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Part 1I: Thesis



1 Introduction

This thesis consists of the following articles:

A. E. Khaniki.
On Proof Complexity of Resolution over Polynomial Calculus.
ACM Trans. Comput. Logic, 23(3), 2022.

B. E. Khaniki.
Nisan-Wigderson Generators in Proof Complexity: New Lower Bounds.
In 37th Computational Complexity Conference, CCC 2022, July 20-23,
2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 17:1-17:15, 2022.

C. E. Khaniki.
Jump operators, Interactive Proofs and Proof Complexity Generators.
Preprint, 2023.

D. E. Khaniki.
Not all Kripke models of HA are locally PA.
Advances in Mathematics, 397:22, 2022.

This thesis focuses on different problems in proof complexity, bounded arithmetic,
and intuitionistic arithmetic. In the rest of this chapter, we briefly explain the
main contributions of the above articles. In the Included Papers Chapter of the
thesis, the aforementioned papers have been attached.

1.1 Paper A: On Proof Complexity of Resolution over
Polynomial Calculus

A long-standing open problem in propositional proof complexity is proving super
polynomial lower bounds for AC(@)-Frege. This problem remained unsolved de-
spite many efforts by experts and even a nontrivial polynomial lower bound is not
known for this proof system. As proving lower bounds for AC(®)-Frege seemed
out of reach of the current techniques, different subsystems of ACO(@)-Frege (or
in general weak proof systems that can do limited counting) were considered
in the literature. One of these systems is Resolution over parities (Res(PC; ,))
[IS20]. Several lower bounds for the tree-like version of this proof system and
more generally for the tree-like versions of Resolution over linear equalities over
fields (Res(PCyr)) have been proved [IS20, GK18, Kral8, PT20, Gryl9], but no
super-polynomial lower bound is known for the dag-like Res(PC; r) when F is a
finite field for a family of CNFs. In [Kha22c|, we investigated Res(PC; ) proof
system and in general Res(PCyr) proof system (Resolution over polynomial equal-
ities). We proved a size-width relation for these proof systems and using that we
proved several lower bounds for tree-like Res(PCqyF,) (d can be larger than 1) and
moreover, we proved the only known nontrivial lower bounds (n?~°M) for dag-like
Res(PCy,) proof system for any prime p.



1.2 Paper B: Nisan—Wigderson generators in Proof Com-
plexity: New lower bounds

Proof complexity generators were defined independently by Alekhnovich et al.
[ABRWO04] and Krajicek [Kra0Ol] with different motivations. Let g be a stretch-
ing map (for any n, g, : {0,1}" — {0,1}™™ and moreover, m(n) > n) that can
be computed in a low complexity class. The mapping g is called a hard proof com-
plexity generator for a proof system P if and only if for any large enough n, for
any b outside of the range of g,, P requires super-polynomial P-proofs for propo-
sitional formulas 7,(gy) := “b is not in the range of g,”. A well-studied generator
in the context of proof complexity generators is the Nisan-Wigderson generator
[INWO94]. It is known that Nisan-Wigderson generators are hard for some proof
systems (for example see [ABRW04, Raz15]) and more interestingly Razborov
conjectured that under certain assumptions, Nisan-Wigderson generators should
be hard for some strong proof systems.

Conjecture 1.1. (Razborov [Raz15]) Any Nisan—Wigderson generator based on
suitable matrices and any function in NP N CoNP that is hard on average for
P/poly, is hard for Extended Frege.

In [Kha22a], we proved a form of Razborov’s conjecture for AC°-Frege. In more
detail, we proved that for any symmetric f € NPNCoNP that requires on depth
two AC® circuits, for any X1 NII} pair (¢o, ¢1) that defines f, any suitable matrix
A, NW; 4 is a hard proof complexity generator for AC’-Frege when the Paris-
Wilkie translation of (¢o, ¢1) is used to form the formula 7,(NW; 4). Moreover,
we discussed some applications of this lower bound to some other questions about
the power of AC’-Frege.

1.3 Paper C: Jump operators, Interactive Proofs and
Proof Complexity Generators

Krajicek and Pudlak [KP89] proved that if there is no optimal proof system, then
for any proof system P, there is another proof system ) such that P requires
super-polynomial size proofs to prove the finite reflection principle formulas for
@ which we denote by {Rfng}. This is quite interesting as for any proof system,
we get a uniform family of hard tautologies. So the natural next step is to try and
prove lower bounds for a strong proof system such as Frege (unconditionally or
conditionally based on some other hardness assumptions) for the family {Rfng}
for a proof system ). The problem is that the result of [KP89] does not imply
any explicit construction of @) based on P. We call such constructions, jump
operators where given a proof system P, it outputs another proof system @
such that {Rfng} is a hard sequence for P. Some candidates for effectively
computable jump operators were proposed by Krajicek and Pudldk [KP89] and
Krajicek [Kra04], but it is open whether a computable jump operator exists or
not. In the first part of [Kha23], we introduced a new candidate jump operator
based on the power of interactive proofs. Given a proof system P, IP-randomized
implicit proof system based on P, which is denoted by [IP, P], is a Merlin-Arthur
proof system (MA). This jump operator can be seen as a version of Krajicek’s
implicit proof system [Kra04] and in a sense, it is related to the Ideal proof system



of Grochow and Pitassi [GP18]. We investigated this jump operator and proved
several results. We proved that for any proof system P, if the strong proof system
of S} + Rfnp + 1-EXP proves exponential hard-on-average circuit lower bounds
for a Boolean function f, then the strong proof system of S} + Rfnp + 1-EXP
simulates [IP, P]. This is similar to the conditional simulation of the Ideal proof
system by Extended Frege [GP18].

The second result is a hardness magnification theorem for strong proof sys-
tems. We proved that for any strong enough proof system P and any proof system
@ that contains tree-like Resolution, if truth-table generators for polynomial-
size circuits are hard proof complexity generators for P, then for any tautol-
ogy ¢, P requires exponential size proofs to prove the propositional formulas
LBg(¢) :=“There is no polynomial-size [IP, P]-proof of ¢”. Following this result,
we proved that under plausible hardness assumption for proof complexity genera-
tors, both PV} and S} are consistent with the arithmetical sentence “[IP, Res*] is
a sound and polynomially bounded MA proof system for true DNFs” where Res*
is tree-like Resolution. What makes this consistency result interesting is that a
reasonable fraction of complexity theory can be formalized in PV, which means
that complexity theory from the point of view of PV; is close to our knowledge
about complexity theory (for a survey, see [Picl5, MP20]).

It is well known that EF is not automatable under cryptographic hardness
assumptions [KP98], but it is not known whether this nonautomatability can be
based on a structural complexity hardness assumption like the nonautomatability
result for Resolution [AM20]. Moreover, nothing is known about whether EF has
the feasible disjunction property or not. We observed that it is possible to apply
the core idea of [AM20] on LBg(¢) formulas (under some extra assumption) to
get nonautomatbility of EF under a structural complexity hardness assumption.
Moreover, we proved that (under the same extra assumption as before) EF does
not have the feasible disjunction property under another structural complexity
hardness assumption. In more detail, assume that intuitionistic S} proves the
strong soundness of [IP, Res*]. Then the following statements hold:

1. If EF is automatable, for infinitely many n there is a P/poly natural property
useful against P/poly.

2. If EF has the feasible disjunction property, for infinitely many n there is a
NP /poly natural property useful against P/poly.

One ingredient of our proofs is a formalization of the sum-check protocol
[LFKN92] in S} + 1-EXP which might be of independent interest.

Motivated by the hardness properties that enabled us to prove the consis-
tency result for PV, and Si, we defined a new hardness property for proof com-
plexity generators and investigated its properties. A stretching map g € FP is
P-provably hard for P for a proof system P if and only if P has short proofs
for the propositional formulas “For any b, there is no polynomial-size P-proof
for m(gn)”. We gave a model-theoretic characterization of this property and in-
vestigated its relationship with previously defined hardness properties for proof
complexity generators.

In the second part of [Kha23|, we looked at the general theory of jump oper-
ators and considered an old open problem by Krajicek and Pudlék [KP89] which



asks whether finite consistency formulas for an arithmetical theory 7" have poly-
nomial size proofs in an arithmetical theory 7" when 71" proves the consistency of
T. In this regard, we proved that certain statements are equivalent, in particular,
the following two are equivalent:

o There exists a partial recursive jump operator in proof complexity.

o For any strong enough finitely axiomatizable arithmetical theory S, S does
not have polynomial size proofs for Congicong(71) in n.

1.4 Paper D: Not all Kripke models of HA are locally PA

Let K be a Kripke model Heyting arithmetic (HA). K is locally 7" where T is
an arithmetical theory, if and only if for any £ € K, My, which is the classical
structure associated with £, believes in T'. An old open problem originated from
the work of van Dalen et al. [vMKV86] was whether every Kripke model of
Heyting arithmetic is locally Peano arithmetic. Several positive results for this
problem were proved by posing different restrictions on Kripke frames [vMKV86,
Weh96, AH02, Mon02, Pol06, Mojl18|, but the original problem had remained
open. In [Kha22b], we gave a negative answer to this problem. We introduced
two new Kripke model constructions which can be used to give a negative answer
to the mentioned problem. The first model construction only works for HA, but
the second model construction is a general method that can be used to construct
new Kripke models for any reasonable intuitionistic arithmetical theory, which
might be of independent interest.
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Paper A



2

Resolution is perhaps the most studied proof system in propositional proof com-
plexity. This system works with clauses of literals. Given an unsatisfiable CNF
formula F, a Resolution refutation of F' starts with this formula and derives the
empty clause with several applications of its rules. Resolution is important in
several ways. For example, it is closely related to SAT solvers, so studying Res-
olution leads to a better understanding of the limits of Resolution based SAT
solvers. Moreover, Resolution is a starting point for defining stronger proof sys-

tems. Understanding stronger proof systems in terms of the size of proofs is

On Proof Complexity of Resolution over

Polynomial Calculus

Erfan Khaniki'?
Faculty of Mathematics and Physics, Charles University
2Institute of Mathematics, Czech Academy of Sciences

Abstract

The proof system Res(PCy r) is a natural extension of the Resolution
proof system that instead of disjunctions of literals operates with disjunc-
tions of degree d multivariate polynomials over a ring R with Boolean vari-
ables. Proving super-polynomial lower bounds for the size of Res(PC; g)-
refutations of CNFs is one of the important problems in propositional proof
complexity. The existence of such lower bounds is even open for Res(PC; )
when F is a finite field such as Fy. In this paper, we investigate Res(PCq r)
and tree-like Res(PC; ) and prove size-width relations for them when R
is a finite ring. As an application, we prove new lower bounds and also
reprove some known lower bounds for every finite field F as follows:

1. We prove almost quadratic lower bounds for Res(PCg4p)-refutations
for every fixed d. The new lower bounds are for the following CNFs:

(a) Mod ¢ Tseitin formulas (char(F) # q) and Flow formulas,
(b) Random k-CNFs with linearly many clauses.

2. We also prove super-polynomial (more than n* for any fixed k) and
also exponential (27 for an € > 0) lower bounds for tree-like
Res(PCq r)-refutations based on how big d is with respect to n for the
following CNFs:

(a) Mod ¢ Tseitin formulas (char(F) # q) and Flow formulas,

(b) Random k-CNFs of suitable densities,

(c) Pigeonhole principle and Counting mod ¢ principle.
The lower bounds for the dag-like systems are the first nontrivial lower
bounds for these systems including the case d = 1. The lower bounds for
the tree-like systems were known for the case d = 1 (except for the Counting
mod ¢ principle which lower bounds for the case d > 1 were known too).

Our lower bounds extend those results to the case where d > 1 and also
give new proofs for the case d = 1.

Introduction

important in the following ways:

13



1. From the mathematical logic point of view, the existence of
super-polynomial lower bounds for strong enough proof systems implies
independence results for first-order theories.

2. From the computational complexity point of view, proving lower bounds for
proof systems is related to the NP # CoNP question. Indeed, NP # CoNP
is equivalent to the existence of super-polynomial lower bounds for every
propositional proof system.

One way of introducing a proof system that is stronger than Resolution is to
define it in a way that it can work with functions that are stronger than the
disjunction of literals (in terms of definability) in lines of the proof. As examples
of such proof systems we can list the following ones:

Proof system Proof lines
Cutting Planes Linear inequalities
Polynomial Calculus Multivariate polynomials
AC’-Frege Constant depth formulas
Frege Formulas

Table 1

We know lower bounds for the first three systems in the above list, but there
are no known super-polynomial lower bounds for the Frege proof system. Since
the known lower bounds for the AC’-Frege proof system were proved by adapting
the techniques which had been used to prove super-polynomial and exponential
lower bounds for AC circuits (see [Ajt94a, KPW95, PBI93]), the natural next
step seemed to be to prove lower bounds for the AC’[p]-Frege proof system by
adapting the Razborov-Smolensky approximation method that was used to prove
AC°[p] circuit lower bounds. However, this problem has remained open to this
day, and it is one of the frontier problems in propositional proof complexity. Since
proving super-polynomial lower bounds for the AC°[p]-Frege proof system seems
to be hard, reasonable subsystems of AC°[p]-Frege and similar proof systems that
can work with some kind of limited counting were investigated in the literature.
We briefly review the known results about these systems.

One of the first such systems is the AC’-Frege proof system with the Count,
principle when p is a prime number. Super-polynomial lower bounds were proved
on the size of proofs of the Count; principle when ¢ # p is a prime number for
this system in [Ajt94b, BIK'94, Rii97].

Two other well-studied proof systems are Nullstellensatz and Polynomial Cal-
culus. Here we mention only some of the first results that were proved for them.
The Nullstellensatz proof system was defined by Beame et al. in [BIKT94] and
they proved the first degree lower bound for it which was for the Count; prin-
ciple. Later the Polynomial Calculus proof system was defined by Clegg et al.
in [CEI96] and a degree separation between the Nullstellensatz proof system and
Polynomial Calculus proof system was proved there. Razborov in [Raz98] proved
the first nontrivial degree lower bound for Polynomial Calculus and showed that
every Polynomial Calculus refutation of the Pigeonhole principle has degree at
least n/2 + 1.

14



Krajicek in [Kra97] defined the subsystem F(MOD,) of AC’[p]-Frege proof
system and proved that F3(MOD,) needs super-polynomial size for the Count;
principle (where ¢ # p is a prime number) and tree-like F§(MOD,) needs expo-
nential size for proving the Pigeonhole principle.

To have a uniform notation for the Resolution based systems, we use Table 2
for the rest of the paper.

Our notation Aliases

Res(PC, z) R(lin) [RTO08]

Res(PCyz) R(quad) [Tzal4]

Res(PC; r,) Res(&) [IS20], R(lin/Fy) [Kral§]
Res(PCy r) Res(ling) [PT20]

(
Res(PCdJFZ) R(Pcd/ﬂ?g) [Kra18]

Table 2

Raz and Tzameret in [RT08] defined the proof system Res(PC; z) and showed
that Res(PC, z) is very strong by proving that this system has polynomial size
refutations of the Pigeonhole principle, Mod ¢ Tseitin formulas, and the Clique-
Coloring principle. They also proved an exponential lower bound for a fairly
strong fragment of Res(PC; z) using monotone feasible interpolation. Later Tza-
meret in [Tzal4] investigated the proof system Res(PC,7z) and proved that if it
has the feasible interpolation property, then there is an efficient deterministic
refutation algorithm for random 3SAT with n variables and Q(n'*) clauses.

Itsykson and Sokolov in [IS20] introduced the proof system Res(PCy g,). They
investigated the power of this system from different perspectives and proved that
tree-like Res(PCyp,) needs exponential size for refuting the Pigeonhole princi-
ple (FPHP;"), lifted versions of Tseitin formulas (lifted TSy(G, o)) and Pebbling
formulas (lifted Pebg). They proved these lower bounds by generalizing the well-
known prover-delayer games of [P100] and also by using the known communication
complexity lower bounds. Moreover, they proved that Res(PC;z) polynomially
simulates Res(PCy , ).

In [Kral8] Krajicek defined randomized dag-like communication games for
Karchmer-Wigderson relations. He proved that Res(PCyp,) has the randomized
feasible interpolation property which means that from a Res(PC, g, )-refutation of
the non-disjointness of two NP sets U and V', we can construct such a game for
computing the Karchmer-Wigderson relation associated with U and V. Further-
more, he proved that such protocols correspond to monotone circuits with local
oracles (CLO) in the case when U is upward closed or V' is downward closed.
Therefore, if we prove lower bounds for any CLO separating a monotone disjoint
NP-pair, this will lead to a lower bound for Res(PC; y,). Using the randomized
feasible interpolation, he proved that every tree-like Res(PC; g, )-refutation of the
Hall principle (Hall,)) has exponential size (see Theorem 18.6.4 in [Kral9]). He
also introduced the proof system Res(PC,y,) which is a natural generalization of
Res(PC, r,) and discussed the possibility of proving the randomized feasible inter-
polation property for it. Krajicek and Oliveira in [KO18] proved lower bounds for
a subclass of CLOs (containing the class of the usual monotone circuits) separat-
ing k-cliques and the set of complete (k — 1)-partite graphs, but it is not known
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whether a lower bound for this subclass is enough for getting a super-polynomial
lower bound on the size of Res(PCy g, )-refutations of the Clique-Coloring princi-
ple.

Following [Kra97], Garlik and Kotodziejezyk in [GK18] defined the subsystem
PKS(®) of AC°[2]-Frege proof system. In this system, every line of a proof is a
disjunction such that disjuncts have depth at most d, and parities can only appear
as the outermost connectives of disjuncts, and all but ¢ disjuncts contain no parity
connective at all. Then they investigated the relation between PKgEB(@), tree-

like PKgEB(@) and the AC’-Frege proof systems with the Count} principle and
proved several lower bounds for them. They also proved that an extension of
tree-like Res(PCy ,) is polynomially simulated by a system related to PKgEB (D),
and hence they obtained an exponential lower bound for the Count; principle
for tree-like Res(PCy p,). Although they did not mention it in their paper, their
lower bound also works for tree-like Res(PCyp,) when d = n® and € > 0 is a small
enough constant!. So they implicitly proved the first super-polynomial lower
bound for tree-like Res(PCe , ).

Part and Tzameret in [PT20] defined the proof system Res(PCy g) for every
ring R, and proved several lower bounds for dag-like and tree-like Res(PC; g) for
different rings. In particular, for finite fields they proved that tree-like Res(PCy )
(char(F) # q) requires exponential size to refute the Pigeonhole principle, Mod
q Tseitin formulas (TS,(G, o)) and random k-CNFs. They used two main tools
for proving these lower bounds. First, they generalized the prover-delayer game
of [IS20] to an arbitrary ring R. Second they proved a size-width relation for
tree-like Res(PCy ) for any field F. They also proved the first super-polynomial
lower bound for dag-like Res(PC, g)-refutations. This lower bound was proved
for the Subset-sum principle which is not a CNF, so the lower bound prob-
lem for CNFs remained open. It is worth noting that a size-width relation for
tree-like Res(PCy g,) was proved by Garlik and Kolodziejezyk in an unpublished
manuscript before [PT20].

Following the prover-delayer method that was used in [[S20, PT20], Gryaznov
proved in [Gryl9] exponential lower bounds for the Ordering and Dense Linear
Ordering principles (Ordering,, and DLO,,) in tree-like Res(PCy,), and hence
separated tree-like Res(PC; r,) and Res. Regarding the separation between tree-
like Res(PC; r,) and Res, [IS20] strengthened Gryaznov’s result by proving that a
lifted version of Pebbling formulas is hard for tree-like Res(PC, ,), but it is easy
for regular Resolution.

Table 3 summarizes the mentioned lower bounds for (tree-like) Res(PCy,IF).

In this paper we continue investigating the power of Res(PC; r), tree-like
Res(PCy r) and also their generalization Res(PCy ) and tree-like Res(PCy z) when
d > 1. Our main theorem is the following new size-width relation. Here Sq (')
and S} p(F') are the least number of steps to refute F' in Res(PCyr) and tree-
like Res(PCy ) respectively, wy g(F') is the least width required to refute F' in
Res(PCy r), and w(F') is the width of the CNF F'.

Theorem 2.1. (Size-Width relation, a simplified version) Let R be a finite ring
and F' be an unsatisfiable CNF in n variables, then the following inequalities hold:

1. wap(F) < w(F) + 0 (log(S} r(F))).-

IPrivate communication with Leszek Kolodziejezyk.
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2 wan(F) < w(F)+ 0 (\/(n+San(F)) log(Sun(F))) .

This theorem has two advantages over the size-width relation of [PT20]. First,
it works for dag-like systems such as Res(PC; ) and hence we can prove nontrivial
lower bounds in the dag-like setting. Second, it is not limited to linear forms,
and we can prove lower bounds for Resolution over multivariate polynomials. We
would also like to point out that the proof of this theorem uses the same strategy
for both the tree-like and the dag-like proofs, and that all of the lower bounds
that are stated in this paper are proved using this theorem.

Contents of this paper. As we stated earlier, the main theorem of this paper
is a new size-width relation that works for (tree-like) Res(PCy ) proof system
when R is a finite ring. The novel idea that is used to prove these size-width
relations is a combination of the usage of extension variables and the size-width
relation of Ben-Sasson and Wigderson for Resolution [BW99]. In more detail, the
main idea is to use the extension variables to translate refutations in Res(PCy r)
and tree-like Res(PCy ) to Resolution refutations of some new clauses formed
by these new extension variables, then use the size-width relation of Ben-Sasson
and Wigderson for Resolution [BW99], and finally translate back to Res(PCq4r)-
refutations. To prove the lower bounds, we show that if a CNF formula F' has
a low width Res(PC,p)-refutation, then it also has a low degree refutation in
Polynomial Calculus over F when F is a finite field. This strategy was first used
in [PT20] to relate the width of Res(PC,p)-refutations of F' to the degree of
Polynomial Calculus refutations of it. This enables us to combine the known
degree lower bounds for Polynomial Calculus with the new size-width relation to
prove our lower bounds.

We prove the first nontrivial lower bounds (n?>~°")) for Res(PC;y) and in
general for Res(PC, ) (for every fixed d) over finite fields. These new lower bounds
for the dag-like systems are proved for different principles. For the tree-like
case over finite fields, we prove the first super-polynomial and exponential lower
bounds for tree-like Res(PCyr) where d is limited by some sub-linear function of
n and moreover reprove some of the known lower bounds for the case d = 1.

Proof system Formula Reference
FPHP"
Lifted TSs(G, o) [1S20]
Lifted Pebg

Tree-like Res(PCry,) Hall, " Keals "

“County [GK18]

gidg:"g" [Gry19]
FPHP"

Tree-like Res(PCyr ) TS,(G,0) [PT20]

" Random k-CNF
Res(PC, o) Subset-sum principle [PT20]

Table 3: All of the lower bounds in this table are exponential in the number of variables except the lower bounds
for FPHP]' which are exponential in n
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The organization of the paper is as follows. In Section 3, we explain
definitions and notations. In Section 4, we state the main results and prove the
lower bounds. In Section 5, we prove the main results.

3 Preliminaries

3.1 Proof systems
3.2 Resolution

Resolution (Res) is a proof system that works with clauses of literals. Every
clause in a Resolution derivation is a disjunction of variables or negation of vari-
ables without repetition (it is a set of literals). Resolution proof system has the
following rules:

1. Resolution rule:

CVp DV —p
CcvVvD

2. Weakening rule:

_C
CcvVvD

where p € {p1,...,pn} (the set of variables appearing in the initial clauses) and
C and D are arbitrary clauses. We need Resolution to be an implicationally
complete system. This is the reason for including the weakening rule.

A CNF formula is a set of clauses.

Definition 3.1. A Resolution derivation of a clause D from the CNF formula
F ={C,...,Cy} is a sequence of clauses (m = Dn, ..., D;) such that:

1. D= D,

2. for every i <, D; is in F or D; was derived by the resolution rule or the
weakening from {D;|j <1} in one step.

A Resolution refutation of a CNF F is a Resolution derivation of O from F.

3.2.1 Polynomial Calculus

Let R be a ring. Then Polynomial Calculus over the ring R, PCy is a proof system
that works with multivariate polynomials with coefficients in R. A multivariate
polynomial f € R[z1, ..., xy] is true under the Boolean assignment a € {0, 1}" iff
f(a) = 0. PCg has the following rules:

1. Addition:

I g
af + bg

for every a,b € R,
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2. Multiplication:
f

g-f

where f,g are multivariate polynomials with coefficients in R. Moreover, PCg
has 2% — x for every x € {x1,...,z,} as an axiom.

Definition 3.2. A PCg-derivation of a multivariate polynomial f € R[x1, ..., 2y
from a set of multivariate polynomials F C R|xy, ..., 2], is a sequence of multi-
variate polynomials (m = fi, ..., ) such that:

L fl:f;

2. for every i <1, f; is in F, or f; is a PCg axiom, or f; was derived by the
rules of PCr from {f;|j < i} in one step.

A PCg-refutation of a set F' C R|xy,...,x,] is a PCg-derivation of 1 from F.

One of the important measures for Polynomial calculus derivations is the
degree measure.

Definition 3.3. For a multivariate polynomial f € R|xi,...,xy,] let deg(f) be
the degree of f. For a set F' C R[x,...,xy] (not necessarily nonempty) and a
multivariate polynomial f € R[xy, ..., x,], the notation

FEEf

means there exists a PCgr-derivation © for f from F such that the degree of each
multivariate polynomial in 7 is at most d.

To prove the relation between Res(PCip) and PCp we need the following
lemma when R is a ring of prime characteristic.

Lemma 3.1. Let F be a finite field such that char(F) = p for a prime p and
f € Fla,...,x,] be a multivariate polynomial. Then

(P s 1

Proof. Let f = 3 (4myea @+ M in which for every (a, M) € A, M is a monomial
and a is its coefficient. For every ¢ > 1, define

g; = Z a?' - M.
(a,M)eA

PC
We want to show that for every i > 1, {g;} - de; 7 Git- It is known that the

identity (z+y)? = P +yP" is true in every field of characteristic p when p is prime.

Therefore
i+1
= &M
(a,M)eA
which implies
PC i1
{gi}|p~deg§f) 2 a M
(a,M)eA
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by the multiplication rule. Moreover, it is easy to prove that for every monomial
. PC )

M = 1", 2% and every k > 1, @ m M* — M. This can be proved

by induction on deg(M) and using the fact that z? — z is an axiom for every

x € {x1,...,xn}. This implies that by applications of the addition rule we get

PCr it+1 i+1
{gi}lm Soa? M — T (MP - M)

(a,M)eA

which means
PCp

{9i} pdeg(f) Jit1-

PCp

Following the same argument, we have {f?} dea (7

T 9 by multiplying f?=2 and

PC
do the rest of the argument as before. Therefore we get {f?} . de; L where
p¥ is the order of F. As T is a finite field, for every a € I, @’ = a which implies
that g = f 0]

3.2.2 Resolution over Polynomial Calculus

For a ring R, we define Resolution over Polynomial Calculus (over R), denoted by
Res(PCg), as a proof system like Res, except that instead of disjunctions of literals,
it works with disjunctions of multivariate polynomials of Boolean variables (no
negative variables) with coefficients in R. Moreover, there is no repetition of
multivariate polynomials in a disjunction (each disjunction in a derivation is
treated as a set).

Definition 3.4. A disjunction C = \/,; f; where every f; € R[xy,...,x,] is a
clause if every f; appears in C exactly once.

A clause C =V, f; is true under a Boolean assignment a € {0, 1}" iff there
exists an ¢ such that f;(a) =0.

Definition 3.5. A CNF, formula F' is a set of clauses of multivariate polynomials
such that every multivariate polynomial f in a clause of F' has degree at most d.
So a CNF can be written as a CNF; formula by translating x to x — 1 and —x to
x.

Following [PT20], we use a similar set of rules for defining Res(PCg):

1. Resolution rule:

cVvf DVyg
CVDV(af +bg)
for every a,b € R,
2. Weakening rule:
C
CVf

3. Simplification rule:
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CVa

C
for every a € R\ {0},
4. Multiplication rule:
Cvf
CVi(g-f)

where f, g are multivariate polynomials with coefficients in R and C, D are arbi-
trary clauses. We note that after an application of the resolution, the weakening
or the multiplication rule, contraction of duplicates disjuncts is done to make
sure that the resulted disjunction is a clause. Furthermore, Res(PCg) has the
following axioms:

1. Zero axiom which is the polynomial 0.
2. Boolean axioms which are z V (x — 1) for every x € {z1, ..., 2, }.

Definition 3.6. A Res(PCg)-derivation of a clause D from the CNFy formula
F = {Cy,...,C} is a sequence of clauses of multivariate polynomials (m =
Dx,...,D;) such that:

1. D= D,

2. for every i <, D; is in F, or D; is a Res(PCg) axiom, or D; was derived
by the rules of Res(PCg) from {D;|j < i} in one step.

A Res(PCg)-refutation of a CNFy F is a Res(PCg)-derivation of ) from F.

Res(PCqr) is a proof system using Res(PCg) rules and axioms, with the re-
striction that every multivariate polynomial appearing in a derivation should have
degree at most d.

It is easy to see that (tree-like) Res(PC; g, ) is p-equivalent to (tree-like) Res()
of [IS20] and (tree-like) Res(PCyp,) is p-equivalent to (tree-like) R(PC,/F5) of
[Kral8].

3.2.3 Additional notations and definitions

In this part, we define complementary notations and definitions for the rest of
the paper.

Definition 3.7. Let 1 = Dy,..,D; be a derivation in one of the defined proof
systems. The graph G associated with © is a DAG with D;s as nodes, and
for every derivation step, directed edges are added from the assumptions to the
consequence. w is called tree-like iff G, is a tree. Moreover, the size of  is | and
it is denoted by |r|.

In general, it is possible to make any derivation tree-like by making copies
of the initial clauses. If P is one of the defined proof systems, then P* denotes
tree-like P.
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Definition 3.8. Let C = ;. fi be a clause of multivariate polynomials over
the ring R. Then the arithmetization of C' is the multivariate polynomial he =
[ltec [ (hg = 1) expanded as sum of monomials.

Definition 3.9. The set of variables appearing in a clause C' and a CNF or CNFy
formula F' are denoted by V(C) and V(F') respectively.

Definition 3.10. The width of a clause C' is the number of literals (multivariate
polynomials) in it and it is denoted by w(C').

Definition 3.11. For a CNFy formula F = {C1,...,Ck}, w(F') = maxcer w(C).
For a derivation m in one of the defined Resolution based proof systems, w(m) =
maxper W(D).

Definition 3.12. For a proof system P, a set of clauses F (not necessarily
nonempty) and a clause D, the notation

FED
means that there exists a P-derivation © for D from F such that w(m) < w.

