (P)CSP is a polymorphism.

Definition 7. Let R ⊆ Ak and S ⊆ Bk be relations. A function c : An → B is a
polymorphism of (R, S) if⎛⎜⎜⎜⎜⎝

a11
a21
...
ak1

⎞⎟⎟⎟⎟⎠ ∈ R,

⎛⎜⎜⎜⎜⎝
a12
a22
...
ak2

⎞⎟⎟⎟⎟⎠ ∈ R, . . . ,

⎛⎜⎜⎜⎜⎝
a1n

a2n
...
akn

⎞⎟⎟⎟⎟⎠ ∈ R ⇒

⎛⎜⎜⎜⎜⎝
c(a11, a12, . . . , a1n)
c(a21, a22, . . . , a23)

...
c(ak1, ak2, . . . , akn)

⎞⎟⎟⎟⎟⎠ ∈ S.

Definition 8. Let A = (A;R1, R2, . . . , Rm) and B = (B;S1, S2, . . . , Sm) be two
similar relational structures. A function c : An → B is a polymorphism from A
to B if it is a polymorphism of (Ri, Si) for every i ∈ {1, 2, . . . ,m}.

We denote the set of all polymorphisms from A to B by Pol(A,B) and define
Pol(C) = Pol(C,C).

The computational complexity of a PCSP depends only on the set of polymor-
phisms of its template [BG18]. We note that tractability of the PCSPs in Theo-
rem 1 stems from nice polymorphisms: parities (item (a)), majorities (item (b)),
and alternating thresholds (item (c)).

The set of polymorphisms is an algebraic object named minion in [BKO19],
which we define in Definition 10 below.

Definition 9. An n-ary function fπ : An → B is called a minor of an m-ary
function f : Am → B given by a map π : [m] → [n] if

fπ(x1, x2, . . . , xn) = f(xπ(1), xπ(2) . . . , xπ(m))

for all x1, x2, . . . , xn ∈ A.

Definition 10. Let O(A,B) = {f : An → B : n ≥ 1}. A minion on (A,B) is
a non-empty subset M of O(A,B) that is closed under taking minors. For fixed
n ≥ 1, let M(n) denote the set of n-ary functions from M.

12

As mentioned, M = Pol(A,B) is always a minion and the complexity of
PCSP(A,B) depends only on M. This result was strengthened in [BKO19,
BBKO18] (generalizing the same result for CSPs [BOP18]) as follows.

Definition 11. Let M and N be two minions. A mapping ξ : M → N is called
a minion homomorphism if it preserves arities and preserves taking minors, i.e.,
ξ(fπ) = (ξ(f))π for every f ∈ M(m) and every π : [m] → [n].

Theorem 3. Let (A,B) and (A′,B′) be PCSP templates. If there exists a minion
homomorphism Pol(A′,B′) → Pol(A,B), then PCSP(A,B) is log-space reducible
to PCSP(A′,B′).

An h1 identity (h1 stands for height one) is a meaningful expression of the form
function(variables) ≈ function(variables), e.g., if f : A3 → B and g : A4 → B,
then f(x, y, x) ≈ g(y, x, x, z) is an h1 identity. Such an h1 identity is satisfied
if the corresponding equation holds universally, e.g., f(x, y, x) ≈ g(y, x, x, z) is
satisfied if and only if f(x, y, x) = g(y, x, x, z) for every x, y, z ∈ A.

Every minion homomorphism ξ : M → N preserves h1 identities in the
sense that if functions f, g ∈ M satisfy an h1 identity, then so do their ξ-images
ξ(f), ξ(g) ∈ N . In fact, an arity-preserving ξ between minions is a minion ho-
momorphism if and only if it preserves h1 identities (see [BOP18] for details). In
this sense, Theorem 3 shows that the complexity of a PCSP depends only on h1
identities satisfied by polymorphisms.

1.2.3 Notation for tuples
Repeated entries in tuples will be indicated by ×, e.g. (2 × a, 3 × b) stands for
the tuple (a, a, b, b, b).

The i-th cyclic shift of a tuple (x1, . . . , xm) is the tuple (x(m−i mod m)+1, . . . ,
xm, x1, . . . , x(m−i−1 mod m)+1). A cyclic shift is the i-th cyclic shift for some i. We
will use cyclic shifts both for tuples of zeros and ones and tuples of variables.

We will often use special p-tuples and n = p2-tuples of zeros and ones as
arguments for Boolean functions, where p will be a fixed prime number. For
0 ≤ k ≤ p, 0 ≤ l ≤ p2, and 0 ≤ k1, . . . , kp ≤ p we write

⟨k⟩p = (k×1, (p−k)×0) = (1, 1, . . . , 1⏞ ⏟⏟ ⏞
k

, 0, 0, . . . , 0⏞ ⏟⏟ ⏞
p−k

), ⟨l⟩n = (1, 1, . . . , 1⏞ ⏟⏟ ⏞
l

, 0, 0, . . . , 0⏞ ⏟⏟ ⏞
n−l

)

and
⟨k1, k2, . . . , kp⟩p = ⟨k1⟩p⟨k2⟩p . . . ⟨kp⟩p

for the concatenation of ⟨k1⟩p, ⟨k2⟩p. . . , ⟨kp⟩p. (Note here that the “i” in ki is an
index, not an exponent.) The subscripts p and n in ⟨⟩p and ⟨⟩n will be usually
clear from the context and we omit them. We will sometimes need to shift n-ary
tuples ⟨k1, k2, . . . , kp⟩ blockwise, e.g., to ⟨k2, . . . , kp, k1⟩. In such a situation we
talk about a p-ary cyclic shift to avoid confusion.

It will be often convenient to think of an n-tuple k = ⟨k1, k2, . . . , kp⟩ as a
p × p zero-one matrix with columns ⟨k1⟩, ⟨k2⟩,. . . , ⟨kp⟩. For example, the ones
in ⟨p × 5⟩ form a 5 × p “rectangle” and ⟨(p − 2) × 5, 2 × 4⟩ is “almost” a 5 × p
rectangle – the bottom right 1 × 2 corner is removed. A p-ary cyclic shift of k
corresponds to cyclic permutation of columns.

13

The area of a zero-one n-tuple k is defined as the fraction of ones and is
denoted λ(k).

λ(k) =
(︄

n∑︂
i=1

ki

)︄
/p2

The area of ⟨k1, k2, . . . , kp⟩ is thus (k1 + k2 + · · · + kp)/p2.
If t is a p-ary function, we simply write t⟨k⟩ instead of t(⟨k⟩). Similar short-

hand is used for n-ary functions and tuples ⟨k1, k2, . . . , kp⟩p.

1.3 Finitely tractable PCSPs

1.3.1 Finite tractability depends only on h1 identities
We start by observing that finite tractability also depends only on h1 identities
satisfied by polymorphisms, just like standard tractability (recall the discussion
about h1 identities and minion homomorphisms below Theorem 3). This result,
Theorem 5, is an immediate consequence of the following lemma and Theorem 3.

Lemma 4. Let (A,B) be a PCSP template. Then the following are equivalent.

• PCSP(A,B) is finitely tractable.

• There exists a finite relational structure C such that CSP(C) is solvable
in polynomial time and there exists a minion homomorphism Pol(C) →
Pol(A,B).

Proof. This lemma is a consequence of known results and we only sketch the argu-
ment here. In Section II.B of [Bar19] it is argued that the first item is equivalent
to the claim that a finite tractable template (C,C) pp-constructs (A,B). The
latter claim is equivalent to the second item by Theorem 4.12 in [BBKO18].

Theorem 5. Let (A,B) and (A′,B′) be PCSP templates. If there exists a minion
homomorphism Pol(A′,B′) → Pol(A,B) and PCSP(A′,B′) is finitely tractable,
then so is PCSP(A,B).

1.3.2 Necessary condition for finite tractability
In this subsection, we derive the necessary condition for finite tractability that
will be used to prove Theorem 2. A cyclic polymorphism is a starting point for
the condition.

Definition 12. A function c : Ap → B is called cyclic if it satisfies the h1 identity

c(x1, x2, . . . , xp) ≈ c(x2, . . . , xp, x1).

Cyclic polymorphisms can be used [BK12] to characterize the borderline
between tractable and NP-complete CSPs proposed in [BJK05] and confirmed
in [Bul17, Zhu17, Zhu20]. We only state the direction needed in this paper.

Theorem 6 ([BK12]). Let C be a CSP template over a finite domain C. If
CSP(C) is not NP-complete, then C has a cyclic polymorphism of arity p for
every prime number p > |C|.

14

Polymorphism minions of CSP templates are closed under arbitrary compo-
sition (cf. [BKW17a]). In particular, if CSP(C) is not NP-complete, then Pol(C)
contains the function

t(x11, x21, . . . , xp1, x12, x22, . . . , xp2, . . . , x1p, x2p, . . . , xpp)
= c(c(x11, x21, . . . , xp1), c(x12, x22, . . . , xp2), . . . , c(x1p, x2p, . . . , xpp)),

(1.1)

where c is a p-ary cyclic function and p > |C|. Such a function satisfies strong
h1 identities which are not satisfied by the templates in Theorem 2. We now (in
two steps) describe one such collection of strong enough identities.

Definition 13. A function t : Ap2 → B is doubly cyclic if it satisfies every
identity of the form t(x1,x2, . . . ,xp) ≈ t(y1,y2, . . . ,yp), where xi is a p-tuple of
variables and yi is a cyclic shift of xi for every i ∈ [p], and every identity of the
form t(x1,x2 . . . ,xp) ≈ t(x2, . . . ,xp,x1), where each xi is a p-tuple of variables.

Observe that t from 1.1 is doubly cyclic – the first type of identities come
from the cyclicity of the inner c while the second type from the outer c. It will be
also useful for us to observe in Lemma 9 that, after rearranging the arguments
(we read them row-wise), t is a cyclic function of arity p2. From the finiteness of
the domain C we get one more property of function t. In the next definition, by
an x/y-tuple we mean a tuple containing only variables x and y.

Definition 14. A doubly cyclic function t : Ap2 → B is b-bounded if there exists
an equivalence relation ∼ on the set of all p-ary x/y-tuples with at most b equiv-
alence classes such that t satisfies every identity of the form t(u1,u2, . . .up) ≈
t(v1,v2, . . . ,vp) where ui and vi are x/y-tuples such that ui ∼ vi for every i ∈ [p].

Lemma 7. Let c : Cp → C be a cyclic function. Then the function t defined by
1.1 is a b-bounded doubly cyclic function for b = |C||C|2.

Proof. We define ∼ by declaring two p-ary x/y-tuples u and v ∼-equivalent if
c(u) ≈ c(v). As there are b = |C||C|2 binary functions C2 → C, this equivalence
has at most b equivalence classes. By definitions, t is then b-bounded and doubly
cyclic.

The promised necessary condition for finite tractability is now a simple con-
sequence:

Theorem 8. Let (A,B) be a finite PCSP template that is finitely tractable. Then
there exists b such that (A,B) has a p2-ary b-bounded doubly cyclic polymorphism
for every sufficiently large prime p.

Proof. If (A,B) is finitely tractable, then, by Lemma 4, there exists a minion
homomorphism ξ : Pol(C) → Pol(A,B), where C is finite and CSP(C) is tractable.
By Theorem 6, C has a p-ary cyclic polymorphism for every sufficiently large
prime. Then, by Lemma 7, the polymorphism t of C defined by 1.1 is a b-
bounded and doubly cyclic (with the appropriate b). As ξ preserves h1 identities,
ξ(t) is a b-bounded doubly cyclic polymorphism of (A,B).

15

1.3.3 Sketch of the proof of Theorem 2
Finally, we are ready to start proving Theorem 2. Without loss of generality,
we consider only templates on the first lines of Cases (1)–(3) of Theorem 2 (in
particular, r ≤ s/2) and assume that r ≤ s/2 in Case (4) (the remaining templates
can be obtained by swapping zero and one in the domains). The general idea for
all the cases is the same. In the next section we will give a complete proof for
the Case (1), and then the proofs for other cases will follow, but in much less
detail, because a big part of the proofs is very similar to the proof for the Case
(1), the parts where the proofs significantly differ will be written in detail. But
here we sketch the proof for a general fixed template (A,B) from Cases (1)-(4),
where r ≤ s/2.

Striving for a contradiction, suppose that PCSP(A,B) is finitely tractable. By
Theorem 8 there exists b such that (A,B) has a p2-ary b-bounded doubly cyclic
polymorphism t for every sufficiently large arity p2. We fix such a b and t, where
p is fixed to a sufficiently large prime p congruent to 1 modulo s. How large
must p be will be seen in due course. We denote n = p2 and observe that n ≡ 1
(mod s) as well.

Using the cyclicity and double cyclicity we will show that certain n-tuples
z are tame in that t(z) = t⟨0⟩ (recall here the notation in Subsection 1.2.3) iff
the area of z is below a threshold θ. The threshold is defined as θ = 1/2 for all
the templates but the (r-in-s, not-all-equal-s) template in Case (4), where we set
θ = r/s (observe that θ = r/s also in Case (2) and (3)).

The evaluations that we use are called near-threshold almost rectangles de-
fined as follows.

Definition 15. A tuple z ∈ {0, 1}n is an almost rectangle if it is a p-ary cyclic
shift of a tuple of the form ⟨z1, . . . , z1, z2, . . . , z2⟩p, where 0 ≤ z1, z2 ≤ p, the
number of z1’s is arbitrary, and |z1 − z2| < 5b. The quantity ∆z = |z1 − z2| is
referred to as the step size. We say that z is near-threshold if |λ(z)−θ| < 1/s∆z+3.

The proof can now be finished by finding two near-threshold almost rectangles
z1 and z2 such that λ(z1) < θ < λ(z2) and t(z1) = t(z2); but the tameness of
near-threshold almost rectangles gives us t(z1) = t⟨0⟩n ̸= 1 − t⟨0⟩n = t(z2), a
contradiction.

1.4 Case (1): PCSP((r-in-s,≤ (2r − 1)-in-s), (̸=, ̸=))
where 1 < r < s/2

In this section we will prove that PCSP((r-in-s,≤ (2r − 1)-in-s), (̸=, ̸=)) where
1 < r < s/2 is not finitely tractable, which is (half of the) Case (1) in Theorem 2.
Striving for a contradiction, suppose that it is finitely tractable. By Theorem 8
there exists b such that PCSP((r-in-s,≤ (2r − 1)-in-s), (̸=, ̸=)) has a p2-ary b-
bounded doubly cyclic polymorphism t for every sufficiently large arity p2. We
fix such a b and t, where p is fixed to a sufficiently large prime p congruent to 1
modulo s (which is possible by the Dirichlet prime number theorem). How large
must p be will be seen in due course. We denote n = p2 and observe that n ≡ 1
(mod s) as well.

16

We will use the cyclicity of an operation obtained from t by an appropriate
rearrangnment of its arguments, stated in the following lemma.

Lemma 9. Let t : Ap2 → B be a doubly cyclic function. Then the function tσ

defined by

tσ

⎛⎜⎜⎜⎜⎝
x11 x12 · · · x1p

x21 x22 · · · x2p
...
xp1 xp2 · · · xpp

⎞⎟⎟⎟⎟⎠ = t

⎛⎜⎜⎜⎜⎝
x11 x21 · · · xp1
x12 x22 · · · xp2
...
x1p x2p · · · xpp

⎞⎟⎟⎟⎟⎠
is a cyclic function.

Proof. By cyclically shifting the arguments we get the same result:

tσ(x21, x31, . . . , xp1, x12, x22, x32, . . . , xp2, x13, . . . , x2p, x3p, . . . , xpp, x11)

= tσ

⎛⎜⎜⎜⎜⎝
x21 · · · x2,p−1 x2p
...
xp1 · · · xp,p−1 xpp

x12 · · · x1p x11

⎞⎟⎟⎟⎟⎠ = t

⎛⎜⎜⎜⎜⎝
x21 · · · xp1 x12
...

x2,p−1 · · · xp,p−1 x1p

x2p · · · xpp x11

⎞⎟⎟⎟⎟⎠

= t

⎛⎜⎜⎜⎜⎝
x21 · · · xp1 x11
...

x2,p−1 · · · xp,p−1 x1,p−1
x2p · · · xpp x1p

⎞⎟⎟⎟⎟⎠ = t

⎛⎜⎜⎜⎜⎝
x11 x21 · · · xp1
x12 x22 · · · xp2
...
x1p x2p · · · xpp

⎞⎟⎟⎟⎟⎠

= tσ

⎛⎜⎜⎜⎜⎝
x11 x12 · · · x1p

x21 x22 · · · x2p
...
xp1 xp2 · · · xpp

⎞⎟⎟⎟⎟⎠
= tσ(x11, x21, . . . , xp1, x12, x22, . . . , xp2, . . . , x1p, x2p, . . . , xpp).

The following lemma is a consequence of the fact that tσ is a polymorphism
(as t is) which is, additionally, cyclic by Lemma 9.

Lemma 10. Let ⟨k1⟩, ⟨k2⟩, . . . , ⟨ks⟩, where 0 ≤ ki ≤ n, be an s-tuple of n-tuples
such that ∑︁s

i=1 ki = rn. Then (tσ⟨k1⟩, tσ⟨k2⟩, . . . , tσ⟨ks⟩) ∈≤(2r − 1)-in-s.
Moreover, we have tσ⟨n− k⟩ = 1 − tσ⟨k⟩ for every 0 ≤ k ≤ n.

Proof. For the first part, form an s× rn matrix M whose first row is ⟨k1⟩rn and
the j-th row is the (∑︁j−1

l=1 kl)-th cyclic shift of ⟨kj⟩rn for j ∈ {2, . . . , s}. Note that
each column of M contains exactly 1 one. Split this matrix into r-many s × n
blocks M1,M2, . . . ,M r. Their sum X = ∑︁r

j=1 M
j is an s × n zero-one matrix

whose each column contains exactly r ones. Moreover, for all j ∈ [s], the j-th
row of X is a cyclic shift of ⟨kj⟩, therefore its tσ-image is tσ⟨kj⟩ by cyclicity of tσ.
Each column belongs to the relation r-in-s, therefore, as tσ is a polymorphism,
we get that tσ applied to the rows gives a tuple in ≤ (2r − 1)-in-s. This implies
the first claim.

For the second part, we take ⟨k⟩ together with the k-th cyclic shift of ⟨n− k⟩
and use the fact that tσ preserves the disequality relation pair.

17

Lemma 11. Denote a = ⌊n/2⌋. For every 0 ≤ k ≤ 2a, we have

tσ⟨k⟩n =
{︄
tσ⟨0⟩n if 0 ≤ k ≤ a
1 − tσ⟨0⟩n if 1 + a ≤ k ≤ 2a

Proof. We prove tσ⟨k⟩ = 0 and tσ⟨n− k⟩ = 1 for any 0 ≤ k ≤ a by induction on
i = a − k, i = 0, 1, . . . , a. For the first step, k = (n − 1)/2, we apply Lemma 10
to the s-tuple 2r× ⟨k⟩, ⟨r⟩, (s− 2r− 1) × ⟨0⟩. (We can apply Lemma 10 because
2rk + r = rn.) Since ≤ (2r − 1)-in-s contains no tuple with more than (2r − 1)
ones, we get tσ⟨k⟩ = 0. Then also tσ⟨n−k⟩ = 1 by the second part of the lemma.
For the induction step, we use the tuple

r × ⟨k⟩, r × ⟨n− k − 1⟩, ⟨r⟩, (s− 2r − 1) × ⟨0⟩

in a similar way, additionally using that tσ⟨n − k − 1⟩ = 1 by the induction
hypothesis.

Definition 16. A tuple z ∈ {0, 1}n is tame if

t(z) =
{︄
t⟨0⟩n if λ(z) < 1/2
1 − t⟨0⟩n if λ(z) > 1/2

(Note here that λ(z) is never equal to 1/2 since n is odd and n ≡ 1 (mod s).)

The evaluations that we use are called near-threshold almost rectangles de-
fined as follows.

Definition 17. A tuple z ∈ {0, 1}n is an almost rectangle if it is a p-ary cyclic
shift of a tuple of the form ⟨z1, . . . , z1, z2, . . . , z2⟩p, where 0 ≤ z1, z2 ≤ p, the
number of z1’s is arbitrary, and |z1 − z2| < 5b. The quantity ∆z = |z1 − z2| is
referred to as the step size. We say that z is near-threshold if |λ(z) − 1/2| <
1/s∆z+3.

Observe that an almost rectangle z = ⟨z2 + 1, . . . , z2 + 1, z2, . . . , z2⟩p regarded
as a p×p matrix is, when read row-wise, equal to a sequence of consecutive ones,
followed by zeros. In other words, using the notation tσ from Lemma 9, we have
t(z) = tσ⟨k⟩n for some k. Also note that every almost rectangle of step size at
most one has a p-ary cyclic shift of this form. Having this in mind, the following
lemma is an easy consequence of the previous one.

Lemma 12. Every near-threshold almost rectangle of step size at most one is
tame.

Proof. Let z be a near-threshold almost rectangle of step size at most one. With-
out loss of generality, assume it is of the form z = ⟨z2 + 1, . . . , z2 + 1, z2, . . . , z2⟩p.
Let k be the number of ones in z. We know that t(z) = tσ⟨k⟩n. Since z is a
near-threshold almost rectangle, we have⃓⃓⃓⃓

λ(z) − 1
2

⃓⃓⃓⃓
<

1
s∆z+3 ,

so
λ(z) < 1

s∆z+3 + 1
2 ,

18

but we know
λ(z) = k

n
.

Since the step size is at most one, i.e., ∆z ∈ {0, 1}, we have

k

n
<

1
s∆z+3 + 1

2 ≤ 1
s3 + 1

2 ,

so
k < 2

⌊︃
n

2

⌋︃
.

Now the result follows immediately from Lemma 11

Definition 18. We say that an m-tuple of evaluations k1 = ⟨k1
1, k

2
1, . . . , k

p
1⟩,

k2 = ⟨k1
2, k

2
2, . . . , k

p
2⟩, . . . ,km = ⟨k1

m, k
2
m, . . . , k

p
m⟩, where m ∈ [s], is plausible if∑︁m

j=1 k
i
j = rp for all i ∈ [p].

