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Abstract:
In the first chapter, we show that a biased principal can strictly benefit from 
hiring an agent with misaligned preferences or beliefs. We consider a “delegated 
expertise” problem in which the agent has an advantage in acquiring information 
relative to the principal. We show that it is optimal for a principal who is ex ante 
biased towards one action to select an agent who is less biased. Such an agent is 
more uncertain ex ante about what the best course of action is and would acquire 
more information. The benefit to the principal of a better-informed decision 
always outweighs the cost of a small misalignment.

In the second chapter, I study a game between an agent and a principal in a 
dynamic information design framework. A principal funds a multistage project 
and retains the right to cut the funding if it stagnates at some point. An agent 
wants to convince the principal to fund the project as long as possible, and 
can design the flow of information about the progress of the project in order to 
persuade the principal. If the project is sufficiently promising ex ante, then the 
agent commits to providing only the good news that the project is accomplished. 
If the project is not promising enough ex ante, the agent persuades the principal 
to start the funding by committing to provide not only good news but also the 
bad news that a project milestone has not been reached by an interim deadline.

In the third chapter, we study an information design model in which the state 
space is finite, the sender and the receiver have state-dependent quadratic loss 
functions, and their disagreement regarding the preferred action is of arbitrary 
form. This framework enables us to focus on the understudied sender's trade
off between the informativeness of the signal and the concealment of the state
dependent disagreement about the preferred action. In particular, we study which 
states are pooled together in the supports of posteriors of the optimal signal.

Abstrakt:

V prvná kapitole ukážeme, že zaujaty principál může mát prospěch z najmutá 
agenta s neshodnámi preferencemi nebo pžesvědženám. Zkoumáme problám dele- 
govanáe expertázy“, ve kteráem máa agent oproti principaálovi vyáhodu pžri záskáaváaná 
informacá. Ukazujeme, žze pro principáala, kteryá je ex ante zaujatyá vůužci jednáe akci, 
je optimáalná vybrat agenta, kteryá je máenže zaujatyá. Takovyá agent je ex ante váce 
nejistáy ohlednže toho, jakáy postup je nejlepžsá, a záskaá tak váce informacá. Pžrános 
z láepe informovanáeho rozhodnutá pro principáala vžzdy pžreváažzá náaklady na malou 
neshodu v preferencách.

Ve druháe kapitole studuji hru mezi agentem a principáalem v ráamci dynam- 
ickáeho informažcnáho designu. Principáal financuje vácefaázovyá projekt a ponechaáváa 
si praávo omezit financováaná, pokud v uržcitáem okamžziku zažcne projekt stagno



vat. Agent chce přemluvit principála, aby financoval projekt tak dlouho, jak je 
to možná, a může navrhnout tok informacá o průběhu projektu, aby principála 
přesvědčil. Pokud je projekt dostatežně slibny ex ante, pak se agent zavazuje 
poskytovat pouze dobráe zpraávy, žze projekt je dokonžcen. Pokud projekt nená 
dostatežcnže slibnáy ex ante, agent pžresvžedžcá principaála, aby zaháajil financováaná 
tám, žze se zavaážze poskytovat nejen dobráe, ale i žspatnáe zpráavy ohlednže nedosažzená 
milnáku projektu v prozatámnám termánu.

Ve tžretá kapitole, se zabyáváame modelem Bayesiáanskeho pžresvžedžcováaná s 
konežcnže mnoha stavy a kvadratickáymi ztraátovyámi funkcemi odesálatele a pžrájemce 
zaávisejácámi na stavu. Nesouhlas mezi odesálatelem a pžrájemcem ohlednže op- 
timáalná akce můužze mát libovolnyá tvar. Tento model umožznžuje zamžežrit se na 
relativnže neprozkoumanyá kompromis mezi informativnostá signáalu a utajenám ne
souhlasu ohlednže optimáalná akce. Konkráetnže se zamžežrujeme na to, jak odesálatel 
sdružzuje stavy v posteriorech optimáalnáho signáalu.
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Introduction
Information is valuable for efficient decision-making, and thus, in many situa
tions, the owners of information can strategically use it to their advantage. Retail 
goods sellers tend to conceal certain attributes of a product while being trans
parent about others, biased prosecutors strategize when inviting a witness to a 
court hearing, and experts obfuscate specific pieces of evidence when advising 
a policymaker - all these are examples of strategic information provision, which 
is the overarching theme of this dissertation. The first chapter examines a set
ting in which a boss and an expert agree on an issue ex post but disagree ex 
ante due to differences in opinions on the issue, and studies the boss's choice of 
expert based on these differences. The second and third chapters consider the 
expert and the decision-maker with misaligned preferences, focusing on the dy
namic and static aspects of the expert's choice of information provision to the 
decision-maker, respectively.

In the first chapter, we consider a principal and an agent who share the 
same preference for choosing an action that matches the unobservable state of 
the world, but who have different prior beliefs regarding the state. In contrast 
to the principal, the agent can access costly information about the state of the 
world. We study the principal's choice in the “delegated expertise” problem: the 
principal selects an agent based on the agent's prior belief, and then the agent 
acquires information and chooses the action. Surprisingly, we show that it is not 
optimal for the principal to delegate the task to an agent whose prior belief is 
perfectly aligned with the principal's prior. Instead, we demonstrate that it is 
optimal for the principal to delegate the task to an agent who agrees with the 
principal on the best action choice ex ante but who is more uncertain than the 
principal (i.e., the optimal agent's prior belief is relatively closer to the uniform 
prior belief than the principal's). We demonstrate that, instead of delegating to 
an agent with a misaligned prior, the principal can achieve the optimal delegation 
outcome by delegating to an agent with misaligned preferences over the action 
choices. Finally, we show that delegation to a misaligned agent as an incentive tool 
performs at least as well as action-contingent or outcome-contingent transfers to 
the agent. The results serve as a useful directional behavioral tool for delegation 
in public organizations and provide support for diversity in large organizations.

In the second chapter, I examine a game between a principal who funds an 
innovative multi-stage project and decides when to cut funding, and an agent who 
controls the information on the project's progress toward completion. I assume 
that the project has two stages, the agent prefers the principal to postpone cutting 
the funding, and the agent can commit to a dynamic information policy specifying 
which pieces of information will be provided to the principal and when. I study 
the agent's choice of information policy and show that if the project is sufficiently 
attractive to the principal ex ante, then the agent promises to disclose only the 
completion of the second stage of the project, doing so with a postponement. 
However, if the project is not sufficiently attractive ex ante, the agent promises to 
provide information regarding the completion of both the second and first stages 
of the project. This particular structure of optimal disclosure is preserved under a 
more general preference specification. Intriguingly, the optimal form of disclosure 
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for the first stage completion is a deterministic interim deadline: at the outset of 
the game, the agent announces a date at which she will disclose if the first stage 
is already completed or not, and upon receiving the bad news, the principal cuts 
funding for the project precisely at the interim deadline. The results shed light 
on the information disclosure in venture finance and bureaucracies.

In the third chapter, we explore the structure of optimal signals in the 
Bayesian persuasion model with a continuous action space and discrete state 
space. We assume that both the sender and the receiver share quadratic loss 
preferences, which implies that they have state-dependent preferred actions. The 
main twist is that we assume the difference between the sender's and the receiver's 
state-dependent preferred actions can have an arbitrary form, and we show how 
this form determines the sender's choice of optimal signal. In particular, we define 
the state-pooling structure of a signal. Given a signal, this structure specifies 
which states of the world are pooled together in the supports of posterior beliefs 
constituting the signal. Unexpectedly, we demonstrate that the state-pooling 
structure of an optimal signal can be explored using a simple condition on the 
alignment of the sender's and receiver's preferred actions at pairs of states. Using 
this condition, we provide a graph procedure that takes the set of states of the 
world and the form of preference misalignment as input, and delivers the optimal 
and candidate-optimal pools of states as the output.
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1. Optimally Biased Expertise
Co-authored with Pavel Ilinov (CERGE-EI), Andrei Matveenko (University of 
Mannheim, Department of Economics), and Egor Starkov (University of Copen
hagen, Department of Economics).

1.1 Introduction

Presidents, CEOs, and other leaders are often touted as visionaries, paving the 
way to a brighter tomorrow. However, they cannot do this alone. They regularly 
rely on the advice and expertise of others, and they may hire advisors and experts 
who do not necessarily share the same vision. For example, Lyndon Johnson was 
passionate about his economic reform, “the War on Poverty”: “That's my kind 
of program. I'll find money for it one way or another. If I have to, I'll take away 
money from things to get money for people. ... Give it the highest priority. Push 
ahead full tilt” [Bailey and Duquette, 2014, p. 354]. Chairing Johnson's Council 
of Economic Advisers was Walter Heller, who, while being one of the original 
authors of the War on Poverty, was no stranger to pushing against it, advocating 
for fiscal responsibility and frugality, especially later in the 1960s.1 Similarly, 
Ronald Reagan's radical “Reaganomics” reforms clashed from their early days 
with a more restrained position of the Federal Reserve and its then-chairman 
Paul Volcker,2 but that did not stop Reagan from renominating Volcker to a 
second term in 1983.

Why can it be beneficial for a partisan principal to hire an agent with a 
misaligned vision? At first sight, such a decision looks counterintuitive - e.g., 
Holmstrom [1980] suggests that misalignment between a principal and an agent 
leads to a conflict of interest, because, from the principal's point of view, the 
agent then makes suboptimal decisions. A similar conclusion could be drawn 
from the political economy literature, which suggests that political leaders trade 
off competence for loyalty when selecting appointees [Lewis, 2011] - one would 
think that misalignment depresses loyalty, while not necessarily benefitting the 
competence. Nevertheless, in this paper we show that even conditional on compe
tence, misalignment between a principal and an agent can lead to better decisions 
or recommendations, and thus benefit a partisan principal.

To show this, we consider a delegation model in which a principal (she) and 
an agent (he) have common payoffs from different actions, given an unobserved 
state of the world, but have misaligned prior beliefs about the state of the world.3

1 Crichton, K. 1987. “Walter Heller: Presidential Persuader.” The New 
York Times, June 21. https://www.nytimes.com/1987/06/21/business/
walter-heller-presidential-persuader.html

2 Atkinson, C. 1982. “Reagan, Volcker Meet to Discuss Policy Rift.” 
Washington Post, February 17. https://www.washingtonpost.com/archive/
business/1982/02/17/reagan-volcker-meet-to-discuss-policy-rift/ 
f0e448ae-a08d-46b9-aefd-5f4d5449b04f/

3 In the context of our motivating examples, this can be interpreted as both the President 
and the Economist having the same objective (strong economy, low inflation, high employment, 
etc.), but different views on which monetary and fiscal tools should be used in order to achieve 
these objectives in a given situation. For instance, the President could believe tax cuts are more 
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The agent does not have any preexisting knowledge about the case he is asked to 
consider, but can use his expertise to acquire additional information to make the 
best decision. The agent's cost of learning is not internalized by the principal, 
and her own cost of learning is prohibitively high. This setting was labeled by 
Demski and Sappington [1987] as the “delegated expertise” problem.

We show that when the principal is ex ante biased towards some action (in the 
sense of having a non-uniform prior belief over which of the actions is optimal), 
it is optimal for her to hire a misaligned agent. In particular, she benefits the 
most from delegating to an agent who is ex ante less biased and hence more 
uncertain than she is about what the best course of action is (Propositions 1.3 
and 1.6.2, Theorem 1.4.4). This is because, the more uncertain the agent is, 
the more he learns about the state, and the better his action fits the state - 
which benefits the principal. This, however, must be balanced against the tilt: 
any kind of misalignment between the principal and the agent leads to a tilt in 
the agent's decisions relative to what the principal would prefer. In the end, 
the principal prefers to hire an agent who is more uncertain than she is, and 
who thus conducts a more thorough investigation than an aligned agent would, 
- but who still favors the same action ex ante. This result holds regardless of 
who has the final decision rights: the optimal delegation strategy is the same 
whether the principal delegates the decision rights to the agent or merely expects 
a recommendation on the optimal course of action (Proposition 1.6.3).

This conclusion has implications in various settings. One relates to bilateral 
relationships - e.g., when an authority in a public organization wants to find the 
best expert to delegate a decision to. Our findings offer conditions on the set of 
experts for delegation to be beneficial, as well as an upper bound for the expected 
gains from such a delegation. Moreover, if it is relatively straightforward for the 
authority to rank available experts in regards to their attitudes, we provide a 
useful directional behavioral tool: the authority should look for an expert who 
shares similar views but who is more uncertain or moderate. Our second inter
pretation covers large organizations. We take heterogeneous priors as different 
views of the people in organizations such as research teams, firms, and political 
parties. Our results speak in favor of diversity of views in such organizations. We 
characterize a useful diversity strategy for the leader: she benefits from having 
workers with slightly more moderate views. Although the optimal agent is unique 
in our model, our problem is static and one-shot. For other decision problems, the 
leader may have different opinions and, therefore, benefits from having workers 
with different views in the organization.4

Importantly, the optimal degree of misalignment is non-monotone in the 
strength of principal's own bias (Corollary 1.3). If the principal is unbiased, 
then she would prefer an unbiased agent, who would hence be aligned with her 
vision. The same would apply if a principal is extremely biased - in this case 
she is almost certain that one action is better than all others, and may either 

likely to benefit the economy, whereas the Economist could advocate for a more restricted fiscal 
policy for sake of maintaining control over monetary policy.

4 Banerjee and Somanathan [2001] and Li and Suen [2004] present a counterargument to 
the benefits of diversity, arguing that if a decision needs to be made by a collective, diverse 
collectives can have a harder time agreeing on a decision and may produce worse outcomes. For 
a recent review on diversity in organizations, see Shore, Chung-Herrera, Dean, Ehrhart, Jung, 
Randel, and Singh [2009].
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take this action on her own, or find an agent who is equally as biased. Hiring a 
misaligned agent is hence most optimal for the somewhat-biased principal, who 
has some ex ante preference for one action over another, but who still values the 
information that would be collected by the agent.

We further show that the principal can equivalently benefit from leveraging 
misalignment in preferences rather than misalignment in beliefs. Our Theorem
1.5.1 states that the best delegation outcome can be implemented by hiring an 
agent with either optimally misaligned beliefs, or optimally misaligned prefer
ences (or, equivalently, offering action-contingent payments). This result has a 
mirror implication for the empirical literature estimating discrete choice models: 
Theorem 1.5.1 implies that the agent's observed action choice probabilities alone 
do not allow an external observer to jointly identify the decision maker's beliefs 
and preferences in our setting.

The main conclusion of our paper is that delegation to an agent with mis
aligned beliefs is an instrument that is available - and valuable - to the principal. 
Further, in our setting, this instrument can perform equally as well as contracts 
with action-contingent payments (Theorem 1.5.1) and outcome-contingent pay
ments (Proposition 1.5.2), - and even better if we take the principal's contract 
costs into account. Further, misalignment is typically better than restricting the 
agent's choice set (Proposition 1.5.3). This benefit of misalignment challenges 
the opinion that disagreement between the principal and the agent inevitably 
leads to conflict, and thus the principal should seek to hire an agent who is most 
aligned with her preferences and beliefs (see Holmstrom, 1980, Crawford and So
bel, 1982b, Prendergast, 1993, Alonso and Matouschek, 2008, Egorov and Sonin, 
2011, Che et al., 2013 for some examples of such a message).

The existence of the principal's trade-off between the amount of information 
acquired by an agent and the tilt in his resulting decisions relies on the flexibility 
of the agent's learning technology. We capture this flexibility using the Shannon 
model of discrete rational inattention, which allows the agent to acquire arbitrary 
signals and parametrizes the cost of such a signal through the expected entropy 
reduction (see Mackowiak et al., 2023 for a recent survey of the literature on 
rationalinattention).5 The choice of a signal in this model depends on the agent's 
prior belief: an agent whose prior is skewed towards some state of the world 
chooses a signal which is relatively more informative regarding that state and thus 
allows him to make a better decision in that state. This dimension of flexibility is 
what enables the relative tilt in the misaligned agent's decisions. We demonstrate 
(see Section 1.6.2) that our results are not specific to the entropy parametrization 
and continue to hold with other information cost specifications that allow for 
flexible learning, such as the channel capacity cost [Woodford, 2012] and the 
log-likelihood ratio cost [Pomatto, Strack, and Tamuz, 2023].

5 The entropy parametrization has been rationalized in both information theory as a cost 
function arising from the optimal encoding problem [see Cover and Thomas, 2012] and decision 
theory as arising naturally from Wald's sequential sampling model [see Hebert and Woodford, 
2019], and has been shown to work as a microfoundation of the logit choice rule commonly used 
in choice estimation [Matějka and McKay, 2015]. We mainly explore the model of finding the 
best alternative, studied in Caplin et al. [2019]; the Shannon model with general preferences is 
studied in Section 6.1.

Our paper is mainly connected to the literature on delegation. Most papers 
on delegation follow Holmstroom [1980] in assuming that the agent has preexist
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ing private information relevant to the decision. We adopt instead the “delegated 
expertise” setting of Demski and Sappington [1987], where the agent has no infor
mation advantage over the principal ex ante, but rather has to collect information, 
and the expertise grants him a learning advantage over the principal.6 Demski 
and Sappington [1987] explore a contracting problem in a setting in which the 
agent chooses between a finite number of signal structures. Lindbeck and Weibull 
[2020] extend this analysis to a rationally inattentive agent (who can acquire any 
information subject to entropy costs). Szalay [2005] shows that restricting the 
agent's action set can be a useful tool in such a setting, because banning an ex 
ante optimal “safe” action can nudge the agent to acquire more information about 
which of the risky actions is the best. Our overarching message is similar: the 
principal is willing to sacrifice something in exchange for the agent's acquiring 
more information, but we present a different channel through which the principal 
can achieve this.

6 Graham, Harvey, and Puri [2015] show that delegation tends to be applied when the 
decision-making demands more evidence that the delegatee can provide. Alternatively, the 
choice to delegate a decision is often is often exercised when a delegator faces a volatile envi
ronment [Foss and Laursen, 2005, Ekinci and Theodoropoulos, 2021], in which any knowledge 
quickly becomes obsolete.

The closest study to our paper is contemporary work by Ball and Gao [2021]. 
They consider a model of delegated expertise and demonstrate a result similar 
to that of Szalay [2005]: that banning ex ante safe actions can lead to more in
formation acquisition by the agent, which benefits the principal. However, where 
Szalay [2005] looks at a scenario in which the principal's and the agent's prefer
ences coincide ex post (i.e., net of information costs), Ball and Gao [2021] explore 
a model with misaligned preferences and show that the principal may benefit from 
some misalignment between her preferences and those of the agent. In their set
ting, this is due to divergence between the principal's and the agent's ex ante 
optimal actions (due to preference misalignment), which makes banning the ex 
ante agent-preferred action less costly for the principal. Our paper suggests a 
different channel through which misalignment may incentivize the agent's infor
mation acquisition: using a flexible information acquisition framework, we show 
that misalignment can lead to more information acquisition by the mere virtue of 
the agent being more uncertain than the principal about what the optimal action 
is.

The effects of misalignment in prior beliefs have also been studied by Che and 
Kartik [2009]. They analyze a delegated expertise game in which the principal 
retains the decision rights, and the agent, after acquiring the relevant information, 
chooses whether to disclose it to the principal. They show that the need to 
communicate may incentivize a misaligned agent to acquire more information 
than an aligned one, in order to more effectively persuade the principal about 
which action needs to be taken, as well as to avoid punishment for concealing 
evidence. As we show in Section 1.6.3, both the persuasion and the prejudice 
avoidance channels are absent from our model, even if we consider communication 
(as opposed to delegation, as in the baseline model). Our explanation of the 
desirability of misalignment is thus completely separate from that of Che and 
Kartik [2009]. We argue instead that agents are heterogeneous in their ex ante 
uncertainty regarding the optimal action, and this heterogeneity can be exploited 
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by hiring a more uncertain agent, who will put more effort into learning the state 
- even if such an agent would be misaligned relative to the principal. Our setup 
further allows us to obtain novel comparative statics results and to show that the 
optimal misalignment is non-monotone in the principal's bias.

Finally, a literature exists that argues in favor of misaligned delegation in 
strategic settings, as a way to commit to a certain strategy. Examples include 
Rogoff [1985], Segendorff [1998], Kockesen and Ok [2004], Stepanov [2020], and 
Ispano and Vida [2022]. We differ from that literature by focusing on delegation 
of non-strategic decisions, showing how misalignment may be beneficial even in 
the absence of a strategic counterparty.

The remainder of the paper is organized as follows: Section 1.2 formulates 
the main model, which is analyzed in Section 1.3 for the special case of binary 
states and actions, while Section 1.4 analyzes the general problem. Section 1.5 
compares misaligned beliefs as a delegation tool to other tools, such as misaligned 
preferences, payments, and restricting the action set. Section 1.6 explores a 
number of extensions of the baseline model, and Section 1.7 concludes.

1.2 Model

1.2.1 The Story

We begin by explaining verbally the outline of the model and justifying some of 
the assumptions made therein; the formal setup follows in Section 1.2.2.

Consider a principal (she) who would like to implement an optimal decision 
that depends on the unknown state of the world. To choose the best course of 
action, the principal delegates the decision to an expert (an agent, he), who has 
a learning advantage in acquiring information about the state and the optimal 
decision. For simplicity, we assume that the agent's learning costs (defined fur
ther) are finite and the principal's are infinite, but the results extend naturally to 
the case when the principal's learning costs are finite but larger than the agent's. 
Further, Section 1.6.3 demonstrates that communication is equivalent to delega
tion in our setting (barring the equilibrium multiplicity), so it is not important 
for our results whether the principal or the agent makes the final decision.

There are many experts available to the principal, and all experts have a com
mon interest with the principal, but differ in their opinions on the issue (Section
1.5.1 demonstrates the connection of our results to the case of common beliefs but 
misaligned preferences). These prior beliefs of different agents are observable by 
the principal - e.g., due to the agents' reputation concerns (i.e., agents needing 
to publicly establish a particular stance on a broad policy question for sake of 
earning, and subsequently capitalizing on, a specific reputation). Experts with 
different initial opinions would acquire different information, and thus possibly 
make different final decisions. The principal is thus concerned with choosing the 
best agent for the job. Alternatively, our results can be interpreted as compar
ative statics for a game between a principal and a given agent with some fixed 
misalignment, w.r.t. the degree of misalignment. That said, we believe that a 
literal interpretation of selecting one agent from a population with heterogeneous 
beliefs is valid as well. Kahneman, Sibony, and Sunstein [2021] survey a large 
body of evidence suggesting that similar experts and decision-makers in similar 
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conditions make extremely different judgement and predictions, with a large share 
of these differences attributable to the interpersonal heterogeneity (and a smaller 
share being due to intra-personal noise in decision-making). We argue that this 
heterogeneity can be leveraged by the principal through selecting an agent whose 
bias fits a given problem the most.7

1.2.2 The Setup

The above can be modeled as a game played between a principal and a population 
of agents. Let A denote the set of actions with a typical element a, and Q 
denote the set of states with a typical element w. The principal has a prior 
belief jp E A(Q), where A(Q) denotes the set of all probability distributions 
on Q. Every agent in the population has some prior belief j E A(Q), which is 
observable by the principal. 8 In what follows, we refer to an agent according to 
his prior belief. Let M C A(Q) denote the set of prior beliefs of all agents in the 
population.9

The terminal payoff that both the principal and the agent selected by the 
principal receive when action a is chosen in state w is given by u(a, w). Prior to 
making the decision, the selected agent can acquire additional information about 
the realized state. We assume that the agent can choose any signal structure 
defined by the respective conditional probability system $ : Q A(S), which
prescribes a distribution over signals s E S for all states w E Q, where S is 
arbitrarily rich. The information is costly: when choosing a signal structure 
the agent must incur cost c($, j) that depends on the informativeness of the signal 
$ and the agent's prior belief j.10

The cost function we consider is the Shannon entropy cost function used in 
rational inattention models [Matejka and McKay, 2015]. In this specification, 
the cost is proportional to the expected reduction in entropy of the agent's belief 
resulting from receiving the signal (we consider other cost functions in Section

7 Note that the evidence presented by Kahneman, Sibony, and Sunstein [2021] implies that 
the population of principals would also be heterogeneous in their judgements of a given decision 
problem. This, together with the inherent heterogeneity of problems, would create demand for 
a wide variety of experts - and hence mitigate the agents' desire to conceal or misrepresent 
their biases.

8To clarify, we work with a model of non-common prior beliefs about w, and we take this 
assumption at face value. Such settings are not uncommon in economic theory: see Morris 
[1995], Alonso and Camara [2016], Che and Kartik [2009] for some examples and discussion. 
It is well known [see Aumann, 1976, Bonanno and Nehring, 1997] that agents starting with a 
common prior can not commonly know that they hold differing beliefs. We allow the agents to 
have heterogeneous prior beliefs, and thus to “agree to disagree”. While it may be possible to 
replicate our results in a common-prior model with asymmetric information, where an agent's 
ex ante belief is affected by some private information not observed by the principal, such a 
model would feature signaling concerns (e.g., an agent learning something about the principal's 
information about the state from the fact that he was chosen for the job, and the principal 
then exploiting this inference channel). We prefer to abstract from such signaling and simply 
assume non-common priors from the start.

9For many of the results we assume that the population of agents is rich enough to represent 
the whole spectrum of viewpoints: M = ^(Q).

10Similar to, e.g., Alonso and Caamara [2016], we assume that the agent and the principal share 
the understanding of the signal structure. Combined with them having different (subjective) 
prior beliefs over states, this implies they would also have different (subjective) posterior beliefs 
if both observed the signal realization.
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1.6.2 to show that our results do not depend on this particular specification).
Namely, let n : S A(Q) denote the agent's posterior belief system, obtained 
from p and $ using the Bayes' rule. The cost is then defined as

c(&d) = Al -^ dMlndM+
y ^tQ

+ dWMsk9 ] n(Ms) lnn(Ms) ], (i-i)
wtQ stS tQ J J

where A G R++ is a cost parameter.11 We assume that the principal does not 
internalize the cost of learning, and the agent fully bears this cost. The main 
interpretation [shared by, e.g., Lipnowski, Mathevet, and Wei, 2020] of this as
sumption is that the cost reflects the cognitive process of the agent. Information 
acquisition costs thus lead to moral hazard, with the agent potentially not willing 
to acquire the amount of information desired by the principal. This is the main 
conflict between the two parties in our model.

11 We follow the standard convention and let 0 ln 0 = 0.

In line with the delegation literature, we assume that the principal cannot use 
monetary or other kinds of transfers to manage the agent's incentives. This is 
primarily because learning is non-contractible in most settings - indeed, it is diffi
cult to think of a setting, in which a learning-based contract could be enforceable,
i.e.,  either the principal or the agent could demonstrate beyond reasonable doubt 
exactly how much effort the agent has put into learning the relevant information, 
and what kind of conclusions he has arrived at. A simpler justification of the 
no-transfer assumption could be that such transfers are institutionally prohib
ited in some settings (see Laffont and Triole, i990, Armstrong and Sappington, 
2007, Alonso and Matouschek, 2008 for some examples and a discussion of such 
settings). Section i.5 shows that even when contracting is feasible, it does not 
improve upon hiring an agent with a misaligned belief, and neither can restricting 
the set of actions that the agent is allowed to choose from.

The game proceeds as follows. In the first stage, the principal selects an agent 
from the population based on the agent's prior belief d. In the second stage, the 
selected agent chooses signal structure $ and pays cost c($, p). In the third stage, 
the agent receives signal s according to the chosen signal structure $ and selects 
action a given s. Payoffs u(a,A) are then realized for the principal and the agent.

The following subsections describe the respective optimization problems faced 
by the principal and her selected agent, and introduce the equilibrium concept.

1.2.3 The Agent's Problem

The agent selected by the principal chooses a signal structure $ : Q A(S ) and 
a choice rule c : S A to maximize his expected payoff net of the information 
costs. The agent's objective function is

E|\u(a,œ)\p] - d&p') X dMH ^(sl^u(c(s),u) - c$,p).
^tQ stS

11



The agent's problem can then be written down as

max
ý,(J E vM E s - ' u a s ,-' - c(ý, v)

^tQ stS
(1.2)

Lemma 1 in Matějka and McKay [2015] shows that problem (1.2) with entropy 
cost function can be reframed as a problem of selecting a collection of conditional 
choice probabilities. This reformulation is presented in Section 1.2.6.

1.2.4 The Principal's Problem

The principal's problem is to choose an agent based on his prior belief p G M in 
order to maximize her expected utility from the action eventually chosen by the 
agent. Her objective function is

E|[u(a,u)\pp] = E pp(u) E <Gs uv.s ,.: ,
^tQ stS

so her optimization problem can be written down as

max s E 1p(w) EE(sMu(v4s)E 
wtQ stS

s.t. solves (1.2) given p,

where the choice of agent p affects the signal structure and the choice rule 
v^ chosen by the agent. Therefore, the principal's problem is effectively that of 
choosing a pair (^, v) from a menu given by the agents' equilibrium strategies.

1.2.5 Equilibrium Definition

We now present the equilibrium notion used throughout the paper; the discussion 
follows. [Equilibrium] An equilibrium of the game is given by (pt,*, {cp. v* }mgm): 
the principal's choice p* G M of the agent who the task is delegated to and a 
collection of the agents' information acquisition strategies Cp : Q A(S) and 
choice rules v* : S A for all p G M, such that:

1. and v* constitute a solution to (1.2) for every p G M;

2. p* is a solution to (1.3) given (^*, v*).

Note that the above effectively defines a Subgame-Perfect Nash Equilibrium. 
While our game features incomplete information (about the state of the world 
chosen by Nature), and the players' beliefs play a central role in the analysis, 
problem formulations (1.2) and (1.3) allow us to treat these beliefs as just some 
exogenous functions entering the terminal payoff functions. This is primarily 
because one player's actions do not affect another player's beliefs in this game, 
hence a belief consistency requirement is not needed (however, we do require 
internal consistency in that the agent's posterior belief n is obtained by updating 
his prior belief p via Bayes' rule given his requested signal structure ^).

12



1.2.6 Preliminary Analysis

Matějka and McKay [2015] show that with entropy costs, the agent's problem of 
choosing the information structure and choice rule can be reduced to the problem 
of choosing the conditional action probabilities. Namely, the maximization prob
lem of the agent can be rewritten as that of choosing a decision rule n : Q A(A) 
(which is a single state-contingent action distribution, as opposed to the combi
nation of a signal strategy $ : Q A(S) and a choice rule a : S > A \

max S I1 -'A n-a >u(a,w) - c(n,v) k 
wGQ VaGA / J

12Cost c(n,A) is calculated as the cost c(A A) of the cheapest strategy (A a) that generates 
n. The choice rule in such a strategy is deterministic, and the signal strategy prescribes at most 
one signal per action [Matejka and McKay, 2015, Lemma 1]. Given this, we have that

Í n(a|w)lnn(«|w)j - £(a)lnE(«)j .

x&GA z &GA z

13Such a binary model is common in the delegation literature, see e.g. Li and Suen [2004] 
with a slightly different informal story.

(1.4)

where c(n,p) denotes, with abuse of notation, the information cost induced by 
the action distribution n.12 Lemma 2 in the online appendix of Matějka and 
McKay [2015] implies in our setting that the agent's problem has a unique solu
tion in either formulation (up to signal labels). Let /3(ai) denote the respective 
unconditional probability of choosing alternative ai (calculated using the agent's
own prior belief p):

Ma) = p(w)n(a|w). (1.5)
’ g^

The principal's problem can then be rewritten as choosing p E M that solves

max S Z a--'A Z Aa-ua'>
VaGA z J (1.6)

n

s.t. nM solves (1.4) given p.

In what follows, we refer to problem (1.6) as the principal's full problem. Our 
main interest in what follows lies in the properties of the solution p* of the full 
problem and the chosen agent's optimal strategy n^*.

We now proceed to analyze the model described above.

1.3 Binary Case

We start by looking at the binary-state, binary-action version of the model, since 
the results can be presented more clearly in such a setting than in the general 
model.12 13 We show that the principal has to balance off the amount of information 
acquired against the nature of information acquired - since agents with different 
prior beliefs tilt their learning towards different states. This makes the principal 
favor agents who are somewhat more uncertain than her regarding the state, but 
who do not necessarily have a uniform prior belief (Proposition 1.3).

c(n, /E) = A
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Assume that the state space is Q = {l,r} and with abuse of notation let 
us represent beliefs p by the probability they assign to state r, so p E [0,1]. 
Assume further that the action set is A = {L, R}, and the common utility net of 
information costs that the principal and the agent get from the decision is given 
by u(L|l) = u(R|r) = 1 and u(L|r) = u(R|l) = 0. We proceed by the backward 
induction, looking at the agent's problem first, and then using the agent's optimal 
behavior to solve the principal's problem of choosing the best agent.

The agent is allowed to choose any informational structure (Blackwell experi
ment) he wants, paying the cost which is proportional to the expected reduction 
of the Shannon entropy of his belief. Using the result presented in Section 1.2.6, 
the agent's problem can be reformulated as the problem of choosing a stochastic 
decision rule n : Q ^(A), which solves

ma^|pn(R\r) + (1 — p)n(L|l) — c(n, p)|. (1.7)

The solution to this problem can be summarized by the two precisions (%(B|r), n(L\l)} 
or, alternatively, the two unconditional probabilities {P(R), P(L)}. Using Theo
rem 1 in Matějka and McKay [2015], we get that

n(L\l) =
P(L)e1

14 This solution takes the form of the so-called rational inattention (RI) logit. In comparison 
to the standard logit behavior, under RI-logit the decision-maker (the agent in our case) has a 
stronger tendency to select the ex ante optimal alternatives more frequently.

P(L)e1 + P(R),
n(R\r)

P(R)e1

P (L) + P (R)e1,
(1.8)

and their Corollary 2 implies that

P(R) =
pe a — (1 — p)

P(L) = , (1.9)
e a — 11

e a 1

cropped to [0, 1]. Combining (1.8) and (1.9), we get that the solution to problem 
(1.7) is given by14 

p a — (1 — p)) ea 
e a — 1) p

((1 — P)eA — p eA 

(ea — 1) (1 — p)

n(R\r) =

n(L\l) =

(1.10)

cropped to [0, 1]. Figure 1.1 demonstrates how the agent's action precisions choice 
depends on his prior belief.

In turn, the principal's problem is

max {ppnM(R\r) + (1 — pp)n^(L\l)}

s.t. n^ solves problem (1.7) given p.