If F' is an unsatisfiable CNF,; and R is a ring, then the refutation size and the
width corresponding to F' in Res(PCg4 r) are respectively:

1. Sqr(F) is the minimum || among all Res(PC, r)-refutations = of F.

2. wgr(F) is the minimum w(7) among all Res(PCg4 r)-refutations 7 of F,

u.r(F) is the refutation size corresponding to F' in Res*(PCyp). If F'is a CNF
formula, then Res-refutation width and size corresponding to F' are denoted by
WRes(F') and Sges(F). For Res®, the refutation size of F' is denoted by Sges(F).

An important result in proof complexity that we use in this paper is the size-
width relation of Ben-Sasson and Wigderson for Resolution that were proved in
the seminal paper [BW99].

Theorem 3.2. ([BW99]) For every unsatisfiable CNF formula F' in n variables,
the following inequalities hold:

1. Wres(F) < W(F) + log(Sgest (F)).

2. wres(F) < w(F) + O (y/nlog(Sres(F))).

where log is the binary logarithm.

3.3 Hard formulas

In this part, we define the CNFs that are hard for (tree-like) Res(PCyp) when [F
is a finite field. Moreover, we state the known PCy degree lower bounds for them
as they are one of the ingredients in the proofs of the lower bounds.
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3.3.1 Mod q Tseitin formulas and Flow formulas

Definition 3.13. (Mod q Tseitin formulas) Let G = (V,E) be a directed d-
reqular graph (G is a d-reqular undirected graph whose edges are then oriented).
For every (v,u) € E, we have a fizved variable x,,. Let o : V. — F, (q is a
prime number). Then Mod q Tseitin formula TS,(G, o) is a CNF encoding of the
following equations for every v € V:

(Y Zou— D, Tyw)=o(v) (mod q).

Note that TS,(G, o) is unsatisfiable iff ° ¢y 0(v) # 0 (mod ¢). This formula
has O(2%|V|) clauses and each clause has width d. So in particular, the number
of clauses of this formula is linear in the number of variables when d is a fixed
constant. This is important as it shows that our dag-like lower bound is nontrivial.

The following theorem states the existence of strong PCy degree lower bounds
for TS,(G, o).

Theorem 3.3. ([AR01]) For any field F and for any fized prime q such that
char(F) # q, there exists a constant d, such that the following holds. If d > d,
and G is a d-regular Ramanugjan graph on n vertices (augmented with arbitrary

orientation of its edges), then for every function o such that TS,(G, o) is unsat-
isfiable, every PCg-refutation of TS,(G, o) has degree Q(dn).

Actually, the above theorem holds for any good enough expander graph (see
[ARO1] for the required parameters). It is well-known that for every fixed d, there
exists an infinite family of d-regular Ramanujan graphs (see [LPS88]), hence for
every fixed d, there exists an infinite family of d,-regular Ramanujan graphs G
such that lower bound of Theorem 3.3 works on Mod ¢ Tseitin formulas defined
based on members of G.

Definition 3.14. (Flow formulas) Let G = (V, E) be a directed d-regular graph
(G is a d-regular undirected graph whose edges are then oriented). For every
(v,u) € E, we have a fized variable x,,,,. For everyv € V denote by PosFlow(G, v)
the following Boolean predicate:

Yo (I =2zwy) > Y (1 220w).

{w|(w,w)eE} {w|(v,w)eE}
Then Flow formula FI(G) is a CNF encoding of PosFlow(G,v) for every v € V.

It is easy to see that FI(G) is unsatisfiable. Moreover, similar to the TS (G, o)
formula, FI(G) has O(2¢]V]) clauses and each clause has width d. So again, if G
is a constant degree graph, then the number of clauses in this formula is linear in
the number of variables which is important for the dag-like lower bound. Finally,
we have the following theorem for Flow formulas.

Theorem 3.4. ([AR01]) For any field F and for any d > 255, if G is a d-
reqular Ramanujan graph on n vertices (augmented with arbitrary orientation of
its edges), then every PCg-refutation of FI(G) has degree Q(dn).

Again, the above theorem holds for good enough expander graphs (see [ARO1]
for the required parameters).
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3.3.2 Random k-CNF

Definition 3.15. A random k-CNF is a formula F ~ Fi** with n variables that
is generated by picking randomly and independently A - n clauses from the set of
all 2% (Z) clauses of width k.

The following theorem explains the known degree lower bounds for random
k-CNFs in PCp.

Theorem 3.5. ([AR01]) Let F ~ F"*, k > 3 and A = A(n) is such that
A = o(n%). Then every PCg-refutation of F has degree Q(AZ/(k—nW) with
probability 1 — o(1) for any field F.

It is not hard to show that if FF ~ F*® and A satisfies the assumption of the
theorem, then with probability 1 — o(1) F is unsatisfiable (see [CS88]).

3.3.3 Pigeonhole principle and Counting mod ¢ principle

Definition 3.16. (Pigeonhole principle) The CNF formula FPHP" (m > n) is
the set of the following clauses over the variables {p;; : 1 <i<m,1 < j<n}:

1. For every 1 <i < m:
P= "\ pij

1<j<n

2. For every1 <i,7 <m,i# 5,1 <k<n:

Pijsk = "Dik V Dk
3. Foreveryl1 <i,j <n,i# j,1<k<m:

Pr_sij = —pri V TPk

As the algebraization of P; has degree n, we cannot get a meaningful PCg
degree lower bound for it. To solve this matter we use the algebraic Pigeonhole
principle (aPHP]") which has the set of the clauses of FPHP]" except that each

P; clause is replaced by the linear form —1 4 3%, p; ;. We have the following
degree lower bound for aPHP;".

Theorem 3.6. ([Raz98]) For any m > n and any field F, every PCg-refutation
of aPHP" has degree at least n/2 + 1.

Definition 3.17. (Counting mod q principle) The CNF formula County (n =1
(mod q)) is the set of following clauses over the variables x. where e ranges over
all g elements subset of {1,...,n} (we denote this set as U):

1. For every 1 <i<n:
Qi = \/ Te.
{e€Ulice}

2. For every different e, e’ € U such that eNe' # &:

Qe,e’ = ke V T
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Again to have a meaningful PCy degree lower bound, we define the algebraic
Counting mod ¢ principle (aCount;) which has the same clauses as Count, except
that each @Q); is replaced by the linear form —1 + > r.cpjice) Te- We have the
following PCp degree lower bound for aCount;.

Theorem 3.7. ([BGIP01]) Let p > 2 be a prime such that p fq and let F be a
field of characteristic p. Then any PCg-refutation of aCounty requires degree on,
for a constant § > 0.

We need the following lemma which relates S} p(F) to S} g(aF') where F' €
{FPHP", Count; }.

Lemma 3.8. Let {z1,...,z,} be a set of variables and C' := \/1<i<, xi. Then
there exists a Res*(PCq r)-derivation of C from —1+ 3%_; x; of size 2n — 1.

Proof. Let m be the following sequence of clauses:

1. T = -1+ Z?:l XTi.

2. For1<k<n-1,
Tyt i= o V (T — 1).

3. For1<k<n-1,
k

Ttk ‘= (—1 + Zn: .Tj) V \/ (.Tu — 1)

j=k+1 u=1

It is easy to see that 7 satisfies the desired properties.

4 Main results

In this section, we mention the main results of this paper. The main theorem
is a size-width relation for (tree-like) Res(PC4 ) when R is a finite ring (for the
proof see Section 4).

Theorem 4.1. (Size-Width relation) Let R be a finite ring and F' be an unsat-
isfiable CNFy in n variables, then the following inequalities hold:

1. Wd’lllng) — 1 < max{3,w(F)} + log(357 r(F)).

2. If F is a CNF formula, then

Wd,|1;(|F ) < max{3,w(F)} + O <\/ (n + Sar(F)) log(San(F >>> :

where log is the binary logarithm.

Another statement which we need to prove the lower bounds is the following
lemma. This lemma shows that Theorem 45 in [PT20] holds for the general proof
system Res(PCyr) when F is a finite field (for the proof see Section 4).
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Lemma 4.2. Let F be a CNFy and Hp = {hc|C € F}. Then for every finite field
Res(PC
F such that char(F) = p and every clause C', if F' I% C', then Hp l;% her.

An easy and direct consequence of Theorem 4.1 and Lemma 4.3 is the following
corollary which is the main tool for proving our lower bounds.

Corollary 4.3. Let F be a finite field such that char(F) = p and F' be an unsat-
isfiable CNF,; in n variables such that every PCg-refutation of F' requires degree
d'. Then the following inequalities hold:

1. log(Sie(F)) > Q (g — w(F)).

2. If F is a CNF formula, then

ot Sux(F) oz Saa(F) = 9 (51~ w(r)).

4.1 Lower bounds for the hard formulas

The following corollaries explain the new lower bounds. The general strategy to
prove these lower bounds is to combine Corollary 4.3 with suitable PC degree lower
bounds. It is worth mentioning that Corollaries 4.4, 4.5, and 4.6 use the same
proof pattern and Corollaries 4.7 and 4.8 use a second proof pattern. Therefore,
we just state the proofs of Corollaries 4.4 and 4.7.

Corollary 4.4. (Mod q Tseitin formula) Let F be a finite field and q be a fived
prime such that char(F) # q, then there exists a constant d, such that the follow-
ing holds. If c > dg, then for every large enough n and every c-reqular Ramanujan
graph G on n nodes (augmented with arbitrary orientation of its edges) and for
every function o such that TS,(G, o) is unsatisfiable,

9_ (log log n)2

1. If d is a fized constant, then Sqp(TSy(G,0)) > n"" e
2. S;p(TSy(G,0)) = 9% fripa) (here d can be a function of n).

Proof. Here we prove the first part as the proof of the second part is similar.
9 (log log 'n.)2

Suppose for a large enough n, Sur(TS,(G,0)) < n losn . Then by Theorem
3.3 and Corollary 4.3 there exists an € > 0 such that

2
9_ (log log n)2 o (loglog ’”4)2 ecn
n4n"" " len Jlog(n®™ Ter ) >Q ( - c) )
( ) |F|pd

.. 2 (10810g")2 2_M 9
but this is not true because n° en  log(n”~  Ten ) = o(n?), hence we get a
contradiction and this completes the proof. O

Corollary 4.5. (Flow formula) Let F be a finite field. If ¢ > 255, then for every
large enough n and every c-reqular Ramanujan graph G' on n nodes (augmented
with arbitrary orientation of its edges),

9_ (loglog 'n.)2

1. If d is a fized constant, then Sap(FI(G)) > n™  Ten
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2. S;p(FI(G)) = oSz (here d can be a function of n).

Corollary 4.6. (Random k-CNF) Let F be a finite field, F' ~ ]—",?’A, k>3 and
A = A(n) is such that A = o(n%). Then with probability 1 — o(1):

1. Ifd is a fized constant and A = c for a constant such that c27% > 0.7, then

9_ (log log n)2

Sd,]F(F> zn logn

2. Syp(F) = ZQ(lFlpdA2/<’“‘2) IOgA) (here d can be a function of n).

Corollary 4.7. (Pigeonhole principle) Let F be a finite field of characteristic p.
22 ()

Then for every m,n (m >n) and every d, Sjp(FPHP) =

Proof. First, we show that S} z(aPHP}") = 22(f) . Note that by Theorem 3.6
and Corollary 4.3
* m n
log(S;p(aPHP)) > Q <|F|pd — 2) :

This implies that S} p(aPHP}") = 22(a) | To complete the proof we show that a
Res*(PCqr)-refutation of FPHP]" of size s can be transformed into a Res*(PCgr)-
refutation of aPHP]" of size at most 2ns and this gives the desired lower bound.
Let 7 be a minimal size Res*(PCgyp)-refutation of FPHP]" (|m| = Sjr(FPHPT')).
To transform 7 to a refutation of aPHP]" which we call it 7/, it is sufficient to
derive every P; clause that is used in 7 from aPHP}' and then concatenate these
derivations to the beginning of 7. Note that there are at most |7| many times
usage of the P; clauses in 7. So by Lemma 9.3

7] < (20 = Dl| + || = 2ni].

o (1eta)
——

O

Therefore S} z(FPHP') =

Corollary 4.8. (Counting mod q principle) Let F be a finite field of characteristic
Q —
p where p fq. Then for every n and every d, Sjy(County) = %
q-1

It is worth mentioning that the lower bound for FPHP;" when d = 1 was proved
using the generalized prover-delayer games in the previous works [[520, PT20],
but here we prove it using the application of the size-width relation. Moreover,
our lower bound for FPHP]" matches the previous lower bounds in [I520, PT20]
up to a multiplicative constant in the exponent. Regarding d > 1 (even non-
constant ones), it implies strong lower bounds (at least super-polynomial for
even big values of m and d) for tree-like R(PCyp,) system of Krajicek [Kral§]
for FPHP,". Moreover, the last corollary gives a new proof of the same result in
[GK18].

5 Size, width, degree and their relations

This section is dedicated to the proofs of Theorem 4.1 and Lemma 4.3.
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Proposition 5.1. For every ring R, and every monomial M =[]}, 25 of degree

d,
Res(PCq4,r)
=) MoV (M - 1)

Proof. We prove this proposition by induction on d. The statement is true when
d < 1 as Res(PC, ) has Boolean axioms for every variable and also 0 is an axiom.
Let M = 2’ M’ with degree d = k + 1. By induction hypothesis

Res(PC
o =Tl apy (M - 1),

So by two times using of the multiplication rule we get

Res(PC
%) I%x’]\/[’ V(' M — 2.

Note that 2’ V2’ — 1 is an axiom in Res(PCy1 r), and hence by k times using the
multiplication rule we get

Res(PC
@ %x']\/ﬂ V(2" —1).

By applying the resolution rule on ' M’V (2’ M’ — z') and 2’ M’ Vv (2/ — 1), we get

Res(PC
@ I%x']\/[' V(z'M' —1).
U

The following proposition shows that something similar to Proposition 10 in
[PT20] holds for multivariate polynomials when we are working with Res(PCqy r).

Proposition 5.2. Let R be a finite ring. Then for every multivariate polynomial
I € R[xy, ..., x,] of degree d,

Res(PCq4,r)
o V(f —a).

a€R

Proof. We prove the proposition by induction on the number of non-zero degree
monomialsin f. The statement is true for multivariate polynomial f = b, (b € R),
because 0 is an axiom and we can use the weakening rule on 0 to derive the desired
clause. Let f = bM + g such that M = [[™, 2% is a non-zero degree monomial
and b € R\ {0}. ¢ has one less non-zero degree monomial than f, hence by

induction hypothesis,
Res(PCq4,Rr)
@ |7|R|+1 \/R(g —a).
ac

By Proposition 11,
Res(PCq4,r)
3 MV (M —1).

So by using |R| times resolution rule we get

Res(PCq4,r)
@'W(M—l)\/ \/(bM—I—g—a).

a€R
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By the same argument, we get
Res(PCq4,r)
@'WM\/ \/R(bM—I—g—a—b).
ac

Therefore by the resolution rule on M V V,cp(bM + g —a —b) and (M — 1) vV
Vaer(bM + g — a) and a simplification rule we have

Res(PCq4,r)
®| |R|+1 \e/R(f —a).
O

For every multivariate polynomial f € R[z1, ..., 2,], fix an atomic variable g;.
These atomic variables are going to be the translation of multivariate polynomials.
For every CNF, formula F' and every Res(PC,g)-refutation 7 of F'; we use the
following simple mapping to translate the multivariate polynomials that appear
in clauses of 7 to atomic variables:

Q(f) = qy-

For a clause C, Q(C) is V,cc Q(r) (Q(0) = 0) and for a CNF, formula F' =

The general plan is to translate an arbitrary Res(PCy g)-refutation to a Res-
olution refutation using the {qr}se Rle1,....zn) Variables. To this end, we define the
CNF formula Ex(7) which contains the following clauses:

1. If the simplification rule is used on a non-zero constant multivariate poly-
nomial ¢ in 7, then —q, € Ex(m).

2. qu; V qy;—1 € Ex(m), if the axiom x; V (x; — 1) is used in 7.
3. qo € Ex(7), if the axiom 0 is used in 7.

4. If the resolution rule is used in 7 to derive af 4 bg from f and g, then
¢V gy V Qaping € Ex().
5. If the multiplication rule is used to derive g - f from f, then
—qy V qgp € Ex(m).

We need another translation from clauses definable in V(Ex(7) UQ(F')) to clauses
of multivariate polynomials of degree at most d over V(F'). For this, we define a
mapping from these variables to multivariate polynomials and hence, clauses of
these literals automatically translate to clauses of multivariate polynomials. This
mapping is defined as follows:

/ _ .f r=4dqr
v {\/aeR\{O}(f —a) =g

For a clause C, Q'(C) is V,ec Q'(1r) (Q'(0) = 0). Let C be a clause of literals or
multivariate polynomials, then m[C] is the set of disjuncts of C, so w(C) = |m[C]].
The following lemma is the core for proving the size-width relation.
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Lemma 5.3. For a finite ring R and every CNFy formula F', let w be
a Res(PCg.r)-refutation of F, then the following statements are true:

1. There exists a Res-refutation " of Ex(m) U Q(F') such that |r'| < 3|x|.
Moreover, if  is tree-like, then 7' is also tree-like.

2. If F is a ONF, then |V (Ex(7) U Q(F))| < 2n + 3|n|.

3. For every clause C' in variables of Ex(m) U Q(F), if

Ex(r) UQ(F) 5= ¢,

Res(PCq4,r) 1
F - Q@)
Proof. To prove item 1 we do as follows. Let 7, be a sub-sequence of 7 such
that a clause C in 7 is in 7, iff there exists a directed path from C' to the empty
clause in Gr. Note that 7 is a Res(PCq4 g)-refutation of F', hence 7; becomes a

Res(PCy g)-refutation of F' too. The important property of 7, is the following
claim.

then

Claim 5.1. Let f € R[zy,...,x,] be a multivariate polynomial, then if the step

C
CVf

exists in ms for some clause C, then qf € V(Ex(7)).

Proof. Suppose such a step exists in 7, for f and a clause C'. Note that according
to the definition of m,, there exists a directed path P from C'V f to the empty
clause in G, and moreover, P also exists in G,,. P starts from C V f to 0,
hence there should be a step in P such that either one of the resolution rule,
or the multiplication rule, or the simplification rule is used on f. This implies
that ¢; or its negation is appeared in one of the clauses of Ex(w) and hence
qr € V(Ex(m)). O

Now we are ready to prove the statement of the lemma. Let 7y = Dy, ..., D;.
We want to construct a sequence 7 C 7, C ...7r] from 7, by iterating the following
process on D;s starting from D;. Suppose we have constructed 7}_, = Dj, ..., D},
(for some u) from 7}_, and D;_; and now we want to construct m:

1. If D; is a clause of F, then Q(D;) is a clause of Q(F') and 7} = 7;_,, Q(D;).

2. If D; := x; V (z; — 1) for some j, then q,; V q,;—1 is a clause of Ex(7) and
T =T 1 Qe V Qa1

3. If D; := 0, then qo is a clause of Ex(7) and 7} = 7_1, qo.

4. If D; = CV 'V (af+bg) and it is derived from D; = C'V f and D, = C'Vg

by the resolution rule, then if

(a) f#y:
Then —qf V gy V qartbg is a clause of Ex(7m) and moreover, Q(C) V ¢
and Q(C") V g4 are the last clauses of 7} and 7, respectively. So 7 is
m._, appended by the following clauses:
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L =g V 24y V Qaftbg,
1i. Q(O) \% g \% Qaf+bgs
iii. QC)Vv Q) V Qaf+bg-

So the appended derivation is the following:

QC)Vaqr  —qrV =Gy V Qasivg
QC)V “qg V Gaf+bg QIC") Vv dg
Q(C)V Q(C") V Gag g

(b) f=g:
Then —gf V garior is a clause of Ex(7) and moreover, Q(C) V ¢ is the
last clause of 77. So 7} is 7;_; appended by the following clauses:

L =qs V Qagos,
ii. Q(C)V qafivs
iii. Q(C)VQ(C")V qagos-
So the appended derivation is the following:

Q(O) V gy —qr V Qaftbf
Q(C) V qaftbs
QIC)V Q(C") V qasror
5. If D; = C'V f and it is derived from D; = C by the weakening rule, then
by Claim 5.1 ¢y € V(Ex(7)). Moreover, Q(C) is the last clause of ;. So
t=m_1,Q(C) V gs. So the appended derivation is the following:

T

_ Q@)
Q(C) V gy

6. If D, = C and it is derived from D; = C Va (a € R\ {0}) by the simplifi-
cation rule, then —¢, is a clause of Ex(7). Moreover, Q(C) V ¢, is the last
clause of 7. So 7 = m;_;,7qa, Q(C). So the appended derivation is the
following:

QIC)Vaa G
Q(0)

7. If D; = C'Vg- f and it is derived from D; = C'V f by the multiplication rule,
then —¢gf V q4.5 is a clause of Ex(m). Moreover, Q(C) V gy is the last clause
of 7% So 7w = m_1,7qs V qg.5, Q(C) V qg.5. So the appended derivation is
the following:

QIC)Va  —qrVayy
Q(C) V qq.5
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It is easy to verify that 7’ := 7] is a Res-refutation of Ex(m)UQ(F). The reason
is that for the cases (a), (b), and (c), the appended clauses are in Ex(m) U Q(F).
For case (e), the weakening rule of Resolution is used. For the remaining cases,
the resolution rule is used. The initial clauses are the clauses of Ex(m) U Q(F)
and the last clause in 7’ is the empty clause, hence 7’ is a Res-refutation of
Ex(m) U Q(F). It is apparent from the explanations that if 7 is tree-like, then 7’
is also tree-like. Note that for every i the inequality |7}| < |7/_;| 4+ 3 holds, hence
|| < 3]|n].

To prove item 2, note that F' is a CNF, so as a CNF;, every disjunct in a
clause of it is of the form of z or x — 1 where x € V(F). By the fact that F' hasn
variables, we can deduce that |V (Q(F))| < 2n. Moreover, if we look at the way
Ex(m) was constructed, we can see that for every step in 7, we add a clause with
at most three new variables to Ex(m), so this implies |V (Ex(7))| < 3|x|.

We prove item 3 by induction on the number of steps of deriving C’. For the
base step, we argue as follows. If the number of steps in deriving C” is one, then
C" is one of the initial clauses of Ex(m) U Q(F'). Therefore we have the following
cases:

1. C"eQ(F):

In this case Q'(C") is a clause of F', so

r | Res(F;)Cd,R) QI(O/)

2. O/ = (o:

0 is an axiom of Res(PCg4r), so

Res(PC4,Rr)
oF—7"—0.

3. €' =g, for some a € R\ {0}:

Note that Q'(—¢s) = Vier (o}(a — b) which is Vyep\ g3 b- 0 is an axiom of
Res(PCy r), so by |R| — 1 times use of the weakening rule we get

Res(PC4,Rr)
%) |7| . \/ b
beR\{a}

4. C/ = Qx; \% Qr;—1"
Q' (¢u; V qu;—1) is z; V (x; — 1) which is an axiom of Res(PCy ), so

Res(PC
o o) o (2 — 1),

5. C"=qs V Gy V afbg:

(a) f#g:
Note that
Ex(m) UQ(F) B ¢,

Res(PCq, R)
P Trm \/R(f —¢)
ce
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and

Res(PCq4,r)
o Vg —o)

ceER

hence by the resolution rule we get

ol af+bg)v . (f—ov V (g—o.

ceR\{0} ceR\{0}

(b) f=g:
Note that
Ex(m) UQ(F) E= ¢

because C" = —qf V qaf+vf- By Proposition 12,
Res(PCq,R)
g |R|+1 \/ (.f - C)?
ceER
hence by the multiplication rule we get

St (a4 b f v\ (fe).

ceR\{0}
6. C'=—qrVqgys:
Note that
Ex(7) UQ(F)FE= ¢
By Proposition 12,
o P V- o,

ceER

hence by the multiplication rule we get

St g v\ (f o)

ceR\{0}

For the induction step, the argument goes as follows:
1. Resolution rule:
Suppose C and D are clauses in variables of Ex(7m) U Q(F') such that
Ex(m) UQ(F) = C v D

in £+ 1 steps. Moreover, assume the last rule is an application of the
resolution rule on C'V ¢ and D V ¢y such that ¢ € V(Ex(m) U Q(F)).
Therefore

(a) Ex(m) UQ(F) Ii—ef' C'V qf in at most k steps.

b) Ex(m) U Q(F Ej,es D V —q; in at most k steps.
2 f

So w = max{wy, ws,w(CV D)}. Moreover, by induction hypothesis
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(a) Fha 2 Q/(C v qp).
() F ot @DV =ay).
Note that @(qr) = f and Q'(=qy) = Veem(o} (f —¢). Let
Hi={f—cceR}.
then by applying the resolution and simplification rules |R| — 1 times, we

can derive
E = \/ g
gem[Q'(CVD)\H

from Q'(C'V qf) and Q'(D V —qy). Note that m[E] C m[Q'(C' Vv D)]. The
width of deriving F' is at most

max {(w; + 1)|R|, (wz + 1)|R|,w(Q'(C V D)) + |R| — 1}
which is less than or equal to
max {(wy + )[R, (w2 + D|R[, (w(C'V D) + 1)(|R| - 1)},
which is less than or equal to
| R|(max {wy, wa,w(C'V D)} +1).

If m[@Q'(C'V D)|NH = @, then we are done, otherwise m[Q'(C'V D)]\ H

Res(PC
m[Q'(C Vv D)]. In this case, {E} W(QE(C\TS;) Q' (C Vv D) by applications of
the weakening rule, so the width of deriving Q'(C'V D) is at most

max{Q'(C'V D), |R|(max {w;, ws,w(C'V D)} + 1)}
which is less than or equal to
| R|(max {w1, ws,w(C'V D)} +1).

. Weakening rule:

Suppose C and D are clauses in variables of Ex(7m) U Q(F') such that

Ex(m) UQ(F) = C v D

in k4 1 steps. Moreover, assume that the last rule is an application of the
weakening rule on C. Therefore

(a) Ex(m) UQ(F) Iz—ef' C' in at most k steps.

So w = max{wy,w(C V D)}. Moreover, by induction hypothesis

Res(PCq,r)
@ Fieet go)
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5.1

If D=VgeadrV Veen gy where A, B CV(Ex(m) UQ(F)), then

m(Q'(D)] € {flay € A} U{g —clc € R\ {0}, ¢, € B},

so by applying the weakening rule at most |A|+|B|(|R|—1) times on Q'(C),
we can derive '(C'V D). The width of deriving Q'(C' Vv D) is at most

max{(wy + 1)|R[,w(Q'(C' vV D))}
which is less than or equal to
max{(wy + 1)[R|,w(C'V D)(|R] - 1)},
which is less than or equal to

| R|(max{wy,w(C'V D)} +1).

Proof of Theorem 4.1

. Let 7 be a minimal size Res"(PCy r)-refutation of F' (|z| = S; z(F)). By

the first part of Lemma 9.1,
SRes* (Ex(m) U Q(F)) < 35 r(F).
On the other hand, by the third part of Lemma 9.1,

Wd,R(F)
|R|

— 1 < wres(Ex(m) UQ(F)).

Furthermore, w(Ex(7) U Q(F")) < max{3,w(F)}, because w(Ex(7)) < 3 by
the way we constructed it. Note that by the first inequality of Theorem
19.2

WRes(Ex() U Q(F)) < w(Ex(m) UQ(F)) + log (Sres (Ex(7) U Q(F))) .
So putting these inequalities together we get

Wd7R(F)
B

— 1 <max{3,w(F)} + log(3S} p(F)).

. The proof of this part is similar to the proof of the previous part with

some extra changes. Let 7 be a minimal size Res(PC, g)-refutation of F
(|7] = Sq.r(F)). By the first part of Lemma 9.1,

SReS(EX(TF) U Q(F)) S 3Sd7R(F).
On the other hand, by the third part of Lemma 9.1,

Wd7R(F)
|R|

— 1 < Wres(Ex(m) U Q(F)).
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Furthermore, w(Ex(7) U Q(F)) < max{3,w(F)}, because w(Ex(mr)) < 3
by the way we have constructed it. Note that by the second inequality of
Theorem 19.2

WRes(Ex(m) U Q(F)) < w(Ex(m) UQ(F))+

O (VIV (Ex(m) U Q(F)) | Tog(Sres (Ex() UQ(F))) ).
so putting these inequalities together we get

Wd,R(F)
|R|

< max{3,w(F)} + O (wv (Ex(m) UQ(F))]| log(Sdﬂ(F))) .

To complete the proof, it is sufficient to bound the value of |V (Ex(7m)UQ(F))|
and by the second part of Lemma 9.1 we know

[V(Ex(m) UQ(F))| < 2n+ 3Sqr(F),

so we get the desired inequality which is

Wd7R(F)
|R|

< max{3,w(F)} + O <\/(n - Sur(F)) log(Sdﬂ(F))) .

5.2 Proof of Lemma 4.2

The proof of this lemma is similar to the proof of Theorem 45 in [PT20] using
induction on the number of the steps in a derivation of C’ from F'. For the base
step, we argue as follows. If the number of steps in deriving C” is one, then C’
is one of the initial clauses of F' or an axiom. Therefore we have the following
cases:

1. C" € F:

In this case

, |Res(PCar)
=
PCy
tho'} faery her.

SO

2. 0:

0 is an axiom of Res(PCyp), so

Res(PCq4 )
o f——o0o.

Note that z? — z; is an axiom in PCp. So we can derive 0 by using the
addition rule on x? — x;, therefore

PCp
o= 0.
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3. Z; V (.I‘l — 1)

x; V (x; — 1) is an axiom of Res(PCyp), so

Res(PC
o o) L (@ — 1),

Furthermore, ha,v(z;—1) is 2? — z; which is an axiom of PCy. So

5 X Z;.

For the induction step, the argument goes as follows:

1. Resolution rule:

Suppose C' and D are clauses in variables of F' and f, g € F|xy, ..., z,] such

that Res(PC.n)
T CV DV (af + bg)

in £+ 1 steps. Moreover, assume the last rule is an application of the
resolution rule on C'V f and D V g. Therefore

Res(PC

(a) F I% C'V f in at most k steps.
Res(PC

(b) F I% DV g in at most k steps.

So w = max{w,ws,w(C'V DV (af + bg))}. Moreover, by induction hy-
pothesis

PC

(a) HF Ipw_lle hc\/f.
PC

(b) Hp =5 hpyg.