In other words, by arranging the integers defining k1, k2, . . . , km as rows of
an m× p matrix, we get a matrix whose every column sums up to rp. Note that
the sum of the areas of the evaluations is then equal to r.

The following lemma is a “2-dimensional analogue” of Lemma 10. The proof
applies the first type of doubly cyclic identities from Definition 13.

Lemma 13. If a tuple k1,k2, . . . ,ks is plausible, then (t(k1), t(k2), . . . , t(ks)) ∈≤
(2r − 1)-in-s.

Moreover, we have t⟨p− k1, p− k2, . . . , p− kp⟩ = 1 − t⟨k1, k2, . . . , kp⟩ for any
evaluation ⟨k1, k2, . . . , kp⟩.

Proof. Let k1,k2, . . . ,ks be a plausible tuple. Fix, for a while, an arbitrary i ∈ [p].
Form a s×rp matrix Mi whose first row is ⟨ki

1⟩rp and j-th row is the (∑︁j−1
l=1 k

i
l)-th

cyclic shift of ⟨ki
j⟩rp for j ∈ {2, . . . , s}. Split this matrix into r-many s× p blocks

M1
i ,M

2
i , . . . ,M

r
i . Their sum Xi = ∑︁r

j=1 M
j
i is an s×p matrix whose each column

contains exactly r ones. Moreover, for all j ∈ [s], the j-th row of the matrix Xi

is a cyclic shift of ⟨ki
j⟩p. Put the matrices X1,X2, . . . , Xp aside to form an s× n

matrix Y . Its rows have the same t-images as k1,k2, . . . ,ks, respectively, because
t is doubly cyclic. Each column belongs to the relation r-in-s, therefore, as t is a
polymorphism, we get that t applied to the rows gives a tuple in ≤(2r − 1)-in-s.
This tuple is equal to (t(k1), t(k2), . . . , t(ks)).

The second part can be proved in a similar way as the second part of Lemma 10
using the disequality relation pair.

The next lemma will be applied to produce plausible sequence of evaluations.
The proof uses the other type of doubly cyclic identities. First we provide a brief
sketch and then the whole proof.

Lemma 14. Let z be an almost rectangle of step size ∆z ≥ 2 with |λ(z)−1/2| ≤
1/s3 and let p be sufficiently large. Then

• there exists a plausible 2r-tuple k1, k2,. . . , k2r−1, l of almost rectangles such
that t(z) = t(k1) = t(k2) = · · · = t(k2r−1), λ(z) = λ(k1) = · · · = λ(k2r−1),
and l has the same step size ∆z as z;

19

• there exists a plausible 2r-tuple k1, k2,. . . , k2r−2, l1, l2 of almost rectangles
such that t(z) = t(k1) = t(k2) = · · · = t(k2r−2), λ(z) = λ(k1) = λ(k2) =
· · · = λ(k2r−2), both l1 and l2 have step size strictly smaller than ∆z, and
|λ(l1) − λ(l2)| ≤ 1/p.

Proof sketch. We can assume that z = ⟨c×z1, d×z2⟩ for some c, d, z1, z2. For the
first item, we consider the (2r− 1) × p matrix X whose first row is z and the i-th
row is the c-th cyclic shift of the (i− 1)-st row for each i ∈ {2, . . . , 2r− 1}. Let Y
be the 2r×p matrix obtained from X by adding a row (l1, l2, . . . , lp) so that each
column sums up to rp and we define k1,k2, . . . ,km, l as the n-tuples determined
by the rows of Y via ⟨⟩, e.g., l = ⟨l1, l2, . . . , lp⟩. The inequality |λ(z)−1/2| ≤ 1/s3

(and p being sufficiently large) ensures that l is correctly defined (i.e., all the li
are between 0 and p), the construction gives that l is an almost rectangle with
step size ∆z and that z and ki have equal areas, and the double cyclicity of t
implies t(z) = t(ki). For the second item we additionally split the l row in two
roughly equal rows. This will guarantee the two properties of l1 and l2.

Proof. Without loss of generality we can assume that z = ⟨c × z1, d × z2⟩ for
some c, d and z1 > z2. Let m = 2r − 1 for the first item and m = 2r − 2 for
the second one. We define an integer m × p matrix X so that the first row is
(c×z1, d×z2) and the i-th row is the c-th cyclic shift of the (i−1)-st row for each
i ∈ {2, . . . ,m}. Let Y be the (m+1)×p matrix obtained from X by adding a row
(l1, l2, . . . , lp) so that each column sums up to rp. It is easily seen by induction
on i ≤ m that the sum of the first i rows is a cyclic shift of a tuple of the form
(e, . . . , e, e′, . . . , e′), where |e − e′| = ∆z and the “step down” is at position ci
mod p (when columns are indexed from 0). It follows that (l1, l2, . . . , lp) is also a
cyclic shift of a tuple of the form (e, . . . , e, e′, . . . , e′) where e and e′ differ by ∆z.

Next we observe that each li > 0 if p is sufficiently large. Indeed, note that
since |z1 − z2|/p can be made arbitrarily small (recall |z1 − z2| < 5b), we have
p(λ(z) − ϵ) < z1, z2 < p(λ(z) + ϵ), where ϵ > 0 can be made arbitrarily small.
Since z1, z2 < p(λ(z) + ϵ) and for each i we have li = rp−mz1 or li = rp−mz2,
then we have, for each i,

li > rp−mp(λ(z) + ϵ)

≥ rp− (2r − 1)p
(︃1

2 + 1
s3 + ϵ

)︃
= p

(︃
r − (2r − 1)

(︃1
2 + 1

s3 + ϵ
)︃)︃

= p
(︃
r −

(︃2r
2 − 1

2

)︃
− (2r − 1)

(︃ 1
s3 + ϵ

)︃)︃
= p

(︃1
2 − (2r − 1)

(︃ 1
s3 + ϵ

)︃)︃
> p

(︃1
2 − 2r

(︃ 1
s3 + ϵ

)︃)︃
,

which is, for a sufficiently small ϵ, greater than 0 since 2r/s3 < s/s3 = 1/s2 < 1/2.
Similarly, now using p(λ(z) − ϵ) < z1, z2, we get that each li < p if m = 2r − 1
and li < 3p/2 if m = 2r − 2.

Now we can finish the proof of the first item. We set k1,k2, . . . ,km, l to be
the n-tuples determined by the rows of Y via ⟨⟩, e.g., l = ⟨l1, l2, . . . , lp⟩. The

20

inequalities 0 ≤ li ≤ p guarantee that l is correctly defined and we see, using
also the double cyclicity of t (for t(z) = t(k1) = t(k2) = · · · = t(km)), that these
n-tuples have all the required properties.

To finish the proof of the second item, we define the ki as above and set l1 =
⟨⌊l1/2⌋, ⌊l2/2⌋, . . . , ⌊lp/2⌋⟩, l2 = ⟨⌈l1/2⌉, ⌈l2/2⌉, . . . , ⌈lp/2⌉⟩. Since 0 ≤ ⌊li/2⌋ ≤
⌈li/2⌉ ≤ 3p/4 < p, for i = 1, 2, . . . , p, these tuples are correctly defined almost
rectangles. Their areas clearly differ by at most 1/p. As ∆z ≥ 2, their step sizes
are strictly smaller than ∆z, and we are done in this case as well.

Equipped with these lemmata we are ready to prove the following lemma.

Lemma 15. Every near-threshold almost rectangle is tame.

Proof. The proof is by induction on the step size. Step sizes zero and one are
dealt with in Lemma 12, so we assume that z is a near-threshold almost rectangle
of step size 2 ≤ ∆z < 5b.

Assume first that λ(z) is not too close to 1/2, say, |λ(z) − 1/2| ≥ 1/s5b+4.
We apply the second item in Lemma 14 and get a plausible 2r-tuple k1,k2, . . . ,
k2r−2, l1, l2 such that z,k1,k2, . . . , k2r−2 all have the same t-images and areas,
and l1 and l2 are almost rectangles with step sizes strictly smaller than ∆z, whose
areas differ by at most 1/p.

The average area of almost rectangles k1,k2, . . . , k2r−2, l1, l2 is 1/2, the first
2r − 2 of them have the same area as z, bounded away from 1/2 by a constant
(namely 1/s5b+4), and the last two have almost the same area (the difference is
at most 1/p). By choosing a large enough p we get

sgn
(︃
λ(l1) − 1

2

)︃
= sgn

(︃
λ(l2) − 1

2

)︃
̸= sgn

(︃
λ(z) − 1

2

)︃
and ⃓⃓⃓⃓

λ(li) − 1
2

⃓⃓⃓⃓
≤ 2r ·

⃓⃓⃓⃓
λ(z) − 1

2

⃓⃓⃓⃓
;

in particular, both li are near-threshold since

2r ·
⃓⃓⃓⃓
λ(z) − 1

2

⃓⃓⃓⃓
≤ s ·

⃓⃓⃓⃓
λ(z) − 1

2

⃓⃓⃓⃓
≤ 1
s∆z+3−1 ≤ 1

s∆li+3 .

By the induction hypothesis, both li are tame. We complete the 2r-tuple to an
s-tuple by adding s−2r zeroes. The new s-tuple is also plausible, so we can apply
Lemma 13. We get that (t(k1), t(k2), . . . , t(k2r−2), t(l1), t(l2), t(0), t(0), . . . , t(0))
∈≤ (2r − 1)-in-s. But t(k1) = t(k2) = · · · = t(k2r−2) and t(l1) = t(l2), and there
are 2r of them, so they cannot all be one. Let k be the ”complementary” tuple
of k = ⟨k1, k2, . . . , kp⟩, i.e., k = ⟨p − k1, p − k2, . . . , p − kp⟩. The tuple k1, k2,
. . . , k2r−2, l1, l2 is also plausible, and if we add s − 2r zeroes, we again get a
plausible s-tuple, on which we can apply Lemma 13, so we get (t(k1), t(k2), . . . ,
t(k2r−2), t(l1), t(l2), t(0), t(0), . . . , t(0)) ∈≤ (2r − 1)-in-s. By the second part of
Lemma 13, we know t(k1) ̸= t(k1), t(k2) ̸= t(k2), . . . , t(k2r−2) ̸= t(k2r−2),
t(l1) ̸= t(l1), t(l2) ̸= t(l2), so we also get t(k1) = t(k2) = · · · = t(k2r−2) and
t(l1) = t(l2). As there are 2r of them, they cannot all be one, which implies that
t(k1), t(k2), . . . , t(k2r−2), t(l1), t(l2) cannot all be zero. Hence, t(z) = t(k1) =
t(k2) = · · · = t(k2r−2) ̸= t(l1) = t(l2). We do the same thing to the ”complemen-
tary” tuple of the tuple k1, k2, . . . , k2r−2, l1, l2 - we add zeroes to get an s-tuple,

21

we apply Lemma 13. Since sgn(λ(z) − 1/2) ̸= sgn(λ(l1) − 1/2), it follows that z
is tame, as required.

It remains to deal with the case that λ(z) is too close to 1/2. In this case we
will find an almost rectangle l with the same step size as z such that t(l) = 1−t(z)
and λ(l) − 1/2 = −s′(λ(z) − 1/2), where s′ is such that 2 ≤ s′ ≤ s. If λ(l) is
already not too close to 1/2, then we observe that l is near-threshold (indeed,
|λ(l) − 1/2| ≤ s|λ(z) − 1/2| ≤ s/s5b+4 ≤ 1/s∆z+3) and apply to l the first part
of the proof, thus obtaining that l is tame and, consequently, z is tame as well.
If λ(l) is still too close to 1/2, then we simply repeat the process until we get a
rectangle that is not too close.

To find such an almost rectangle l we apply the first item of Lemma 14 and
get a plausible 2r-tuple k1, . . . ,k2r−1, l such that t(z) = t(k1) = · · · = t(k2r−1)
and l is an almost rectangle of the same step size as z. Since the area of each ki

is equal to λ(z) and the average area in the plausible 2r-tuple is 1/2, we get that
λ(l)−1/2 = −(2r−1)(λ(z)−1/2). By the same trick as previously, adding zeroes,
using Lemma 13 and ”complementary” tuples, we get that t(l) and t(z) are not
equal. This concludes the construction of l and the proof of the lemma.

The proof can now be finished by using the tameness of near-threshold almost
rectangles together with the b-boundedness of t as follows.

Let m = (p−1)/2 and choose positive integers z2,1 and z2,2 so that p/2−2b <
z2,1 < z2,2 < p/2 and the x/y-tuples (z2,1 × x, (p − z2,1) × y) and (z2,2 × x, (p −
z2,2)×y) are ∼-equivalent (see Definition 14 of boundedness). This is possible by
the pigeonhole principle since there are more than b integers in the interval and
∼ has at most b classes.

By the choice of z2,1 and z2,2, for any meaningful choice of z1, we have t(z1) =
t(z2) where zi = ⟨m×z1, (p−m)×z2,i⟩p, i = 1, 2. We choose z1 as the maximum
number such that λ(z1) < 1/2. (Note here that for z1 = p the area of z1 can be
made arbitrarily close to (1 + 1/2)/2 > 1/2 by choosing a sufficiently large p, so
we may assume z1 < p.) From m < p/2 it follows that increasing z2,1 by one
makes the area of z1 greater than increasing z1 by one, therefore λ(z2) > 1/2.

Note that z1 > p/2 since otherwise the area of z2 is less than 1/2. On the
other hand, z1 < p/2 + 3b, otherwise the area of z1 is greater (assuming p > 5):

λ(z1) = mz1 + (p−m)z2,1

p2 ≥
p−1

2 (p
2 + 3b) + p+1

2 (p
2 − 2b)

p2 =
p2

2 + b(p−5)
2

p2 >
1
2 .

It follows that the step size of both z1 and z2 is less than 5b, so both zi are
almost rectangles. By choosing a sufficiently large p, the difference λ(z2) − λ(z1)
can be made arbitrarily small, and since λ(z1) < 1/2 < λ(z2) both zi are then
near-threshold.

Now the tameness of near-threshold almost rectangles (Lemma 15) gives us
t(z1) = t⟨0⟩n ̸= 1 − t⟨0⟩n = t(z2). On the other hand, we also have t(z1) = t(z2),
a contradiction.

22

1.5 The other cases

1.5.1 Case (2): PCSP((≤r-in-s,≤(2r−1)-in-s), (̸=, ̸=)) where
s is even, 1 < r = s/2

In this subsection we will prove that PCSP((≤ r-in-s,≤ (2r − 1)-in-s), (̸=, ̸=))
where s is even, 1 < r = s/2 is not finitely tractable, which is (half of the)
Case (2) in Theorem 2. Striving for a contradiction, suppose that it is finitely
tractable. There exists b such that PCSP((≤ r-in-s,≤ (2r − 1)-in-s), (̸=, ̸=)) has
a p2-ary b-bounded doubly cyclic polymorphism t for every sufficiently large arity
p2. We fix such a b and t, where p is fixed to a sufficiently large prime p congruent
to 1 modulo s. How large must p be will be seen in due course. We denote n = p2

and observe that n ≡ 1 (mod s) as well.
We define tσ as in Lemma 9, and by the same lemma we have that tσ is cyclic.
The following lemma is analogous to Lemma 10 for Case (1), and the proof is

almost the same.

Lemma 16. Let ⟨k1⟩, ⟨k2⟩, . . . , ⟨ks⟩, where 0 ≤ ki ≤ n, be an s-tuple of n-tuples
such that ∑︁s

i=1 ki ≤ rn. Then (tσ⟨k1⟩, tσ⟨k2⟩, . . . , tσ⟨ks⟩) ∈≤(2r − 1)-in-s.
Moreover, we have tσ⟨n− k⟩ = 1 − tσ⟨k⟩ for every 0 ≤ k ≤ n.

Proof. For the first part, form an s× rn matrix M whose first row is ⟨k1⟩rn and
the j-th row is the (∑︁j−1

l=1 kl)-th cyclic shift of ⟨kj⟩rn for j ∈ {2, . . . , s}. Note that
each of the first ∑︁ ki columns of M contains exactly 1 one and the remaining
columns are all zero. Split this matrix into r-many s×n blocks M1,M2, . . . ,M r.
Their sum X = ∑︁r

j=1 M
j is an s×n zero-one matrix whose each column contains

at most r ones. Moreover, for all j ∈ [s], the j-th row of X is a cyclic shift of
⟨kj⟩, therefore its tσ-image is tσ⟨kj⟩ by cyclicity of tσ. Each column belongs to
the relation ≤ r-in-s, therefore, as tσ is a polymorphism, we get that tσ applied
to the rows gives a tuple in ≤(2r − 1)-in-s. This implies the first claim.

The second part is proved in the same way as the second part of the analogous
lemma for the Case (1) (Lemma 10), using only the disequality relation pair.

The following lemma is analogous to Lemma 11 for Case (1), and the proof is
significantly different.

Lemma 17. Denote a = ⌊n/2⌋. For every 0 ≤ k ≤ 2a, we have

tσ⟨k⟩n =
{︄
tσ⟨0⟩n if 0 ≤ k ≤ a
1 − tσ⟨0⟩n if 1 + a ≤ k ≤ 2a

Proof. If 0 ≤ k ≤ a, then we apply Lemma 16 to the s-tuple ⟨k⟩, ⟨k⟩, . . . , ⟨k⟩ (we
can do that because sk ≤ sa = s⌊n/2⌋ ≤ sn/2, which is equal to rn since s = 2r)
and we get that the tuple (tσ⟨k⟩, tσ⟨k⟩, . . . , tσ⟨k⟩) is in ≤ (2r − 1)-in-s; therefore
tσ⟨k⟩ = 0. For the remaining values 2a ≥ k ≥ a+ 1 we apply the second part of
the same lemma and get tσ⟨k⟩ = 1.

Tameness and almost rectangles are in this case defined in the same way as
in Case (1). (Note here that the definitions are not really the same, because t
depends on the template, that is, the case.)

23

Definition 19. A tuple z ∈ {0, 1}n is tame if

t(z) =
{︄
t⟨0⟩n if λ(z) < 1/2
1 − t⟨0⟩n if λ(z) > 1/2

Definition 20. A tuple z ∈ {0, 1}n is an almost rectangle if it is a p-ary cyclic
shift of a tuple of the form ⟨z1, . . . , z1, z2, . . . , z2⟩p, where 0 ≤ z1, z2 ≤ p, the
number of z1’s is arbitrary, and |z1 − z2| < 5b. The quantity ∆z = |z1 − z2| is
referred to as the step size. We say that z is near-threshold if |λ(z) − 1/2| <
1/s∆z+3.

The following lemma is analogous to Lemma 12 in Case (1) and is proved in
the same way, using Lemma 17 instead of 11.

Lemma 18. Every near-threshold almost rectangle of step size at most one is
tame.

Now, as before, we want to generalize this result to arbitrary step size.
We define a plausible tuple as before.

Definition 21. We say that an m-tuple of evaluations k1 = ⟨k1
1, k

2
1, . . . , k

p
1⟩,

k2 = ⟨k1
2, k

2
2, . . . , k

p
2⟩, . . . ,km = ⟨k1

m, k
2
m, . . . , k

p
m⟩, where m ∈ [s], is plausible if∑︁m

j=1 k
i
j = rp for all i ∈ [p].

The following lemma is analogous to the Lemma 13 for Case (1) and the proof
is the same, because r-in-s ⊆≤r-in-s.

Lemma 19. If a tuple k1,k2, . . . ,ks is plausible, then (t(k1), t(k2), . . . , t(ks)) ∈≤
(2r − 1)-in-s.

Moreover, we have t⟨p− k1, p− k2, . . . , p− kp⟩ = 1 − t⟨k1, k2, . . . , kp⟩ for any
evaluation ⟨k1, k2, . . . , kp⟩.

The following lemma is analogous to the Lemma 14 for Case (1) and is proved
in the same way, just put s instead of 2r.

Lemma 20. Let z be an almost rectangle of step size ∆z ≥ 2 with |λ(z)−1/2| ≤
1/s3 and let p be sufficiently large. Then

• there exists a plausible s-tuple k1, k2,. . . , ks−1, l of almost rectangles such
that t(z) = t(k1) = t(k2) = · · · = t(ks−1), λ(z) = λ(k1) = · · · = λ(ks−1),
and l has the same step size ∆z as z;

• there exists a plausible s-tuple k1, k2,. . . , ks−2, l1, l2 of almost rectangles
such that t(z) = t(k1) = t(k2) = · · · = t(ks−2), λ(z) = λ(k1) = λ(k2) =
· · · = λ(ks−2), both l1 and l2 have step size strictly smaller than ∆z, and
|λ(l1) − λ(l2)| ≤ 1/p.

Now we are ready to prove the following lemma, analogous to Lemma 15 for
Case (1).

Lemma 21. Every near-threshold almost rectangle is tame.

24

Proof. There is no need to write the whole proof here, because it is similar to
the proof of Lemma 15, using the corresponding analogous lemmata that we just
proved. It is just a bit simpler, because in this case 2r = s, so we do not complete
2r-tuples to s-tuples by adding zeroes, because they already are s-tuples, so we
can immediately apply Lemma 19.

Now that we proved the tameness of almost rectangles, we can finish the proof
in the same way as for Case (1), of course, now using Lemma 21 instead of Lemma
15.

1.5.2 Case (3): PCSP((r-in-s,≤ (2r − 1)-in-s), (̸=, ̸=)) where
s is even, 1 < r = s/2, and r is even

In this subsection we will prove that PCSP((r-in-s,≤(2r−1)-in-s), (̸=, ̸=)) where
s is even, 1 < r = s/2, and r is even, is not finitely tractable, which is (half of the)
Case (3) in Theorem 2. Striving for a contradiction, suppose that it is finitely
tractable. There exists b such that PCSP((r-in-s,≤ (2r − 1)-in-s), (̸=, ̸=)) has a
p2-ary b-bounded doubly cyclic polymorphism t for every sufficiently large arity
p2. We fix such a b and t, where p is fixed to a sufficiently large prime p congruent
to 1 modulo s. How large must p be will be seen in due course. We denote n = p2

and observe that n ≡ 1 (mod s) as well.
We define tσ as in Lemma 9, and by the same lemma we have that tσ is cyclic.
The following lemma is analogous to Lemma 10 for Case (1), and the proof is

the same.

