
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Tomáš Skalický

Interactive Gantt Charts

Department of Theoretical Computer Science and Mathematical Logic

Supervisor: Doc. RNDr. Roman Barták, Ph.D.

Field of study: Computer Science, Programming

2008

Acknowledgements
I thank Doc. RNDr. Roman Barták, Ph.D. for a direct and patient

leading during working on the thesis.

I hereby certify that I wrote the thesis myself, using only the referenced

sources. I agree with lending the thesis.

Prague, December 8, 2008 Tomáš Skalický

ii

Content

Introduction . 1

 1 Problem formalization 3
1.1 Notation . 3

1.2 Fundamental terms . 3

1.3 Formalization of a problem 5

 2 Existing approaches 6
2.1 Iterative Flattening Search 6

2.2 Iterative Forward Search 9

 3 Rescheduling algorithm 12
3.1 Removing of all loops 14

3.2 Tasks in a temporal order 19

3.3 Satisfying constraints 2 (and 1) 24

3.4 Properties . 28

 4 Demonstration of the rescheduling algorithm 29
4.1 Demonstration of phases 1 and 2 29

4.2 Demonstration of phase 3 32

4.3 Test on large data . 35

4.4 Summary . 40

Conclusion . 41

Literature . 42

iii

Appendix A User guide . A-1
A. Preface . A-1

 A.1 Start and exit A-2
 A.1.1 Start . A-2

 A.1.2 Exit . A-3

 A.2 Work area A-4
 A.2.1 Menu bar and toolbars A-4

 A.2.2 “Tasks” and “Resources” panes A-9

 A.3 Creating, opening, closing and saving schedules A-12
 A.3.1 Creating schedules A-12

 A.3.2 Opening schedules A-12

 A.3.2.1 TXT format . A-13

 A.3.2.2 XML format . A-14

 A.3.3 Closing schedules A-16

 A.3.4 Saving schedules A-16

 A.4 Modifying schedules A-17
 A.4.1 Undo and redo changes A-17

 A.4.2 Modifying schedule properties A-17

 A.4.3 Adding new tasks A-18

 A.4.4 Editing tasks . A-18

 A.4.5 Removing of tasks A-22

 A.4.6 Adding new resources A-22

 A.4.7 Editing resources A-23

 A.4.8 Removing of resources A-24

 A.5 Rescheduling A-25
 A.5.1 Removing of cycles of dependencies A-25

iv

 A.5.2 Shifting tasks . A-26

Appendix B Contents of CD B-1

v

Název práce: Interaktivní Ganttovy diagramy

Autor: Tomáš Skalický

Katedra teoretické informatiky a matematické logiky

Vedoucí bakalářské práce: Doc. RNDr. Roman Barták, Ph.D.

e-mail vedoucího: bartak@ktiml.mff.cuni.cz

Abstrakt: Tato práce se zabývá problematikou interaktivního rozvrhování

v Ganttových diagramech. Cílem práce je navrhnout a implementovat

algoritmus, jež řeší nekonzistence v rozvrhu. Nejprve jsou rozebrány

existující přístupy. Hlavním přínosem této práce je algoritmus, které řeší

nekonzistence v rozvrhu. Je zde navržen a je zde také proveden důkaz jeho

korektnosti a konečnosti. Následuje demonstrování jeho použitelnost.

K tomuto účelu je použit program GanttViewer, jež je součástí práce.

Na závěr je tento program podrobněji popsán.

Klíčová slova: interaktivní, přerozvrhování, rozvrh, Ganttův diagram

Title: Interactive Gantt Charts

Author: Tomáš Skalický

Department of Theoretical Computer Science and Mathematical Logic

Supervisor: Doc. RNDr. Roman Barták, Ph.D.

Supervisor's e-mail address: bartak@ktiml.mff.cuni.cz

Abstract: This work deals with problems of interactive rescheduling in Gantt

charts. The goal of the work is to design and implement an algorithm which

resolves the inconsistencies in a schedule. First existing approaches are

studied. Algorithm for solving our inconsistencies in a schedule is the most

important contribution of this work. It is introduced there and there is also it's

proof of correctness and finiteness. Demonstration of applicability of the

algorithm follows. For this reason, program GanttViewer which is a part of

this work is used. Finally, this program is described in detail.