Let E := m[C'V D]. Then by the multiplication rule

PC

(a) {hevs} by aamay e - F-
PC

(b) {hove} fagimy ey b -

Hence by application of the addition rule we get
he(af + bg)
and the degree of deriving this multivariate polynomial is at most
max{pwd, pwad, deg(hr(af + bg))}.

To prove an upper bound for the above quantity we should consider the
following cases:

(a) af +bg € E:
In this case,
he(af +bg) = hevpv(ag+bg)-
Therefore
deg(hg(af 4+ bg)) < dw(C'V DV (af + bg)),

so the degree of deriving hcypy(as+bg) 1 at most

pdmax{wy, ws,w(C' VDV (af +bg))}.
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(b) af +bg € E:
Let £' := E\ {af + bg}. Then

hE(af + bg) = hE/ (af + bg)2

By Lemma 3.1 we have

{(af +b9)*} by af + by,
Hence the degree of deriving hevpy(afrsg) = her(af + bg) is at most
max{pund, pwad,deg(hg(af + bg)),deg(hg) + pdeg(af + bg)}.
Note that he = hcovpv(af+bg), SO
deg(hg(af +bg)) < d(w(CV DV (af +bg)) + 1),

deg(hg) < d(w(C VvV D) —1), and also deg(af + bg) < d, hence the
degree upper bound is

max{pwd, pwod, d(W(C VDV (af +bg))+1),dw(CV D) —1)+ pd}
which is less than or equal to
pdmax{wy, ws,w(C' VDV (af +bg))}.
2. Weakening rule: Suppose C' is a clause in variables of F' and f € F[xy, ..., ;]

such that Res(PC.n)
F—=cCvf

in £+ 1 steps. Moreover, assume the last rule is an application of the
weakening rule on C. Therefore

Res(PC
(a) F I% C in at most k steps.

So w = max{wi,w(C V f)}. Moreover, by induction hypothesis

| PC
(a’) HF pwllil h'C'

Note that hevy = he - f, hence by the first part of Lemma 3.1
PC
(8) {ho} Fagioyeaegtn hovs-
Therefore the degree of deriving hcyy is at most
max{pwld, deg(hc\,f)}
and by the fact that deg(hcvy) < dw(C V f), it is at most

pdmax{wy,w(CV f)}.
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3. Simplification rule:

Suppose C' is a clause in variables of F' and a € F\ {0} such that

r Res(Z}Cd’]F) C

in k + 1 steps. Moreover, assume the last rule is an application of the
simplification rule on C'V a. Therefore

Res(PC
(a) F l% C'V a in at most k steps.

So w = w;. Moreover, by induction hypothesis

| PC
(a) HF pwllil h’C’Va-

Note that hove = ahe, hence by applying the addition rule on z? — z; and
ahc (he = a 'heva + 0(22 — z1)) we can derive he. The degree of this
derivation is at most

max{pw:d, deg(hc)} < pwid.

4. Multiplication rule:
Suppose C' is a clause in variables of F' and f, g € F[zy, ..., x,] such that

Res(PC
F| (wd,]F) Cvyg-f

in £+ 1 steps. Moreover, assume the last rule is an application of the
multiplication rule on C'V f. Therefore

Res(PCq ) .
(a) F leF C'V f in at most k steps.

So w = w;. Moreover, by induction hypothesis

PC
(a) HF |pw—1Fd hCVf-

Note that by the multiplication rule

| PCr
{hovr} [deg(hovy ) tdeg(g) I hov-

So the degree of deriving g - heyy from Hp is at most
max{pw:d, deg(hcyy) + deg(g)} < pwid.
Now to conclude the induction step, we should consider the following cases:
(a) hevgr =9 hevy:

In this case we know
deg(hovg.f) < wid

which means the degree of deriving hcvg.f is at most pwid.
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(b) hovgr # 9 - hovy:

In this case
g'hcvahE'(g'f)Q-
where £ :=m[C]\ {g- f}. Note that by Lemma 3.1
9 PCp
{9- DY oo 9 /-
Hence the degree of deriving hevyg.p is at most
max{pwd,deg(hg) + pdeg(g - f)}.

Note that deg(hg) < d(w(C) —1) and deg(g- f) < d, hence the degree
of deriving hcvg.r is at most

max{purd, d(w(C) — 1) + pd} < pwd.
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Abstract

A map g: {0,1}" — {0,1}™ (m > n) is a hard proof complexity gener-
ator for a proof system P iff for every string b € {0,1}™ \ Rng(g), formula
Tp(g) naturally expressing b ¢ Rng(g) requires super-polynomial size P-
proofs. One of the well-studied maps in the theory of proof complexity
generators is Nisan-Wigderson generator. Razborov [Razl5] conjectured
that if A is a suitable matrix and f is a NP N CoNP function hard-on-
average for P/poly, then NWy 4 is a hard proof complexity generator for
Extended Frege. In this paper, we prove a form of Razborov’s conjecture
for AC®-Frege. We show that for any symmetric NP N CoNP function f
that is exponentially hard for depth two ACC circuits, NW; 4 is a hard
proof complexity generator for AC%-Frege in a natural setting. As direct
applications of this theorem, we show that:

1. For any f with the specified properties, 7,(NWy 4) based on a random
b and a random matrix A with probability 1 —o(1) is a tautology and
requires super-polynomial (or even exponential) AC%-Frege proofs.

2. Certain formalizations of the principle f, & (NPNCoNP)/poly requires
super-polynomial AC®-Frege proofs.

These applications relate to two questions that were asked by Krajicek
[Kral9].

6 Introduction

Proving super-polynomial lower bounds for every proof system is one of the ulti-
mate goals in proof complexity. For this matter, we need to prove that for every
proof system P, there exists an infinite family of tautologies {¢,}nen such that
P does not have polynomial size proofs for {¢, },en. It is known that some weak
proof systems require super-polynomial (or even exponential) size proofs for some
families of tautologies (see [Kral9] for more information). No super-polynomial
lower bounds are known for strong proof systems such as Frege or Extended Frege.
We do not even know super-polynomial lower bounds for AC°(&)-Frege. It seems
that one of the main issues in proving lower bounds is the lack of good candi-
date hard formulas. There are three prominent candidates of formulas that are
believed to be hard for any proof system. The first candidate of these formulas is
random CNFs. Some experts believe that these formulas should be hard for any
proof system (see [Kral9]). Another family of conjectured hard formulas is fi-
nite consistency statements. These formulas have tight connections to important
conjectures in proof complexity and experts believed that they are hard for any
proof system (For a detailed discussion, see [KP89, Pud17]). The third candidate
is proof complexity generators.
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6.1 Proof complexity generators

Let g : {0,1}" — {0,1}™ (m > n) be a function which is computable in a
reasonable low complezity class such as FP/poly. As m > n, {0,1}™ \ Rng(g) is
nonempty. Let b € {0,1}™ \ Rng(g), then as ¢ is computable in FP/poly, we can
naturally express the true statement b ¢ Rng(g) as a propositional formula which
is denoted by 7,(g). If for a proof system P, 7,(g) requires super-polynomial size
P-proofs for every b € {0, 1} \Rng(g), then g is a hard proof complexity generator
for P. The concept of proof complexity generators were defined independently
by Alekhnovich et. al. [ABRWO04] and Krajicek [KraOla].

As pseudorandom generators are an important topic in computational com-
plexity, Alekhnovich et al. [ABRWO04] asked the following natural question: which
mappings g : {0,1}" — {0,1}™ should be considered hard from the point of view
of proof complexity? To understand this concept, different mappings were in-
vestigated from different aspects in [ABRWO04]. In particular, they investigated
conditions that make a Nisan—Wigderson generator hard for proof systems such
as Resolution and Polynomial Calculus.

Krajicek [KraOla] investigated the hardness of different variants of the Pi-
geonhole principle in proof systems and their provability in related theories of
bounded arithmetic. One of these variants is the dual weak Pigeonhole principle
(dWPHP3,)) which says that for every function ¢ : [n] — [2n], g cannot be onto.
An interesting theory of bounded arithmetic is BT := S} + dWPHP(PV) which
has several nice properties (see [Jei04, Jer07]). Here S} is the base bounded arith-
metic theory in the Buss’s Bounded arithmetic hierarchy which is related to the
polynomial-time reasoning (see [Bus86]) and dWPHP(PV) consists of
dWPHPS (f) for every polynomial-time computable function f. A natural ques-
tion is whether S} and BT are actually the same theory. Kraji¢ek introduced the
concept of proof complexity generators as functions which violate dWPHP(PV)
and formulated a conjecture about them in the setting of model theory of arith-
metic that implies S3 # BT (see [Kra2l] for a proof of separation of PV and
PV + dWPHP(PV) under a different assumption). Moreover, this conjecture im-
plies that proof complexity generators are hard for Extended Frege.

Later, Krajicek [KraOlb, Kra04a, Kra04b, Kra05, Kra09, Kralla, Krallb]
investigated proof complexity generators from different aspects, developed the
theory of proof complexity generators in great length and proposed some conjec-
tures. In particular, Krajicek [Kralla] defined the generator nw,, . based on the
gadget generators of [Kra09] and conjectured that nw,, . is a hard proof complexity
generator for any proof system.

Razborov [Raz15] made a significant contribution to the lower bound problem
for proof complexity generators. He proved that Nisan-Wigderson generators
based on suitable matrices and suitable functions are hard not only for Resolution
but also for k-DNF Resolution, which improved the previous lower bounds in
terms of the stretch of the generator and the strength of the proof system in
[ABRW04, Kra04b]. Moreover, he formulated the following intriguing conjecture:

Conjecture 6.1. (Razborov [Raz15]) Any Nisan—Wigderson generator based on
suitable matrices and any function in NP N CoNP that is hard on average for
P/poly, is hard for Extended Frege.

Conjecture 6.1 initiated new investigations in the theory of proof complexity
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generators from different aspects. We refer the reader for comprehensive dissec-
tions of the conjectures about the proof complexity generators to read Chapter
30 of [Kralla] and Section 19.4 of [Kral9].

Regarding Razborov’s conjecture, Pich [Picll] proved that this conjecture
is true for proof systems that enjoy different forms of the feasible interpolation
property.

The strongest argument that supports Conjecture 6.1 was done by Krajicek
in [Krallb]. He proved that assuming the existence of a function f € NP N CoNP
which is hard on average for P/poly; it is consistent with the universal theory
PV that any Nisan-Wigderson generator based on f (or for a function closely
related to f) and suitable matrices is hard not only for Extended Frege but
also for any proof system. Note that PV is a fairly strong theory as it proves a
reasonable fragment of computational complexity theorems (see [Pic15b] for more
information). It is worth mentioning those investigations of the Nisan-Wigderson
generators in proof complexity led to advancements in other areas as well, such
as [Piclba, PS21] which proved unprovability of circuit lower bounds in bounded
arithmetic and [Pic20] which proved the existence of learning algorithms from
circuit lower bounds.

Razborov’s conjecture is inherently different from other conjectures in proof
complexity that imply that strong proof systems are not p-bounded. The reason
is that this conjecture describes a situation where the hardness of computation
implies the hardness of proof for strong proof systems. For weak proof systems,
such a relation exists, which is called feasible interpolation property. Krajicek
defined this property in [Kra97] and proved that several proof systems such as
Resolution have the feasible interpolation property, which implied lower bounds
for new formulas. Proving lower bounds using feasible interpolation proved to be
very fruitful and led to several lower bounds for different proof systems such as
Cutting Planes [Pud97]. Unfortunately, this property does not hold for strong
proof systems such as Extended Frege [KP98], and even AC°-Frege [BDG™04]
assuming cryptographic hardness assumptions (for more information, see chapter
17 of [Kral9]). To overcome the barrier against the feasible interpolation property,
different attempts were made to prove hardness of computation implies hardness
of proof theorems for strong proof systems. Krajicek [KralO] proved a form of
feasible interpolation for AC®-Frege that is different from the original definition of
the feasible interpolation property. Moreover, he developed the method of Forcing
with random variables in [Kralla] intending to prove hardness of computation to
hardness of proofs theorems for strong proof systems (bounded arithmetics) and
proved types of this theorem for AC’-Frege and AC®(p)-Frege (for a finitary proof
of the theorem for AC’()-Frege see [Kral5]). Pudldk [Pud21] characterized
the canonical disjoint NP-pairs of AC°-Frege and proved a generalized feasible
interpolation theorem for them.

6.2 Our results

This paper aims to find sufficient conditions that make a Nisan-Wigderson gen-
erator hard for proof systems such as AC°-Frege. Our main contribution is the
proof of Razborov’s conjecture for AC°-Frege in a natural setting which was not
known before.
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Theorem 6.1. (Main theorem, informal version) Let f € NP N CoNP be a sym-
metric function that requires 2" depth two AC® circuits. Then for any S} NI}
pair (¢o, $1) that defines f, any suitable matriz A, and any b ¢ Rng(NWy ),
(NW 4) requires super-polynomial (exponential) AC°-Frege proofs when the
Paris- Wilkie translation of (¢o, ¢1) is used to form the formula 7,(NW; 4).

Theorem 6.1 unconditionally implies that NW 4 for suitable functions f (such
as Parity or Majority) and suitable matrices A are hard proof complexity gen-
erators for AC°-Frege even when the stretch is exponential. No lower bounds
for Nisan-Wigderson generators were known for this system. It is worth noting
that before this work, the only known hard proof complexity generators for ACC-
Frege, were the PHP-generator of [Kra09] and the more general generator nw,, .
of [Kralla]. Moreover, Theorem 6.1 implies the following results:

1. For any f that satisfies the conditions of Theorem 6.1 such as Parity, the
formula 7,(NW; 4) based on a random b and a random matrix A is a tautol-
ogy with probability 1 — o(1) and requires super-polynomial (exponential)
AC®-Frege proofs.

2. Certain formalizations of the principle
fn & (NTime(n"*) N CoNTime(n*))/poly
requires super-polynomial AC°-Frege proofs.

These results relate to two questions asked by Krajicek [Kral9] (problems 19.4.5
and 19.6.1). The first problem asks whether random linear generators (random
systems of linear equations over Fy) are hard for AC°-Frege or not. The second
problem asks whether linear generators are iterable for AC°-Frege or not, which
relates to the question of the hardness of proving the principle f, & SIZE(n*) in
AC®-Frege.

7 Preliminaries

7.1 Nisan—Wigderson generators

For the rest of the paper for any two real numbers r; < rq, define [rq,75) := {i €
N:|r| <i<[re]}and [r,re] :={i e N: |r] <i<[r]}.

Let f:{0,1}* — {0,1} be a Boolean function. For a natural number n, f,
denotes the function f restricted to {0,1}". Let A be an m xn 0 — 1 matrix such
that each row of A has exactly [ ones. Such a matrix is called an [-sparse matrix.
For such a m x n [-sparse matrix A, J;(A) :={j € [0,n) : A;; = 1}.

For every pair (f, A) where f is a Boolean function and A is a m x n [-sparse
matrix, Nisan and Wigderson [NW94] defined the generator NW; 4 : {0,1} —
{0,1}™ as follows:

o For every input a € {0,1}, the ¢'th bit of the output of NW; 4(a) is
f(alJi(A)).
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It was proved in the seminal paper [NW94] that if f is a hard function (depending
on the application) and A satisfies specific combinatorial properties, then NW 4
is a good pseudorandom generator (depending on the parameters).

Let f € NP N CoNP. A pair of propositional formulas (oo(p,q),o1(p,r)) is a
representation of f, for a natural number n iff:

1. |p| = n and moreover p, q, and r variables are disjoint.
2. (00, 01) defines the function f, which means:

(a) —op V 1oy is a tautology.
(b) For every a € {0,1}", f(a) =1 iff 0;(a, t) is satisfiable where ¢ € [0, 2).

Note that as f € NP N CoNP, for every n, f, has a representation.

Suppose f € NP N CoNP, (09, 07) is a representation for f;, and Aisa m xn
[-sparse matrix. Then for any b € {0,1}™, 7,(NW; 4) based on (o9, 04) is the
following propositional formula:

\/ —oi(p|Ji(A), q;) vV '\ —oo(p|Ji(4), q;)

bi=1 b;=0

where q;’s are disjoint variables. Note that if b ¢ Rng(NW¢ 4), then 7,(NWy 4) is
tautology.

As it was discussed in previous works [ABRWO04, Kra05, Raz15, Krallb],
NW/ 4 can be a hard proof complexity generator for a proof system P for the
following four reasons:

e The complexity of f.

o The properties that A satisfies.

« The representation of f that is used in the formula 7,(NWy 4).
+ The string b ¢ Rng(NW; 4).

As we will see, our main result also imposes different conditions on 7,(NWy 4)
to make sure that it requires long proofs.

The following parts explain the properties that we need for the matrices and
representations to prove our theorems.

7.1.1 Representations

The hardness of 7,(NWy 4) can depend on the pair (o¢,01) that is used in it.
This matter has been investigated in [ABRW04] and they examined different
representations. Recently, Sokolov [Sok21] answered one of the open problems
that was stated about a representation of 7,(NW; 4) in [ABRWO04].
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Y1 NTI] representation

Let £ be a finite relational language and X be a unary relational symbol which
is not in £. A ¥ formula 1)(X) in the language £ U {X} with equality defines a
function f € NP iff:

1. ¢ := Y ¢(X,Y) where ¢(X,Y) is a first order formula in the language
L U {X} with equality.

2. X isnot in Y.

3. For every n, every a € {0,1}", fu(a) = 1 iff ([0,n),a) = ¥(X) when X is
interpreted by a.

Fagin’s theorem [Fag74] directly implies that for every symmetric f € NP, a X}
formula ¥ ¢(X) exists in a language £ U {X} that defines f. Therefore, the set
of functions that are Y} definable is exactly symmetric NP and hence this set is
quite rich. As an example, we explain how the negation of Parity function can
be defined as a ¥} formula. Let £ = {Y'} where Y is a binary relation symbol.
Then ®(X,Y) denotes

Vi (X()) = 3j(G #iAXG) AY (6, ) AY (G,d) AVk(k =iV =Y (i, k) Vj = k).

Then ¥g(X) := Y @ (X,Y) defines the negation of Parity function (parity of
a € {0,1}" is 0 iff the number of 1’s in a is even).

The class of 31 formulas is a natural and important class in finite model theory
and descriptive complexity. Moreover, this class has appeared in different places
in proof complexity, too (for example, see [Kral0]).

To prove Theorem 6.1, the following lemma is needed. If A is a set and Q

is a relation on it, i.e. Q C AF for some k, and h : A — A is a function, then
h(Q) = {(h(ay), ..., h(ag)) : (ay,...,ar) € A*}.
Lemma 7.1. Let L = {Yg,....Y} be a finite relational language and Ay =
(A {Q5,...,Q%}) be an L-structure. Let h be a bijective function from A onto
A. Consider the L-structure Ay = (A, {Q}, ..., QL}) where Q} = h(QY), for ev-
ery i € [0,k]. Then for every first-order formula ¢(xo, ...,x,) in L with equality,
every (ag, ..., ap) € AP:

Ao E d(ag, .., ap) & Ay = o(h(ao), ..., h(ay)).

Proof. This lemma can be proved by induction on the complexity of ¢. O

Let 3Y$(X,Y) be a ¥} formula. Then for any n, the Paris-Wilkie transla-
tion [PW85] (see also Section 8.2 of [Kral9]) of ¢<"(X,Y) (¢<" is ¢ when every
first order quantifier is bounded by n) is denoted by (¢), (p,q) which is a con-
stant depth formula (without loss of generality we can assume that it is a CNF
using extension variables). The number n indicates the size of the universe in
which ¢(X,Y’) has been considered. For example the Paris-Wilkie translation of
®(X,Y) in the universe of size n is

n—1 n—1 n—1
BX,Y), =N\ (_‘Pz’ v\ (Pj NG N qji N N _‘Qi,k)) .

i=0 =0.j#i k=0 ki k]

Let f € NP N CoNP be a symmetric function. Then a pair of Y1 formulas
(FY ¢o(X,Y),3Z (X, Z)) defines f iff:
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1. 3Y ¢ (X,Y) defines f.
2. 3Z¢o(X, Z) defines —f.

Such a pair is called a X1 NII; definition of f. Moreover, for any n, ({(¢o),, , (¢1),,)
is a representation of f,. For the sake of easiness, by (1), we mean (¢), where
P(X) :=3YP(X,Y) is a i formula.

7.2 Proof systems

We assume the reader knows the basic facts about proof complexity, proof sys-
tems, and bounded arithmetics (for a detailed discussion, see [Kral9, Kra95]).
Here we state some useful facts about AC%-Frege, which will be used in the re-
sults.

7.2.1 AC°-Frege

AC®-Frege is the name for a family of proof systems that work with constant-
depth de morgan formulas. For each d > 1, Fy denotes AC%-Frege proof system
of depth d.

To prove Theorem 6.1, we need some known relations between AC°-Frege
and VY, which is a two-sorted bounded arithmetic (see [Bus86, Kra95]). These
relations are related to the model theory of VY.

Let M be an arbitrary nonstandard model of true arithmetic and n € M\ N.
Then

M,, :={a € M : There exists a b € M \ N such that a < 2"1/b}.

The following theorems explain the relationship between AC%-Frege and V¢
from the point of view of proof complexity.
For a set A, P(A) denotes the power set of A.

Theorem 7.2. ([Kra95]) Let (M, x) = VY and o € x be a constant depth propo-
sitional formula (depth of o is standard). If —o is satisfiable by an assignment in
X, then for every standard d, there is no Fy-proof of o in (M, x).

Note that Theorem 7.2 also holds in the case where o is the Paris-Wilkie
translation of a bounded arithmetical formula such as ¢(z, R) (0 = <¢(n, R)>

for some n € M), i.e. if there is an & € x such that (M, x) E —¢(n, @), then —o
is satisfiable by an assignment from y and therefore it does not have any Fz-proof

in M.

Theorem 7.3. ([Kra95]) Let M be a countable nonstandard model of true arith-
metic and ¢(z, R) be a bounded arithmetical formula such that for every d, the
family {(¢(n, R)), }nen requires exponential F4-proofs. Then for every m € M\N,
there ezists a x C P(M,,) such that:

1. Every bounded subset of M, which is definable in M is in x.
3. There is an o € x such that (M, X) = —¢(m, a).
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8 Razborov’s conjecture for AC’-Frege

In this section, we estate the main result of the paper. Let S acg denote the depth
two ACP circuit complexity of functions, then:

Theorem 8.1. Let f € NP N CoNP be a symmetric function such that SAcg(f) =
2™ and (¢o, ¢1) be a S NI definition of f. Then for every d:

1. For every positive c € N, every 0 < e < 1, every large enough n, every n®xn
|n<|-sparse matriz A, any b ¢ Rng, 7,(NW¢ ) based on (<¢O>I_W‘EJ , <¢1>LHEJ)
does not have sub-exponential F4-proofs.

2. For every positive r € N, every large enough s, every t € [s/r,s]|, ev-
ery large enough n, every 2™ x n® n'-sparse matriz A, 7,(NWy ) based on
({(00) ¢ 5 (P1),,t) does not have polynomial size Fq-proofs.

We prove this theorem in Section 9. This theorem is proved by a model-
theoretic argument based on the relations explained in Preliminaries in combina-
tion with the hardness of the Pigeonhole principle in AC°-Frege. Model theoretic
arguments have been used previously in proof complexity and they were very
fruitful (for example see [Ajt94, KraOla, Kral0] and [Kra95] for a detailed expla-
nation). See [Wo097, Kra0O1b] for discussions about the importance and benefits
of the model-theoretic arguments (and in general, the logical point of view) in
proof complexity.

Note that an immediate consequence of Theorem 8.1 is that NW¢ 4 based on
a hard enough function f with suitable parameters is a hard proof complexity
generator for AC°-Frege. As the Parity function or the Majority function satisfies
the required assumptions of Theorem 8.1, we get that NW-generators based on
these functions are hard proof complexity generators for AC°-Frege.

9 Proof of Theorem 8.1

In this section, we prove Theorem 8.1. We state the proof as a series of lemmas
for more clarity. We prove the second part of this theorem. The first part can be
proved in the same way. For the rest of the paper, [n] := [0, n).

Lemma 9.1. Let f:{0,1}* — {0,1} be a symmetric Boolean function such that
Sace(fn) = Q(2") for an € > 0. Then there is a natural m such that for every

n > m there is natural number u € [n?,n — n?] such that

fn(luon—u> 7& fn (1u+10n—u—1>‘

Proof. Let g : {0,1}" — {0, 1} be a symmetric function. If there exists a r < n/2
such that for every r < k <n —r, g(1¥0"=*) = 0, then

Sonr(g) < 2n- ZT: (”) < on(yr

i—0 \? r

where Spnr denotes the DNF complexity of functions. Writing this inequality (1)
for fn, we get 2" < 2n(<2)" for a ¢ > 0. So if we put r = n? and rewriting this
inequality we have

2™ < 2n(en'™0)" < 2e" !t < 2p! A = g(n’H 1) logntl
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So assuming & = €/2, we have (2n°+1)logn+1 = o(n). Therefore for every large
enough n, there exists a v € [n/?,n — n/?] such that f,(1°0""*) = 1. Following
the same argument for —f,, we can deduce that for every large enough n, there
exists a v’ € [n“%,n — n/?] such that —f,(1V0") = 1. So we have found
v,v" € [n?,n — n/? such that f,(1°0") # £,(1V'0"™""), hence there exists a
u € [n/%,n — n?] such that

fn(luon—u> 7& fn (1u+10n—u—1>‘
0

Now let M be a countable nonstandard model of true arithmetic. Let n, s, t,
A, b be arbitrary elements of M such that:

1. n,t € M\ N.

2. A e M\ N encodes a 2" x n® n'-sparse matrix where ¢ € [s/r, s], n® < 2™,
and n®2" < 27" for a nonstandard u.

3. b € M\ N is a binary string of length 2" such that b & Rng(NW; 4).

Let x be the set of all bounded subset of M+ encoded in M. So in particular
Ab € x.

As Spco(fm) = 2™, there is a standard rational € > 0 such that Spco(fm) =
Q(2™). Let 6 := ¢/2, then there exists u € [n°%, n! — n®] that is guaranteed to
exist by Lemma 9.1 for f,:. Let v := min{u,n’ — u}, then

Q1)

Lemma 9.2. There exists a binary string a € x of length n® such that for every
i€ 27,

1 1

#1(al(4) € (1 = =) (1 + )

where #¢(w) is the number of occurrences of symbol s in the string w.

Proof. Let Xy, ..., X»s_1 be independent random variables taking values in {0, 1}
such that for every i, Pr[X; = 1] = ;5. For every i € [2"], let Vi = > 7,4) X
and hence E[Y;] = v. By the Chernoff bound we have the following inequalities
for every i € [2"]:

(&

el

L PrlY; <o(l - )]

IN

M)

N

2. PrlY; zv(l+ gz)] <e5 .

Let X’ be the concatenation of Xy, ..., X,s_1, hence it is a random string of length
of n®. Now combining the above inequalities with the union bound we get:

P =PV O # 00— a1+ 0] <

R B
> pr [#1 (X)) £ ol1 = ). vl + %n] <

3 (Privi <ot - G+ Y 2 01+ 1)) <
.97
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We know that v > n%, ¢ is a nonstandard number, and § is a standard rational,

50 5t/3
n /v
< Vv

1<
n -+ 3 =73

ﬁ»

— Vv

which implies 2" - 2e 3~ < 1, and hence P < 1. This implies that there exists a
string a € y that satisfies the desired property. O

Lemma 9.3. The following functions exist in x:
1. v :[2"] = [n* + 1] such that for every i € [2"], v(i) = #1(a|J;(A)).

2. w: 2" % [n'] = [nf] such that for everyi € [2"], w(i,.) defines a permutation
over [n'] and moreover 3; = (a|Ji(A)) . where § = 17O 1),
w(i,j

Proof. 1. The function v exists in M. To prove that v is in x, we observe
that encoding of v as a binary string requires at most ¢2™ - logn' (for some

¢ € N) which is less than Q"ﬁ, hence v € x.

2. Like the previous part, w exists in M, and its bit representation requires
at most ¢2™ - n’logn’ (for some ¢ € N) which is again less than 2"\/2, and

therefore w € x.
]

To continue the proof, we need the celebrated result about the hardness of
the Pigeonhole principle for AC%-Frege.

Theorem 9.4. ([Ajt94, KPW95, PBI93]) For any natural number d, there exists

an €4 > 0 such that for large values of n, any Fy-proof of PHP™ ! has size at least
fUned),

Now let [ = | v], then we have the following lemma.
Lemma 9.5. There exists X' C P(Myt) such that:
1. x C X"
2. There exists a function o € X' such that o is a bijection from [l] onto [l —1].
3. (Mue,X') E VY.

Proof. By Theorem 9.4 we know that PHP]" | requires exponential size F4-proofs
for every d. Therefore by Theorem 7.3, there exists a x’ C P(M,) such that every
bounded subset of M; is in x/, (M, X’) = V] and there exists a o € x’ such that
it is bijection from [[] onto [l — 1]. Note that if a € M, then there exists a
b € M\ N such that a < 27", Let i/ = [22], then a < 2" as we know
[ > nd%*. This implies that M; = M,,+, and moreover y C ' which completes
the proof. O

The following lemma shows that we can simultaneously falsify some weak
Pigeonhole principle instances.

Lemma 9.6. There exists a function F : [2"] x {—1,0,1} x [nf] — [n'] in X" such
that for every i € [2"]
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1. F(i,a,.) restricted to [v+ a|, is a bijection from [v + a] onto [y(7)].

2. F(i,a,.) restricted to [v+a,n'), is a bijection from [v+a,n') onto [y(i),nt).
Proof. Let g € X' be the function that Lemma 9.5 provides. Let

1. wiq=|y(i) —v—al.

2. M;, =max{v+a,v(i)}.

3. m;, = min{v + a,v(i)}.
Then we define the function Gy(i,a, b) as follows:

_ 1 1 .
Golir a,b) = o(b—1k)+ (I k bellk,i(k+1) ANk € [w,]
b— Wi ,q be [lwi,m Mi,a)
where i € [2"], a € {—1,0,1}, and b € [M, ,].
Note that v — 1 < M, ,, hence

v—1 v—1 Mia
wi,ag < 7

<
o =1 T

as Wi, < V12 4+ 1 by Lemma 9.2. So Go(i,a,.) is a bijection from [lw;,| onto
[(l —1)w; o) and moreover is a bijection from [lw; 4, M; o) onto [(I — 1)w; 4, m;4) as

Mi,a - lwi,a = Mja — (l - 1>wi,a-

Therefore the conclusion is that G(i, a, .) is a bijection from [M; ,] onto [m; 4] for
every i € [2"] and a € {—1,0,1}. Now, we define the function G(i,a,b) as the
inverse of GGo which means that

Gl(@ a, GO(L a, b)) = b

where ¢ € [2"], a € {—1,0,1}, and b € [M,;,]. So G1(7,a,.) is a bijection from
[miq] onto [M; ).