Lemma 22. Let ⟨k1⟩, ⟨k2⟩, . . . , ⟨ks⟩, where 0 ≤ ki ≤ n, be an s-tuple of n-tuples
such that ∑︁s

i=1 ki = rn. Then (tσ⟨k1⟩, tσ⟨k2⟩, . . . , tσ⟨ks⟩) ∈≤(2r − 1)-in-s.
Moreover, we have tσ⟨n− k⟩ = 1 − tσ⟨k⟩ for every 0 ≤ k ≤ n.

The following lemma is analogous to Lemma 11 for Case (1), and the proof is
significantly different.

Lemma 23. Denote a = ⌊n/2⌋. For every 0 ≤ k ≤ 2a, we have

tσ⟨k⟩n =
{︄
tσ⟨0⟩n if 0 ≤ k ≤ a
1 − tσ⟨0⟩n if 1 + a ≤ k ≤ 2a

Proof. We will prove, starting from the left, the following chain of disequalities.

tσ⟨a⟩ ≠ tσ⟨a+ 1⟩ ≠ tσ⟨a− 1⟩ ≠ tσ⟨a+ 2⟩ ≠ tσ⟨a− 2⟩ ≠ . . . ̸= tσ⟨2a⟩ ≠ tσ⟨0⟩

This will imply tσ⟨a⟩ = tσ⟨a − 1⟩ = · · · = tσ⟨0⟩ ≠ tσ⟨a + 1⟩ = tσ⟨a + 2⟩ = · · · =
tσ⟨2a⟩. We start with the first disequality tσ⟨a⟩ ̸= tσ⟨a + 1⟩. The sequence of
arguments

(s− r) × ⟨a⟩, r × ⟨a+ 1⟩
has length s and is plausible as (s − r)a + r(a + 1) = sa + r and sa + r is
equal to rn. (Indeed, n ≡ 1 (mod s), so n = ms + 1 for some integer m; then
a = ⌊n/2⌋ = ⌊(ms + 1)/2⌋ = mr and sa + r = smr + r = (n − 1)r + r = rn.)
By Lemma 22, the tσ image of this tuple belongs to ≤(2r− 1)-in-s, so tσ⟨a⟩ and
tσ⟨a+ 1⟩ are not both ones. Also

(s− r) × ⟨n− a⟩, r × ⟨n− (a+ 1)⟩

25

is plausible, so by applying the same lemma to this tuple we get that tσ⟨n − a⟩
and tσ⟨n − (a + 1)⟩ are not both ones. By the second part of Lemma 22 we can
conclude that tσ⟨a⟩ ≠ tσ⟨a+ 1⟩.

For the second disequality tσ⟨a+ 1⟩ ≠ tσ⟨a− 1⟩, we use the sequence

(s− r)/2 × ⟨a− 1⟩, (s+ r)/2 × ⟨a+ 1⟩

and derive tσ⟨a+ 1⟩ ≠ tσ⟨a− 1⟩ using Lemma 22 as before.
To prove tσ⟨a− i+ 1⟩ ≠ tσ⟨a+ i⟩ for i ∈ {2, 3, . . . , a}, we observe that, by the

already established disequalities, we have tσ⟨a − i + 1⟩ = · · · = tσ⟨a⟩, and then
use

• (s+ r)/4 × ⟨a+ i⟩, (s− r)/2 × ⟨a− 1⟩, (s+ r)/4 × ⟨a− i+ 2⟩ if (s+ r)/2
is even;

• (s+r+2)/4×⟨a+i⟩, (s−r−2)/2×⟨a−1⟩, 2×⟨a−i+1⟩, (s+r−6)/4×⟨a−i+2⟩
if (s+ r)/2 is odd.

Finally, for proving tσ⟨a+ i⟩ ≠ tσ⟨a− i⟩ we use

(s− r)/2 × ⟨a− i⟩, (s− r)/2 × ⟨a+ i⟩, r × ⟨a+ 1⟩

This completes the proof.

We define tameness and almost rectangles in the same way as before.

Definition 22. A tuple z ∈ {0, 1}n is tame if

t(z) =
{︄
t⟨0⟩n if λ(z) < 1/2
1 − t⟨0⟩n if λ(z) > 1/2

Definition 23. A tuple z ∈ {0, 1}n is an almost rectangle if it is a p-ary cyclic
shift of a tuple of the form ⟨z1, . . . , z1, z2, . . . , z2⟩p, where 0 ≤ z1, z2 ≤ p, the
number of z1’s is arbitrary, and |z1 − z2| < 5b. The quantity ∆z = |z1 − z2| is
referred to as the step size. We say that z is near-threshold if |λ(z) − 1/2| <
1/s∆z+3.

The following lemma is analogous to Lemma 12 in Case (1) and is proved in
the same way, using Lemma 23 instead of Lemma 11.

Lemma 24. Every near-threshold almost rectangle of step size at most one is
tame.

We define a plausible tuple as before.

Definition 24. We say that an m-tuple of evaluations k1 = ⟨k1
1, k

2
1, . . . , k

p
1⟩,

k2 = ⟨k1
2, k

2
2, . . . , k

p
2⟩, . . . , km = ⟨k1

m, k
2
m, . . . , k

p
m⟩, where m ∈ [s], is plausible if∑︁m

j=1 k
i
j = rp for all i ∈ [p].

The following lemma is analogous to the Lemma 13 for Case (1) and the proof
is the same.

26

Lemma 25. If a tuple k1,k2, . . . ,ks is plausible, then (t(k1), t(k2), . . . , t(ks)) ∈≤
(2r − 1)-in-s.

Moreover, we have t⟨p− k1, p− k2, . . . , p− kp⟩ = 1 − t⟨k1, k2, . . . , kp⟩ for any
evaluation ⟨k1, k2, . . . , kp⟩.

The following lemma is analogous to Lemma 20 for Case (2) and is proved in
the same way.

Lemma 26. Let z be an almost rectangle of step size ∆z ≥ 2 with |λ(z)−1/2| ≤
1/s3 and let p be sufficiently large. Then

• there exists a plausible s-tuple k1, k2,. . . , ks−1, l of almost rectangles such
that t(z) = t(k1) = t(k2) = · · · = t(ks−1), λ(z) = λ(k1) = · · · = λ(ks−1),
and l has the same step size ∆z as z;

• there exists a plausible s-tuple k1, k2,. . . , ks−2, l1, l2 of almost rectangles
such that t(z) = t(k1) = t(k2) = · · · = t(ks−2), λ(z) = λ(k1) = λ(k2) =
· · · = λ(ks−2), both l1 and l2 have step size strictly smaller than ∆z, and
|λ(l1) − λ(l2)| ≤ 1/p.

Now we are ready to prove the following lemma, analogous to Lemma 15 for
Case (1) and Lemma 21 for Case (2). The proof is the same as for Case (2).

Lemma 27. Every near-threshold almost rectangle is tame.

Now that we proved the tameness of almost rectangles, we can finish the proof
in the same way as before, of course, now using Lemma 27.

1.5.3 Case (4): PCSP(r-in-s,not-all-equal-s) where r ≤ s/2,
s > 2, and r is even or s is odd

The whole Case (4) is PCSP(r-in-s, not-all-equal-s) where r < s, s > 2, and r
is even or s is odd, but here we will prove not finite tractability only for when
r ≤ s/2, and the rest will follow as explained in Subsection 1.3.3.

Striving for a contradiction, suppose that it is finitely tractable. There exists
b such that PCSP(r-in-s, not-all-equal-s) has a p2-ary b-bounded doubly cyclic
polymorphism t for every sufficiently large arity p2. We fix such a b and t, where
p is fixed to a sufficiently large prime p congruent to 1 modulo s. How large
must p be will be seen in due course. We denote n = p2 and observe that n ≡ 1
(mod s) as well.

We define tσ as before (Lemma 9), and by the same lemma we have that tσ is
cyclic.

The following lemma is analogous to the first part of Lemma 10 for Case (1),
and the proof is the same. Note here that we do not have the second part of the
lemma, as there is no disequality pair in the template.

Lemma 28. Let ⟨k1⟩, ⟨k2⟩, . . . , ⟨ks⟩, where 0 ≤ ki ≤ n, be an s-tuple of n-tuples
such that ∑︁s

i=1 ki = rn. Then (tσ⟨k1⟩, tσ⟨k2⟩, . . . , tσ⟨ks⟩) ∈ not-all-equal-s.

The following lemma is analogous to Lemma 23 for Case (3), and the proof is
similar.

27

Lemma 29. Denote a = ⌊rn/s⌋. For every 0 ≤ k ≤ 2a, we have

tσ⟨k⟩n =
{︄
tσ⟨0⟩n if 0 ≤ k ≤ a
1 − tσ⟨0⟩n if 1 + a ≤ k ≤ 2a

Proof. We will prove, starting from the left, the following chain of disequalities.

tσ⟨a⟩ ≠ tσ⟨a+ 1⟩ ≠ tσ⟨a− 1⟩ ≠ tσ⟨a+ 2⟩ ≠ tσ⟨a− 2⟩ ≠ . . . ̸= tσ⟨2a⟩ ≠ tσ⟨0⟩

This will imply tσ⟨a⟩ = tσ⟨a − 1⟩ = · · · = tσ⟨0⟩ ≠ tσ⟨a + 1⟩ = tσ⟨a + 2⟩ = · · · =
tσ⟨2a⟩. We start with the first disequality tσ⟨a⟩ ̸= tσ⟨a + 1⟩. The sequence of
arguments

(s− r) × ⟨a⟩, r × ⟨a+ 1⟩

has length s and is plausible as (s− r)a+ r(a+ 1) = sa+ r and sa+ r is equal
to rn. (Indeed, n ≡ 1 (mod s), so n = ms + 1 for some integer m; then a = mr
and sa+ r = smr + r = (n− 1)r + r = rn.) By Lemma 28, tσ⟨a⟩ ≠ tσ⟨a+ 1⟩.

For the second disequality tσ⟨a + 1⟩ ≠ tσ⟨a − 1⟩, as well as for the further
disequalities we need to distinguish two cases: Case (4a) r and s have the same
parity and Case (4b) r is even and s is odd. In Case (4a) we directly use the
sequence

(s− r)/2 × ⟨a− 1⟩, (s+ r)/2 × ⟨a+ 1⟩

and derive tσ⟨a+ 1⟩ ≠ tσ⟨a− 1⟩ using Lemma 28 as before. In Case (4b) we first
use

(s− 1) × ⟨a⟩, ⟨a+ r⟩

to deduce tσ⟨a+ r⟩ ≠ tσ⟨a⟩ (so tσ⟨a+ 1⟩ = tσ⟨a+ r⟩) and then

(s− 1)/2 × ⟨a− 1⟩, (s− 1)/2 × ⟨a+ 1⟩, ⟨a+ r⟩

to deduce tσ⟨a− 1⟩ ≠ tσ⟨a+ 1⟩.
To prove tσ⟨a− i+ 1⟩ ≠ tσ⟨a+ i⟩ for i ∈ {2, 3, . . . , a}, we observe that, by the

already established disequalities, we have tσ⟨a − i + 1⟩ = · · · = tσ⟨a⟩, and then
use

• (s+ r)/4 × ⟨a+ i⟩, (s− r)/2 × ⟨a− 1⟩, (s+ r)/4 × ⟨a− i+ 2⟩ in Case (4a)
and (s+ r)/2 is even;

• (s+r+2)/4×⟨a+i⟩, (s−r−2)/2×⟨a−1⟩, 2×⟨a−i+1⟩, (s+r−6)/4×⟨a−i+2⟩
in Case (4a) and (s+ r)/2 is odd;

• r/2 × ⟨a+ i⟩, (s− r) × ⟨a⟩, r/2 × ⟨a− i+ 2⟩ in Case (4b).

Finally, for proving tσ⟨a+ i⟩ ≠ tσ⟨a− i⟩ we use

• (s− r)/2 × ⟨a− i⟩, (s− r)/2 × ⟨a+ i⟩, r × ⟨a+ 1⟩ in Case (4a) and

• (s− 1)/2 × ⟨a− i⟩, (s− 1)/2 × ⟨a+ i⟩, 1 × ⟨a+ r⟩ in Case (4b).

We define tameness and near-threshold almost rectangles in a slightly different
way than before.

28

Definition 25. A tuple z ∈ {0, 1}n is tame if

t(z) =
{︄
t⟨0⟩n if λ(z) < r/s
1 − t⟨0⟩n if λ(z) > r/s

Definition 26. A tuple z ∈ {0, 1}n is an almost rectangle if it is a p-ary cyclic
shift of a tuple of the form ⟨z1, . . . , z1, z2, . . . , z2⟩p, where 0 ≤ z1, z2 ≤ p, the
number of z1’s is arbitrary, and |z1 − z2| < 5b. The quantity ∆z = |z1 − z2| is
referred to as the step size. We say that z is near-threshold if |λ(z) − r/s| <
1/s∆z+3.

The following lemma is analogous to Lemma 12 in Case (1) and is proved in
the same way, using Lemma 29 instead of Lemma 11.

Lemma 30. Every near-threshold almost rectangle of step size at most one is
tame.

We define a plausible tuple as before.

Definition 27. We say that an m-tuple of evaluations k1 = ⟨k1
1, k

2
1, . . . , k

p
1⟩,

k2 = ⟨k1
2, k

2
2, . . . , k

p
2⟩, . . . , km = ⟨k1

m, k
2
m, . . . , k

p
m⟩, where m ∈ [s], is plausible if∑︁m

j=1 k
i
j = rp for all i ∈ [p].

The following lemma is analogous to the first part of Lemma 13 for Case (1)
and the proof is almost the same. Again, notice that we do not have the second
part of the lemma, because there is no disequality pair in the template.

Lemma 31. If a tuple k1,k2, . . . ,ks is plausible, then (t(k1), t(k2), . . . , t(ks)) ∈
not-all-equal-s.

The following lemma is analogous to Lemma 20 for Case (2) and Lemma 26
for Case (3) and is proved in a similar way.

Lemma 32. Let z be an almost rectangle of step size ∆z ≥ 2 with |λ(z) − r/s| ≤
1/s3 and let p be sufficiently large. Then

• there exists a plausible s-tuple k1, k2,. . . , ks−1, l of almost rectangles such
that t(z) = t(k1) = t(k2) = · · · = t(ks−1), λ(z) = λ(k1) = · · · = λ(ks−1),
and l has the same step size ∆z as z;

• there exists a plausible s-tuple k1, k2,. . . , ks−2, l1, l2 of almost rectangles
such that t(z) = t(k1) = t(k2) = · · · = t(ks−2), λ(z) = λ(k1) = λ(k2) =
· · · = λ(ks−2), both l1 and l2 have step size strictly smaller than ∆z, and
|λ(l1) − λ(l2)| ≤ 1/p.

Proof. Without loss of generality we can assume that z = ⟨c×z1, d×z2⟩ for some
c, d and z1 > z2. Let m = s−1 for the first item and m = s−2 for the second one.
We define an integer m×p matrix X so that the first row is (c×z1, d×z2) and the
i-th row is the c-th cyclic shift of the (i− 1)-st row for each i ∈ {2, . . . ,m}. Let
Y be the (m + 1) × p matrix obtained from X by adding a row (l1, l2, . . . , lp) so
that each column sums up to rp. It is easily seen by induction on i ≤ m that the
sum of the first i rows is a cyclic shift of a tuple of the form (e, . . . , e, e′, . . . , e′),
where |e− e′| = ∆z and the “step down” is at position ci mod p (when columns

29

are indexed from 0). It follows that (l1, l2, . . . , lp) is also a cyclic shift of a tuple
of the form (e, . . . , e, e′, . . . , e′) where e and e′ differ by ∆z.

Next we observe that each li > 0 if p is sufficiently large. Indeed, note
that since |z1 − z2|/p can be made arbitrarily small (recall |z1 − z2| < 5b), we
have p(λ(z) − ϵ) < z1, z2 < p(λ(z) + ϵ), where ϵ > 0 can be made arbitrarily
small. We then have li > rp − mp(λ(z) + ϵ) ≥ rp − (s − 1)p(r/s + 1/s3 + ϵ) =
p(r/s− (s− 1)(1/s3 + ϵ)) > p(r/s− s(1/s3 + ϵ)), which is, for a sufficiently small
ϵ, greater than 0 since s/s3 = 1/s2 < r/s. Similarly, each li < 2rp/s ≤ p if
m = s− 1 and li < 3rp/s if m = s− 2.

Now we can finish the proof of the first item. We set k1,k2, . . . ,km, l to be
the n-tuples determined by the rows of Y via ⟨⟩, e.g., l = ⟨l1, l2, . . . , lp⟩. The
inequalities 0 ≤ li ≤ p guarantee that l is correctly defined and we see, using
also the double cyclicity of t (for t(z) = t(k1) = t(k2) = · · · = t(km)), that these
n-tuples have all the required properties.

To finish the proof of the second item, we define the ki as above and set l1 =
⟨⌊l1/2⌋, ⌊l2/2⌋, . . . , ⌊lp/2⌋⟩, l2 = ⟨⌈l1/2⌉, ⌈l2/2⌉, . . . , ⌈lp/2⌉⟩. Since 0 ≤ ⌊li/2⌋ ≤
⌈li/2⌉ ≤ 3rp/2s < p, these tuples are correctly defined almost rectangles. Their
areas clearly differ by at most 1/p. As ∆z ≥ 2, their step sizes are strictly smaller
than ∆z, and we are done in this case as well.

We are now ready to prove the following lemma, analogous to Lemma 15 for
Case (1), Lemma 21 for Case (2) and Lemma 27 for Case (3).

Lemma 33. Every near-threshold almost rectangle is tame.

Proof. The proof is like for the Case (2), just a bit simpler, without using ”com-
plementary” tuples.

Now we can finish the proof in the same way as before, of course, now using
Lemma 33.

1.6 Conclusion
We have characterized finite tractability among the basic tractable cases in the
Brakensiek–Guruswami classification [BG18] of symmetric Boolean PCSPs allow-
ing negations. A natural direction for future research is an extension to all the
tractable cases (not just the basic ones), or even to all symmetric Boolean PC-
SPs [FKOS19], not only those allowing negations. An obstacle, where our efforts
have failed so far, is already in relaxations of the basic templates (P,Q) with
disequalities. For example, which (P,Q), (̸=, ̸=), with P a subset of ≤r-in-s and
Q a superset of ≤(2r − 1)-in-s, give rise to finitely tractable PCSPs?

Another natural direction is to better understand the “level of tractability.”
For the finitely tractable templates (A,B) considered in this paper, it is always
possible to find a tractable CSP(C) with A → C → B and such that C is two-
element. Is it so for all symmetric Boolean templates? For general Boolean
templates, the answer is “No”: [DSM+20] presents an example that requires a
three-element C. However, it is unclear whether there is an upper bound on the
size of C for finitely tractable (Boolean) PCSPs, and if there is, how it could

30

be computed. There are also natural concepts beyond finite tractability, still
stronger than standard tractability. We refer to [Bar19] for some questions in
this direction.

31

1.A Basic cases
In this section we will prove the following theorem, already stated in Subsection
1.1.1.

Theorem 34. Every tractable symmetric Boolean PCSP allowing negations can
be obtained by

• taking any number of relation pairs from one of the following three items:

(a) (odd-in-s, odd-in-s), or (even-in-s, even-in-s)
(b) (≤r-in-s,≤(2r − 1)-in-s) and r ≤ s/2, or

(≥r-in-s,≥(2r − s+ 1)-in-s) and r ≥ s/2, or
(s

2-in-s, not-all-equal-s) and s is even
(c) (r-in-s, not-all-equal-s)

where r and s are positive integers,

• adding any number of “trivial” relation pairs (P,Q) such that P ⊆ Q, and
Q is the full relation or P contains only constant tuples, and

• taking a homomorphic relaxation of the obtained template.

Recall that we can describe a PCSP template (A = ({0, 1};P1, P2, . . . , Pn),
B = ({0, 1};Q1, Q2, . . . , Qn)) by the collection of pairs Γ = {(P1, Q1), (P2, Q2),
. . . , (Pn, Qn)}.

In [BG18] Brakensiek and Guruswami give a complexity classification of sym-
metric Boolean templates allowing negations in terms of the polymorphisms. The
functions they are considering are Parity, Majority, Alternating-Threshold, and
their ’anti-’ functions.

Let L be a positive odd integer, and let x = (x1, x2, . . . , xL) ∈ {0, 1}L.

• The Parity function: ParL(x) =
⎧⎨⎩1, if ΣL

i=1xi is odd
0, otherwise

.

• The Majority function: MajL(x) =
⎧⎨⎩1, if ΣL

i=1xi > L/2
0, otherwise

.

• The Alternating-Threshold function: ATL =
⎧⎨⎩1, if ΣL

i=1(−1)i−1xi > 0
0, otherwise

.

The prefix ’anti-’ refers to the negations of these functions. The ’anti-’ function
will be denoted with a horizontal bar. For example, anti-parity is

ParL(x) =
⎧⎨⎩0, if ΣL

i=1xi is odd
1, otherwise

.

Theorem 35. Let Γ be a symmetric Boolean PCSP template allowing negations.
If at least one of ParL, MajL, ATL, ParL, MajL, ATL is a polymorphism of Γ
for all odd L, then PCSP(Γ) is polynomial-time tractable. Otherwise, PCSP(Γ)
is NP-hard.

32

Each symmetric Booelan relation is uniquely determined by its arity and the
Hamming weights of the elements. We let Hamk(S) = {x ∈ {0, 1}k : |x| ∈
S}, where |x| is the number of ones in x, denote these sets. For example, ̸==
{(0, 1), (1, 0)} = Ham2({1}).

Definition 28. Let f : {0, 1}L → {0, 1} be a function and let P ⊆ {0, 1}k be a
relation. Define Of (P) to be

Of (P) := f(PL) = {x ∈ {0, 1}k : exist x1, x2, . . . , xL ∈ P such that
xi = f(x1

i , x
2
i , . . . , x

L
i) for all i ∈ [k]}.