Keywords: interactive, rescheduling, schedule, Gantt chart

vi

mailto:bartak@ktiml.mff.cuni.cz
mailto:bartak@ktiml.mff.cuni.cz

Introduction

Constraint programming (CP) is a technology for solving combinatorial

problems especially in such domains as artificial intelligence, computer

science and others. In CP, relationships between variables are used for

a description of problem. Problems, we can successfully solve with CP, are

for example planning and scheduling.

Scheduling is a process of deciding how to allocate time and resources to

perform some tasks. Constraints are relationships between tasks (e.g. task A

and task B must start at the same time), resource capacities, task priorities

etc. Interactive scheduling is an user-friendly type of scheduling.

In interactive scheduling, user can make changes while a schedule is being

created. It means that if he wants to change something during running

a scheduling algorithm, he stops the algorithm, make changes and finally he

runs the algorithm again. There are various types of changes. User can add

or remove a dependence (relationship between two tasks), change

parameters (such as task duration) or add or remove a task or a resource. In

a difficult case, user can help the algorithm by making changes to get

a solution. For taking advantage of the interactive scheduling, we can use an

interactive Gantt chart.

Gantt chart is a type of a horizontal bar chart that illustrates a project

schedule. In the chart, there is time on x (horizontal) axis and tasks on y

(vertical) axis. Thus, tasks are represented by bars. Some Gantt charts also

show dependencies between the tasks.

The aim of this thesis is to design and demonstrate an interactive scheduling

1

algorithm within a Gantt chart. This algorithm would reschedule user's

schedule to a feasible one (explained later in section 1.2) which would be

similar to the user's schedule as much as possible.

The thesis is divided into four chapters. In the first chapter, we introduce the

notation, make the fundamental terms clear and formalize the problem. In

the second chapter, existing approaches are described. In the following

chapter, design of the interactive scheduling algorithm is described. There is

also an implementation in pseudo code and a proof of correctness and

finiteness of the algorithm is given there. At the end, example run of the

proposed algorithm is demonstrated and applicability of the algorithm is

presented.

2

Chapter 1

Problem formalization

In the first part of this chapter, we introduce the basic notation. In the second

part, we explain fundamental terms and in the last part, we formalize the

problem of interative scheduling.

1.1 Notation

For tasks A, B and resource R, we introduce the following notation:

sA ... start time of A

dA ... duration of A

A→B ... A is predecessor of B, B is a successor of A (explained later in

part 1.2)

lp(A) ... the latest predecessor of A (predecessor C of A which has the

greatest (sC + dC))

A(R) ... A is performed by R

1.2 Fundamental terms

Dependence is a temporal relationship between two tasks. In particular,

dependence A→B means, that sB >= sA + dA is necessary to be valid. Task A

3

is called a predecessor of task B and task B is called a successor of task

A.

Constraint is a dependence or a relationship between two tasks A, B

performed by the same resource R. For these tasks A, B, A(R), B(R),

(sA + dA <= sB) v (sA + dA <= sB) is necessary to be valid. If constraint is

broken, it is called resource conflict.

One task can be performed by more than one resource, but all resources

per task are known in advance.

Schedule is an allocation time to all tasks. Then feasible schedule is

a schedule that satisfies the following two constraints:

constraint 1: for every tasks A, B such that A→B: sB >= sA + dA must be

valid,

constraint 2: for each resource R and every tasks A, B such that A(R),

B(R), sA <= sB: sA + dA <= sB must be valid.

Constraint 1 says, that a task does not start until all its predecessors have

finished, and constraint 2 says, that a resource can perform at most one task

at the time.

Below, there are terms with less formal definitions.

Schedule is compact if there are no unnecessary free spaces between

predecessors and successors.

Modification of start time of a task in a schedule is local if difference

between the old start time and the new one is small in comparison with time

the schedule is spread over.

4

1.3 Formalization of a problem

Problem, we are solving in this thesis, is to design an algorithm which

reschedules user's schedule in such a way, that the schedule is feasible.

Schedule has special properties:

● start and duration of a task are positive integers or 0,

● schedule can be spread out to the future.

We have the following requirements for the algorithm:

● it must be correct and finite,

● only a start time of a task can be modified,

● modifications are local; schedule is only rescheduled, not created

from the beginning,

● schedule is as compact as possible.

5

Chapter 2

Existing approaches

In this chapter, existing approaches to rescheduling are described. There are

also reasons why they are or why they are not appropriate for solving the

problem.

2.1 Iterative Flattening Search

Iterative flattening search (IFS), introduced in [1] and [2], is an iterative

improvement heuristic schema for makespan minimization in scheduling

problems.