Using G and G4, we can fulfill (1) from the lemma. Now we want to construct
two other functions Hy and H; to fulfill (2).

The task is to define Hy(i,a,.) as a function that defines a bijection from
[max{n’ — v — a,n’ —v(i)}] onto min{n’ — v — a,n’ — (i)}] where i € [2"] and
a € {—1,0,1} and moreover H; would be the inverse of Hy. Let

1. M|, =max{n' —v —a,n" — (i)}
2. mj, = min{n' —v —a,n’ —y(i)}.
Then we define Hy(i, a,b) as follows:

ob—Ilk)+(U—-1)k belk,l(k+1) Nk € [w

H, .7 >b =
0(2 a ) {b — Wi, be [lwi,m M{,a)

where i € [2"], a € {—1,0,1}, and b € [M]].
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Note that n' —v—1 < M] , and moreover v < n'/2, therefore n'/2—1 < M.
This implies that

Wig < VU2 +1< J(nt)2)24+1 < (nt)2) -1
t/o t/o t/o _ /
n'/2 1<n/2 1<n/2 1<Mw.
R G B
Therefore Hy(i, a,.) is a bijection from [lw; | onto [({ — 1)w;,] and moreover is a
bijection [lw;q, M],) onto [(I — 1)w;q, m;,). Hence Hy(i,a,.) is a bijection from

[M] ] onto [m] ] for every i € [2"] and a € {—1,0,1}. Now we define the function
H,(i,a,b) as the inverse again as follows:

Hi(i,a, Ho(i,a,b)) = b
where i € [2"], a € {—1,0,1}, and b € [M],]. Hence H,(i,a,.) is a bijection from

[mi ] onto [M,].
Now F'(i,a,b) is

Go(i,a,b) €

G1(i,a,b) eElvt+alANv+a=m,
Ho(i,a,b—v—a) bev+an)An'—v—a=DM,
Hi(i,a,b—v—a) be]

vtalAv+a= M,
F(i,a,b) :==

v+a,n’) An' —v—a=mj,

As Gq, Gy, Hy, H, are definable by a bounded arithmetical formula based on
~v and o, therefore F' is also definable by a bounded arithmetical formula based
on v and o and this implies that F € X" as (M¢,x') E V{. O

Without the loss of generality we can assume fnt(luo"t—“) = 0. Consider the
following relations in y:

1. By = 140" v,

2. 6 = 0™ "1

3. 0y = 1uripni et
4. 0, = Q' umle
5. Ao such that ¢o(bo, o) holds in (M, x)
6. N, such that ¢o(6), \y) holds in (M, x).
7. A such that ¢1(61, )\1) holds in (M, x).
8. N, such that ¢ (6}, \,) holds in (M, x)

Now we are ready to describe the assignments X, {ji}ie[gn], and {Zl'}ie[Qn] such
that

(Mo, X') = Wi < 27 (b = 0 — do(X[J(A), D)) A (bi = 1 = 61(X|Ti(A), Z)))

which implies that 7,(NW¢ 4) based on ((¢o),,: , (¢1),,¢) fails under an assignment
in (Mpt, x'). We define these assignments as follows:
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X is the complement of a, ie., X; =1—q; j € [n].
i = w(@ F(27 07 X/o))
(¢) Zi = w(i, F(i,—1,\})).
Without loss of generality assume v = u. Then for an arbitrary i € [2"], we know
that
X[ J;(A) = w(i, F(i,0,6p)),

hence oo(X|J;(A),Y;) holds by Lemma 7.1 as w(i, F'(i,0,.)) is a bijection from
[n'] onto itself and the fact that oo(fo, Ao) holds. The same argument works for
01(X]J;(A), Z;). Moreover if v = n' — u, the same argument works by using
05,07, Ay, N

To complete the proof, we argue as follows. Suppose the statement of the
theorem is not true. This means that there exist standard d and r such that the
following arithmetical sentence is true in N:

e H := Vs;3ds > 4,3t € [s/r,8],3c > 0,Ym,In > m3 2" x n® n'-sparse

matrix A, 3b € Rng(NW; 4), 3 Fg-proof 7 for 7,(NW; 4) such that |r] <

Let M be a countable nonstandard model of true arithmetic. This means that
M E H. To simplify the presentation let

H :=Vsy3s,t,cvmdn, A, b, 7P(s1,s,t,¢c,m,n, A, b, ).
Let s; € M\ N, then there exist s, € M \ N and ¢ € M such that
M EVman, A, b, 7®(s1, s,t,¢c,m,n, A, b, ).
We choose an m € M \ N such that for all m; > m, m§2°™ < me/g, hence
there exist an n > m, a 2" x n® n'-sparse matrix A € M\ N, ab € M\ N
such that b & Rng(NW; 4), and an Fg-proof @ € M for 7,(NWy 4) such that
|| < |m(NW¢4)|°. Now we consider M,,+ and by the argument in this section,

there exists a x’ C P(M,¢) such that it has every bounded M-definable subset
of M,,+ and moreover

L (Mo, X') V1.
2. There exists an o € X’ which falsifies 7,(NW¢ 4).

Then by Theorem 7.2 there is no Fg-proof of 7,(NW; 4) in (M, x’). Note that
there is a standard number e such that

7] < (NW )¢ < (n2em)" < 2o

which implies that # € x, but this leads to a contradiction and completes the
proof.
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10 What are the implications of the hardness of
NW-generators for a proof system?

Some experts believe that random DNFs with suitable parameters give hard for-
mulas to prove in any proof system. The hardness of random DNFs has been
proved for several proof systems. One way of proving the hardness of these for-
mulas is by proving the harness of certain NW-generators. Let A be a m x n
[-sparse matrix such that m > 2n and [ is a constant or it is at most O(logn).
Let the base function be the Parity function @. Then if we choose a random
b € {0,1}™ uniformly, with probability 1 — o(1), b ¢ Rng(NWg 4). Now, if we
choose a random A and a random b uniformly, then with probability 1 — o(1)
T(NWg_ 4 ) is a tautology (here we use DNF representation of the Parity function
in the definition of the 7 formula). The interesting point about these formulas
is that if 7,(NWg 4) is hard with probability 1 — o(1) for a proof system P, then
random [-DNFs are hard with probability 1 — o(1) for P. This strategy was used
to prove the hardness of random DNFs for some proof systems (for example, see
[Kra04b, BI10]). For more information, see Section 13.4 of [Kral9]. In this re-
gard, Krajicek [Kral9] asked whether random systems of linear equations over
Fy are hard for AC%-Frege or not (problem 19.4.5). We note that Theorem 8.1
partially answers this question as follows.

Let (do, ¢1) be a L1NII] definition of a function f € NPNCoNP (for example we
can take f as the Parity function). Then a random formula F' ~ F(¢o, ¢1,m, n,l)
is generated as follows:

1. we choose m subsets Jy, ..., J,,_1 independently uniformly randomly such
that J; C [n] and |J;| = [ for every i € [m]. These subsets specify a random
m X n [-sparse matrix A.

2. We choose a random b € {0, 1} uniformly randomly.
3. Then F := 1,(NWjy 4) based on ((¢0),, (¢1),)-
The following corollary partially answers Krajicek’s question.

Corollary 10.1. Let f € NP N CoNP be a symmetric function such that
Sace(fn) = ™™ " Let (¢o,d1) be a S NI definition of f. Then for every
d, for every ¢ > 1 and every 0 < e¢ < 1, if n is large enough, then F ~
F(po, p1,n%m, |n]) is a tautology with probability 1 — o(1) and it requires ex-
ponential Fg-proofs.

Another implication of the hardness of NW-generators for a proof system P
is that it implies that it is hard for P to prove circuit lower bounds effectively.
Razborov [Razl5] pointed out that if the base function is in P/poly and the
2" x n°W matrix A is efficiently constructibe (an example of such matrices was
constructed in [NW94]), and moreover NWy 4 is a hard proof complexity gener-
ator for a proof system P, the P cannot prove circuit lower bounds effectively.
Moreover, this implies that NP & P/poly does not have efficient proofs in P.
Razborov proved such a result for k-DNF Resolution in [Razl5]. In this regard,
our results imply a partial answer for the question of the hardness of circuit lower
bounds for proof systems. A related question about AC°-Frege was asked by
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Krajicek [Kral9] (problem 19.6.1). Let f € NTime(n*) N CoNTime(n*) and A be
a 2" x n® n'-sparse matrix which is effectively constructible. Then for any fixed
w € {0,1}™, NW; 4(w) defines a function C,, € (NTime(n*)NCoNTime(n*))/poly
as follows:

o Foreveryi e {0,1}", Cy(i) = f (w|Jn(i)(A)) where n(i) is the number with
the binary representation 1.

This means that if 7,(NW¢ 4) is a tautology (for a fixed representation of f),
then the function with the truth-table b does not have a C,, circuit for any
w € {0,1}"". As Theorem 8.1 (part 2) implies that NW-generators based on
suitable NP N CoNP functions, suitable matrices, and suitable representations are
hard proof complexity generators AC°-Frege, we get the fact that proving certain
(NPNCoNP) /poly lower bounds (b does not have C,, circuits) for Boolean functions
are hard for AC°-Frege. Note that in contrast with with the principle f, ¢
SIZE(n*) which can be written as a propositional formula, it is not clear how the
principle £, ¢ (NTime(n*)NCoNTime(n*))/poly can be written as a propositional
formula. So one way of considering this principle in proof complexity is to consider
71, (NW¢ 4) for any g € NTime(n*)NCoNTime(n*), any representation of g and any
effectively constructible A. In this regard, Theorem 8.1 includes a lot of possible
natural formalizations (but not all) of f,, & (NTime(n*) N CoNTime(n*))/poly.
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Jump operators, Interactive Proofs and Proof

Complexity Generators

Erfan Khaniki'?
Faculty of Mathematics and Physics, Charles University
2Institute of Mathematics, Czech Academy of Sciences

Abstract

A jump operator J in proof complexity is a function such that for
any proof system P, J(P) is a proof system such that P cannot simulate
J(P). Some candidate jump operators were proposed by Krajicek and
Pudlak [KP89] and Krajicek [KraO4c], but it is an open problem whether
computable jump operators exist or not. In the first part of this paper, we
introduce a new candidate jump operator based on the power of interactive
proofs which given a proof system P, [IP, P] is a MA proof system. This
jump operator can be seen as a version of Kraji¢ek’s implicit proof system
[Kra04c] and in a sense, it is related to the Ideal proof system of Grochow
and Pitassi [GP18]. We investigate the properties of this operator and we
show its tight relationship with proof complexity generators:

1. Simulation: We prove that for any proof system P, [IP, P] polyno-
mially simulates P and moreover if there exists a Boolean function
f such that the strong proof system associated with S} + Rfnp +
1-EXP efficiently proves exponential size hard on average circuit lower
bounds for f, then the strong proof system associated with S 4+
Rfnp + 1-EXP simulates [IP, P].

2. Hardness magnification: We prove that for any strong enough proof
system P, if truth-table formulas are hard for P, then for any proof
system @ that contains tree-like Resolution and any tautology ¢, P
requires exponential size proofs (in the size of the following formula)
to prove the formula “[IP, Q] does not have polynomial size proofs
for ¢”.

3. Meta-mathematics of complexity theory: For any strong enough proof
system P, T+ Rfnp + 1-subEXP is consistent with the statement
“[IP,Res*] is a sound proof system and it has polynomial size proofs
for any true DNF” assuming different hardness property for proof
complexity generators, where T is PV; or S} depending on the as-
sumption about the hardness of proof complexity generators.

4. Automatability and feasible disjunction property for Extended Frege:
We show that assuming intuitionistic S3 proves the strong soundness
of
[IP,Res*], then if EF is automatable, then for infinitely many n,
P/poly natural properties useful against P/poly exist, and if EF has
the feasible disjunction property, then for infinitely many n, NP /poly
natural properties useful against P/poly exist.

Motivated by the hardness assumptions that enable us to prove the above
consistency result, we introduce a new hardness property for proof com-
plexity generators. We give a model-theoretic characterization of this prop-
erty and investigate its relationship with previously known hardness prop-
erties. One ingredient of our proofs is a formalization of the sum-check
protocol [LFKN92] in S3 + 1-EXP which might be of independent interest.
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In the second part of the paper, we consider an old open problem by
Krajicek and Pudlak [KP89] which asks whether finite consistency formulas
for an arithmetical theory 7" have polynomial size proofs in an arithmetical
theory T" when 1" proves the consistency of 7. In this regard, we prove
that certain statements are equivalent, in particular the following two are
equivalent:

¢ There exists a partial recursive jump operator in proof complexity.

e For any strong enough finitely axiomatizable arithmetical theory S,
S does not have polynomial size proofs for Congsycong(n) in n.

11 Introduction

A long-standing problem in complexity theory is to prove super-polynomial size
lower bounds for any proof system for propositional tautologies. This is closely
related to the well-known question NP vs. CoNP (see [CR79]). Although there is
a huge amount of work understanding the power of proof systems (see [Kral9]),
the current techniques are not strong enough to help us to prove lower bounds
for strong proof systems such as Extended Frege (EF). Apart from the problem
regarding the lack of good techniques to prove lower bounds, there is also a lack
of families of tautologies that are believed to be hard for a proof system such as
EF. There are three main candidate hard tautologies for strong proof systems.
The first one is random DNFs with suitable densities. Some experts believe
that random DNFs are hard for any proof system. The second one is proof
complexity generators which were defined independently by Alekhnovich et al.
[ABRWO04] and Krajicek [KraOlb] (for more information about these formulas,
see [Krall, Razl5, Kral9, Kra22]). The last families of tautologies are finite
consistency formulas or finite reflection principles that were suggested by Krajicek
and Pudlak [KP89]. In [KP89], they conjectured that there is no optimal proof
system which in fact, implies that for any proof system P, there is another proof
system (@ such that finite reflection principles for () requires super-polynomial size
P-proofs. Although this conjecture gives us a reasonably well-behaved family of
hard tautologies, it does not indicate what ) should be. So what seems to become
important here is to be able to describe ), given P. Two such procedures were
suggested by Krajicek and Pudlak [KP89] and Krajicek [Kra04c]. We call such a
procedure that given a proof system P, generates a stronger proof system () such
that P does not have polynomial size proofs for finite reflection principle of @ (or
equivalently P cannot simulate @), a jump operator. The focus of this paper is
to understand efficient jump operators that hopefully can be used to prove lower
bounds for strong proof systems such as Extended Frege. In the first part of the
paper, we define a new candidate jump operator based on the sum-check protocol
of Lund et al. [LFKNO92] and implicit proof systems of Krajicek [Kra0O4c|. Let
P be a proof system. Following [Kra04c|, a proof of ¢ in IP-randomized implicit
proof system based on P, which is denoted by [IP, P], is a pair (C, C") such that:

1. the truth-table of C’ is a P-proof of ¢, and

2. the truth-table of C' encodes the movement of the prover in the sum-
check protocol when the input of the sum-check protocol is the 3DNF
Correct$ (¢) :=“truth-table of C’ is a P-proof of ¢”.
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Looking at the definition of [IP, P], it is similar to Krajicek implicit proof system
[P’, P] (P'is an arbitrary proof system) where P’ is replaced by the prover in the
sum-check protocol. It is clear from the definition that [IP, P] is a Merlin-Arthur
proof system (MA proof system) which is actually a Cook-Reckhow proof system
under standard hardness assumptions (see [IW99]). Looking at the definition of
IP-randomized implicit proof systems, we are trying to build stronger proof sys-
tems based on the power of compression by circuits. The role of compression is
heavily studied in computational complexity (see for example [IKW02, FS11]).
However, only a few works investigated the role of compression in proof com-
plexity (see [Kra0O4a, Kra04c, Kra05, GP18]). In this regard, the research into
randomized implicit proof systems can be seen as having a better understanding
of the role of compression in proof complexity. The first result is about the rela-
tionship between IP-randomized proof systems and Cook-Reckhow proof systems
(similar to the case of Extended Frege and Ideal proof system [GP18]).

Theorem 11.1. (Informal) For any proof system P, if the strong proof system
associated with S3+ R fnp+1-EXP proves exponential size hard-on-average circuit
lower bounds for a Boolean function f, then the strong proof system associated
with S} + Rfnp + 1-EXP simulates [IP, P].

The strong proof of a suitable arithmetical theory T is defined as follows. 7 is
a proof of a tautology ¢ in the strong proof system of 7" iff 7 is a T-proof for the
first-order sentence T'aut("¢") (¢ is a tautology iff Taut("¢™) is a true sentence).

A well-studied concept in computational complexity is hardness magnifica-
tion. Informally speaking, hardness magnification means that if we have a weak
computational lower bound for some problem, we can get a strong computational
lower bound for possibly another problem (see [CHO%22] for a survey). As hard-
ness magnification is well-studied in computational complexity, it is natural to
try to prove similar results in proof complexity. For weak proof systems, several
works based on lifting theorems or relativization can be seen as hardness magnifi-
cation in proof complexity (for example see [DR03, GGKS20]). Another example
of hardness magnification for weak proof systems started from the seminal work of
Atserias and Miiller [AM20]. They proved that the CNF Ref,; where it says that
there is a short Resolution refutation for ¢ does not have short Resolution refuta-
tions. Such results for different formulations of the Re f, were proved for different
weak proof systems (see [Garl9, Gar20, GKMP20, dRGN*21, dR21, IR22]). In
contrast with the several results regarding hardness magnification for weak proof
systems, almost nothing is known for strong proof systems (see [MP20]). In this
regard, we show that the propositional formula which says that “¢ does not have
polynomial size [IP, Q]-proofs” actually plays the role of Ref, for any strong
enough proof system P and therefore we get a hardness magnification result (as-
suming the truth-table generator is hard for P).

Theorem 11.2. (Informal) Let P be a strong enough proof system and Q) be
a proof system that contains tree-like Resolution. If truth-table generator for
polynomial size circuit is hard for P, then for any tautology ¢, the formula

LBg(¢) := “ There is no polynomial size [IP, P]-proof of ¢”

Tequires 224D gjze P-proofs.
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In the above theorem | LBg ()| = |¢|°") which means that assuming a polyno-
mial size lower bound for P (the truth-table generator is hard), we get exponential
size lower bounds for P.

An important line of research in the area of bounded arithmetic is proving
independence and consistency results. In this direction, we prove the following
theorem.

Theorem 11.3. (Informal) Let P be a strong enough proof system, T(1T") :=
T + Rfnp + 1-subEXP, and 6 denotes the following formula:

“[IP,Res*] is a sound and polynomially bounded proof system for true DNFs”.

Then the following statements are true:

1. If there is a stretching generator g which is exponentially pseudo-surjective
for P, then T(S3) + 0 is consistent.

2. If the truth-table generator is for polynomial size circuits is free for P, then
T(PVy) + 6 is consistent.

It is worth mentioning that some experts believe that the assumptions that are
used in the above theorem are true (for example see [KraOlb, Kra04b]). Moreover,
the above consistency theorem is actually quite strong as PV, and S} can prove
a reasonable amount of results of complexity theory which makes them powerful
from the point of view of reverse mathematics of complexity theory (see [Picl5,
MP20] for a survey).

It is well-known that EF is not automatable under some cryptographic hard-
ness assumptions (see [KP98|). However, it is not known whether we can prove
the nonautomatability of EF under structural hardness assumption in complex-
ity theory like the nonautomatability results for weak proof systems (see [AM20,
Gar20, GKMP20, Bel20, dRGN*21, dR21, IR22]). We observed that under some
extra assumption, it is possible to prove nonautomatability of EF under structural
hardness assumptions applying the core idea of [AM20] to the formula LBres(¢)
where Res denotes Resolution and Res* denotes tree-like Resolution (for another
attempt for proving nonautomatability of strong proof systems under structural
hardness assumptions see [PS22]). Another concept that is related to automata-
bility is the feasible disjunction property (see [Pud03]). It is known that weak
proof systems such as Resolution and Cutting Planes [Pud97], Polynomial Cal-
culus over the reals and Sum-of-Squares [Hak20] have the feasible disjunction
property and k-DNF Resolution for £ > 1 does not have the feasible disjunction
property [Gar20] (see also [Rud97] for a discussion). Apart from the results men-
tioned for weak proof systems, it is unknown whether strong proof systems such
as Frege and Extended Frege have the feasible disjunction property. Under the
same extra assumption for the nonautomatbility result for EF, we show that EF
does not have the feasible disjunction property under another structural hardness
assumption.

Theorem 11.4. (Informal) Suppose intuitionistic S proves the strong soundness
of [IP,Res*]. Then the following statements hold:

1. If EF s automatable, then for infinitely many n, there is a P/poly natural
property useful against P/poly.
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2. If EF has the feasible disjunction property, then for infinitely many n, there
is a NP/poly natural property useful against P/poly.

Motivated by the assumptions that enable us to prove Theorem 11.3, we
consider a new hardness property for proof complexity generators. Let P be a
proof system and ¢ be a polynomial time computable stretching map (for any
n, gn : {0,1}™ — {0,1}™™ where m(n) > n). Then g is P-provably hard for P
iff P has short proofs for the propositional formulas I'sHardp, :="“For every b €
{0,1}™™ P does not have polynomial size proofs (in m(n)) for the propositional
formula “b is not in the range of g,”” (see [ST21] for a related formula). The
reader might think that this property is too strong to be true for a proof system as
for example, something similar to Godel’s incompleteness theorems should be true
for proof systems. In contrast to the first-order provability, the situation about
proof systems is completely different as strong proof systems such as EF, PA, and
ZFC have short proofs for their own finite consistency (see [Coo75, Pud86, Pud87]
and [Pudl17] for a discussion about finite incompleteness). Also, regardless of
whether this property holds or not, it is a win-win situation. Let us consider
the truth-table generator for polynomial size circuits (tt,»,) and EF. If tt,x , is
EF-provably hard for EF, then we get that EF is not polynomially bounded. No
supper polynomial lower bound is known for EF and moreover, it is even open
whether the tt,» , is hard for Res(log) or not (see [Razl5]). If tt,,, is not EF-
provably hard for EF, then two possibilities can happen. The first possibility is
that formulas {/sH ardEF,ttnk n} are tautologies which implies that EF is not an
optimal proof system. The other possibility is that formulas {I/sH arder n}
are not tautologies which implies that there is a Boolean function f such that for
infinity many n, EF has short proofs of the fact that f, & Size(n*). All of the
discussed possibilities are breakthrough results in complexity theory, and it seems
that the current techniques are not strong enough to rule out which one is true.
To better understand this property, we give a model-theoretic characterization
of the property “g is P-provably hard for P” and compare it to other known
hardness properties for proof complexity generators. Moreover, we propose two
hardness hypotheses about this property.

In the second part of the paper, we look at the general theory of efficient jump
operators (for a discussion about a closely related concept see [Kral4]). Motivated
by the results and conjectures of [KP89, Pudl17], we give several statements that
are equivalent to the existence of an efficient jump operator including the following
ones:

o There exists a partial recursive jump operator in proof complexity.

o For any strong enough finitely axiomatizable arithmetical theory S, S does
not have polynomial size proofs for Cong cong(7) in n.

As it is conjectured that consistency is a jump operator [KP89, Pud17], we pro-
pose a weaker conjecture which is equivalent to a weaker form of the conjecture
in [KP89, Pud17] (see the above statements). This conjecture states that there
is a partial recursive jump operator.

Apart from the above results, we also discuss a possible definition of ran-
domized implicit proof systems based on the PCP theorem of [BFLS91, BFLI1].
Also, we discuss new types of TFNP problems based on breaking Nisan-Wigderson
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generators [NW94| which are motivated by the definition of the soundness for IP-
randomized proof systems.

The organization of the paper is as follows. In Section 2, we explain
definitions and notations. In Section 3, we define the notion of jump operators.
In Section 4, we define IP-randomized implicit proof systems. In Section 5, we
state the main results of the paper. In Section 6, we prove the main results of
the paper. In Section 7, we state concluding remarks and some open problems.

12 Preliminaries

We assume the reader knows the basic facts about bounded arithmetic, proof
complexity, proof systems, and computational complexity (for a detailed discus-
sion of these topics, see [Bus86, HP93, Kra95, Kral9, AB09]). Here we state the
required facts which will be used in the results.

12.1 Bounded arithmetics

The basic theory that we work with in this paper is Buss’s bounded arithmetic S3
[Bus86], which is axiomatized in the language Lp4 = {0, S, +, -, |z|, | /2], z#y}.
The intended meaning of the |z/2] is clear. The meaning of the |z| is [log,(z+1)].
z#ty is interpreted as 2/#I'l,

A sharply bounded quantifier is of the form Qx < |t|, @ € {V,3}. The class of
bounded formulas ¥2, T1%, n > 1 is defined by counting alternations of bounded
quantifiers while ignoring sharply bounded quantifiers (see [Bus86]). The class of
A formulas is the class of X2 formulas with an equivalent I1? definition. Then
for any ¢ > 0, S, consists of basic axioms defining the usual properties of the
function symbols and p-induction axioms

¢(0) AVz(o(l2/2]) = o(x)) = Vao(x)

for every X! formula ¢(x). Moreover, for any ¢ > 0, T} consists of basic axioms
defining the usual properties of the function symbols and induction axioms

0(0) AVa(o(x) = o(5(x))) = Voo(x)

for every ¢ formula ¢(x).

A closely related theory to S} is PV. PV is a purely equational theory that
was defined by Cook [Coo75]. Its language contains a few basic function symbols,
and it is inductively expanded by symbols for functions defined from previously
introduced functions by composition, and limited recursion on notation. Then
PV is axiomatized by equations defining the function symbols and a derivation
rule similar to open induction. It is important to know that under the stan-
dard interpretation of PV in N, PV function symbols define exactly computable
functions in polynomial time (FP). The first-order version of PV is called PV,
[KPT91, Bus95, Co098]. It is important to know that by Buss’s witnessing theo-
rem [Bus86], PV, can be seen as the theory ¥V¥4(S3). So without loss of generality
when we work in S, we assume that we have access to PV function symbols and
their definition (in more detail, we work in S3(PV) which is S in the language of
PV with the basic axioms of PV, and p-induction for X%(PV) formulas). A useful
fact about S} is that it proves normal induction for A% formulas as follows:
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Theorem 12.1. Let ¢(z),(z) € 5. Then S} proves:

Va(o(z) < ~(x)) = (6(0) AVE(d(z) = d(z + 1)) = Vee(z)).

Another theory that we need is intuitionistic S} (i¢S3). This theory is the
intuitionistic version of Si. Namely, it has non-logical axioms that the theory
becomes exactly S} over the classical logic, but to reason in iS}, the logical frame-
work is the intuitionistic first-order logic. Here we consider iS} as the theory that
Cook and Urquhart defined [CU93]. An important property of iS} is its strong
witnessing theorem.

Theorem 12.2. (/CU93]). Let ¢(z,y) € X°.. IfiS} b; VaJyg(z,y), then there
exists a PV-function f such that iS} &; Voo (z, f(x)) where &; denotes the prov-
ability using axioms and rules of intuitionistic first-order logic.

An important statement about theories of bounded arithmetic is Parikh’s
theorem.

Theorem 12.3. ([Par71]) Let T be a VX!, - axiomatizable theory and let ¢(z,y) €
b . Then if T = VxIyg(x,y), then there exists an Lpa term t such that T +

Vaedy < t(x)o(z,y).

12.2 Formalization in bounded arithmetics

The main objects of theories of arithmetic are natural numbers. So to talk about
other concepts such as circuits, algorithms, and generally finite mathematical
objects, we need to encode these objects in natural numbers meaningfully so that
the theory can reason about them. As natural numbers can be seen as binary
strings in a natural way, we can encode finite mathematical objects as natural
numbers in the real world. Fortunately, PV, is strong enough to talk about these
concepts and naturally work with them. Here we do not need to know how PV,
does the encoding and how it works with these finite objects. The important
thing is that such a thing is possible. In particular, 7. denotes the number
or the string associated with a mathematical object depending on the context.
Also, for any n € N, there are several ways to find a closed term ¢ such that the
interpretation of ¢ in N becomes n. We use the following representation:

_ SS0 -k n =2k
n:= -
SS0-k+S0 n=2k+1
where 0 = 0. The main property of this representation is that for any n € N, i
has size O(logn). For more information, see [Bus86, HP93, Kra95].

12.3 Exact counting and approximate counting

Counting is an important tool for proving mathematical theorems. In particular,
counting is an important topic in complexity theory, so it is natural to know under
which circumstances we can do a counting argument in a bounded arithmetic.

We usually work with bounded definable sets which are collections of numbers
of the form

X={z<a:¢)}
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where ¢ € X% . When used in a context that asks for a set, a natural number a
represents the integer interval [0, a).

By n € Log we mean that 3x(|z| = n). Let C : 28 — 2 be an arbitrary circuit
and let Xo := {z < 2" : C(z) = 1}. There is a PV-function Count such that
Count(C,y) = |Xc Ny|. So in particular, if we know that 2¥ € Log, then we
can exactly count the size of X¢ in PV;. As we have Count, we can talk about
probabilities. Let C' be as before. Then by the following notation

z
PrlC() =1 < 2,
we mean w X Count(C,y) <y x z which is a PV;-relation.

It is not clear how one can count exactly |X¢| when 2% € Log in bounded
arithmetics, but Jerdbek [Jer05, Jer07] developed a framework to approximately
counting big sets (when 2F & Log) in bounded arithmetics. For the rest of this
part, we follow the notations of [Jer07] and explain the relevant results from there.

For any function f we define the dual (or surjective) weak pigeonhole principle
for f, written as dWPHP(f) is the universal closure of the following formula

x>0—Jv<z(ly| +1)Vu < z|y|f(u) #v

where f may involve other parameters not explicitly shown. For a set of functions
I', dWPHP(I') denotes {dWPHP(f) : f € I'}. The next theorem shows that
dWPHP(PV) is provable in Ts.

Theorem 12.4. ([PWWS88, Kra95, MPW02]) T3 + dWPHP(PV).

Let APC; := PV; + dWPHP(PV). As it was shown in [Jer05, Jer07] APCy is
the right fragment of Buss’s bounded arithmetic to develop approximate counting

for sets that are definable by polynomial size circuits (note that by Theorem 12.4
T2 - APC,).

Definition 12.1. (in PV;) Let C : 2" — 2™ be a circuit, X and Y are definable
sets. Then

1. we say that C' computes a function from X to Y, written as C : X — Y,
WX C2MY C2™ and CIX]CY.