Note that f is a polymorphism of (P,Q) if and only if Of (P) ⊆ Q. Define

OAT (P) =
⋃︂

L∈N, L odd
OATL

(P),

OMaj(P) =
⋃︂

L∈N, L odd
OMajL

(P),

OP ar(P) =
⋃︂

L∈N, L odd
OP arL

(P).

The following two lemmas, regarding Alternating-Threshold and Majority, are
proved in [BG17] (Claim 4.6. and Claim 4.8.).

Lemma 36. Let k ≥ 2, and let P = Hamk(S).

• If S = {l} where l ∈ {1, 2, . . . , k − 1}, then OAT (P) = Hamk({1, 2, . . . , k −
1}).

• If S contains two different elements l1, l2 ∈ {0, 1, . . . , k} such that {l1, l2} ≠
{0, k}, then OAT (P) = {0, 1}k.

Lemma 37. Consider k ≥ 2. Let P = Hamk(S).

• If S contains 0 < l < k/2, then OMaj(P) = Hamk({0, . . . , 2 max S − 1}).

• If S contains k/2 < l < k, then OMaj(P) = Hamk({2 minS−k+1, . . . , k}).

• If S = {k/2}, then OMaj(P) = Hamk({1, . . . , k − 1}).

We prove the following analogue lemma for Parity.

Lemma 38. Let k ≥ 1, and let P = Hamk(S).

• If S contains an odd l < k, then OP ar(P) ⊇ odd-in-k.

• If S contains an even 0 < l < k, then OP ar(P) ⊇ even-in-k.

Proof. • Let l < k be an odd number in S. Let 0 < m ≤ k be an odd number.
If m > l, we form a k × (m− l + 1) matrix

M =

⎛⎜⎝AB
C

⎞⎟⎠ ,
33

where A is an (l− 1) × (m− l+ 1)-matrix with all ones, B is a (m− l+ 1) ×
(m − l + 1)-matrix with ones on the main diagonal and zeroes everywhere
else, and C is a (k−m) × (m− l+ 1)-matrix with all zeroes. Each column
of the matrix M is a k-tuple with hamming weight l, so it belongs to P .
When we apply Parm−l+1 to the rows of M , we get a k-tuple whose first
m coordinates are ones. Since P is symmetric, we can permute the rows of
the matrix as we want, the columns will still be in P , so we get all k-tuples
with m ones.
If m < l, we form a k × (l −m+ 1)-matrix

M =

⎛⎜⎝AB
C

⎞⎟⎠ ,
where A is an m × (l − m + 1)-matrix with all ones, B is a (l − m + 1) ×
(l − m + 1)-matrix with zeroes on the main diagonal and ones everywhere
else, and C is a (k− l−1)× (l−m+1)-matrix with all ones. Every column
of the matrix M is a tuple with l ones, so it belongs to P . When we apply
Parl−m+1 to the rows of M , we get a k-tuple with m ones.
So, we proved that, if S contains an odd number less than k, then OP ar(P)
contains all k-tuples with odd number of ones.

• Let 0 < l < k be an even number in S. Let 0 ≤ m ≤ k be an even number.
The same proof as above works also in this case, we get that OP ar(P)
contains all k-tuples with m number of ones. But m was an arbitrary even
number, so OP ar(P) contains all k-tuples with even number of ones.

Equipped with these lemmata, we can prove Theorem 34.

Proof of Theorem 34. Let Γ be a symmetric Boolean PCSP template allowing
negations such that PCSP(Γ) is solvable in polynomial time. Then by Theorem
35 (as we assumed P ̸= NP) we have that at least one of ParL, MajL, ATL,
ParL, MajL, ATL is a polymorphism of Γ for all odd L.

Assume ParL is a polymorphism of Γ for all odd L. Take a pair (P,Q) ∈ Γ
such that P contains a not-all-equal tuple. (If such a pair does not exist, then
every relational pair in Γ is trivial.) If P contains a not-all-equal tuple x such
that |x| is odd, then by the first item in Lemma 38 we get that odd-in-k ⊆ Q. If
it contains a not-all-equal tuple x such that |x| is even, then by the second item in
Lemma 38 we get that even-in-k ⊆ Q. So, if P ⊆ odd-in-k, then odd-in-k ⊆ Q,
and, if P ⊆ even-in-k, then even-in-k ⊆ Q. Otherwise, we get that Q is full,
so the pair (P,Q) is trivial. We conclude that Γ is a homomorphic relaxation
of a template obtained by taking any number of relation pairs from the item
a) in Theorem 34, and adding any number of trivial relation pairs, where the
homomorphisms in forming the homomorphic relaxation are identity mappings.

Assume that MajL is a polymorphism of Γ for all odd L. Take a (P,Q) ∈ Γ
such that P contains a not-all-equal tuple. Let k and S be such that P =
Hamk(S). If S contains 0 < l < k/2, then by the first item in Lemma 37
we have that ≤ (2 max S − 1)-in-k ⊆ Q; also, by the definition of S, we have

34

P ⊆≤ (max S)-in-k. So, P ⊆≤ (max S)-in-k ⊆≤ (2 max S − 1)-in-k ⊆ Q. If
S contains k/2 < l < k, then by the second item in Lemma 37 we get P ⊆≥
minS-in-k ⊆≥ (2 minS − k + 1)-in-k ⊆ Q. Otherwise, S = {k/2}, and then by
the third item in Lemma 37 we get P = k

2 -in-k ⊆ not-all-equal-k ⊆ Q. We can
conclude that Γ is a homomorphic relaxation of a template obtained by taking
any number of relation pairs from the item b) in Theorem 34, and adding any
number of trivial relation pairs, where the homomorphisms are identity mappings.

Assume that ATL is a polymorphism of Γ for all odd L. Take a (P,Q) ∈ Γ such
that P contains a not-all-equal tuple. Let k and S be such that P = Hamk(S).
If S contains only one element, say l, then by the first item in Lemma 36 we
get that not-all-equal-k ⊆ Q, so, in that case P = l-in-k ⊆ not-all-equal-k ⊆ Q.
If S contains more elements, by the second item in Lemma 36 we get that Q is
full, so (P,Q) is a trivial pair of relations. We conclude that Γ is a homomorphic
relaxation of a template obtained by taking any number of relation pairs from the
item c) in Theorem 34, and adding any number of trivial relation pairs, where
the homomorphisms are identity mappings.

If one of ParL, MajL, ATL is a polymorphism of Γ for all odd L, we use the
same reasoning, just that in this case, the second homomorphism in forming the
homomorphic relaxation will be negation instead of identity. For example, assume
that ParL is a polymorphism of Γ for all odd L, and take a pair (P,Q) ∈ Γ such
that P contains a not-all-equal tuple. If P contains a tuple x such that |x| is odd,
then by Lemma 38 we have that odd-in-k ⊆ OP ar(P). The ”negation” function
that swaps zeroes and ones homomorphically maps OP ar(P) to OP ar(P). Since
ParL is a polymorphism of (P,Q) for all odd L, we have that OP arL

(P) ⊆ Q
for all odd L, hence, by definition, OP ar(P) ⊆ Q. If P contains a tuple x such
that |x| is even, then by Lemma 38 we have that even-in-k ⊆ OP ar(P), which is
homomorphically mapped to OP ar(P) by the negation function, and OP ar(P) ⊆
Q. We conclude that Γ is a homomorphic relaxation of a template obtained by
taking any number of relation pairs from the item a) in Theorem 34, and adding
any number of trivial relation pairs, where the first homomorphism in forming
the homomorphic relaxation is the identity function and the second one is the
negation function.

35

2. Fixed-Template Promise
Model Checking Problems

2.1 Introduction
In this chapter we will adopt the logical formulation for the constraint satisfaction
problem, which we recall here. A template is a relational structure A, and the
CSP over A is the problem of deciding whether a given {∃,∧}-sentence is true in
A. Here, an {∃,∧}-sentence is a sentence of first-order logic that uses only the
relation symbols of A, the logical connective ∧, and the quantifier ∃.

Motivated by recent developments in the area of CSP, we study an extension
of this framework in two simultaneous directions. One direction is to enable other
choices of permitted quantifiers and connectives. Another direction is to consider
two versions of each relation, strong and weak (a so-called promise problem). Our
contributions are described in Subsection 2.1.1.

The model checking problem [MM18] takes as input a structure A (often
called a model) and a sentence ϕ in a specified logic and asks whether A ⊨ ϕ,
i.e., whether A satisfies ϕ. We study the situation where A is a fixed finite
relational structure, so the input is simply ϕ, and the logic is a fragment of the
first-order logic obtained by restricting the allowed quantifiers to a subset L of
{∃,∀,∧,∨,=, ̸=,¬}. Thus, for each A and each of the 27 choices for L, we obtain
a computational problem, which we call the L-Model Checking Problem over A
and denote L-MC(A).

It turns out that only four fragments need to be considered in order to fully
understand the complexity of L-MC(A). The known results are summarized in
Figure 2.1.

L-MC(A) Complexity
{∃,∧}-MC(A) (CSP) dichotomy: P or NP-complete

{∃,∀,∧}-MC(A) (QCSP) ≥ 6 classes
{∃,∧,∨}-MC(A) dichotomy: L or NP-complete

{∀,∃,∧,∨}-MC(A) tetrachotomy: L, NP-complete,
coNP-complete, PSPACE-complete

Figure 2.1: Known complexity results for L-MC(A).

The Promise CSP is a recently introduced extension of the CSP framework
motivated by open problems in (in)approximability of satisfiability and coloring
problems [AGH17, BG18, BBKO21]. The template consists of two structures A
and B of the same signature, where A specifies a strong form of each relation and B
its weak form. The Promise CSP over (A,B) is then the problem of distinguishing
{∃,∧}-sentences that are true in A from those that are not true in B.

The generalization of Promise CSP over (A,B) to an arbitrary choice L ⊆
{∃,∀,∧,∨,=, ̸=,¬} is referred to as the L-Promise Model Checking Problem over
(A,B) and is denoted L-PMC(A,B). Similarly as in the special case A = B,

36

which is exactly L-MC(A), it is sufficient to consider only four fragments. This
work concentrates on {∃,∧,∨}-PMC and {∃,∀,∧,∨}-PMC.

2.1.1 Contributions
Theorem 42 and Theorem 48 provide basics for an algebraic approach to {∃,∧,∨}-
PMC and {∃,∀,∧,∨}-PMC by characterizing definability in terms of compati-
ble functions: multi-homomorphisms for the {∃,∧,∨} fragment and surjective
multi-homomorphisms (smuhoms) for {∃, ∀,∧,∨}. The proofs can be obtained
as relatively straightforward generalizations of the proofs for MC in [MM18];
however, we believe that our approach is somewhat more transparent. In partic-
ular, it allows us to easily characterize meaningful templates for these problems
(Propositions 41 and 47).

For {∃,∧,∨}-PMC, we obtain an L/NP-complete dichotomy in Theorem 44.
It turns out that, apart from some simple cases, the problem is NP-complete.
Interestingly, there is a “single reason” for hardness: the NP-hardness of coloring
a rainbow colorable hypergraph from [GL18].

For {∃,∀,∧,∨}-PMC, our complexity results are only partial, leaving two gaps
for further investigation. The results are sufficient for full complexity classification
of L-PMC(A,B) in the case that L = {∃,∀,∧,∨} and one of the structures A,
B has a two-element domain, and also in the case that L ⊋ {∃,∀,∧,∨}. We
also give some examples where our efforts have failed so far. One such example
is a particularly interesting {∃,∀,∧,∨}-PMC over 3-element domains: given a
{∃,∀,∧,∨}-sentence ϕ whose atomic formulas are all of the form Ri(x), i ∈
{1, 2, 3}, distinguish between the case where ϕ is true when Ri(x) is interpreted
as “x = i”, and the case where ϕ is false when Ri(x) is interpreted as “x ̸= i”.

Our complexity results are summarized in Figure 2.2, the conditions for L =
{∃,∀,∧,∨} are stated in terms of special surjective multi-homomorphisms of the
template, introduced in Subsection 2.5.3.

L-PMC(A,B) Condition Complexity
{∃,∀,∧}-PMC(A,B) L or NP-complete∃∀-smuhom, or∀-smuhom and ∃-smuhom

and A,B digraphs
L

{∃,∀,∧,∨}-PMC(A,B) ∀-smuhom and ∃-smuhom NP ∩ coNP∀-smuhom, no ∃-smuhom NP-complete∃-smuhom, no ∀-smuhom coNP-complete
no ∀-smuhom

and no ∃-smuhom
NP-hard

and coNP-hard
{∃, ∀,∧,∨,=}-PMC(A,B),
{∃, ∀,∧,∨, ̸=}-PMC(A,B),
{∃,∀,∧,∨,¬}-PMC(A,B)

L or
PSPACE-complete

Figure 2.2: Complexity results for L-PMC(A,B).

37

2.2 Preliminaries
Structures. We use a standard model-theoretic terminology, but restrict the
generality of some concepts for the purposes of this paper. A relation of arity
n ≥ 1 on a set A is a set of n-tuples of elements of A, i.e., a subset of An. The
complement of a relation S is denoted S := An \ S. The equality relation on
A is denoted =A and the disequality relation ̸=A. Components of a tuple a are
referred to as a1, a2, . . . , i.e., a = (a1, . . . , an).

A signature is a nonempty collection of relation symbols each with an asso-
ciated arity, denoted ar(R) for a relation symbol R. A relational structure (also
called a model) A in the signature σ, or simply a structure, consists of a finite set
A of size at least two, called the universe of A, and a nonempty proper relation
∅ ⊊ RA ⊊ Aar(R) for each symbol R in σ, called the interpretation of R in A. Two
structures are called similar if they are in the same signature. The complement
of a relational structure A is obtained by taking complements of all relations in
the structure and is denoted A. A structure over a signature containing a single
binary relation symbol is called a digraph.

We emphasize that the universe of a structure is denoted by the same letter as
the structure, that the universe of every structure in this paper is assumed to be
finite and at least two-element, and that each relation in a structure is assumed
to be at least unary, nonempty and proper. These nonstandard requirements are
placed for technical convenience and do not significantly decrease the generality
of our results.

Given two similar structures A and B, a function f from A to B is called a
homomorphism from A to B if f(a) ∈ RB for any a ∈ RA, where f(a) is computed
component-wise. We only work with total functions, that is, f(a) is defined for
every a ∈ A.
Multi-homomorphisms. A multi-valued function f from A to B is a mapping
from A to P̸=∅B, the set of all nonempty subsets of B. It is called surjective
if for every b ∈ B, there exists a ∈ A such that b ∈ f(a). The inverse of a
surjective multi-valued function f from A to B is the multi-valued function from
B to A defined by f−1(b) = {a : b ∈ f(a)}. For a tuple a ∈ An we write
f(a) for f(a1) × · · · × f(an). The value max{|f(a)| : a ∈ A} is referred to as
the multiplicity of f ; in particular, multi-valued functions of multiplicity one are
essentially functions. For two multi-valued functions f and f ′ from A to B, we
say that f ′ is contained in f if f ′(a) ⊆ f(a) for each a ∈ A.

Given two similar structures A and B, a multi-valued function f from A to
B is called a multi-homomorphism1 from A to B if for any R in the signature
and any a ∈ RA, we have f(a) ⊆ RB, i.e., b ∈ RB whenever bi ∈ f(ai) for each
i ∈ [ar(R)] = {1, 2, . . . , ar(R)}. Notice that if f is a multi-homomorphism from A
to B, then so is any multi-valued function contained in f . In particular, if f is a
multi-homomorphism from A to B, then any function g : A → B with g(a) ∈ f(a)
for each a ∈ A is a homomorphism from A to B. The converse does not hold in
general, as witnessed by structures A = B with a single binary equality relation
and any multi-valued function of multiplicity greater than one.

The set of all multi-homomorphisms from A to B is denoted by MuHom(A,B)
1We deviate here from the terminology of [MM11, MM12] because it would not work well

in the promise setting.

38

and the set of all surjective multi-homomorphisms by SMuHom(A,B).
Fragments of first-order logic. Let L ⊆ {∃,∀,∧,∨,=, ̸=,¬} and fix some sig-
nature. By an L-sentence (resp., L-formula) we mean a sentence (resp., formula)
of first-order logic that only uses variables (denoted xi, yi, zi), relation symbols
in the signature, and connectives and quantifiers in L. We refer to this fragment
of first-order logic as the L-logic.

The prenex normal form of an L-formula is an equivalent formula that begins
with quantified variables followed by a quantifier-free formula. The prenex normal
form can be computed in logarithmic space and it is an L-formula whenever L
does not contain the negation.

For a structure A in the signature and an L-sentence ϕ, we write A ⊨ ϕ if ϕ is
satisfied in A. More generally, given an L-formula ψ, a tuple of distinct variables
(v1, . . . , vn) which contains every free variable of ψ and a tuple (a1, . . . , an) ∈ An,
we write A ⊨ ψ(a1, . . . , an) if ψ is satisfied when v1, . . . , vn are evaluated as
εA(v1) = a1, . . . , εA(vn) = an, respectively. Notice that variables v1, . . . , vn indeed
need to be pairwise distinct, otherwise this notation would not make sense. The
tuple (v1, . . . , vn) is often specified by writing ψ = ψ(v1, . . . , vn).

We say that a relation S ⊆ An is L-definable from A if there exists an L-
formula ψ(v1, . . . , vn) such that, for all (a1, . . . , an) ∈ An, we have (a1, . . . , an) ∈ S
if and only if A ⊨ ψ(a1, . . . , an). In this case, we also say that ψ(v1, . . . , vn) defines
S in A.

2.3 Promise model checking
In this section we define the promise model checking problem restricted to L ⊆
{∃, ∀,∧,∨,=, ̸=,¬}. We start by briefly discussing the non-promise setting.

2.3.1 Model checking problem
Let L ⊆ {∃,∀,∧,∨,=, ̸=,¬} and A be a structure in a signature σ. Recall that
the L-Model Checking Problem over A, denoted L-MC(A), is the problem of
deciding whether a given L-sentence ϕ (in the same signature as A) is true in A.

A simple but important observation sometimes allows us to compare the com-
plexity of the L-MC problems over two templates A and C with the same universe
A = C but possibly different signatures: If every relation in C is L-definable from
A, then L-MC(C) can be reduced in polynomial-time (even logarithmic space)
to L-MC(A). Indeed, the reduction amounts to replacing atomic formulas of the
form R(v) by their definitions.

The starting point of the algebraic approach to L-MC is to find a characteri-
zation of definability in terms of certain “compatible functions” or “symmetries”
(so called polymorphisms for L = {∃,∧,=} [BKW17b], surjective polymorphisms
for L = {∃, ∀,∧,=} [Mar17], multi-endomorphisms for L = {∃,∧,∨}, surjective
multi-endomorphisms for L = {∃,∀,∧,∨} [MM18]; see also [Bör08]). Because
such characterizations are central in this paper as well, we now explain the basic
idea for a simple case.

For L = {∃,∧,∨,=}, the appropriate type of compatible function is endo-
morphism: a nonempty relation S ⊆ An is L-definable from A if and only if it
is invariant under every endomorphism of A (i.e., a homomorphism from A to

39

itself). The forward direction is well-known and easy to verify. For the backward
direction, assume A = [k] := {1, . . . , k} and consider the following formula.

ϕ(x1, . . . , xk) :=
⋀︂

R∈σ

⋀︂
r∈RA

R(xr1 , . . . , xrar(R)) (2.1)

It follows immediately from definitions that, for any structure E in the signature
of A, E ⊨ ϕ(e1, . . . , ek) if and only if the mapping defined by i ↦→ ei for each
i ∈ [k] is a homomorphism from A to E. This in particular holds for E =
A. By existential quantification we can then obtain an L-formula defining the
closure of any tuple a ∈ An with distinct entries under endomorphisms of A;
e.g., ψ(x1, x3, x2) := (∃x4)(∃x5) . . . (∃xk)ϕ defines the closure of (1, 3, 2) under
endomorphisms. Using = we can also define closures of the remaining tuples
with repeated entries. Finally, S is the union of closures of its members (since
it is closed under endomorphisms of A), so S can be defined by a disjunction of
formulas that we have already found (after appropriately renaming variables).

Notice that this construction would not work without the equality in L because
of tuples with repeated entries. This is the reason why we need to work with
multi-valued functions for the equality-free logics that we deal with in this paper.

2.3.2 Promise model checking problem
Let L ⊆ {∃, ∀,∧,∨,=, ̸=,¬}. The L-Promise Model Checking Problem over a
pair of similar structures (A,B) is the problem of distinguishing L-sentences ϕ
that are true in A from those that are not true in B. This problem makes sense
only if every L-sentence that is true in A is also true in B; we call such pairs
L-PMC templates.

Definition 29. A pair of similar structures (A,B) is called an L-PMC template
if A ⊨ ϕ implies B ⊨ ϕ for every L-sentence ϕ in the signature of A and B.

Given an L-PMC template (A,B), the L-Promise Model Checking Problem
over (A,B), denoted L-PMC(A,B), is the following problem.

Input: an L-sentence ϕ in the signature of A and B;
Output: Yes if A ⊨ ϕ; No if B ̸⊨ ϕ.

The definition of a template guarantees that the sets of Yes-instances and
No-instances are disjoint. However, their union need not be the whole set of L-
sentences; an algorithm for L-PMC is only required to produce correct outputs
for Yes-instances and No-instances. Alternatively, we are promised that the input
sentence is a Yes-instance or a No-instance. The complexity-theoretic notions
(such as membership in NP, NP-completeness, reductions) can be adjusted nat-
urally for the promise setting. We write L-PMC(C,D) ≤ L-PMC(A,B) if the
former problem can be reduced to the latter problem by a logarithmic space re-
duction, that is, a logarithmic space transformation that maps each Yes-instance
ϕ of L-PMC(C,D) to a Yes-instance ψ of L-PMC(A,B) (equivalently, C ⊨ ϕ must
imply A ⊨ ψ) and No-instances to No-instances (equivalently, B ⊨ ψ must imply
D ⊨ ϕ).

An appropriate adjustment of definability for the promise setting is as follows.
Note that we do not allow the negation in L, otherwise the concept would need
to be defined differently because of the inclusions in the definition.