It is easy to see by comparing the payoffs in (1.7) and (1.11) that the princi
pal benefits from higher precisions n(R|r) and n(L|l), the same as the agent. 
However, the relative weights the principal and the agent assign to these preci
sions depend on their respective priors pp and p, and are hence different. Hence,
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Figure 1.1: Solution of problem (1.7) for different prior beliefs p.

in order to understand the trade-offs that the principal faces in hiring agents 
with different priors, we need to explore how the agent's optimal strategy (1.10) 
depends on his prior belief p.

When solving problem (1.7), the agent faces a trade-off between increasing 
the precision of his decisions, n(R\r) and n(L|l), and the cost of information. 
Further, he prefers to learn more about the more probable event: the higher is 
the probability that the agent's prior belief assigns to u = r, the more important 
is precision n(R|r) for his payoff, compared to n(L|l). Therefore, two agents 
with different beliefs would acquire different information, leading to different 
precisions n(R|r) and n(L|l).15 At the same time, the closer is the prior belief p 
to the extremes (p = 0 or p = 1), the more confident is the agent about what the 
state is, and the less relevant is the precision in the other state for him, leading 
to such an agent acquiring less information in total.

15 This feature of the flexible information acquisition model was analyzed in the application 
to belief polarization by Nimark and Sundaresan [2019], as well as in the marketing literature 
[see Jerath and Ren, 2021].

To summarize, the agent's belief p affects his optimal decision precisions in 
two ways: a more uncertain agent acquires more information (and hence makes 
a better decision on average) than an agent who believes one state is more likely. 
However, the latter is more concerned with choosing the correct action in the ex 
ante more likely state, while neglecting the other state.

The principal prefers, ceteris paribus, to hire an agent who acquires more 
information and hence makes better choices - i.e., a more uncertain agent (p 
close to 0.5). However, if she believes that, e.g., state r is ex ante more likely 
(pp > 0.5), then she, for all the same reasons as the agent, cares more about 
the agent choosing the optimal action in state r than in state l. The latter leads 
her to prefer an agent who is not completely uncertain (p = 0.5), favoring those 
who agree with her in terms of which state is more likely (p > 0.5). Balancing 
the two issues leads to the principal optimally hiring an agent who has a belief 
different from hers: p = pp, yet who agrees with her ex ante on the optimal 
action: p > 0.5 < - pp > 0.5.

Figure 1.2 plots the principal's expected utility from hiring an agent as a 
function of the agent's belief p when pp = 0.7. We can see the principal with a 
prior belief pp = 0.7 would prefer to hire an agent with a prior belief p ~ 0.6. 
Note that the graph is flat for very high and very low p, which corresponds to the
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agent's prior

Figure 1.2: Expected utility of principal with prior belief pp = 0.7 as a function 
of the agent's prior belief p.

principal's prior

Figure 1.3: The optimal delegation strategy p* as a function of the principal's 
prior belief 1p.

agents who do not learn anything, and simply always choose the ex ante optimal 
action. Further, agents with low p ~ (0.15, 0.2) acquire non-trivial information, 
but hiring them is worse for the principal than taking the ex ante optimal action 
(equivalent to hiring an agent with p = 1). In other words, if an agent is too 
biased, the information he acquires does not benefit the principal due to the tilt 
in the agent's actions relative to what the principal would have chosen.

Proposition 1.3 below formalizes this intuition and provides a closed-form 
solution for the optimal delegation strategy given the principal's prior belief pp. 
Figure 1.3 visualizes the optimal delegation strategy as a function of pp.

If M = [0, 1], then the principal's optimal delegation strategy is given by

ppp (pp) = —= —
pp

(1.12)
pp + v/i ~^p

Therefore, if pp E Q, 1), the principal optimally delegates to an agent with belief 

Pa E (2 ,p^).
From Proposition 1.3 and Figure 1.3 we can immediately see that misalign

ment is the most beneficial to a moderately-biased principal, while if 1p is close 
to either 0. 5 or 1, then it is best to hire an (almost-)aligned agent. This is 
summarized by Corollary 1.3 below.

The optimal misalignment |pp — p*(pp)| is single-peaked in pp E Q, 1).
One thing to note about Proposition1.3 is that theoptimaldelegationstrategy
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Figure 1.4: Action precisions under optimal delegation and delegating to the 
aligned agent.

(1.12) does not depend on the agent's information cost factor, A. While it is 
immediate that the higher is A, the less information the agent with any given 
prior d collects, Proposition 1.3 serves to show that the trade-off between the 
quantity of information and the tilt in the decisions does not depend on the 
absolute quantity of information the agent acquires. Section 1.6.2 does, however, 
suggest that this specific conclusion is likely an artifact produced by the entropy 
information cost function.

Figure 1.4 demonstrates the difference in the action precisions between dele
gating to a perfectly aligned agent (d = dp) and the optimally misaligned agent 
as given by (1.12). Optimal delegation leads to the agent consuming more in
formation, lowers the probability of correctly matching the ex ante more likely 
(according to the principal's belief dp) state, n(R[r), and increases n(L|l), thereby 
bringing the two closer together. Overall, under the optimal delegation, the ex 
ante less attractive option (as seen by both the principal and the agent) is im
plemented relatively more frequently as compared to the case of the aligned del
egation. The principal's benefit from a higher n(L|l) under optimal delegation 
outweighs her loss from a lower n(R|r) than under aligned delegation.

Here, an interesting connection can be made to prospect theory (see Barberis, 
2013 for a review). In particular, Tversky and Kahneman [1992] suggest that 
in problems of choice under risk, individual decision-makers tend to succumb 
to cognitive biases such as overweighing small probabilities and underweighing 
large probabilities. They propose a probability weighting function that decision
makers unconsciously use, which is reminiscent of our optimal delegation strategy
(1.12) , with dP being the objective probability and d* being the decision-maker's 
perceived probability. Our result can thus be interpreted as one possible evo
lutionary explanation of the probability weighting functions. Namely, suppose 
that “Nature” (evolutionary pressure) is the principal and “Human” is the agent. 
They both have common utility function u(a,u) representing the survival prob
ability of the individual/population, but natural selection is indifferent towards 
the human's cognitive costs c($, d) involved in the decision-making process. In 
this setting, natural selection would lead humans to develop probabilistic misper
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ceptions according to (1.12), since these maximize the survival probability.16 

In the next section, we generalize the binary model, assuming more available 
alternatives, while keeping the structure of the payoffs the same.

16 Steiner and Stewart [2016] suggest an alternative explanation of probabilistic mispercep
tions using a similar nature-as-a-principal approach, but a different source of conflict between 
Nature and Human.

1.4 General Case

In this section, we extend the analysis to a general problem of finding the best 
alternative, allowing for N > 2 actions and states. We show that the principal's 
optimal delegation strategy is qualitatively the same as in the binary case, i.e., 
it is optimal to hire a “more uncertain” agent who investigates more actions in 
search of the best one than a fully aligned agent. Further, we characterize the 
whole set of decision rules that can be achieved by selecting the agent's prior 
belief and show that it coincides with what can be achieved by selecting action
contingent subsidies for the agent.

We are now looking at the model with A = {a1; ...,aN} and Q = {w1, ...,wN} 
for some N, and the preferences are given by u(ai,wi) = 1 and u(ai,Wj) = 0 
if i = j. Without loss of generality, we assume that the principal's belief ip is 
such that ip(w1) > ip(w2) > ... > iP(wN) (otherwise states and actions can 
be relabeled as necessary). As before, results from Section 1.2.6 apply, meaning 
that the agent's problem is equivalent to choosing the action distribution n : 
Q ^(A) to maximize (1.4), and the principal selects an agent according to 
his prior i G M to maximize (1.6). We do not restrict the choice of agents and 
let M = A(Q) (i.e., for any probability distribution i G ^(Q), the principal can 
find and hire an agent with prior belief i).

1.4.1 Agent's Problem

Proceeding by backward induction, we start by looking at the problem of an 
agent with some prior belief p,. Invoking Theorem 1 from Matějka and McKay 
[2015], as we did in the binary case, we obtain that the agent's optimal decision 
rule satisfies: 

n(ail^j ) =

u(ai m; )

3 (ai)e A

N 
k=1 3(ak)e

u(ak,œj)
A

(1.13)1

where /3 (ai), defined in (1.5), is the unconditional choice probability according to 
the agent's prior belief i, and itself depends on {n(ai|wj-)}jN=1. While (1.13) does 
not provide a closed-form solution for the decision rule n(a,i\wj), it implies that the 
conditional choice probabilities n are uniquely determined given the unconditional 
choice probabilities /3, and this mapping depends solely on the agent's payoffs and 
not on his prior belief. In what follows, we use the implication that a collection 
of the unconditional choice probabilities /3 pins down the whole decision rule n 
and use /3 to summarize the agent's chosen decision rule.

The above is not to say that closed-form expressions cannot be obtained. 
Caplin et al. [2019] show (see their Theorem 1) that an agent with a prior belief i
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optimally chooses a decision rule that generates unconditional choice probabilities

ß (aß = max
(K (ß) + Ö)ß(Uj)

£ pß^j)
\ j£C(ß)

(1.14)
1
1

where 6 = ex — 1; C(fi) = {i e {1,..., N} : fi(ai) > 0} denotes the consideration 
set, i.e., the set of actions that are chosen with strictly positive probabilities, and 
K(fi) = |C(fi)| denotes the power (number of actions in) this set.

1.4.2 Principal's Relaxed Problem

As mentioned previously, (1.13) implies that a collection of the unconditional 
choice probabilities fi pins down the whole decision rule n. Let us then consider a 
relaxed problem for the principal, in which instead of choosing the agent's prior 
1, she is free to select the unconditional choice probabilities fi e ^(A) directly:

max
N

pp (uj)
j=1

ß(ai)e( 1
uakju(ai,^j) I ?(£ N

i=1 kN=1 ß(ak)e
(1.15)

In the above, we used (1.13) to represent the conditional probabilities n(a,i\wj) in 
(1.6) in terms of the unconditional probabilities fi(ai). In Section 1.4.3 we show 
that the solution to this relaxed problem is implementable in the full problem 
- i.e., that there exists an agent's belief 1 that generates the principal-optimal 
choice probabilities fi.

Note that fi(ai) in the above represents the probability with which an agent 
expects to select action ai. The principal's expected probability of ai being se
lected, Yn=1 1P(uj)n(ai|wj), would generically be different, since her prior belief 
1p is different. Despite the potential confusion this enables, analyzing the princi
pal's problem through the prism of choosing fi is the most convenient approach 
due to the RI-logit structure of the solution to the agent's problem.

Given the state-matching preferences u(aj,oj) = 1, u(ai,Uj) = 0 if i = j, we 
can simplify (1.15) to

max
P

N

pp (uj)
j=1

ß(aj)e*

1 + 5ß(aj)
(1.16)

We can now state the solution to the principal's problem as follows.

Lemma 1. The solution to the principal's relaxed problem (1.16) is given by 

ß *(ai) = max

/

\

(K (ß*) +

S pp^j)) v

where 5 = e * — 1.

Lemma 1 describes the solution in terms of the action choice probabilities, 
which do not necessarily give the reader a good idea of its features and the 
intuition behind this solution. We explore these in more detail in Section 1.4.4. 
Before that, however, we need to ensure that this solution is attainable in the 
principal's full problem, which is done in the following section.
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1.4.3 Principal's Full Problem

The question this section explores is: can the principal generate choice proba
bilities f* by appropriately choosing the agent's prior belief p? In the binary 
case, the answer was trivially “yes”: due to continuity of the agent's strategy, 
by varying the agent's belief j(r) between 0 and 1, the principal could induce 
any unconditional probability f(R). In the multidimensional case, this is not 
immediate. However, the following result shows that the result still holds with 
N actions and states under state-matching preferences.

Lemma 2. In the principal's full problem (1.6), any vector fl G ^(A) of uncondi
tional choice probabilities is implementable: there exists a prior belief j G A(Q) 
■such that f (af) = Yj=1 p(wj)nf (afwj), where nf solves the agent’s problem (1.4) 
given j.

The lemma states that if M = ^(Q), then the principal can generate any 
vector of unconditional action probabilities. Note that this does not imply that 
she is able to select any decision rule n(aj|wj) - if this were the case, under the 
state-matching preferences she would simply choose to have n(ai|wi) = 1 for all i. 
However, Lemma 2 does imply that the choice probabilities described in Lemma 1 
- those that solve the principal's relaxed problem, - are implementable and thus 
also solve her full problem. The result does, however, rely on the state-matching 
preferences: we show in Section 1.5.1 that it does not hold for arbitrary payoff 
functions.

1.4.4 Properties of the Optimal Delegation Strategy

While Lemma 1 presents the solution of the principal's problem in terms of the 
unconditional choice probabilities, this representation is not the most visual. We 
now demonstrate some implications of this solution in terms of other variables. 
Namely, Theorem 1.4.4 extends Proposition 1.3 and shows how the chosen agent's 
prior belief relates to that of the principal. Proposition 1.4.4 then compares 
actions taken under optimal delegation vs aligned delegation.

We begin by looking at the optimal agent choice in terms of the agent's belief 
*p .

The principal's equilibrium delegation strategy p* is such that for all i,j G 
{1, ..., N }:

p’(vi) pp^d
p-(p,) _ . ) '

In particular, p*(w1) > ... > p*(wN). Further, p*(w1) < pp(w1) and p*(wN) > 
Ji-.Wv), with equalities if and only if pp(w1) = ... = pp(wj).

The intuition behind the result above is the same as that behind Proposition 
1.3: the optimally chosen agent is more uncertain than the principal between any 
given pair of states. To see this, note that if pp(wi) > pp(wj) then 1 < <

- i.e., the agent believes state wi is ex ante more likely than wj, as the 
principal does, but he assigns relatively less weight to w. This applies to any 
pair of states. Thus, the implication is that the optimal agent must assign a lower 
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ex ante probability to u1, the most likely state according to the principal, than she 
does, and vice versa for uN. Note further that the result in Theorem 1.4.4 is again 
independent of A, implying that the optimal delegation strategy is determined by 
the relative trade-off between the quantity of information acquired and the tilt 
introduced in actions by the misalignment in beliefs, but the absolute quantity 
of information acquired is irrelevant. In particular, hiring an agent with p* is 
optimal even when he acquires no information, and another agent p is available, 
who would be willing to invest effort in learning u (since such a p-agent would 
be too misaligned relative to the principal).

We now switch to comparing the choices made under optimal delegation to 
those that would arise under aligned delegation - i.e., if the principal selected 
an agent with p = pp. Let /3 denote the choice probabilities that would be gener
ated under aligned delegation. Caplin et al. [2019] show that these probabilities 
/3, as a function of the agent's prior p, are given by (see their Theorem 1)

ß(ai) = max
1
Ô

(K (/3) + ô p.-A 
E p(^j)

\ j&W)

(1.17)

Since pp(u1) > ... > pp(uN), the consideration set in the aligned problem is then 
simply C(/?) = }, and its size K = K(/?) is the unique solution of

1
K + ôpp '■■■ ) >

K
^^pp(^j) > pp(^K+1).
j=1

(1.18)

In turn, we can see from Lemma 1 that under optimal delegation, size K* = K(ß*) 
of the consideration set under optimal choice is

1
(1.19)

These two conditions allow us to compare K* and K directly, which is done by 
the following proposition.

Optimal delegation weakly expands the consideration set relative to aligned 
delegation:

K (P *) > K (P).

In other words, delegating to an optimally misaligned agent leads to a wider 
variety of actions played in equilibrium. This is a direct consequence of delegation 
to a more uncertain agent - since he is less sure than the principal of what 
the optimal action is ex ante, he considers more actions worth investigating. 
Every action has some positive probability of actually being optimal, and thus a 
more uncertain agent plays a wider range of different actions ex post. We could 
already see this effect at play in the binary case, where if pp is extreme, then an 
aligned agent takes the ex ante optimal action without acquiring any additional 
information, whereas the optimally chosen agent could investigate both actions.
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1.5 Misaligned Beliefs Versus Other Instruments

The preceding analysis set the foundation for using misalignment in beliefs as an 
instrument in delegation. This section studies how this instrument compares to 
the other instruments, such as contracting or restricting the delegation set. We 
keep the overall structure of the problem the same as in Sections 1.3 and 1.4, 
but modify the problem to allow for different tools at the principal's disposal, 
and compare the outcomes in these modified problems to those in the baseline 
problem of choosing an agent with the optimal beliefs.

1.5.1 Contracting on Actions/Misaligned Preferences

The most basic delegation tool is contracting: if the principal could offer the 
agent a contract that specifies contingent payments, this would be the most direct 
way to provide incentives (see Laffont and Martimort [2009] for many examples). 
We begin by looking at aciwn-contingent contracts t : A ' R, which allow 
the principal to incentivize the agent by offering payments that depend on the 
action that the agent selects. This assumes that actions are contractible (i.e., 
observable and verifiable) and the principal has the institutional power to make 
such contracts - either of which may or may not hold in any given setting. We 
assume that all agents and the principal have a common prior belief pP, all players' 
preferences are quasilinear in payments, and the principal's marginal utility of 
money is p, and the agent's marginal utility of money is 1.17

17 In line with the baseline problem, we do not impose any explicit participation constraints 
on the agent that would impose a lower bound on the transfers. The implicit assumption here 
is that the agent is being paid some non-negotiable unconditional salary if he is hired, which 
is sufficient to ensure participation. Payments {t(«¿)} should then be treated as premia, with 
the limited liability assumption implying they must be non-negative.

Note that instead of contracting, we can interpret this setup as a problem of 
selecting an agent with misaligned preferences by setting p = 0. Schedule t then 
represents not payments, but rather an agent's “biases”, i.e., inherent preferences 
towards certain actions on top of the “unbiased” utility u(a, w). Such a problem of 
selecting an agent with optimally misaligned preferences is a natural counterpart 
to our baseline problem of selecting an agent with optimally misaligned beliefs.

The agent's problem (again using the equivalence presented in 1.2.6) is then 
given by

given t, and the principal's contracting problem is

{
N N

E pP (wj ) > n(ai\wj )( u(ai,wj ) pT (ai

j=1 i=1

s.t. n solves (1.20) given t.

(1.21)

Instead of providing a closed-form solution to this problem, we appeal to 
Lemma 2 to argue that regardless of p, the principal cannot obtain higher ex
pected utility than in the baseline problem of choosing an agent with a misaligned 
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belief p. In particular, Lemma 2 implies that any unconditional choice proba
bilities /3 G ^(A) generated by an agent, who is incentivized by payments or 
misaligned preferences, can also be obtained by selecting an agent with appro
priately misaligned beliefs. Moreover, by using Proposition 3 of Matveenko and 
Mikhalishchev [2021] we can also show the converse - that any decision rule 
achievable with misaligned beliefs can be replicated with payments t (or by set
ting the quotas, i.e., imposing specific unconditional choice probabilities for a 
different action). These results are formalized by the following theorem.18

18 The result regarding quotas is not included in the theorem, yet it follows immediately from 
Lemma 1 of Matveenko and Mikhalishchev [2021].

The principal's problem of contracting on actions (1.21) is equivalent to her 
full (delegation) problem (1.6):

1. For any vector t : A ' R of payments/biases and a corresponding /3 : Q 
A(A) that solves (1.20) given t, there exists a prior belief p G A(Q) such 
that /3 also solves (1.4) given p.

2. For any p G A(Q) and the corresponding /3 : Q ^(A) that solves (1.4)
given p, there exist payments t : A ' R such that /3 also solves (1.20) 
given t.

The theorem above directly implies that neither of the two instruments (con
tracting on actions or searching for an agent with stronger/weaker preferences 
for specific actions) can yield strictly better results than hiring an agent with an 
optimally misaligned belief. Further, if the principal's contract choice is subject 
to the limited liability constraint (t(a») > 0 for all i), then it is immediate that 
contracting on actions is strictly worse, since it cannot yield a better decision 
rule, but requires payments from the principal - payments which are avoidable if 
she instead hires an agent who is intrinsically motivated by his beliefs over states 
or preferences towards specific actions.

Further, our Lemma 2 and the results of Matveenko and Mikhalishchev [2021] 
also imply that no combination of misaligned beliefs, misaligned preferences, and 
payments for actions can perform better than any individual instrument. More
over, they also imply that suboptimal misalignment along any single dimension 
can be amended using other instruments. That is, if a given agent holds a non
optimal prior belief (that does not coincide with the principal's either), the op
timal behavior might be induced via action-contingent transfers. Conversely, if 
an agent has biased preference towards certain actions, this misalignment can 
be compensated for by selecting an agent with an approprite prior belief. The 
following proposition presents one example of such equivalence, in the context of 
a model with N = 2.

Consider the binary setting of Section 1.3. Consider the principal's problem 
of contracting on actions (1.21), where p = 0 and the agent holds prior belief 
p = pp. Then:

1. for any p, there exist payments/biases {t (L), t (R)} that implement the 
optimal conditional choice probabilities from Section 1.3;
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2. these payments/biases are such that19

19 The closed-form expressions are available in the proof in the Appendix.
20 This is broadly related to the findings of Espitia [2023], who shows that the bias in the 

agent's preferences can be counteracted by the bias in beliefs (although, the belief biases in his 
paper are limited to over- and underconfidence).

21 If the principal could contract on both actions and outcomes, she would have the freedom 
to select any payment schedule {t(ai, Wj)}. Lindbeck and Weibull [2020] study such a problem 
with N states and two actions.

22While it is more common in the literature to consider an agent who yields no intrinsic utility 
from actions and is motivated exclusively via payments, for sake of consistency, we maintain 
the assumption that the agent enjoys the same intrinsic utility u(a, W) as the principal, albeit 
possibly to a different magnitude.

t*(R) > t*(L) d < d = . -—=
-y/dp + V 1 dp

It is easy to see the intuition behind the proposition: if the agent's prior belief 
d assigns lower probability to state u = r compared to the principal-optimal 
prior d given in Proposition 1.3, such an agent is ex ante too biased towards 
action a = L for the principal's taste, even though he potentially acquires more 
information than an agent with belief d . Therefore, the principal can nudge the 
agent towards action a = R by offering higher payment if he selects R (or find 
an agent whose preference bias towards R offsets his belief bias towards state 
l).20 This discussion also emphasizes that what matters for our results is not 
the agent's uncertainty about the state per se, but the agent's uncertainty about 
what the optimal action is. E.g., an agent who assigns very high probability to 
state u = l can be optimal for the principal, as long as the agent's preferences are 
sufficiently biased in favor of action a = R - so the agent is actually uncertain 
about which action to take and chooses to acquire additional information to break 
the indifference.

1.5.2 Contracting on Outcomes

We now turn to exploring outcome-contingent contracts. An outcome in our 
model can be measured by whether a correct action was chosen (a = aj when 
u = U3) or not. We thus let the principal select payments t,t that the agent 
receives, so that t(ai,ui) = t and t(a^Uj) = t if i = j.21 We assume limited 
liability (t,t > 0), quasilinearity of preferences in payments for all agents, and 
let the agent's marginal utility of money to be 1, and the principal's marginal 
utility of money to be p.

The agent's problem is then choosing n : Q ^(A) that solves22

{
NN 1
E d(uj ) E n(ai\U3 ){u(ai,u3 ) + T (ai,Uj )) - c(^,d) f (1.22) 
j=1 i=1
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max
T,T I

given t, and the principal's contracting problem is

NN 1
PpRj ) n(aiRj )(u(ai,Uj ) — pT (ai,^j )) > , (1.23)

j=1 i=1

s.t. t(ai,ui) = T for all i, 
t(a,i,Wj) = t for all i,j = i, 
n solves (1.22) given t,t.

It is trivially optimal for the principal to set t = 0, since her objective is to 
provide incentives for the agent to match the state. Then the agent's (ex post) 
payoff net of information cost becomes u(ai,Uj) + t(ai,Uj) = (1 + T)u(ai,Uj), and 
the principal's payoff is u(ai,Uj) — t (apWj) = (1 — pT)u(ai ). In other words, by 
increasing the incentive payment tt, the principal effectively lowers the relative 
cost of information for the agent, at the cost of decreasing her own payoff. It 
then appears like an instrument that could be universally useful for the principal 
- even when she chooses an agent with the optimal prior belief, she could still 
benefit from reducing the agent's information cost, which would result in him 
acquiring more information. The following proposition shows, however, that this 
is not the case: while contracting on outcomes may be a useful instrument, it 
cannot improve on delegating to the optimally misaligned agent when payments 
are costly to the principal.

Consider the principal's contracting problem (1.23) in the binary setting of 
Section 1.3 and suppose pp > 1/2. Then for any p > min|1, J;,J there exist 
TL,Tr and pL,pR such that:

1. pL < TL < P* < Pp < Tr < Pr, where p* is given by (1.12);

2. the principal's problem (1.23) is solved by T > 0 if p E (pL,pL) U (TR,pR);

3. the principal's problem (1.23) is solved by tT = 0 otherwise.

The proposition states that the principal uses the incentive payments, tT > 0, 
when she has an intermediate degree of misalignment in opinions with the agent. 
This may happen if the agent is moderately more biased than the principal, 
p > pp, and acquires too little information for the principal's taste (which is the 
case when pp < TR < P < Pr) An additional reward for matching the state then 
incentivizes the agent to acquire more information and improves the principal's 
payoff, despite her giving a part of it to the agent. If the agent is too biased, 
however (p > pR), then the incentives become too costly for the principal to 
provide, and she chooses tT = 0. The logic is analogous if the agent is sufficiently 
biased in the opposite direction (p 0.5). Finally, if the agent is sufficiently
aligned with the principal, p E [TL,TR], then providing bonus payments does 
not provide enough of an additional incentive to the agent to justify the cost for 
the principal. This latter case includes both the aligned agent (p = pp) and the 
optimally biased agent (p = p*(pp)). Therefore, the principal's ability to offer 
incentive payments is not beneficial to her when she has access to a broadly- 
aligned agent.
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1.5.3 Restricting the Delegation Set

Another instrument commonly explored in the delegation literature is restricting 
the delegation set - i.e., the set of actions that the agent may take [see, e.g., 
Holmstrom, 1980]. In particular, in the context of “delegated expertise” problems, 
Szalay [2005] and Ball and Gao [2021] show that it may be optimal to rule out 
an ex ante optimal action in order to force the agent to exert effort and learn 
which of the ex post optimal (but ex ante risky) actions is best. Lipnowski et al. 
[2020] show a similar result in a Bayesian Persuasion setting in which the receiver 
is rationally inattentive to the sender's message.

In our setting, however, there are no “safe” actions that the principal could 
rule out, as Propostion 1.4.4 suggests. Assuming that the principal and the 
agent hold the same prior belief p,p, and ^p(w1) > ... > ^P(^N), action a1 is the 
“safest” in the sense of being the most likely ex ante to be optimal. However, 
it would be trivially suboptimal for the principal to ban ai - since, indeed, this 
is the action that is ex ante most likely to be ex post optimal! In other words, 
while excluding ai from the delegation set would lead the agent to acquire more 
information, it would also lead to larger ex post losses due to the agent being 
unable to select action ai in cases in which it is optimal to do so. Thus while 
the general idea of the principal being willing to nudge the agent to acquire 
more information/information about ex ante suboptimal actions holds true in 
our setting, restricting the delegation set is not an instrument that lends any 
value to the principal.

Proposition 1.5.3 below summarizes this logic. Consider the agent's problem 
as given by

max
n {

NN 1
y ^P(^j ) y n(ail^j ')u(ai,^j ) C(^,^p} Z,

j=i i=i

(1.24)

given A* C A (and the maximization is w.r.t. a mapping n : Q A(A*)), and
the principal's restriction problem

max
A* {

NN 1
^P (^j ) n(a,Aj )u(ai,^j ) Z

j=i i=i

? (1.25)

s.t. n : Q A(A*) solves (1.24) given A*.

Then we can state the result as follows.
The unrestricted delegation set A* = A is always a solution to the principal's 

restriction problem (1.25).

1.6 Extensions

1.6.1 Alternative Preference Specifications

The analysis in Sections 1.4 and 1.5.1 is heavily reliant on state-matching pref
erences that we assume are shared by both the principal and the agent(s). It is 
reasonable to ask whether our conclusions hold under other preference specifica
tions. Since the utility function u(a,u) is shared by both the principal and the 
agent, it is reasonable to generalize one at a time.
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We begin by generalizing the principal's utility function up(a,a>) while main
taining the agent's intrinsic preference for matching the state: uA(ai,ui) = 1, 
uA(ai,Uj) = 0 if i = j. Naturally, the specific functional forms of the optimal del
egation strategies (such as those presented in Proposition 1.3, Theorem 1.4.4, and 
Lemma 1) depend on the specific form of the principal's utility function. However, 
Lemma 2 only depends on the agent's utility function, meaning that Theorem
1.5.1 still holds: any outcome that can be achieved by contracting on actions 
or hiring an agent with misaligned intrinsic preferences, can also be achieved by 
hiring an agent with misaligned beliefs (and vice versa). Meaning that regardless 
of the principal's objective function, hiring an agent with state-matching prefer
ences and a suitable belief is as good as hiring an agent with aligned prior belief, 
state-matching preferences, and either some additional preference over actions, 
or action-contingent payments on top of that.

The above does, however, hinge on the agent having state-matching prefer
ences as a baseline. If we allow arbitrary preferences for the agent - even if they 
align with the principal's preferences net of the information cost - the equiva
lence stated in Theorem 1.5.1 breaks down. In such a general case, finding an 
agent with optimally misaligned preferences may yield strictly better results for 
the principal than hiring an agent with an optimally misaligned belief, and hence 
contracting on actions may, in principle, yield better results too. This is due to 
the equivalence presented in Section 1.4.2 breaking down with general preferences, 
as stated by the following proposition.

There exists a utility function u(a,u) such that the solution to the princi
pal's relaxed problem (1.16) cannot be attained as a solution to the full problem 
(1.6). There exists a non-state-matching utility function u(a,u) such that the 
conclusions of Theorem 1.5.1 do not hold.

The proposition above states that with general preferences, the principal is 
no longer able to implement any vector of unconditional choice probabilities 0 
via an appropriate choice of the agent's prior p - which is still possible through 
the choice of action-contingent contracts as in Section 1.5.1 (see Proposition 3 in 
Matveenko and Mikhalishchev, 2021).

1.6.2 Alternative cost functions

Our analysis uses the Shannon entropy cost function (1.1) to model the agent's 
cost of acquiring information. It has an undesirable property, that the cost of a 
given signal structure/Blackwell experiment depends on the agent's prior belief 
[see Mensch, 2018]. To demonstrate that our main result does not hinge on this 
or any other specific properties of the entropy cost parametrization, this section 
explores three alternative specifications of the cost function in the binary setting 
of Section 1.3. We show that, in all cases, the principal's optimal delegation 
strategy looks similar to what we obtain in Proposition 1.3: unless pp is too 
extreme, it is optimal for the principal to delegate to an ex ante more unbiased 
agent: p*(pp) E [0.5, Pp).

As noted, in the binary setting of Section 1.3, we assumed Q = {l, r}, A = 
{L, R}, andthe common utility function net of information costs given by u(L|l) = 
u(R|r) = 1 and u(L|r) = u(R|l) = 0. In all settings below, we look for an equi
librium as defined in Section 1.2.5, with the c($,p) in the agent's problem (1.4)
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principal's prior principal's prior

Figure 1.5: The optimal delegation strategy j*(jp) with channel capacity cost 
function.

replaced by one of the respective cost functions defined below.

Channel capacity cost function. The first cost function we consider is the 
channel capacity cost proposed by Woodford [2012]. We follow the analysis by Ni- 
mark and Sundaresan [2019], hereinafter referred to as NS. The channel capacity 
cost of a given signal structure : Q A(S) is given by

cc(^ = max c^.j}.
^G^(Q)

where c($,j) is the entropy cost (1.1). Intuitively, the channel capacity measures 
the maximum amount of information that can be extracted from signal 0 by any 
agent. By definition, the cost cc(^) of a given signal structure does not depend 
on the selected agent's prior j , unlike the Shannon entropy cost function.

NS show that the argument from Section 1.2.6 continues to hold with the 
channel capacity cost: the agent optimally selects a “recommender” signal struc
ture, where each signal realization is associated with a unique action. Thus we 
can reduce the agent's problem to that of choosing a decision rule n : Q A(A) 
which solves

ma^|jn(Rlr) + (1 — j)n(Lll) — cc(n, j)}, (1.26)

where cc(n,j) denotes the information cost induced by n (which, in this formu
lation, does depend on j).

NS show that the agent's problem (1.26) is well-defined and a solution always 
exists. It shares the same broad features as the solution with entropy costs: an 
agent with j > 0.5 chooses an experiment such that n(R|r) > n(L|l) and vice 
versa. More broadly, n(R|r) is continuous and increasing in j, while the opposite 
is true for n(L|l); a more uncertain agent also acquires more information in total.

The continuity of n w.r.t. j implies that the principal's problem (1.11) always 
has a solution. The fact that the agent's behavior is qualitatively the same as 
a function of j as it was with entropy costs implies that the principal's trade
off also remains fundamentally the same: more information vs less tilt. While 
the principal's problem proved to be analytically intractable, Figure 1.5 presents 
numerical solutions for two values of A and all jp.

Both plots in Figure 1.5 demonstrate a delegation strategy that is qualitatively 
the same as in Figure 1.3, which plotted the same strategy for entropy costs: if 
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the principal's belief pp is not too extreme, she chooses an agent with belief 
p between pp and 0.5. For extreme pp, same as before, she selects (an agent 
who acquires no information and chooses) the ex ante optimal action. However, 
Figure 1.5 also highlights a difference relative to the Shannon model, in that the 
principal's solution now depends on the cost parameter A: higher A leads to less 
delegation under channel capacity costs. This suggests that the independence of 
the principal's strategy from A is a special feature of the Shannon model.

Log-likelihood ratio cost function. We now move on to consider the log
likelihood ratio (LLR) cost function proposed by Pomatto, Strack, and Tamuz 
[2023], hereinafter referred to as PTS. PTS derive the LLR cost function axiomat- 
ically as the cost of acquiring information (as opposed to the entropy cost being 
that of processing information, according to their argument) from a set of intuitive 
cost linearity axioms. The LLR cost of a given signal structure $ : Q A(S) is 
defined as 

cl(^) = y? ^ij
’i,’j g^

>4
\"-s-j )J

d^(sl^i), 

where Aj are the parameters encoding the “closeness” of states ui and Uj (how 
difficult it is to distinguish them). In our binary setting, we assume ALR = ARL = 
A. As in the case of channel capacity costs, PTS' main representation theorem 
shows that the LLR cost of a given experiment $ does not depend on the prior 
belief p.

In the binary setting, the agent optimally chooses no more than two signal 
realizations, because LLR cost is monotone with respect to the Blackwell order. 
Therefore, we can again invoke the logic of Section 1.2.6 and reduce the agent's 
problem to that of choosing a decision rule n : Q A(A) subject to cost cL(n)23

23PTS provide a representation for cL(n) not presented here.