2. Wewrite C': X — Y 1if, in addition, the function computed by C' is injective
on X.

3. WewriteC: X - Y if X C2" Y C2" and Y C C[X].
Definition 12.2. Let X Ca andY C b where a,b € N. Then
1. X xY ={bx+y:ze X, yeY} Cab.
2. XUY =XU{y4+a:yeY}Ca+b.
Now we can state the main theorem of [Jer07] related to approximate counting.

Theorem 12.5. (in APCy) Let C' : 2" — 2 be a Boolean circuit and ¢~' € Log.
Then there exists s < 2", v < poly(ne~t|C|), and circuits Go, G1, Ho, Hy of size
poly(ne='|C|) such that:
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1. Go:v(s+e€2") » v x X¢,
2. G1:v X (xcUe2™) — vs,
3. Hy:vx Xo = v(s+ e2"),
4. and Hy :vs — v x (X Ue2™).
such that G; o H; = id on their respective domains.

Definition 12.3. (in APCy) Let X, Y C 2" be definable sets by circuits and e < 1.

We say that the size of X is approvimately less than the size of Y with error e,
written as X <. Y, if there exists a circuit G and v > 0 such that

G:ox(YUe") »vxX.

Moreover, by X ~.Y we mean X <. \Y <. X.
As before, we can talk about probabilities using the notion of approximate
counting. Let C' : 2" — 2. Then by the following notation

Pr[C(z) =1] o —

z<y w
we mean w X (Xc Ny)Oeyz where O € {X,~}.

The definition of =<, is problematic because it is a 314 formula; therefore,
we cannot use it in an induction argument in APC;. To overcome this problem,
Jetdbek [Jer07, Jer05] worked in a suitable conservative extension of APC;. Here
we explain the relevant definitions and notations.

Definition 12.4. (in PVy) Let f : 28 — 2 be truth-table of a Boolean function (f
is encoded as string of 2 bits, hence 2% € Log). We say f is (wrost-case) e-hard,
written as Hard(f), if there is no circuit C of size at most 2° that computes f.

f is average-case e-hard, written as Hard(f), if there is no circuit C' of size at
most 2% such that

{u <2 Clu) = Fw)) > (5 + 272"

Note that both Hard (f) and Hard?(f) are T18-definable.

Lemma 12.6. ([Jer04]) For every fived € < % there is a fized constant ¢ such that
APC; proves: for every k > c such that 28 € Log, there exists an average-case
e-hard function f : 28 — 2.

Definition 12.5. Let o(.) be a new uninterpreted function symbol. Then the
theory sHARD? is the extension of Si(a) by the azioms

1. «o(z) is the truth-table of a Boolean function in ||x|| variables,

2. x> ¢ — Hard?(a(x)),

3. zl] = llyll = a(z) = aly),

where ¢ is the constant from Lemma 12.6.
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Then, as explained in [Jer07], we have the following version of the approximate
counting.

Theorem 12.7. There is a PV(a)-function Size such that sHARD* proves: if
X C 2" is definable by a circuit C', then

X ~. Size(a, C, 2" e),

where € = |e|™t. Moreover, the witnessing functions H;,G; for i € {0,1} from
Theorem 12.5 are constructible by PV («)-functions.

Note that using the above theorem, we can define approximate probabilities
in Definition 12.3 using PV(«a) relations. Let C' : 2" — 2. Then by the following
notation

Pr[C(2) = 1] <¢

<y

SHES

we mean w x Size(a,C, 2" €) < yz where € = |e| L.

12.4 On the theory S} + 1-EXP

In this part, we introduce a powerful first-order theory of arithmetic which we
use in different places to formalize complexity-theoretic concepts.

Definition 12.6. Let ¢ be an arithmetical formula and 1 be an arithmetical
sentence. Then S} + 1 + 1-EXP = Va¢(z) means that there is a term t such that

S;+ 1k Va,y(i(x) < |yl = ¢(x)).

As we already said, S+ 1-EXP is powerful. Here we state some of the known
results about this theory to show this fact.

Theorem 12.8. ([Kra90]) Let ¢ € VX4, such that To & ¢, then S5 + 1-EXP F ¢.

Let Prime(z) (which says that z is a prime number) be the following II
formula
x>1AVy,z<z(y-z#x).

Then we have the following corollary by Theorem 12.8, the main result of
[PWWS88] and Parikh’s theorem.

Corollary 12.9. There exists a term t such that
S5+ 1-EXP - VoTy(y > o At(x) > y A Prime(y)).

The last property that we need is that S} + 1-EXP is strong enough to talk
about Pratt primality certificate [Pra75].

Definition 12.7. Let Pratt(z,y) be a PV formula that formalizes the following
definition: Pratt(z,y) = 1 iff the following conditions hold:

1.y={q:i<k)y,{(c:i<k),g) for somek,

2. x — 1 =1lick €,
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3. for every i < k, Pratt(¢;,c;) =1,

4. 9<z,¢" ' =1 (mod ) and gzq__il # 1 (mod x) for alli < k.
Then it is easy to see that the following proposition holds.
Proposition 12.10. S3 + 1-EXP - Vz(Prime(z) < JyPratt(z,y) = 1).

Actually, the base theory to prove the above proposition can be weakened to
S +iWPHP(PV)!.

12.5 Proof systems
Following the work of Cook and Reckhow [CR79], we have the following definition.

Definition 12.8. Let £ C {0,1}*. Then a function P € FP is a proof system
for L iff the range of P is exactly L. Moreover, the size of a P-proof 7 is |r|
(length of w if m is a string or the length of the binary representation of 7 if it is
a number).

Let P be a proof system for £ C {0,1}*. For a x € L, 7 is a P-proof of z iff
P(r) ==.

Definition 12.9. Let P and Q be two proof systems for a set L C {0,1}*. Then
P simulates Q iff there is a polynomial p such that for any x € L and any Q-proof
7 of z, there is a P-proof of size < p(|x]).

P and Q are polynomially equivalent iff P simulates () and also Q) simulates
P.

Definition 12.10. A propositional proof system is a proof system for the set of
propositional tautologies (TAUT ).

In the rest of the paper, when we talk about proof systems, we mean propo-
sitional proof systems (otherwise, we emphasize what the associates set to the
proof system we are discussing).

Next, we need the definition of Merlin-Arthur proof systems (MA for short).

Definition 12.11. (/Bab85]) Let £ C {0,1}*. Then a function P € FP is a MA
proof system for L iff there exists a polynomial p such that for any x € {0,1}*
the following conditions hold:

1. if x € L, then there is a w € {0,1}* such that
[P(z,m,r)=1]=1,

r
re{0,1}p(@m)
2. ifx & L, then for any m € {0, 1}*

[P(z,m, 1) =1] <

Wl

r
re{0,1}p(=m)

It is well-known that under standard hardness assumptions such as E &;,.
Size(24™)), MA proof systems are actually Cook-Reckhow proof systems ([TW99]).
It is also important to note that the concept of simulation can be defined in the
same manner as Definition 12.9 for MA proof systems.

1Personal communication with Emil Jefdbek.
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12.6 Automatability and feasible disjunction property

An important concept in proof complexity is the notion of proof search. The next
definition formalizes this notion.

Definition 12.12. ([BPR00]) A proof system P is automatable iff there exists a
deterministic algorithm A such that for any tautology ¢, A(P) outputs a P-proof
of ¢ in time polynomial in the size of the shortest P-proof of ¢.

A somewhat related notion to automatability is the concept of the following
definition (see subsection 3.2 of [Pud03]).

Definition 12.13. ([Pud03]) A proof system P has feasible disjunction property
iff there exists a polynomial p such that for any two propositional formulas ¢ and
Y, in which ¢ and 1 do not share variables, if m is a P-proof for ¢ V 1, then
there exists a P-proof for ¢ of size < p(|n|) or there exists a P-proof for 1 of size

< p(|7l).

12.7 Translation of first-order formulas and weak proof
systems of theories

Let ¢(x1, ..., z,) be a PV relation (or a A? formula). Then given my, ...,m, € N,
there is a canonical way to construct the circuit

in polynomial time in my, ..., m,, such that for any as, ..., a, € N where |a;| = m;,
olay, ..., ) = Viff [[@]]my. mn (a1, ...,a,) = 1 and moreover this correspondence
can be proved in S} (for more information see [Coo75, Bus95]). As we want to
work with proof systems, by [[¢]]%; we mean the DNF translation of [[¢]]s using
some extension variables and again this correspondence can be proved in S3.

Let P be a proof system for tautologies (P is a PV function). Then the
reflection principle for P is

Rfnp :=Vz,¢(P(z) = ¢ — Taut(p))

where Taut(¢) is a 118 formula that checks whether ¢ is a tautology or not.
Now for the key definitions of this part, we follow [Pud20].

Definition 12.14. A proof system P is the weak proof system of an arithmetical
theory T iff the following conditions hold:

1. For any PV relation ¢(x), if T+ Yzo(x), then there is a polynomial p such
that for any n, [[¢]| has a P-proof of size at most p(n).

The weak proof systems of many arithmetical theories are known. For ex-
ample, the weak proof system of S} and PV, is EF. For more information, see
[Coo75, Bus9s, KP89, KP90b, Kra04c, Kral9, Pud20]. There is another way to
associate a propositional proof system with a theory.
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Definition 12.15. Let T be a theory that extends Si with a polynomial time
decidable set of axioms and Proofr(x,y) is the provability predicate of T (it is a
PV relation). Then the strong proof system of T', which is denoted by Pr, works
as follows:

) m= (1", ¢) A Proofr(w',"Taut("¢")")
xV-oxr o.w.

Pr(m) == {

where x is a fized variable.

Let Vzé(x) be a true VI sentence. Then EF + {[[¢]|°} is EF augmented with
any substitution instance of [[¢]]5, for some n.

Definition 12.16. A proof system P is well-behaved iff there is a true VII® sen-
tence Yxo(z) such that P is polynomially equivalent to EF + {[[¢]]°}.

Many well-known proof systems such as G;’s, 1EF and even strong proof sys-
tems associated with PA and ZFC are well-behaved (see [KP90b, Kra04c, Pud86,
Pud87]). From the above definition, we get the following theorem.

Theorem 12.11. ([Pud20]) If P is a well-behaved proof system, then P is the
weak proof system of S5+ Rfnp.

12.8 Feasible soundness and completeness for proof sys-
tems

It is possible to prove a form of soundness and completeness for tautologies with
short proofs in a proof system. This relation was discovered by Paris and Wilkie
[PW85] and Ajtai [Ajt94] for AC°-Frege and 1Aq(f). Here we state two theorems
about this relationship (for more information, see [Kra95]).

Let M be a countable nonstandard model of true arithmetic (M = Th(N)).
Let n € M\ N. Then

M, = {r € M: 3k e N(lz| <n"}.

Theorem 12.12. (Soundness) Let P be a proof system and M =PV + Rfnp.
If there is a P-proof of ¢ inside M, then M = Taut(¢).

Theorem 12.13. Let P be a well-behaved proof system, M be a countable non-
standard model of true arithmetic, n € M\ N, and ¢ be a propositional formula
in M,. If there is no P-proof of ¢ in M,, then there is a cofinal extension
M* DO M, such that:

1. M* = Sk+ Rfnp.

2. There is a falsifying assignment for ¢ in M*.
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12.9 Krajicek’s implicit proof systems
In this part, we follow the main definition of [Kra04c].

Definition 12.17. Let P be a proof system for L C {0,1}*. Let P’ be a proof
system for tautologies. Then [P', P| is a proof system for L as follows:

o Let x € L. Then a pair (m,C) is a [P', P|-proof for x € L iff the following
conditions hold:

7 is a P'-proof for the canonical SDNF Corrects(z) where Corrects(x) is
a tautology iff the truth-table of C as a circuit is a P-proof of x € L.

Using this definition, we can define new proof systems as it was done in
[Kra04c].

12.10 Proof complexity generators

Let g € FP be a stretching function which means that for any n, g, : {0,1}* —
{0,1}™™ where m(n) > n. Let b € {0,1}™™. Then as g € FP, we can write
a propositional formula 7,(g,) which is a tautology iff b is not in the range of
gn. Note that as m(n) > n, there are strings outside of the range of g, hence
for some b’s, 7,(¢gy,) is a tautology and we can talk about their proof complexity.
These tautologies were defined independently by Alekhnovich et al. [ABRWO04]
and Krajicek [Kra0Olb] with different motivations. For more information about
these tautologies, see [KraOlb, ABRW04, Krall, Raz15, Kral9, Kra22].

Here we mention several notions of hardness for proof complexity generators.

Definition 12.18. A stretching map g € FP is a hard proof complexity generator
for a proof system P iff for any k there is a ¢ such that for any n > ¢, and any
b e {0,1}"™ 1(g,) requires (m(n))* + k size P-proofs.

For the next definition, we do not explicitly show all variables of the 7 formu-
las. Namely, the notation 7,(C)(x1, ..., z,) means that 1, ..., x, are the variables
of 7,(C) corresponding to the bits of an € {0,1}". The symbol CircVar(y)
denotes the set of circuits using variables from .

Definition 12.19. ([Kra0la, Kra04b]) Let g € FP be a stretching map and P be
a proof system. Then:

1. let s > 1. Then g, is s-pseudo-surjective for a proof system P iff all dis-
junctions of the form

B (gn)('!j1> V..V TBk(gn>(?71, ] ?_jk)

require P-proofs of size at least s. Here k > 1 is arbitrary (it can be a
function of n), and By, ..., By are circuits such that

By € CircVar(0), By € CircVar(y,), ..., Br € CircVar(yy, -, Y1), U;
disjoint m(n)-tuples of atoms.

2. Let s(n) > 1 be a function. Then g is s(n)-pseudo-surjective for P iff for
all but finitely many n > 1 g, is s(n)-pseudo-surjective for P.
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3. g is (exponentially) pseudo-surjective for P iff it is s(n)-pseudo-surjective
for some s(n) > n“® (resp. for s(n) > 2" ).

4. g 1is free for P if it obeys the property in the previous item but with any
constant k only.

The next theorem gives a model-theoretic characterization of the above defi-
nition.

Theorem 12.14. ([Kra0la, Kra04b]) Let P be a well-behaved proof system, g €
FP be a stretching map, and M be a countable nonstandard model of arithmetic.
Then the following statements hold:

1. g is free for P iff for any n € M\ N, there is an estension M* 2 M,
such that M* = PV1 + Rfnp and moreover g, is onto in M*.

2. g is pseudo-surjective for P iff for any n € M\ N, there is an extension
M* D Moy such that M* }= Sy + Rfnp and moreover gy is onto in M*.

Truth-table generators are important in the theory of proof complexity gen-
erators.

Definition 12.20. Let s > n > 1. then the truth-table function tts, (as a PV
function) takes as input 10slog(s) (for some fized constant co) bits describing
a size < s circuit C' with n inputs, and out puts 2" bits: the truth-table of the
function computed by C. By definition, tts, outputs zero at inputs that do not
encode a size < s circuit with n inputs.

It is clear from the above definition that the 7 formula based on ttgen ,, and f
is the same as [[Hard(f)]]°.
Now we have the following theorem.

Theorem 12.15. (/Kra04b]) Let P be a proof system that simulates EF. Then
the following statements are equivalent:

1. There is a stretching map g € FP which is exponentially pseudo-surjective
for P.

2. There is a k > 1 such that tt,x ,, is exponentially pseudo-surjective for P.

Another closely related formulas to 7,(tts,,) are formulas that express a func-
tion is hard on average.

Definition 12.21. Let s >n > 1 and 0 < § < 1. Then tt°(s,n,C, f) is a PV
function such that if

1. f is a string of length 2™ and (f : 2" — 2),

2. C':2" — 2 s a circuit of size < s and,

5. Hu<2m:Clu) = f(u)}] = (2 +27m)2r,
it outputs 1, and otherwise, it outputs 0.

From the above definition, we get that Hard?(f) is equivalent to
V|C| < o2 log(27") (¢t°(2",n, C, f) = 0).
For the sake of simplicity, we denote [[Hard?(f)]]¢ by LB.(2?,n, f).
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12.11 Natural properties

An important and well-studied in computational complexity is the notion of
Razborov and Rudich’s natural properties [RR97]. Here is the definition. Let
s : N — N. Then for any n € N, Size(s(n)) denotes the set of all Boolean func-
tion f: {0,1}™ — {0, 1} such that there is a Boolean circuit of size < s(n) that
computes f.

Definition 12.22. Let C = {Cp}nen be a family of circuits such that for every
n, Cy, is a circuit on 2™ many input bits. C is a P/poly natural property iff the
following conditions hold:

1. Constructivity: There is a ¢ € N such that for any n, |Cy,| < 2 + c.

2. Largeness: There is a d > 0 such that for any large enough n,

C.(f)=1]> 27,
fe{of{}w[ (f)=1=

Let s : N — N. Then C is useful against Size(s) iff for every large enough n, for
any Boolean function f:{0,1}" — {0,1}, if C,.(f) = 1, then f & Size(s(n)).

A NP/poly natural property useful against Size(s) is defined as the same as the
last definition with this difference that C should be a family of nondeterministic
circuits. Actually, we need a weaker notion of usefulness for our results, which is
explained in the next definition.

Definition 12.23. Let s : N — N. Then for infinitely many n, there is a
(N)P/poly natural property useful against Size(s) means that there is a C =
{Cy}nen such that C has the constructivity property and for infinitely many n
C has both the largeness property and the usefulness property for the Boolean
functions of input length n.

To finish this subsection, it is important to know that experts believe that
infinitely often (N)P/poly natural properties useful against P/poly do not exist
(see [RR97, Rud97]).

13 Jump operators in proof complexity

In this part, we define the notion of jump operators in proof complexity.

Definition 13.1. A jump operator is a function J : {0,1}* — {0,1}* such that
on an input a, if a is code of a Turing machine that computes a propositional proof
system P, then J(a) is code of a Turing machine that computes a propositional
proof system P’ such that P cannot simulate P’.

In the rest of the paper, we abuse the notation and for a proof system P, we
write J(P), and the intended meaning is what is written in the previous definition.

Another concept that is closely related to jump operators is the following
definition.
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Definition 13.2. A hard tautology generator is a function H : {0,1}* — {0,1}*
such that on an input a, if a is code of a Turing machine that computes a propo-
sitional proof system P, then H(a) is the code of a VII% sentence ¢ such that the
family {[[¢]]°} requires super-polynomial size P-proofs.

One of the main conjectures in proof complexity is the following one.
Conjecture 13.1. ([KP89]) There is no optimal proof system.

So by the main result of [KP89] and Theorem 15.10 Conjecture 13.1 is equiv-
alent to the existence of a jump operator which is equivalent to the existence
of a hard tautology generator. It is open whether Conjecture 13.1 implies the
existence of an efficient jump operator or equivalently an efficient hard tautol-
ogy generator. As for the conjecture, we have the following conjecture about the
existence of efficient jump operators. Let T be a theory that extends S3 with a
polynomial decidable set of axioms and let Proofr be the probability predicate
of T. Then the finite consistency of 1" is the 1T formula

Cong(z) == V|y| < |z|=Proofr(y," L")
and the consistency statement of 1" is Cony := YaConr(z).

Conjecture 13.2. ([KP89, Pud17]) Let Ty and T be finite axiomatizable true
extensions of S3. Then if Ty = Cong,, Ty does not have polynomial size proofs of
Cong,(n) in n.

14 A jump operator based on interactive proof
systems

In this section, we define a new candidate jump operator based on the sum-check
protocol [LFKN92]. The sum-check protocol for deciding the unsatisfiability of a
3CNF ¢(z1, ..., z,) works as follows: the protocol consists of messages exchanges
between a powerful prover P and a randomized polynomial time verifier V.

1. Both P and V receives ¢(x1, ..., xp).

2. ‘P generates a prime number 22" +" < p < 227 +)% (¢ is the constant from

the upper bound term ¢ in Corollary 12.9) and a Pratt certificate u such that
Pratt(p,u) = 1 and sends (p,u) to V. V checks whether Pratt(p,u) = 1
or not, and if it u was not a Pratt certificate for p, then it terminates the
protocol; otherwise the protocol continues.

3. V initializes vg := 0.

4. Both P and V arithmetize ¢ to obtain a polynomial ®(x1,...,2,). Then the
following interaction is repeated for all 2 = 1 to n:

(a) Leaving z; free, P computes the coefficients of the following polynomial
(computations are over Fp):

Qz(xz) = Z Z ®(T17"'7711'—171‘1'71‘1'—‘,-17"'7~Tn)'

mi+1€{071} mne{ovl}

Then P sends (); as its list of coefficients to V.
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(b) V checked whether @Q;(0) + Q;(1) = v;—1. If so, it samples a random
riF,, computes v; := Q;(r;), and sends r; to P.

5. In the final round, instead of sending r,, to P, V checks that ®(rq,...,1,) =
v, or not and based on that accepts or rejects.

It can be proved that the above protocol has a soundness and completeness
property (see Theorem 14.1). Let V(p, u, ¢, w,r) be the PV-function that works
as follows:

e On a 3CNF ¢(x1, ..., z,), it outputs 0 if at least one of the following condi-
tions does not hold:

1 224 < < 90 Hn)r
2. Pratt(p,u) =1,
3. |r| =n"+ ¢,

4. the input length of 7 interpreted as a Boolean circuit is n“ + c¢,,

where ¢, is the constant from the upper bound term ¢ in Corollary 12.9 and
¢ is a constant from the definition of the sum-check protocol for the length
of a required random string so that the protocol can be executed correctly.
If all of the previous conditions hold, V' interprets the truth-table of 7 as
the transcript of the prover and based on r, it queries different places of the
truth-table of 7 using 7 to simulate the sum-check protocol and outputs 1
iff the sum-check protocol passes, and otherwise it outputs 0.

Note that there is a constant ¢ such that if ¢ € 3SAT (3SAT is the set of unsatisfi-
able 3CNFs), then there is a 7 of size < p@®7 P+ =D))< 97 +er The important
property of the sum-check protocol is the following soundness and completeness
theorem.

Theorem 14.1. Let ¢ be a 3CNF in n variables. then the following statements
hold:

1. Soundness: if ¢ is satisfiable, then for any m of size < 2"+ p and u,

Pr V(p,u,,m,1r)=1] < n(?’n)

7‘6{071}”6T+CT — 2(2n3+n) .

2. Completeness: if ¢ is unsatisfiable, then there is a m of size < 277 +er

and u such that

» P

Pr [V(p>u>¢>7r>r) = 1] =1.

re{0,1}ner+er

Definition 14.1. Let P be a proof system for a set L C {0,1}*. Then [IP, P]
denotes the |P-randomized implicit proof system based on P. The verifier for
[IP, P] is the PV function Vp(x,p,u,C,C’ 1) which works as follows:

e First, Vp checks whether P(C) = x or not. If this was the case, then it
outputs 1; otherwise, it outputs the output of V(p,u, Correct$ (x),C,r).

It is clear from the above definition and the statement of Theorem 14.1 that
[IP, P] is a MA proof system.
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15 Main results

In this section, we explain the main results of the paper.

15.1 On properties of IP-randomized implicit proof sys-
tems

The first theorem that we explain is the relationship between IP-randomized im-
plicit proof systems and Cook-Reckhow proof systems, similar to the relationship
between EF and the Ideal proof system of [GP18].

Theorem 15.1. Let P be a proof system. Then [IP, P] simulates P. Moreover, if
there exists a Boolean function f :{0,1}* — {0,1} and a constant ¢ such that for
any large enough n, there are 2™ size Ps%JernPH_EXp-proofs of LB%(Q%,n, fn),
then Psi\ pnpi1-exp Simulates [P, PJ.

To prove the above theorem, we need to prove the soundness of [IP, P] in a
suitable arithmetical theory.

Definition 15.1. Let P be a proof system and ¢ > 0. Then the soundness of
[IP, P], which is denoted by Sound.([IP, P]), is the following VX% sentence: for
all ¢, a,p,u, C,C", f where |¢| > ¢, there is a circuit D of size < Hfﬁ] such that
one of the following conditions hold:

1. |f| # [Var(C)|¥ks + k, or,

2.t ([1f171, [[If1511, D, f) = 1 or,
3. ¢la) =1, or

4.
Pr  [Vp(¢,p,u,C,C" 7r) =1] <!

2N ter ’

N —

where ko is the constant that we get from Theorem 12.7 to make sure that Size
function works properly, e = 1, and n := \Var(Correct$ (¢))].

The following theorem is one of the main ingredients of the proof of Theorem
15.1.

Theorem 15.2. Let P be a proof system. Then there is a constant ¢ > 0 such
that
S3 + Rfnp + 1-EXP + Sound,([IP, P]).

Theorem 15.3 is the consequence of a formalization of the soundness and
completeness of the sum-check protocol in S3 + 1-EXP.

Theorem 15.3. (Soundness) There is a constant ¢ such that S3+ 1-EXP proves:
for every n, ¢,a,p,u,7; if

1. ¢ is a SCNF in n variables where n > ¢ and,

2. ¢(a) =1 and,
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3. Pratt(p,u) =1 and,
4. 22n3+n <p < 2(2n3+n)cp cmd,
5. the input length of w interpreted as a circuit is n° + c,,

then

Pr [V(p,u,qﬁ,w,r) = 1} < n(?’n)

relfp p

Theorem 15.4. (Completeness) There exists a function F that is Ab-definable
in S} such that S} + 1-EXP proves: for every n, ¢, p,u; if

1. ¢ is a SCNF in n variables and,
2. Ya < 2"¢(a) = 0 and,

3. Pratt(p,u) =1 and,

4. 220 < p < e

then

Pr [V(p,u,qS,F(p, @), r) = 1} = 1.

relfp

Let P be a proof system. Then for a sequence of numbers
[ = <n¢>> Np, Ny, N, N7y nr> 5

we define the propositional formula LB (75, %, T, T, T, Tf) as:

C

1
H Pr [Ve(6,p,u,C, C",r) = 1] <! 5” (5, Epy s 40, 2, 5)

Var(CorrectS’ (¢))
<2| ar(Correc o (P))|er +cr :

where ¢ = i. Let ¢ be a propositional formula of size < ng and f be a string
of length < ny. Then if LBL("¢7, v, x¢, xcr, f) is a tautology, then there is
no [IP, P]-proof m = (p,u,C,C") such that [p| < n,,|u| < ny,|C| < ne, and
|C'| < ner. The interesting property of the LB% formula is the next theorem. To
state the next theorem, we need the following definition.

Definition 15.2. A proof system P is compressible if there is a constant dp such
that for any propositional tautology ¢ such that || is big enough, there is a circuit
C of size |p|%" such that P(tt(C)) = ¢.

It is important to note that proof systems such as Frege and Extended Frege
are compressible. In particular, any proof system that contains tree-like Resolu-
tion is compressible (see Lemma 4.1 of [Kra04c]).

Theorem 15.5. Let P be a well-behaved proof system and Q) be a compressible
proof system. Then if there is a k such that tt,, is a hard proof complexity
generator for P, then for any constant ¢ > 0, there is m such that for any
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n > m, for any propositional tautology ¢ such that |¢| = n, and for any f,

— — — — . d-dg-cr
LBég('—qS—', Ty, T, Xy Tevy [) does not have P-proofs of size < 2 T where

l(n) — <n7 (277,3 + n)q,’ (277,3 + n)g,,.ccwt7 (nd.dQ.cT + cr)k,ndQ,ndQ'k“ + kfa> 7

d > 0 is a constant such that for any big enough D and any big enough 1,
[Var(Correctg ()| < (|D| +[4)%, and ceerr > 0 is a constant such that for any
large enough prime q, there is a Pratt certificate of size < |q

Moreover, if additionally CONP & MA, then there is an infinite family of

propositional tautologies {n }nen such that LBég('—an—', Ty Ty Ty Ty f) 1S @ tau-
tology for almost every f for the parameter size l(|¢n]).

Ccert

By Combining the previous results, we get the following consistency state-
ment.

Theorem 15.6. Let P be a well-behaved proof system. Then the following state-
ments are true:

1. If there is a stretching map g € FP which is exponentially pseudo-surjective
for P, then there exists a monstandard model M* = Si + Rfnp and a
n € M*\ N such that:

(a) there is a constant ¢ > 0 such that M = 2™ € Log.

(b) There is a constant ¢ € N such that for any DNF ¢ € M* such that
|¢] =n, if M* = Jap(a) =0, then

M* = “¢ does not have any [IP, Res*]-proofs”
and if M* |=Vap(a) =1, then
M* = “There is a [IP, Res*]-proof of size < n® for ¢”.

2. If there is a constant k such that tt,x . is free for P, then there exists a
nonstandard model M* |=PV; + Rfnp and a n € M*\ N such that:

(a) there is a constant ¢ > 0 such that M = 2™ € Log.

(b) There is a constant ¢ € N such that for any DNF ¢ € M* such that
|¢] =n, if M* = Jap(a) =0, then

M* = “¢ does not have any [IP, Res*]-proofs”
and if M* |=Vap(a) =1, then
M* = “There is a [IP,Res*]-proof of size < n° for ¢”.
The next definition is a another version of Definition 15.1.

Definition 15.3. Let P be a proof system. Then the strong soundness of [IP, P],
which is denoted by sSound.([IP, P]), is the following VXY sentence: for all

o,a,p,u, f where |¢p| > ¢, there is a circuit D of size < Hfﬁ] such that for
all C,C", one of the following conditions hold:
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1. |f| # [Var(C)|¥ks + k, or,

2. tt5([1f151, [If1511, D, f) = 1 or,
3. ¢la) =1, or

4.
Pr  [Vp(é,p,u,C,C' 1) =1] =!

r<2neT ter ’

N —

where ko is the constant that we get from Theorem 12.7 to make sure that Size
function works properly, € = i, and and n = |Var(Correct$ (¢))|.

It is easy to see that for any proof system P, there is a constant ¢ > 0 such that
sSound,.([IP, P]) is a true sentence. It should be mentioned that Sound.([IP, P])
and sSound.([IP, P]) are equivalent over PVy, but it is not clear whether the
same equivalence holds over iS3. Using the above definition, we have the following
statement.

Theorem 15.7. If iS} +; sSound.([IP,Res*]) for a constant ¢ € N, then the
following statements are true:

1. If EF is automatable, then for any constant k > 0, for infinitely many n
there is a P/poly natural property useful against Size(n*).

2. If EF has the feasible disjunction property, then for any constant k > 0,
for infinitely many n there is a NP /poly natural property useful against
Size(n").

15.2 A new hardness property for proof complexity gen-
erators

Motivated by hardness assumptions that enable us to prove Theorem 15.6, we
define the following new property.