40

Definition 30. Assume ¬ ̸∈ L and let (A,B) be a pair of similar structures. We
say that a pair of relations (S, T), where S ⊆ An and T ⊆ Bn, is promise-L-
definable (or p-L-definable) from (A,B) if there exist relations S ′ and T ′ and an
L-formula ψ(v1, . . . , vn) such that S ⊆ S ′, T ′ ⊆ T , ψ(v1, . . . , vn) defines S ′ in A,
and ψ(v1, . . . , vn) defines T ′ in B.

We say that an L-PMC template (C,D) is p-L-definable from (A,B) (the
signatures can differ) if (QC, QD) is p-L-definable from (A,B) for each relation
symbol Q in the signature of C and D.

Theorem 39. Assume ¬ ̸∈ L. If (A,B) and (C,D) are L-PMC templates such
that (C,D) is p-L-definable from (A,B), then L-PMC(C,D) ≤ L-PMC(A,B).

Proof. The reduction is to replace each atomic Q(v) by the corresponding formula
ψ from Definition 30. For correctness of this reduction, observe that an L-sentence
which is true in a structure E remains true when we add tuples to the relations
of E (since L does not contain ¬).

2.3.3 Interesting fragments
We now explain why only four fragments of first-order logic need to be considered
in order to fully understand the problems L-PMC(A,B). Observe first that if L
does not contain any connective (∧,∨), or L does not contain any quantifier
(∃,∀), or L ⊆ {∃,∨}, then each L-PMC is in L, the logarithmic space. (In some
of these cases we do not even have any valid inputs in our definition of structures.)

Secondly, notice that (L ∪ {=})-PMC(A,B) is essentially the same as
L-PMC(A′,B′), where A′ and B′ are obtained from the original structures by
adding a fresh binary symbol Q to the signature and setting QA′ to =A and QB′

to =B. The disequality is dealt with analogously, thus we can and shall restrict
to fragments with L ⊆ {∃,∀,∧,∨,¬}.

Next, we deal with the negation. If ¬ is in L, and L contains a quantifier and
a connective, then it is enough to consider the case L = {∃,∀,∧,∨,¬} since the
remaining quantifier and connective can be expressed using negation. Moreover,
the complements of relations can also be expressed, so we may assume that each
template (A,B) is closed under complementation, meaning that for every symbol
R in the signature, we have a symbol R interpreted as RA = RA, RB = RB. But
then ¬ is no longer necessary since we can propagate the negations inwards in an
input sentence. We are down to L ⊆ {∃,∀,∧,∨}.

Finally, note that E ⊨ ¬ϕ, where ϕ is an L-sentence, is equivalent to E ⊨ ϕ′

where ϕ′ is an L′-sentence and L′ is obtained from L by swapping ∀ ↔ ∃ and
∨ ↔ ∧ (ϕ′ can be, again, computed from ¬ϕ by inward propagation). It follows
that ϕ ↦→ ϕ′ transforms every Yes-instance (resp., No-instance) of L-PMC(A,B)
to a No-instance (resp., Yes-instance) of L′-PMC(B,A), and a similar “dual”
reduction works in the opposite direction. Therefore, the latter PMC has the
“dual” complexity to the former PMC, e.g., if the former is NP-complete, then
the latter is coNP-complete; and if the former is PSPACE-complete, then the
latter is PSPACE-complete as well. We will refer to this reasoning as the duality
argument.

Eliminating one of the logic fragments from each of the “dual” pairs, we are
left with only four fragments: L = {∃,∧} (whose L-PMC is Promise CSP),

41

L = {∃,∀,∧} (Promise Quantified CSP), L = {∃,∧,∨}, and L = {∃,∀,∧,∨}.
We investigate the last two separately in the next two sections.

2.4 Existential positive fragment
This section concerns the existential positive equality-free logic, that is, the L-
logic with L = {∃,∧,∨}.

2.4.1 Characterization of templates and p-{∃,∧,∨}-
definability

We start by characterizing {∃,∧,∨}-PMC templates. One direction of the charac-
terization follows from the discussion below (2.1), the other one from the following
observation.

Lemma 40. Let f be a multi-homomorphism from A to B, let ϕ(x1, . . . , xn) be a
quantifier-free {∃,∧,∨}-formula in the same signature, and let a ∈ An, b ∈ Bn.
If A ⊨ ϕ(a) and b ∈ f(a), then B ⊨ ϕ(b).

Proof. The claim holds for atomic formulas by definition of multi-
homomorphisms. The proof is then finished by induction on the complexity of ϕ;
both ∨ and ∧ are dealt with in a straightforward way.

Proposition 41. A pair (A,B) of similar structures is an {∃,∧,∨}-PMC tem-
plate if and only if there exists a homomorphism from A to B.

Proof. Suppose that there exists a homomorphism from A to B and A ⊨ ϕ,
where ϕ = ∃x1∃x2 . . . ∃xnϕ

′(x1, . . . , xn) is in prenex normal form. Then we have
A ⊨ ϕ′(a) for some a ∈ An, therefore B ⊨ ϕ′(f(a)) by Lemma 40, and it follows
that B ⊨ ϕ.

For the forward implication, observe that the sentence obtained from the
formula (2.1) by existentially quantifying all the variables is true in A (as there
exists a homomorphism from A to A – the identity), so it must be true in B,
giving us a homomorphism from A to B.

Note that this characterization would remain the same if we add = to {∃,∧,∨}
(and/or remove ∨). For the following characterization of promise definability, the
absence of the equality relation does make a difference, which is why we need to
use multi-homomorphisms instead of homomorphisms.

Theorem 42. Let (A,B) and (C,D) be {∃,∧,∨}-PMC templates such that
A = C and B = D. Then (C,D) is p-{∃,∧,∨}-definable from (A,B)
if and only if MuHom(A,B) ⊆ MuHom(C,D). Moreover, in such a case,
{∃,∧,∨}-PMC(C,D) ≤ {∃,∧,∨}-PMC(A,B).

Proof. It is enough to verify the equivalence, since then the second claim follows
from Theorem 39. To prove the forward implication, assume that (C,D) is p-
{∃,∧,∨}-definable from (A,B), let f ∈ MuHom(A,B), and let Q be a symbol in
the signature of C and D. To show that f(a) ⊆ QD for any a ∈ QC we apply
Lemma 40 as follows. We have A ⊨ ψ(a), where ψ(x) = ∃y1∃y2 . . . ∃ymψ

′(x,y) is a

42

formula from Definition 30, turned into prenex normal form. Then A ⊨ ψ′(a, a′)
for some a′ ∈ Am, thus B ⊨ ψ′(b,b′) for any b ∈ f(a) and b′ ∈ f(a′) by
Lemma 40. Therefore, B ⊨ ψ(b) and, finally, b ∈ QD, as required.

For the backward implication, assume that MuHom(A,B) ⊆ MuHom(C,D),
denote σ the signature of A and B, and consider an n-ary relational symbol Q
in the signature of C and D. To prove the claim, we need to find a formula
ψ(x1, . . . , xn) that defines, in A, a relation containing QC and, in B, a relation
contained in QD.

For simplicity, assume A = [k] and consider the formula

ϕ(x1,1, . . . , x1,n, x2,1, . . . , x2,n, . . . , xk,1, . . . , xk,n) :=⋀︂
R∈σ

⋀︂
r∈RA

⋀︂
j∈[n]ar(R)

R(xr1,j1 , . . . , xrar(R),jar(R)) (2.2)

It follows immediately from definitions that, for any structure E in the signature
σ, we have E ⊨ ϕ(e1,1, . . . , ek,n) if and only if the mapping i ↦→ {ei,1, . . . , ei,n},
1 ≤ i ≤ k is a multi-homomorphism from A to E. Therefore, for any a ∈ An, the
formula τa(x1, . . . , xn), obtained from ϕ by renaming xai,i to xi and existentially
quantifying the remaining variables, defines in E the union of f(a) over f ∈
MuHom(A,E) of multiplicity at most n. This relation is clearly equal to the
union of f(a) over all f ∈ MuHom(A,E). The sought after formula ψ is then the
disjunction of τa over all a ∈ QC: it defines in A a relation containing QC (because
of the identity “multi”-homomorphism A → A) and, in B, a relation contained in
QD (because every multi-homomorphism from A to B is a multi-homomorphism
from C to D, whence f(a) ⊆ QD for any a ∈ QC and any f ∈ MuHom(A,B)).

2.4.2 Complexity classification
Since {∃,∧,∨}-PMC(A,B) reduces to {∃,∧,∨}-MC(A) (or {∃,∧,∨}-MC(B)) by
the trivial reduction which does not change the input, and the latter problem
is clearly in NP, then the former problem is in NP as well. Theorem 44 shows
that {∃,∧,∨}-PMC(A,B) is NP-hard in all the “nontrivial” cases, as in the non-
promise setting. However, our proof of hardness requires (in addition to Theo-
rem 42) a much more involved hardness result than in the non-promise case: NP-
hardness of c-coloring rainbow k-colorable 2k-uniform hypergraphs from [GL18]
(here c, k ≥ 2).

To state the result in our formalism, we introduce the n-ary “rainbow coloring”
and “not-all-equal” relations on a set D as follows.

Rbn
D = {d ∈ Dn : {d1, d2, . . . , dn} = D},

NAEn
D = {d ∈ Dn : ¬(d1 = d2 = · · · = dn)}

In the statement of Theorem 43 and further, we use (A;S1, . . . , Sk) to denote a
structure with universe A and relations S1, . . . , Sk.

Theorem 43 (Corollary 1.2 in [GL18]). For any A and B of size at least 2, the
problem {∃,∧}-PMC((A; Rb2|A|

A), (B; NAE2|A|
B)) is NP-complete.

Given this hardness result, the complexity classification is a simple conse-
quence of Theorem 42.

43

Theorem 44. Let (A,B) be an {∃,∧,∨}-PMC template. If there is a constant
homomorphism from A to B, then {∃,∧,∨}-PMC(A,B) is in L (in fact, decidable
in constant time), otherwise {∃,∧,∨}-PMC(A,B) is NP-complete.

Proof. If there exists a constant homomorphism f : A → B, say with image
{b}, then all the relations RB in B contain the constant tuple (b, b, . . . , b). It
follows that every input sentence is satisfied in B by evaluating the existentially
quantified variables to b; therefore, Yes is always a correct output.

If there is no constant homomorphism A → B, we observe that no multi-
homomorphism from A to B contains a constant homomorphism (as the set of
multi-homomorphisms of a PMC template is closed under containment). It fol-
lows that the image of any “rainbow” tuple of A under any multi-homomorphism
from A to B does not contain any constant tuple, and so any multi-homomorphism
from A to B is a multi-homomorphism from (A; Rb2|A|

A) to (B; NAE2|A|
B). The

reduction from Theorem 42 and the hardness from Theorem 43 conclude the
proof.

2.5 Positive fragment
We now turn our attention to the more complex case – the positive equality-free
logic, that is, the L-logic with L = {∃, ∀,∧,∨}.

2.5.1 Witnesses for quantified formulas
It will be convenient to work with {∃,∀,∧,∨}-formulas of the special form

ϕ(x1, . . . , xn) = ∀y1∃z1∀y2∃z2 . . . ∀ym∃zm ϕ′(x,y, z), (2.3)

where ϕ′ is quantifier-free. Note that each formula is equivalent to a formula in
this form (by transforming to prenex normal form and adding dummy quantifi-
cation as needed) and the conversion can be done in logarithmic space.

Observe that for a structure A and a tuple a ∈ An, we have A ⊨ ϕ(a) if
and only if there exist functions α1 : A → A, α2 : A2 → A, . . . , αm : Am →
A which give us evaluations of the existentially quantified variables given the
value of the previous universally quantified variables, i.e., these functions satisfy
A ⊨ ϕ′(a, c, α1(c1), α2(c1, c2), . . . , αm(c1, . . . , cm)) for every c ∈ Am. We call such
functions witnesses for A ⊨ ϕ(a).

We state a simple consequence of this viewpoint, a version of Lemma 40.

Lemma 45. Let f be a surjective multi-homomorphism from A to B, let
ϕ(x1, . . . , xn) be an {∃,∀,∧,∨}-formula in the same signature as A and B, and
let a ∈ An, b ∈ Bn. If A ⊨ ϕ(a) and b ∈ f(a), then B ⊨ ϕ(b).

In particular, if there exists a surjective multi-homomorphism from A to B,
and ϕ is an {∃, ∀,∧,∨}-sentence such that A ⊨ ϕ, then B ⊨ ϕ.

Proof. The claim holds for quantifier-free {∃,∀,∧,∨}-formulas by Lemma 40.
Next, we assume that ϕ is of the form (2.3) and select witnesses α1, . . . ,

αm for A ⊨ ϕ(a). Let g : B → A be any function such that b ∈ f(g(b))
for every b ∈ B, which exists as f is surjective. We claim that any func-
tions β1, . . . , βm such that βi(b1, . . . , bi) ∈ f(αi(g(b1), . . . , g(bi))) for every

44

i ∈ [m], are witnesses for B ⊨ ϕ(b). Indeed, for all d ∈ Bm, we have A ⊨
ϕ′(a, g(d), α1(g(d1)), . . . , αm(g(d1), . . . , g(dm))), and also b ∈ f(a), d ∈ f(g(d)),
and βi(d1, . . . , di) ∈ f(αi(g(d1), . . . , g(di))) (by the assumption, choice of g, and
choice of βi, respectively); therefore, B ⊨ ϕ′(b,d, β1(d1), . . . , βm(d1, . . . , dm)) by
the first paragraph.

2.5.2 Characterization of templates and p-{∃,∀,∧,∨}-
definability

Unlike in the existential case, both characterizations require surjective and multi-
valued functions. The core of these characterizations is an adjustment of (2.2)
for surjective homomorphisms.

Lemma 46. Let A be a structure with A = [k] and m,n be arbitrary positive
integers. Then there exists a formula ϕ(x1,1, . . . , x1,n, x2,1, . . . , x2,n, . . . , xk,n) such
that, for any structure E similar to A with |E| ≤ m, we have E ⊨ ϕ(e1,1, . . . , ek,n)
if and only if the mapping i ↦→ {ei,1, . . . , ei,n}, i ∈ [k] is contained in a surjective
multi-homomorphism from A to E.

Proof. For every function h from [m] to [k] we take a formula
ϕh(x1,1, . . . , xk,n, z1, . . . , zm) such that, for any structure E in the signature
of A, we have E ⊨ ϕh(e1,1, . . . , ek,n, e

′
1, . . . , e

′
m) if and only if the mapping

i ↦→ {ei,1, . . . , ei,n} ∪ ⋃︁
h(l)=i e

′
l, 1 ≤ i ≤ k, is a multi-homomorphism from A to

E. Such a formula can be obtained by directly translating the definition of a
multi-homomorphism into the language of logic, similarly to (2.2).

We claim that the formula ϕ obtained by taking the disjunction of ϕh over
all h : [m] → [k] and universally quantifying the variables z1, . . . , zm satisfies
the requirement of the lemma, provided |E| ≤ m. Indeed, on the one hand, if
E ⊨ ϕ(e1,1, . . . , ek,n), then for every evaluation of the z variables, some ϕh must
be satisfied. We choose any evaluation that covers the whole set E (which is
possible since |E| ≤ m) and the satisfied disjunct ϕh then gives us the required
surjective multi-homomorphism from A to E (by the choice of ϕh). On the other
hand, if i ↦→ {ei,1, . . . , ei,n} is contained in a surjective multi-homomorphism f ,
then for any evaluation εE(z1), . . . , εE(zm) of the universally quantified variables,
a disjunct ϕh is satisfied whenever εE(zl) ∈ f(h(l)) for every l ∈ [m]. Such an h
exists since f is surjective.

Proposition 47. A pair (A,B) of similar structures is an {∃,∀,∧,∨}-PMC tem-
plate if and only if there exists a surjective multi-homomorphism from A to B.

Proof. For the forward implication, consider the sentence obtained by existen-
tially quantifying all the variables in the formula ϕ provided by Lemma 46 (with
m ≥ |A|, |B|). This sentence is true in A (as there exists a surjective multi-
homomorphism from A to A – the identity), so it must be true in B, giving us a
surjective multi-homomorphism from A to B. The backward implication follows
from Lemma 45.

An example which shows that one cannot replace in Proposition 47 “surjective
multi-homomorphism” by “(multi-)homomorphism” is the input formula φ =

45

∀x∃yR(x, y) (“there are no sinks”) for a template where A is a digraph with no
sinks and B is, say, A plus an isolated vertex.

The following characterization of promise definability is also a straightforward
consequence of Lemmata 45 and 46.

Theorem 48. Let (A,B) and (C,D) be {∃,∀,∧,∨}-PMC templates such that
A = C and B = D. Then (C,D) is p-{∃,∀,∧,∨}-definable from (A,B) if
and only if SMuHom(A,B) ⊆ SMuHom(C,D). Moreover, in such a case,
{∃,∀,∧,∨}-PMC(C,D) ≤ {∃,∀,∧,∨}-PMC(A,B).

Proof. It is enough to verify the equivalence, since then the second claim follows
from Theorem 39.

To prove the forward implication, assume that (C,D) is p-{∃,∀,∧,∨}-
definable from (A,B), let f ∈ SMuHom(A,B), and let Q be a symbol in the
signature of C and D. To show that f(a) ⊆ QD for any a ∈ QC we apply
Lemma 45 as follows. We have A ⊨ ψ(a), where ψ(x) is a formula from Defini-
tion 30. Then for any b ∈ f(a) we have B ⊨ ψ(b) by Lemma 45, and, finally,
b ∈ QD, as required.

For the backward implication, assume that SMuHom(A,B) ⊆
SMuHom(C,D), denote σ the signature of A and B, and consider an n-
ary relational symbol Q in the signature of C and D. To prove the claim, we
need to find a formula ψ(x1, . . . , xn) that defines, in A, a relation containing QC

and, in B, a relation contained in QD.
For simplicity, assume A = [k]. Let m = max{k, |B|}, and let

ϕ(x1,1, . . . , x1,n, x2,1, . . . , x2,n, . . . , xk,1, . . . , xk,n) be the formula such that, for any
structure E similar to A with |E| ≤ m, we have E ⊨ ϕ(e1,1, . . . , ek,n) if and only
if the mapping i ↦→ {ei,1, . . . , ei,n}, i ∈ [k] is contained in a surjective multi-
homomorphism from A to E, provided by Lemma 46. For any a ∈ An, we define
τa(x1, . . . , xn) to be the formula obtained from ϕ by renaming xai,i to xi and exis-
tentially quantifying the remaining variables. The sought after formula ψ is then
the disjunction of τa over all a ∈ QC: it defines in A a relation containing QC

(because of the surjective multi-homomorphism A → A defined by a ↦→ {a}) and,
in B, a relation contained in QD (because SMuHom(A,B) ⊆ SMuHom(C,D), so
if a mapping is contained in a surjective multi-homomorphism from A to B, then
it is contained in a surjective multi-homomorphism from C to D).

2.5.3 Membership
Clearly, every {∃,∀,∧,∨}-MC, as well as {∃, ∀,∧,∨}-PMC, is in PSPACE. We
now give a generalization of the remaining membership results from [MM11] using
an appropriate generalization of “A-shops” and “E-shops” from that paper. We
say that a surjective multi-homomorphism f from A to B is an ∀-smuhom if there
exists a∗ ∈ A such that f(a∗) = B. We also say that (A,B) admits an ∀-smuhom
in such a case. We call f an ∃-smuhom if f−1(b∗) = A for some b∗ ∈ B. Finally,
we call f an ∃∀-smuhom if it is simultaneously an ∀-smuhom and an ∃-smuhom.

An additional simple reduction will be useful in the proof of the membership
result (Theorem 50) and later as well. We say that an {∃,∀,∧,∨}-PMC template
(C,D) is a relaxation of an {∃,∀,∧,∨}-PMC template (A,B) if (C,A) and (B,D)
are {∃, ∀,∧,∨}-PMC templates. Recall that, by Proposition 47, the property is

46

equivalent to the existence of surjective multi-homomorphisms from C to A and
from B to D.

Proposition 49. Let (A,B) and (C,D) be {∃,∀,∧,∨}-PMC templates. If (C,D)
is a relaxation of (A,B), then {∃,∀,∧,∨}-PMC(C,D) ≤ {∃,∀,∧,∨}-PMC(A,B).

Proof. The trivial reduction, which does not change the input, works.
Indeed, Yes-instances of {∃,∀,∧,∨}-PMC(C,D) are Yes-instances of
{∃,∀,∧,∨}-PMC(A,B) since (C,A) is an {∃,∀,∧,∨}-PMC template, and No-
instances of {∃,∀,∧,∨}-PMC(C,D) are No-instances of {∃,∀,∧,∨}-PMC(A,B)
since (B,D) is an {∃,∀,∧,∨}-PMC template.

Theorem 50. Let (A,B) be an {∃,∀,∧,∨}-PMC template. Then the following
holds.

1. If (A,B) admits an ∀-smuhom, then {∃,∀,∧,∨}-PMC(A,B) is in NP.

2. If (A,B) admits an ∃-smuhom, then {∃,∀,∧,∨}-PMC(A,B) is in coNP.

3. If (A,B) admits an ∃∀-smuhom, then {∃,∀,∧,∨}-PMC(A,B) is in L.

Proof. For the first item, let f be an ∀-smuhom from A to B with
f(a∗) = B, and consider an input ϕ in the special form (2.3), i.e., ϕ =
∀y1∃z1∀y2∃z2 . . . ∀ym∃zm ϕ′(y, z), where ϕ′ is quantifier-free. We answer Yes if
there exists a ∈ Am such that A ⊨ ϕ′(a∗, a∗, . . . , a∗, a); this can be clearly de-
cided in NP. It is clear that the answer is Yes whenever ϕ is a Yes-instance of
{∃,∀,∧,∨}-PMC(A,B). On the other hand, if A ⊨ ϕ′(a∗, . . . , a∗, a), then any
functions β1 : B → B, . . . , βm : Bm → B such that βi(b1, . . . , bi) ∈ f(ai) (for all
i ∈ [m] and b1, . . . , bm ∈ B) provide witnesses for B ⊨ ϕ by Lemma 40. Therefore,
if ϕ is a No-instance, then the answer is No, as needed.