PTS explore a binary problem in their Sections 6.1 and 6.6 but only demon
strate an analytical solution to the agent's problem for the case p = 0.5. We 
have found the agent's problem to be analytically intractable for p = 0.5, and 
therefore solve both the agent's and the principal's problems numerically. Fig
ure 1.6 demonstrates our findings. The principal's optimal delegation strategy 
plotted therein looks qualitatively the same as for entropy and channel capacity 
costs (Figures 1.3 and 1.5, respectively): if the principal's belief pp is not too ex
treme, the principal chooses an agent with belief p between pp and 0.5. Further, 
similarly to the setting with channel capacity costs in Figure 1.5, the principal 
delegates less for higher values of the information cost parameter A.

Symmetric cost functions. Finally, we explore a family of simple “symmet
ric” cost functions, which restrict the agent to symmetric signals. This analysis 
highlights the importance of flexibility in the agent's learning technology for the 
trade-off we identify. In particular, suppose that, instead of being able to choose 
an arbitrary signal structure $ : Q A(S), the agent is restricted to a binary 
signal space S = {l,r} and can only choose the signal precision that we denote, 
abusing notation, by $ = ^(r|r) = ^(l|l) E [1/2,1]. The cost of information is 
then given by some function cS(^>) that is strictly increasing, convex, differentiable
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principal's prior

Figure 1.6: The optimal delegation strategy p*(pp) with LLR cost function.
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in $ E [1/2,1], and satisfies cS(1/2) = 0 and the Inada conditions c'S(1/2) = 0, 
lrn cS (^) = x.

Let denote the precision optimally chosen by an agent with prior belief p. 
The agent only acquires information (^>* > 1/2) if he intends to follow the signal 
(a(r) = R and a(l) = L), because this trivially dominates doing the converse, 
and conditional on ignoring the signal, acquiring an uninformative signal =1/2 
is strictly cheaper. Hence if > 1/2, then

fa = argmax {vfi + (1 - v)fi - Cs(fi)} . 
<P

(1.27)

Let (/>** denote the candidate solution given by the FOC of (1.27): c/S(/)**) = 1. 
Note that $** does not depend on the agent's belief p. The agent's expected 
utility from acquiring no information (^ = 1/2) and taking the ex ante optimal 
action is given by max{p, 1 — p}. The expected utility from choosing $ = $** is 
given by </>** — cS(^**) E [1/2,1].24 Then denoting the agents who are indifferent 
between the two options by JR = — cS(^**) and JL = 1 — (^** — cSwe 
can describe the agent's optimal choice of precision by

24Function — cS(^) is strictly concave in due to the assumptions made, evaluates to 1/2 
when ft = 1/2 (hence ft** — cS(F*) > 1/2), and because cS(^>) > 0, we have that ft — cS(^) < 1 
for all < 1.

F
1/2=

if V E [pL,pR] , 

otherwise.

Moving on to the principal's problem (and maintaining the assumption that 
pp > 1/2), the principal's payoff is given by if = 'E', by pp if = 1/2 
and p > 1/2, and by 1 — pp if = 1/2 and p < 1/2. Therefore, the principal's 
preferred agent is

v*(Vp) =
V E [p L, R]
V E (pR , 1]

if Vp < $**, 
if Vp > </>**■

(1.28)

Notably, if pp E (Jr,$**), then the principal strictly prefers a misaligned agent, 
whose prior belief is more uncertain than the principal's. Further, there exists a 
selection from (1.28) that supports the following proposition (which is proved by 
the preceding argument): Given a symmetric information cost function cS(^), 
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there exists an equilibrium in which the principal always delegates to a more 
uncertain agent: for any pp > 1/2, p (pp) G [1/2, pp). It is evident, however, 
that the statement of Proposition 1.6.2 is quite weak. Symmetric information cost 
leads to the principal actually being indifferent between all agents p G [pL,pR], 
as well as between all agents p G (pR, 1], because, within these intervals, p affects 
neither the tilt in the agent's decisions, nor the amount of information acquired. 
Consequently, if pp G (pr,&**), then hiring an aligned agent or, possibly, even 
a more certain agent, is equally as optimal for the principal as hiring a more 
uncertain agent. Conversely, if the principal strictly prefers to hire a learning 
agent, then she might as well hire an agent with p = 1/2, whose decisions will 
not be any more tilted than those of an agent with p = pR.

It is straightforward that the result above continues to hold for any weakly 
increasing cS (^), whereas all the other assumptions on cS (^) are not strictly 
necessary and were adopted to simplify the argument. For example, we could 
also consider a “Pandora's box” cost function, under which the agent can either 
learn the state perfectly at a cost, or learn nothing. This can be captured as 
cS(^) = A • > 1/2}, where !{•} is the indicator function. Under such a cost
function, the agent would learn the state perfectly if he is sufficiently uncertain, 
and stick to his prior belief otherwise; and it is thus always weakly optimal for the 
principal to choose the most uncertain agent: p (pp) = 1/2. Another learning 
technology that is also symmetric across states and signals, but does not fall 
under the parametrization above, is the one used by Szalay [2005] and Ball and 
Gao [2021]. In their respective models, the agent selects an effort e G [0,1] subject 
to cost cF (e), which allows him to perfectly learn the state with probability e, 
and with the complementary probability 1 - e the agent observes no signal. It 
is easy to see that under this technology, the learning effort e* is higher when 
p is closer to 1/2 (more uncertain agents learn more). However, same as with 
symmetric cost functions, there is no disadvantage to hiring a misaligned agent 
- the principal would strictly prefer to hire the most uncertain agent, p = 1/2.

The goal of this exercise is to demonstrate that, to fully capture the trade-off 
that the principal faces - that between the quantity of information acquired by 
a misaligned agent and the decision tilt that such a misalignment introduces, - 
a flexible learning technology is necessary. Inflexible technologies, such as those 
described by the symmetric cost functions, lack the detail to fully capture the 
trade-off that the principal faces. At the same time, the robustness checks pre
sented above that use the channel capacity and the log-likelihood ratio cost func
tions demonstrate that our results are not specific to the entropy cost - that it 
is indeed the flexibility of the agent's learning technology and not the specific 
features of the cost function that drive our results.

1.6.3 Communication

In this section, we consider the importance of decision rights in our model with 
misaligned beliefs. In particular, we juxtapose the delegation scheme explored so 
far, under which the agent has the power to make the final decision, to commu
nication, where an agent must instead communicate his findings to the princi
pal, who then chooses the action. A large literature in organizational economics 
is devoted to comparing delegation and communication in various settings (see 
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Dessein, 2002, Alonso, Dessein, and Matouschek, 2008, Rantakari, 2008 for some 
examples). We show that in our setting, communication performs as well as 
delegation - i.e., the principal will always find it optimal to follow the agent's 
recommendation.

Although the principal and the agent have the same preferences, it is generally 
unclear whether it is optimal for the principal to follow a recommendation of an 
agent due to the misalignment in their beliefs. Namely, since the principal and 
the agent start from different prior beliefs, the same is true for posteriors: if the 
principal could observe the information that the agent obtained, her posterior 
belief would be different from that of the agent. This implies that ex interim, the 
principal could prefer an action different from the agent's choice, and could benefit 
from overruling the agent's decision if she had the power to do so. However, this 
would mean that the agent's incentives to acquire information are different from 
the baseline model, and the principal could have some influence over the agent's 
learning strategy via her final choice rule.25 We show below that, in the end, none 
of these effects come into play, and there exists a communication equilibrium that 
replicates the delegation equilibrium.

25 Argenziano, Severinov, and Squintani [2016] provide one example of how the principal can 
manipulate the agent's information acquisition incentives under cheap talk communication.

26 Given that message labels are arbitrary, we focus w.l.o.g. on “direct” equilibria, in which the 
agent's message corresponds to an action recommendation. Further, for simplicity we assume 
that the principal only observes the recommendation made by the agent, and not the signal he 
received or the signal structure he requested.

The setup follows the baseline model from Section 1.2 with state-matching 
preferences, with the exception that the final stage (“agent selecting action a E 
A”) is replaced by two. First, after observing signal s E S generated by his signal 
structure ^, the agent selects a recommendation (message) a E A to the principal. 
After that, the principal observes the recommendation a, uses it to update her 
belief nP(w\a) about the state of the world, and then selects an action a E A that 
determines both parties' payoffs.26 The equilibrium of the communication game 
is then defined as follows. [Communication Equilibrium] An equilibrium of the 
cheap talk game is characterized by (p*, a*}>. M, a,/ip), which consists of
the following:

1. the principal's posterior beliefs ¡ip : A ' ^(Q) that are consistent with 
(<^,0*) (i.e., satisfy Bayes' rule on the equilibrium path);

2. the principal's choice rule a* : A > A, which solves the following for every 
a E A, given the posterior ¡ip:

max ^7 l^P(w\a)u(a(a), wp ;lw£Q I
3. a collection of the agents' information acquisition strategies : Q A(S)

and communication strategies a * : S A that solve the following given a 
for every p E M:

max n pH n 'Es ,^.s ,^: - c(&p)
uEQ sGS

?
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4. the principal's choice p* G M of the agent to whom the task is delegated, 
which solves the following given (rf*Ji,a^l), a*, and pp:

max pp(w) E ^(S|W)u(a(â(S)),W)l.
sES J

We can then state the result as follows.
There exists a communication equilibrium (p*, {rf^,a*}eM, a*, pp) that is 

outcome-equivalent to the equilibrium (p*, {^*l,a*i}mgm) of the original game, in 
the sense that p* and coincide across the two equilibria, a*. _ a**, and a* is 
the identity mapping.

The result is, perhaps, unsuprising, since Holmstrom [1980] showed that com
munication is equivalent to restricting the agent's action set, and this latter in
strument was shown in Section 1.5.3 to be irrelevant in our setting, as long as 
the principal can select an agent with the prior belief she prefers. The result in 
Proposition 1.6.3, however, is subject to a few caveats. First, cheap talk models 
are plagued by equilibrium multiplicity: for any informative equilibrium, there 
exist equilibria with less informative communication, up to completely uninfor
mative (babbling) equilibria. In our setting, this means that, in addition to 
the equilibrium outlined in Proposition 1.6.3 above, there also exists a babbling 
equilibrium in which the agent acquires no information and makes a random rec
ommendation, and the principal always ignores it and selects the ex ante optimal 
action. 27 There would also likely exist multiple equilibria of intermediate infor
mativeness - e.g., equilibria with a limited vocabulary, where only some actions 
A C A are recommended on the equilibrium path. In practice, this means that, 
under communication, there is a risk of miscoordination on uninformative equi
libria, whereas under delegation the equilibrium is unique. The same force may 
also work the other way, and there may be equilibria that are preferred by the 
principal to the delegation equilibrium, that can only be sustained under cheap 
talk (see Argenziano et al., 2016 for an example of how such equilibria may arise). 
However, the question of whether such equilibria exist is beyond the scope of this 
paper.

27 If an agent makes uninformed recommendations, it is optimal for the principal to ignore 
it. If the principal ignores the recommendation, it is optimal for the agent to not acquire any 
information. Neither agent in this situation can unilaterally deviate to informative communi
cation.

The second caveat lies in the fact that Proposition 1.6.3 relies on state
matching preferences. In our setting (with the exception of Section 1.6.1), any 
action is either “right” or “wrong”, without any degrees of correctness. The mis
alignment of beliefs across the principal and the agent is thus small enough to 
not warrant the principal overriding the agent's suggested action. In contrast, in 
a uniform-quadratic framework of Argenziano et al. [2016] or a normal-quadratic 
framework of Che and Kartik [2009], both states and actions lie in a continuum, 
and the principal's loss is proportional to the distance between the realized state 
and the chosen action. In such a setting, any misalignment (be it in preferences 
or beliefs) between the principal and the agent would lead to the principal being 
willing to override the agent's recommendation, leading to the delegation equi
librium being no longer directly sustainable under communication. This ability 
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to exploit interim misalignment is also what drives the persuasion and prejudice 
avoidance channels that underlie the result of Che and Kartik [2009]. By shutting 
these channels down we provide a novel explanation for the optimality of bias in 
delegation.

On a separate note, it is immediate from Proposition 1.6.3 that the same 
equilibrium would survive in a setting with verifiable communication a la Che and 
Kartik [2009], where an agent chooses between disclosing a signal that he received 
and disclosing nothing - as opposed to cheap talk communication assumed above, 
where the agent can send any message. Since in the cheap talk equilibrium 
described in Proposition 1.6.3, the principal always finds it optimal to follow the 
(optimally chosen) agent's recommendation and take the agent's most preferred 
action even in the absence of evidence, the same is true when evidence can be 
presented. In other words, the agent would never have an incentive to conceal 
evidence from the principal.

1.7 Conclusion

We show that hiring an agent with beliefs that are misaligned with those of 
the principal can be beneficial for the principal, especially when the principal is 
ex ante biased. We show this in the context of a model where the agent can 
acquire costly information before making a decision. A biased principal prefers 
to delegate to an agent who is ex ante more uncertain about what the best action 
is, but who is somewhat biased towards the same action as the principal. This is 
mainly due to a more uncertain agent being willing to acquire more information 
about the state, which enables more efficient actions to be taken. As we show, 
exploiting belief misalignment can be a valid instrument that a principal can use 
in delegation, which in our setting performs on par with or better than contingent 
transfers or restriction of the action set from which the agent can choose. The 
value of this instrument is greatest to a moderately-biased principal, whereas 
both an unbiased and an extremely biased principals would optimally select an 
aligned agent.

In the analysis, we use the workhorse rational inattention model for discrete 
choice, the Shannon entropy model. It allows us to provide a richer demonstration 
of the consequences of delegation to a misaligned agent by allowing the agent to 
acquire information flexibly, which tilts the decisions of an agent with misaligned 
beliefs relative to an aligned agent. We show that misaligned delegation is op
timal despite the tilt introduced by this flexibility. While the exact trade-offs 
obviously do depend on the particular cost function specification, we do show 
that, qualitatively, our results are not specific to the entropy information cost.

Due to the added complexity of entropy models, we confine our exploration to 
a discrete state-matching model, which strays from the continuous models more 
commonly used in delegation problems. In a model with continuous actions, the 
scope for an agent to manifest his tilt is much larger, and hence the trade-off 
between the agent's information acquisition and tilted decision-making would 
again be different. Exploration of the effects of misalignment in a continuous 
model of delegated expertise could be an interesting direction for further research.

Yet another assumption that may feel excessively strong in our analysis is the 
common knowledge of all agents' and the principal's prior beliefs. It may be more 
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reasonable to assume that agents are strategic in presenting their viewpoints to 
the principal and that they make inferences from the fact that they were chosen 
for the job. Such signaling concerns could yield an economically meaningful effect, 
but we abstract from them completely in our paper. A more careful investigation 
is in order.
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1.A  Main Proofs

1.A.1  Proof of Proposition 1.3

Throughout this proof, we will refer to the delegation rule under consideration,

* 
p

\/Pp

y/pp + V1 pp

as the candidate rule. It is straightforward that under the candidate rule, if 
pp > 2 then p* G 2,^p), since

*p
1 - p * v 1 pp 1 pp

when pp > 2, so p* < pp, and also > ^1 — pp in that case, so p* > 1. It thus 
remains to show that the candidate rule is indeed optimal for the principal. While 
a shorter proof exists that invokes Lemma 1 that derives an optimal strategy for 
the case of N states and actions, we choose to present a more direct, albeit a 
somewhat longer, proof.

Plugging the solution to the agent's problem (1.10) (assuming this solution is 
interior for now) into the principal's problem (1.11), we get that the principal's 
payoff looks as follows:

\l" a - (1 - P^e a 
(ea - 1} p

Ppn(R\r) + (1 - pp)n(L[l) = Pp +(1 - . -p - pe a
1

e a
e a - 1
1 

e a - pp
P

Pp A

1-P

(eA - 1) (1 - p)

1 + (1 - Pp) ('a -
P

P

- (1 - Pp)1 - P

1-P

)l

The FOC for the principal's maximization problem above w.r.t. p is

Pp

P2
=0

P
1-P

1 pp

(1 - Pp)2

V1 - Pp '
(1.29)

It is trivial to verify that the second-order condition holds as well, hence as long 
as (1.29) yields an interior solution (i.e., the probabilities in (1.10) are in [0, 1]), 
the candidate solution is indeed optimal among all such interior solutions.

We now check for which P the solution (1.10) is interior. Using the expressions 
(1.10), one can easily verify that n(R|r) > 0 a :■ j-^ > e-a and n(R|r) < 

1 a :■ < ea , and the conditions n(L|l) G [0,1] yield the same two interiority
conditions. This implies that if i-^ G [e-a ,ea] , then the agent acquires some 
information and selects both actions with positive probabilities, and otherwise 
(n(R|r),n(L|l)) G {(1, 0), (0,1)}, meaning that the agent simply chooses the ex 
ante optimal action for sure without acquiring any information about the state.

P
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The candidate rule then suggests that the principal delegates to a learning 
agent iff / E e- a ,e a , and otherwise delegates to an agent who plays the ex 
ante optimal action. We have shown that the candidate rule selects the optimal 
among the learning agents; it is left to verify that such a criterion for choosing 
between learning and non-learning agents is optimal for the principal.

Consider pp > 1; then among the non-learning agents, the principal would 
obviously choose the one who plays a = R (rather than a = L), and such a choice 
yields the principal expected payoff pp • 1 + (1 — pp) • 0 = pp. Optimal delegation to 
a learning agent yields (by plugging the candidate rule into the principal's payoff 
obtained ab ove )

1 
e a

e A — 1
1

e A mp
1 - m* 

M*
(1 mp)

*M
1 - M* eA - 2\/Mr(l - Mp) •

(1.30)

1 
e a

2 e a 1

Taking the difference between (1.30) and pp, the payoff from delegating to a 
non-learning agent, let us find belief pp of a principal who would be indifferent 
between the two:

1 
e a

2 2\/ mp(1 mpA mp 0
1 

e A
e a - 1 L
2 1 / ~f 7 2

eA - 2eAy/Mr(1 - Mr) = MpeA - Mr 

(eA - Mp - a/Mp) = 0

ftftp 1—--------= e A •
V1 - Mp

Hence, the principal prefers a learning agent when < e A and a non-learning
y 1—ftp

agent when > eA. Therefore, the candidate rule is indeed optimal for
1 - Ep

Mp > 2. A mirror argument can be used to establish optimality for mp < 1• This 
concludes the proof of Proposition 1.3.

1.A.2  Proof of Corollary 1.3

Proof of Proposition 1.3 shows that p*(pp) < pp for all pp E (0.5,1), hence we 
can ignore the absolute value operator. Using expression (1.12) we then obtain

d . , 4Pp(1 — Pp) + W Pp(1 — Pp) — 1
(pp — p (pp)) = —------------ ,2,

pp> pp(1 — pp) • + a/1 — ppJ
where the denominator is weakly positive for all pp E (0.5,1), and the numerator 
is positive if and only if pp(1 — pp) E (-1-v/5, , which is equivalent to

pp < 1 + 2 • \/x' 2 ' ~ 0.893. Then |pp — p*(pp)| is increasing for these values of 
pp and decreasing otherwise, meaning it satisfies single-peakedness.
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1.A.3  Proof of Lemma 1

The goal is to find the optimal choice probabilities 3* G ^(A) which maximize 
the principal's expected utility (1.16). First, let us rewrite expression (1.16) using 
8 = e i- 1:

N

^p (uj) 
j=1

3(aj)e *

1 + 63 (aj ) jeccs)

(1+ 63(aj )) -
1 + 63 (aj )

jeccs)

e * ^p(^j )

^p(wj )
5

^p(^j)
6 (1 + 63(aj))

The first term in the brackets above is independent of 3, so the principal's max
imization problem is equivalent to

min £ 1 ^p(2) . .
3 1 + 63(aj)

(1.31)

N
Let £ denote the Lagrange multiplier corresponding to the constraint 52 3(aj) = 

j=1

1. Then the first-order condition for 3(ai) with i G C(3) is

(1 + 63 (ai))2 = ^p(^i)
r (1.32)

Summing up these equalities over all j G C(3), we get that

(1 + 63(aj))2 =
jec (3)

^jec(3) l'p-'3) (1.33)
e

Combining (1.32) and (1.33):

1 + 63(ai) =
jec(/3) 3<- } jec(P)

(1 + 63(aj))2 (1.34)

Once again summing up these equalities over all j G C(3), we get that

K (3) + 6 = jec(P) Pp(&j)

jec(/3) 3<- } jec(P)
(1 + 63(aj))2.

Expressing y ^3^ Cp) (1 + $3(aj))2 from this expression and plugging it into (1.34) 
allows us to express 3(ai) (for i G C(3)) in closed form as

a( , 1 I(K(3)+6V^p- -, 
3-a) = 6 I --------------- - 1 (1.35)

I'p-j)

The necessary condition for option i to be in a consideration set (i G C(3)) is 
3(ai) > 0 or, equivalently,

- > K(3) + 6 ).
1
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Now let Çk denote the Lagrange multiplier for the constraint P(ak) > 0. Then 
the first-order condition for an alternative k p C (P) that is not chosen is

^p("k) — £ \k lkp(^k) <

Plugging in £ from (1.32) into the inequality above yields

for all k </ C (P).
Since the minimization problem has a convex objective function and linear 

constraints, the Kuhn-Tucker conditions are necessary and sufficient. Thus the 
necessary and sufficient conditions that the solution P* must satisfy are given by:

Recall that we assumed, without loss of generality, that ^p(w1) > ^p(w2) > 
... > p,p(uN). Suppose that the solution P* is such that K(P*) = K'. Clearly 
then, in the optimum, the consideration set C(P*) will consist of the first K' 
alternatives.

Denote Al = (L + 5 T? Jlb-."')). Notice that for all L > 1:

Al =(l + 5 \ik. - !p(Uj)
j=1

___________ L-1 ________

—(l -1+ip("L-i) - y ip(^j) -
j=1

—AL-1 — (L — 1 + 5) ( \/ Ip \ I1 i

Therefore, AL decreases in L. Since A1 > 0, there either exists unique K' such 
that Ak > 0 and AK/+1 < 0, or AL > 0 for all L. In the former case, K(P*) = K', 
and in the latter case, K(P*) = N.

In the end, the solution to the principal's problem is given by P*(ai) as in 
(1.35) if i E C (P *), P *(ai) = 0 if ip C (P *), and C (P *) = 1,...,K (P *), where 
K(P*) is as described above.

1.A.4  Proof of Lemma 2

Corollary 2 from Matejka and McKay [2015] shows that a vector of the uncondi
tional choice probabilities P E A (A) solves (1.13) only if it solves the system of 
equations given by

u(ai,^j)

(1.36)

39



for every i G {1,N} such that P(a») > 0.
The question then is: given a vector P G A(A) of unconditional choice prob

abilities, can we find p G R+N that solves the following system:

p(w1) + p(w2) + ... + ) = 1
N u(ai,^j)

E p (^J ) ~N u(ak,^j) = 1
j=1 E &Cak)e a

k =1

Vi G C(P). (1.37)

The system above is a linear system of K(P) + 1 equations with N unknowns. 
To prove the solution exists, we use the Farkas' lemma [Aliprantis and Border, 
2006, Corollary 5.85]. It states that given some matrix A G Rmxn and a vector 
b G Rm, the linear system Ax = b has a non-negative root x G Rn+ if and only if 
there exists no vector y G Rm such that A'y > 0 with b'y < 0. The two latter 
inequalities applied to our case form the following system:

(
N u(ak,Wj) \ / u(aj,Wj) \
E P(ak)e-V- + E y»e

k= ) \»tC(fi) )

y0 + y» < 0.
itC(fi)

> 0 Vj G {1, ..., N},
(1.38)

We need to show there exists no y G A' ; ' 1 that solves the system above. Let
x u(ai,(^i) 1

us define z» = y» + y0P(a») for i G C(P). Then, recalling that e a = e* and 
u(ai,Wj)

e a = 1 for i = j, system (1.38) transforms to

Zj e a + E z» > 0 Vj G C (P),
»tc (/3)\{j}

< E Z» > 0 Vj G{1,...,N}\C(P), (1.39)
»ec(fi) 7 7

E z» < 0.
UecCR

System (1.39) above does not have a solution. Indeed, if C(P){1, ...,N}, then 
the middle set of inequalities directly contradicts the latter inequality. If C(P) = 
{1, ..., N}, then subtracting the latter inequality from the former, for a given 
j G C(P), yields Zj6 > 0 a > Zj > 0. Since this must hold for all j G C(P), we 
obtain a contradiction with the latter inequality, z» < 0.

»tC(0)
By the Farkas' lemma, we then conclude that for any vector P G A(A) there 

exists a belief p G A(Q) that solves system (1.37). This concludes the proof.

1.A.5  Proof of Theorem 1.4.4

This proof proceeds in two parts. First, we show that the delegation strategy 
introduced in the proposition (hereinafter referred to as “the candidate strategy”) 
is optimal for the principal. Then we establish that it does indeed possess the 
stated properties .

Consider an agent with a prior belief

p(w») =
\J pp (^p

~n ,
E Ppp (^j} 
j=1

(1.40)
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It is trivial to verify that prior belief j defined this way satisfies the candidate 
strategy in the statement of the proposition, and hence represents the candi
date strategy. Consider an agent hired in accordance with the candidate rule. 
Substituting (1.40) into (1.14) yields

/3 (ai) = max
1
Ô

(K ■ ' + ^p(^i)

S ^p(uj)jeccs*) v

(1.41)

which are exactly the probabilities stated in Lemma 1. Therefore, an agent hired 
according to the candidate strategy makes decisions in such a way that generates 
the principal-optimal unconditional choice probabilities. Therefore, delegation 
according to the candidate strategy is indeed optimal for the principal.

Now we show that the candidate strategy satisfies the properties stated in the 
proposition. Firstly, it follows clearly from (1.40) that > j*(w2) > ... >
j*(wn). It remains to show that j*(w1) < jp(w1) and j*(un) > jp(un). The 
former inequality can be shown as follows:

P*(wi) < p,p(o>i)

N /------------
52 ^p(uj)
j=1

< ^p(ui)

1 < /M^l) + \/ /M^l + ... + ^p(ul)^p(uN) ,

and the latter inequality holds because jp(^1) + ...+jp(un) = 1 and yjp(w1)jp(wj-) > 
Pp(wj) for all j E {1, ...,N}, since jp(w1) > jp(^j). Note that jj*(w1) = jp(w1) 
only if jp(ui) = ... = JE ).

Similarly, the inequality j*(un) > jp(un) is equivalent to

1 y ̂ p(^i )^p(^N) +...+y ^p(^N-i)^p(^N)+^p(^N),

which holds because y JP(^j)jp(^N) < JP(^j) for all j E {1,..., N}, with equali
ties only if jp(u1) = ... = jp(un). This concludes the proof of Theorem 1.4.4.

1.A.6 Proof of Proposition 1.4.4

It follows from (1.18) that the size of the consideration set in the aligned problem, 
K, is such that

V ' <K + 6 < V ' \ 
j=i ^p(^K) j=i IE uk i)
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Since > 1 for all i < K, we have that Vp(ji) >

i < K. Therefore,

> 1 holds for all

y Pp (uj)

j=1 \pp

From (1.19), K* is the unique solution of 

\/pp(uj)

j=1

<K + i. (1.42)

_______ < K* + 5 < ) 
yPp(wk*)____________j=i \JPp(^k*+i)

Two cases are possible, depending on whether

K + 5 "p .
j=1 \ ppK+ \

(1.43)

(1.44)

If K+5 < RHS in (1.44) (where RHS refers to the right-hand side), then together 
with (1.42) this implies that K solves (1.43), and thus K = K*, which satisfies 
that statement of the proposition.

If, however, K + 5 > RHS in (1.44), then K does not solve (1.43). In 
this case, note that going from K by K + 1 increases the LHS of (1.44) by 1 
and increases the RHS by the amount strictly greater than 1, since a new term

' > 1 is added to the sum, and all existing terms increase because
VMp(WK+2)

pp(uK+i) < IP.^-K). This holds for all K, meaning that if K + 5 > RHS in 
(1.44), then K + 5 52 /v'p^jj = for all K < K. Therefore, the unique solution

j=1 VVp(UK+l)

K* of (1.43) must be such that KM > K. This concludes the proof.

1.A.7 Proof of Theorem 1.5.1

Part 2 of the statement follows immediately from Proposition 3 of Matveenko 
and Mikhalishchev [2021].

To show part 1, we invoke Theorem 1 from Matejka and McKay [2015] stated 
in (1.13), which claims that in the contracting problem, the /3 : Q ^(A) that 
solves the agent's problem (1.20) is given by

n(ai |oj )
u(ai,^j )+T(ai)

P (ai)e a
N
k=1

, u(ak,^j)+t(ak)

P(ak)e a

P '(ape
u(ai1^j)

a

N
k=1 P'(ak)e

u(ak,œj)
a

•> (1.45)

N
where P(ai) = ^2 p(uj)n(ai|wj-).

j=1

and P '(ai)
P(ape V

EN=i P(ak)e
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Since P' is a valid probability distribution on A, representation (1.45) together 
with (1.13) imply that such a collection of conditional probabilities n is a valid 
solution to the agent's problem (1.4) when the agent's preferences net of informa
tion costs are given by u(ai,Uj). That is, the principal can implement the desired 
conditional choice probabilities n by choosing an agent with unbiased preferences 
and some belief j, such that the unconditional choice probabilities selected by 
this agent are given by P'. Lemma 2 implies that such a belief j G ^(Q) does 
indeed exist.

1.A.8 Proof of Proposition 1.5.1

Plugging (1.12) in (1.10) yields the optimal conditional choice probabilities for 
the binary model, given by

n'<R|r>= (e 1 - 0— e A e A \ ■ ■ 

n’(L|i) = (e A — 0 — e A (e A - ■

(1.46)

cropped to [0, 1].
The agent's preferences only depend on the difference t(R) — t(L). Assuming 

all t(R) G R are available to the principal (no limited liability), it is without 
loss to set t(L) = 0. The agent's problem is given by (1.20). Solving it given 
t = (t(R), 0) yields

n(R[r) = 1 —
— n A 1+t (R) !e A (1 — ß) — e A + ß 

(e * — 1) (e — 1) ß '

n(L|l) =

— ( — ( A A i+tÇâ) \eA leA(1 — ß) — e a + ß\e A

(eA — 1) (eA — e(1 — ß)

(1.47)

cropped to [0, 1].
The principal's contracting problem (1.21) in the binary setting with p = 0 is 

similar to (1.11):

max {ßpn(R|r) + (1 — ßp) n(L|l)}
t(R) (1.48)
s.t. n(R|r),n(L|l) are given by (1.47).

Assuming the probabilities in (1.47) are interior, the F.O.C. for (1.48) yields the 
candidate solution t(R) given by

t *(R) = A ln
1—M

M

+
—

+ e A

1—- e A
M

•> (1.49)

where the expression under the ln(-) is non-negative for any X,pp,p, and thus the 
candidate t(R) exists for any ß that yields interior probabilities (1.47).
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Plugging (1.49) into (1.47) yields, after some routine manipulations, the con
ditional choice probabilities that coincide with (1.46) (hence, the probabilities 
(1.47) are interior given p and r* (R) if and only if the probabilities (1.46) are 
interior). Thus, the condition (1.49) is not only necessary, but also sufficient. 
Hence, for any pp for which (1.46) are interior, t (R) as given by (1.49) solves 
the principal's problem (1.48), and this solution exists for any p.

If A and pp are such that probabilities (1.46) are not interior, then the principal 
would like the agent to take the ex ante (principal-)preferred action (it can be 
verified that the expressions in (1.46) are such that n*(R|r) > 1 < n*(L|l) < 0
and vice versa). The candidate transfers (1.49) yield exactly such non-interior 
probabilities (when plugged into (1.47)), and hence they still solve the principal's 
problem (1.48) for any respective p.28 This concludes the proof of part 1 of the 
proposition.

28Note that t*(R) is not the unique solution in this case. If n*(R\r) = 1,n*(L|l) = 0, then 
any t(R) > A ln (p + (1 — p)ei) — 1 yields the optimal choice probabilities, and if n*(R|r) = 

0,n*(L\l) = 1, then any t(R) < 1 — Aln (pei + (1 — p)j solves the principal's problem.

To show part 2, consider (1.49) as a function of p. It is strictly decreasing in 
p on [0,1], and the equation t (R)(p) = 0 has a unique root in [0,1] equal to

* /Rp
P = , n—==,

y/ pp + v 1 pp

meaning that t(R) > 0 - p < p*.

1.A.9 Proof of Proposition 1.5.2

As argued in the text, it is immediate that t = 0. Proceeding analogously to
Section1.3, we obtain that the agent's problem (1.22) given the incentive payment 
t > 0 is solved by

n(R|r) = min {1, max {0, nu(R|r)}} and n(L|l) = min {1, max {0, nu(L|l)}} ,

(e1 - (1 - .)) 
where nu (R|r) =

1+te a

e a
nu (L|l) =

í 2S1+zl A 
a - 1J .

(e(1 - .) - . 

2(1+A) \
e a - .

2(1+^) -,e a - 1

1+z e a

e - 1)(1 - .) 2(1+r)e a — 1

(
1+t

e a
1 - p^

(e' I-.)

The principal's full contracting problem (1.23) can be rewritten as

•>

(1.50)
i

mRx{(1 - Pt) (.Pn(R|r) + (1 - .P)n(L|l)}} , 

s.t. n(R|r),n(L|l) are given by (1.50).
(1.51)

We use t to denote the solution to this problem.
To begin with, note that t* > 0 (due to limited liability) and t* < 1/p 

(otherwise the principal's payoff is zero or negative, hence such t are dominated 
by r = 0). Further, if t* > 0, then n = nu, since otherwise the principal could 
reduce r without affecting the agent's choice.
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Let us define the principal's relaxed contracting problem as

max
r£R

{(1 — pr) (ppnu(R|r) + (1 — pp)nu(L|l)}}

s.t. nu(R\r), nu(L\r) are given by (1.50).
(1.52)

It differs from the full problem (1.51) in that it ignores the constraints r = 0 and 
n(R|r),n(L|l) G [0,1]. We use t * * to denote the interior solution of this relaxed 
problem, whenever it exists. So far, we can conclude that the principal's problem 
(1.51) is solved by t G {0, t }. The local maximizer t is optimal if it satisfies all of the following three properties (and t = 0 otherwise):29

29 Feasibility and preferability should be self-explanatory. Effectiveness means that the incen
tive payment is effective at inducing the agent to acquire a non-trivial amount of information. 
Note that T = 0 is effective when the agent acquires information in the absence of a transfer.