Definition 15.4. Let P a proof system and g € FP be a stretching map (g, :
{0,1}" — {0,1}™™)). Then g is P-provably hard for P iff for every k € N,
there are ¢, € N such that for any n > ¢, there are P-proofs of size at most
(m(n)) + ¢ for the propositional formulas

ISHaTd%];(fﬂ7fb) = [[_‘PTOO.}EP(TF7 Tb(g")]]?m(n))k,m(n) (fﬂ?fb)
(the 118 version is ¥|r| < (m(n)¥),¥Y|b] = m(n)=Proofr(m, m(gs))).

The following theorem gives a model-theoretic characterization of this prop-
erty.

Theorem 15.8. Let P be a well-behaved proof system and g € FP be a stretching
map (gn : {0,1}" — {0,130 ). Then the following statements are equivalent:

1. g is P-provably hard for P.
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2. Let M be a countable nonstandard model of true arithmetic and n € M\N.
Then for any countable cofinal extension M* of M,y such that M* |=
PVi + Rfnp, there is a countable cofinal extension M** of M* such that:

(CL) M** |: PV1 + Rf’n,p
(b) gn is onto in M**.
An immediate consequence of the above theorem is the following statement.

Corollary 15.9. Let P be a well-behaved proof system and g € FP be a stretching
map. If g is P-provably hard for P, then g is free for P.
Proof. By combining Theorem 12.14 and Theorem 15.8 O
So the last corollary implies that we can get item 2 of Theorem 15.6 under
the assumption that ¢, , is P-provably hard for P.
The existence of proof complexity generators that are P-provably hard for a
proof system P is consistent with the current knowledge of complexity theory and

mathematical logic. Therefore we propose the following new hypotheses about
proof complexity generators.

Hypothesis 15.1. For any well-behaved proof system P, there is a stretching
map g € FP such that g is P-provably hard for P.

Hypothesis 15.2. For any well-behaved proof system P, there is a constant
0 < e <1 such that ttyen ,, is P-provably hard for P.

15.3 On the existence of an efficient jump operator

In this part, we explain the main theorem which describes several equivalent
statements to the existence of an efficient jump operator.

Definition 15.5. T is the set of all consistent finitely axiomatizable first-order
theory S3 C T in the language of S3.

Theorem 15.10. The following statements are equivalent:

1. There exists a polynomial time computable/recursive/partial recursive jump
operator.

2. There exists a polynomial time computable/recursive/partial recursive hard
tautology generator.

3. There exists a true T € T such that for every S € T, S does not have
polynomial size proofs of Conpycong(n) in n.

4. There exists a true T € T such that for every proof system P, P does not
simulate Pricon,, )
52+C'o'n,P

5. There exists a true theory T € T such that for every S € T, if SE T, then
S does not have polynomial size proofs of Congcong() in n.

Motivated by Conjecture 13.2 and Theorem 15.10, we propose the following
conjecture.

Conjecture 15.1. There is a partial recursive jump operator.
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16 Proofs of the main results

16.1 Proof of Theorem 15.3

In this part, we prove Theorem 15.3. As we argue in S+ 1-EXP, we freely assume
the existence of objects of exponential length (2”0(1)) with properties that can
be checked in polynomial time with respect to the length of the object (so the
property can be checked in 2"0(1)).

We need the following lemma in the proof.

Lemma 16.1. (Lemma 4.5.6 of [Jer05]) PVi proves: For every prime number
p € Log, every nonzero f € Fy[z], f has at most deg(f) many roots.

Suppose conditions 1-5 of the statement of Theorem 15.3 hold for n, ¢, a, p,
u, . Let ¢(xo, ..., Tn_1) = Nijem Ci where for every i < m, C; = I3 V1%V [4 such
that for every 7 < 3, l;'- is x or —xy for some k < n. Define the arithmetization
of ¢ as

(20, oy @n1) := ] (v(lp) +v(l}) +v(l3))
<m
x l=x .

where v(l) := | [ From now on, suppose we look at polynomials as
polynomials with coefficients in IF,,. The first observation is that for every [b] < n,
o(b) # 0 iff p(b) = 1. Moreover, as p € LogLog and ® has at most 3™ many
monomials when written as the sum of monomials and the fact that 3™ € Log
using the AS-induction we can show that:

1. there exists a M C [, x 2" such that ® = 3, e @ - licm i
2. Total degree of ® is at most m.

Let r = (r1,...,7;) be a sequence of i elements of [, for some i. Fix the following
notations for any number i:

1. Pi(z) := 3 j<m a2’ where 70(r) = (ao, ..., Gm).
2. (pr(xi—i-l; ,l‘n) = @((7’)1, ceey (T)hxi—i—l; ceey .Tn)
Consider the the formula (k) as follows:

» For every v € I, for every sequence of 7 elements of IF,, r, if

vE D D P, ),

T41<2 <2

then
km

Pr[r can persuade the verifier] < —
b
where i =n — k+ 1.

As p € Log and with the power of 1-EXP we have exact counting, 1 is a AS-
formula. Now, using the Ab-induction on k, we want to show that Vk < n (k).
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o Base step:

Let £ = 1, r be a n — 1 element sequence of F, and v € F, such that
v # Y. <oPr(x,). Then there are two cases. If P, = &,, then with
probability 0 the verifier accepts as P,.(0) + P.(1) # v. Otherwise, P, # @,
which means that by Lemma 16.1, P, and ®, are equal on at most m points
which implies that the verifier accepts with probability at most %.

o Inductive step:

Suppose the claim is true when £ = j. Let v € [F, and r be a n element
sequence of [F,, such that

v # Z Z D, (x4 ..., xp)

x; <2 Tp<2

where 1 =n — j. Let

P(z):= Y .Y @z, zi1,..., 2,).

Tip1<2 Tp <2

Consider the following possibilities. If P.(z) = P(x), then verifier accepts
with probability 0 as P,(0) + P,(1) # v. Otherwise, P. # P and therefore
P, and P are equal on at most m points. Let S := {a € F, : P(a) = P-(a)}.
If the verifier chooses a point from S, then it will accept it by the end of the
protocol with probability at most %. If the verifier chooses a point outside
of S like a, then as 1(j) is true, it should be true for v := P,(a) and
r" = ((r)1,..., (r);,a), hence the verifier accepts with probability at most

G+D)m

ij. So overall the probability that the verifier accepts is % + ij =

Note that as 1(n — 1) is true and the fact that m < @"), we get

Pr [V(p, U, o, T, V) = 1} < n(g")

velFy p

16.2 Proof of Theorem 15.4

The proof of this theorem uses some of the arguments that we used in the proof
of Theorem 15.3, so we do not go into detail. Suppose conditions 1-4 hold for
n, o, p,u. Let ® be the polynomial from the proof of Theorem 15.3. Define the
function F} ,(r) as follows:

e On the input r where 7 is an ¢ element sequence of I, for some i < n, it
computes the coefficients of

Qr(z) = Z Z D, (2,210, ..., Ty)

Ti42<2 Tp<2

and outputs the sequence of coefficients. Namely, if Q,(z) = ;41 a;27,
then F(r) = (ao, ..., a,,) where m is the number of clauses of ¢.
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As we have the power of 1-EXP, F’ is A} definable, and moreover, as we have
exact counting and F’ always outputs the right answer for the sum-check protocol.
Now, let F(p, ¢) be the function that outputs the trivial circuit that its truth-
table encodes the graph of F) , (so F'is Aj-definable in S}). Then using the A}
induction we get

Pr [V(p, u, ¢, F(p, ¢),v) = 1} =1.

velFy

16.3 Proof of Theorem 15.2

The contact ¢ can be computed by looking at the proof. To simplify the proof, we
assume that |@| is big enough. Arguing in S}+ Rfnp+1-EXP, let ¢, a, p,u, C,C’, f
be in such a way that:

1. there is no circuit D of size < [|f]1] such that ¢¢1([|f|5],[[|f|Z]], D, f) = 1
and,

2. |f| = [Var(C)|* + k, and,
3. ¢(a) =0 and,

4. 224N <y < 9@PPHN)P g
5. Pratt(p,u) = 1 and,

6. [Var(C)| =n"+ ¢,

where n = |Var(Correct$ (¢))]. We can do exact counting as we have the power
of 1-EXP. For the sake of contradiction suppose

Pr  [Vp(¢,p,u,C,C" 1) =1] >

rQneT ter

|

This means that

Pr [V(p,u,Correctg,(qS),C, v) = 1} > l

velFy 4

As |¢| is big enough, this implies that |Correct$ (¢)] is also big enough, so what
we actually get is that

2n
Pr [V(p, u, Correctg(qﬁ),C, v) = 1} > M

vely p

This implies that Correctg, (¢) does not have any falsifying assignment by Theo-
rem 15.3. Therefore, the truth-table of C’ is actually a valid P-proof for ¢ which
means P(tt(C")) = ¢. As we have Rfnp as one of the axioms, we get that ¢ is
actually a tautology, but this leads to a contradiction by the fact that ¢(a) = 0,
hence we have

Pr  [Ve(o,p,u,C,C"r) =1] <

r<2neT ter

It is clear from the proof of Theorem 12.7 (see Lemma 2.14 in [Jer07]) that
knowing Hard4(f) is sufficient to do approximate counting. Namely, we have
4

|
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access to f as a string so we can do arguments using p-induction on ¥} formulas

that use f as a parameter and moreover, we know Hard4(f) holds, so we can
4

approximately compute the probability Pr,_gner+e, [Vp (¢, p,u,C,C";r) = 1]. So

by Theorem 12.7 and Theorem 12.5 that there is a circuit Gy and av < poly((n“+

¢ )e 1C*]) such that

Ghr:vx (X U e2"77) - wSize(f, C*, 2777 )

where |e|™! = i and for any r < 2" Fer C*(r) = Vp(¢,p,u,C,C",r). As we

have the power 1-EXP, we can do exact counting and we get

Size(f,C*, 2" ¥ e) < | Xon| + €277 e,

onT +cr

As we showed |X¢«| < *—— and as ¢ = i, we get
c Qnerter
Size(f,C*, 2" e) < 5
which means 1
P V C.C'r)y=1] =/ =
7-<2"c£+6'r|: P(¢>p> u, U, 771) ] —€ 9

16.4 Proof of Theorem 15.1

By the definition of [IP, P] it is trivial that [IP, P] simulates P. To prove the
rest of the statement, suppose ¢ is a propositional tautology such that |¢| is big
enough. Let (p,u,C,C") be a [IP, P]-proof of ¢ which means that

N Pr[Vp("o7p.u,C,C'0) = 1] = 1

where n = |Var(Correct$ (¢))]. Let m == ||[Var(C)|*+k,| and T := SL+R fnp+
1-EXP. As Pr has short proofs for LB 1 (2%’,71’ , fnr) for every n’ € N (polynomial
in the size of the formula), then there is a short Pp-proof of LB 1 (2%, m, f,.). By
Theorem 15.2, there is a constant ¢ > 0 such that T' - Sound.([IP, P]). This
means that Sound.([IP, P]) has a constant size T-proof. By the fact that we
know LB%(Z%,m, fm), if we substitute f,, and (p,u,C,C") in the corresponding
variables in Sound.([IP, P]), we get a short T-proof of

Va ("0 =1V _Pr Ve(T6pu € O = 1] <1 5).

regner ter 2

Note that
N Pr[Ve(T67.p.uC,C0) = 1] =1

which implies that
1
N ): _'( Pr [VP(r¢j>p> Uu, 07 0/771) = 1] jgm 5

r<2neT er 2 )

is a true atomic sentence; hence it has a short Si-proof which implies that
Va"¢(a) = 1 has a short T-proof which means that T'aut("¢") has a short
T-proof.
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16.5 Proof of Theorem 15.5

Suppose the statement of the theorem is not true. This means that there is a
constant ¢ > 0 such that for every m/, there is a n’ > m’ and a propositional
tautology ¢’ (|¢'| = n’) and a string f" with the right size such that there is a
P-proof of size < 9o QT g LBL(¢, T, T, €8, xr, f'). Let M be a countable
nonstandard model of true arithmetic. As the above assumption can be written as
an arithmetical sentence and is true in N, it should also be true in M. Therefore,
we can argue as follows. Let m € M\N. Then there is a n, a propositional formula
¢, a string f, and a number 7 such that M believes the following statements:

1. n>m,
2. |¢] =n,
3. f has the right size for the LB for ¢,

d-dQ~cT

4. |n| <2 , and
5. P(m) = "LBY(¢, Tp, T, &, Cr, )7

As @ is compressible, there is a circuit € € M of size < n9e such that
M E Q(tt(C)) = ¢. Let p,u € M be in such a way that M believe:

1. Pratt(p,u) =1 and
9. 92+t <p< 92t +t)p
where t = |Var(Correct;(¢))|. Note that by Theorem 15.4 there is a circuit

d-dQ

D:2n e 9

of size < QIR ken) M for some b € N such that M believes

Pr [Vp(¢,p,U,D,O, T) = 1] =L

2T Fer

As tt,m o is a hard proof complexity generator for P, then by Theorem 12.13,
there is an extension M* D M2nd-dQ~cr o such that

1. M* =S+ Rfnp and
2. M* = 3C*(|C*] < (n*% e + ¢,)F At(C*) = t(D)).

As 21"+ ¢ Log in M*, M* is an extension of M2nd~dQ-cr +,» and the fact that

M* = SL, we have exact counting and therefore M* believes

Pr [VP(¢>p> U, 0*707 T) = 1] =1.

P2 +er

Now for the sake of contradiction suppose M* believes

N | —

Pr  [Vp(o,p,u,C*,C 1) =1] j{

7L 2T Fer
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which means that M* believes
2tcr+cr

2

Size(f, D*, 2"t ¢) <

where D*(r) := Vp (¢, p,u, C*,C, ) for any r < 2" and |¢| ™' = 1. To complete
the proof, we need to look at how the Size function works (see proof of Theorem
2.7 in [Jer07]). Size(f, D*, 2" "¢ ¢) works as follows: It constructs the circuit
H : 20n0l(t+en)l _y ot +er iy polynomial time using f (H is actually the Nisan-
Wigderson generator based on f) where ¢,,, is a constant in N. Then the output
of Size(f, D*, 21" ¢) is

9 ker—caul (el X L
2emwl®+er)l which means

SZ.ZG(]E, D*, 2tCT+CT’ 6) — 2tcT+Cr

and this leads to a contradiction and therefore the proof of this part is completed.

To prove the moreover part, if for any large enough n, and any propositional
tautology ¢ where |¢| = n, and for any f with the right size parameter such that
Hard?(f) holds, LBég(qS, Tp, Tu, ey T, f) 18 nOt a tautology, then [IP, Q] is a
MA pliloof system that has polynomial size proofs for any tautology (because by
an easy counting argument, it can be shown that for almost every f, H ard?( f)

holds) and therefore CONP C MA and this completes the proof of this part.

16.6 Proof of Theorem 15.6

In this part, we prove the first item of Theorem 15.6. The second part can be
proved by applying the same argument using this fact that PV, and S} prove the
same VX’ sentences. The first thing to notice is that it is straightforward to show
that S} + 1-EXP can prove that tree-like Res is compressible (see Lemma 4.1 of
[Kra04c]). Let ¢ € N be the constant that S} proves that for any z, if 21*I° € Log,
then statements of Proposition 12.10, Theorem 15.2, Theorem 15.4 and the fact
that tree-like Res is compressible are provable for the objects of size < |z|. Let
M be a countable nonstandard model of true arithmetic and n € M \ N. Let
p,u € M be in such a way that M models:

1. 22%4n < p < o m) P
2. Ju| < |p|®ert, and
3. Pratt(p,u) =1

where ¢, Cqe, are the constants from Theorem 15.5. As g is exponentially pseudo-
surjective for P, then by Theorem 12.15, there is a & > 1 such that tt,x
is exponentially pseudo-surjective for P. Then by Theorem 12.14 there is an
extension M* of M s .agepu-er . sSuch that

1. M* =S+ Rfnp and
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2. 1t . 1s onto in M*

(nd, “dRes* "CT +Cr)kc,(nd, “dRes* "CT +Cr)

where d’ € N is a constant such that for any big enough D and 1,
Var(Correctge ()] < (ID] + [

To complete the proof note that M = S} + Rfnp+2" € Log which implies that
by Theorem 15.2 for any DNF ¢ € M* such that |¢| = n, if M* | Jag(a) = 0,

we have

N | —

M* ): VC*>D* Pr [VRes*(¢>p> Uu, C*>D*>T) = 1] <

< 2°T +er

where t = |Var(Correcti(¢)|. To prove the remaining part, note that if for
a DNF ¢ € M* such that |¢| = n, M* |= Vap(a) = 1, then by the fact that
bl dgegscr 4 o Yo (! dResrer 4 ¢ ye 1S ONEO i M*, Theorem 15.4, and the fact that

M* knows that Res* is compressible following the same argument as in the proof
of Theorem 15.5, we get that M™* believes

3|C*| S (nd,'dRes*'cT + CT>]€C’ |D*| S ndRes* Pr [VRGS* (QS, p’ u’ C*’ D*’T> = 1] = 1

P2t Fer

16.7 Proof of Theorem 15.7

To prove this theorem, we need the following statement.

Theorem 16.2. Suppose there is a k € N such that tt,x, is not a hard proof
complexity generator for EF. Then the following statements hold:

1. If EF s automatable, then for infinitely many n, there is a P/poly natural
property useful against Size(%).

2. If EF has the feasible disjunction property, then forkmﬁm'tely many n, there
is a NP /poly natural property useful against Size(*s-).

Proof. Both items can be proved following the argument of Theorem 29.2.3 of
[Krall]. O

To prove the first item, we argue as follows. If #t,x, is not a hard proof
complexity generator for EF, then we get the desired conclusion by Theorem 16.2.
So Suppose this is not the case and t?, , is a hard proof complexity generator for
EF. We want to apply the idea of [AM20] and show that for every large enough
n, every DNF ¢ such that |¢| = n, there are p,u, and f such that the following
conditions hold:

1. if ¢ has a falsifying assignment, then there is a polynomial size EF-proof for
LBges ("0, p,u, 0, e, f)
and
2. if ¢ is a tautology, then LBk ("¢, p,u, T, Tcr, f) does not have sub-

exponential size EF-proofs
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where [ is from Theorem 15.5. If we prove this, we can show that NP C P/poly
as follows. Let A be the algorithm that automates EF. Let n be large enough.
Fix p,u, f such that the following properties hold:

1 22mn < p < @nem),

[\)

- Jul < Jpffeer.

w

. Pratt(p,u) = 1.
4 1f] = (e Yoo

5. Hard%"(f).

Given a DNF ¢ where |¢| = n, we run A on LBk ("¢, p,u, Zc, Tcr, ) poly-
nomially many steps and let m be its output. Then if 7 is an EF-proof of
LB ("¢, p,u,Tc,Ter, f) we output that ¢ has a falsifying assignment; oth-
erwise we output ¢ is a tautology and as the set of true DNFs is CoNP-complete,
we get that NP C P /poly.

To complete the proof, we just need to prove items 1 and 2. Note that item
2 is true by Theorem 15.5. To prove item 1, suppose a, p, u, f have the following
properties:

1. ¢(a) = 0.

2. 220 gy < 9@n )P

3. ul < [p[eer.

4. Pratt(p,u) = 1.

5. |f] = (n?rester ¢ Yoo 4 [,
6. Hard?(f).

AsiS} +; sSound.([IP,Res*]), by Theorem 12.2 there is a PV-function h such that
Si proves: for all ¢/, d’,p/, o/, ' where |¢'| > ¢, for all C,C", one of the following
conditions hold:

L |f'] # |[Var(C)[* + k, or,
2. h(¢,d,p' o, f') outputs a circuit of size < [|f’|i] and
SENIRIN R RSN ES!
or,

3. ¢(d)=1,or

s 1
Pr [VRes*(¢/>p/>ul>O> 0/771) = 1] jg 57

<2t ter
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where t = |[Var(Correcti.-(¢'))|. To simplify things, we denote the first two
disjuncts in the above formula by « and the last disjunct by 5. So rewriting the
above probability, we have

SyEVI| > e, p (¢ a0, C )V (a) = 0V B0, C.C, ).

As EF is the weak proof system of S3, we get that EF has polynomial size proofs
for

{[[al¢, ', "', C fT) v ¢ (a) =0V B(&, 0/, C. T, )]}
Let m be an EF-proof of

@ = [[a(d, a0, C, )V () = 0V B, 0, €., )]

for the parameter size |¢/| = n. Using m, there is a short EF-proof «’ for
("o a,p,u, e, v, f). As a only cares about |C] and not C, ¢(a) = 0, and
p,u, f have the right properties, the first two disjuncts in ("¢, a, p, u, Tc, Zer, f)
disappear which means 7’ is a short EF-proof of LBk.-("¢™, p,u,Zc,Zcr, f) and
this completes the argument.

The proof of the second part of Theorem 15.7 is similar. Following a similar
argument, we can show that for any DNF ¢, EF has short proofs for the formula

QS(f) \% LBll?es*(l—qS—lMZ% U,fo, fCU f)

As ¢(Z) and LBk ("¢, p,u, Zc, Ter, f) do not have common variables and more-
over, EF has the feasible disjunction property, we get that either ¢ has a short
EF-proof or

LBll?es*(l—qS—lmZ% u, 50750’7 .f)

has a short EF-proof. But note that if ¢ is a tautology, then
LBll?es* (r¢j>p> Uu, fC’a fC’U .f)

does not have short EF-proofs. Also, if ¢ has a falsifying assignment, then as
EF is a proof system for tautologies, ¢ does not have any EF-proof at all. The
conclusion is that for any DNF ¢, ¢ has a short EF-proof iff ¢ is a tautology which
implies that CoNP C NP/poly and this completes the proof. It is worth noting
that what we actually proved is something stronger. Looking at the proof of item
2, we actually proved that if iS} ; sSound.([IP, Res*]) and EF has the disjunction
property, then for any &, tt,r, is not a hard proof complexity generator for EF.

16.8 Proof of Theorem 15.8

To prove this theorem, we need the following statement.

Theorem 16.3. (/KP90a]) Let P be a well-behaved proof system and My =
PVi+ Rfnp be a countable nonstandard model. Then there is a countable cofinal
extension M§ 2 My such that the following conditions hold:

2. For any propositional formula ¢ € M, if M§ = Vap(a) =1, then M} |=
drP(m) = ¢.
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Now suppose g is P-provably hard for P. Let M be a countable nonstandard
model of true arithmetic and n € M \ N and let M* be a countable cofinal
extension of M, such that M* = PV; + Rfnp. By applying Theorem 16.3 on
M* we get an extension M*™ O M* such that the following conditions hold:

2. For any propositional formula ¢ € M**, if M** = Va¢(a) = 1, then there
is a ky € N such that M*™ = In(|7| < (m(n))* A P(r) = ¢).

The second item is true as M™** is a cofinal extension of M,,,). Now suppose for
the sake of contradiction that g, is not onto in M**. This means that there is a
b € M*™ of length |m(n)| such that b is not in the range of g, which implies that
M** believes that 7,(g,) is a tautology. This implies that there is a 7’ € M**
such that M* = || < (m(n))*»@» A P(7') = "1(gn)7. This means that
n,k.
M*™ = TIsHardp, @7/ b) = 0. As M** = PV, + Rfnp, then by Theorem
n,k. S5 . .
12.12 IsHardp, vln) (2. %) does not have any P-proof in M**. As g is P-
provably hard for P, there are ¢,/ € N such that M believes: for any n’ > ¢
n' k. S . ’ .. .
there is a P-proof of IsHardp, *'™ (Z, ) of size < (m(n'))¢ + ¢’. This implies

79
that there is a 7 € My, such that

M) 7] < (m(n))d + ANP(n") = '—ISHard;;]ka@")‘l

which implies that M** |= P(n") = "IsH ardg;]k”’(g")—'. and this leads to a con-
tradiction and completes the proof.

To prove the other direction, suppose item 2 holds, but ¢ is not P-provably
hard for P. This means that there is a k such that for any ¢, ¢ there is a n’ > ¢
such that there is no P-proof of IsHard;?:;f(fﬂ,fb) of size < (m(n')). As this
statement can be written as an arithmetical sentence, it is true in a countable
nonstandard model of true arithmetic M. Let co,c; € M \ N. Then there is
a n € M such that n > ¢y, and there is no P-proof of IsH ard%:];(fﬂ,fb) of size
< (m(n))® in M which means that there is no P-proof of IsH ard;?:];(fw, Zp) in
M pnny as ¢ is nonstandard. Then by Theorem 12.13, there is a cofinal countable
extension M* D M,y such that the following conditions hold:

2. There are 7,b € M* such that M* |= '—IsHard;?:];—'(w,b) =0.

By the assumption of the theorem, there is a cofinal countable extension M** DO
M* such that:

2. g, is onto in M™**.

As M** is an extension of M* M** |= '—IsHard;?:];—'(w, b) = 0 which implies that
M* = P(r) = "n(gn)". As M*™ = PVy + Rfnp, this implies that 7,(g,) is a
tautology in M™ which means that M** believes that b is not in the range of
gn which leads to a contradiction as we already knew that g, is onto in M** and
this completes the proof.
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16.9 Proof of Theorem 15.10

We need the following statements to prove Theorem 15.10.

Lemma 16.4. For every partial recursive function F, there exists a 31 formula
Op(x,y) such that Sy =V, y, 2(Pp(z,y) A Pp(x,2) =y =2).

Proof. F'is a partial recursive function, so the graph of is 3; definable by formula
dzé(x,y, z) where ¢(x,y, z) is a bounded formula. Let (.,.) be a pairing function
and 7; and 7, be the corresponding projection functions such that they are A%
definable in S} and moreover S} proves the basic properties of them. Define

U(z,y) = od(z, m(y), m(y)) AVz(z <y — —¢(x, m(2), m2(2))).
So we can define ®p(z,y) = Fz(Y(x, 2) Am(2) = y). O

Theorem 16.5. (/Bus86]) For every T € T, every X formula ¢(Z), there exists
a polynomial p(Z) such that

S3 = VZ(o(T) = 3y(ly| < p(IF]) A Proofr(y,"¢(T)7))-

Theorem 16.6. (/Pud86]) For every T' € T, Pr has polynomial size proofs of
{{[Conz]]}.

Lemma 16.7. ([KP89]). For every proof system P, Psi\ conp simulates P.

Lemma 16.8. For every T,S € T, if T has polynomial size proofs of Cons(n)
in n, then for every 11§ formula ¢(z), if S has polynomial size proofs of ¢(n) in
n, then T' has polynomial size proofs of ¢p(n) in n.

Proof. Let ¢(z) be a I1} formula. Then by Theorem 16.5 there exists a polynomial
p such that

S2 FVa(=e(x) — Jy(lyl < p(l2l) A Proofs(y,”—¢(2)7)). (1)

We know that S has polynomial size proofs of ¢(n) in n, so by Theorem 16.5,
there exists a polynomial ¢ such that S} has polynomial size proofs of Ju(|u| <
q(|n]) A Proofs(u,"¢(n)")) in n. Hence by Equation 1 there exists a polynomial
h such that

~o(n) = Jy(ly| < h(n) A Proofs(y,” L))

has polynomial size S3-proofs in n, hence by the fact that S C T we get
Cons(h(n)) — ¢(n)

has polynomial size T-proofs in n. Note that Cong(n) has polynomial size T-
proofs in n and moreover h is a polynomial, hence 1" has polynomial size proof
of ¢(n) in n. O

An important observation is that if J is a jump operator, then H which works
as follows is a hard tautology generator: on the input P, it outputs the VII?
sentence R fnyer+{[[rRfnp]c}y). Moreover, if H is a hard tautology generator, then
J which works as follows is a jump operator: on the input P, it outputs the
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proof system EF + {[[H(P)]]°}. So to prove the theorem, it is sufficient to show
equivalence between items 2, 3, 4, and 5.

(2 = 3). Let F' be a partial recursive hard tautology generator. Let T'r(x)
be a II; formula such that for every VII sentence ¢, S3 - Tr("¢™) = ¢. Then
define:

Ap :=Va(Tr(z) = 3y(Pr("Psiio s y) A Consyyy)).

Let T := S} + Ap. Note that N = T, hence for every true VII® sentence ¢,
{Conri4(n)}n, are true sentences. Suppose ¢ is a VII; sentence, then

T+ ¢t Iy(@r("Fsiy '\ y) AConsyy). (2)
If ¢ is a true sentence, then there exists a VII® sentence ¢ such that:
L ®p("Psyyy ', T97) is true.
2. S} + 1 is consistent.

3. S} + ¢ does not have polynomial size proofs of Congyy(n) inn as Psiy
does not have polynomial size proofs of {[[¢]]°} (by Lemma 16.8).

Note that T is a ¥ complete theory, hence T+ & F('—PS% +o »T¥7). Moreover by
Lemma 16.4

T l_ \V/Z((DF(FPS;_Hz)—l, r —|> AN (DF(l—Psé_Hz)—l, Z) — = l—Q/}—l).
Hence by Equation 2
T+ ¢+ <I>F('—P55+¢—', T A Consy .-

This implies that T+ ¢ = Congy ., (I). Let S € T Following the same argument
as before, there exists a VII} sentence n such that:

i. S3 + 7 is consistent.
ii. S3 + Cong does not have polynomial size proofs of Consé +y(n) in n.
iii. T+ Cons I Consy,,, (by (I)).

If S has polynomial size proofs of Conrycong(n) in n, then by Lemma 16.8 S has
polynomial size proofs of Cong; (1) in n. So again by Lemma 16.8 S3 4+ Cong
has polynomial size proofs of Consé +y(n) in n, but this leads to a contradiction
because of (ii) and hence this completes the proof.

(3 = 4). Let T' € T be a theory that certifies (3) and let P be a proof
system. Note that N |= 7', hence for every true VII} sentence ¢, {Conr 4(n) bnen
are true sentences. By the assumption, we know that S + Conp does not have
polynomial size proofs of Conrycon (n) in n (I). Note that 7"+ Consé \Conp

is finitely axiomatizable, so by Theorem 16.6 PT+00"51+C
2 on

J]°}. So if P simulates Pricon

S%+C’onp
has polynomial size
P

. , then P has
52+Conp
S%+CORP]]0}, Hence by Lemma 16.7, S +

Conp has polynomial size proofs of Congycon

proofs of {[[ConT+Con51+cOnp
2

polynomial size proofs of {[[Conricon
. (n) in n, but this leads to a
52+Conp
contradiction by (I) and hence the proof is completed.
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(3 =5). Let T'€ T be a theory that certifies statement (3). Suppose S € T
and S F T. First of all, by Godel’s second incompleteness Theorem, S 4+ Cong
is consistent, hence {Cong cons(N)}nen are true sentences. By the assumption,
we know that S does not have polynomial size proofs of Congycong(n) in n (I).
Note that T is finitely axiomatizable and moreover S - T', so

Sé V2 (Congicong () = Conricong (T)).