The second item follows by the duality argument.
In the case A = B, the third item can be proved in an analogous way (by

eliminating both quantifiers instead of just one), see Corollary 9 in [MM11]. For
the general case, we will construct C such that there is an ∃∀-smuhom from C
to C and there are surjective multi-homomorphisms from A to C and from C
to B. Then (A,B) will be a relaxation of (C,C) by Proposition 47, and then
membership of {∃,∀,∧,∨}-PMC(A,B) in L will follow from Proposition 49 and
the mentioned Corollary 9 in [MM11]. Let f be an ∃∀-smuhom from A to B
with f(a∗) = B and f−1(b∗) = A, and define a surjective multi-valued function
f ′ from A to B by f ′(a∗) = B and f ′(a) = {b∗} if a ̸= a∗. Note that f ′ is
contained in f , so f ′ is a surjective multi-homomorphism from A to B. We define
C as the “image” of A under f ′, that is, C = B and RC = ∪a∈RAf ′(a) for each
relation symbol R. Clearly, f ′ is a surjective multi-homomorphism from A to C
and the identity is a surjective homomorphism from C to B. It remains to find an∃∀-smuhom from C to C. We claim that g defined by g(b∗) = {b∗} and g(c) = C
for c ̸= b∗ is such an ∃∀-smuhom. Indeed, if c ∈ RC, then c ∈ f ′(a) for some
a ∈ RA. By the definition of f ′, we necessarily have ai = a∗ whenever ci ̸= b∗;
therefore, f ′(a) ⊇ g(c). But f ′(a) ⊆ RC as f ′ ∈ SMuHom(A,C), and we are
done.

47

These membership results together with the (more involved) hardness results
were sufficient for the tetrachotomy in [MM11]. One problem with generalizing
this tetrachotomy is that, unlike in the non-promise setting, an {∃, ∀,∧,∨}-PMC
template can admit an ∀-smuhom and an ∃-smuhom, but no ∃∀-smuhom. How-
ever, such a situation cannot happen for digraphs.

Proposition 51. Let (A,B) be an {∃,∀,∧,∨}-PMC template such that A and B
are digraphs. If (A,B) admits an ∀-smuhom and an ∃-smuhom, then it admits
an ∃∀-smuhom.

Proof. Denote by R the unique binary symbol in the signature. Let f be an∀-smuhom from A to B with f(a∗) = B and let g be an ∃-smuhom from A to B
with g−1(b∗) = A.

If a∗ is isolated in A (i.e., (a, a∗), (a∗, a) /∈ RA for every a ∈ A), then we define
a surjective multi-valued function h by h(a∗) = B and h(a) = {b∗} for every
a ̸= a∗. It is a multi-homomorphism from A to B since for any (a, a′) ∈ RA, we
have h(a, a′) = {(b∗, b∗)}, which is contained in RB because RA is nonempty, so
g(RA) ∋ (b∗, b∗).

Suppose next that there is an edge (a1, a
∗) ∈ RA but a∗ has no outgoing edges

in A. Let b1 be an arbitrary element from f(a1) and define h by h(a∗) = B and
h(a) = {b1} for every a ̸= a∗. To verify that h ∈ SMuHom(A,B), consider an edge
(a, a′) ∈ RA. As a∗ has no outgoing edges in A, we get a ̸= a∗, so h(a) = {b1}.
Now h(a, a′) ⊆ {b1} × B, which is contained in RB because RB ⊇ f(a1, a

∗) ⊇
{b1} ×B.

If a∗ has an outgoing edge (a∗, a1) ∈ RA but no incoming edges, we proceed
similarly, defining h(a∗) = B and h(a) = {b1} for all a ̸= a∗, where b1 is an
arbitrary element from f(a1).

Finally, suppose that (a1, a
∗) ∈ RA and (a∗, a2) ∈ RA for some a1, a2 ∈ A. If

there is an element a3 ∈ A with no outgoing (resp., incoming) edges, define h by
h(a3) = B and h(a) = {b′} for all a ̸= a3, where b′ is an arbitrary element from
f(a1) (resp., f(a2)). If there is no such element a3, then we define h(a∗) = B and
h(a) = {b∗} for all a ̸= a∗. Since g is surjective, and every a ∈ A has both an
incoming and an outgoing edge, then (b, b∗) ∈ RB and (b∗, b) ∈ RB for all b ∈ B,
therefore, h ∈ SMuHom(A,B).

The proof of Proposition 51 is concluded.

2.5.4 Hardness
As a consequence of Theorems 43 and 48, we obtain the following hardness result.

Theorem 52. Let (A,B) be an {∃,∀,∧,∨}-PMC template.

1. If there is no ∃-smuhom from A to B, then {∃,∀,∧,∨}-PMC(A,B) is NP-
hard.

2. If there is no ∀-smuhom from A to B, then {∃,∀,∧,∨}-PMC(A,B) is coNP-
hard.

Proof. If there exists no ∃-smuhom from A to B, then SMuHom(A,B) is contained
in SMuHom((A; Rb2|A|

A), (B; NAE2|A|
B)). Theorem 43 and Theorem 48 then imply

the first item. The second item follows by the duality argument.

48

In the non-promise setting, the absence of ∀-smuhoms and ∃-smuhoms is
sufficient for PSPACE-hardness [MM11, MM18]. This most involved part of the
tetrachotomy result seems much more challenging in the promise setting and we
do not have strong reasons to believe that templates without ∀-smuhoms and∃-smuhoms are necessarily PSPACE-hard. Nevertheless, we are able to prove
some additional hardness results which will cover all the extensions of {∃, ∀,∧,∨}.

Proposition 53. {∃, ∀,∧,∨}-PMC((A; =A), (B; =B)) is PSPACE-hard for any
A, B such that |A| ≥ |B| ≥ 2.

Note here that surjective multi-homomorphisms from (A; =A) to (B; =B) are
exactly the surjective multi-valued functions from A to B of multiplicity one.
In particular, if |A| < |B|, then ((A; =A), (B; =B)) is not an {∃,∀,∧,∨}-PMC
template.

Proof. We start by noticing that the template ((A; =A), ([2]; =[2])) is a relaxation
of (A,B) := ((A; =A), (B; =B)). So by Proposition 49, it is enough to prove the
claim in the case B = [2]. For simplicity, we assume that A = [k] (k ≥ 2). We
prove the PSPACE-hardness by a reduction from {∃, ∀,∧,∨}-MC(B), a PSPACE-
hard problem by, e.g., [Mar08]. Consider an input ϕ to {∃,∀,∧,∨}-MC(B) in
the special form (2.3), i.e., ϕ = ∀y1∃z1∀y2∃z2 . . . ∀ym∃zm ϕ′(y, z), where ϕ′ is
quantifier-free. We need to find a log-space computable formula ψ such that
B ⊨ ϕ implies A ⊨ ψ (so that Yes-instances of {∃,∀,∧,∨}-MC(B) are transformed
to Yes-instances of {∃,∀,∧,∨}-PMC(A,B)) and B ⊨ ψ implies B ⊨ ϕ (so that
No-instances are transformed to No-instances).

The rough idea to construct ψ is to reinterpret the values in A = [k] as values
in B = [2] via a mapping A → B. We set

ψ = ∀x1∀x2 ∃x3∃x4 . . . ∃xk (x1 = x2) ∨
⋀︂

f :A→B

ρf , where (2.4)

ρf = (∀y′1∃z1 . . . ∀y′m∃zm) (∃y1 . . . ∃ym)
(︄

m⋀︂
i=1

σ[f, y′i, yi]
)︄

∧ ϕ′(y, z) (2.5)

σ[f, y′i, yi] =
⋁︂

a∈A

(︂
(y′i = xa) ∧ (yi = xf(a))

)︂
(2.6)

Observe first that ψ can be constructed from ϕ in logarithmic space.
Next, we verify that B ⊨ ψ implies B ⊨ ϕ. So, we suppose B ⊨ ψ and aim to

find witnesses β1, . . . , βm for B ⊨ ϕ; to this end, let c be some tuple in Bm that
corresponds to evaluations of universally quantified variables in ϕ. We evaluate
the variables x1 and x2 in ψ as εB(x1) = 1 and εB(x2) = 2, and pick an evaluation
εB(x3), . . . , εB(xk) making ψ true in B. Set f(a) = εB(xa), a ∈ A. The first
disjunct of (2.4) is not satisfied, so ρf is satisfied with this choice of εB. When it is
the turn to evaluate y′i, we set εB(y′i) = ci and define βi(c1, . . . , ci) = εB(zi), where
εB(zi) is a satisfactory evaluation of zi. Inspecting the definition (2.6), we see that
y1, . . . , ym are necessarily evaluated as εB(y1) = c1, . . . , εB(ym) = cm: indeed,
if a disjunct (y′i = xa) ∧ (yi = xf(a)) is satisfied, then ci = εB(y′i) = εB(xa) and
εB(yi) = εB(xf(a)) = εB(xεB(xa)) = εB(xa); in particular, εB(yi) = ci. Therefore,
the conjunct ϕ′(y, z) in (2.5) ensures B ⊨ ϕ′(c, β1(c1), . . . , βm(c1, . . . , cm)). As c
was chosen arbitrarily, we get that β1, . . . , βm are witnesses for B ⊨ ϕ, as required.

49

We now suppose that β1, . . . , βm are witnesses for B ⊨ ϕ, and aim to show
that A ⊨ ψ. Because of the first disjunct of (2.4), it is enough to consider
only evaluations of x1 and x2 with εA(x1) ̸= εA(x2). Since any bijection, re-
garded as a surjective multi-homomorphism from A to A of multiplicity one,
preserves {∃,∀,∧,∨}-formulas (in the sense of Lemma 45), then we can as well
assume that εA(x1) = 1 and εA(x2) = 2. We evaluate the remaining x vari-
ables as εA(xa) = a, a = 3, 4, . . . , k. We take a function f : A → B and
argue that ρf is satisfied in A. Given a selection of εA(y′i), we evaluate zi as
εA(zi) = βi(f(εA(y′1)), . . . , f(εA(y′i))), and we define the evaluation of the re-
maining variables by εA(yi) = f(εA(y′i)). With these choices, each σ[f, y′i, yi] is
satisfied because of the disjunct a = εA(y′i) in (2.6). The second conjunct in
(2.5), ϕ′(y, z), is also satisfied: we know B ⊨ ϕ′(c, β1(c1), . . . , βm(c1, . . . , cm)) in
particular for c1 = f(εA(y′1)), . . . , cm = f(εA(y′m)) and, with this c, it is apparent
from the choice of evaluations that B ⊨ ϕ′(c, β1(c1), . . . , βm(c1, . . . , cm)) is equiv-
alent to A ⊨ ϕ′(εA(y1), . . . , εA(ym), εA(z1), . . . , εA(zm)). The proof of A ⊨ ψ is
concluded.

It follows that {∃,∀,∧,∨,=}-PMC over any template is PSPACE-hard and so
is, by the duality argument, {∃,∀,∧,∨, ̸=}-PMC. The next proposition implies
PSPACE-hardness for {∃,∀,∧,∨,¬}-PMC.

Proposition 54. Let (A,B) be an {∃,∀,∧,∨}-PMC template which is closed
under complementation. Then {∃,∀,∧,∨}-PMC(A,B) is PSPACE-hard.

Proof. Suppose that (A,B) is closed under complementation. We define an equiv-
alence relation ∼A on A by considering two elements equivalent if they play the
same role in every relation of A. Formally, a ∼ a′ if for every symbol R from
the signature, every coordinate i ∈ [ar(R)], and every c, c′ ∈ Aar(R), if ci = a,
c′i = a′, cj = c′j for all j ∈ [ar(R)] \ {i}, and c ∈ RA, then c′ ∈ RA. We define an
equivalence relation ∼B on B analogously. Notice that ∼A (resp., ∼B) is indeed
an equivalence relation; let m and n denote the number of equivalence classes of
∼A and ∼B, respectively.

Observe that m,n ≥ 2. Indeed, otherwise any nonempty relation in the cor-
responding template contains all the tuples, and we do not allow such structures
in this context.

Let C = (A; ∼A) and D = (B; ∼B). We claim that every surjective
multi-homomorphism f from A to B preserves ∼, i.e., is a surjective multi-
homomorphism from C to D. Consider a, a′ ∈ A, and b, b′ ∈ B such that a ∼A a′,
b ∈ f(a), and b′ ∈ f(a′). In order to prove b ∼B b′, take arbitrary R, i, d, d′ such
that di = b, d′i = b′, dj = d′j for all j ̸= i, and d ∈ RB. Let c, c′ ∈ Aar(R) be tuples
such that ci = a, c′i = a′, and cj = c′j ∈ f−1(dj) for all j ̸= i (which exist as f
is surjective). If c ̸∈ RA, then c ∈ R

A and, consequently, d ∈ f(c) ⊆ R
B (as f

is a surjective multi-homomorphism from A to B), a contradiction with d ∈ RB.
Therefore, c ∈ RA and also c′ ∈ RA as a ∼A a′. Now d′ ∈ f(c′) ⊆ RB, and
b ∼B b′ follows.

By Theorem 48, {∃,∀,∧,∨}-PMC(C,D) ≤ {∃,∀,∧,∨}-PMC(A,B). Since
there exists a surjective multi-valued function from A to B that preserves ∼
(namely, any f ∈ SMuHom(A,B)), we also know that m ≥ n. The template
(E,F) := (([m]; =[m]), ([n]; =[n])) is a relaxation of (C,D), because there exists

50

a surjective multi-homomorphism from E to C (a multi-valued function that
maps i to the i-th equivalence class of ∼A under an arbitrary linear ordering
of classes) and a surjective multi-homomorphism from D to F (a “multi”-valued
function that maps every element in the i-th equivalence class of ∼B to {i}).
By Proposition 49, {∃,∀,∧,∨}-PMC(E,F) ≤ {∃, ∀,∧,∨}-PMC(C,D); therefore,
{∃,∀,∧,∨}-PMC(E,F) ≤ {∃,∀,∧,∨}-PMC(A,B). The former {∃, ∀,∧,∨}-PMC
is PSPACE-hard by Proposition 53, so {∃,∀,∧,∨}-PMC(A,B) is PSPACE-hard,
too.

2.5.5 Summary and examples
The claims stated in Figure 2.2 are now immediate consequences of the obtained
results. Note that the claims remain true without the imposed restrictions on
structures (i.e., we can allow singleton universes, nullary relations, etc.); the
only nontrivial ingredient is the L-membership of the Boolean Sentence Value
Problem [Lyn77].

We observe that the results imply a complete complexity classification in the
case that one of the two template structures is Boolean, i.e., has a two-element
universe.

Corollary 55. Let (A,B) be an {∃,∀,∧,∨}-PMC template.

1. If B is Boolean, then {∃,∀,∧,∨}-PMC(A,B) is in L, or is NP-complete, or
PSPACE-complete.

2. If A is Boolean, then {∃,∀,∧,∨}-PMC(A,B) is in L, or is coNP-complete,
or PSPACE-complete.

3. If A and B are Boolean, then {∃,∀,∧,∨}-PMC(A,B) is in L, or is
PSPACE-complete.

Proof. If B is Boolean, then every ∃-smuhom (from A to B) is an ∃∀-smuhom.
Moreover, if there is no ∀-smuhom, then every surjective multi-homomorphism is
of multiplicity one, so it is also a multi-homomorphism from (A; =A) to (B; =B).
The first item now follows from Proposition 53 and Theorem 48. The other items
are easy as well.

There are two wide gaps left for further investigation. First, it is unclear
what the complexity is for the {∃,∀,∧,∨}-PMC over templates that admit both
an ∀-smuhom and an ∃-smuhom, but no ∃∀-smuhom. While there is no such a
digraph template, there are examples with one ternary or two binary relations,
e.g., the following. We use ij as a shortcut for the pair (i, j).

A = ([3]; {(1, 2, 3)}), B = ([3]; {1, 2, 3} × {2} × {3} ∪ {1, 2} × {2} × {2, 3})
A = ([3]; {12}, {13}), B = ([3]; {12, 22, 32}, {12, 13, 22, 23, 33})

The binary example above is pictured in Figure 2.3. The first relation is blue
and the second black.

The second gap is between simultaneous NP- and coNP-hardness, and
PSPACE-hardness, when the template admits neither an ∀-smuhom nor an

51

1 1

2 3 2 3

Figure 2.3: An example of a template having an ∀-smuhom and an ∃-smuhom,
but no ∃∀-smuhom.

∃-smuhom. Examples with unknown complexity include the following.

A = ([3]; {(1, 2, 3)}), B = ([3]; {2, 3} × {1, 3} × {1, 2})
A = ([3]; {(1, 2, 3)}), B = ([3]; {1, 2} × {1, 2} × {3} ∪ {1, 3} × {2} × {2})
A = ([4]; {12, 34}), B = ([4]; {12, 13, 14, 23, 24, 34, 32})

The binary example above is pictured in Figure 2.4.

1 1

2 3 2 3

4 4

Figure 2.4: An example of a template that admits neither an ∀-smuhom nor an∃-smuhom.

In an ongoing work, we have developed some more general PSPACE-hardness
criteria, but the examples above remain elusive. The following equivalent unary
version of the first example is an especially interesting template, whose L-PMC
is the problem described in the introduction.

A = ([3]; {1}, {2}, {3}), B = ([3]; {2, 3}, {1, 3}, {1, 2})

2.6 Conclusion
We gave a full complexity classification of {∃,∧,∨}-PMC, initiated an algebraic
approach to {∃,∀,∧,∨}-PMC, and applied it to provide several complexity results
about this class of problems.

An interesting concrete problem, whose complexity is currently open, is the
{∃,∀,∧,∨}-PMC over the unary template above. As for the theory-building, the
next natural step is to capture more complex reductions by means of surjective
multi-homomorphisms; namely, the analogue of pp-constructions, which proved
to be so useful in the theory of (Promise) CSPs [BKW17b, BBKO21]. It may be
also helpful to characterize and study the sets of surjective multi-homomorphisms
in the spirit of [Mar10, CM21].

52

3. PCSP seen from the other side
In the standard Promise CSP (PCSP), a pair of relational structures (A,B) (such
that there is a homomorphism from A to B) is fixed and PCSP(A,B) is defined
as the problem of deciding whether an input structure admits a homomorphism
to A or not even to B. In this chapter we introduce a similar problem, where
we restrict the left-hand side instead of the right-hand side, motivated by the
so-called left-hand side restricted CSP, also called CSP seen from the other side.
Namely, we fix a collection of pairs of relational structures Γ (such that for every
pair there is a homomorphism from the first structure to the second one) and ask
the following: for an input pair (A,B) from Γ and an input structure X, decide
whether there is a homomorphism from B to X or not even from A to X.

The first two sections are devoted to the left-hand side resrticted CSP. The
presentation largely follows Grohe’s paper The complexity of homomorphism and
constraint satisfaction problems seen from the other side [Gro07]. The last section
is devoted to the left-hand side restricted PCSP.

3.1 Preliminaries

3.1.1 Relational structures and homomorphisms
A signature is a finite collection of relation symbols each with an associated arity,
denoted ar(R) for a relation symbol R. The arity of a signature is the maximum
of the arities of all relations symbols it contains. A relational structure A in the
signature σ, or a σ-structure, consists of a finite set A, called the universe of A,
and a relation RA ⊆ Aar(R) for each symbol R in σ, called the interpretation of
R in A. Two structures are called similar if they are in the same signature. We
say that a class C of structures is of bounded arity if there is an r such that arity
of the signature of every structure in C is at most r.

A structure over a signature containing a single binary relation symbol is called
a directed graph, or digraph. If this relation is symmetric and loop free (i.e., it
contains no pairs of the form (a, a)), we call the structure undirected graph. If the
relation of a graph is the disequality relation on the universe, we call the graph
a complete graph or clique.

A σ-structure A is a substructure of a σ-structure B, denoted by A ⊆ B, if
A ⊆ B and RA ⊆ RB for all R ∈ σ. A structure A is a proper substructure of B,
denoted by A ⊂ B, if A ⊆ B and A ̸= B.

We define the size of a σ-structure A to be

||A|| = |σ| + |A| + ΣR∈σ|RA|ar(R).

||A|| is roughly the size of a reasonable encoding of A. When taking structures A
as inputs for algorithms, we measure the running time of the algorithm in terms
of ||A||.

Given two similar structures A and B, a function f from A to B is called a
homomorphism from A to B if f(a) ∈ RB for any a ∈ RA, where f(a) is computed
component-wise. If there exists a homomorphism from A to B, we write A → B,

53

and if there is none, we write A ̸→ B. The composition of homomorphisms is a
homomorphism.

Two structures A and B are homomorphically equivalent if A → B and B → A.
A relational structure A is a core if there is no homomorphism from A to

a proper substructure of A. A core of a structure A is a substructure A′ of
A such that A → A′ and A′ is a core. Obviously, every core of a structure is
homomorphically equivalent to the structure. It can be shown that all cores of a
structure A are isomorphic. So, we often speak of the core of A.

3.1.2 Homomorphism problem
General homomorphism problem (or constraint satisfaction problem) asks whether
there is a homomorphism from one structure to another. We are interested in
restrictions of this problem. For two classes C and D of structures, Hom(C,D) is
the following problem.

Input: Similar structures A ∈ C, B ∈ D;
Output: Yes if A → B; No if A ̸→ B.

If C is the class of all finite structures, we write Hom(−,D) instead of
Hom(C,D). The problem Hom(−, {A}) is also known as CSP(A).

Similarly, if D is the class of all finite structures, we write Hom(C,−) instead
of Hom(C,D), and we call such a problem the left-hand side restricted CSP.If C is
finite, then Hom(C,−) is solvable in polynomial time, so usually we are interested
in the case when C is an infinite collection of structures.

If C is the class of all cliques, the problem Hom(C,−) is called the Clique
problem. In [Kar72] Karp proved that Clique is NP-complete.

3.1.3 Graph minors and tree width
We will denote the vertex set of a graph G by G and its relation (or the set of
edges) by EG. Since we are considering undirected graphs, we will view its edges
as sets (unordered pairs) e = {v, w}, and we will use notations like v ∈ e or
{v, w} ∈ EG.