30Note that t** < 1/p is not an exogenous restriction, but is rather implied by preferability, 
as established previously. It is, however, convenient to include this an explicit restriction.

Feasibility: t exists and t G [0, 1/p].30

Effectiveness: t * * generates n = nu.

Preferability: t is preferred to tr = 0.

The FOC of problem (1.52) (that must be solved by t ) is given by

1 — p y p _ + Ap(e2 2' — pr)

p 1 — p Xp [e2 a — 1J + (e2 a + 1J (1 — pr)

Let y(p,pP) denote the LHS and x(r) the RHS of (1.53), respectively. Note that 
x(r) is continuous in r and only depends on r, X, and p, but not on p or pP. 
Further, Lemma 3 below shows that if p > min{1, then for all A, x(r) is
increasing in tr G [0, 1/p] (recall that t > 1/p obviously violates preferability, 
hence we drop this case). We maintain this restriction on p throughout the rest 
of the proof. Monotonicity implies that a feasible t* * exists for given p,pP,X,p 
if and only if x(0) < y(p,pp) < x(1/p), where the “if” part follows from the 
intermediate value theorem, and the “only if” part follows from t > 1/p never 
being optimal. The strict monotonicity of x(r) also means that the objective 
function in (1.51) is strictly concave in tr, so if t exists, then it is unique and it 
is a local maximizer of (1.51).

Lemma 3. Function x(r) is continuous and increasing in r G [0,1/p) for all X 
and all p > min {1,1/2X}.

Proof. Denote f = f(r, X) = e~. For sake of brevity we drop the arguments 
of f (t, X) and the bar from r throughout the proof of this lemma. Then we can 
rewrite

( ) = f Xp(f2 — 1) + 2(1 — pt)
fXp(f2 — 1) + (f2 + 1)(1 — pt).
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This function is trivially continuous and differentiable in t E [0,1/p]. Hence it 
suffices to show that dxT > 0:

dX(T) 
dt

= (Ap(3g2 - 1) + 2(1 - pt)) < - 2pj 

Ap(£2 - 1) + «2 + 1)(1 - PT)

— 2e(Ap+1 - pT)dT - p(e' +1) • 

e e -1) 2 e - 1 + 2l-F)+ 1-T

4. Let pL4 = ma^|p : n*(L\l) = 1|, pR4 = min |p : n* (^\r) = 1|, where

n*(L\l) and n*(^\r) stand for the respective probabilities (1.50) given p

e [M£2 -1) + 2(1 - PT)] 
Me -1) + «2 + 1)(1 - pt)]2 

• (e2 -1 - 2Af)

A [(e2 -1) + (e2 + 1) ]2

The latter expression is strictly positive for t E [0,1/p) if and only if

2 (e- - "2^) ' - 2^) > 2-

The first term is strictly positive (since £ > 1 and t < 1/p). The second term is 
nonnegative for the given range of t if £' - 1 > 2. Note that £2 - 1 > 21+T, 
hence (1.54) holds if 1^+T > 1—1 for all t E [0,1/p), which holds if p > 1.

Alternatively, we can rewrite (1.54) as

I>'-')('’ ) '2'>' (2 - ' > 0

In the above expression, the first term is again always strictly positive; the second 
term is nonnegative if A > /2 (since t < / ).

We thus conclude that if either p > 1, or p > 1 /2A, then d\,' > 0 for 
t E [0,1/p), so x(t) is indeed increasing in t on that interval. □

Let us define the following cutoffs on p that will prove helpful in establishing 
the properties of interest of t** (feasibility, effectiveness, and preferability):

1. Let pL1 E (0,p*) and pR1 E (pp, 1) be such that y(pL1,pP) = Y(pR1,pP) = 
x(0). Lemma 4 below establishes that these cutoffs exist.

2. Let pL2 = ma^|p : n®(L\l) = 1}, pR2 = min |p : n°(B|r) = 1|, where 

n®(L\l) and n®(B|r) stand for the respective probabilities (1.50) given p 
and t = 0. In words, pL2 and pR2 are the most extreme beliefs p for 
which the agent voluntarily acquires information in the absence of incen
tive payment. Closed-form expressions can be obtained from (1.50), with

1

PL2 = 1 ■ and pR' = —eAr.
1+eA 1+eA

3. Let pL3 = inf {p : t* > 0}, pR3 = sup {p : t* > 0}. In words, these denote 
the most extreme beliefs p up to which the principal is willing to offer 
incentive contracts. Lemma 6 below shows that pL3 and pR3 are always 
well-defined (i.e., that the set {p : t* > 0} is nonempty). 4 *
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and T = T**. In words, mL4 and mR4 are the most extreme beliefs m for 
which the agent acquires information given the candidate-optimal incentive 
t**. Closed-form expressions can be obtained, with mL4 =  1+T** and

1+e A
1+t **

.. __ e apR4 1+r** .
1+e

5. Let pL5 E (0,p*) and p ri E (p*, 1) be such that y(pL5,pp) = Y(pR5p) = 
x(1/p). These cutoffs exists due to the properties of y(p, pp) established for 
pL1, as well as the fact that x(1/p) = e > 1. Closed-form expressions 
can be obtained, with

ML5, MR5 =
i+i/p „ / 2 i+i/p ,

e A + 2Mp T\/ e A + 4Mp (Mp - 1)

As x(0) < x(1/p) for all A (see Lemma 3), it follows that pL5 < pL1 and 
pR5 > pR1 .

We now proceed to establishing the conditions on p for which the three prop
erties of t** (feasibility, effectiveness, preferability) do or do not hold. To be
gin with, as was previously claimed, a feasible t** exists if and only if x(0) < 
Y(p,pp) < x(1/p), which, due to the monotonicity of x(f) in f, is equivalent to

M [Ml5,Mli] U [Mri,MR5]^ (1.55)

As shown by construction above, pL5, pR5 are always well-defined and are located 
to the outside of pL1 and pR1, respectively. It thus remains to verify that pL1 

and pR1 are also well-defined, which is done by the following lemma.

Proof. Function x(f) is independent of p. Function y(p,pP) is single-dipped in

Lemma 4. For all A, if p > min {1,1/2A}, then pL1 and pR1 exist.

by (1.12), and supEy(m,Mp) = x achieved by m {0,1}. Hence a sufficient
condition for the cutoffs of interest to exist is

+0) > Y(M*(Mp),Mp)^ (1.56)

In the inequality above, only x(0) depends on p. Note further that ix,(' > 0. 
Therefore, if (1.56) holds for some p, then it also holds - and, consequently, pL1 

and pR1 exist - for all p > p.
Observe that x(0) > 1 for p = JA: denoting f = f(A) = ea, we have

« -1)2 (Ap(e+1) -1) > o (1.57)

Since f = eA > 1, a sufficient condition for (1.57) is given by

1
P > A(f +1) (1.58)
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which obviously holds if p > fff• Further, e* > 1 + | - A(£ +1) > 1, hence
the RHS of (1.58) is weakly smaller than 1, so the inequality also holds for all 
p > 1.

We conclude that if p > min|1, , then x(0) > 1, and hence (1.56) is
satisfied and the relevant cutoffs exist. □

Moving on to effectiveness, it should be immediate from the analysis in Section
1.3 that for a feasible t** to yield interior choice probabilities (1.50), it must be 
that p E [pL4,pR4]. The following lemma establishes the location of pL4,pR4 

relative to other cutoffs.

Lemma 5. Cutoffs pL4 and dR4 are such that pL4 E [pL5,pL2] and dR4 E 
[dR2, dR5]•

Proof. Denoting pL(f) = max {p : nffLll, f) = 1} = —11+T and observing that it 
1+e ~V

is strictly decreasing in T, we get pL (0) > pl(t**) > pL(1/p), which is equivalent 
to pL2 > pL4 > pL(1/p). Routine calculations using the closed-form expression 
for pL5 then demonstrate that pL(1/p) > pL5, implying that in the end, pL4 E 
[pL5,pL2]. The result for pR4 is shown analogously. □

Finally, we need to establish when the principal prefers a feasible f = t** to 
tf = 0, which is done by the following lemma.

Lemma 6. The principal weakly prefers a feasible t — t** to t — 0 if and only if 
p G [iL3,lR3]- Further, these cutoffs satisfy pL3 G pL4 ,pl2] and p rz G [pR2 ,PR4].

Proof. For p G [pL4,pL2], the principal compares his payoff from choosing t — 0, 
given by 1 — pp, and his payoff from choosing t — t**. Thus, pL3 satisfies the 
following indifference condition

E[u(aH 1 p-,t**] = (i—pt**Cp^ (p-P*,(R|r)+(1—p-ff^(L|l)) — 1—p-. (E59)

The LHS of (1.59) is single-peaked in p:

dE[u(a,u) | pp,T**] dE[u(a,w) | pp,T**] 
dp dp

— (1 — PT**(p))

— (1 — PT**(p))

< dn^ (R|r)
p + (1 — pp)

dnf (L|l) 
dp

2 1+~ e2 a
2(1+^) ~ 

e a — 1

(pr _
\p2

1 pp

(1 — p)2

where the first equality follows from the envelope theorem. The final expression 
is strictly positive for p < p*(pp) and strictly negative for p > p*(pp), hence the 
single-peakedness follows.

Thus, dE[«(a,w) | pp, t**] > 0 for p E [pL4,pL2] (since also pL2 < 1/2 < p*). 
Hence we can show that pL3 E [pL4,pL2] by establishing that

E[u(a, ") | p-, t**; p — pL4] < 1 — p- < E[u(a, ") | p-, t**; p — pL2]

and applying the intermediate value theorem. The first inequality follows from 
the fact that at pL4, t** is such that the agent does not acquire information, 
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yet the principal pays a positive transfer to him (which is trivially dominated by 
j = 0). The second inequality follows from the fact that given p = pL2, (1.53) 
holds for all J E [0,1/p], so if t** exists, it is preferred to J = 0. We conclude that 
pL3 E [pL4,pL2], and the mirror argument can establish that pR3 E [pR2,pR4].

Finally, the single-peakedness of E[«(a,w) | pp,T**] in p implies that J = r** 
is preferred to J = 0 for all p E [pL3 , pR3]. □

To summarize, the principal's problem (1.23) is solved by t* E {0,t**}, with 
t** being the solution if and only if it is feasible, effective, and preferable. It 
is feasible if and only if (1.55) holds; effective if and only if p E [pL4,pR4], and 
preferable if and only if p E [pL3,pR3]. Further, we have established that pL5 < 
pL4 < pL3 < pL2 (and the converse holds for the other set of cutoffs), as well as 
pli < p* < pp < pri. Therefore, t* = t** if and only if p E [pl3,pli] U [pri,pr3], 
whenever these intervals are non-empty. After denoting pL = pL3,pR = pR3, 
JL = max{ L3, L1}, JR = min{ R1, R3} and excluding the endpoints, at which 
t** = 0, we obtain the statement of the Proposition.

1.A.10 Proof of Proposition 1.5.3

Using Theorem 1 of Caplin et al. [2019], the agent's problem (1.24) given some 
restriction set A* is solved by n such that the corresponding P E A(A*) satisfies 
(1.17) for all ai E A*. Further, recall from Section 1.4 that n and P are connected 
in the optimum by relation (1.13) (where we set n(a,i\<Oj) = P(ai) = 0 for all 
ai E A* and all oj E Q). Then by plugging (1.13) and the state-matching utility 
into the principal's expected payoff, it can be rewritten as in (1.16):

N

E pp(oi)
i=1

P (ai )e a
1 + 5P(aP)

p(oi)
iec (p)

(1 + 5)P (ai)
1 + 5P (ai)

Plugging in (1.17) for P in the expression above transforms it to

'PlE o

E ------
ieC(P)

(K(P) + 5) pp(oi) - E p(oj) 
:_________________________j^C(P)

(K (P) + 5) pp(oi}

1 + 5
5

p(oi)
i£C (p)

E
ieC(P)

e p(°3y 
j&W)
(K (P ) + 5)

1 + 5
K (P) + 5

p(oi).
'¡ÆC(ji)

(1.60)

To prove the proposition statement, we proceed by induction. Consider some 
arbitrary action set A- C A such that ak E A- for some k E {1,...,N} and 
another action set A+ = A- U {ak}. Let P+ denote the unconditional choice 
probabilities corresponding to the solution of (1.24) given A+, let C+ = C(P+) 
and K+ = K(P+), and define P-,C-, K- analogously given A-.

Our goal is to show that that selecting A* = A+ is weakly better for the 
principal than A* = A-. If ak / C+, then the payoffs in the two cases are equal, 
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and the statement is trivially true. Otherwise, using (1.60) for the principal's 
expected payoff, the statement amounts to:

0 < (1 — (K^ ,g "H

0 < ((K- + ¡) "p(ui) j — ((K+ + J) "p(^i) j
\ ieC+ / \ ieC- /

0 <(K- + 6)"p(^k) — I "p(^i) I •
VeC- J

(1.61)

Since ak G C+ by assumption, /3+(ak) > 0, which, from (1.17), implies that

0 < K(/3) + ¿)"(ut) 
E ) 

jeC (3)

1

0 < K + 8)"p(uk) — I Kp(ui) I
VeC+ )

0 <(k- +1 + ¡^"p^k) — ( y "p(ui) + "p(uk)j
VeC- )

0 <(K- + S)"p(uk) I "p(ui) I ,ieC-

which immediately implies that (1.61) holds. Therefore, it is indeed better for the 
principal to choose A+ over A-. Since A- was arbitrary, this proves by induction 
that allowing a larger action set is always weakly better for the principal, and 
hence proves the original proposition.

1.A.11 Proof of Proposition 1.6.1

We provide an example for N = 3. We use the same version of the Farkas' Lemma 
as in the proof of Lemma 2. To show that there is no prior belief that solves the 
system of the first-order conditions for the problem, it is sufficient to show that 
there is a solution to the following dual inequality system

u(a 1
+

u('.a1,^2)
+

u('a1,^3)
> 0,z1 e X z2e X z3e X

u(a2 ,^l)
+

u(>2,"2)
+

u(>2,"3)
> 0,z1 e X z2e X z3e X (1.62)

u(a3,^1)
+

u(>3,"2)
+

u(>3,"3)
> 0,z1 e X z2e X z3e X

Zi + Z2 + Z3 < ()•\
Let us normalize A = 1 and consider payoffs given by the following matrix:

u(a1, u1) u(a2, u1) u(a3, u1)
I u(a1, u2) u(a2, u2) u(a3, u2)I 
u(a1, u3) u(a2, u3) u(a3, u3)

^ln3 0 ln(2 + s)S 
0 ln 3 ln(2 + e) 

v0 0 ln(2 + e) /

Notice that vector (z1, z2,z3) = (—1 — ¡, —1 — ¡, 2) for small enough ¡, e > 0 solves 
system (1.62): the two latter inequalities hold trivially for all such z, and the two 
former inequalities hold if e > 3“ — 2. Therefore, there exists no " that solves 
system (1.37) given /3 G ^(0).
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1.A.12 Proof of Proposition 1.6.3

We first show that there exists an equilibrium in the communication game that 
replicates the deletation equilibrium: the optimal agent acquires the same infor
mation, makes a truthful action recommendation, and the principal follows the 
recommendation.

Suppose that under delegation, the optimally chosen agent follows a decision 
rule P* that yields a consideration set C(P*) = {1,K*}. By Lemma 1, we have 
that

V^k* ) > k*^+j X. -

) > - y^(-K*)) (1.63)
i=1

Suppose the agent reports truthfully. Given the state-matching payoffs, for the 
principal to follow recommendation a = aK* whenever it is issued, it must hold 
that

l^p(-K* |aK*) = max^(-PaK*), (1.64)

where p,p(w|a) is the probability that the principal's posterior belief assigns to 
state u after hearing recommendation a from the agent. In equilibrium, the 
principal's posterior p,p(uK* |aK*) must satisfy Bayes' rule:

^p(-K* |aK* ) =
n(aK* -K* h- -K* )
Ei=i Hp(-i)n(aK* |-i)
___________ P (aK* )e *___________
P (ai) + ... + P (aK*-i) + P(aK* )e * 

P(aK* )e * !ap(-K*}
1 + S/3(aK*) Ei=x ^p(-i)n(aK* l-i)

Ei=i iap(-i)n(aK* |-i)

^p (-i) 
K * + S

P (aK * )e * xj1 -K*)

Ei=i i^p(-i)n(aK* |-i)’

Where the last line is obtained by plugging the expression for P(aK*) from Lemma
1 in the denominator of the preceding line. Similarly, we can calculate the prob
ability that the principal's posterior assigns to any other state uj:

i ^K=i -

l^p (— \aK * ) = < K*+5

I0

• P(aK* )e* • ________\/P(-j)
Ei=i Vp (-i)n(aK* M if j<K *, 

if j > K*.

For condition (1.64) to hold, it is then enough for

e (1.65)

to be satisfied. Note, however, that it is strictly weaker than (1.63), since
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Therefore, we conclude that (1.65) holds, and thus it is optimal for the principal 
to choose action aK* when the agent with prior belief p* recommends it.

Following the same argument, we can show the same for any other recommen
dation ai for i G C(3*): the necessary and sufficient condition for the principal 
to find it optimal to follow the recommendation would be

which is implied by (1.64), since p(wi) > p(uK*) for i G C(3*). This concludes 
the proof.
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2. Setting Interim Deadlines to 
Persuade
2.1 Introduction

The development of any innovation requires investment of both time and capi
tal, while the outcome of this investment is inherently stochastic. Usually, the 
investor, being the principal, retains the option to stop funding the innovative 
project if at some point it proves unsuccessful. It is widely documented that the 
agent running the project tends to prefer the principal to postpone the stopping 
of the funding to enjoy either the extra funds or an additional chance to turn her 
research idea into a success story.1 In such an agent-principal relationship, the 
agent's technological expertise and the quality of her innovative idea often allow 
her to manipulate the principal by designing how and when the outcomes of the 
research and development process are announced.

1 Agency conflict in which the agent prefers the principal to postpone abandoning the project 
that the agent is working on is studied in Admati and Pfleiderer [1994], Gompers [1995], Berge
mann and Hege [1998, 2005], Cornelli and Yosha [2003].

2 ”The Quantum Computing Bubble.” Financial Times, August 25, 2022.
3 ”Bristol Professor's Secretive Quantum Computing Start-Up Raises £179m.” The Tele

graph, November 16, 2019.
4 I discuss the reasoning behind this assumption in Section 2.3.2.

Recently, venture capital firms have started to pour billions into startups 
focused on the development of quantum computers, which are known for their 
technological complexity and difficulty of construction. The economic viability 
of quantum computing is questioned by a number of experts; however, the star
tups promise the investors a completed product in the foreseeable future.2 For 
instance, a quantum startup PsiQuantum announced to potential investors that 
it hopes to develop a commercially-viable quantum computer within five years 
and managed to raise more than $200 million in 2019.3

This paper studies the implications of the agent's control of information dur
ing the progress of a research and development project when the agent and the 
principal disagree about the timing of when to abandon the research idea. I ask: 
What is the degree of transparency to which an agent should commit before start
ing to work on an innovative project? In particular, which terms for self-reporting 
on the progress of the project should a startup propose while discussing the term 
sheet with a venture capitalist? As I show, depending on the properties of the 
project, the startup would strategically choose both the timing for the disclosure 
of updates on the progress of the project and the type of news it discloses - either 
good or bad.

I study a game between a startup and an investor. The startup controls 
the information on the progress of the project and has the power to propose 
the terms for self-reporting on it to the venture capitalist.4 The startup has an 
intertemporal commitment power and commits to a dynamic information policy, 
which can be interpreted as designing the terms of the contract specifying how 
the information on the progress of the project is disclosed over time as the project 
unfolds. In return, the investor continuously provides funds and chooses when to 
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stop funding the project.
The project has two stages and evolves stochastically over time toward com

pletion, conditional on continuous investment in it. The completion of each of the 
stages of project occurs according to a Poisson process. The completion of the 
first stage serves as a milestone, such as the development of a prototype, while 
completion of the second stage achieves the project. The investor gets a lump
sum project completion profit if and only if he stops investing after the project is 
completed and before an exogenous project completion deadline, and the startup 
prefers the principal to postpone stopping the funding. 5

5 I discuss the reasons for the presence of the project completion deadline in Section 2.3.1.

As the investor receives the reward only after a prolonged period of investment, 
he initially invests without being able to see if the investment is worthwhile. 
Hence, it is individually rational for the investor to start investing only if he is 
sufficiently optimistic regarding the future of the project. An important feature 
of the setting that I consider is that the information is symmetric at the outset: 
not only the investor, but also the startup is unable to find out if the project will 
bring profit to the investor or not - this can be inferred only as time goes on and 
some evidence is accumulated. The only tool that the startup has for persuading 
the investor to start investing is the promise of future reports on the progress of 
the project.

Clearly, the good news about the completion of the project is valuable to the 
investor as it helps him to stop investing in a timely manner. Further, as evidence 
regarding the project accumulates over time, failure to pass the milestone in a 
reasonable time makes the project unlikely to be accomplished in time - and the 
investor prefers to stop investing after observing such bad news. When designing 
the information policy, the startup chooses optimally between the provision of 
these two types of evidence in order to postpone the investor's stopping decision 
for as long as possible.

I show that the startup's choice of information policy depends on the ex ante 
attractiveness of the project for the investor. The attractiveness is captured 
by the flow cost-benefit ratio of the project. Thus, a project is relatively more 
attractive ex ante to the investor when its flow investment cost is lower, its 
project completion profit is higher, or the Poisson rate, at which completion of 
one stage of the project occurs, is higher.

When the project is sufficiently attractive ex ante to the investor, promises to 
provide information only on the completion of the project serve as a sufficiently 
strong incentive device to motivate the investor to start the funding at the outset. 
Further, the future news on the completion of the project does not harm the total 
expected surplus generated by the interaction of the startup and investor, while 
the future news on the project being poor decreases the surplus that the startup 
can potentially extract from the investor. Accordingly, the startup commits to 
providing only the good news, but not the bad news on the project in the future: 
it discloses the completion of the project and postpones the disclosure in order 
to ensure the extraction of as much surplus as possible from the investor. In 
the context of quantum computing, the startup optimally chooses and announces 
to the venture capitalist the date by which it plans to have a fully developed 
quantum computer. When the date comes, the startup reports completion if the 
quantum computer has been completed; if not, the startup reports the completion 
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as soon as it occurs.
The situation changes when the project does not look promising to the investor 

ex ante. In that case, if the startup commits to disclosing only the completion of 
the project, the investor will not have the sufficient motivation to start investing 
in it. Thus, the startup extends the information policy to encompass not only the 
good news but also the bad. As in the case of the promising project, the startup 
discloses the project's completion and does so without any postponement, thereby 
fully exploiting its preferred incentive tool. In addition, the startup sets a date 
at which the bad news is released if the milestone of the project has not yet been 
reached - this date is the interim reporting deadline.

Setting the interim deadline, the startup chooses a deterministic date, which 
it optimally postpones. As the startup prefers the investor to postpone stopping 
the funding, it prefers the interim deadline to be at a later expected date. Further, 
the completion of the stages of project according to a Poisson process makes both 
the startup and the investor risk-averse with respect to the date of the interim 
deadline. Thus, the startup prefers to set the interim deadline at a deterministic 
date and to postpone it as late in time as possible in order to extract all the surplus 
from the investor. In the context of quantum computing, the startup optimally 
chooses and announces a fixed date by which it plans to have a prototype of the 
quantum computer. When the date comes, reporting having the prototype at 
hand convinces the investor to continue the funding, and reporting not having 
the prototype leads to termination of the project.

Finally, I demonstrate that the outlined structure of the optimal information 
disclosure holds for a broad class of preferences of the startup and the investor. 
I allow for profit-sharing between the startup and the investor, varying degrees 
of the startup's benefit from the flow of funding, and exponential discounting, 
and show that the startup prefers not to set any interim deadlines whenever 
the project is sufficiently promising to the investor. The future disclosure of the 
completion of the project promises investor profit in exchange for a prolonged 
investment, while the disclosure of the stagnation of the project at the interim 
deadline promises investor only saved costs, as further investment stops. Thus, 
when the project is attractive, the startup can make the funding and the beneficial 
experimentation relatively longer by setting no interim deadlines.

2.2 Related literature

My paper is related to the literature on dynamic information design. The closest 
paper in this strand of literature is by Ely and Szydlowski [2020]. Similarly to my 
paper, they study the optimal persuasion of a receiver facing a lump-sum payoff 
to incur costly effort for a longer time. In my model, as in theirs, the sender is 
concerned to satisfy the beginning-of-the-game individual rationality constraint 
of the receiver when choosing the information policy. Further, the “leading on” 
information policy in Ely and Szydlowski [2020] has a similar flavor to the “post
poned disclosure of completion” information policy in my paper: promises of news 
on completion of the project serve as an incentive device sufficient to satisfy the 
receiver's individual rationality constraint.

However, there are several substantial differences between Ely and Szydlowski 
[2020] and my paper. While in their model the state of the world is static and 
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drawn at the beginning of the game, in my model it evolves endogenously over 
time, given the receiver's investment. As a result, the initial disclosure used in the 
“moving goalposts” policy in Ely and Szydlowski [2020] cannot provide additional 
incentives for the receiver in my model. The sender in my model uses another 
incentive device to incentivize the receiver to opt in at the initial period: she 
commits to an interim deadline at which she discloses that the first stage of the 
project is not completed.

Another closely related paper is by Orlov et al. [2020]. The main similarity 
to my paper lies in the sender's incentive to postpone the receiver's irreversible 
stopping decision. The sender in their paper prefers to backload the information 
provision, which is in line with the properties of the optimal information policy 
in my paper. However, there are a number of substantial differences between 
our papers. In Orlov et al. [2020], the sender does not have the intertemporal 
commitment power; further, the receiver potentially obtains a non-negative payoff 
at each moment of time, and thus the sender does not need to persuade the 
receiver to opt in at the beginning of the game.

Ely [2017], Renault et al. [2017], Ball [2019] also analyze dynamic informa
tion design models. However, their papers focus on persuading a receiver who 
chooses an action and receives a payoff at each moment of time, whereas in my 
paper the receiver takes an irreversible action and receives a lump-sum project 
completion payoff. Henry and Ottaviani [2019] consider a dynamic Bayesian per
suasion model in which, similarly to my model, the receiver needs to take an 
irreversible decision. However, the incentives of the sender and receiver differ 
from my model: the receiver wants to match the static state of the world and the 
sender is concerned with both the receiver's action choice and with the timing 
of that choice. Basak and Zhou [2020] study dynamic information design in a 
regime change game. The optimal information policy in their model resembles 
the interim deadline policy in my model: at a fixed date, the principal sends the 
recommendation to attack if the regime is substantially weak by that time.

My paper is also related to the literature on the dynamic provision ofincentives 
for experimentation [Bergemann and Hege, 1998, 2005, Curello and Sinander, 
2020, Madsen, 2022]. The closest papers in this strand of literature are by Green 
and Taylor [2016] and Wolf [2017]. Similarly to my model, both papers consider 
design of a contract regarding a two-stage project, in which the completion of 
stages arrives at a Poisson rate. In Green and Taylor [2016], there is no project 
completion deadline and the quality of the project is known to be good, while in 
Wolf [2017] the quality of the project is uncertain. In contrast to my paper, both 
papers focus on a canonical moral-hazard problem and give the power to design 
the terms of the contract to the investor (principal) rather than the startup 
(agent). In particular, the contract in Green and Taylor [2016] specifies the 
terms for the agent's reporting on the completion of the first stage of the project. 
Similarly to my model, the optimal reporting takes the form of a deterministic 
interim deadline: at a principal-chosen date, the agent truthfully reports if she 
has already completed the first stage, which determines the further funding of 
the project.6

6In a broad sense, my paper also relates to the small strand of theoretical literature on 
dynamic startup-investor and startup-worker relations under information asymmetry [Kaya, 
2020, Ekmekci et al., 2020]. However, while these papers focus on the signaling of the type of 
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2.3 The model

2.3.1 Setup

I consider a game between an agent (she, sender) and a principal (he, receiver). 
Time is continuous and there is a publicly observable deadline T, t E [0,T].7 For 
each t, the principal chooses sequentially to invest in the project (at = 1) or not 
(at = 0). The flow cost of the investment is constant and given by c. The choice 
of at = 0 at some t is irreversible and induces the end of the game.8

startup, I study the provision of information by the startup on the progress of the project.
7 The results for the setting without a deadline are easily obtained by considering T rc>.

They are presented in Appendix 2.E.
8The absence of the principal's commitment to an investment policy and the irreversibility 

of the stopping decision capture the venture capitalist's option to abandon the project, e.g., in 
the case of its negative net present value.

The assumption that the project needs to be completed in finite time is natural 
in many economic settings. The main interpretation for T is an expected change 
in market conditions that renders the project unprofitable. In the context of 
a research and development project, T could stand for the date at which the 
competitor's innovative product is expected to enter the market, or the date at 
which the competitor is expected to get a patent on the competing innovation.

The state of the world at time t is captured by the number of stages of the 
project completed by t, xt, and the project has two stages, xt E {0,1, 2}. The 
state process begins at the state x0 = 0 and, conditional on the continuation of 
the investment by the principal, it increases at a Poisson rate A > 0. Informa
tion on the number of stages completed is controlled by the agent. Thus, when 
making investment decisions, the principal relies on the information provided by 
the agent.

The project brings the profit v if and only if the second stage of the project 
has been completed by the time of stopping, and a payoff of 0, otherwise. I 
assume that all of the profit goes to the principal. This assumption simplifies the 
exposition without affecting the main results of the paper. I relax this assumption 
and consider the profit-sharing between the agent and the principal in Section 
2.6.

There is a conflict of interest between the agent and the principal as the agent 
benefits from using the funds provided by the principal for running the project, 
possibly diverting them for her benefit. Thus, the agent faces the flow payoff of 
c and wants the principal to postpone his irreversible decision to stop as long as 
possible.

I study the agent's choice of information provision to the principal. The agent 
chooses an information policy to maximize her expected long-run payoff. I assume 
that the agent has the power to announce and commit to a policy. An information 
policy a is a rule that for each date t and for each past history h (t) specifies a 
probability distribution on the set of messages M . The history includes all past 
and current realizations of the process and all past message draws and principal's 
action choices.

When choosing an information policy, the agent faces a rich strategy space. 
First, she can choose if the information on the completion of the first, or second, 
stage of the project will be disclosed by the policy. Second, she can choose 
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how to disclose the completion of a stage of the project: for instance, to do so 
immediately or to postpone the disclosure.

The timing of the game is as follows. First, at t = 0, the agent publicly 
commits to an information policy c. Second, at each t the principal observes the 
message generated by the information policy and makes her investment decision. 
The game ends when the principal chooses to stop investing or at T , if he keeps 
investing until T . I assume that whenever indifferent about investing or not, the 
principal chooses to invest, and whenever indifferent about disclosing information 
or not, the agent chooses not to disclose.

Throughout the paper, I use the following intuitive notational convention: for 
any two dates at which the principal stops investing, S and t,

S A t min {S, t} ,
S V t max {S, t} .

2.3.2 Discussion of assumptions

The main interpretation of the considered dynamic information design problem 
is the contracting between the agent (startup) and the principal (investor) on the 
terms of reporting on the completion of stages of the project that are not publicly 
observed. The terms could take the form of a proposed formal reporting schedule 
or a schedule of meetings with the investor. Non-observability of the stage com
pletions stems from the fact that, while the technology is being developed in the 
lab, the principal either does not have sufficient expertise to assess the progress 
or the full access to the lab.

I assume that the principal does not have the power to propose the terms for 
reporting to the agent and, e.g., make her fully disclose the progress achieved in 
the lab. The most natural interpretation of such an asymmetry in the bargaining 
power is the asymmetry in the market for private equity: there are sufficiently 
many investors willing to invest in a particular technology or sufficiently few 
startups working on the technology.9 10 11 For instance, investors' interest in quantum 
computing has grown markedly in recent years, while there are reports of a short
age of human capital in this industry.1011 Another example is the communication 
software industry, which has recently experienced increased investment activity.12

9In the alternative interpretation of the model, contracting concerns internal corporate re
search and development and takes place between the leading researcher and the headquarters 
of a company. The leading researcher's bargaining power in proposing the terms for disclosure 
again stems from the market asymmetry: the specialists having the desired level of expertise 
might be in a short supply.

10”The Quantum Computing Bubble.” Financial Times, August 25, 2022.
11“Quantum Computing Funding Remains Strong, but Talent Gap Raises Concern”, a report 

by McKinsey Digital, https://www.mckinsey.com/business-functions/mckinsey-digital/our- 
insights/quantum-computing-funding-remains-strong-but-talent-gap-raises-concern/.

12”This Is Insanity: Start-Ups End Year in a Deal Frenzy.” Best Daily Times, December 07, 
2020.

As the agent enjoys the power of full control over the information on the 
progress of the project, she is completely free to offer what is disclosed and when. 
In particular, the contract between the agent and the principal can specify that 
the completion of the second stage of the project is disclosed with a delay rather 
than immediately. The agent who has an advantage in expertise over the principal
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can rationalize such a condition by saying that before the success is reported to 
the principal, it is worth re-checking the data, which takes time.

Even though the principal can not dictate to the agent which information and 
how she should disclose, the principal can potentially hire an external monitor 
who would visit the lab and prepare an additional report on the progress of the 
project. In that case, the contract signed between the agent and the principal will 
account for both free information that the agent promised to provide and addi
tional costly information which the principal obtains with the help of a monitor. 
In the baseline version of the model, I assume that the principal can not use the 
help of a monitor. This can be rationalized by the shortage of experts in the field, 
which makes hiring a monitor prohibitively costly. Alternative interpretation is 
that the agent restricts the principal's access to additional information on the 
progress of the project by stating that a potential information leak would put the 
technology being developed at risk.13

13 In particular, this rationale was used to restrict the investors' access to information on the 
progress of the project in the case of Theranos, see ”What Red Flags? Elizabeth Holmes Trial 
Exposes Investors' Carelessness.” The New York Times, November 04, 2021.

The information policy relies upon the agent's commitment power, which 
holds not only within each date but also between the dates. The agent's commit
ment within each date follows from prohibitively high legal costs of cooking up 
the evidence. The agent's intertemporal commitment stems from the rigidity of 
terms and form of reporting fixed in the contract that the agent and the principal 
sign at the outset of the game.

2.4 No-information and full-information bench
marks

2.4.1 No-information benchmark

First, I consider the simple case when the information policy is given by aNI: the 
same message m is sent for all histories h (t) and all dates t. Thus, the agent 
provides no information regarding the progress of the project. As I demonstrate, 
in this case the principal starts investing in the project if and only if it is suffi
ciently promising for the principal from the ex ante perspective and invests until 
a deterministic interior date.