Before describing the IFS algorithm it is necessary to introduce the model on

which the IFS schema is based. In this model, a schedule schedule is

represented as a directed graph Gschedule(T, E). T is the set of tasks, plus

a fictitious tsource task which occurs before all other tasks and a fictitious tsink

task which occurs after all other tasks. E is the set of constraints defined

between tasks in T. The set E consists of two subsets, E = Eorig ∪ Epost, where

Eorig is the set of precedence constraints originating from the problem

definition and Epost is the set of precedence constraints posted to resolve

resource conflicts. In general the directed graph Gschedule(T, E) represents

a set of temporal schedules. The set Epost is added in order to guarantee that

at least one of those temporal schedules satisfies constraint 2. The algorithm

iterates the following two steps:

Relaxation step: the first step; a feasible schedule is relaxed into

a schedule which satisfies constraint 1, but does not need to satisfy

6

constraint 2. Some precedence constraints are removed from Epost.

Flattening step: the second step; new precedence constraints are added to

Epost to get a feasible schedule.

The above two steps are executed until a better (according to function

evaluate) solution is found or a maximal number of iterations is executed.

function IFS(schedule, pr, maxFail, maxRelaxes)

schedulebest = schedule

counter = 0

while counter =< maxFail do
Relax(schedule, pr, maxRelaxes)

schedule = Flatten(schedule)

if evaluate(schedule) < evaluate(schedulebest) then
schedulebest = schedule

counter = 0

else
counter = counter + 1

end
end
return schedulebest

end.

The IFS (from [1] and [2]) general schema

procedure Relax(schedule, pr, maxRelaxes)

for 1 to maxRelaxes do
for each (ti, tj) CP(∈ schedule) ∩ Epost do

if random(0, 1) < pr then
schedule = schedule \ (ti, tj)

end.

The Relax procedure

7

The IFS procedure takes four elements as input: (1) an initial schedule

schedule; (2) a value pr ∈ [0, 1] designating the percentage of precedence

constraints pci ∈ Epost on the critical path (explained below) to be removed; (3)

a positive integer maxFail which specifies the maximum number of non-

makespan-improving moves that the algorithm will tolerate before

terminating; and (4) a positive integer maxRelaxes which specifies the

maximum number of relax iterations to be performed in the relaxation step.

Let's go back to the IFS algorithm, after initialization, schedule is repeatedly

modified within the while loop by the application of the Relax and Flatten

procedures. In the case that a better schedule is found, the new schedule is

stored in schedulebest and the counter is reset to 0. Otherwise, if no

improvement is found in maxFail iterations, the algorithm terminates and

returns the best found schedule.

Relaxation step is based on the concept of critical path. A path in

Gschedule(T, E) is a sequence of tasks t1, t2, ..., tk, where (ti, ti+1) ∈ E with

i = 1, 2, ..., (k – 1). The length of a path (calculated by evaluate function) is

the sum of the tasks' duration times and a critical path is a path from tsource to

tsink which determines the schedule's makespan. Therefore, any improvement

of the length of the critical path requires changes of constraints situated on

the critical path. Thus, the relaxation step retracts some members of Epost on

the critical path. Precedence constraints are randomly selected from the

current schedule.

Flattening step consists itself of two steps. The first step is to construct an

infinite capacity schedule. In this schedule, dependencies are modeled and

satisfied, but the resource constraints are ignored. The second step consists

in leveling resource. Resource constraints are modeled. Detected resource

conflicts are then resolved by iteratively adding precedence constraints

8

between pairs of competing tasks. For further details on the flattening

procedure the reader should refer to the original papers.

The priority number one of the algorithm is to shorten the length of the

critical path, not to make local changes. So that, the final schedule can be

totally different than the input one. Therefore, the IFS algorithm cannot be

used to reschedule user's schedule.

2.2 Iterative Forward Search

Iterative forward search (IFS), introduced in [3], works iteratively. It uses two

basic data structures: a set of tasks which are not scheduled (unscheduled)

and a partial feasible schedule (sch), i.e. there are scheduled all tasks

except those which are in unscheduled. At the beginning, the schedule is

empty, all tasks are in the set of unscheduled tasks. Then, in each iteration,

the algorithm has an effort to improve the schedule (explained below). The

algorithm does not finish until all tasks are scheduled or a number of

iterations reaches a limit (maxIter).