A graph H is a minor of a graph G if H is isomorphic to a graph that can be
obtained from a subgraph of G by contracting edges. For example, in Figure 3.1,
it is easy to see that H is a minor of G.

A minor map from H to G is a mapping µ : H → 2G with the following
properties.

• For all v ∈ H, the set µ(v) is nonempty and connected in G.

• For all v, w ∈ H, with v ̸= w, the sets µ(v) and µ(w) are disjoint.

• For all edges {v, w} ∈ EH, there are v′ ∈ µ(v) and w′ ∈ µ(w) such that
{v′, w′} ∈ EG.

For any two graphs H and G, there is a minor map from H to G if and only
if H is a minor of G. Moreover, if H is a minor of a connected graph G, then we

54

H 0 G a

1 b c

2 3 d

e f

Figure 3.1: An example of a minor of a graph.

can always find a minor map from H onto G, where by onto we mean⋃︂
v∈H

µ(v) = G.

Going back to Figure 3.1, an example of a minor map from H to G is µ(0) = {e},
µ(1) = {d}, µ(2) = {b}, µ(3) = {a, c}.

Trees are connected acyclic graphs. A tree-decomposition of a graph G is a
pair (T, β), where T is a tree and β : T → 2G such that the following conditions
are satisfied:

• For every v ∈ G the set {t ∈ T |v ∈ β(t)} is non-empty and connected in T.

• For every e ∈ EG there is a t ∈ T such that e ⊆ β(t).

For example, for every graph G there is a tree-decomposition where the tree is
one vertex mapping to the whole set G.

The width of a tree-decomposition (T, β) is max{|β(t)||t ∈ T} − 1, and the
tree width of a graph G, denoted by tw(G), is the minimum w such that G has a
tree-decomposition of width w.

For k, l ≥ 1, the (k× l)-grid is the graph with vertex set [k] × [l] and an edge
between (i, j) and (i′, j′) if and only if |i − i′| + |j − j′| = 1. It can be shown
that the (k × k)-grid has tree width k. Figure 3.2 shows a tree-decomposition of
width 3 for (3 × 3)-grid. In [RS86] Robertson and Seymour proved the following
“converse”, which is known as the Excluded Grid Theorem.

Theorem 56. For every k there exists a w(k) such that the (k × k)-grid is a
minor of every graph of tree width at least w(k).

We need to transfer some of the graph theoretic notions to arbitrary relational
structures. The Gaifman graph (also known as primal graph) of a σ-structure A is
the graph G(A) with vertex set A and an edge between vertices a and b if a ̸= b and
there is a relation symbol R ∈ σ, say, of arity r, and a tuple (a1, a2, . . . , ar) ∈ RA

such that a, b ∈ {a1, a2, . . . , ar}. We can now transfer the notions of graph minor
theory to relational structures. In particular, a subset B ⊆ A is connected in a
relational structure A if it is connected in G(A). A minor map from a relational
structure A to a relational structure B is a mapping µ : A → 2B that is a minor

55

{1, 2, 3, 4}

1 2 3 {2, 3, 4, 5}

4 5 6 {3, 4, 5, 6}

7 8 9 {4, 5, 6, 7}

{5, 6, 7, 8}

{6, 7, 8, 9}

Figure 3.2: A tree-decomposition of a (3 × 3)-grid.

map from G(A) to G(B). A tree decomposition of a relational structure A can
simply be defined to be a tree-decomposition of G(A).

A class C of structures has bounded tree width if there exists w such that
tw(A) ≤ w for all A ∈ C. A class C of structures has bounded tree width modulo
homomorphic equivalence if there is w such that every A ∈ C is homomorphically
equivalent to a structure of tree width at most w.

3.1.4 Parameterized complexity theory
Parameterized complexity theory studies the complexity of decision problems
with respect to both the size of the input and additional parameter.

Formally, a parameterization of a decision problem P ⊆ Σ∗, where Σ is an
alphabet, is a polynomial time computable mapping κ : Σ∗ → N, and a param-
eterized problem over Σ is a pair (P, κ) consisting of a problem P ⊆ Σ∗ and a
parameterization κ of P . For example, the parameterized clique problem p-Clique
is the problem (P, κ), where P is the set of all pairs (G, k) (suitably encoded over
some finite alphabet) such that G contains a k-clique and the parameter κ is
defined by κ(G, k) := k. We present parameterized problems in the following
form.

p-Clique:
Input: Graph G, k ∈ N;
Parameter: k;
Output: Yes if G has a clique of size k; No otherwise.

We will parameterize the homomorphism problem in the following way.
p-Hom(C,D):
Input: Similar structures A ∈ C, B ∈ D;
Parameter: ||A||;

56

Output: Yes if A → B; No otherwise.

As before, if D is the set of all finite relational structures, we write p-
Hom(C,−).

A parameterized problem (P, κ) over Σ is fixed-parameter tractable if there
is a computable function f : N → N and an algorithm that decides if a given
instance x ∈ Σ∗ belongs to the problem P in time

f(κ(x))|x|O(1).

The class of all fixed-parameter tractable parameterized problems is denoted by
FPT.

While in the traditional theory of computational complexity we use
polynomial-time reductions, in the theory of parameterized complexity we re-
quire an analogous notion of reduction that preserves fixed-parameter tractability,
called an fpt-reduction.

An fpt-reduction from a parameterized problem (P, κ) over Σ to a parameter-
ized problem (P ′, κ′) over Σ′ is a mapping R : Σ∗ → (Σ′)∗ such that:

• For all x ∈ Σ∗ we have x ∈ P if and only if R(x) ∈ P ′.

• There is a computable function f : N → N and an algorithm that, given
x ∈ Σ∗, computes R(x) in time f(κ(x))|x|O(1).

• There is a computable function g : N → N such that for all instances x ∈ Σ∗
we have κ′(R(x)) ≤ g(κ(x)).

.
A specific example of an fpt-reduction is the following reduction of p-Clique

to p-Hom(C,−), where C is a class of structures that contains all cliques: an
instance (G, k) of p-Clique is mapped to the instance (Kk,G) of p-Hom(C,−).

Hardness and completeness of parameterized problems for a parameterized
complexity class are defined in the usual way: a parameterized problem is said to
be hard for a parameterized complexity class if every problem in that class can
be reduced to it using an fpt-reduction. A parameterized problem is said to be
complete for a parameterized complexity class if it is hard for that class and it
belongs to that class.

An analogue of NP in parameterized complexity theory is the class W[1]. It
is a widely believed standard assumption that FPT ̸= W[1]. For the techni-
cal definitions of this and other parameterized complexity classes see [DF12] or
[FG06].

It was shown that p-Clique is W[1]-complete [DF95]. The significance of this
problem in the area of parameterized complexity is fundamental, as it has been
used as a starting point for numerous reductions. We will see one of them in the
next section.

3.2 Complexity of the left-hand side restricted
CSP

In this section we present a dichotomy theorem [Gro07] for decidable classes of
structures of bounded arity: for each such a class C, p-Hom(C,−) is either in

57

FPT (even solvable in polynomial time) or W[1]-complete.
Marx’s deep paper [Mar13] investigates the complexity for the case of un-

bounded arity. He also argues that investigating the fixed-parameter tractability
of left-hand side restrictions is at least as interesting as investigating polynomial-
time solvability. One reason is that FPT seems to be a more robust class
in this context, e.g., these problems are unlikely to exhibit a standard, non-
parameterized complexity dichotomy [Gro07].

The tractability part of the bounded arity dichotomy has been proved by
Dalmau, Kolaitis, and Vardi in [DKV02]. We state a slightly stronger version as
stated in [Gro07].

Theorem 57. Let C be a class of structures of bounded tree width modulo homo-
morphic equivalence. Then Hom(C,−) is in polynomial time.

In [Gro07] Grohe proved the following hardness theorem.

Theorem 58. Let C be a recursively enumerable class of structures of bounded
arity that does not have bounded tree width modulo homomorphic equivalence.
Then p-Hom(C,−) is W[1]-hard under fpt-reductions.

We will sketch the proof, but we need some preparation first.
Let k ≥ 2 and K =

(︂
k
2

)︂
and let A be a connected σ-structure with a (k×K)-

grid as a minor in its Gaifman graph. Since A is connected, there is a minor map
from the (k × K)-grid onto A. We fix such a map µ. We also fix some bijection
ρ between [K] and the set of all unordered pairs of elements of [k]. For p ∈ [K]
we will write i ∈ p instead of i ∈ ρ(p). It will be convenient to switch between
viewing the columns of the (k×K)-grid as being indexed by elements of [K] and
unordered pairs of elements of [k].

For a graph G = (G,EG) we will define a σ-structure M = M(A, µ,G) such
that there exists a homomorphism from A to M if and only if G contains a
k-clique. We define the universe of M to be

M = {(v, e, i, p, a)|v ∈ G, e ∈ EG,

i ∈ [k], p ∈ [K] such that (v ∈ e ⇐⇒ i ∈ p),
a ∈ µ(i, p)}.

We define the projection Π : M → A by letting

Π(v, e, i, p, a) = a

for all (v, e, i, p, a) ∈ M .
We shall define the relations of M in such a way that Π is a homomor-

phism from M to A. For every R ∈ σ , say, of arity r, and for all tuples
a = (a1, a2, . . . , ar) ∈ RA we add to RM all tuples m = (m1,m2, . . . ,mr) ∈ Π−1(a)
satisfying the following two constraints for all m,m′ ∈ {m1,m2, . . . ,mr}:

• If m = (v, e, i, p, a) and m′ = (v′, e′, i, p′, a′), then v = v′.

• If m = (v, e, i, p, a) and m′ = (v′, e′, i′, p, a′), then e = e′.

The following lemmas will guarantee correctness of the reduction in the proof
of Theorem 58.

58

Lemma 59. If G contains a k-clique, then A → M.

Lemma 60. Suppose that A is a core. If A → M, then G contains a k-clique.

Sketch of the proof of Theorem 58. We will give an fpt-reduction from p-Clique
to p-Hom(C,−). Let G be a graph and let k ≥ 1. Let K =

(︂
k
2

)︂
. By the Theorem

56, there exists a structure A ∈ C such that the Gaifman graph of the core of A
has the (k ×K)-grid as a minor.

We find such an A, compute the core A′ of A and a minor map µ from the
(k × K)-grid to A′. We let A′′ be the connected component of A′ that contains
the image of µ. A′′ is also a core. We can assume, without loss of generality, that
µ is a minor map from the (k × K)-grid onto A′′. We let M′ = M(A′′, µ,G). By
Lemma 59 and Lemma 60, A′′ → M′ if and only if G contains a k-clique. Let M
be a disjoint union of M′ and A′\A′′. Since A′ is a core, every homomorphism
from A′ to M maps A′′ to M′. So, A′ → M if and only if G contains a k-clique.
Since A′ is the core of A, it means that A → M if and only if G has a k-clique.

The main result of [Gro07] is the following theorem, which combines the pre-
vious two (Theorem 57 and Theorem 58). Note that for a decidable class C,
p-Hom(C,−) is in W[1], so W[1]-hardness becomes W[1]-completeness.

Theorem 61. Assume that FPT ̸= W[1]. Then, for every recursively enumerable
class C of structures of bounded arity the following statements are equivalent:

• Hom(C,−) is in polynomial time.

• p-Hom(C,−) is fixed-parameter tractable.

• C has bounded tree width modulo homomorphic equivalence.

If either statement is false, then p-Hom(C,−) is W[1]-hard.

3.3 Left-hand side restricted PCSP
General promise homomorphism problem is the following parameterized problem:

Input: Similar structures A,B,X such that A → B;
Parameter: ||A|| + ||B||;
Output: Yes if B → X; No if A ̸→ X.

It is a promise problem in that the sets of Yes and No instances do not cover
the set of all inputs and there are no requirements on algorithms if the input
does not fall into Yes or No (or, put differently, the computer is promised that
the input is Yes or No and the task is to decide which of the options take place)1.
On the other hand, we do require that the set of Yes instances is disjoint from
the set of No instances. For the general promise homomorphism problem, this
property is guaranteed by the requirement A → B.

1In fact, the general homomorphism problem and its restrictions should be also regarded as
promise problems – we are promised that the input is in the expected form; see [Gro07] for a
discussion about this issue.

59

The definition of an fpt-reduction naturally extends to promise problems:
Instead of the first condition, we require that Yes-instances are mapped to
Yes-instances (completeness) and that No-instances are mapped to No-instances
(soundness). Since the definition of No-instances often involves negation (e.g.
in the general homomorphism problem), soundness is often shown by proving
the contrapositive: if the image is not a No-instance, then neither is the original
instance.

We define the left-hand side restricted PCSP as the general promise homo-
morphism problem restricted to a class of pair of structures (A,B). We will be
only concerned with recursively enumerable classes of bounded arity and so we
include this requirement.

Definition 31. A collection of pairs of similar structures (A,B) such that A → B
is called a template if it is recursively enumerable and of bounded arity.

For a template Γ, the left-hand side restricted PCSP over Γ, denoted
PHom(Γ,−), is the following problem.

Input: Similar structures A,B,X where (A,B) ∈ Γ;
Parameter: ||A|| + ||B||;
Output: Yes if B → X; No if A ̸→ X.

It is clear that the left-hand side restricted PCSP is a generalization of
the (bounded arity, recursively enumerable) left-hand side restricted CSP: p-
Hom(C,−) is equivalent to PHom(Γ,−) for Γ = {(A,A) | A ∈ C}. We do not
distinguish between C and the template Γ in this situation and call this template
a CSP template.

Important examples of left-hand side restricted PCSP are approximation ver-
sions of the Clique problems. For a given computable function f : N → N with
f(n) < n, n ∈ N, the f -Gap-Clique problem is: given a graph G and k ∈ N de-
cide whether G has a k-clique or not even an f(k)-clique. Clearly, f -Gap-Clique
is equivalent to the PHom(Γ,−) for Γ = {(Kf(k),Kk) | k ∈ N}. We discuss this
class of problems in the last subsection.

3.3.1 Homomorphic relaxations
A simple, but important reduction for the right-hand side restricted PCSP is
by means of homomorphic relaxation (see [BBKO21]). A natural left-hand side
version of this concept is as follows.

Definition 32. Let Γ and ∆ be templates. We say that Γ is a (left-hand side)
homomorphic relaxation of ∆ if for every (A,B) ∈ Γ there exists (C,D) ∈ ∆ such
that all four structures are similar and A → C and D → B.

Proposition 62. Let Γ and ∆ be templates. If Γ is a homomorphic relaxation
of ∆, then PHom(Γ) is fpt-reducible to PHom(∆).

Proof. We map an instance A,B,X of PHom(Γ,−) to the instance C,D,X of
PHom(∆,−), where C,D are chosen so that A → C and D → B (in order to
algorithmically find such a C,D we simply enumerate the recursively enumerable
class ∆.)

60

If A,B,X is a Yes instance of PHom(Γ), then B → X. Therefore, D → X as
D → B and homomorphisms compose, so C,D,X is a Yes instance of PHom(∆).
This shows completeness of the reduction. Similarly, if C,D,X is not a No instance
of PHom(∆), then C → X, so A → X (as A → C), thus A,B,X is not a No instance
of PHom(Γ), showing soundness. The remaining requirements on fpt-reduction
are clear.

By Theorem 57, Hom(C,−) is in polynomial time whenever C is of bounded
tree width. We immediately obtain the following corollary.

Corollary 63. If a template Γ is a homomorphic relaxation of a CSP template
of bounded tree width, then PHom(Γ,−) is fixed-parameter tractable.

Note that a CSP template Γ is a homomorphic relaxation of a CSP template of
bounded tree width if and only if Γ has bounded tree width modulo homomorphic
equivalence. The tractability condition from Corollary 63 is by Theorem 58 the
only source of fixed-point tractability (assuming FPT ̸= W[1]) for CSP templates.
We do not have a good reason to believe that this result generalizes to general
templates, but neither do we have a counter-example, and the following question
thus arises.

Question 64. Let Γ be a template which is not a homomorphic relaxation of a
CSP template of bounded tree width. Is then PHom(Γ,−) necessarily W[1]-hard?

3.3.2 Sufficient condition for hardness
In this subsection we improve the sufficient condition for W[1]-hardness from
Theorem 58 and give some corollaries.

The construction in the proof is largely inspired by Grohe’s construction pre-
sented in the last section, but there are several differences. First, we remove
some unnecessary components, namely i, p in the definition of M . On the other
hand, we allow constant number of components of type v, e to add more flexibil-
ity. Third, we formulate the hardness criterion so that it can be directly applied
e.g. to all the left-hand side restricted CSPs, not just connected cores.

The fourth difference is in that we use (k×k)-grids instead of (k×
(︂

k
2

)︂
)-grids,

which makes the construction somewhat more natural. In fact, instead of minor
maps from grid, we use a more general concept of grid-like mappings that we now
introduce. We use the following convention. If ρ is a mapping from C to a product
D×E, we denote by ρ← and ρ→ its left and right components, respectively. That
is, ρ← : C → D and ρ→ : C → E are such that ρ(c) = (ρ←(c), ρ→(c)).

Definition 33. Let C be a structure. A mapping ρ : C → [k] × [k] is called a
grid-like mapping from C onto [k] × [k] if it is surjective and, for each i ∈ [k],
both (ρ←)−1({i}) and (ρ→)−1({i}) are connected subsets of the Gaifman graph of
C.

Note that a minor map µ from a (k × k)-grid onto a structure C gives rise to
a grid-like mapping ρ from C onto [k] × [k] by defining ρ(c) as the unique pair
(i, j) such that c ∈ µ(i, j).

Theorem 65. Let Γ be a template. Suppose there exists L ∈ N such that for
every k ∈ N the following condition is satisfied:

61

(*) There exists (A,B) ∈ Γ and mappings ρ1, ρ2, . . . , ρL : B → [k] × [k] such that
for each homomorphism g : A → B there exists a structure C, a homomor-
phism h : C → A, and l ∈ [L] such that ρlgh is a grid-like mapping from C
onto [k] × [k].

Then PHom(Γ,−) is W [1]-hard.

Proof. Let L be as in the statement. We will give an fpt-reduction from p-Clique
to PHom(Γ,−). Let G be a graph and let k ≥ 1. Let σ-structures A and B and
mappings ρi be as in (*). We map the instance (G, k) of p-Clique to the instance
(A,B,X), where X is the σ-structure constructed as follows.

We define the universe of X to be

X = {(b, (ui, vi)L
i=1) | b ∈ B, for all i ∈ [L] (ui, vi) ∈ G×G such that

ρ←i (b) = ρ→i (b) ⇒ ui = vi and
ρ←i (b) ̸= ρ→i (b) ⇒ {ui, vi} ∈ EG} ⊆ B × (G×G)L.

We define the projection Π : X → B by

Π(b, (ui, vi)L
i=1) = b

for all (b, (ui, vi)L
i=1) ∈ X. We define the relations of X in such a way that

Π is a homomorphism from X to B. For every symbol R ∈ σ, say, of ar-
ity r, and for all tuples b = (b1, b2, . . . , br) ∈ RB we add to RX all tuples
x = (x1, x2, . . . , xr) ∈ Π−1(b) satisfying the following two constraints for all
(b, (ui, vi)L

i=1), (b′, (u′i, v′i)L
i=1) ∈ {x1, x2, . . . , xr} and all i ∈ [L]:

(Cl) If ρ←i (b) = ρ←i (b′), then ui = u′i .

(Cr) If ρ→i (b) = ρ→i (b′), then vi = v′i .

Note that Π is indeed a homomorphism from X to B (even without imposing the
constraints (Cl) and (Cr)).

The completeness of the reduction is guaranteed by the following claim.
Claim. If G contains a k-clique, then B → X.
Proof. Let v⟨1⟩, v⟨2⟩, . . . , v⟨k⟩ ∈ G be vertices of a k-clique in G. We define
h : B → X by

h(b) = (b, (v⟨ρ←i (b)⟩, v⟨ρ→i (b)⟩)L
i=1).

We need to verify that h(b) is indeed in X, i.e., that ρ←i (b) = ρ→i (b) implies
v⟨ρ←i (b)⟩ = v⟨ρ→i (b)⟩, and that ρ←i (b) ̸= ρ→i (b) implies {v⟨ρ←i (b)⟩, v⟨ρ→i (b)⟩} ∈
EG. Both implications are immediate.

In order to check that h is a homomorphism, take arbitary R ∈ σ and b =
(b1, b2, . . . , br) ∈ RB. Clearly, h(b) ∈ Π−1(b). Moreover, for any j, j′ ∈ [r],
if ρ←i (bj) = ρ←i (bj′), then trivially v⟨ρ←i (bj)⟩ = v⟨ρ←i (bj′)⟩, so (Cl) is satisfied.
Similarly, (Cr) is satisfied as well, therefore h(b) ∈ RX. This finishes the proof of
the claim.

62

In order to prove the soundness of the reduction, assume that there exists a
homomorphism from A to X, say α : A → X. We need to find a k-clique in G.
Let g = Πα and let C, h, and l ∈ [L] be as in (*), i.e., ξ defined by

ξ = ρlΠαh

is a grid-like mapping from C to [k] × [k].
For each c ∈ C, the element αh(c) is of the form αh(c) = (b, (ui, vi)L

i=1) ∈ X.
We set u⟨c⟩ = ul and v⟨c⟩ = vl. The definition of X implies the following claim.
Claim. If ξ←(c) = ξ→(c), then u⟨c⟩ = v⟨c⟩. If ξ←(c) ̸= ξ→(c), then {u⟨c⟩, v⟨c⟩} ∈
EG.
Proof. It is enough to notice that ξ←(c) = ρ←l Παh(c) = ρ←l (b) and ξ→(c) = ρ→l (b),
so the conclusion indeed follows form the definition of X.

The next claim follows from the constraints (Cl) and (Cr).
Claim. Suppose that {c, c′} is an edge in the Gaifman graph of C. If ξ←(c) =
ξ←(c′), then u⟨c⟩ = u⟨c′⟩. If ξ→(c) = ξ→(c′), then v⟨c⟩ = v⟨c′⟩.
Proof. Since {c, c′} is an edge in the Gaifman graph of C, there exists R ∈ σ and
a tuple of the form (. . . , c, . . . , c′, . . .) in RC. The (αh)-image of this tuple, which
is of the form

(. . . , (b, (ui, vi)L
i=1), . . . , (b′, (u′i, v′i)L

i=1), . . .)
is in RX as αh is a homomorphism from C to X.