As no news arrives, the principal bases his decision about when to stop in
vesting on his unconditional belief regarding the completion of the second stage 
of the project. I denote the unconditional belief that n stages of the project were 
completed by t, by pn (t), i.e., pn (t) P(xt = n). The state of the world is fully 
determined by p (t) given by

Po (t) = e~xt, 

p1 (t) = Xte~xt, 

p2 (t) = 1 - e-xt - Xte~xt.

The principal's sequential choice of at E {0, 1} can be restated equivalently as 
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the choice of deterministic stopping time SNI E [0,T] chosen at t = 0.14 Given 
the principal's continuous investment, the probability of completion of the second 
stage of the project, p2 (t), increases monotonously over time, making obtaining 
the payoff v more likely. However, postponing the stopping is costly.

14 Note that the dynamic belief system that he faces is deterministic in a sense of being fully 
specified from t = 0 perspective.

15 To observe this, note that the probability of the completing both the first and second stages 
within a very short time At is negligibly small; thus, during some At, the principal receives the 
project completion payoff v iff the first stage has already been completed.

16Here I WLOG express the flow benefits and flow costs of investing for the principal in 
different units of measurement.

To decide on SNI, the principal trades off the flow benefits and flow costs of 
postponing the stopping decision, while keeping the individual rationality con
straint in mind. The flow cost of postponing the stopping for At is given by c • At 
and the flow benefit is given by v • p1 (t) AAt.15 Thus, the necessary condition for 
the principal's stopping at some interior moment of time (0 < S < T) is given by

v • p1 (S) A = c. (2.1)
Let

c 
KflA' 

the ratio of the flow cost of investment c to the gross project payoff v normalized 
using A, the rate at which a project stage is completed in expectation. The 
intuitive interpretation of k is the flow cost-benefit ratio of the project. k is an 
inverse measure of how ex ante promising the project is for the principal. (2.1) 
is equivalently given by16

pi_GS)
flow benefit of waiting

k
flow cost of waiting

(2.2)

and presented graphically in Figure 2.1. As the state process transitions monotonously 
from 0 to 1 and then to 2, p1 (t) first increases and after some time starts to de
crease. Thus, the principal has two candidate interior stopping times satisfying 
(2.2), S and S . The principal prefers to postpone stopping to S , as during 
(S, S ) the flow benefits are higher than the flow costs.

The forward-looking principal can guarantee himself a payoff of 0 if he does 
not start investing at t = 0. Thus, he will choose to start investing at t = 0 only 
if his flow gains accumulated up to T A S are larger than his flow losses, and 
his expected payoff is given by

f prrsNI 1
VNI max < 0, J (v • p1 (s) A — c) ds > . (2.3)

Geometrically, the integral in (2.3) represents the difference between the shaded 
areas in Figure 2.2 that correspond to the accumulated gains and losses. The 
principal starts investing at t = 0 if, given T and A, the normalized cost-benefit 
ratio k is low enough, so that the shaded area of the accumulated gains is at least 
as large as that of the accumulated losses. I denote such a cutoff value of k by 
kNI (T, A) and summarize the principal's choice without information in Lemma 
7.
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Figure 2.1: Principal's choice under no information:
left plot: postponing stopping increases the chance of getting a project payoff

v;
NI 

right plot: principal trades off costs and benefits and optimally stops at S .

Lemma 7. Assume no information regarding the progress of the project arrives 
over time. Denote the time at which the principal stops investing by SNI . If 
K > kni (T, A), then the principal does not start investing in the project, i.e, 
SNI = 0. If k < kni (T, A), then the principal’s choice of stopping time is given 
by

SNI
SNI, if v < T and k > e VTXT

’ v (2.4)
T, otherwise ,

the closed-form expressions for SNI and kni (T, X) are presented in the proof in 
Appendix 3.A.

2.4.2 Full-information benchmark

Here, I consider the case in which the information policy is given by aFI: M = 
{m0, m1, m2} and the message mn is sent for all t such that xt = n, n E {0,1, 2}. 
Thus, the principal fully observes the progress of the project at each t.17 I charac
terize the cutoff level of the cost-benefit ratio below which the principal is willing 
to start investing. Further, I show that the principal chooses to stop when no 
stages of the project are completed and the project completion deadline T is 
sufficiently close.

17 This benchmark corresponds to equilibrium in the setting, where the principal has the full 
power to propose the terms of self-reporting to the agent.

At each t, the principal uses the information on the number of stages com
pleted to decide either to stop investing or to postpone the stopping. The news 
on completion of the second stage of the project makes the principal stop immedi
ately, as this way he immediately receives the project payoff v and stops incurring 
the costs of further investment. If only the first stage of the project is completed, 
the principal faces the following trade-off. The instantaneous probability that the 
second stage will be completed during At is given by A At, which is constant over 
the time. Thus, the expected benefit of postponing the stopping for At is given

61



Figure 2.2: Principal's choice to start investing at t = 0 or not:
rNI

left plot: T > S ; the project deadline is distant and decision-irrelevant; 
right plot: T < SrNI; the project deadline is close, which leads to lower 

expected benefits of investing.
In both plots the expected accumulated gains are higher than the losses, so the 

principal starts to invest at t = 0.

by v • XAt. Meanwhile, the expected cost of postponing the stopping is given by 
c • At. As a result, if k < 1, then the principal who knows that the first stage of 
the project has already been completed invests until either the completion of the 
second stage or until the project deadline T is reached.

Consider now the case in which the principal knows that the first stage has 
not yet been completed. The principal's trade-off with respect to the stopping 
decision is now more involved. Postponing the stopping for At leads to the 
completion of the first stage of the project with the instantaneous probability 
XAt. Completion of the first stage of the project at some t implies that the 
principal receives the continuation value of the game, conditional on having the 
first stage completed. I denote the continuation value of the principal at time 
t under full information and conditional on the completion of first stage of the 
project by VtF|1I . This is given by18

18See the derivation in the proof of Lemma 8 in the Appendix.
19If at t the expected benefit of investing becomes lower than the cost, then, after t, the 

net expected benefit remains negative. Thus, it is optimal for the principal to stop investing 
precisely at t.

VF' = (v — X) (1 — e-»T-t)) . (2.5)

The principal's expected benefit from postponing the stopping for At is given 
by VF' • XAt and the cost of postponing the stopping is, as before, given by 
c • At. The continuation value, VtF, shrinks over time and approaches 0 as the 
project deadline T approaches. This is because the shorter the time left before 
the project deadline, the less likely it is that the second stage of the project will 
be completed before T . If at some t, and given that no stages are completed yet, 
the expected net benefit of investing reaches 0, it is optimal for the principal to 
stop at that t.19 I denote this date by S0P and plot it in Figure 2.3.
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Figure 2.3: The principal optimally sets an interim deadline t = S0P under full 
information: given that the first stage of the project has not been completed by

S0P , it is optimal to stop investing at S0P .

As the principal has an incentive to stop at S0P only if he knows that the 
first stage or the milestone of the project has not been reached, the economic 
interpretation of S0P is that it is the interim deadline that the principal sets for 
the project. If the milestone has not been reached by the interim deadline, then 
it is sufficiently unlikely that the project will be completed before the project 
deadline T . Thus, it is optimal for the principal to “give up” on the project and 
stop investing at t = S0P . If the milestone is reached by the interim deadline, 
then the principal has an incentive not to stop investing until either the second 
stage is completed or T is hit.

Finally, given the plan to stop either at the interim deadline, or at the comple
tion of the second stage of the project, it is individually rational to start investing 
only if the principal's expected payoff from the t = 0 perspective is non-negative. 
I denote the upper bound for the normalized cost-benefit ratio such that the prin
cipal starts investing at t = 0 by kfi (T, A). Intuitively, kfi (T, A) > kni (T, A): 
whenever the principal is willing to start investing under no information, he is 
also willing to start under the full information. I summarize the principal's choice 
under full information in Lemma 8.

Lemma 8. Assume that the progress of the project is ful ly observable at each 
moment in time. If k > kfi (T,A), where kfi (T,A) > kni (T,A), then the 
principal does not start investing in the project. If k < kfi (T,A), the principal 
invests either until the random date at which the second stage of the project is 
completed, t = T2, or until the interim deadline, t = S0P, at which he stops if the 
first stage has not yet been completed. Formally, the time at which the principal 
stops investing is a random variable T given by:

T' A T, if xsp = 0
S0P , otherwise ,

where Sp = T + | log 1—K) and the expression for kfi (T, A) is presented in the 
proof in Appendix 3.A.

Assume now that the agent chooses which information to provide to the prin
cipal. As for k > kfi (T, A) the principal is not willing to start investing even 
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under full information, there is no way in which the agent can strategically con
ceal the information to her benefit. In Section 2.5, I assume k < kfi (T, A) and 
analyze how the agent can strategically provide information on the progress of 
the project and extract the principal's surplus.

2.5 Agent's choice of information policy

In this Section, I present how the agent's choice of information policy changes 
with the ex ante attractiveness of the project, which is captured by the cost
benefit ratio . In Section 2.5.1, I start with Proposition 2.5.1 which summarizes 
the comparative statics result. In Sections 2.5.2-2.5.3, I proceed with the detailed 
discussion of the economic mechanisms that determine the outlined structure of 
the optimal information policy. Throughout Section 2.5, I maintain the following 
technical assumption:

Assumption 2.1. eXT > AT (XT + 1) + 1.

For the sake of a clearer exposition, this assumption rules out the case in 
which T is so low that whenever the principal is willing to start investing in the 
no-information benchmark, he invests until T. Relaxing this assumption does not change the the comparative statics result in Proposition 2.5.1 qualitatively.20

20 I discuss the implications of relaxing this assumption in the proof of Proposition 2.5.1.

2.5.1 The structure of optimal information disclosure
There exist cost-benefit ratio cutoffs ND (T, A) , ND (T, A) < NI (T, A), and 
k (T, A) , kni (T,X) < k(T,A) < kfi (T,X), such that, depending on the cost
benefit ratio of the project, the optimal information policy has the following 
form:

1. when < ND (T, A), the agent provides no information and the principal 
invests until T;

2. when ND (T, A) < < k(T, A), the agent discloses only the completion of
the second stage of the project and does that with the postponement;

3. when k (T, A) < < FI (T, A), the agent immediately discloses the com
pletion of the second stage of the project whenever it occurs and specifies 
a deterministic interim deadline, at which it discloses if the first stage is 
already completed;

4. when > FI (T, A), the agent provides no information as the principal's 
long-run payoff is non-positive even under full information.

Figure 2.4 illustrates Proposition 2.5.1 and presents the partition of the cost
benefit ratio space based on the corresponding forms of the optimal information 
policy.

The structure of optimal disclosure presented in Proposition 2.5.1 follows 
the simple and intuitive pattern. The lower is the value of cost-benefit ratio, 
the higher is ex ante attractiveness of the project to the principal. First, for
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Non-disclosure Postponed disclosure Immediate disclosure of Non-disclosure
(principal of stage 2 completion stage 2 completion and (principal rejects

invests until T) interim deadline for stage 1 \ the project)
0 KND KNI * KFi 2 k(T,a)

Figure 2.4: Comparative statics of the form of optimal information policy with 
respect to the cost-benefit ratio of the project, k (T, A).

k < knd (T,A), the project is so attractive that the principal is willing to keep 
investing until the project deadline T even in the no-information benchmark. 
Thus, there is no need to disclose any information. For the higher values of , 
there emerges a room for strategic disclosure, and the higher is the value of (i.e., 
the lower is the ex ante attractiveness of the project), the more information the 
agent has to disclose to incentivize the principal. For > FI (T, A), the project 

gets so unattractive that the principal can not strictly benefit from investing even 
in the full-information benchmark. In this extreme case, the agent chooses not 
to disclose any information.

The most important part of the result in Proposition 2.5.1 demonstrates 
which additional pieces of information the agent chooses to disclose and when she 
chooses to discloses them as k gets higher and higher. When k g (knd (T, A), i (T, A)], 
the agent discloses only the completion of the second stage of the project and does 
not promise any information on the completion of the first stage of the project. Further, as increases from ND (T,A) to i(T, A), the agent adjusts the timing 

of the disclosure: she postpones the disclosure of the second stage completion 
less and less and discloses immediately for i(T,A). For g ( i(T,A) , FI(T,A)), 

the agent not only discloses the completion of the second stage of the project 
immediately, but also provides information on the completion of the first stage 
at the interim deadline that she optimally chooses.

In the subsequent Sections, I provide details on the mechanisms that shape 
the aforementioned comparative statics results. I omit the trivial case of non
disclosure under < ND (T, A) and start the discussion from the optimal infor
mation policy under g ( ND (T, A) , i(T, A)].

2.5.2 Postponed disclosure of project completion
In this Section, I restrict attention to g ( ND (T, A) , i(T, A)] and explain why 

the optimal information policy has the particular form presented in the Propo
sition 2.5.1: the agent discloses only the completion of the project and does this 
with the postponement .

Agent's problem

To characterize the agent's choice of information policy, I consider an equivalent 
problem, in which the agent directly chooses the stochastic history-contingent 
length of investment subject to the principal's individual rationality constraints 
that ensure optimality of such action process for the principal. An investment 
schedule is a random variable t : Q [0,T] defined on the probability space
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(Q, F, P) and adapted to the filtration F = (Ft)t>0 generated by the stochastic 
process xt. As I demonstrate in Section 2.5.2, restricting attention to random 
variables adapted to the natural filtration of xt is without loss of generality for 
the agent's equilibrium expected payoff when k E (knd (T, X), K (T, A)].21

21 In other words, there is no need for external randomization devices to optimally incentivize 
the principal when k E (knd (T, X), k (T, A)].

22The stopping rules from the no-information and full-information benchmarks are given in 
Lemmas 7 and 8, respectively. Further examples of such rules include “stop 1 minute after the 
second stage of the project is completed” and “stop at t = S if only the first stage of the project 
is completed by t = S”.

Informally, an investment schedule t is a random variable with support [0,T] 
specified by a rule that suggests when to stop investing depending on the history 
of previous realizations of the number of completed stages xt.22 The agent chooses 
this rule at t = 0. P (xT = 2) captures the belief about two stages of the project 
completed by t, the random time of stopping in the future, and E [t] captures 
the expected length of investment from t = 0 perspective.

Given an investment schedule t, the long-run payoff of the agent and the 
principal are given, respectively, by

W (t) E [t] c,

V (t) P (xt = 2) v - E [t] c.

As an investment schedule t is an action recommendation rule, the action 
recommendations generated by this rule have to be obedient for the principal. 
In other words, at each date and for each possible history the principal's actions 
suggested by t have to be optimal for the principal. An object useful for charac
terizing if an investment schedule t generates obedient action recommendations 
is given by the principal's continuation value at some interim date t promised by 
the investment schedule t. This continuation value depends on the beliefs of the 
principal.

As the principal does not commit to a policy at t = 0, he rationally updates his 
belief given an investment schedule t and assesses the costs and benefits of either 
further following the investment schedule t provided by the agent or deviating 
from it. The absence of stopping by some date t and, thus, the fact that the game 
continues at t serves as a source of inference for the principal. First, he forms a 
belief regarding the number of completed stages of the project by t, conditional 
on the game still continuing at t, P (xt = n|t < t). Second, he forms a belief 
regarding the number of completed stages of the project at the random date of 
stopping in the future, t, P (xt = n|t < t).

Given the absence of stopping by t, the principal's expected payoff promised 
by the schedule is given by P (xt = 2|t < t) v - E [t - t|t < t] c. The principal's 
expected payoff from stopping at t is given by P (xt = 2|t < t) v. The principal's 
continuation value at t given the investment schedule t is the difference between 
these two expected payoffs, I denote it by Vt (t):

Vt(t)[P(xt=2|t<t)-P(xt=2|t<t)]v-E[t-t|t<t]c. (2.6) 

This way of formulating the continuation value is intuitive: if the continuation 
value Vt (t) gets negative then it is not valuable to continue investing for the 
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(2.8)

principal, and he is better-off stopping immediately rather than following the 
schedule. The following Lemma shows the necessary and sufficient conditions for 
an investment schedule t to generate obedient action recommendations for the 
principal.

Lemma 9. An investment schedule t is the principal’s best response to at least 
one information policy a if and only if

Vt (t) > 0, Vi > 0 and VTNI < 0, (2.7)

where VtNI is the principal s optimal continuation value in the absence of any 
additional information from the agent starting from the date t.

Vt (t) > 0, Vt > 0 ensures that the principal does not want to stop before the 
date of stopping suggested by the investment schedule is reached, and VTNI < 0 
ensures that the principal does not want to continue conditional on reaching the 
date of stopping suggested by the investment schedule. Conditions from Lemma 
9 constitute the system of constraints for the agent's problem.

As the agent chooses an investment schedule t to maximize her long-run 
payoff, the constraint VTNI < 0 is inactive at optimum.23 Thus, without loss of 
generality, I omit this constraint from the agent's problem, and the problem that 
the agent solves at t = 0 is given by

23 Otherwise, the agent can prolong the expected funding by choosing a different t .

max {c • E [t]} 
T ET

s.t. Vt (t) > 0, Vt > 0,

where T is the set of stopping times with respect to the natural filtration of 
xt. As the principal's choice to postpone the stopping of funding is costly, it is 
natural to interpret the system of constraints in (2.8) as the system ofprincipal s 
individual rationality constraints.

The agent's problem is complex, and thus I solve it in steps. First, I charac
terize the investment schedule, which solves the relaxed version of (2.8) with the 
principal's individual rationality constraints only for some initial periods. Sec
ond, I demonstrate that there exists an investment schedule solving the relaxed 
agent's problem and satisfying the full system of the principal's individual ratio
nality constraints (2.7). This investment schedule pins down optimal information 
policy.

Solution to the agent's relaxed problem

In this Section, I consider the agent's relaxed problem and discuss its solution. 
This sheds light on the technical intuition behind the key properties o the optimal 
information policy. The agent's relaxed problem for the parametric case of KE 
(knd (T, A), kni (T, A)] is given by (2.8) with the principal's individual rationality 
constraint only for t [0, SJ ]. The agent's relaxed problem for the parametric 
case of KE (kni (T, A) , K (T, A)] is given by (2.8) with the principal's individual 
rationality constraint only for t = 0.
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Consider the agent's long-run payoff given an investment schedule, W (T). 
This can be restated equivalently as follows:

W (T) = [W (T) + V (T)] - V (T)

= P (xt = 2) v - [P (xt = 2) v - E [t] c] . (2.9)V ■■ -J V ■■ -JV V-
total surplus principal's surplus

The solution to the agent's relaxed problem for both considered parametric cases 
follows a simple idea: the optimal investment schedule ensures that the total 
surplus is maximal and that the principal's surplus is minimal. Consider a sched
ule T such that the stopping occurs after the completion of the second stage of 
the project, unless the project deadline T was hit, i.e., the schedule satisfies the 
condition t > t2 A T. Such a schedule leads to

P (xT — 2) — P (xT — 2). (2.10)

Given a schedule T satisfying (2.10), if T is individually rational for the princi
pal at date t = 0 then the total surplus generated achieves its upper bound and is 
given by P (xT = 2) v, which depends on the exogenously given project deadline 
T and the profit v. However, the stopping only after the second stage completion 
is not individually rational for the principal at t = 0 when the cost of funding is 
sufficiently high, the profit is sufficiently low, or the expected time until a project 
stage completion is sufficiently high.

Lemma 10 elaborates on the cost-benefit ratio cutoff value A (T, A): it dis
tinguishes the case in which stopping only after the second stage completion is 
individually rational at t = 0 from the case in which it is not. Based on this 
partition, when E ( ND, A (T, A)], I call the project ex ante promising for the 
principal.

Lemma 10. Foreach (T, A) there exists A(T, A), NI (T, A) < A(T, A) < FI (T, A), 
such that if < A(T, A) ( > A(T, A)) then an investment schedule T in which 
stopping after T2 A T happens with probability one is individually rational at t = 0 
(not individually rational at t = 0) for the principal.

For k G (knd (T, A), A (T, A)], the schedule t > t2 A T is individually rational 
for the principal at t — 0, and it maximizes the total surplus. In addition to choos
ing T > T2 A T, it is optimal for the agent to choose the investment schedule with a 
higher expected date of stopping the funding to extract all the principal's surplus 
subject to his individual rationality constraints. For G ( NI (T, A) , A(T, A)], the 
agent chooses such T that the principal's individual rationality constraint at t — 0 
is binding. As a result, V(T) — V NI, i.e., the principal gets his no-information 
benchmark payoff given by 0.

For G ( ND (T, A) , NI (T, A)], as in the no-information benchmark the prin- 
tNI

cipal invests until S with certainty, the agent chooses the investment schedule 
tNI

as to postpone the start of information provision at least until S . Further, the 
agent chooses T with a higher expected date of stopping so that the principal's 

tNI
individual rationality constraint at t — S is binding. The absence of stopping 

tNI
until at least S and the fact that individual rationality constraint binds at 
t — StNI taken together imply that V(T) — V NI, i.e., from t — 0 perspective, the 
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principal gets her no-information benchmark payoff, which is non-negative and 
given by (2.3).

The next Lemma summarizes the necessary conditions for an investment 
schedule to solve the agent's relaxed problem when the project is promising. 
These conditions are shared both by the relaxed problem formulated for the case 
of G ( ND (T, A) , NI (T, A)] and the relaxed problem formulated for the case of 
k G (kni (T,A) ,a(T, A)]. The conditions that are both necessary and sufficient 
for an investment schedule to solve the agent's relaxed problem are presented in 
the Proof of Lemma 11.

Lemma 11. Assume k G (knd,k(T,A)]. If an investment schedule t solves 
agent's relaxed problem, then

1. with probability one, stopping occurs after t2 A T;

2. V (t) = V NI, where V NI is the principal's expected payoff in the no
information benchmark, given by (2.3).

Optimal information policy

In this Section, I show that there exists an information policy that both solves 
the agent's relaxed problem and satisfies the full system of the individual ratio
nality constraints. Given this, as Lemma 11 describes the solution to the relaxed 
problem, it also sheds light on the properties of the optimal information policy 
for the case of a promising project. These properties have a clear-cut economic 
interpretation as an investment schedule t can be easily interpreted in terms of 
action recommendations for the principal.

An investment schedule t can be without loss of generality implemented us
ing a direct recommendation mechanism - a simple policy which has M = {0, 1}, 
where m = 1 received at date t is a recommendation to continue investing at 
t for the principal and m = 0 received at date t is a recommendation to stop 
investing at t.24 Keeping this in mind, it is clear from Lemma 11 that the optimal 
information policy has to satisfy the following conditions. First, whenever the 
agent recommends the principal to stop, the second stage of the project is already 
completed. Second, the recommendation to stop is postponed so that the princi
pal's individual rationality constraint is binding, which manifests in V (t) = V NI. 
The first condition presents the key feature of the optimal information policy for 
the case of promising project: the agent discloses the completion of the second 
stage of the project, but stays silent regarding the completion of the first stage of 
the project. The intuition behind the agent's choice is simple: a recommendation 
to stop when no stages of the project are completed and the project deadline T 
is close does indeed incentivize the principal; however, it also reduces the total 
surplus generated that can be extracted via the agent's control of information. 
Meanwhile, the recommendation to stop when the two stages of the project are 
completed incentivizes the principal without reducing the total surplus gener
ated. When k < A (T, A), a partially informative policy that discloses only the 

24 The connection between an investment schedule t and a direct recommendation mechanism 
implementing the schedule t is simple: whenever, based on the evolution of the state process, t 
suggests stopping the funding, the direct recommendation mechanism sends the message m = 0.
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completion of the second stage provides sufficient incentives to the principal, and 
thus the agent uses it.25

25 The “leading on” information policy in Ely and Szydlowski [2020] is similar: the only 
information that the policy provides is that the task is already completed and, thus, it is time 
to stop investing.

26In other words, Vt (t) drifts down over time and can get negative at some date.

I proceed with obtaining an investment schedule that not only satisfies the 
conditions in Lemma 11 and solves the relaxed problem, but also satisfies the full 
system of the principal's individual rationality constraints in Lemma 9. Ensuring 
both is non-trivial. For instance, consider a mechanism that implements an in
vestment schedule solving the agent's relaxed problem and assume it recommends 
to continue for t E [0, S*), then at S* recommends stopping if the second stage 
is already completed, but recommends to continue at all the subsequent dates 
t E (S* , T]. A no stopping recommendation drawn at S* reveals that the state 
is either 0 or 1. Clearly, after sufficient time passes after S*, the principal would 
attach a high probability to the second stage already being completed and would 
potentially be tempted to deviate from the recommendation to continue.26 How
ever, a direct recommendation mechanism that implements an optimal investment 
schedule exists. I present it in Proposition 2.5.2.

Assume k E (knd (T, A) , K (T, A)]. The optimal mechanism does not provide 
a recommendation to stop during t E [0, S*). At t = S*, if the second stage of 
the project is already completed, then the mechanism recommends the principal 
to stop. If the second stage of the project is not yet completed, then the mecha
nism recommends the principal to stop at the moment of its completion t = t2. 
Formally,

T = S* V (T2 A T) ,

where S* is chosen such that V (t) = VNI, i.e., the respective constraint in the 
system of principal's individual rationality constraints is binding.

The recommendation mechanism starting from S* generates recommendations 
to stop if the second stage is completed. As the recommendation to stop comes 
immediately at the completion of the second stage for all t > S*, hearing no 
recommendation to stop reveals that the state is either 0 or 1. Further, as time 
goes on, the principal attaches a higher and higher probability to the state being 
1, which ensures obedience to the recommendation to continue at each date. 
Further, the start of information provision S* is sufficiently postponed to ensure 

- NI 
that the principal's individual rationality constraint is binding either at t = S 
or at t = 0.

The choice of S* is driven by extraction of the principal's surplus and depends 
on k in an intuitive way. First, consider the case K E (knd, kni (T, A)], the prin-

- NI
cipal is willing to start investing and invests until t = S in the no-information

- NIbenchmark. The agent's optimal choice is to set S* > S . Given such an in- 
NI

formation policy, the principal does not stop at S , the date of stopping in the 
no-information benchmark, and with probability one continues to invest during 
t E [S- , S*) even though the mechanism provides absolutely no information for 
all t < S*. This is driven by the fact that the expected benefit from stopping 
at some future date t E [S*, T] and obtaining the project payoff v with certainty 
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compensates the flow losses of investing during t E [S , S*).27 Further, the agent 
sufficiently postpones S* to ensure that she extracts the principal's surplus and 
the principal gets precisely V NI > 0.

27Similarly to the “leading on” information policy in Ely and Szydlowski [2020], the promises 
of future disclosure of the completion of the project are used as a “carrot” to make the receiver 
continue investing beyond the point at which he stops in the no-information benchmark.

28The rich set of optimal direct recommendation mechanisms in my model encompasses both 
mechanisms in which the information provision depends only on the current state, similarly 
to the optimal mechanism in Ely and Szydlowski [2020], and the mechanisms that use delay, 
similarly to the delayed beep from Ely [2017].

In the case k E (kni (T, A), P (T, A)], the principal is not willing to start in 
the no-information benchmark as his expected payoff from investing is negative. 
Thus, the agent chooses S* to guarantee that the principal gets his reservation 
value V NI = 0 and is thus willing to start investing at t = 0. The value of 
S* is relatively lower as compared to the previous case: as the project is less 
attractive, to provide the principal sufficient incentives, the agent needs to start 
the information provision regarding the completion of the project earlier.

Finally, there exist many information policies that both solve the agent's re
laxed problem and satisfy the full system of constraints (2.7). This constitutes 
an important advantage for the agent: she can choose an optimal policy that is 
easier to implement from the real-world perspective, depending on the particular 
environment. In the optimal mechanism from Proposition 2.5.2, the recommen
dation to stop at some date t depends only on the current state of the world 
xt. In an alternative delayed disclosure mechanism, the recommendation to stop 
arrives with a pre-specified delay after the second stage was completed. Thus, the 
recommendation depends only on the past history and not on the current state 
of the world. In an optimal delayed disclosure mechanism, the delay becomes 
smaller as more time passes. I characterize such a mechanism in Appendix 2.D.28

Recall that, as Lemma 11 suggests, the key idea of the optimal information 
policy is that the agent postpones the disclosure of the completion of the project 
to extract more surplus, which makes the principal's individual rationality con
straint bind. The higher the cost-benefit ratio of the project becomes, the 
higher additional value the agent's information policy needs to provide to the 
principal to ensure that his active individual rationality constraint is satisfied. 
The implication of this for the optimal information policy is presented in Lemma 
12.

Lemma 12. Assume k E (knd (T,A) ,P(T, A)]. Given the recommendation 
mechanism implementing an optimal investment schedule t, for a fixed Poisson 
rate A, the expected length of investment E [t] decreases in the cost-benefit ratio

.

The intuition is that the higher the cost-benefit ratio of the project becomes, 
the sooner after the second stage of the project is completed the agent recom
mends the principal to stop. For the cost-benefit ratio as high as p (T, A), the 
agent provides the recommendation to stop immediately at the date of comple
tion of the second stage of the project. Further, for > p (T, A), the optimal 
information policy satisfying the conditions in Lemma 11 ceases to be individu
ally rational for the principal. As I show in the next Section, for > p (T, A), 
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in addition to immediate disclosure of the project completion, the agent provides 
the information regarding the completion of the first stage of the project.

2.5.3 Immediate disclosure of completion and an interim 
deadline

When k > k (T, A), the project is not promising for the principal and any invest
ment schedule in which stopping occurs after t2 A T with probability one violates 
the principal's individual rationality constraint. In other words, from the ex ante 
perspective the future reports disclosing only the completion of the project do 
not motivate the principal to start investing. Thus, an investment schedule that 
provides an individually rational expected payoff to the principal should assign a 
positive probability not only to stopping after the completion of the project, but 
also to stopping in either state 0, when no stages of the project are completed, 
or state 1, when only the first stage of the project is completed. I present the 
necessary conditions for an investment schedule to be optimal when the project 
is not promising in Lemma 13.

Lemma 13. Assume k E ( k (T, A) , kfi (T, A)). If an investment schedule t solves 
agent's problem, then it satisfies the conditions

1. conditional on no completed stages of the project, stopping of the funding 
happens with a positive probability;

2. conditional on one completed stage of the project, stopping of the funding 
happens with probability zero;

3. conditional on two completed stages of the project, stopping of the funding 
happens immediately (at t = t2) and with probability one.

Stopping when only the first stage of the project is already completed is 
clearly inefficient. In state 1, the principal prefers to continue investing until the 
completion of the second stage and this principal's incentive to wait is aligned with 
the agent's incentive to postpone the stopping. Further, stopping in state 1 does 
not help overcome the problem of the violated individual rationality constraint 
under > k (T, A). Meanwhile, assigning a positive probability to stopping when 
no stages are completed helps to overcome the problem of violated individual 
rationality constraint, as the principal benefits from stopping at some date t 
when the first stage of the project is not yet completed and the project deadline 
T is sufficiently close. Further, the agent clearly prefers the stopping of funding 
after the completion of the second stage rather than in state 0 as the former does 
not harm the total surplus generated. Thus, a schedule that is optimal assigns 
probability 1 to immediate stopping when the second stage is completed.

Lemma 13 implies that in an investment schedule, optimal for the agent, stop
ping after the completion of the second stage of the project happens immediately 
and stopping also happens given that no stages of the project are completed - 
i.e., at the interim deadline chosen by the agent, which I denote by S0A. Thus, 
Lemma 13 drastically simplifies the strategy space in the agent's design problem: 
it is only left to characterize the optimal interim deadline. At the outset of the 
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game, the agent designs a device that privately randomizes over the interim dead
lines S0A. That is, the agent publicly chooses a distribution FSA, then an interim 
deadline is drawn according to it and privately observed by the agent. Next, 
the information starts to flow. The action recommendation to stop the funding 
satisfies the following investment schedule

T =
AS0 ,

T2 A T,
if xSA = 0
otherwise,

(2.11)

where the principal knows only the distribution FSA , but not the draw of S0A.
Given that the completion of the second stage of the project is disclosed 

immediately, stopping at the interim deadline in state 0 leads to a loss of expected 
further investment flow for the agent, and a potential savings from abandoning a 
“stagnating” project for the principal. The agent's payoff can be without loss of 
generality restated as the expected loss in future investment due to stopping at 
the interim deadline S0A in state 0 (rather than at T2 A T). Given this, the agent's 
problem can be expressed as

1/lin EFSA P (xSA = o) E [t2 A T — 5'01|xSoA = 0 ,
F sA 0 < 7 - _ _>

29 The principal's individual rationality constraint is presented in (2.39).

So v .
expected loss in future investment given S0A

(2.12)

subject to the system of the principal's individual rationality constraints, which 
also have a natural interpretation as the expectation of principal's savings on 
the future investment, which discontinues at S0A in state 0, minus the loss in the 
project completion profit due to stopping the funding at S0A in state 0.29

Inspecting the agent's expected loss in future investment in (2.12) reveals that 
if the agent postpones the interim deadline S0A, then two effects arise. First, the 
probability that stopping at the interim deadline will happen decreases. Second, 
the expected loss in total surplus due to stopping at the interim deadline rather 
than at T2 A T decreases. Thus, the agent's expected loss in future investment 
is decreasing in the date of interim deadline and the agent prefers an interim 
deadline with a later expected date.

Agent's choice of the interim deadline distribution FSA is affected by the two 
factors. First, as the expected loss in future investment in (2.12) is decreasing 
and convex in the date of the interim deadline, and thus the agent is risk-averse 
with respect to random interim deadlines. Thus, given some random interim 
deadline, the agent directly benefits from inducing a mean-preserving contrac
tion. Second, the agent benefits from inducing a mean-preserving contraction 
indirectly. Inspecting the principal's long-run payoff for some fixed S0A reveals 
that the principal is also risk-averse with respect to random interim deadlines. 
Thus, inducing a mean-preserving contraction makes the principal better-off and 
relaxes the individual rationality constraint at t = 0, hence, allowing the agent 
to postpone the expected interim deadline further. As a result the optimal for 
the agent interim deadline takes the form of a deterministic date. In other words, 
it is optimal for the agent to publicly announce the interim deadline S0A at the 
outset, so that the principal knows it.
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The agent has an incentive to postpone the interim deadline and uses her 
control of the information environment to postpone the deadline as much as 
possible so that the principal's individual rationality constraint at t = 0 binds. 
Figure 2.5 demonstrates the principal's long-run payoff as a function of the interim 
deadline, which I denote by S0 . It is maximized at the principal-preferred interim 
deadline S0P , which was characterized in Lemma 8. The agent-preferred interim 
deadline S0A yields the principal's expected payoff of 0.

0

Figure 2.5: Principal's long-run payoff, V , as a function of an interim reporting 
deadline chosen by the agent, S0 .