So if S has polynomial size proofs of Congicong(n) in n, then S has polynomial
size proofs of Conricong(n) in n, but this leads to a contradiction by (I) and
hence the proof is completed.

(4 = 2). Let T'€ T be a theory that certifies statement (4). Let ¢ be a true
VIS sentence, hence Foygis a propositional proof system. Because T is a true
theory, we have T' + Consé +o 1s consistent. Therefore H which works as follows
is a polynomial time computable hard tautology generator: on the input P, it
outputs

OonPT+Con

sliCon
2 P,
sl+Conp

(5= 2). Let T'€ T be a theory that certifies statement (5). Let ¢ be a true
VITS sentence, then because 7T is a true theory, we have T'+¢ is consistent. There-

fore H which works as follows is a polynomial time computable hard tautology
generator: on the input P, it outputs

OOTI’T—‘,—COHP +00"T+C’onp .

17 Concluding remarks and open problems

In Section 14, we defined the randomized implicit proof system based on inter-
active proofs. Another type of randomized implicit proof systems can be defined
based on the PCP theorem for NTIME(T") [BFLS91, BFLI1]. Let R(z,y) be a
polynomial time computable relation. Then there exists a PCP polynomial time
computable verifier V with the following properties (see [BFLS91]):

1. Soundness: Let z € {0,1}* and t € N such that |z| < ¢. If for every |y| <,
R(z,y) = 0, then for every 7 of size < t:

Pr VE(x,mr)=1] <
T‘G{O,I}O(IOgt)

W

2. Completeness: Let xz,y € {0,1}* such that R(z,y) = 1, then there exists a
7 of size < |y|°" such that:

R — J—
re{O,l}Or(loglyl)[v (z,mr)=1]=1.

Definition 17.1. Let P be a proof system for L C {0,1}*. Then [PCP, P]

denotes the PCP-randomized implicit proof system based on P. The verifier for
[PCP, P] is the PV function Vi(x,C,r) which works as follows:
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o It runs VI on (z,tt(C),r) in this way that whenever VT needs to query the
i’th bit of tt(C), it computes C(i) to find the answer and outputs the output
of the verifier (here R(x,y) =1 iff P(y) = x).

Again it is clear from the above definition that PCP-randomized implicit proof
systems are actually MA proof systems. It is worth mentioning that in Definition
17.1, we did not put the condition that checks whether P(C) = ¢. We had
this condition in the definition of IP-randomized implicit proof systems to make
sure that [IP, P] can simulate P. But in the case of PCP-randomized proof
system, we do not need this condition because of the efficient completeness of
the PCP theorem. Theorems 15.5 and 15.7 can be proved for PCP-randomized
implicit proof in the same way that they were proved for IP-randomized implicit
proof systems (actually if we consider Theorem 15.5 for PCP-randomized implicit
proof systems, then () does not need to be compressible in the statement). To
prove Theorems 15.1, 15.2, and 15.6, a formalization of the PCP theorem of
[BFLS91] inside S3+ 1-EXP is needed. If we have such a formalization, then those
theorems can be proved for PCP-randomized implicit proof systems following the
same proofs for IP-randomized implicit proof systems (a formalization of the
PCP theorem [BFLS91] in S3 + 1-EXP is possible as we formalized the sum-check
protocol, but we did not formalize it as it seems that it does not give anything
more than what we proved for IP-randomized implicit proof systems). Looking at
definitions of PCP-randomized implicit proof systems and IP-randomized implicit
proof systems, it is natural to ask the following question:

Problem 1. Let P be a proof system. What is the relationship between [IP, P]
and [PCP, P]?

Let f € E and P be a proof system for £ C {0,1}*. Then we can define a
proof system based on f as follows: a string m is a P-proof of z iff there exists
a P-proof 7' for x such that © = <7r’,tt(fnog|7rr|])>. It is easy to see that for
any proof system P and any f € E, P and P are polynomially equivalent, but
as we will see in the next proposition knowing that F, and P; are polynomially
equivalent does not imply that Krajicek’s implicit proof systems based on F, and
P, are polynomially equivalent.

Proposition 17.1. Let f € E but f &, P/poly. Then [Res, Res}] does not
simulate [Res, Res™].

Proof. Suppose this is not the case. Therefore there is a polynomial p such that for
any DNF ¢, if 7 is a [Res, Res"|-proof of ¢, then there is a [Res, Res}|-proof of ¢ of
size < p(|x]). As [Res, Res*| is polynomially equivalent to EF with respect to true
DNFs [Wan13] and the fact that EF has polynomial size proofs for {PHP" 1}, cy
[CR79], we get that [Res, Res*] has polynomial size proofs for {PHP"*'}, y. This
implies that there is a polynomial ¢ such that for any n, there is a [Res, Res}]-
proof of PHP" ™ of size < q(n). Note that there is a ¢ € N and e > 0 such that for
any n > ¢, any Res-proof of PHP”"" has size at least 2 [Hak85]. Now let n be
an arbitrarily big enough number and let (7, C') be a [Res, Res}]-proof of PHP"*!
of size < q(n). This means that tt(C) is a Res}-proof of PHP"*!. So there is
a Res*-proof 7’ for PHP”*! such that #(C) = <7r’,fﬂog|7r/|]>. As we explained,
|7’'| > 2 which means that ¢(n) is polynomial in [log |7’|] and this shows that
f Eio. P/poly which contradicts the assumption. O
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Knowing the above proposition, it is natural to ask the same question about
randomized implicit proof systems.

Problem 2. Let P and Q be proof systems such that P simulates Q). Does [IP, P]
(IPCP, P]) simulate [IP,Q] ([PCP, P])?

Looking at the Definition 15.1, Sound.([IP, P]) is a VX! sentence which means
that it actually defines a total NP search problem (TFNP). The input of the search
problem is ¢, a,p,u,C,C’, f and the output is a small circuit D such that the
conditions in Definition 15.1. Moreover, we can define the soundness of any MA
proof system @, denoted by Sound.(Q), as the way we did it for IP-randomized
implicit proof systems in 15.1 and again, they define TFNP problems. In general,
we can define new TFNP problems that resemble Definition 15.1 as follows.

Definition 17.2. Let A, B be PV functions such there are k, k' € N that for any
x either A(z) =1 or

1
Pr B(z,r)=1<1— ————.
7-<2|Z|k,+k’[ ( ) ] — |.T|k + k:
Then SMALL-CIRCUIT(A, B) is the TENP problem associated with the following
true VX8 sentence: for any x, f where |x| > ¢, there is a circuit D of size Hfﬁ]
such that one of the following conditions hold:

1| f] # ol + kq or,

2.t ([1f171, [[If1511, D, f) = 1 or,
3. A(z) =1, or

4
Pr [B(z,r)=1]=</, 1— ———
et PO = S T

where ¢ is a big enough constant.

There are several pairs (A, B) that we can consider SMALL-CIRCUIT(A, B)
such as the soundness of randomized implicit proof systems and in general MA
proof systems, SMALL-CIRCUIT problem based on the density of the n bit prime
numbers, and the SMALL-CIRCUIT problem based on Schwartz—Zippel lemma, so
one might think that there is a hierarchy of these problems in terms of reducibil-
ity, but as these problems are based on breaking Nisan—Wigderson generator,
actually all of them belong to FZPP (see [IW99]). In contrast with the situa-
tion of these problems in computational complexity, the VX% sentence associated
with SMALL-CIRCUIT problems might actually be hard to be proved in certain
bounded arithmetics. In particular, it is natural to ask the following question.

Problem 3. Can T, prove Sound.([IP,Res*]) for some c?

Looking at Theorem 15.7, it is natural to ask whether its statement can be
proved under weaker assumptions. It is well-known that if a proof system is
automatable, then it has the feasible disjunction property (see [BPR00]), but the
other direction seems not to be true as Resolution has the feasible interpolation
property (see [Kra97]), but Resolution is not automatable unless P = NP (see
[AM20]). So the first question in this regard is the following.
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Problem 4. Is it possible to prove item 1 of Theorem 15.7 if we just assume that
EF has the feasible interpolation property?

As PV, and S} prove the same VX! sentences and the fact that
Sound.([IP,Res"]) and sSound.([IP,Res*]) are equivalent over PV, we have the
following question.

Problem 5. Is it possible to weaken the assumption of Theorem 15.7 to PV F
sSound,([IP,Res*])?

Regarding proof complexity generators, we defined a new hardness property
and investigated its properties. As we do not fully understand this concept, the
following questions seem to be natural. For these problems, we assume that P is
a well-behaved proof system and g € FP is a stretching map.

Problem 6. Is it true that if g is P-provably hard for P, then g is pseudo-
surjective for P?

Looking at Theorem 15.8 and Theorem 12.14, we expect that the following
question has a negative answer.

Problem 7. Is it true that if g is free or pseudo-surjective P, then g is P-provably
hard for P?

The next question concerns the hypotheses stated in Subsection 15.2.

Problem 8. If g is P-provably hard for P, then is there a constant ¢ > 0 such
that ttoen p, is P-provably hard for P?

Looking at Conjecture 13.1, Conjecture 13.2, Conjecture 15.1, and Theorem
15.10, we have the following questions.

Problem 9. Does Conjecture 15.1 imply Conjecture 13.2¢
Problem 10. Does Conjecture 13.1 imply Conjecture 15.17
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Not all Kripke models of HA are locally PA

Erfan Khaniki'?
Faculty of Mathematics and Physics, Charles University
2Institute of Mathematics, Czech Academy of Sciences

Abstract

Let K be an arbitrary Kripke model of Heyting Arithmetic, HA. For
every node k in K, we can view the classical structure of k, My as a
model of some classical theory of arithmetic. Let T be a classical theory
in the language of arithmetic. We say K is locally T, iff for every k in
K, My = T. One of the most important problems in the model theory
of HA is the following question: Is every Kripke model of HA locally PA?
We answer this question negatively. We introduce two new Kripke model
constructions to this end. The first construction actually characterizes the
arithmetical structures that can be the root of a Kripke model K IF HA +
ECTo (ECTo stands for Extended Church Thesis). The characterization
says that for every arithmetical structure M, there exists a rooted Kripke
model K IF HA + ECTy with the root r such that M, = M iff M E
Thy, (PA). One of the consequences of this characterization is that there
is a rooted Kripke model K I HA + ECTy with the root r such that
M, = IA; and hence K is not even locally IA;. The second Kripke model
construction is an implicit way of doing the first construction which works
for any reasonable consistent intuitionistic arithmetical theory T with a
recursively enumerable set of axioms that has the existence property. We
get a sufficient condition from this construction that describes when for an
arithmetical structure M, there exists a rooted Kripke model K |- T" with
the root r such that M, = M. As applications of this sufficient condition,
we construct two new Kripke models. The first one is a Kripke model
K IF HA+—=6+MP (6 is an instance of ECTo and MP is Markov’s principle)
which is not locally IA;. The second one is a Kripke model K IF HA such
that K forces exactly the sentences that are provable from HA, but it is
not locally IA;. Also, we will prove that every countable Kripke model
of intuitionistic first-order logic can be transformed into another Kripke
model with the full infinite binary tree as the Kripke frame such that both
Kripke models force the same sentences. So with the previous result, there
is a binary Kripke model K of HA such that K is not locally IA;.

18 Introduction

Heyting Arithmetic (HA) is the intuitionistic counterpart of Peano Arithmetic
(PA). HA has the same non-logical axioms as PA with intuitionistic first-order
logic as the underlying logic. This theory is one of the well-known and most
studied theories of constructive mathematics, and it was investigated in many
proof-theoretic and model-theoretic aspects in the literature (see [Tv88] for more
information). This paper aims to answer a question about the model theory of
HA. Let T be a classical theory in the language of arithmetic. A Kripke model
of HA is called locally T, iff for every node k € K, the classical structure M,
associated with k, is a model of 1. One of the most important problems in the
model theory of HA is the following question:
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Problem 11. Is every Kripke model of HA locally PA?

This problem was first asked and investigated in the seminal paper [vMKV86]
by van Dalen et al. in 1986. They proved that every finite Kripke model of
HA is locally PA. Furthermore, they proved that a Kripke model of HA with the
Kripke frame (w, <) as the underlying frame has infinitely many locally PA nodes.
This work initiated a research line into Problem 11 and also about the following
general question:

Problem 12. For a Kripke model K of the theory T in a language o, and a
node k € K, what is the relationship between the sentences forced in k and the
sentences satisfied in M, ?

There are several works that deal with these problems. We will review those
works in the following paragraphs. Wehmeier in [Weh96], investigated Problem 11
and extended the results of [vMKV86] to a larger class of frames. In particular,
he proved that every Kripke model of HA with (w, <) as the Kripke frame is
indeed locally PA. Moniri, in [Mon02], considered these problems and proved that
every once-branching Kripke model of HA + MP (Markov’s principle) is locally
PA. Ardeshir and Hesaam in [AH02] generalized the results of [Weh96] to rooted
narrow tree Kripke models of HA. Recently, Mojtahedi in [Moj18] considered
Problem 12 and answered this problem in the case of finite depth Kripke models.
As an application, he generalized the result of [AH02] to rooted semi-narrow tree
Kripke models of HA.

Regarding Problem 11, the strongest positive result about the strength of
induction axioms that are true in a node of a Kripke model of HA was proved by
Markovi¢ in [Mar93]. He proved that every node of a Kripke model of HA satisfies
induction for formulas that are provably A; in PA. Also, from II; conservativity
of PA over HA (see [Fri78]), we know that every Kripke model of HA is locally
Thy, (PA).

Buss studied another question related to these problems in [Bus93]. For every
language o and every classical theory 7" in it, he characterized the sentences that
are true in every locally T Kripke model. As a result, he proved that HA is
complete with respect to the locally PA Kripke models. In a similar direction,
Ardeshir et al. in [ARSO03] presented a set of axiom systems for the class of
end-extension Kripke models. As an application, they proved that HA is strongly
complete for its class of end-extension Kripke models. For the case of fragments of
HA, Problem 11 was investigated and answered negatively by Polacik in [Pol06].

To best of our knowledge, the above theorems are all results relevant to Prob-
lem 11 in the literature. There are some other papers such as [AMZ18, AMZ19|
that investigated Problem 12 in general and partially answered this question.

In this paper, we will present two new model construction to answer Problems
11 and 12. The main technical theorem of the first construction says that the
theory HA + ECT, + Diag(M) for every M = Thy, (PA) has the existence and
the disjunction properties (Theorem 20.5). This theorem provides the right tool
for constructing rooted Kripke models of HA with control over the structure of
the root (Theorem 20.6). This construction theorem moreover characterizes the
necessary and sufficient conditions for an arithmetical structure M to be the root
of a Kripke model of HA + ECTq (Corollary 20.7). Using this characterization
we will construct a Kripke model of HA + ECTy that is not even locally TA;.

110



This answers Problem 11 negatively. Moreover, this is optimal, because it is well-
known that every node of a Kripke model of HA satisfies induction for formulas
that are provably A; in PA ([Mar93]). The second construction is an implicit
way of doing the first construction and it works for any reasonable consistent
intuitionistic arithmetical theory with a recursively enumerable set of axioms
that has the existence property (Theorem 20.14). This construction gives us a
sufficient condition for an arithmetical structure M to be the root of a Kripke
model of T'. As applications of this sufficient condition, we will construct two new
Kripke models. The first one is a Kripke model of HA 4+ =6 + MP where 6 is an
instance of ECTy and MP is Markov’s principle that is not locally IA; (Corollary
20.16). The second one is a Kripke model of HA that forces exactly all sentences
that are provable in HA, but it is not locally IA; (Corollary 20.17).

The second construction is general and also works for HA + ECTy, but some
Kripke models can be constructed for HA+ ECTq with the first construction, but
not possible with the second one. We will discuss this matter in more detail at
the end of Section 3. The new model constructions imply the existence of a large
class of Kripke models of reasonable intuitionistic arithmetical theories including
HA, which cannot be constructed by previous methods, so we think that these
model constructions are interesting in their own rights.

We will also prove that every countable Kripke model of intuitionistic first-
order logic can be transformed into another Kripke model with the full infinite
binary tree as the Kripke frame (Lemma 21.1). Using this result, we will prove
that there exists a Kripke model of HA with the full infinite binary tree as the
Kripke frame that is not locally IA; (Corollary 21.2).

19 Preliminaries

19.1 Arithmetical Theories

Let £ be the language of Primitive Recursive Arithmetic in which it has a function
symbol for every primitive recursive function. HA is the intuitionistic theory with
the following non-logical axioms:

1. Axioms of Robinson Arithmetic Q.
2. Axioms defining the primitive recursive functions.

3. For each formula ¢(z, %) € L, the axiom Vy I, in which
I, = 6(0) AVa(d(x) — 6(Sz)) — Voo ().

PA is the classical theory that has the same non-logical axioms as HA. 7PRA
(intuitionistic Primitive Recursive Arithmetic) has axioms of Q, Axioms defining
the primitive recursive functions, and induction for every atomic formula of L.
The underlying logic of i{PRA is intuitionistic logic. PRA is the classical counter
part of tPRA. T . ¢ means that there exists a proof of ¢ from axioms of T'
using first-order classical logic Hilbert system. F; denotes the same thing for
intuitionistic proofs. An important set of intuitionistic arithmetical theories for
the purpose of this paper is defined in the following definition.
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Definition 19.1. 7 is the set of all intuitionistic arithmetical theories T in L
such that:

1. T is consistent.
2. iPRACT.

3. The set of axioms of T is recursively enumerable.

Note that with the power of primitive recursive functions we can define finite
sequences of numbers, so we can code finite objects such as formulas, proofs, and
etc. as numbers. This is a standard technique and it is called Godel numbering
(see [Smo85]). With the help of this coding we can talk about proofs of theories
in arithmetical theories (see [Smo85]). For every L sentence ¢, "¢ ' denotes the
number associated with ¢. If ¢(z) is an £ formula, then "¢(¢)" denotes the
number associated with ¢ (x) when we substitute the numeral with value ¢ for z.
Suppose 1" € Z. Let Aziom(x,y) be the primitive recursive function such that
for every L sentence ¢, ¢ is a T-axiom iff JxAziom(z,"¢ ") = 0 is true. Then it
is possible to define the provability predicate of T', Proof(x,y) as a primitive
recursive predicate as follows. Let (.) be a natural primitive recursive coding
function. Then Proof,(x,y) is true iff there exist a sequence of £ sentences
{¢i}i<n and a sequence of numbers {w; };<,, for some n such that:

L. r = <<w17 |—¢1—|> PEREE) <wn>|—¢n—l>>-
2. For every 1 < n:

(a) If w; > 0, then Aziom(w; — 1,7 ¢; ) is true.

(b) If w; = 0, then ¢; can be derived from {¢;},;<; by one of the rules
of standard Hilbert style deduction system for intuitionistic first-order
logic.

3. y="on
The ¥; formula Prr(y) is the abbreviation for dxProof,(x,y). So consistency

of T, Conp, is = Prp("L7). The following theorem states the useful facts about
Pr T.

Theorem 19.1. For every T € I the following statements are true:

1. For every L sentence ¢, if T &; ¢, then PRA . Prp(T¢™).
2. PRAF.Vz,y(Prp(z) A Pro(z — y) — Pro(y)).
3. PRA . Vz,y(Pro(x) A Prr(y) — Pro(x Ay)).
4. For every L formula ¢(Z) with T as the only free variables,
PRA . Prp("VZo(Z)") — YePro("¢(2y, ..., 2,) 7).
5. For every ¥y formula ¢(Z), PRA b VZ(p(Z) — Pro("¢(2y, ..., 2) 7).

6. For every Iy formula ¢(Z), PRA . Congy — VZ(Pro("¢(2y, ..., 2,)") —
¢(7)).

Proof. See [Smo85] for a detailed discussion of the first five items. For the last

item see Theorem 4.1.4 of [Smo77]. O
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19.2 Realizability

For proving the first model construction theorem, we need some definitions and
theorems about Kleene’s realizability.

Definition 19.2. Let T'(x,y, z) be the primitive recursive function called Kleene’s
T-predicate and U(z) be the primitive recursive function called result-extracting
function. Note that

HA R Vo, y, 2,2/ (T(x,y,2) =0AT(x,y,2') =0 = U(z) = U(2")).

We use T'(x,y, z) instead of T(x,y, z) = 0 for simplicity. For more information,
see section 7 of the third chapter of [Tv88].

Let ji(z) and jo(x) be the primitive recursive projections of the pairing func-
tion j(z,y) = 2% - (2y + 1) = 1. Kleene’s realizability is defined as follows.

Definition 19.3. zr ¢ (z realizes ¢) is defined by induction on the complexity
of ¢ where x & FV(¢).

1. zrp:=p for atomic p,

2.xr (YAn) = ji(x)r Aja(z) rn,

zr (Y Vn) = (i(x) =0Ajg(z)r )V (ji(z) #0Aja(x) rn),
zr (Y —n):=Vy(yrv — (T (z,y,u) NU(u)xn), u & FV(n),
zr IyP(y) = jao(2) v ¥ (51 (2)),

6. xx Vyy(y) == VyIu(T(z,y,u) NU(u) r(y)), u & FV ().

Definition 19.4. A formula ¢ € L is almost negative iff ¢ does not contain V,
and 3 only immediately in front of atomic formulas.

Definition 19.5. The extended Church’s thesis (ECTy) is the following schema,
where ¢ is almost negative:

¥ (Va((z, ) = Fyib(@,, 7)) —

FVa(¢(w, ¥) = Fu(T (2,2, u) A(z,U(u), 1))

Next theorem explains the relationships between, HA, ECT, and Kleene’s
realizability.

Theorem 19.2. For every formula ¢ € L:
1. HA+ ECTo F; ¢ < Jz(xr ),
2. HA+ ECTo H ¢ < HAE, Jz(zr ).
Proof. See Theorem 4.10 in the fourth chapter of [Tv88]. O

Another important properties of HA are the existence and the disjunction
properties. We will use notation n as the syntactic term corresponds to natural
number n.
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Theorem 19.3. The following statements are true:

1. Disjunction property: For every sentences ¢, € L, if HA F; ¢ V ¢, then
HAF; ¢ or HA - 1,

2. Euzistence property: For every sentence Jxo(x) € L, if HA F; Jzp(x), then
there exists a natural number n such that HA F=; ¢(n).

Proof. See Theorem 5.10 of the third chapter of [Tv88]. O

Although HA is an intuitionistic theory, it can prove some restricted class of
formulas are discrete. The next theorem explains this fact.

Theorem 19.4. ([Tv88]) For every quantifier free formula ¢ € L, HAF; ¢V —¢.

19.3 Kripke models
A Kripke model for a language o is a triple K = (K, <, M) such that:
1. (K, <) is a nonempty partial order.

2. Forevery k € K, M, € M is a classical structure in the language o(My,) =
o UA{c|c € M;}.

3. For every k, k' € K, if k <k, then (M) C o(My) and also My =
Diag™(My) (M, is a sub-structure of My).

For every Kripke model K, there is a uniquely inductively defined relation
IFC K X (Uper 0(My)) that is called forcing.

Definition 19.6. For every k € K, and every sentence ¢ € o(My), the relation
kI ¢ is defined by induction on complexity of ¢:

1. kFp iff My = p, for atomic p,

kv Aniff kIFd and kIFn,

klEyvnifklEy orkl-mn,

kb = iff for no k' >k, k' Ik,

k- — niff for every k' >k, if K'I- ), then k' |Fn,
k |k Jzi(x) iff there exists ¢ € opm, such that k - (c),

NS o o

k I-Yx(x) iff for every k' > k and every ¢ € o(My), k' I 1(c).

We use the notation K IF ¢ (¢ € Nrex 0(My) is a sentence) as an abbreviation
that for every k € K, k IF ¢ which simply means that the Kripke model K forces
¢. The important property of the forcing relation is its monotonicity. This means
that for every k' > k and every ¢ € o(My), if k IF ¢, then k' IF ¢. Also, note
that first-order intuitionistic logic is sound and is strongly complete with respect
to the Kripke models. For more details see [Tv88].

As we mentioned in the introduction, every Kripke model of HA is locally
Thy, (PA). The following lemma states this fact.
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Lemma 19.5. Every Kripke model of HA is locally Thy, (PA).

Proof. Let K be a Kripke model of HA and k£ be an arbitrary node of K. Let
¢ = VZ3Iyp(Z,y) be a I1y sentence such that PA k. ¢. Then by IIy conservativity
of HA over PA (see [Fri78]), we have HA F; ¢, hence K IF ¢. This implies that
k IF Y23y (Z,y). So for every a € My:

1 = kIF 370(a. 7).

—.

2. = there exist b € M, such that k I ¢(a@,b),
3. = My = ¥(d,b).
Hence My, = ¢. This implies that My = Thy, (PA). O

20 Kripke model constructions for intuitionistic
arithmetical theories

20.1 The first model construction

We will explain the first model construction in this subsection. This construction
will be presented in a sequence of lemmas and theorems.

Lemma 20.1. For every quantifier-free formula ¢ € L there exists an atomic
formula p € L with the same free variables such that HA F; ¢ < p.

Proof. By induction on the complexity of ¢ and using Theorem 19.4. O

Lemma 20.2. Let (.) and (.), be a primitive recursive coding and decoding func-
tions, then for every formula Qx1, ..., v,¢(Z,9) € L where Q € {V,3} andn >0,

HA b Quy, oy 0@, 4) < Qud((2)o, oo, (), Y)-

Proof. Straightforward by properties of the coding and decoding functions. [
We use the notation ¢([z],y) instead of ¢((x)o, ..., ()., y) for simplicity.

Theorem 20.3. For every Ily sentence ¢ = Y23y (Z,y), if HA + ECTo F; ¢,
then PA . ¢.

Proof. Let ¢ be a Il, sentence and HA + ECTy F; ¢. By Lemmas 20.2 and
20.1 there exists an atomic formula p(x,y) such that HA F; ¢ <> Ya3Jyp(x,y) and
therefore HA+ECT, F; Vzdyp(x, y). By Theorem 19.2 HA F; In(nrVxIyp(x,y)).
Because dn(n r Yz3yp(x,y)) is a sentence, by Theorem 19.3 there exists a nat-
ural number n such that HA F; nr Yx3Jyp(z,y). Therefore by definition of the
realizability:

1. = HA R, Va3u(T(n, z,u) AU (u) r Jyp(z,v)),
2. = HAF; VaJu(T(n, z,u) A jo(U(u)) r p(x, j1(U(u)))),
3. = HA F; YaJu(T(n, x,u) A p(z, j1(U(u)))),
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4. = HA F; VYeJup(z, u),
hence PA I, ¢. O

In the rest of the paper, for every L structure M,
Tam := HA + ECTg + Diag(M).
Theorem 20.4. If M |= Thy, (PA), then T is consistent.

Proof. Suppose T is inconsistent, so there exists a finite number of £(M)
sentences {¢;(¢;) }i<n € Diag(M) such that HA+ECTo+A>, ¢:(G) i L, therefore
HA4ECTo i = Ay ¢:i(G). Because ¢; are not used in the axioms of HA+ECT, we
have HA + ECTq b; Vai, ..., 2, (- Ay (7). Note that Vai, ..., 2, (= Ay ¢4i(27))
is a II; sentence and therefore by Theorem 20.3, PA k. Va7, ..., 2, (= Aly (7).
This implies that M |= V3, ..., 2, (= AL, ¢i(x;)) and especially

M E = AL, ¢i(é), but by definition of Diag(M) we know M = A, ¢:(¢;) and
this leads to a contradiction, hence T x4 is consistent. O

If an £ structure M satisfies a strong enough theory of arithmetic, then T 4
has actually the existence and the disjunction properties.

Theorem 20.5. (Ezistence and disjunction properties). Suppose M is a model
of Thy, (PA), then the following statements are true:

1. For every L(M) sentence Jz¢(z) such that Tr b J2¢(2), there exists a
constant symbol ¢ € L(M) such that Tt ¢(c).

2. For every L(M) sentence ¢ V 1 such that Ty i ¢V 0, Ty b ¢ or
Ty it

Proof. 1. Suppose ¢(z) is 1/1(2@) such that ¥ (z,y) is an £ formula. By as-
sumption of the theorem there exists a finite number of £(M) sentences
{6i(¢;) }i<n C Diag(M) such that

HA +ECTo + A ¢:(G) i 321/1(2@)7

i=1

so HA + ECTo i A%, 64(¢) — 321p(2,d). Because £(M) constants that
appear in A, ¢;(¢;) — 3z¢(z, d) are not used in the axioms of HA+ ECT,
therefore

i=1

Note that A} ¢i(Z;, ¥) is a quantifier free formula, hence by Lemma 20.1
there exists an atomic formula p such that

i=1
Also note that by Theorem 19.4 HA +; p V —p, hence

HA + ECTO l_l ‘v’gj’, fl, ,anlz(p(fl, ,fn,g) — 1/1(2,@7))
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By Lemma 20.2 HA + ECTo ; Va3z(p([z]) — ¥(z, [z])). Note that
Va3z(p(la]) = ¥ (= [2]))

is an L sentence and therefore by Theorems 19.2 and 19.3 there exists a
natural number n such that

HA F; nr Vaedz(p([z]) — ¥(z, [z])).
By definition of realizability we get
HA F; Va3du(T(n, z,u) AU (u) r 3z(p([z]) — ¥ (2, [z]))).

Note that HA ; Va3uT'(n, z, u), hence PA . Va3uT'(n, z,u) and therefore
M E VaeIuT (n,z,u). Let M E e = <g},...,g},i> and M = T(n,e, f) A
U(f) = g for some e, f,g € M. This implies T'(n,¢, ), U(f) = g €
Diag(M) and therefore we get

Tambi T(n,e, f) Agr 3z(p(le]) — ¥(z, [g]))

as
HA R, Vo, y, 2, 2/ (T(2,y,2) ANT(x,y,2") = U(z) = U(Z)).

U(z
By applying the realizability definition we get T = jo(g) r (p(le]) —
¥(j1(9), [e])). Note that by Theorem 19.2,

HA + ECTo b vr (pla] = ¢(w, [2])) — (p([2]) = ¥(w, [2])),

T bi p(le]) = ©(1(9), e])-
Because p([e]) € Diag(M), we get Trq b ¥(j1(g), [e]) and this implies
T i ¥(c, [e]) for some ¢ € L(M) such that M |= ji(g) =

2. Suppose T yq proves ¢V, therefore Ty F; Jz((x =0 — @) A(z # 0 — ).
By the previous part there exists a constant symbol ¢ € £(M) such that
Tymbi(c=0—=¢)A(c#0— ). Note that ¢ = 0 is an atomic formula,
hence ¢ = 0 € Diag(M) or ¢ # 0 € Diag(M) and this implies Tpq F; ¢ or
T i 1.