If ξ←(c) = ξ←(c′), then ρ←l (b) = ρ←l (b′) (see the proof of the previous claim),
and thus ul = u′l by (Cl). But then u⟨c⟩ = u⟨c′⟩ by the definition of u⟨c⟩ and
u′⟨c⟩.

The second part is proved analogously using (Cr) instead of (Cl) and the proof
of the claim is concluded.

The proof of soundness is now concluded as follows. Since ξ is grid-like,
we know that both (ξ←)−1({i}) and (ξ→)−1({i}) are connected subsets of the
Gaifman graph of C for each i ∈ [k]. It follows from the last claim that u⟨−⟩ is
constant on (ξ←)−1({i}) and v⟨−⟩ is constant on (ξ→)−1({i}). In other words,
there exist U⟨1⟩, U⟨2⟩, . . . , U⟨k⟩ ∈ G and V ⟨1⟩, V ⟨2⟩, . . . , V ⟨k⟩ ∈ G such that

u⟨c⟩ = U⟨ξ←(c)⟩, v⟨c⟩ = V ⟨ξ→(c)⟩.

Since ξ is onto [k] × [k], the preceding claim then gives us U⟨i⟩ = V ⟨i⟩ for
each i ∈ [k] and {U⟨i⟩, V ⟨j⟩} ∈ EG for each i, j ∈ [k] with i ̸= j, therefore
V ⟨1⟩, . . . , V ⟨n⟩ is a k-clique in G.

Finally, notice that |X| is at most |B| · |G|2L, which is polynomial in |G|, and
it then easily follows that the reduction is an fpt-reduction.

Our first corollary says that Theorem 65 indeed covers Grohe’s hardness result,
Theorem 58.

Corollary 66. Let C be a recursively enumerable class of structures of bounded
arity that does not have bounded tree width modulo homomorphic equivalence.
Then Γ = {(A,A) | A ∈ C} satisfies the assumptions of Theorem 65 with L = 1.

63

Proof. Let k ∈ N. By Theorem 56, there exists (A,A) ∈ Γ such that the Gaifman
graph of the core of A has the (k× k)-grid as a minor. Let A′ be the core of A, α
a homomorphism from A to A′, β a homomorphism from A′ to A, and µ a minor
map from the (k × k)-grid to A′. Let A′′ be the connected component of A′ that
contains the image of µ and assume, without loss of generality, that µ is onto A′′.
Let ν be the induced grid-like mapping from A′′ onto [k] × [k], that is, ν(a) is the
unique pair (i, j) such that a ∈ µ(i, j). We extend ν arbitrarily to A′ and define
ρ1 = να.

Let g be a homomorphism from A to A. Since A′ is a core, the homomorphism
αgβ has a right inverse γ : A′ → A′, i.e., αgβγ is the identity on A′. We
define C = A′′ and h = βγι, where ι : A′′ → A′ is the inclusion map. Now
ρ1gh = ναgβγι = νι, which is grid-like by the choice of ν, and condition (*) is
verified.

The next corollary shows that Theorem 65 goes beyond the left-hand side
restricted CSPs. The assumptions could be made slightly weaker, but they are,
in any case, rather restrictive.

Corollary 67. Let Γ be a template and L ∈ N such that

• {A : (A,B) ∈ Γ, A is connected} does not have bounded tree with modulo
homomorphic equivalence and

• for every (A,B) there exist injective homomorphisms g1, g2, . . . , gL : A → B
such that, for every homomorphism g : A → B, we have gh = gl for some
homomorphism h : A → A and some l ∈ [L].

Then Γ satisfies the assumptions of Theorem 65.

Proof. For each k we use Theorem 56 to find (A,B) ∈ Γ such that A is connected
and has a (k × k)-grid as a minor. This gives us a grid-like mapping ν from
A onto the (k × k)-grid. For each l ∈ [L] we take any ρl such that ρlgl = ν,
which is possible as gl is injective. For each homomorphism g : A → B, we have
gh = gl for some h and l. Since ρlgh = ρlgl = ν, the condition (*) is satisfied
with C = A.

The assumptions of the last corollary in particular require “small number” of
homomorphisms from A to B. Our final observation is that Theorem 65 can be
sometimes applied when the “number” of homomorphisms is not bounded by a
constant.
Example. In this example it will be convenient to shift the vertex set of a (k×k)-
grid to {0, 1, . . . , k − 1} × {0, 1, . . . , k − 1} (and change the definition of grid-like
mapping accordingly).

Let σ be a signature containing a binary symbol R and let Γ = {(Ak,Bk)|k ∈
N}, where Ak with RAk is a (k×k)-grid (in particular, Ak = {0, 1, . . . , k−1}2), Bk

with RBk is an (f(k) × f(k))-grid for some f(k) ≥ k, and every homomorphism
from Ak to Bk is injective.

We show that the assumptions of Theorem 65 are satisfied with L = 1. For
each k we take (A,B) = (Ak,Bk) and set ρ1(i, j) = (i mod k, j mod k) where
(i, j) ∈ Bk. Because of R, every (injective) homomorphism g : A → B is of the
form g(i, j) = (l + si, l′ + s′j) for some l, l′ ∈ {0, 1, . . . } and s, s′ ∈ {−1, 1}, or

64

of the form g(i, j) = (l + sj, l′ + s′i). In all the cases, ρ1g is a grid-like mapping
from A onto {0, 1, . . . , k − 1} × {0, 1, . . . , k − 1}, so (*) is satisfied with C = A
and the identical h.

3.3.3 Approximating clique
In this final subsection we briefly discuss the f -Gap-Clique problems. Recall that
f : N → N is a function such that f(n) ≤ n for each n ∈ N and that f -Gap-Clique
is equivalent to PHom({(Kf(k),Kk) | k ∈ N}). In this subsection, we implicitly
assume that all functions and sets are computable.

For the identity function f , f -Gap-Clique is p-Clique, it is therefore a W [1]-
hard problem. A well known open question is how small can f be made.

Question 68. For what functions f is f -Gap-Clique W[1]-hard? Is it W[1]-hard
for any unbounded function f?

Note that f -Gap-Clique can be used, instead of Clique, as a starting point in
the proof of Theorem 65. It follows from the proof that, whenever f -Gap-Clique
is W[1]-hard, (*) can be weakened to ”. . . ρlgh is a grid-like mapping from C onto
K ×K with K ≥ f(k)” (where the definition of a grid-like mapping is naturally
extended).

A recent breakthrough toward answering Question 68 is the following result
of Lin [Lin21].

Theorem 69. For any 0 < c ≤ 1, the problem f -Gap-Clique is W[1]-hard
whenever f(n) ≥ cn for all n ∈ N.

The result was further improved in [SK22].
Another natural question is what happens if we consider templates

{(Kf(k),Kk)} where k runs through some infinite set instead of the whole N.
Here is a simple observation in this direction.

Proposition 70. Let f, g : N → N be functions such that f(n), g(n) < n for each
n ∈ N, and let L ⊆ N. Suppose that for every k ∈ N there exists l ∈ L such that
g(l) ≥ (l/k + 1)f(k). Then f -Gap-Clique is fpt-reducible to PHom({(Kg(l),Kl) |
l ∈ L}).

Proof. Given an instance (Kf(k),Kk,G) of f -Gap-Clique we find l ∈ L such that
g(l) ≥ (l/k+1)f(k) and take the smallest integer m such that mk ≥ l. Note that
m ≤ l/k + 1. We map the given instance to the instance (Kg(l),Kl,H) where H
is obtained by taking m disjoint copies of G and making all pairs of vertices in
different copies adjacent.

If G contains a k-clique, then H contains an mk-clique for we can take the
same clique in every copy of G in H to get such a clique. Since l ≤ mk, the graph
H contains an l-clique. This proves the completeness of the reduction.

Assume now that H contains a g(l)-clique. By taking the largest intersection
of that clique with a copy of G in H, we obtain a clique in G of size at least
g(l)/m. Since g(l)/m ≥ g(l)/(l/k + 1) ≥ f(k), the graph G contains an f(k)-
clique, proving soundness of the reduction.

The proposition allows us to slightly refine Theorem 69.

65

Corollary 71. For any 0 < c ≤ 1 and any infinite L ⊆ N, the problem
PHom({(Kg(l),Kl) | l ∈ L}) is W[1]-hard whenever g(l) ≥ cl for all l ∈ L.

Proof. We define f(n) = (c/2)n and for each k we take any l ∈ L with l ≥ k.
Since g(l) ≥ cl ≥ c(l/k + 1)k/2 = (l/k + 1)f(k), Proposition 70 gives us a
reduction from f -Gap-Clique, which is W[1]-hard by Theorem 69.

3.4 Conclusion
We introduced the framework of left-hand side restricted PCSPs, which simulta-
neously generalizes left-hand side restricted CSPs and approximation versions of
the k-clique problem, and we provided some initial results. The main technical
contribution is the sufficient condition for W[1]-hardness in Theorem 65 which,
in particular, covers left-hand side restricted bounded arity CSPs. However, it
remains to be seen whether this general framework for left-hand side restriction
can be as fruitful as it is for the right-hand side restrictions (see [BBKO21]). A
challenging problem in this direction is to improve the sufficient condition so that
it not only covers CSPs but also the constant factor approximation of k-clique
stated in Theorem 69. Such a result seems to require a significantly different
construction.

66

Bibliography
[AB21] Kristina Asimi and Libor Barto. Finitely Tractable Promise Con-

straint Satisfaction Problems. In Filippo Bonchi and Simon J. Puglisi,
editors, 46th International Symposium on Mathematical Founda-
tions of Computer Science (MFCS 2021), volume 202 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 11:1–11:16,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[ABB22] Kristina Asimi, Libor Barto, and Silvia Butti. Fixed-Template
Promise Model Checking Problems. In Christine Solnon, editor, 28th
International Conference on Principles and Practice of Constraint
Programming (CP 2022), volume 235 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 2:1–2:17, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[AGH17] Per Austrin, Venkatesan Guruswami, and Johan H̊astad. (2 + ϵ)-Sat
is NP-hard. SIAM J. Comput., 46(5):1554–1573, 2017.

[Bar19] L. Barto. Promises make finite (constraint satisfaction) problems
infinitary. In 2019 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–8, 2019.

[BBKO18] Libor Barto, Jakub Buĺın, Andrei A. Krokhin, and Jakub Oprsal.
Algebraic approach to promise constraint satisfaction. CoRR,
abs/1811.00970, 2018.

[BBKO21] Libor Barto, Jakub Buĺın, Andrei A. Krokhin, and Jakub Opršal.
Algebraic approach to promise constraint satisfaction. J. ACM,
68(4):28:1–28:66, 2021.

[BG17] Joshua Brakensiek and Venkatesan Guruswami. Promise constraint
satisfaction: Algebraic structure and a symmetric boolean dichotomy.
CoRR, abs/1704.01937, 2017.

[BG18] Joshua Brakensiek and Venkatesan Guruswami. Promise Constraint
Satisfaction: Structure Theory and a Symmetric Boolean Dichotomy.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA’18, pages 1782–1801, Philadelphia,
PA, USA, 2018. Society for Industrial and Applied Mathematics.

[BJK05] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the
complexity of constraints using finite algebras. SIAM J. Comput.,
34(3):720–742, March 2005.

[BK12] Libor Barto and Marcin Kozik. Absorbing subalgebras, cyclic terms,
and the constraint satisfaction problem. Log. Methods Comput. Sci.,
8(1:07):1–26, 2012. Special issue: Selected papers of the Conference
“Logic in Computer Science (LICS) 2010”.

67

[BKO19] Jakub Buĺın, Andrei Krokhin, and Jakub Opršal. Algebraic approach
to promise constraint satisfaction. In Proceedings of the 51st Annual
ACM SIGACT Symposium on the Theory of Computing (STOC ’19),
New York, NY, USA, 2019. ACM.

[BKW17a] Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and
how to use them. In Andrei Krokhin and Stanislav Živný, editors,
The Constraint Satisfaction Problem: Complexity and Approximabil-
ity, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017.

[BKW17b] Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and
How to Use Them. In Andrei Krokhin and Stanislav Živný, editors,
The Constraint Satisfaction Problem: Complexity and Approximabil-
ity, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017.

[Bod08] Manuel Bodirsky. Constraint satisfaction problems with infinite tem-
plates. In Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer,
editors, Complexity of Constraints, volume 5250 of Lecture Notes in
Computer Science, pages 196–228. Springer, 2008.

[BOP18] Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of
reflections. Israel Journal of Mathematics, 223(1):363–398, Feb 2018.

[Bör08] Ferdinand Börner. Basics of Galois Connections. In Nadia Creignou,
Phokion G. Kolaitis, and Heribert Vollmer, editors, Complexity of
Constraints - An Overview of Current Research Themes [Result of a
Dagstuhl Seminar], volume 5250 of Lecture Notes in Computer Sci-
ence, pages 38–67. Springer, 2008.

[Bul17] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In
2017 IEEE 58th Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 319–330, October 2017.

[Che12] Hubie Chen. Meditations on quantified constraint satisfaction. In
Robert L. Constable and Alexandra Silva, editors, Logic and Program
Semantics - Essays Dedicated to Dexter Kozen on the Occasion of His
60th Birthday, volume 7230 of Lecture Notes in Computer Science,
pages 35–49. Springer, 2012.

[CM21] Catarina Carvalho and Barnaby Martin. The lattice and semigroup
structure of multipermutations. International Journal of Algebra and
Computation, 0(0):1–25, 2021.

[DF95] Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability
and completeness ii: On completeness for w[1]. Theoretical Computer
Science, 141(1):109–131, 1995.

[DF12] Rodney G. Downey and Michael Ralph Fellows. Parameterized com-
plexity. Monographs in Computer Science. Springer New York, NY,
2012.

68

[DKV02] Vı́ctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Con-
straint satisfaction, bounded treewidth, and finite-variable logics. In
Pascal Van Hentenryck, editor, Principles and Practice of Constraint
Programming - CP 2002, pages 310–326, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[DSM+20] Guofeng Deng, Ezzeddine El Sai, Trevor Manders, Peter Mayr, Pora-
mate Nakkirt, and Athena Sparks. Sandwiches for promise constraint
satisfaction, 2020.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory.
Texts in Theoretical Computer Science. An EATCS Series. Springer
Berlin, Heidelberg, 2006.

[FKOS19] Miron Ficak, Marcin Kozik, Miroslav Olsák, and Szymon Stankiewicz.
Dichotomy for Symmetric Boolean PCSPs. In Christel Baier, Ioan-
nis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors,
46th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2019), volume 132 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 57:1–57:12, Dagstuhl, Ger-
many, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[FV98] Tomás Feder and Moshe Y. Vardi. The computational structure of
monotone monadic SNP and constraint satisfaction: A study through
datalog and group theory. SIAM J. Comput., 28(1):57–104, February
1998.

[GL18] Venkatesan Guruswami and Euiwoong Lee. Strong inapproxima-
bility results on balanced rainbow-colorable hypergraphs. Comb.,
38(3):547–599, 2018.

[Gro07] Martin Grohe. The complexity of homomorphism and constraint sat-
isfaction problems seen from the other side. J. ACM, 54(1), mar
2007.

[HN90] Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring.
J. Combin. Theory Ser. B, 48(1):92–110, 1990.

[Jea98] Peter Jeavons. On the algebraic structure of combinatorial problems.
Theor. Comput. Sci., 200(1-2):185–204, 1998.

[Kar72] Richard M. Karp. Reducibility among Combinatorial Problems, pages
85–103. Springer US, Boston, MA, 1972.

[KKR17] Vladimir Kolmogorov, Andrei Krokhin, and Michal Roĺınek. The
complexity of general-valued CSPs. SIAM Journal on Computing,
46(3):1087–1110, 2017.

[Lin21] Bingkai Lin. Constant approximating k-clique is w[1]-hard. Pro-
ceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, 2021.

69

[Lyn77] Nancy Lynch. Log space recognition and translation of parenthesis
languages. J. ACM, 24(4):583–590, oct 1977.

[Mar08] Barnaby Martin. First-order model checking problems parameterized
by the model. In Arnold Beckmann, Costas Dimitracopoulos, and
Benedikt Löwe, editors, Logic and Theory of Algorithms, 4th Con-
ference on Computability in Europe, CiE 2008, Athens, Greece, June
15-20, 2008, Proceedings, volume 5028 of Lecture Notes in Computer
Science, pages 417–427. Springer, 2008.

[Mar10] Barnaby Martin. The lattice structure of sets of surjective hyper-
operations. In David Cohen, editor, Principles and Practice of Con-
straint Programming - CP 2010 - 16th International Conference, CP
2010, St. Andrews, Scotland, UK, September 6-10, 2010. Proceedings,
volume 6308 of Lecture Notes in Computer Science, pages 368–382.
Springer, 2010.

[Mar13] Dániel Marx. Tractable hypergraph properties for constraint satis-
faction and conjunctive queries. J. ACM, 60(6), nov 2013.

[Mar17] Barnaby Martin. Quantified Constraints in Twenty Seventeen. In An-
drei Krokhin and Stanislav Živný, editors, The Constraint Satisfac-
tion Problem: Complexity and Approximability, volume 7 of Dagstuhl
Follow-Ups, pages 327–346. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 2017.

[MM10] Barnaby Martin and Jos Martin. The complexity of positive first-
order logic without equality II: the four-element case. In Anuj Dawar
and Helmut Veith, editors, Computer Science Logic, 24th Interna-
tional Workshop, CSL 2010, 19th Annual Conference of the EACSL,
Brno, Czech Republic, August 23-27, 2010. Proceedings, volume 6247
of Lecture Notes in Computer Science, pages 426–438. Springer, 2010.

[MM11] Florent R. Madelaine and Barnaby Martin. A tetrachotomy for pos-
itive first-order logic without equality. In Proceedings of the 26th
Annual IEEE Symposium on Logic in Computer Science, LICS 2011,
June 21-24, 2011, Toronto, Ontario, Canada, pages 311–320. IEEE
Computer Society, 2011.

[MM12] Florent Madelaine and Barnaby Martin. The complexity of positive
first-order logic without equality. ACM Trans. Comput. Logic, 13(1),
January 2012.

[MM18] Florent R. Madelaine and Barnaby Martin. On the complexity of the
model checking problem. SIAM J. Comput., 47(3):769–797, 2018.

[RS86] Neil Robertson and P.D Seymour. Graph minors. v. excluding a pla-
nar graph. Journal of Combinatorial Theory, Series B, 41(1):92–114,
1986.

70

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In
Proceedings of the Tenth Annual ACM Symposium on Theory of Com-
puting, STOC ’78, pages 216–226, New York, NY, USA, 1978. ACM.

[SK22] Karthik C. S. and Subhash Khot. Almost Polynomial Factor In-
approximability for Parameterized k-Clique. In Shachar Lovett, ed-
itor, 37th Computational Complexity Conference (CCC 2022), vol-
ume 234 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 6:1–6:21, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[Zhu17] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 331–342, Oct 2017.

[Zhu20] Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM,
67(5), August 2020.

[ZM20] Dmitriy Zhuk and Barnaby Martin. QCSP monsters and the demise
of the chen conjecture. In Konstantin Makarychev, Yury Makarychev,
Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proc-
cedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages
91–104. ACM, 2020.

71

List of Figures

2.1 Known complexity results for L-MC(A). 36
2.2 Complexity results for L-PMC(A,B). 37
2.3 An example of a template having an ∀-smuhom and an ∃-smuhom,

but no ∃∀-smuhom. 52
2.4 An example of a template that admits neither an ∀-smuhom nor

an ∃-smuhom. 52

3.1 An example of a minor of a graph. 55
3.2 A tree-decomposition of a (3 × 3)-grid. 56

72

List of publications
• Kristina Asimi and Libor Barto. Finitely Tractable Promise Constraint

Satisfaction Problems. In Filippo Bonchi and Simon J. Puglisi, editors,
46th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2021), volume 202 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 11:1–11:16, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik

• Kristina Asimi, Libor Barto, and Silvia Butti. Fixed-Template Promise
Model Checking Problems. In Christine Solnon, editor, 28th International
Conference on Principles and Practice of Constraint Programming (CP
2022), volume 235 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 2:1–2:17, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik

73

	Introduction
	Finitely tractable PCSPs
	Introduction
	Symmetric Boolean PCSPs allowing negations
	Contributions

	Preliminaries
	PCSP
	Polymorphisms
	Notation for tuples

	Finitely tractable PCSPs
	Finite tractability depends only on h1 identities
	Necessary condition for finite tractability
	Sketch of the proof of Theorem 2

	Case (1): PCSP((r-in-s,≤(2r-1)-in-s), (≠,≠)) where 1 < r < s/2
	The other cases
	Case (2): PCSP((≤r-in-s,≤(2r-1)-in-s), (≠,≠)) where s is even, 1 < r = s/2
	Case (3): PCSP((r-in-s,≤(2r-1)-in-s), (≠,≠)) where s is even, 1 < r = s/2, and r is even
	Case (4): PCSP(r-in-s,not-all-equal-s) where r ≤s/2, s>2, and r is even or s is odd

	Conclusion
	Basic cases
	Fixed-Template Promise Model Checking Problems
	Introduction
	Contributions

	Preliminaries
	Promise model checking
	Model checking problem
	Promise model checking problem
	Interesting fragments

	Existential positive fragment
	Characterization of templates and p-{∃,,}-definability
	Complexity classification

	Positive fragment
	Witnesses for quantified formulas
	Characterization of templates and p-{∃,∀,,}-definability
	Membership
	Hardness
	Summary and examples

	Conclusion

	PCSP seen from the other side
	Preliminaries
	Relational structures and homomorphisms
	Homomorphism problem
	Graph minors and tree width
	Parameterized complexity theory

	Complexity of the left-hand side restricted CSP
	Left-hand side restricted PCSP
	Homomorphic relaxations
	Sufficient condition for hardness
	Approximating clique

	Conclusion

	Bibliography
	List of Figures
	List of publications