The next Proposition summarizes the optimal investment schedule, which 
can be without loss of generality implemented using a direct recommendation 
mechanism:

Assume k E (A (T, X), kfi (T, A)). The optimal information policy is given by 
a direct recommendation mechanism that generates

(a) the recommendation to stop at the moment of completion of the second 
stage of the project, t = t2, and

(b) a conditional recommendation to stop at the publicly announced interim 
deadline t = S0A. At S0A, stopping is recommended with certainty if the 
first stage of the project has not yet been completed.

Formally, 
AS0 ,

T2 a T,
if xSA = 0
otherwise,

where S0A is chosen so that the principal's individual rationality constraint at 
t = 0 is binding, i.e., V (t) = 0.

A stopping recommendation at any date other than the interim deadline 
t = S0A fully reveals that project is accomplished. Further, observing a recom
mendation to stop at the interim deadline, the principal learns that the milestone 
of the project has not yet been reached and becomes sufficiently pessimistic that 
the project will be completed by T.

A notable feature of the optimal information policy when the project is ex ante 
unattractive is its uniqueness. The only optimal instrument through which the 
agent fine tunes the incentive provision to the principal is the choice of interim 
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deadline, and there is a unique optimal way to set the deadline to make the 
principal's individual rationality constraint bind.

I proceed by considering the comparative statics of the interim deadline. Both 
the agent-preferred and the principal-preferred interim deadline, S0A and S0P , re
spectively, increase in the exogenous deadline T . This is because less time pressure 
relaxes the principal's individual rationality constraint and allows the agent to 
postpone the deadline further in order to extract the principal's surplus.

As the cost-benefit ratio increases up to kfi , the agent-preferred deadline 
converges to the principal-preferred deadline. An increase in the cost-benefit ratio 
of the project makes the principal's individual rationality constraint tighter.30 

As a result, for a higher k, in the absence of completion of the first stage, the 
principal is willing to wait for a shorter time before stopping. Thus, both the 
interim deadline preferred by the principal S0P and the interim deadline chosen 
by the agent S0A are lower for a higher k. Further, for a higher k the agent has to 
choose an information policy relatively closer to the full-information benchmark 
to ensure that the individual rationality constraint at t = 0 is satisfied. Hence, the 
agent-chosen interim deadline S0A approaches S0P , the interim deadline preferred 
by the principal. The comparative statics of S0P and S0A with respect to the 
cost-benefit ratio of the project k are presented in Figure 2.6.

30This is because the increase in k makes the principal's instantaneous benefit from waiting 
decrease, and the normalized instantaneous cost of waiting becomes higher.

Figure 2.6: Interim deadline chosen by the agent S0A (dashed) and preferred by 
the principal S0P (thick), as functions of the cost-benefit ratio of the project k.

2.6 General preferences

In this Section, I allow for profit-sharing between the agent and the principal, 
varying degree of the agent's benefit from the flow of funds, and exponential 
discounting, and demonstrate that the optimal information policy still has the 
same properties as in the baseline model.

First, I assume that the agent and the principal share the project completion 
profit v: the principal gets a • v, while the agent gets (1 — a) • v, a E (0,1]. Thus, 
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now the agent benefits not only from the flow of funds provided by the principal for 
running the project but also from the share in the profit. The assumption that the 
agent gets a share in the project completion profit is natural in many situations. In 
particular, the research documents that the entrepreneurs in innovative startups 
are up to some extent driven by giving vent to their entrepreneurial mindset and 
bringing their innovative ideas to life [Gundolf et al., 2017]. In such a context, 
a positive profit share of the agent captures that the agent is motivated by the 
success of the project.

Second, I assume that given a flow cost of c incurred by the principal, the agent 
obtains a flow benefit flc,fl > 0. /3 can be interpreted as the agent's marginal 
benefit from using the funds provided by the principal for funding the project. 
Alternatively, for /3 E [0,1] the loss of 1 — /3 of the amount of the transfer at each 
date can be interpreted as the transaction costs. Finally, setting /3 = 0 for some 
a < 1 allows for abstracting from the agent's motives for diverting the funds and 
considering the agent motivated only by the success of the project.

Third, I allow for exponential discounting at a rate r > 0. Thus, the present 
value of a profit obtained at a date t is given by ve-rt and the present value of a 
stream of funding up to date t is given by 1 (1 — e-rt) c. The following Proposition 
demonstrates that given the more general preference specification, the structure 
of the optimal disclosure, present in the baseline model, preserves.

(a) When the cost-benefit ratio of the project is low, < K (T, X, r, a), the op
timal investment schedule t satisfies t > t2 A T, i.e., the agent recommends 
the principal to stop only after the completion of the second stage of the 
project.

(b) When > K (T, X, r, a), the optimal investment schedule t assigns positive 
probability both to the stopping in state 2 and state 0, i.e., the agent not 
only discloses the completion of the second stage of the project, but also 
specifies an interim deadline for the completion of the first stage.

Similarly to the baseline model, allowing the principal to stop after the project 
completion brings profit to the principal and thus leads to a relatively higher total 
surplus, which the agent can extract. Meanwhile, allowing the principal to stop 
at the interim deadline does not increase total surplus and serves solely as an 
expected payoff transfer from the agent to the principal. To see that, note that 
stopping when the first stage of the project is still incomplete allows the principal 
to save on the further costs of funding the project when over time the project 
proves to be “unsuccessful”. This can not be beneficial for the agent as she does 
not internalize the costs of running the project. Further, stopping at the interim 
deadline is strictly detrimental for the agent as she strictly prefers the principal to 
postpone the stopping of funding when no stages of the project are completed.31

31The probability of project success and stock of obtained funds are non-decreasing in the 
date of stopping irrespective of the number of the completed stages of the project.

When the project is sufficiently ex-ante attractive, the agent can motivate 
the principal to start funding the project without promising to stop the stagnant 
project at the interim deadline, and this is strictly beneficial for the agent. Thus, 
when the project is promising, the agent sets no interim deadlines, which in 
expectation gives her more funds and more experimentation for free.
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2.7 Conclusion

A transparent flow of information is crucial for the successful management of any 
innovative project. However, the researcher, who controls the information on the 
progress of the project, often tends to have different motives than the investor. 
This leads to the question of how a researcher chooses the transparency of the flow 
ofinformation about the progress ofa project in order to manipulate the investor's 
funding decisions. I address this question in a dynamic information design model 
in which the agent commits to providing information to the principal with an 
incentive to postpone the principal's irreversible stopping of the funding.

I contribute to the dynamic information design literature by studying the 
problem of the dynamic provision of information regarding the progress of a mul
tistage project, which evolves endogenously over time and needs to be completed 
before a deadline. I show that the agent's choice of which pieces of information to 
provide and when depends on the project being either ex ante attractive for the 
principal or not. In the case of a promising project, the agent provides only the 
good news that the project is completed and postpones the reports. In the case of 
an unattractive project, to motivate the principal to start funding the project the 
agent not only reports the completion of the project, but also helps the principal 
to find out when the project stagnates. To achieve this, the agent announces an 
interim deadline for the project - a certain date at which she recommends the 
principal to cut the funding of the project if the milestone of the project has not 
been reached.
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2.A  Notational conventions

The state process is given by xt, Vt G R+, defined on the probability space 
(Q, F, P), t G R+. Its natural filtration is denoted by F = (Ft)t>0. Throughout 
Appendices 2.B and 3.A, the following notational conventions are used:

1. I denote the random time at which the nth stage of the project is completed 
by tn. Formally, tn G R+ is a continuously distributed random variable that 
represents the first hitting time of xt = n.

2. Consider some stopping time t. Whenever “t” stands as a term in an 
inequality, it stands for a realization of the stopping time t and it should be read 
as “for each w G Q and corresponding t (u)”.

Example 1. “t2 A T > t” should be read as “t2 (u) A T > t (u), for all w G Q”.
Example 2. “for all t G [S,t)” should be read as “for all t G [S, t (w)), for all 

uGQ”.
3. The continuation value of the agent at time t, given t, and conditional on 

t<t:
Wt (t) E [t — t|t < t] c.

4. The total (continuation) surplus at time t, given t, and conditional on 
t<t:

SVt(t)Wt(t)+Vt(t).

5. Shorthand for posterior beliefs:

qn (t) P (xt = n|t< t), 
rn (t) P (Xt = n\t < t).

2.B  The principal's continuation value

Here I present the alternative formulation of the principal's continuation value 
(2.6). This helps me to study some of its properties for further use in Appendix 
3.A. The continuation value of the principal at time t and given the investment 
schedule t is given by (2.6). Postponing the stopping for At brings a benefit 
in the form of project completion payoff v iff the second stage of the project is 
completed within At. As xt follows the Poisson process, the probability of two 
increments in a very short time At is negligibly small. Thus, during some At, 
the principal gets the project completion payoff v iff the first stage of the project 
has already been completed at some earlier time. Thus, postponing the stopping 
for At brings the principal v with probability Aq1 (t) At. The second stage is not 
completed within At with the complementary probability of 1 — Aq1 (t) At. The 
principal's continuation value is thus given by

Vt (t) = (vAqi (t) — c) At + (1 — Aqi (t) At) Vt+^t (t)
= vA (qi (t) — k) At + (1 — Aqi (t) At) Vt+^t (t).

Differentiating both sides w.r.t. At and considering limA/ (.) yields

0 = vA (qi (t) — k) — Aqi (t) Vt (t) + Vt (t) ,

which, after rearranging becomes

V (t) = Aqi (t) Vt (t) + vA ( k — qi (t)) . (2.13)
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2.C Proofs

Proof of Lemma 7. The beliefs regarding the number of stages of the project 
completed by time t, xt , evolve according to the Poisson process. The principal's 
unconditional beliefs are given by p0 (0) = 1 and for any t such that the game 
still continues,

P0 (t) = -Xpo (t), 
pi (t) = X(po (t) - pi (t)),
P2 (t) = Xpi (t),

(2.14)

where p0 (t) = e xt and p1 (t) = Ate xt, p2 (t) = 1 — p0 (t) — p1 (t). The principal's 
problem is given by

max v p2 ( S ) c S .se[o,r] { v s } (2.15)

I start with analyzing the choice of S for the interior solution case, S G (0, T). 
F.O.C. for (2.15) is given by

V • p2 (S) = C, (2.16)

or, equivalently, p1 (S) = k. There are two values satisfying (2.16): S and SNI, 
S < S .At each t G (S, S } the principal receives a net positive payoff flow. 

Thus, stopping at S is not optimal and the only candidate for optimal stopping 
is S .32 Further, one can obtain the closed form expression for the interior 
stopping time S from (2.16):

32 S is a local minimum of the objective.

S ni 1,., / -,
s = -xW-i (-k) , (2.17)

where W-1(x) denotes the negative branch of the Lambert W function. SNI is 
well-defined for any k < e-1.

Thus, the solution to (2.15) could potentially be 0, S , or T. I proceed with 
a useful lemma.

Lemma 14. The following is true regarding the principal’s continuation value 
in the no-information benchmark, Vt : if Vt > 0, for some t G |o, S A t| , 

then VNI (s) > 0, for all s G ^t, sNI A t| .

Proof. The principal's continuation value in the no-information benchmark is 
given by

vN1 = [P2 (t A sNI) - P2 (t)] v - (t A sNI - t) c. (2.18)

Further,
VNI (t) = vX(k - e~xtXt^ = vX (k - p1 (t)).

P1 (t) < k for all t G 0, S and p1 (t) > k for all t G [S, sNI A t| . Thus, Vf1 

increases for t G 0, S , decreases for t G S, T A S , and vNI T A S = 0, 
which establishes the result. □
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Lemma 14 implies that if VNI (0) > 0 and the principal chooses to opt in at 
t = 0, then V^1 > 0, t G |o, SNI A t| , i.e., he invests until t = T A SNI. This 

implies that the solution to (2.15) is either T A SNI or 0.
Finally, at t = 0 the principal chooses to start investing or not. The condition 

for the principal to start investing at t = 0 is given by

VNI > 0. (2.19)

To specify the set of parameters for which (2.19) is satisfied, I obtain the cutoff 
value of k given T and A. Such a parameterization is intuitive: k above the cutoff
level corresponds to a project with sufficiently high normalized cost-benefit ratio 
and implies that the principal does not opt in. I denote this cutoff by kni (T, A). 
This solves (2.19) holding with equality. Two cases are possible.

NICase 1 : T < S1

f 1
either 1 > T or < A

A b

< :■ T < — AW-1 (—k). This inequality is satisfied when 
T

“ -x^^ Given T < S , (2.19) holding with equality

becomes
p2 (T) v - Tc = 0.

Solving it for k yields k = e XT (jx^,T 1 — 1).

Case 2: T > sNI. This inequality is satisfied when | < T and k > e-XTAT. 
Given T > SNI, (2.19) holding with equality becomes

VP2 ( SNI) - cSNI = 0 . . v (1 - P0 (SNI) - Pi ( SNI)) = cSNI,

where (recall that p2 (SN^ = v )

P0 (SNI ) = P2 (SNI ) = c
A2S NI v

k
A S NI

and
Pi (sNIX) = Ap2 (sNI^

Consequently,

/ S NI \ S NI
vp2 IS I — cS = v — V • K 1 + A sNI

')

NI
Let yA . Note that, by definition, y > 1.

vp2 s - c s /v = 1

A S NI

Then k = ye-y, and so 

- e-y 1 + y + y2 .

c
AV = K

i +

It follows that VNI (0) is nonnegative whenever A SNI > y0 = 1.79328, which is 
equivalent to

k < k0 =. 0.298426.

Finally, putting the two cases together yields
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NI (T, A) = Ko = 0.298426, 

e-XT (- 1) ,

if | < T and K > e-XTAT 
otherwise.

(2.20)

□
Proof of Lemma 8. The principal chooses at E {0, 1} sequentially given the ob
served realizations of xt E {0,1, 2}. Whenever the principal observes t = t2, he 
immediately chooses at = 0 and gets v.

Consider the case xt = 1, t < T, i.e., the first stage of the project has already 
been completed. As xt follows a Poisson process, in expectation it would take 
| units of time for the second stage to be completed and its completion brings 
the principal the value of v. Thus, the necessary and sufficient condition for the 
principal to invest at t when xt = 1, t < T is given by

1
v - c • — > 0

A
:■ K < 1

Assume that k < 1 holds and xt = 1; thus, the principal chooses to invest at t. In 
that case, the principal invests until t2 A T. To see this, recall that the only news 
that the principal can receive given xt = 1 , t < T is the completion of the second 
stage of the project, t2, which leads to immediate stopping. At each t < t2 A T 
such that xt = 1, choosing at = 0 yields an instantaneous expected payoff of 0, 
while choosing at = 1 yields an instantaneous expected payoff of AvAt — cAt. 
Thus, k < 1 suffices for the principal to invest until t2 A T.

Consider now the case of xt = 0, t < T, i.e., no stages of the project have 
yet been completed. Postponing the stopping for At brings the instantaneous 
expected payoff of VtF|1IAAt— cAt, where VtF|1I is the principal's continuation value 
at time t under full information, conditional on the completion of the first stage 
of the project. I proceed with obtaining the expression for VtF|1I. By definition, 
the principal gets v whenever the second stage is completed not later than T. The 
principal invests until t2 A T, and knows that at t the first stage of the project is 
already completed; thus, VtF|1I is given by

Vf! = v P (t2 < T|xt = 1) - c E [t2 A T - t\xt = 1] .

T2|xt = 1 corresponds to the time between two consecutive Poisson arrivals, and 
thus has exponential distribution. First, consider P (t2 < T|xt = 1):

P(t2 < T|xt = 1) = 1 - e-X(T-t).

Next, consider E [t2 A T - t|xt = 1]:

E [t2 A T|xt = 1] - t

= P(t2 < T |xt =

e-X(T-t)

e-X(T-t)

rT Ae-X(z-t)

"J. Z>(r2<T|x, = 1)dZ + P(T2 >T|Xt = 1> T " 1

) + t - e-X(T-t)T + P (t2 > T|xt =1) T - t

)■
(2.21)
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Thus

= v (1 - e-X(T-t)) - c 1 (1 - e-X(T-tp
/ x X (2.22) 

= (v - X) (! - e~XtT-t)Y

From (2.22) one observes that VtF|1I decreases in t. If the net instantaneous benefit 
given by VFXAt - cAt gets as low as 0 at some t, then the principal chooses to 
stop investing at this t. I denote the time at which the net instantaneous benefit 
reaches 0 by S0P . S0P can be obtained from XV1FI S0P - c At = 0. Thus,

sp=t+.. ( . <2-23)

The principal is willing to start investing iff at t = 0 the expected payoff from 
investing at t = 0 covers the costs of investing, i.e. [XVFI (0) - c) At > 0. From 

(2.23), this corresponds to Sp > 0. I denote the upper bound on the cost-benefit 
ratio k such that the principal chooses to start investing in t = 0 under full 
information by kfi (T, X), I solve Sp = 0 for k and obtain

1 _ e-XT
kFI (T,X) = ^-e=^. (2.24)

In summary, under full information, if k < kFi (T, X), then the principal starts 
investing at t = 0. Further, he stops at S0P if the first stage of the project has 
not been completed by that time. Otherwise, he proceeds to invest until t2 A T.

□

Proof of Proposition 2.5.1. I provide the proof for each of the four parametric 
cases below.

1. The case of k < knd (T,X).
knd (t, X) is defined as follows: for any k < knd (T, X), the principal invests 

until T in the no-information benchmark. From Lemma 7, if the principal is 
willing to start investing, i.e., k < kni (T, X), then

SNI = SNI T.

For the sake of instruction, below I consider relaxing the Assumption 2.1 and 
demonstrate how the relation between knd (T, X) and kni (T, X) changes between 
Case a (relaxed Assumption 2.1) and Case b (Assumption 2.1 holds).

Case a. eXT < XT (XT + 1) + 1. In this case, whenever the principal is 
willing to start investing in the no-information benchmark, she invests until T, 
i.e., knd (T,X) = kni (T,X), where kni (T,X) is given by (2.20). To see that, 
first, consider the extreme sub-case in which T < X. As - XS must belong 
to -1 axis of Lambert W function, it has a lower bound corresponding to X• 
Thus, T < SNI for any k (T,X). Second, consider XT E [1, XT], where XT 

solves eXT = XT (XT + 1) + 1. In this case, from (2.17), if k (T,X) < e-XTXT 
(k (T,X) > e-XTXT, respectively), then T < SNI (T > SNI, respectively). How
ever, kni (T, X) < e-XTXT. Thus, knd (T, X) = kni (T, X).
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Case b. eXT > AT (AT + 1) + 1. As before, it holds that if k (T, A) < e XTAT 
( k (T, A) > e-XTAT), then T < SNI (T > SNI, respectively). Denote

knd (T, A) e-XTAT.

As NI (T, A) > ND (T, A), two cases emerge. If 0 < < ND (T, A), then
T < SNI, and from k < kni (T, A), it holds that SNI — T and as the agent does 
not strictly benefit from disclosing any information, she chooses non-disclosure. 
If k > knd (T, A), then T > S and the agent can potentially benefit from 
information disclosure.

2. The case of ND (T, A) < < A(T, A).
The result is established in Proposition 2.5.2.
3. The case of A (T, A) < < FI (T, A).
The result is established in Proposition 2.5.3.
4. The case of > FI (T, A).
The principal's long-run payoff in the full-information benchmark non-positive. 

Thus, the agent can not strictly benefit from information disclosure and chooses 
non-disclosure.

□ 

Proof of Lemma 9. Necessity. Assume Vt(T) < 0 for some t. In that case, it 
is optimal for the principal to deviate to stopping at t < T. Thus, there is 
no information policy a, for which this t is the principal's best reply. Assume 
VTNI > o. Thus, the principal deviates to stopping at t > t, and there is no a, 
for which this T is the best reply.

Sufficiency. Assume (2.7) holds. Vt (T) > 0 for all t < T implies that the 
principal prefers to continue rather than to stop the funding for all t < T. Thus, 
it can not be that case that the principal stops before t. Further, VTNI < 0 implies 
that, conditional on reaching the date of stopping T, it is better for the principal 
to stop immediately rather than to stop at t > T.

Consider a direct recommendation mechanism a with M = {0, 1} such that 
whenever, based on the evolution of the state process, the considered investment 
schedule T suggests stopping the funding, the direct recommendation mechanism 
sends the message m = 0 to the principal. As it is optimal for the principal to 
stop at t, t is the principal's best reply to a. □

Proof of Lemma 10. Consider the recommendation mechanism immediately dis
closing the completion of the second stage of the project; it is given by T = T2 A T. 
There exists such A (T, A) that solves the principal's binding t = 0 individual ra
tionality constraint when T = T2 A T:

V (T2) = 0, 

where
V (T2) = p2 (T) v — E [T2 A T] c

— v (1 — e-XT — ATe-XT) — c1 (2 — 2e-XT — ATe-XT)
The solution to equation (2.25) is given by

~ (T A) — 1 — eXT + AT 
a(T,A) 2 — 2eXT + AT.

(2.25)

(2.26)

(2.27)
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Further, k > k(T, A) V (t2) < 0 and k < k (T, A) V (t2) > 0. □

Proof of Lemma 11. Consider the case of E ( ND (T, A) , NI (T, A)]. The agent's 
relaxed problem for this case has the individual rationality constraints only for 
t E [0, S- ], and it is given by

max {c • e[t]} 
T ET 

s.t. Vt (t) > 0, Vt E [0, SN^ ,

where Vt(T) is given by (2.6) and T is the set of stopping times with respect to 
the natural filtration of xt.

Consider the candidate investment schedule T such that T > S- NIV(T2 A T) and 
V (T) = VNI, where VNI is given by (2.3). I start with arguing that the candidate 
T satisfies the system of individual rationality constraints. From Lemma 7, given 

- NI
candidate T, the principal invests until S with certainty and the constraints in 
(2.28) are satisfied for all t E [0, S ). Further, t implies that V$ni(t) = 0, i.e.,

NIS

the individual rationality constraint at t = S is binding.
I proceed with arguing that the candidate T maximizes the agent's objective 

function in (2.28). The agent's objective can be WLOG written out as:

(2.28)

W (t) = P (xt = 2) v
'----------.---------'

total surplus
- V£i

principal's surplus
(2.29)

By Lemma 10, an investment schedule T that assigns probability one to T > T2AT 
satisfies the individual rationality constraint at t = 0 in (2.28). Note that, given 
T > T2 A T, the total surplus in (2.29) is given by P(xT = 2) v, i.e., total surplus 
achieves its upper bound determined by the exogenously given project deadline 
T. The principal's surplus in (2.29) is given by V (T) = VNI, i.e., principal's 
surplus achieves its lower bound specified by (2.3). This can be seen from the 
principal's decision problem, in which he best replies to an information policy a. 
As a allows the principal to condition his actions on the information regarding 
the evolution of the state process, the principal's equilibrium payoff can not be 
lower than VNI, his equilibrium payoff when he is restricted to choosing actions 
without conditioning them on the information about the state process. Thus, T 
solves the relaxed problem (2.28).

Consider the case of k E ( kni (T, A) , k (T, A)]. The agent's relaxed problem 
for this case has the individual rationality constraint only for the initial period, 
and it is given by

max {c • e[t]}
TET

s.t. V(T) > 0, 
where V(T) = P(xT = 2) v - E[T] c.

Consider candidate investment schedule T such that T > T2 A T and V (T) = 
VNI. For such T, agent's expected payoff (2.29) is given by P(xT = 2) v - VNI. 
As discussed for the parametric case E ( ND (T, A) , NI (T, A)], the first term 
is at its upper bound. To see that the second term is at its lower bound, note 
that, from Lemma 7, VNI = 0, and thus the individual rationality constraint in 
(2.30) is binding. Hence, T solves the relaxed problem (2.30).

□ 

(2.30)
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Proof of Proposition 2.5.2. The proof covers the case k G (knd (T, X) , kni (T, A)] 
and the case k G (kni (T, A), K (T, A)] separately.

1. The case ofk G (kND (T, X) , kNI (T, X)].
I start with proving the existence of S* such that V (t) = VNI. Assume that 

S* > S . For all t G [5 , S*), stopping never occurs, at t = S* it occurs 
if xS* = 2, and for all t G (S*,r) it occurs at t = t2 A T. For t G [S*,t), the 
absence of stopping induces posteriors qn (t). Further, for t G [S*, t) the principal 
discounts future benefits from postponing stopping using the probability of the 
state being 2. Hence, the continuation value at t = SSNI can be written as

Vsni (t) = vx(j_NI pi (z) — Kdz + ^ (qi (z) — k) (1 — P (xz = 2)) dz^ . (2.31)

The principal's long-run payoff is given by

SNI
V (t) = y (v • pi (s) A — c) ds + Vsni (t),

where fS (v • p1 (s) A — c) ds = VNI. Thus, to ensure that S* makes the indi
vidual rationality constraint bind at t = SS , i.e., V(t) = VNI, it is necessary 
and sufficient that ni (t) = 0. Using (2.31), this equation can be written as

y S* ,-T
NI k — pi (z) dz = (qi (z) — k) (1 — P (xz = 2)) dz.

Let g (S) f$Ni K—p1 (z) dz and k (S) jJ (q1 (z) — k) (1 — P (xz = 2)) dz, S G [sNI, t). 
q1 (t) > k, for all t G [S*,T). Thus, g (SNI^ = 0, k (SNI^ > 0. Further, 

p1 (t) < k, for gill t G (sNI, T]. Hence, g (T) > 0, k (T) = 0. Finally, p1 (t) < k, for 
all t G [sNI, T implies that g (S) > 0, for all s G SNI, t| , and q1 (t) > k, for all 
t G [S*,T] implies that k' (S) < 0, for all s G [S*,T]. Thus, by the intermediate 
value theorem, there exists S* solving VS NI (t) = 0. Thus, there exists S* > Ss

S sN Isuch that principal's individual rationality constraint is binding at t = S .
I proceed with proving that the investment schedule t satisfies the conditions 

in Lemma 9 and thus it is obedient.
First, consider t < Ss . The principal's continuation value for all t G [0, Ss ] 

can be written as
gNI

Vt(t) = vA(pi (s) — k) ds + VS NI (t) .

Given the binding individual rationality constraint, it becomes

7,NI
S NI

Vt (t) = vA (pi (s) — k) ds, for all t G [0, Ss ).

Finally, note that Vt (t) above is equivalent to VtNI given by (2.18). Lemma 
7 implies that given k G (kND (T, A) , kNI (T, A)], VNI (0) = V(t) > 0. Further, 
Lemma 14 implies that V (t) > 0 Vt (t) > 0, Vt G [0, SNI).
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Second, consider t G S*]. Given k G (knd (T, A), kni (T, A)], p1 (t) <

k, 'St G [SNI, S*]. Thus, VtNI = 0, Vt G [SNI, S*]. The principal's continuation 
value is given by

/•S*
Vt (t) = J vA (pi (s) - k) ds + Vs* (t). (2.32)

As p1 (t) < k, Vt G |SNI, S*], if vA (p1 (s) — k) ds < 0 and it is increasing in t. 

As Vsni (t) = 0, where Vni (t) is given by (2.31), it follows that Vt (t) > 0, Vt G 

[S NIS* ].
Third, consider t G [S , t). The absence of stopping at t > S reveals that 

xt = 2. Thus qi(t) = po(p+pl(t) = i+tt, Vt G [s*,t)> and, thus, qx (t) > 0.
Further, q1 (S ) > k. The continuation value Vt G [S , t) is given by

Vt (t) = E [jtT vA (qi (z) — k) dz 1t < t] .

Thus, Vt (t) > 0, Vt G [S , t).
2. The case of kni (T,A) < k < k (T, A).
I start with proving the existence of S such that V (t) = 0. For all t G [0, S ), 

stopping never occurs, at t = S* it occurs if xS* = 2, and for all t G (S*,T] it 
occurs at t = t2 A T. The principal's long-run payoff can be written as

V (t) = vA p1 (z) — adz + J (q1 (z) — k) (1 — P (xz = 2)) dz^ . (2.33)

To ensure that S makes the individual rationality constraint bind at t = 0, 
it is necessary and sufficient that V (t) = 0. The next step of the proof consist 
of inspecting (2.33) to establish that there exists S ensuring that V (t) = 0. It 
follows the respective part from the proof for the parametric case knd (T, A) < 
k < kni (T, A), imposing S = 0 in it everywhere; thus, I omit it for the sake of 
space.

I proceed with proving that the investment schedule t satisfies the conditions 
in Lemma 9 and thus it is obedient. The principal's continuation value is given 
by (2.32). As k G (kni (T,A) ,k(T, A)], it follows from Lemma 7 that VtNI = 
0, Vt G [0,S*]. First, assume S* < S . From the proof of Lemma 7, it follows 
that p1 (t) < k, Vt G [0, S], and p1 (t) > k, Vt G [S, Thus,

vA (p1 (s) — k) ds > vA (p1 (s) — k) ds, Vt[0, SNI]. (2.34)

As Vt(t) is given by (2.32), V(t) = 0 and (2.34) imply that Vt(t) > 0, Vt G [0, S ]. 

Second, assume S* > S .As V (t ) = 0 and f0 vA (p1 (s) — k) ds < 0, it must 
be that V(S ) > 0. Further, ftS vA (p1 (s) — k) ds increases in t for t G [S , S*]. 
Thus, Vt(t) > 0, Vt G [0, S ].

Finally, the proof that Vt(t) > 0, Vt G [S , t) follows the the respective part 
of the proof for the parametric case k G (kND (T, A) , kNI (T, A)]; thus, I omit it 
for the sake of space.

□
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Proof of Lemma 12. I provide the proof for the parametric cases knd (T,A) < 
k < kni (T, A) and kni (T, A) < k < K (T, A) separately.

1. The case of knd (T, A) <k < kni (T, A).
Under any obedient optimal policy, the principal's individual rationality con

straint is binding, thus, V (t) = VNI, or equivalently p2 (T) v—E [t] c = p2(S ) v— 
NISNc. Thus,

E[t] = A; (P2 (T) — P2 (SNI)) +SNI.

Differentiating both sides with respect to k yields

d E[t] = e-TX (1 + TA) — e-SNx — k

d; K2A

The equation
NI

e-TX (1+ TA) — e-s x — k = 0

can be equivalently rewritten as

e-TX - e-sNIx ke- TxTA.

It has a unique solution corresponding to k = kND (T, A) e-TxTA. As k > kND (T, A) , 
it holds that d E [t] /dn < 0.

2. The case of kni (T,A) < k < K (T, A).
The principal's long-run payoff under any obedient optimal policy is given by

E[t] c = p2 (T) v.

Rewriting it equivalently, E [t] = X 1p2 (T) d E [t] ¡Qk < 0.
K □ 

Proof of Lemma 13. Lemma 10 implies that if a schedule t assigns zero proba
bility to stopping in states 0 and 1 then V (t) < 0 and the individual rationality 
constraint is violated. Thus, the necessary condition for a schedule t to be in
dividually rational under k G (k (T, A), kfi (T, A)) is that it assigns a positive 
probability to stopping not only in state 2, but also to stopping in either state 0 
or state 1. Consider a schedule t that assigns a positive probability to stopping in 

probability mass of stopping in state 1 to stopping at t2 A T. Lemma 8 suggests 
that in state 1 the principal strictly benefits from postponing the stopping until 
the second stage of the project is completed. Thus, V (t') > V (t). Further, un
der t' the principal invests strictly longer, in expectation. Thus, W (t') > W (t). 
Thus, for a schedule to be optimal it should not assign a positive probability to 
stopping in state 1.

Next, consider a schedule t which assigns a positive probability to stopping in 
states 0 and 2. Assume that the stopping in state 0 happens at date S, which can 
be either deterministic or stochastic: if xs = 0 then t = S, otherwise, t > t2 A T 
and there exists w G Q such that t (u) > t2 (u), i.e., with a positive probability, 
stopping in state 2 happens strictly after the date of transition to state 2. Assume 
that V (t) = 0. Consider the following investment schedule f: if xs = 0 then 
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tK = SK, E [SK] > E[S], otherwise, tK = t2 A T, and V(tK) = 0. Further, from (2.9), 
the agent's objective is given by

W (tK) - W (t) = (SV (tK) - V (tK)) - (SV (t) - V (t))
= SV(tK)-SV(t).

The change from t > t2 A T to t = t2 A T induces no loss in total surplus as 
the measure of u E Q satisfying the event {t2 < T} is equal for both schedules. 
Further, the change from conditional stopping at S to conditional stopping at 
K induces an increase in total surplus as P (x§ = 0) < P (xS = 0) and thus, in 
the latter case, conditional stopping happens less frequently. Hence, SV (tK) > 
SV (t). Thus, for a schedule that assigns positive probability to stopping in 
states 0 and 2 to be optimal, it is necessary that stopping in state 2 happens at 
t2 with probability 1.

□ 

Proof of Proposition 2.5.3. Given Lemma 13, the space of candidate optimal in
vestment schedules under k E (k (T, A) , kfi (T, A)] simplifies to schedules such 
that stopping in state 2 happens at t2, and also stopping in state 0 happens 
with positive probability. Thus, to characterize the optimal schedule under 
k E (k (T, A) , kfi (T, A)], I need to characterize the assignment of the probability 
mass of stopping in state 0 that is optimal for the agent given the principal's in
dividual rationality constraints. To do this, I consider the agent's optimal design 
of a device that randomizes over the dates of stopping in state 0.

At t = 0, the agent chooses a distribution Fp on [0,T], observable to both 
the agent and the principal. p stands for the random date at which the stopping 
occurs if the state is 0 by that date. p is drawn at t = 0 according to Fp, which 
is independent from the state process xt, and the draw privately observed by the 
agent.

I proceed with a useful lemma.

Lemma 15. Given an investment schedule

t = p- iF XP = 0 (2.35)It2 A T, otherwise,

where p E [0, T], it holds that

P (xT = 2) = P (xT = 2) — P (xp = 0) P (xT = 2|xp = 0)

and
E [t] = E [t2 A T] - P (xp = 0) E [t2 A T - p|xp = 0] .

Proof. P (xt = 2) stands for the mass of events such that the principal gets v. 
Given (2.35), the principal gets v either if the second stage is completed not later 
than p or if the first stage is completed not later than p and the second stage is 
completed not later than T. Thus,

P (xt = 2) = P ({xp = 1} n {t2 < T}} + P (xp = 2).

Further,
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P ( {Xp = 1} n {t2 < T}} = P (Xp = 1) P (t2 < T\Xp = 1) .

Thus

(2.37)

P (xt = 2) = P (xp = 1) P (t-2 < T\xp = 1) + P (xp = 2). (2.36)

Further, from the full probability formula,

P(xp = 1) P(t2 < T|xp = 1) = 
P (xT = 2) 
—P(xp=0)P(t2<T|xp=0) 
—P(xp=2)P(t2<T|xp=2).