U

Definition 20.1. Let M be an L structure and T be an intuitionistic theory in
the language L(M). Then for every L(M) sentence ¢ such that T ¥; ¢, fiz a
Kripke model Kr(¢) IF T such that Kr(¢) ¥ ¢.

The following definition is based on Smoryniski collection operation in [Smo73].

Definition 20.2. Let M be an L structure and T be an intuitionistic theory in
the language L(M). Define

SM,T):={¢p € LM)|T ¥ ¢, ¢ is a sentence}.
Define the universal model K(M,T) as follows. Take the disjoint union
{K1(¢)}pesmm

and then add a new root r with domain M, = M.
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Theorem 20.6. If M is a model of Thy, (PA), then K(M, T a) is a well-defined
Kripke model and for every L(M) sentence ¢,

Proof. First note that by Theorem 20.4 Ty ¥ L, hence S(M,Ty,) is not
empty and therefore K(M, Ty ) has other nodes except r. To make sure that
K(M, T ) is well-defined, we should check the three conditions in the defini-
tion of Kripke models. It is easy to see that the first two conditions hold for
K(M, Ty ). For the third condition, we need to show that for every node k # r,
L(M,) C L(M}) and M, = Diag*(M,). By definition of K(M, T ), LIM,) C
L(M},) holds. For the condition M, |= Diag"™(M,), note that T ; Diag(M)
which implies M, |= Diag(M,).

(=). Let K(M, Tp) IF ¢. If Taq ¥ ¢, then K, (¢) exists and Kr,, (¢) C
K(M, Ty ). By the assumption we get Kr,,(¢) IF ¢, but this leads to a
contradiction by definition of Kr,,(¢), hence T a5 ¢.

(«<). We prove this part by induction on the complexity of ¢:

1. ¢ = p: Note that if Ty F; p, then p € Diag(M). Because if p ¢
Diag(M), then —p € Diag(M), hence Ty F; L which leads to a
contradiction by Theorem 20.4. Therefore p € Diag(M) and by the
fact that M = p we get K(M, T ) IF p.

2. ¢ = Y An: By the assumption we get T, F; ¢ and Ty F; n, therefore
by the induction hypothesis K(M, Ty IF ¢ and K(M, Ty) IF n,
hence K(M, T ) IF 9 An.

3. ¢ = ¢ Vn: By Theorem 20.5 Ty F; ¢ or Ty F; 1, therefore by
the induction hypothesis K(M, Tp) IF ¢ or K(M, T ) I 71, hence
KM, Tm)lFVn.

4. ¢ =1 — n: By the assumption for every § € S(M, T (), Kr,,(0) IF
1 — 1, so for proving K(M, T ) IF ¢ — n we only need to show that
if 7 Ik 1), then r Ik n. Let r I 1, therefore we have K(M, T ) I+ 9,
hence by the previous part, Trq F; 1. Note that By the assump-
tion Tpaq F; v — 1, hence Tpq ; 1 and therefore by the induction
hypothesis K(M, T ) Ik n which implies r I 7.

5. ¢ = Jxp(x): By Theorem 20.5 there exists a constant symbol ¢ €
L(M) such that Taq F; 1(c), therefore by the induction hypothesis
K(M, Tum) IF1(c), hence K(M, T ) IF Jzib(z).

6. ¢ = Va(z): By the assumption for every § € S(M, T ), Kr,,(0) IF
Va(z), so for proving K(M, T ) IF Vap(z) we only need to show
that for every ¢ € M, r Ik ¢(c). Let ¢ € M. By the assumption Ty F;
Va(z), therefore Tphy F; 1(c), hence by the induction hypothesis
K(M, Tuz) IF1(c). This implies that r I ¢(c).

O

From the last theorem, we can get the characterization of the structure of the
roots of Kripke models of HA + ECT,.
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Corollary 20.7. For every L structure M, there exists a rooted Kripke model
K IF HA + ECTq with the root r such that M, = M iff M |= Thy, (PA).

Proof. The left to the right direction is true by Lemma 19.5. To prove the other
direction, note that if M | Thy,(PA), then by Theorem 20.6 K(M,Tx) IF
HA 4+ ECT, and moreover the classical structure attached to the root is M. [O

Now we have the right tool for constructing a counter example for Problem
11. In general we can get a lot of new models for every M = Thy, (PA). For our
purpose, it is sufficient to know that Thyy, (PA) ¥, PA to get the result. The next
two theorems established the stronger fact which says Thy, (PA) . IA;. TA; is
PRA plus A; induction:

Vij [V (o(z, ) < ~0(z,§)) — Ly

for every ¥, formulas ¢, € L.
For stating the theorems we also need another arithmetical theory that is
called BX;. BY; is PRA plus bounded ¥; collection:

Vi, xz [Vz(z < z = Jwo(z,w,¥)) = IrVz(z <z — Jw(w <r A d(z,w,7))]

for every ¥; formula ¢ € L.

It is worth mentioning that these theories usually are defined over the lan-
guage of Peano Arithmetic, and not over the language of Primitive Recursive
Arithmetic, hence our definitions of IA; and B, are stronger than the usual
definition, but for our use this does not cause a problem. Now we know the
definitions, we state the theorems.

Theorem 20.8. IA, . -, BY;.

Proof. As we explained before, this version of these theories are stronger that
the original ones. Therefore by the result of [Sla04] these two theories are the
same. O

Theorem 20.9. There exists a model M |= Thy, (N) such that M = IA,.

Proof. By the result of [Par70] there exists a model M = Thy, (N) such that
M £ BYq, hence by Theorem 20.8 M P~ IA; too. O

Corollary 20.10. There exists a rooted Kripke model of HA+ECTo which is not
locally TA.

Proof. By Theorem 20.9 there exists a model M = Thy, (N) such that M = IA,.
Note that by Theorem 20.6, K(M, Tx) IF HA 4+ ECTy, and also K(M, T ) is
not locally TA;. O

ECTy is a very powerful non-classical axiom schema, so a natural question is
that: Is it the case that for every Kripke model K IF HA + ECTqy and every node
k in K, My = PA 2 This question has a negative answer, because K(N, Ty) I
HA + ECTy, but M, = PA.
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20.2 The second model construction

In this subsection, we will explain the generalized construction which works for
any reasonable intuitionistic arithmetical theory. We will also mention an appli-
cation of it at the end of this subsection.

For every T' € Z, the existence property of T is the following II, sentence:

EPp :=Vz(x ="3y¢(y)" for some formula ¢(y) A z is a sentenceA

Pro(x) — JyPre("o(y)7)).

For an £ structure M and a theory T' € Z, let extension of T" with respect to M
be the following theory:

EXT(M,T) :={¢ € L(M)|¢ is a sentence, M |= Prr("¢™)}.
The following lemma states that EXT(M,T) is closed under finite conjunctions.

Lemma 20.11. Let M = PRA and T' € Z. Then for every L(M) sentences ¢
and ¥, if ¢, € EXT(M,T), then ¢ Np € EXT(M,T).

Proof. 1t ¢, € EXT(M,T), then M = Prp("¢ ") A Prp("¢7), so by Theorem
19.1 (item 3) M = Pro("¢p A7), Hence ¢ A € EXT(M,T). O

Define
Cumr =T+ EXT(M,T).
The crucial property of Cpr is the following lemma.

Lemma 20.12. Suppose M = PRA. Then for every T' € T and every L(M)
sentence ), if Cpmr i ¥, then M = Prp(Ty7).

Proof. Let ¢(dy, ..., d,) be an L(M) sentence such that Cmr b Y(dy, ...,dy,). So
there exists a finite number of £(M) sentence {¢;(c}, .. - Cny) Yiw © EXT(M,T)
such that

i=1 T

Because £(M) constants that appear in A\i_; ¢(c, ..., ch,,) = ¥(dy, ..., dy) are not
used in the axioms of 7', therefore

i=1

So by Theorem 19.1 (item 1)

M= Prp("Y /\¢1 Ty, 9) — (@) 7).

Hence by Theorem 19.1 (item 4)

n

M= Pro(" N\ ¢ilch, - chy) = U(ds, - dn) 7).

i=1
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On the other hand by Lemma 20.12 EXT(M,T') is closed under finite conjunc-
tions, so AiL, ¢i(ci, ..., ¢;,,) € EXT(M,T) which means

Y g

M Pro(™ \ 6i(ch, —nch) ).

i=1
So by Theorem 19.1 (item 2) M f= Pro(T(dy, ..., dn) 7). O

Theorem 20.13. For every T € T and every M |= PRA + EPr + Cong, the
following statements are true:

1. Cmr is consistent.
2. Camr has the existence and the disjunction properties.

Proof.

1. Suppose Cpqr i L. Then by Lemma 20.12 M = Prp("L7), but this is
not possible because we assumed M = Conr, hence Cyy 1 is consistent.

2. We will prove the existence property of Caqr. The disjunction property
will follow from it by the same argument as in the proof of Theorem 20.5.
Let ¢(x) be a formula in £(M) with z as the only free variable. Suppose
Cumr Fi 3xzp(x). Then by Lemma 20.12 M = Pro("dzy(z)"). Note
that M = EPr, hence M = JzPro("¢(&)"). This means there exists a
¢ € M such that M |= Prp("¢(¢)"). This implies ¥(c) € EXT(M,T), so
CM,T s 1/1(2)-

O

This is the generalized version of Theorem 20.6 which gives us a sufficient
condition.

Theorem 20.14. Let T € Z and M | PRA+ EPr + Cong. Then
K(M,Camr) is a well-defined Kripke model and for every L(M) sentence ¢,

K(M, CM,T) |- ¢ = CM,T l_l ¢

Proof. The proof of this theorem is essentially the same as the proof of Theorem
20.6 by using the Theorem 20.13. The only part that needs some extra work is
the fact that Cpqr F; Diag(M) and moreover if Cpqr F; p for atomic p, then
p € Diag(M).

Let p € Diag(M). We know by Theorem 19.1 (item 5) M = p — Pro("p™).
This implies M = Pry("p™). So p € EXT(M, T') which implies Caq 1 5 p.

Now if we have Cpqr F; p for an atomic £(M) sentence p, then by Lemma
20.12 M = Pry("p?). Note that M |= Conp, so by Theorem 19.1 (item 6)
M E p which means p € Diag(M). ]

As we already saw, using the first construction, we provide a Kripke model
of HA + ECTq which is not locally IA;. A natural conjecture would be that the
existence of such a Kripke model was possible because the base theory has a
very powerful non-classical schema ECTy. As an application of Theorem 20.14
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we will show this is not the case. Let H(x) be a ¥; formula that is a natural
formalization of the statement "The Turing machine with code z halts on input
x”. Let 6 be an instance of ECTy in Definition 19.5 such that ¢(z) := T and
Y(z,y) == (y = 0 AH(x)) V (y # 0A—=H(z)). We also need the definition of
Markov’s principle.

Definition 20.3. Markov’s principle is the following schema:

MP = V5i(Va(¢(x, §) V =6 () A ~—Fee(z, §) = Ied(z, ).

Lemma 20.15. The following statements are true:
1. HA + =0 + MP s consistent.

2. HA + =60 + MP has the existence and disjunction properties.
Proof.

1. It is easy to see that PA k. =6 and also PA . MP. So HA + =6 + MP is a
sub-theory of PA and it is consistent.

2. We will prove the existence property of HA 4+ =6 + MP here. The disjunc-
tion property will follow from it like before. This part is a standard ap-
plication of Kripke models (see [Smo73]). Let Jxi(z) be an L sentence
such that HA + =0 + MP F; dzy(x), but for every natural number n,
HA+ -0+ MP t/; ¢ (n). It is well-know that K(N, HA + =6 + MP) is a well-
defined Kripke model and moreover K(N, HA+-6+MP) |- HA (see Theorem
5.2.4 in [Smo73]). Moreover we can assume that Kpai-g+mp(L) (Note that
1 € S(N,HA+—-6+MP)) is a Kripke model with just one node with the clas-
sical structure N. Note that r ¥ 6, because otherwise by the monotonicity
of the forcing relation for every ¢ € S(N,HA+-0+MP), Kya:-amp(¢) IF6
which is not true. Moreover for every node k # r, k IF =0, so with the last
argument r |- =6 which implies K(N, HA+—-6+MP) |- =6. Note that MP is
forced in every node k # r. So we only need to show that r I[F MP. For this
matter suppose r Ik Vo (o(z, di, ...d,) V —o(z, a1, ...4,) ) A03xd(z, dy, ...dy)
where @ € N. If for every n € N, r ¥ ¢(n,dy,...a,), then because r |-
o(n, a1, ...an) V 2@(0, a1, ...ap), for every n € N, r I+ =¢(n, di, ...dy). This
implies Kpyat-g+mp(L) IF Vo—o(z,ay, ...a,). But this leads to a contradic-
tion because Knat-o+mp(L) IF m—=Jx—¢(z, d1, ...d,). This means that there
exists a natural number n such that r IF ¢(n, di, ...a,).

By the above arguments, we have
K(N,HA + =6 + MP) I HA + =6 + MP.

So K(N,HA + =0 + MP) IF 3z (). This implies that there exists a natural
number n such that r I- (7). But this leads to a contradiction because
we know Kpai—grmp(¥()) ¥ (n). This implies that our assumption was
false and there exists a natural number n such that HA + =6+ MP +; ¢ (n).

[l

The following corollary is the first application of Theorem 20.14.
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Corollary 20.16. There exists a rooted Kripke model of HA 4+ —6 + MP which is
not locally TA;.

Proof. By Theorem 20.9 there exists a model M = Thy, (N) such that M = IA,.
Note that by Lemma 20.15 HA + —6 4+ MP is consistent and has the existence
property. This implies that £ Ppyas—g-mp and Conpyai—grmp are true in N. Note
that these sentences are Il,, so they are also true in M. This implies that M
satisfies the conditions which are needed in Theorem 20.14, hence

K(M, Crnat—o+mp) IF HA 4+ =6 + MP
and also it is not locally TA;. O

It is worth mentioning that HA 4+ =6 + MP does not prove anything contra-
dictory with PA and in some sense, it is close to PA, but still, we were able to
construct a Kripke model of it which is not locally IA;. The following corollary
is the second application of Theorem 20.14.

Corollary 20.17. There exists a rooted Kripke model K |- HA which is not
locally IA+, but for every L sentence ¢,

K¢ < HAR; ¢.
Proof. Define
U ={-Prua("¢") | HAF/; ¢, ¢ is a sentence}.

Let T := PRA 4+ EPuya +U. 1t is easy to see that T is a Iy axiomatized theory
and moreover N |= 7. By Theorem 20.9 there exists a model M = Thy, (N)
such that M [~ IA;. By the facts that N =T and also T is a I, axiomatized
theory, we get M |=T. So by these explanations, M has the required properties
that are needed in Theorem 20.14, hence K(M, Cpaqna) IF HA. This means that
for every L sentence ¢, if HA F; ¢, then K(M, Cana) IF ¢.

For the opposite direction, let ¢ be an £ sentence such that K(M, Caqna) IF
¢. Then by Theorem 20.14 Cpqna F; ¢. So by Lemma 20.12 M = Prya("¢7).
If HAV/; ¢, then = Prya("¢") € U, hence T . = Prya("¢ ") which implies M =
—Prua("¢7), but this leads to a contradiction, hence HA F; ¢. O

As we already mentioned in the Introduction, we can get more Kripke models
for HA + ECT, from the first construction than by the second construction. We
will show this fact in the rest of this subsection. For this matter, we need the
following theorem.

Theorem 20.18. (/Rab62]) For any constant k, there is no consistent
[1.-axziomatized theory T such that T . PA.

Theorem 20.19. The following statements are true:

1. For every L structure M, if K(M, Cypuatect,) IF HA + ECTo, then
K(M, Tp) IF HA + ECT,.

2. There exists an L structure M such that K(M,Ty) I HA + ECTo, but
K(M, Crhatect,) ¥ HA.
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Proof.

1. K(M, Cpmnatect,) IF HA + ECTo, so by Lemma 19.5 M = Thy, (PA),
therefore by Theorem 20.6 K(M, T yy) IF HA + ECT,.

2. By Godel’s second incompleteness theorem, HA 4+ =Conpa t/ L. So by Il
conservativity of PA over HA (see [Fri78]) we have Thy, (PA)+—Conpa t/. L.
Thy, (PA) + =Conya is a Ily-axiomatized theory, hence by Theorem 20.18
there exists a model M |= Thy, (PA) + ~Conya such that M = PA. Note
that by Theorem 20.6 K(M, T ) IF HA 4+ ECT,. On the other hand M =
—lConHA+ECTO, so |l € EXT(M, HA—I— ECTO). This implies CM,HA—i—ECTo l_z' 1.
Hence S(M, Crqnatect,) = . This means that K(M, Caqnatect,) has
only one node r such that M, = M. Note that M [~ PA, so r | HA and
this completes the proof.

O

21 On binary Kripke models for intuitionistic
first-order logic

In this section, we will prove that every countable rooted Kripke model K (there
exists a node k in K such that for every k in K, k < k') can be transformed to a
Kripke model K’ with the infinite full binary tree as Kripke frame such that K
and K’ force the same sentences. This was known for the case of finite Kripke
models of intuitionistic propositional logic (see Theorem 2.21 and Corollary 2.22
of [CZ97]), but to best of our knowledge it was not mentioned for the case of
Kripke models of intuitionistic first-order logic in the literature. The transforma-
tion for Kripke models of intuitionistic first-order logic can be done in the same
way that was done for the case of finite Kripke models of intuitionistic proposi-
tional logic, but for the sake of completeness we will state the theorem and prove
it in this section.

Let I' = {0,1} and I'* be the set of all finite binary strings (including empty
string ). For every z,y € I'*, x <y iff x is a prefix of y.

Lemma 21.1. Let K = (K, <, M) be a countable rooted Kripke model in a
language o. Then there is an onto function f : 1™ — K, such that:

1. K' = (I'*, X, M) is a Kripke model where M’ is defined as M, = Mgy
for every x € I'*,

2. for every k € K, for every o(My) sentence ¢, and for every x € I'* such
that f(x) =k, z Ik ¢ iff k Ik ¢.

Proof. Without loss of generality, we can assume (K, <) is a tree (see Theorem
6.8 in the second chapter of [Tv88]) with the root r. Also, we can assume that
for every k € K, there is a k' € K different from k such that & < k’. This is true
because for every k € K that does not have relation with any other nodes, we can
put an infinite countable path above k£ such that the classical structure of every
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node in this path is M. This transformation does not change the sentences that
were forced in the original model. For every k € K, define neighbor of k as
Ne={K eKIk<KNk£KNVE' e Kk<K'ANK'<K - k=F'VE =K}

For every k € K, fix an onto function g : N — A/, such that for every k¥’ € N,
{n € N|gip(n) = K’} is infinite. Now we define f inductively with a sequence of
partial function fo C f; C ... and then we put f = U,en fn. Put fo(A) = r. For
a function h, let Dom(h) be domain of h. Let

A, ={x € T*|x € Dom(f,), 20 & Dom(f,,),z1 & Dom(f,)}.

Now f, 1 is defined inductively from f, as follows:

fu(x) x € Dom(f,)
foi1(x) = { fuly) x = y0™, for some y € A,,m € N
Ita(y(m) x=y0™1, for some y € A,,m € N.

It is easy to see that Dom(f) = I'*.
Claim 21.1. For every k € K, for every x € I'* if f(x) =k, then
{K e KIlk<k}={f(y) e Klyel",z 2y}

This claim is easy to prove considering the definition of f and the fact that
gx functions enumerate neighbors infinitely many times.

Using this claim, we can finish the proof. The proof goes by induction on the
complexity of ¢. We will only mention a nontrivial case in the induction steps.
All other cases can be treated similarly. Let ¢ := ¢ — npand k IF ¢ — n. Let
x € I'"* be such that f(z) = k. Suppose for some y = x, we know y IF 1. So by
the induction hypothesis, f(y) IF ¢ and by Claim 21.1, we know f(y) > k, hence
f(y) IF n, therefore by the induction hypothesis we get y IF 7, so x IF ¢. ]

Corollary 21.2. There exists a Kripke model of HA with (I'*, <) as the Kripke
frame that is not locally 1A;.

Proof. Here we apply the idea of [Jefl1] with some modifications. Let K be a
rooted Kripke model with the root r in a language o. Let U be a countable
set of sentences of o. It is easy to see that K can be represented by a suitable
two-sorted classical structure Mk such that:

1. For every ¢ € U, "r IF ¢” is first-order definable in Mg by the sentence ¢p.

2. For every ¢ € U, "M, | ¢” is first-order definable in Mk by the sentence
O
By applying the downward Loéwenheim—Skolem theorem on My we get a count-
able substructure of Mk like My such that:

1. MY is a representation of a countable rooted Kripke model in the language
0.

2. For every ¢ € U, Mk = ¢ iff M = 9, for ¢ € {or, dur}-

Let K(M,Tur) be the rooted Kripke model from Corollary 20.10. Let U =
HAU{p} where ¢ is an instance of A; induction that fails in the classical structure
of the root of K(M, T y). Following the same argument on K(M, Tx,) and U,
we get a countable rooted Kripke model K’ of HA that is not locally IA;. Hence
applying Lemma 21.1 on K’ finishes the proof. O

125



22 Concluding remarks and open problems

Problem 11 can be asked about other theories than HA. One can ask the same
question about arithmetic over sub-intuitionistic logic too. One of these logics is
Visser’s Basic logic, and its extension Extended Basic logic. The model theory
of arithmetic over these logics were investigated in [Rui98, AH08, AKS20]. From
the point of view of Problem 11, it is proved in [AHO8| that every irreflexive node
in a Kripke model of BA (Basic Arithmetic) is locally I3;. So In general, every
irreflexive node in a Kripke model of the natural extension of BA such as EBA
(Extended Basic Arithmetic) is locally I3, (see Corollary 3.33 in [AKS20]). Also
it is proved in [AKS20] that every Kripke model of EBA is locally Thyy, (I¥;) +
Thy, (PA). Note that every Kripke model of HA is also a Kripke model of BA and
EBA. So Corollary 20.10 applies to these theories too, and this solves Problem 11
for these theories. Furthermore, this shows that the known positive results are
the best we can get for BA and EBA.

Focusing on the proof of Theorem 19.3, we essentially use ECT, for proving
the existence and the disjunction properties of Txy. We do not know whether
ECTy is essential for such a model construction, so we have the following question:

Problem 13. Does HA + Diag(M) have the ezistence property for every M =
Thy, (PA)?

An interesting problem which we could not answer is the following:

Problem 14. Is there any Kripke model K I HA such that for every node k in
K, M, [~ PA?

Another unsolved question in the direction of completeness with respect to
locally PA Kripke models is the following:

Problem 15. Does HA have completeness with respect to its class of locally PA
Kripke models?

By the result of [Bus93], for every sentence ¢ such that HA ¥; ¢, there exists a
locally PA Kripke model K such that K I} ¢, but this result does not say anything
about whether K is a Kripke model of HA or not.

We call a rooted tree Kripke frame (K, <), a PA-frame iff for every Kripke
model K I+ HA with frame (K, <), K is locally PA. Let Fpa be the set of all
PA-frames. We know that semi narrow rooted tree Kripke frames are in Fpa. On
the other hand, by Corollary 21.1 infinite full binary tree is not in Fpa. So we
have the following question:

Problem 16. Is there a nice characterization of Fpa ?

Bibliography

[AHO2] M. Ardeshir and B. Hesaam. Every Rooted Narrow Tree Kripke Model of
HA is Locally PA. Mathematical Logic Quarterly, 48(3):391-395, 2002.

[AHO8] M. Ardeshir and B. Hesaam. An Introduction to Basic Arithmetic. Logic
Journal of the IGPL, 16(1):1-13, 2008.

126



[AKS20] M. Ardeshir, E. Khaniki, and M. Shahriari. Provably total recursive

functions and MRDP theorem in Basic Arithmetic and its extensions.
arXiv, (2003.01603), 2020.

[AMZ18] M. Abiri, M. Moniri, and M. Zaare. From forcing to satisfaction in

Kripke models of intuitionistic predicate logic. Logic Journal of the
IGPL, 26(5):464-474, 2018.

[AMZ19] M. Abiri, M. Moniri, and M. Zaare. Forcing and satisfaction in

[ARS03]

[Bus93]

[CZ97]

[Fri7§]

[Jer11]

[Mar93]

[Moj18]

[Mon02]

[Par70]

[Pol06]

[Rab62]

Kripke models of intuitionistic arithmetic. Logic Journal of the IGPL,
27(5):659-670, 2019.

M. Ardeshir, W. Ruitenburg, and S. Salehi. Intuitionistic Axiomatiza-
tions for Bounded Extension Kripke Models. Annals of Pure and Applied
Logic, 124(1-3):267-285, 2003.

S. R. Buss. Intuitionistic Validity in T-Normal Kripke Structures. An-
nals of Pure and Applied Logic, 59(3):159-173, 1993.

A. V. Chagrov and M. Zakharyaschev. Modal Logic, volume 35 of Oxford
logic guides. Oxford University Press, 1997.

H. Friedman. Classically and intuitionistically provably recursive func-
tions. In G. H. Miiller and D. S. Scott, editors, Higher Set Theory,
volume 669 of Lecture Notes in Mathematics. Springer, Berlin, Heidel-
berg, 1978.

E. Jerdbek. Intuitionistic Lowenheim-Skolem? (answer). MathOverflow,
2011. https://mathoverflow.net/q/54319.

Z. Markovié. On the structure of kripke models of heyting arithmetic.
Mathematical Logic Quarterly, 39(1):531-538, 1993.

M. Mojtahedi. Localizing finite-depth Kripke models. Logic Journal of
the IGPL, 27(3):239-251, 2018.

M. Moniri. H-theories, fragments of HA and PA-normality. Archive for
Mathematical Logic, 41(1):101-105, 2002.

Ch. Parsons. On a Number Theoretic Choice Schema and its Relation
to Induction. In A. Kino, J. Myhill, and R.E. Vesley, editors, Intu-
itionism and Proof Theory: Proceedings of the Summer Conference at
Buffalo N.Y. 1968, volume 60 of Studies in Logic and the Foundations
of Mathematics, pages 459-473. Elsevier, 1970.

T. Polacik. Partially-Elementary Extension Kripke Models: A Charac-
terization and Applications. Logic Journal of the IGPL, 14(1):73-86,
2006.

M. O. Rabin. Non-standard models and independence of the induction
axiom. Essays Found. Math., dedicat. to A. A. Fraenkel on his 70th
Anniv., 287-299 (1962)., 1962.

127


https://mathoverflow.net/q/54319

[Rui9s]

[Sla04]

[SmoT73]

[SmoT77]

[Smo85]

[Tv88]

W. Ruitenburg. Basic predicate calculus. Notre Dame Journal of Formal
Logic, 39(1):18-46, 1998.

T. A. Slaman. X,-bounding and A,,-induction. Proceedings of the Amer-
ican Mathematical Society,, 132(8):2449-2456, 2004.

C. Smorynski. Applications of Kripke models. In A.S. Troelstra, ed-
itor, Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis, volume 344 of Lecture Notes in Mathematics. Springer Berlin
Heidelberg, 1973.

C. Smorynski. The Incompleteness Theorems. In J. Barwise, editor,
Handbook of Mathematical Logic, volume 90 of Studies in Logic and the
Foundations of Mathematics, pages 821-865. Elsevier, 1977.

C. Smorynski. Self-reference and modal logic. Universitext. Springer,
New York, NY, 1985.

A. S. Troelstra and D. van Dalen. Constructivism in mathematics. An
introduction. Volume I, volume 121. Amsterdam etc.: North-Holland,
1988.

[VMKV86] D. van Dalen, H. Mulder, E. C. W. Krabbe, and A. Visser. Finite

[Weh96]

Kripke models of HA are locally PA. Notre Dame Journal of Formal
Logic, 27(4):528-532, 1986.

K. F. Wehmeier. Classical and intuitionistic models of arithmetic. Notre
Dame Journal of Formal Logic, 37(3):452-461, 1996.

128



	Thesis
	Introduction
	Paper A: On Proof Complexity of Resolution over Polynomial Calculus
	Paper B: Nisan–Wigderson generators in Proof Complexity: New lower bounds
	Paper C: Jump operators, Interactive Proofs and  Proof Complexity Generators
	Paper D: Not all Kripke models of HA are locally PA

	Bibliography
	Included Papers
	A: On Proof Complexity of Resolution over Polynomial Calculus
	Introduction
	Preliminaries
	Proof systems
	Resolution
	Polynomial Calculus
	Resolution over Polynomial Calculus
	Additional notations and definitions

	Hard formulas
	Mod q Tseitin formulas and Flow formulas
	Random k-CNF
	Pigeonhole principle and Counting mod q principle


	Main results
	Lower bounds for the hard formulas

	Size, width, degree and their relations
	Proof of Theorem 4.1
	Proof of Lemma 4.2

	Bibliography
	B: Nisan–Wigderson generators in Proof Complexity: New lower bounds
	Introduction
	Proof complexity generators
	Our results

	Preliminaries
	Nisan–Wigderson generators
	Representations

	Proof systems
	AC0-Frege


	Razborov's conjecture for AC0-Frege
	Proof of Theorem 8.1
	What are the implications of the hardness of NW-generators for a proof system?
	Bibliography
	C: Jump operators, Interactive Proofs and Proof Complexity Generators
	Introduction
	Preliminaries
	Bounded arithmetics
	Formalization in bounded arithmetics
	Exact counting and approximate counting
	On the theory §+1-EXP
	Proof systems
	Automatability and feasible disjunction property
	Translation of first-order formulas and weak proof systems of theories
	Feasible soundness and completeness for proof systems
	Krajíček's implicit proof systems
	Proof complexity generators
	Natural properties

	Jump operators in proof complexity
	A jump operator based on interactive proof systems
	Main results
	On properties of IP-randomized implicit proof systems
	A new hardness property for proof complexity generators
	On the existence of an efficient jump operator

	Proofs of the main results
	Proof of Theorem 15.3
	Proof of Theorem 15.4
	Proof of Theorem 15.2
	Proof of Theorem 15.1
	Proof of Theorem 15.5
	Proof of Theorem 15.6
	Proof of Theorem 15.7
	Proof of Theorem 15.8
	Proof of Theorem 15.10

	Concluding remarks and open problems
	Bibliography
	D: Not all Kripke models of HA are locally PA
	Introduction
	Preliminaries
	Arithmetical Theories
	Realizability
	Kripke models

	Kripke model constructions for intuitionistic arithmetical theories
	The first model construction
	The second model construction

	On binary Kripke models for intuitionistic first-order logic
	Concluding remarks and open problems
	Bibliography