Users can pause the algorithm after an iteration, do some modifications (e.g.

add a new task) and resume the algorithm.

Each iteration has three steps. First of all, all unscheduled tasks are

evaluated and the algorithm takes the worst one (explained below). In the

second step, all resource time where the selected task can be placed are

evaluated and the best location (explained below) is selected. Finally, the

selected task is placed on the selected location. However, this newly

scheduled task can be in conflict with other scheduled tasks. These

conflicting tasks are removed from the schedule and they are inserted into

9

the set of unscheduled tasks. Hence, the schedule is partially feasible at the

end of each iteration.

procedure IFS2(unscheduled, sch, maxIter)

counter = 0

while counter < maxIter and unscheduled not empty and none user
interruption do

task = task from unscheduled

unscheduled = unscheduled – task

location = the best location in schedule where task can be placed

task is placed on location

unscheduled = unscheduled + tasks removed from schedule because of

task

counter = counter + 1

end
return schedule

end.

The IFS (from [3]) general schema

In the first and the second steps, there are used heuristics. Both of them are

implemented as a weighted sum of several values such as: How many times

has the task been removed yet? How many dependences are formed by the

task? (both are used for selecting the task) How many scheduled tasks will

be in conflict with the selected task if we selected that location? (used for

selecting location) etc.

In the third step of the IFS algorithm, all tasks which are predecessors or

successors of the selected (the worst) task have to be removed from

a schedule. Predecessors and successors of these removed tasks are also

removed and this is done iteratively until we get a partially feasible schedule.

10

In the following iterations the algorithm schedule these tasks, but new

locations of them can be totally different. It means that changes are not local

which is our requirement to a rescheduling algorithm. Therefore, the IFS

algorithm cannot be used to reschedule user's schedule.

11

Chapter 3

Rescheduling algorithm

Process
In the rescheduling algorithm, we use a graph Gschedule(T, E) which represents

a schedule. Tasks, which are in T, are vertices of the graph and properties

“be predecessor (successor) of”, which are in E, are oriented edges of the

graph, i.e. for tasks ti, tj ∈ T such that ti→tj, (ti, tj) ∈ E.

The algorithm is divided into three phases processed in a sequence. It is not

possible to start with the next phase until the previous one finished.

To satisfy constraint 1 (see section 1.2), which is about dependencies, we

need to be able to organize tasks (vertices of the graph Gschedule) in

a temporal order. When we remove loops which are formed by

dependencies, we are able to do that. Thus, the first phase is removing of
all loops in the graph. For this purpose, we use an algorithm which is based

on finding vertices, which have no predecessors or no successors. This

algorithm works iteratively and in each iteration, it removes dependencies

selected by a user.

In the following two phases, we use a fact, that we can spread out

a schedule over more time to the future. At first, we organize tasks in
a temporal order, i.e. the schedule satisfies constraint 1. While constraint 1

is violated, an algorithm of this phase runs. In each iteration, the algorithm

takes a pair of tasks A, B which breaks the constraint A→B and orders the

tasks in such a way, that task A finishes before task B starts. By using the

algorithm, the schedule can be spread out (to the future).

12

In the following phase and the last phase at all, a schedule is modified in

such a way, that the schedule satisfies constraint 2, which is about

resources, and keeps validity of constraint 1 as well. Algorithm of this

phase iteratively checks whether tasks satisfy constraint 2. If it is true for all

of them, the algorithm finishes and the schedule is feasible. If constraint 2 is

broken, the algorithm shifts a pair of tasks, which breaks the constraint, in

such a way, that the tasks do not overlap anymore. By this operation, some

constraint 1 can be broken. Therefore, all tasks (successors), which breaks

constraint 1, are shifted to the right. After that, we have a schedule which

satisfy constraint 1 again.

graph 3.1: the phases of the rescheduling algorithm and an order of them

Interactivity of the rescheduling algorithm is realized in tree phases. First of

all, the user stops the algorithm. Then, he makes changes in the schedule

and finally, he starts the algorithm from the beginning.

13

3.1 Removing of all loops (RmL)

For removing of all loops of graph Gschedule we use an iterative algorithm,

which runs until there is a vertex in the graph. Each iteration consists of

three steps:

1) iterative removing of vertices, which have no predecessors or no

successors,

2) finding a loop,

3) removing of edges which belongs to the found loop and which are

selected by an user. The user can select at least one or more edges.