Plugging this into (2.36) yields

P(xt=2)=P(xT =2)—P(xp=0)P(t2<T|xp=0).

I proceed with proving the second result of Lemma 15. Given (2.35), it holds 
that

E[t]=P(xp=0)E[t|xp=0]+P(xp>0)E[t|xp>0] 

= P (xp = 0) p + P (xp > 0) E [t2 A T\xp > 0] .

Further, from the full probability formula,

P (xp > 0) E [t2 A T|xp > 0] =E [t2 A T] 
—P(xp = 0)E[t2AT|xp = 0].

Plugging this into (2.37) yields

E[t] =E[t2AT]—P(xp=0)E[t2AT—p|xp=0].

I proceed to solving the agent's problem:

mmax {EFp [cE [t]]}
s.t. EFp [Vt(r)|t <t] > 0, Vt > 0, 

where t is given by (2.35).
I proceed in two steps: first, I formulate and solve the relaxed version of

(2.38) with individual rationality constraint only for t = 0; second, I demonstrate 
that the solution to the relaxed problem satisfies the full system of constraints in
(2.38) .

The individual rationality constraint in the relaxed problem is given by

P (xt = 2) v — E [t] c > 0.

Using Lemma 15, the agent's relaxed problem can be written out as:

min ¡EFp [P (xp = 0) E [t2 A T — p\xp = 0]]}
s.t. EFp [P (xp = 0) (cE [7-2 A T — p\xp = 0] — v P (72 < T\xp = 0))] > —V (72).

(2.39)

□

(2.38)
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The Lagrangian function for the problem is

L = l</< [P (xp = 0) E [t2 A T - p|xp = 0]]
- 1 (EFp [P (xp = 0) (cE [T2 A T - p|xp = 0] - v P (T2 < T|xp = 0))] + V (T2)) , 

where P (xp = 0) = e Xp,

E [t2 a T - p|xp = 0]
rT a2 (z — p) e~X(z-p>

= P (T2 < T^P = " Jp Z • P (T-2 < T>, = 0) dZ + P (T2 > T|x' = 0) T " P
2
A

2
- Ae

x(t-p) _ e X(T-p> (t - p)

and
P (T2 < T|xp = 0) = 1 - e-X(T-p) - A (T - p) e-X(T-p>.

(2.40)

(2.41)

I obtain the F.O.C., which needs to hold for each value of p that has a positive 
probability in Fp:

e-xT c 2e-x(T-p) - 1 (1 - 1) - 1Av e-x(T-p) - 1 = 0. (2.42)

The derivative of the left-hand side of (2.42) w.r.t. p is given by e-xpA(2c + 1 (Av - 2c)). 
As kfi (T,A) < 2, the derivative is positive. Thus, there exists at most one p 
that satisfies the FOC (2.42). Thus, the optimal Fp is degenerate. I denote it 
with S0A, the interim deadline.

I proceed with characterizing the optimal S0A:

min {P (xS = 0) E[T2 A T - S|xS = 0]} 
se[0,T] v '
s.t. P (xs = ") (c E [T2 a T - Sixs = "] - SVs|0 fo)) > -V (T2).

The system of F.O.C. is given by

'e-XTc (-2e-X(T-s> - 1) (1 - 1)

- e-XT A (e-X(T-s> - 1)
> 0 if S = 0
= 0 if S G (0, T)

0 if S = T

Ce-XT (2 (e-X(T-s> - 1) - A (T - S))

- ve-XT ((e-X(T-S> - 1) - A (T - S)) + V (T2) > 0
= 0 if 1 > 0.

Assume 1 = 0. In this case, the first F.O.C. wrt S yields -ce-XT 2e-X(T-s) - 1 . 
The expression is negative for all S G (0,T). Thus, 1 > 0, and optimal S 
solves the binding constraint. Thus, I proceed with inspecting the corresponding 
equation given by

Ce-XT (2 (e-X(T-s> - 1) - A (T - S))
- ve-XT ((e-X(T-s> - 1) - A (T - S)) (2.44)

= - V(T2) ,
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where V (t2) is given by (2.26).
The solution to (2.44) is given by

S = | [7 + W (—7e_Y)] , (2.45)

where 7 = eXT 1—K and W(.) denotes the Lambert W function.
Denote the 0 and —1 branches of the Lambert W function by W0(.) and 

W_1(.). k G (0, 2), thus, 7 > 0. (2.45) depends on 7 and for each 7 = 1 
corresponds to two points as the Lambert W function has two branches. The 
values of (2.45) as a function of 7 are presented in Figure 2.7. They are given by

Figure 2.7: Roots of equation (2.44) as a function of the parameter 7: 
root corresponding to branch 0 of the Lambert W function - thick;

root corresponding to branch —1 of the Lambert W function - dashed.

7 is decreasing in k, and 7\k=kfi = 1. As K < kfi, which corresponds to 
7 > 1, the solution to (2.44) is given by

Sa = 0, Sb = | [7 + Wo (—7e_Y)].

As the objective of (2.43) is decreasing in S and SB > SA, the solution to (2.43) 
is given by

SA = I [7 + Wo (—7e_Y)] ,7 = eXT 11 —‘K (z46)

Finally, I can describe the solution to (2.39): t is the stopping time such that 
stopping occurs either at the moment of completion of the second stage of the 
project or at S0A, conditional on the absence of the completion of the first stage 
of the project, i.e.

S0A, if xSA = 0
0 S0A (2.47)

t2 A T, otherwise,

where S0A is given by (2.46).
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I proceed with the second part of the proof: I demonstrate that (2.47) satisfies 
the full system of constraints in (2.38), and thus solves (2.38). To do this, I 
need to demonstrate that Vt (T) > 0, for all t E [0, T). If the recommendation 
mechanism T is given by (2.47), then, for t < S0A the absence of stopping at some 
t reveals that xt = 2. Thus,

q1 (t) = P1 (t)
P1 (t) + Po (t)

At
1 + At

Vt < S0A.

Hence, q 1 (t) > 0, for all t < SA. Further, for t > SA, the absence of stopping 
reveals that xt = 1. Thus, q1 (t) = 1, for all t > S0A.

Writing out Vt (T) based on (2.13) yields

Vt (t) = Aqi (t) Vt (t) + vA ( k - qi (t)) . (2.48)

q1 (0) = 0 and q 1 (t) > 0, for gill t < SA. I define t as the solution of Au = K- 
q1 (t) < k, for all t E [0, t A SA.

I argue that V (t) > 0 Vt (t) > 0, for all t E (o,t A SA. Assume that 

this is not true, then such that tinf |t E At A SA : Vt(T) < A. As Vt(T) is 

continuous in t, it follows that Vat) = 0, and by the mean value theorem there 
must be t E A, i) such that V (t) < 0. But this is in contradiction with the fact 

that Vat) > 0 and 2.48.
Consider now t E [i A SA, t). The continuation value can be written as

Vt (T) = E[ tT vA(q1 (z) - ) dz|t < T] . (2.49)

As k < 1 and q1 (t) = 1, for all t E [SA, t ), it holds that q1 (t) > k, Vt E [t A SA, t ). 
Thus, it can be seen from (2.49) that Vt (t) > 0, Vt E [i A SA, t).

□
Proof of Proposition 2.6. I assume it is not the case that a = 1 and A = 0 as, 
otherwise, agent is indifferent and discloses no information. I start with proving 
existence of and then proceed to proving that when the project is promising, 
an investment schedule, in which stopping never occurs in state 0, is optimal. 
Proving existence of follows the steps of the proof of Lemma 10. The principal's 
expected payoff is given by

V (t) = a P(xT = 2) v E \e-rT \r2 < t] - E

solves V (T2) = 0, or, equivalently

a P (xt2at = 2) v E [e-rT2ATT < T] = E 

where P (xT2AT = 2) = p2 (T). Solving (2.50) for k yields

1 P (Xt,at = 2) E [e-rT2ATT < T]
k J Aa E [J0T2AT e-rsds]

e-rsds c.
Jo

r T2AT e-rs

JO
ds c, (2.50)
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Finally, V (r) decreases in k. Thus, if k < k (T, A, r, a), then an investment 
schedule r = r2 A T satisfies the principal's individual rationality constraint.

Consider now the agent's expected payoff W (t) given by

W (r) = (1 — a) P (xT = 2) v E |e rT|r2 < r] + E e-rsds 3c.

Consider the case k < k(T, A, r, a). Consider an investment schedule r given 
by (2.35), i.e., such that stopping happens either immediately at the moment of 
the second stage completion, or in state 0 at a possibly random interim deadline. 
Further, consider an alternative investment schedule r = r2 AT. Given the 
two investment schedules, P (x^ = 2) > P (xT = 2). Further, E [e~rT|r2 < r] = 

E [e-rT |r2 < r] and E L e_rsds] > E [J0T e~rsds]. As W (r) > W (r) and k < 
k (T, A, r, a), the agent prefers to implement an investment schedule r rather 
than t.

Consider now the case k > k (T, A,r, a). The application of the arguments 
from the proof of Lemma 13 establishes the result.

□

2.D Disclosure of project completion with a de
terministic delay

Assume k E (0, kni (T, A)] and T > SNI. The optimal mechanism provides no 

information until t = S .At each t > S , it generates a recommendation to 
stop iff the second stage of the project was completed at date n (t) in the past, 
where

n « = — A(1 + A W-< — k e”"Ai^ •

where W-1(.) denotes the —1 branch of Lambert W function.
The mechanism from Proposition 2.D does not recommend stopping until 

the second stage of the project is completed, and thus maximizes the total sur
plus. The mechanism makes the principal's individual rationality constraint bind, 
V-Sni (r) = 0. The absence of a stopping recommendation after t = S induces 
posterior beliefs q1 (t) = k, Vt > SS . Note that the principal's expected instan
taneous payoff within At is given by

v • q1 (t) AAt — c • At = vAAt (q1 (t) — k) .

NI NINo information is provided until S and after S the mechanism keeps the 
principal's expected instantaneous payoff precisely at 0, Vt > S . As a result, 
the principal's continuation value is kept at 0 for all t E [SSNI, t).

The delay is given by t — n (t). At the beginning of the disclosure, t = S , the 
SNI

delay is S . To keep the belief regarding state 1 constant, the delay decreases 
for all t E (SS , t).
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Proof of Proposition 2.D. Posterior beliefs at date n induced by the disclosure of 
the absence of second stage completion are given by

qo (n)

qi(n)

Po (n) 
Po (n) + pi (n) ’

Pi (n)
Po (n) + pi (n) '

As no other evidence is provided during (n,t], the beliefs evolve according to

qo (s)

qi (s)

e Xs

1 + An’
e-XsA (s + n)

1 + An 

where s > n.
The belief regarding state 1 at current date t is given by

qi (t) =
< x( n Al

1 + An
(2.51)

The dynamic of the state is the same as in the no-information benchmark until 
NI

t = S . Therefore,

qo ) = Po ) = ^Nr and qi (SN/) = pi (SN/) = k.

The dynamics for t > SNI then is qi (t) = k, qi (t) = 0. Solving from (2.51), 

n=— A (1+A w-‘<—K e-i-x,At>).

The recommendation mechanism t is obedient. t > t2 A T implies that the 
recommendation to stop comes only if the second stage of the project has already 
been completed, and thus immediate stopping is clearly optimal for the principal. 
The recommendation not to stop is also obedient. Vt (t) > 0, Vi G [0, S ) is 
formally demonstrated in the proof of obedience for Proposition 2.5.2. I proceed 
by showing that Vt (t) = 0, Vt G [ SNI, t). Writing out Vt (t) in the recursive 
form yields

Vt (t) = (vAqi (t) — c) At + (1 — Aqi (t) At) Vt+At (t)
= vA (qi (t) — k) At + (1 — Aqi (t) At) Vt+At (t) .

As qi (t) = k, Vt E [ sMf, t) it becomes

Vt (t) = (1 — Aqi (t) At) Vt+At (t) , Vt E [ SNI, t).

Differentiating both sides w.r.t. At yields

0 = —Aqi (t) Vt+At (t) + Vt+At (t).

This differential equation together with the boundary condition VT (t) = 0 has a 
unique solution Vt(t) = 0 for all t E SNI, T .

□
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2.E The case of no project completion deadline

Importantly, the presence of a hard project deadline T serves as one of the nec
essary and sufficient conditions for the agent to commit to an interim reporting 
deadline. Without a hard deadline T, the principal's incentives under full infor
mation are different. Recall from Lemma 8 the principal's incentive to continue 
investing decreases in the length of absence of the first stage completion. In the 
case T x , the continuation value VtF1I is constant and given by v (1 — k). As 
a result, the principal's incentive to continue investing given the absence of stage 
completion does not change over time. Thus, if the principal opts in, he never 
chooses to stop investing before the completion of the second stage occurs. As 
a result, setting an interim deadline stops serving as an agent's tool to incen
tivize the principal's investment. The agent's information policy in the case of 
no project deadline is given in Lemma 16.

Lemma 16. Assume that T x. In that case, if k < |, then the agent uses 
the information policy presented in Proposition 2.5.1, Case 2.

Proof of Lemma 16. Under full information and the absence of an exogenous 
deadline, the principal assigns value vx to each state x G {0, 1, 2}. Clearly, 
v2 = v as the principal stops immediately and gets v. In state 1, at each t the 
principal gets vAt with probability AAt and pays cAt. As a result, the principal's 
continuation value is constant. Assume that k < 1, as otherwise c > Av and the 
principal chooses not to invest in state 1. As the principal's continuation value 
in state 1 does not change over time,

0 = A • (V2 - Vi) - c,

and so
v1 = v - — = v(1 - k).

A
Thus, the principal wants to invest in state 0 if c < Av1, i.e., k < 2.

Finally, as the information regarding t1 is not decision-relevant for the prin
cipal, for K < 1, the agent chooses the information policy that discloses only 
the completion of the second stage of the project and optimally postpones the 
disclosure to make the principal's individual rationality constraint bind.

□
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3. Form of Preference 
Misalignment Linked to 
State-Pooling Structure in 
Bayesian Persuasion
Co-authored with Rastislav Rehak (CERGE-EI).

3.1 Introduction

Bayesian persuasion, pioneered by Kamenica and Gentzkow [2011], studies strate
gic disclosure of information when the sender controls the information environ
ment (called signal) and the receiver controls the choice of action to be taken. 
As a review by Kamenica [2019] suggests, this literature has provided many ex
tensions of the original model of Kamenica and Gentzkow [2011] with interesting 
qualitative insights. However, full characterization of the optimal signal is gen
erally difficult even in the original model. There has been little progress on this 
front, and it has been limited to a small number of special cases.1

1We return to this point in the discussion of related literature in Section 3.2.
2 The structures of the optimal signals for the two cases considered in Figure 3.1 are derived 

using results from Section 3.6.

We contribute to this literature by studying a special case of the original model 
that has received little attention - a Bayesian persuasion model in which both the 
sender and the receiver have state-dependent preferred actions. We characterize 
a qualitative property of the optimal signal called state-pooling structure, which 
describes pools of states that cannot be discerned from one another by the opti
mal signal. Specifically, we ask how the structure of state-dependent preference 
misalignment affects the state-pooling structure of the optimal signal.

To illustrate the main point of this paper, we present an example of a politician 
(receiver, he) and his advisor (sender, she). They both wish to implement some 
level of government spending a R that is adapted to the current economic 
situation captured by GDP per capita y, which takes one of three possible values: 
1, 2, or 3. However, they each have a different vision of optimal spending as a 
function of GDP per capita. The advisor's payoff is uA (a,y) = — (a — uA(y))2 

and the politician's payoff is uP (a, y) = — (a — uP (y))2, where uA(y) and uP(y) 
represent the preferred spending of the advisor and the politician in state y, 
respectively. The advisor designs an investigation (a signal) that can inform the 
politician about the realization of GDP per capita. She does that strategically 
to influence the spending choice of the politician. We are interested in how the 
structure of this signal depends on the form of misalignment between the advisor's 
and politician's preferences captured by and uP, respectively.

Figure 3.1 illustrates how the form of disagreement between the advisor's and 
politician's preferred spending influences the structure of the optimal signal.2 

In the case presented in the left plot, the advisor's optimal signal fully reveals 
whether the state of the economy is low or not, i.e., one of the two outcomes of
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Figure 3.1: The form of disagreement between the advisor (uA ) and the 
politician (uP ) matters for the structure of the optimal signal: 

left plot: the advisor fully reveals state 1 and pools states 2 and 3 together; 
right plot: the advisor pools states 1 and 2 together and states 2 and 3 

together
(note: we consider only three levels of GDP per capita; the lines are drawn only 

for clarity of the picture)

her investigation fully reveals the low state and the other leaves the politician 
uncertain about the high and middle states - we say they are pooled together. 
Intuitively, both the advisor and the politician want the highest spending in the 
low state, so their goals are aligned in this state and the advisor wants to reveal 
it perfectly. However, they disagree about whether the spending should be higher 
in the middle or high state, so the advisor wants to attenuate this disagreement 
by pooling these two states together. In the case presented in the right plot, the 
advisor's optimal signal reveals whether the economy is above or below average, 
i.e., one of the two outcomes of her investigation pools the low and middle states, 
while the other pools the middle and high states. Intuitively, the advisor and 
the politician disagree about whether the spending should be higher in the low 
or middle state, so the advisor wants to attenuate this disagreement by pooling 
these two states together. However, they both agree that the spending should 
be higher in the middle state than in the high state, but the politician prefers a 
greater spending difference between these two states than the advisor. Therefore, 
the advisor wants to moderate the politician's actions by pooling these two states 
together.

In Section 3.3, we describe our model. We use the Bayesian persuasion frame
work of Kamenica and Gentzkow [2011] with one-dimensional finite state space 
- the sender's preferred action. Both the sender and the receiver have quadratic 
loss functions with bliss points depending on the state of the world. The structure 
of misalignment is captured by function p mapping the state of the world (the 
sender's preferred action) to the receiver's preferred action. The case of linear 
p with slope 1 corresponds to the benchmark of perfect alignment.3 We do not 
impose any requirements on this function and we analyze the role of its shape for 
the qualitative structure of the optimal signal in terms of state pooling.

3 A state-independent intercept does not affect the choice of the signal because it is a “sunk 
cost” for the sender.
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In Section 3.4, we present general results on the pooling structure of the opti
mal signal. The patterns of pooling are driven by the sender's trade-off between 
(i) the informativeness of the signal, which leads to better adaptation of the ac
tion to the state of the world in states of alignment, and (ii) the revelation of the 
realized mismatch of the sender's and receiver's preferred actions, which drives 
the action of the receiver away from the sender's preferred action. First, we show 
that the sender generically benefits from revealing some information. The only 
cases in which non-disclosure is optimal are when p is linear with a slope suffi
ciently different from 1. Second, we demonstrate that the optimal signal does not 
induce an interior belief (except in cases of non-disclosure).

In Section 3.5, we propose a simple graph procedure to characterize the opti
mal structure of state pooling for a given p. This procedure consists of an analysis 
of p on pairs of states and a test of pooling of more than two states. The crucial 
element of this procedure is the slope of p between pairs of states, which plays 
the role of an index of misalignment - if it is too high (disagreement about mag
nitude) or lower than zero (disagreement about order), then it indicates space for 
pooling; otherwise, it indicates space for separation.

InSection3.6, we provide a full characterization of the state-pooling structure 
in the case of three states of the world. The state-pooling structure is completely 
pinned down by the shape of p except for the case in which p has a slope suf
ficiently different from 1 for each of the three pairs of states. In that case, the 
choice of a particular state-pooling structure depends both on the shape of p and 
the prior.

3.2 Related literature

First, we relate our work to the Bayesian persuasion literature. The most relevant 
results from the seminal paper by Kamenica and Gentzkow [2011] are (i) condi
tions for full disclosure or non-disclosure in the general form and (ii) comparative 
statics of more aligned preferences. Regarding point (i), we go beyond these two 
“corner” cases for the optimal signal, similarly as in the recent studies of Arieli 
et al. [2020] and Kolotilin and Wolitzky [2020]. We discuss the connection of our 
work to Kolotilin and Wolitzky [2020] in more detail later in this section. Re
garding point (ii), we perform a different exercise with preference misalignment: 
we fix the preferences and analyze how the structure of preference misalignment 
is related to the structure of state pooling of the optimal signal.

The methodological progress in Bayesian persuasion on the front of providing 
a general characterization of the structure of the optimal signal has been scarce. 
First, with two or three states of the world, concavification provides an insight
ful graphical method of solving the sender's problem [Kamenica and Gentzkow, 
2011]. Second, when the sender's utility depends only on the expected state, 
the “Rothschild-Stiglitz approach” [Gentzkow and Kamenica, 2016] and linear 
programming methods [Kolotilin, 2018, Dworczak and Martini, 2019] have been 
used to solve these problems. However, we are interested in situations with the 
sender's state-dependent preferred action and the role of the structure of prefer
ence misalignment, where these methods do not deliver immediate answers. We 
propose a new concavification-based approach of characterizing the state-pooling 
structure of the optimal signal.
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The closest paper to ours is Kolotilin and Wolitzky [2020]. However, we differ 
along several directions, and our paper can be viewed as complementary to theirs. 
First, their sender prefers higher actions independently of the state, but experi
ences state-dependent loss from mismatching the preferred action. In contrast, 
our sender has state-dependent preferred actions, but her loss from mismatching 
the preferred action is state-independent. Second, their receiver prefers higher 
actions in higher states; we do not impose this assumption. Third, they provide 
sufficient (and “almost necessary”) conditions for special patterns of “assorta
tive” disclosure. However, they do not provide a procedure for finding the pool
ing structure of the optimal signal explicitly, and they avoid characterization of 
more complicated patterns. In contrast, we work in a more specialized quadratic 
setting and do not restrict ourselves to characterization of specific (pairwise) pool
ing structures. Instead, we propose a general procedure for finding the pooling 
structure. Finally, the mechanisms driving the results in the two papers are dif
ferent: in Kolotilin and Wolitzky [2020], the information does not have value for 
the sender alone, so state pooling emerges from pure persuasion concerns, while 
state pooling in our model is driven by the interplay of the sender's incentives to 
disclose the state and to hide misalignment.

Two other related papers in Bayesian persuasion literature are Alonso and 
Camara [2016] and Galperti [2019]. Similar to our paper, both rely on the con- 
cavification technique to obtain insights regarding the optimal signal. Alonso 
and Caamara [2016] consider the standard Bayesian persuasion model, but as
sume that the sender and the receiver have heterogeneous prior beliefs. While 
the sender in Alonso and Caamara [2016] uses the variation of the difference be
tween the sender's and receiver's prior beliefs across the states of the world to 
design the optimal disclosure, our sender uses the variation in the misalignment 
of the sender's and receiver's bliss points across the states of the world.4 Galperti 
[2019] considers the standard Bayesian persuasion model in which the sender and 
the receiver have a special type of heterogeneous prior beliefs: the receiver at
taches zero probability to some states that are perceived with positive probability 
by the sender. While we restrict attention to a sender with state-dependent bliss 
actions and study the general patterns of state pooling, Galperti [2019] makes 
weaker assumptions about preferences and focuses on patterns of pooling of the 
states that have a priori zero probability for the receiver.

4 They demonstrate that, under some mild conditions on the sender's and receiver's prefer
ences, the sender generically chooses at least partial disclosure over non-disclosure. Similarly, 
in our model, the non-disclosure conditions are stringent.

Second, the results of our study are connected to the literature on persuasion 
games, in which the sender chooses how to disclose her private verifiable informa
tion regarding the state of the world. Milgrom [1981] and Milgrom and Roberts 
[1986] analyze the conventional model of a persuasion game and establish the 
result on “unraveling” of the sender's private information leading to full disclo
sure. Dye [1985] and Shin [1994] study state pooling in a similar game but with 
(second-order) uncertainty of the receiver about whether the sender actually has 
some private information or not. Seidmann and Winter [1997] analyze a persua
sion game in which the sender has state-dependent preferred actions, and they 
demonstrate that the “unraveling” result still holds. The combination of these 
two features - second-order uncertainty and state-dependent preferred actions - 
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has been studied in a small number of recent papers. The closest paper to ours 
is Hummel et al. [2018], in which unraveling does not occur due to the presence 
of the receiver's second-order uncertainty. In the Bayesian persuasion model that 
we study, the sender's disclosure mechanism serves a similar role to the one in 
Hummel et al. [2018]: the sender moderates the receiver's actions via pooling of 
the states for which the sender's bliss-point line is sufficiently flat relative to that 
of the receiver.

Finally, Miura [2018] studies how pooling equilibria can be characterized based 
on a procedure that uses a masquerade graph introduced in Hagenbach et al. 
[2014]. In his procedure, a pool of states is formed by the types of the sender who 
are mutually interested in masquerading, i.e., being perceived by the receiver as 
some other type in the pool. In spirit, this resembles the procedure for discovery 
of the state-pooling structure we introduce: a masquerade edge between two 
nodes (types) in Miura's graph procedure plays a similar role as an edge between 
two nodes (states) in our graph procedure - it captures a motive for manipulative 
non-disclosure.

3.3 Model

We consider the standard Bayesian persuasion framework: a sender (S, she) 
designs and commits to an information structure (a Blackwell experiment) about 
an unknown state of the world u G Q to influence the action a G A of a receiver (R, 
he). The state space is finite, Q C R, |Q| = n, and the action space is continuous, 
A = R. The sender and the receiver have a common prior p0 G A(Q). They have 
the following preferences:

us = —(a — u)2,

5 This model can be seen as a reduced form of a model in which the state of the world is two
dimensional, y = (ws, wr), and the sender can design the experiment only about the dimension 
that is relevant for her, ws . The receiver then forms expectations about his relevant dimension, 
wr, using a common prior p0 G A(Q2), so p(wS) = EP0 [wr|ws]. This formulation maps better 
to the example with a politician and his advisor presented in the Introduction.

6Kamenica and Gentzkow [2011] show that there exists an optimal n such that |swpp(n)| < 
min{|Q|, |A|}. Hence, we restrict our search for the optimal signal only to signals satisfying 
|swpp(n)| < n.

ur = —(a — p u 2,

where p : Q R is arbitrary. Hence, state u represents the preferred action of 
the sender and p(u) the preferred action of the receiver.5

As is standard, the sender can be seen equivalently as choosing a Bayes- 
plausible distribution over posteriors, which we refer to as signal: n G A(A(Q)) 
such that

n(p)p(u) = po(u) Vu G Q.6 (3.1)
pEsupp(n)

The timing is as follows: the sender chooses a signal n, a posterior belief p is 
drawn according to n, and the receiver takes an action a given the belief p. The 
solution concept is subgame perfect equilibrium. Going backwards, the receiver's 
optimal action given a posterior belief p is a(p) = Ep [p(u)]. Hence, the game 
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reduces to the following problem of the sender:

cata™ — [Ep [(Ep [P(u)] — u)2]] s.E n(p)P = P0, (3.2)nGA(A(Q)) L L JJ / ApEsupp(n) 

where En [•] is the expectation over posteriors with respect to n and Ep [•] is the 
expectation over states with respect to p.

3.4 General results about the optimal signal

In this section, we present general results about the optimal signal, and combine 
them in the next section to construct the procedure that allows us to discover 
which states are “pooled” together in the optimal signal.

To better understand how the sender chooses the signal, we start by inspecting 
the trade-off she faces. We can rewrite the objective function from her problem 
(3.2) as

varn (Ep [u]) — En [(Ep [u — p(u)])2] . (3.3)

7To illustrate this point, imagine an interior prior p0, a signal n1 with only interior beliefs, 
and a signal n2 similar to n1, but with more extreme beliefs: pk = p/. + e(pk — po) Vk, for some 
small enough e> 0. Then, varn2 (Ep [w]) = (1 + e)2varni (Ep [w]) > varni (Ep [w]).

8We can contrast this feature with cheap talk [Crawford and Sobel, 1982a] in which the 
value of b matters for the informativeness of the equilibrium communication.

The first term captures the benefit of a more informative (in the sense of Black
well) n - ideally, she would like to reveal all states perfectly.7 The second term 
captures the “cost” of revealed misalignment - ideally, she would like to “pool” 
some states to hide the largest misalignment. Hence, the sender prefers to reveal 
the most information so that the action is well adapted to the state. However, 
since she does not control the action directly, she wants to exploit the form of 
misalignment captured by p to manipulate the action of the receiver.

We can notice that the intercept of p does not play a role for the optimal 
signal. Formally, consider any function p and take p = b + p for some arbitrary 
constant b G R. The sender's objective function

varn (Ep [u]) — En [(Ep [u — p'(u)])2] (3.4)

can be rewritten in the form

varn (Ep [u]) — En [(Ep [u — p(u)])2] — 2bEpo [u — p(u)] + b2. (3.5)

The last two terms in (3.5) do not depend on n, so the optimal signals under p 
and p' coincide. Hence, a state-independent bias b (no matter how large) does 
not affect the optimal signal. 8 Intuitively, the state-independent bias acts as a 
sunk cost for the sender. She cannot hide it by any manipulation of the signal 
because it is perfectly known ex ante.

It follows from the irrelevance of the intercept of p that what matters for 
the optimal signal is the overall shape of p, not agreement in particular states. 
In particular, perfect agreement between the sender and the receiver about the 
preferred action in a state of the world does not suffice for disclosure of that state. 
For example, consider two states ui < u2, p(ui) = ui, p(u2) = 2ui — u2. Even 
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though the sender and the receiver perfectly agree about the preferred action in 
w1, they substantially disagree in w2. It will be evident from the results in this 
section that full disclosure of the “perfect-agreement state” w1 is not optimal. 
Intuitively, due to the Bayesian consistency constraint, full disclosure of Wi would 
limit the opportunity to moderate the substantial disagreement in W2.9

9 In fact, Proposition 3.4.1 will imply that it is optimal not to disclose anything in this 
example.

3.4.1 Characterization of non-disclosure

In this subsection, we characterize the situation in which the sender does not 
benefit from revealing any information to the receiver.

The sender never (i.e., for any prior) benefits from providing any information 
if and only if p is linear with the slope from (—œ, 0] U [2, +œ).

Proof. The proof is in Appendix 3.A. It identifies the conditions for concavity of 
the expected utility of the sender as a function of the induced posterior by the 
principal-minor test of the Hessian matrix of this function. □

Surprisingly, it is relatively easy to introduce some information revelation in 
our setting: it is sufficient to have a nonlinearity in p. The intuition for this 
generic taste for information revelation is that information has high value for the 
sender who wants to match the state of the world. The cases of optimal non
disclosure identified in Proposition 3.4.1 are intuitive too: (i) misalignment in 
order, i.e., when the sender and the receiver disagree about the order of the bliss 
actions (slope of p negative) or (ii) misalignment in magnitude, i.e., when they 
agree about the order, but the receiver overreacts relative to the sender (slope of 
p greater than two).

The non-disclosure characterized in Proposition 3.4.1 is never uniquely op
timal for n > 3. To resolve such cases of indifference, we make the following 
assumption.

Assumption 3.1. Under indifference, the sender chooses not to disclose the 
states.

This assumption can be justified by the sender's interest in saving effort on 
communication when it is not needed. Technically, it greatly simplifies the anal
ysis. Substantively, it leads us to identify the least informative signal in the 
indifference set of the sender. In Appendix 3.B, we analyze the structure of 
our problem that gives rise to the cases of indifference, and discuss the role of 
Assumption 3.1 as opposed to other selection criteria.

3.4.2 Full disclosure

In the next proposition, we provide a sufficient condition for full disclosure of the 
state of the world.

If p is linear with a slope in [0, 2], full revelation of the state is always optimal 
(i.e., for any prior).
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Proof. The proof is in Appendix 3.A. It mostly follows from the proof of Propo
sition 3.4.1. □

For general n, Proposition 3.4.2 provides only a sufficient condition for full 
disclosure, but for n = 2 we can provide a full characterization. This special case 
is a cornerstone of our analysis of the case with general n.

Lemma 17. For n = 2, the sender strictly prefers full revelation if and only if 
the slope of p is in (0,2). The sender is indifferent between any feasible signals 
if and only if the slope of p is either zero or two. The sender strictly prefers no 
revelation if and only if the slope of p is in (—x, 0) U (2, x).

Proof. The proof is in Appendix 3.A. □

3.4.3 “Extremization” — non-existence of an interior pos
terior

After analyzing the conditions for extreme signals (non-disclosure and full disclo
sure), we look at more structured signals. The following proposition provides the 
key result enabling that analysis.

[Extremization] Suppose non-disclosure is not optimal. Then, it is never op
timal to induce an interior posterior.

Proof. The proof is in Appendix 3.A. It is constructed by contradiction with 
the optimality of the signal, based on an improvement by splitting one of its 
posteriors. We call this result “extremization” because it leads us from the interior 
of the simplex to its extreme (boundary) subsimplexes. □

We can apply Proposition 3.4.3 iteratively to eliminate the areas of posteriors 
that will not appear in the optimal signal. This sharpens the idea about the 
structure of the optimal signal, which is our main interest, and simplifies the 
search for it. We use this idea in the next section.

3.5 State-pooling structure of the optimal sig
nal

In this section, we go beyond the extreme cases of full disclosure and non
disclosure and study how preference misalignment, captured by p, affects a qual
itative property of the optimal signal that we call state pooling. We define the 
state-pooling structure of a signal and present an illustrative procedure for its 
discovery that builds on the general results from Section 3.4.

3.5.1 Definitions

We say that states ukl,... , , for some k1,...,km G {1,... ,n}, are pooled
together (or form a pool of states) under signal n if the set M = ff:k,..., ukm } 
satisfies

3p G supp(n) : supp(p) = M & Tp' G supp(n) s.t. p' = p : Msupp(p'), (3.6) 
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where supp(^) denotes support.10 The set of all pools of states that signal n 
induces is called the state-pooling structure of signal n.

10In intuitive terms, wk1,..., ~km are pooled together under signal n if n reveals whether the 
event {wkl,..., wkm } occurred.

11A similar object plays an important role for the pooling structure (of types) in Hummel 
et al. [2018].

The state-pooling structure of a signal can be captured graphical ly by rep
resenting each state of the world by a node and each pool by highlighting the 
corresponding set of nodes; an example is presented in Figure 3.2.

Figure 3.2: Example of a graphical representation of the state-pooling structure 
when n = 4 and the signal induces posteriors supported on {u1} and {u2, u3, u4}

In the next subsection, we propose a procedure that aims to find the state
pooling structure of the optimal signal for a given form of preference misalign
ment captured by p. This procedure can easily be represented graphically; its 
desired output is a graphical representation of the state-pooling structure of the 
type depicted in Figure 3.2, i.e., nodes representing states and highlighted pools. 
However, the proposed procedure may not identify the state-pooling structure of 
the optimal signal completely in some cases, but may offer only candidates for 
optimal pools. Nevertheless, we can often identify which of the candidate pools 
are certainly a part of the optimal state-pooling structure. Hence, we introduce 
two types of highlighting in the procedure - dashed (highlighting candidate pools) 
and full (highlighting pools certainly belonging to the optimal state-pooling struc
ture). Naturally, highlighting in full is superior to highlighting in dashed because 
it expresses certainty.

An important working component of the graphical procedure is the edges 
between pairs of nodes - they represent a pooling tendency of the corresponding 
states. We will see that this pooling tendency is driven by the slope of p between 
pairs of corresponding states; we denote the slope of p between states ui and uj 

by
s = P(uj) — P(ui) sij

uj — ui

This object represents an index of misalignment between the receiver (the nu
merator) and the sender (the denominator).11

A subroutine of our procedure relates to the well-known problem from com
puter science called the clique problem. Thus, we borrow a few notions from 
graph theory. Let G = (V, E) be an undirected graph (with V denoting the 
set of nodes and E denoting the set of edges). We call a subset of nodes C C V 
clique if the subgraph of G induced by C is complete (i.e., the nodes in C are fully 
connected). A clique C is called maximal if there does not exist another clique 
strictly above C (in the sense of inclusion). The version of the clique problem 

(3.7)
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that we are interested in is finding all maximal cliques in an undirected graph. 
Systematic inspection of all subsets of nodes or the Bron-Kerbosch algorithm can 
be used to solve this problem.

3.5.2 Procedure for discovery of the state-pooling struc
ture of the optimal signal

We present a procedure that inspects the form of misalignment function p and 
reflects its implications for the state-pooling structure of the optimal signal on a 
graph. The output are pools highlighted in full (which are certainly present in 
the state-pooling structure of the optimal signal) and candidate pools highlighted 
in dashed (which may be present in the state-pooling structure of the optimal 
signal). We present an example of the output of this procedure at the end of this 
subsection and a step-by-step illustration of the procedure leading to this output 
in Appendix 3.C.

Procedure for discovery of the state-pooling structure of the optimal 
signal:
Input: Set of states Q (|Q| = n) and preference-misalignment function p : Q R.

1. Create a fully connected graph on n nodes where node i corresponds to 
state ui.

2. Eliminate all edges ij such that the slope of p on ui < , Sj, is in (0, 2).

3. Highlight in full each isolated node (i.e., a node with no edges leading to 
any other node) as a singleton pool.

4. Among the remaining (i.e., non-isolated) nodes, list all maximal cliques.

5. For each maximal clique C:
for k from |C| to 2:

for all subsets M C C such that |M| = k:

leftmargin=2cm

leftmargin=2cm

If M was ever inspected before, do nothing and continue 
iteration.

If M is a subset of a highlighted set of nodes, do nothing 
and continue iteration.

leftmargin=2cm Otherwise, apply the non-disclosure test to the inspected 
pool M: Is p linear with slope in (-œ, 0] U [2, œ) on the 
states corresponding to the nodes in M?

— If yes, highlight pool M in dashed on output and con
tinue iteration.

— If no, denote M as inspected and continue iteration.

6. If any node belongs only to one highlighted pool (in dashed), highlight the 
corresponding pool in full (if not already highlighted in full).

An example of the output produced by this procedure appears in the right 
panel of Figure 3.3; an example of function p leading to this output is depicted 
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in the left panel.12 State 1 is isolated because the sender and the receiver agree 
on its position relative to other states both in order and in magnitude, so there 
is no reason for the sender to leverage this state for manipulation of beliefs. 
States 2, 3, and 4 are pooled together (they pass the non-disclosure test) because 
the sender tries to moderate the action of the receiver, who would overreact in 
these states (disagreement about magnitude). States 3 and 5 may be pooled 
together (disagreement about order) and 4 and 5 may also be pooled together 
(disagreement about order), but states 3, 4, and 5 are not pooled together even 
though they form a maximal clique (because they do not pass the non-disclosure 
test) - the sender prefers to exploit some variation in this collection of nodes. 
Hence, the optimal signal will induce posterior p1 = 51 and posterior p2 supported 
on 2, 3, and 4. Moreover, it will induce at least one of the posteriors p3 or p4 

supported on 3 and 5 or 4 and 5, respectively.

12A step-by-step illustration of the procedure leading to this output appears in Appendix 
3.C.

13We start from the (n — 1)-dimensional simplex because pn = 1 — p1 — • • • — pn-1.

Figure 3.3: Output of the graph procedure (right panel) for function p on the 
left panel: 1 is isolated; 2, 3, and 4 are pooled together (they pass the 

non-disclosure test); 3 and 5 may be pooled together; 4 and 5 may be pooled 
together; 3, 4, and 5 are not pooled together (they do not pass the 

non-disclosure test)

3.5.3 Discussion of the procedure

The idea underlying our proposed procedure is the iterative application of Propo
sition 3.4.1 and Proposition 3.4.3, which we call a top-down approach. Starting 
from the full (n - 1)-dimensional simplex,13 we can check whether non-disclosure 
is optimal using Proposition 3.4.1. If it is optimal, the sender chooses a com
pletely uninformative signal. If it is not, Proposition 3.4.3 suggests that the 
optimal signal will induce posteriors on the boundary of the (n - 1)-dimensional 
simplex. Hence, we focus on each of the (n - 2)-dimensional boundary simplexes 
and apply the same test. Specifically, by restricting the sender's expected utility 
(as a function of the posterior) on a particular (n - 2)-dimensional simplex, we 
use Proposition 3.4.1 to check if non-disclosure is optimal there:
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• If it is optimal, then the sender cannot benefit from splitting the pool of 
states corresponding to the vertices of the inspected (n — 2)-dimensional 
simplex. However, the sender might not want to choose this pool of states 
at all, so this pool of states constitutes only a candidate pool for the optimal 
signal.14

• Ifitisnotoptimal,thenbyProposition3.4.3weeliminateallinteriorpoints 
from the inspected (n— 2)-dimensional simplex and restrict our focus to its 
(n — 3)-dimensional boundary simplexes; for each of them, we repeat the 
same steps.

14 Here, we also use Assumption 3.1. This simplifies the analysis because we do not need to 
keep track of all equivalent splits.

Along the path from the full (n — 1)-dimensional simplex to lower-dimensional 
simplexes due to elimination of “interior” posteriors outlined in the second bullet 
point, we move closer to the trivial case of 1-dimensional simplexes where we 
apply Lemma 17.

Our procedure relies on this top-down approach in Step 5. However, com
pared to the top-down approach, the procedure starts with a simplification of the 
problem by identifying the only relevant subsets of nodes for this inspection - 
the maximal cliques (Steps 2 and 4). This step is justified by the fact that the 
necessary condition for optimality of non-disclosure on a simplex is optimality of 
non-disclosure on its boundary simplexes, which follows easily from Proposition 
3.4.1. Hence, if we have a given collection of nodes with some pair of nodes in it 
that is not pooled, this whole collection of nodes cannot form a pool.

In Steps 3 and 6 of the procedure, we exploit Bayesian consistency (and the 
interior prior). In particular, the structure of the graph obtained after Step 
2 is informative about the state-pooling structure by itself: any isolated node 
represents a state that is fully disclosed. In Step 5, we can identify only candidates 
for optimal pools, but, in Step 6, Bayesian consistency can help us to determine 
which of them will be certainly a part of the optimal pooling structure.

Note that we have not mentioned the prior in our identification of the optimal 
pooling structure. This prior-independence of our procedure relies on a feature 
of the quadratic setting: constant convexity/concavity structure in all points. 
However, even in the quadratic setting, the pooling structure of the optimal 
signal itself is not always prior-independent. This feature imposes a limit on 
how far we can go with our simple prior-independent procedure in identifying 
the full pooling structure of the optimal signal. In some cases, we also need to 
incorporate the prior into our analysis at the end of the procedure (see Section 
3.6 for examples).

3.6 Characterization of the state-pooling struc
ture for n = 3

In this section, we use the above procedure to characterize the state-pooling 
structure of the optimal signal in the simplest interesting case of three states (the 
case of two states is trivial and is fully characterized in Lemma 17). We describe 
the state-pooling structure for all possible cases of the form of p, which we capture 
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through si2, s23, and si3. For clarity of exposition, we divide the cases into five 
classes (i)-(v) based on the features of the resulting state-pooling structure and 
the role of the prior. Class (i) corresponds to full disclosure, class (ii) corresponds 
to signals that fully disclose one of the states, classes (iii) and (iv) correspond 
to signals that reveal some information without fully revealing any of the states, 
and class (v) corresponds to non-disclosure. Within a given class, we use letters 
to distinguish between particular state-pooling structures.

Assume that there are three states of the world, Q = {w1.w2.w3}. Depending 
on the form of p, as pinned down by si2, s23, and si3, the state-pooling structure 
of the optimal signal is as follows:

Si2 s23 Si3 state-pooling structure
i E (0, 2) E (0.2) E (0.2) {{wi} . {w2} . iW3((
ii.a E (0. 2) E (0.2) E (0.2) {{wi} . {w2.w3}}
ii.b E (0.2) E (0.2) E (0.2) {{w3} . {wi.W2}}
iii.a E (0.2) E (0.2) E (0.2) {{wi. W2} . {w| . W3}}
iii.b E (0.2) E (0.2) E (0.2) •¡•¡W2. W3} . {Wi.W3}}
iii.c E (0.2) E (0.2) E (0.2) {{Wi.W2} . {W2.W3}}

ivi5 E (0.2) E (0.2) E (0.2)
depending on si2. s23. si3, and prior, 
either (iii.a), (iii.b), or (iii.c) pooling

v si2 = s23 = si3 = s E (0. 2) {{Wi.W2.W3 }}

15s12 = s23 = S13 = s G (0, 2) corresponds to non-disclosure, so we exclude this combination 
from case (iv) and denote it as a separate case (v). See Appendix 3.A for details on the choice 
from (iii.a), (iii.b), and (iii.c).

Proof. The proof is in Appendix 3.A. □

The observed state-pooling structures emerge from the interaction of the two 
main forces that drive the sender's choice. On the one hand, the sender wants 
to disclose the states so that the induced receiver's actions vary sufficiently with 
the state of the world. On the other hand, she wants to pool the states together 
to dampen that variation if there is a severe misalignment in either order or 
magnitude in some pairs of states. The slope of p for states ui and uj, Sj 

(i,j G {1, 2, 3}, i = j), serves as an index that can capture the misalignment in 
either order or magnitude in that pair of states.

In case (i), there is no severe preference misalignment in either pair of states, 
so the sender fully discloses each state. In case (ii.a), S23 captures a severe 
preference misalignment in the pair of states w2, w3, so the sender pools these 
states together to conceal the misalignment but reveals state w1 to maximize 
the informativeness of the signal. In case (iii.a), S12 and S13 capture a severe 
preference misalignment in two pairs of states, so the sender pools the respective 
pairs together but still reveals some information: {{w1, w2} , {w1, w3}}. In case 
(iv), there is a misalignment in each of the three pairs of states and the optimal 
state-pooling structure is sensitive to the prior and to the relation between the 
slopes of p.
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A notable feature of the state-pooling structure of the optimal signal under 
n = 3 is that the sender never chooses to fully disclose the middle state of the 
world w2 and pool w1 and w3 together. For that to be the case, it would need 
to hold s13 G (", 2), s12 G (0, 2), and s23 G (0, 2), which cannot happen.16 The 
intuition is that full disclosure of w2 and pooling of w1 and is not in line with the 
sender's preference for maximizing the variance of the induced posterior beliefs. 
A potentially better way to leverage state w2 is to form two pools {w2,w1} and 
{w2,w3} because it can induce relatively more variation in the receiver's actions.

16Note that «13 = = (^3-^2)+(^2-^x) (S23 (W3 - -2 + s12 -2 - -- and (0, 2) is
a convex set.

3.7 Conclusion

We consider a Bayesian persuasion model in which both the sender and the re
ceiver have state-dependent preferred actions. We specialize to a quadratic-utility 
setting to simplify the otherwise nontrivial problem of characterizing the optimal 
signal. In this framework, we make the trade-off that drives the sender's choice of 
the signal transparent: on the one hand, the sender wants to reveal information 
to adapt the action to the state of the world; on the other hand, she wants to 
hide information to conceal the misalignment between her and the receiver.

We focus on characterization of the state-pooling structure of the optimal 
signal. In particular, we link the form of misalignment between the sender and the 
receiver in their preferred (state-dependent) actions to the state-pooling structure 
of the sender's optimal signal. To achieve this goal, we propose an illustrative 
graphical procedure for finding the sets of states that are pooled together in the 
supports of posteriors of the optimal signal.

Our model naturally suits the analysis of influence in political economy. The 
sender's and receiver's (state-dependent) single-peaked preferences over the con
tinuous action space are consistent with ideology-based preferences over a con
tinuous set of policy alternatives. That set could represent potential allocations 
of a resource such as the amount of budget spending on a public good. Thus, our 
framework can capture an arbitrary form of ideological disagreement between a 
lobbyist and a policymaker regarding the preferred state-dependent policy and 
yield predictions about the structure of the lobbyist's chosen information disclo
sure.

Our analysis motivates a number of directions for further research. First, 
further investigation and economic interpretation of particular state-pooling pat
terns that emerge when there are more than three states of the world might be 
of interest. Second, more progress could be made on analyzing state-pooling 
patterns that may emerge under loss functions of a more general form.
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3.A  Technical details and proofs

3.A.1 The structure of the sender's problem 

We are interested in the solution of the sender's problem

cE; [Ep [(Ep [p(m)] - m)2]] s.E n(p)p = po. (3.8)nGA(A(Q)) L L JJ / ApEsupp(n)

We can rewrite the objective function as

— En [Ep [P(m)]2 — 2Ep [P(m)] Ep M + Ep [w2]] . (3.9)

Using the Bayesian consistency condition n(p)p = p0, we can see that the last
term becomes

-Epo [m2] . (3.10)

Therefore, the solution to the problem above is the same as the solution to the 
problem

c max lx [EP [pH](2Ep x - EP p.x^s.l. P2 n(P^P = Po- (3.11)
nGA(A(Q)) , xpEsupp(n)

A general approach to solving this problem is concavification of the function

g(p) = ep [p(m)] (2Ep [m] - ep [p(m)]). (3.12)

We use the parametrization g(p) = g(p1,p2,... ,pn-1), where pn = 1 — p1 — • • • — 
pn-1. We collect the free variables in the vector

P = (Pi,... ,Pn-l)'.

We also denote

P = (P(xl) - P(xn),---,P(xn-1) - P(xn))', 
x — (x1 xn, - - - , xn—1 xn) -

With this notation, we can write

g(P) = P [2pM' — pp\ P + 2x; //' — Pnp + 2pnM' — Pnp']P + -!m — p^- (3.13) 
'-------v-------'

G

Hence, the curvature of g is driven by matrix G because the Hessian matrix is

H — G + G'.17 (3.15)

The ij element (i, j G {1,..., n — 1}) of H is

d2g(p)
Hij = d d = 2{[PMi) — P(Mn)](M — Mn) — [pM) — p(Wn)]fp(Wj) — p(Wn)] 

dpidpj

+[P(Mj) — P(Mn)](Mi — Mn)}.

17 We can also rewrite g as a linear-quadratic form

g(P) = 1 P'HP + [2^np' — Pnp' + 2pnbJ’ — pnP]P + 2pn^n — L2 •

• •>

(3.16)

(3.15)

110



This special structure of the problem implies that general submatrices of order 
3 (for n > 4) of the Hessian matrix H have zero determinants.18 Hence, by the 
Laplace expansion of determinants, all submatrices of order k > 3 have zero 
determinants. We can deduce from this observation, using the fact that the 
determinant rank of a matrix is equal to the column/row rank of the matrix,19 

that H has at most two non-zero eigenvalues. Therefore, there are at least n - 3 
orthogonal directions (in space Rn-1 3 p) that span the space along which g is 
linear, and at most two orthogonal directions that span the space (orthogonal to 
the space spanned by the linear directions) on which g has a less trivial shape.

18 Proof is available upon request. It is basically just tedious alg
19 The determinant rank of H is the size k of the largest k xk submatrix with a non-zero deter

minant. The column/row rank of H is the dimension of the space spanned by the columns/rows 
of H. It is straightforward to show that these ranks are equal.

20The “if” part follows directly from the definition of concavity. The “only if” part would also 
follow directly from the definition of concavity if the sender did not benefit from providing any 
information for every prior. But if the sender does not benefit from providing any information 
only in one prior, because g is a linear-quadratic form, this property extends to all priors.

3.A.2 Proofs

Proof of Proposition 3.4.1. The sender does not benefit from providing any infor
mation ifand only ifg is concave.20 g is concave ifand only if its Hessian matrix is 
negative semidefinite, which can be checked with the test on its principal minors.

Suppose n > 3 (the case n = 2 is covered separately in Lemma 17). Let Ak 

be a principal minor of order k of the Hessian matrix of g. Since Ak = 0 for 
k > 3 (see the discussion above), a necessary and sufficient condition for g to be 
concave is A1 < 0 and A2 > 0 for all A1, A2.

Let Ai be the first-order principal minor obtained from row (column) i:

Ai = 2 (p (ui) - p (un)) (2 (ut - un) - (p (ui) - p (un))). (3.17)

Let Ai2j be the second-order principal minor obtained from rows (columns) i and 
j:

Ai2j = -4[(p(ui) - p(uj))(uj - un) - (p(uj) - p(un))(ui - uj)]2. (3.18)

We can see that Ai2j < 0. Hence, g is concave or convex only if A2 = 0 for all A2. 
This condition yields a system of " 1)2(n-2- equations

A2j = 0, i,j G{1,...,n - 1} i = j. (3.19)

Under the natural assumption that u1 < • • • < un (which is without loss of 
generality), we obtain from Ai2j = 0

p (Uj) - p (ui) = p (un) - p (Uj) 
uj - ui un - uj

or, equivalently, 
p (uj ) - p (ui) = p (un) - p (ui)

uj - ui un - ui
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Therefore, the system of equations (3.19) gives rise to n 1)2(n2 slope equality 
conditions. From (3.20) and (3.21), we have

1 ■ o P (Un) — P (Un—1)j = n — 1,i = n — 2 : ——--------------- -
Un Un—1

O • o P (Un — p Un2)
Un Un—2

P (Un—l) — p (Un—2)
Un—1 Un—2

P (Un—2) — P (^n—3)
Un—2 — Un—3

P (Un) — P (Un—2)
Un — Un-2

P (Un) — P (Un—3)
Un — Un-3

„• = 2 i = 1 . P (un) — P (U2) j — A i — 1 • Un — U2

P (u2) — P (u1)
U2 — U1

P (Un) — P (Ui)
Un — U1

Hence, system (3.19) is equivalent to a linearity of P:

sP (U2) — P (Ui) = P (u3) — P (U2)
U3 — U2U2 — U1

P (Un) — P (Un—1)
Un — Un-1

(3.22)

Finally, given that A2 = 0 for all A2 holds, one can establish whether g is 
concave or convex based on the sign of A1. Inspecting the sign of (3.17) yields:

A* > 0 < > (p (wn) - p M > 0) A P (Wn) - P ' < 2 < > 0 < s < 2. (3.23)
wn wi

The complement identifies the concavity slopes (including the borderline slopes 
s G{0, 2}). □

Proof of Proposition 3.4.2. This proposition is basically proven in the proof of 
Proposition 3.4.1, using the fact that g is convex if and only if A1 > 0 and 
A2 > 0 for all A1, A2. The only difference is that the convexity of g is only 
sufficient for optimality of full disclosure, but is not necessary (we can provide an 
example of optimal full disclosure with non-convex g). □

Proof of Lemma 17. For n = 2, g is a quadratic function, so its second derivative 
completely characterizes its curvature, which completely characterizes the type 
of optimal signals. In particular, let u1 < u2. Then,

ddgpr) = 2(p M - p M) (2 (w - W2) - (p (<*) - p (W2))), (3.24)

which is strictly positive ifand only ifthe slope ofp is in (0, 2) (strict convexity and 
full disclosure), strictly negative if and only if the slope of p is in . x . 0) U (2, x ) 
(strict concavity and non-disclosure), and zero ifand only ifthe slope ofp is either 
zero or two (linearity and indifference). □

Proof of Proposition 3.4.3. Non-disclosure is optimal if and only if g is concave. 
Hence, if non-disclosure is not optimal, g is not concave. Therefore, g has to have 
a direction along which it is strictly convex. 21

Suppose (toward contradiction) that it is optimal to induce an interior pos
terior, i.e., there exists a posterior p in the support of the optimal signal n such 
that p(u) > 0 Vw. Then, we can split p along a strictly convex direction to q1

21 This is independent of the position because g is a linear-quadratic form. 
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and q2, i.e., there exists some A G (0,1) such that p = Aq1 + (1 — A)q2. Then, n' 

formed from n by replacing p by q1 with probability An(p) and q2 with probability 
(1 — A)n(p) is Bayes-plausible and it induces a strict improvement for the sender 
because, from strict convexity of g along the direction determined by q1 and q2,

E, [g(p)] — I'-, [g(p)] = n(p)(Ag(qi) + (1 — A)g(q2) — g(p)) > 0. (3.25)

This is a contradiction with optimality of n. □

Proof of Proposition 3.6. We derive the state-pooling structure for the form of p 
for each case presented in the table of Proposition 3.6 using the graph procedure 
presented in Section 3.5.2.

Case (i). Since s12, s23, s13 G (0, 2), Step 2 of the procedure eliminates all 
edges, so each node is highlighted in full in Step 3. Thus immediately after 
Step 3, the procedure yields the state-pooling structure of the optimal signal 
{{w1} , {w2} , 1-3JJ.

Case (ii.a). Since s12, s13 G (0, 2) and s23 G/ (0, 2), after Step 2 of the pro
cedure, node 1 is isolated (thus, it is highlighted in full in Step 3) and there is 
an edge left between nodes 2 and 3. Since the pool {2, 3} is a maximal clique 
(Step 4) and p is obviously linear with slope from (—x, 0] U [2, x) on states w2 

and w3, this pool is highlighted in dashed in Step 5. Finally, it is highlighted 
in full in Step 6 because nodes 2 and 3 belong only to this pool. Therefore, the 
state-pooling structure of the optimal signal is {{w 1} , {w2, w3}}.

Case (ii.b). Analogous to case (ii.a).
Case (iii.a). Since s12, s13 G/ (0, 2) and s23 G (0, 2), after Step 2 of the pro

cedure, there are two edges left: one between nodes 1 and 2 and one between 
nodes 1 and 3. Since both pools {1, 2} and {1,3} are maximal cliques (Step 4) 
and p is obviously linear with slope from (—x, 0] U [2, x) on states w1, w2 and 
w1, w3, respectively, these pools are highlighted in dashed in Step 5. Finally, they 
are highlighted in full in Step 6 because node 2 belongs only to pool {1, 2} and 
node 3 belongs only to pool {1, 3}. Therefore, the state-pooling structure of the 
optimal signal is {{w1, w2} , {w1, w3}}.

Case (iii.b). Analogous to case (iii.a).
Case (iii.c). Analogous to case (iii.a).
Case (iv). We assume that s12 = s23 = s13 = s G/ (0, 2) does not hold (this 

case is covered by case (v)). Thus, the graph procedure yields the candidate pools 
{w1, w2}, {w2, w3}, and {w1, w3} (corresponding to the pools of nodes highlighted 
in dashed in the graph). To determine the optimal state-pooling structure given 
the set of candidate pools is non-trivial.

Denote the n-th directional derivative of a function f : R2 R along a
direction (a, b) by D(na,b) f . Denote p1 Pr(w1) and p2 Pr(w2). From the proof of 
Proposition 3.4.1, the nonlinearity in p implies that there exists a direction (a, b) 
along which g(p1, p2) (defined in (3.12)) is strictly convex. The set of all such 
directions is pinned down by the condition

D(2a,b)g(p) > 0, (3.26)

which rewrites as (assuming s13 = 0 and s23 = 0; see below for the discussion of 
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these cases)

a2 (p (wx) - p (w3)) [2 (wx - w.-;) - (p (wx) - p (w3))] +
b2 (p (W2) - p (w3)) [2 (w2 - w3) - (p (W2) - p (w3))] +

abP(^^) (p (wx) - p (W3)) [2 (wx - W3) - (p (wx) - p (w3))] + (3.27)

ab£1)-£3) (p (w2) - p (w3)) [2 (w2 - w3) - (p (w2) - p (w3))] > 0-

Next, sx3 (0, 2) A s23 (0, 2) implies22

22 At least one of these terms is non-zero due to the assumption that s12 = s23 = s13 = s E 
(0, 2) does not hold.

23Notice that s13 and s23 cannot be simultaneously zero by assumption, because this would 
lead to case (v).

i(p (wx) - p (w3))[2(wx - w3) - (p (wx) - p (w3))] < 0,
( (p (w2) - p (w3)) [2 (w2 - w3) - (p (w2) - p (w3))] < 0.

We can see from (3.27) and (3.28) that if (a, b) is a direction along which g
is strictly convex, both a and b have to be non-zero. Thus, we can normalize the
direction (a,b) to (a, 1) and denote x := a• Hence, the set of directions along 
which g is strictly convex is characterized by

x2 (p (wx) — p (W3)) [2 (wx — W3) — (p (wx) — p (w3))] + 
(p (w2) — p (w3)) [2 (w2 — w3) — (p (w2) — p (w3))] +

XP(w3)-P(w3) (p (W1) — p (w3))[2(w1 — w3) — (p (w1) — p (w3))] + (. )
X P(^1)-P(^3) (p (w2) — p (w3)) [2 (w2 — w3) — (p (w2) — p (w3))] > 0.

Inspecting (3.29) given (3.28), one observes that the first two terms in (3.29) 
are non-positive. Therefore, the sum of the last two terms must necessarily be 
strictly positive for any direction along which g is strictly convex. Further, if 
the third term is strictly negative, the fourth term is non-positive and vice versa. 
So, if either of the last two terms is strictly negative, their sum is also strictly 
negative. Equivalently, if their sum is non-negative, they both have to be non
negative. Moreover, if their sum is strictly positive, they cannot both be zero. 
But if any one of the last two terms in (3.29) is strictly positive, then by (3.28)

xp(w1) — p(w3) 0
p(w2) — p(w3)

To summarize, if (x, 1) is a direction along which g is strictly convex, then

(3.30)

(x> 0 if p^-p^ < 0 ( < ¿n < 0),J p(^2)— P(^3) S23 (3 31)
I x < 0 if ~> 0 ( < > > 0). ■ J
V p(^2)-p(^3) ' S23 7

By similar arguments, if sx3 = 0,23 the necessary condition for (x, 1) being the 
direction along which g is strictly convex is

x > 0 if s23 > 0,
x < 0 if s23 < 0 

(3.32)
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and if s23 = 0, the necessary condition for (x, 1) being the direction along which 
g is strictly convex is

x>0 ifs13>0, (3.33)
x < 0 if s13 < 0.

Given some interior prior, the sender splits it along a direction along which g 
is strictly convex and induces posteriors that lie on two edges of the simplex. We 
can distinguish the following cases:

1. If — < 0 or s13 = 0 A s23 > 0 or s23 = 0 A s13 > 0, then x > 0. Hence,
s23

the optimal split is either of the form (q1, 0, 1 — q1), (1 — q2, q2, 0) (pooling 
case (iii.a)) or of the form (q1, 1 — q1, 0), (0, q2, 1 — q2) (pooling case (iii.c)) 
depending on the prior.

2. If — > 0 or s13 = 0 A s23 < 0 or s23 = 0 A s13 < 0, then x < 0. In this case,
s23

we need to distinguish further:

(a) If the optimal split goes along the direction (—1,1), it is of the form 
(q1, 0, 1 — q1), (0, q2, 1 — q2) (pooling case (iii.b)).

(b) If the optimal split goes along direction (x, 1) with x < —1, it is either 
of the form (q1, 0, 1 — q1), (0, q2, 1 — q2) (pooling case (iii.b)) or of the 
form (q1, 1 — q1, 0), (0, q2, 1 — q2) (pooling case (iii.c)) depending on the 
prior.

(c) If the optimal split goes along direction (x, 1) with x > —1, it is either 
of the form (q1, 0, 1 — q1), (0, q2, 1 — q2) (pooling case (iii.b)) or of the 
form (q1, 0, 1 — q1), (q2, 1 — q2, 0) (pooling case (iii.a)) depending on the 
prior.

Case (v). Proposition 3.4.1 applies and under Assumption 3.1 yields non
disclosure. □

3.B  Comment on Assumption 3.1

The structure of function g (see (3.12)) uncovered in Section 3.A.1 implies that 
for n > 4, there always exists a direction along which g is linear. Therefore, even 
when g is concave and non-disclosure is optimal, it is never uniquely optimal for 
n > 4. In particular, the sender is indifferent between sticking to the prior and 
splitting it to some posteriors from the space determined by the linear directions 
ofg(andtheprior), possibly all the way to the boundaries of the original simplex. 
Moreover, if g is concave, it is also concave on the boundary simplexes and we 
can repeat the same argument, proceeding downward in dimensions. For n = 3, 
by Proposition 3.4.1, g is concave only if it is linear in one direction. Hence, even 
for n = 3, non-disclosure is not uniquely optimal and the sender is indifferent 
between choosing a non-informative signal (keeping the belief at the prior) and 
splitting the prior into posteriors along the linear direction, all the way to the 
edges of the simplex. Therefore, pairwise signals (i.e., signals leading to posteriors 
supported on at most two states) are also always optimal.24

24This result is reminiscent of the result of Kolotilin and Wolitzky [2020] that there is no loss 
of generality from focusing on pairwise signals in their setup.
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In the main text, we impose Assumption 3.1, which resolves indifference in 
favor of non-disclosure of states. It is a natural assumption that can be justified 
by the sender not wasting resources (time and energy) on communication when 
it is not needed (although the cost of communication is not featured explicitly 
in our model). This selection criterion simplifies the analysis. First, it enables 
us to avoid imposing some ad hoc assumptions about the selection of specific 
partial disclosure patterns from the indifference set. Second, a different natural 
assumption might be that the sender resolves her indifference in favor of splitting. 
However, this assumption would require us to impose some additional ad hoc 
assumptions about the selection of specific directions along which to split (for 
higher n) in order to deliver concrete predictions. Moreover, such a resolution of 
indifference would be very sensitive to the prior (even in terms of the predicted 
pooling structure), so we would need to keep track of the specific directions of 
indifference, which would render the analysis much more cumbersome.25

25To illustrate the dependence on the prior, for n = 3 under linear p (which is sufficient 
for global concavity or convexity), the direction of linearity is (— ^- ,̂ 1/. Since the first 
component is strictly between 0 and -1, we can see that, while the non-disclosure is also optimal, 
the state-pooling structure (defined in Section 3.5) of the optimal informative signal can be 
either {{^1,^3}, {^2,^3}} or {{^1,^3}, {^1,^2}}, depending on the prior.

3.C Demonstration of the procedure for discov
ery of the state-pooling structure of the op
timal signal

We demonstrate the application of the procedure for discovery of the state-pooling 
structure of the optimal signal (presented in Section 3.5) to the example intro
duced in Figure 3.3 (for convenience, we reproduce it in Figure 3.4 in this section). 
This demonstration is accompanied by Figure 3.5. Red color in Figure 3.5 rep
resents highlighting as defined in Section 3.5 - final pools in full and candidate 
pools in dashed. Green color denotes cliques chosen for application of the non
disclosure test (Step 5 of the procedure).

Figure 3.4: Preference misalignment function p considered for the 
demonstration of the graph procedure
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(a) Step 1 (b) Steps 2 and 3 (c) Step 5

2 2 2

(d) Step 5 (e) Step 5 (f) Step 6

Figure 3.5: Illustration of the execution of the procedure, applied to the input 
from Figure 3.4; the output is in (f); red color represents highlighting as defined 

in Section 3.5 - final pools in full and candidate pools in dashed; green color 
denotes cliques chosen for application of the non-disclosure test

The inputs to the procedure are the values of u and p (u) from Figure 3.4. 
From formula (3.7), we obtain the values of all sij: s12 = 0.5, s13 = 1.5, s14 = 55, 
s15 = 25, s23 = 2.5, s24 = 2.5, s25 = 3, s34 = 2.5, s35 = — |, s45 = — 3.

In (a) in Figure 3.5, we start with a fully connected graph on five nodes 
(n = 5) corresponding to states 1, 2, ..., 5.

In (b) in Figure 3.5, we observe the same graph after the application of Steps 
2 and 3 of the procedure. We removed all edges ij such that Sj G (0, 2). As a 
result, node 1 became isolated, so we highlighted it in full. Hence, we can leave 
out node 1 from further analysis and focus on nodes 2, 3, 4, and 5.

In (c) in Figure 3.5, we proceed to Steps 4 and 5 of the procedure. It is easily 
seen that there are two maximal cliques: one formed by nodes 2, 3, and 4 and 
one formed by nodes 3, 4, and 5. First, we inspect the maximal clique formed 
by 2, 3, and 4 (highlighted in green) and we apply the non-disclosure test. The 
non-disclosure condition holds, so we highlight the maximal clique {2, 3, 4} in 
dashed (as illustrated in (d)). Hence, we do not need to consider any more of its 
subsets in Step 5 and we can move our focus to the other maximal clique.

In (d) in Figure 3.5, we inspect the maximal clique formed by nodes 3, 4, and 5 
(highlighted in green). The non-disclosure condition does not hold, so we denote 
the maximal clique {3, 4, 5} as inspected and proceed to consider its subsets of 
cardinality 2.

In (e) in Figure 3.5, we first consider the clique formed by nodes 4 and 5. 
As the non-disclosure condition is satisfied, we highlight this clique in dashed. 
Proceeding with the iteration, we test clique {3, 5}. Again, the non-disclosure 
condition is satisfied, so we highlight it in dashed. Finally, clique {3, 4} is a 
subset of the highlighted set {2, 3, 4}, so we do not test it.

In (f) in Figure 3.5, we proceed to Step 6 of the procedure: as node 2 belongs to 
only one highlighted clique, {2, 3, 4}, we highlight that clique in full. The output 
of the procedure is depicted in (f) in Figure 3.5: the singleton pool {1} and pool 
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{2, 3, 4} highlighted in full and pools {3, 5} and {4, 5} highlighted in dashed. 
Hence, the posteriors induced by the optimal signal certainly include a posterior 
supported on states w2 = 2,w3 = 3, w4 = 4 and the posterior . Moreover, the 
optimal signal will induce at least one posterior supported on w3 = 3,w5 = 5 or 
w4 = 4, w5 = 5.
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