Step 1: In this step, all vertices which have no predecessors or no

successors are removed. If any vertex loses all predecessors or all

successors by removing of those vertices, it is removed as well. This is done

iteratively until we obtain a graph where each task has a predecessor and

a successor, or the graph is empty.

Step 2: Now in graph Gschedule, there are only vertices which have at least one

predecessor and at least one successor. If there is no vertex in the graph,

the algorithm finishes. Otherwise, a loop must exists in the graph. In order to

find the loop, we take any vertex and we go to one of it's successors. From

this successor, we go to another successor and so on until we reach

a vertex (vi), we went through it before. The path between the first and the

second occurrence of vertex vi is a loop that we looked for.

Step 3: User selects at least one edge (dependence), which is a part of the

found loop. Then, selected edges are removed to break the loop.

14

preCounts is initialized

sucCounts is initialized

while preCounts and sucCounts are not empty do
STEP 1

while the list of vertices on 0th position (the 0th list) of preCounts is not empty do
u = the first vertex in the 0th list of preCounts

u is removed from preCounts and from sucCounts

for each successor of u (= sucu) do
u is removed from predecessors of sucu

sucu moves from the ith list (current position) of preCounts to the (i – 1)th

list

end
end
while the 0th list of sucCounts is not empty do

v = the first vertex in the 0th list of sucCounts

v is removed from preCounts and from sucCounts

for each predecessor of v (= prev) do
v is removed from successors of prev

prev moves from the jth list (current position) of sucCounts to the (j – 1)th

list

end
end

if preCounts and sucCounts are not empty then
STEP 2

w = the first vertex in the last list of sucCounts // heuristic 1

path is empty

while path does not contain w do
w is added to path

w = the first successor of w // heuristic 2

end
loop = the part of path from the first occurrence of w to the end

15

STEP 3

selectedEdges = at least one edge which user has chosen to be removed

for each edge in selectedEdges do
x = the first vertex of the current edge

y = the second vertex of the current edge

x is removed from predecessors of y

y is removed from successors of x

x moves from the ith list (current position) of sucCounts to the (i – 1)th list

y moves from the jth list (current position) of preCounts to the (j – 1)th list

end
end

end.

Pseudo code of algorithm RmL.

In the implementation of algorithm RmL, there are used two arrays,

preCounts and sucCounts. preCounts is an array where on the ith position,

there is a list of vertices which have currently i predecessors (the ith list), and

sucCounts is an array where on the jth position, there is a list of vertices

which have currently j successors (the jth list). At the beginning of algorithm

RmL, these arrays are initialized by counting the number of predecessors

and successors for each vertex. If a vertex is removed, the arrays are

updated.

In step 2, two heuristics are used. The first heuristic is used for selecting

a vertex from which we start to looking for a loop. It selects the first vertex in

the last list of sucCounts, because the last list cannot be empty unlike others

which can be (Empty lists of preCounts and sucCounts which are currently

empty are removed between step 1 and step 2.). Heuristic 2 is used for

selecting a successor, we go to. It selects the first successor of a vertex

because we know that the vertex has at least one successor.

16

Properties of algorithm RmL

We have to prove that algorithm RmL removes all loops (cycles) in graph

Gschedule (proof of correctness) and that the algorithm is finite, i.e. removes

those cycles in finite number of iterations (proof of finiteness) and each

iteration is finite.

Proof of correctness of algorithm RmL: First of all, we prove three

statements:

Statement 1: Step 1 removes all vertices which are not parts of cycles.

Statement 2: Step 2 finds a cycle.

Statement 3: Step 3 breaks the found cycle by removing of at least one edge

of it.

Proof of statement 1: If we remove all vertices which have either no

predecessor or no successor, only vertices which are parts of cycles are left.

We must prove that two separated while loops in step 1 remove all vertices

which are in the 0th lists of preCounts and sucCounts or which get to them

during step 1. Now, we make a proof of correctness of the first loop. The

proof of the second one is made in the same way.

Vertex u which is used in the pseudo code above is removed from

preCounts and from sucCounts, because it is in the 0th list of preCounts (has

no predecessor). However, the vertex might have some successors.

Therefore, we must update locations of these tasks in preCounts (u was

a predecessor of these tasks; so that, they lost a predecessor). That is the

way, tasks which have some predecessors at the beginning can reach the 0 th

list of preCounts and they are removed too.

17

We have left to prove, that we can separate both while loops. We can see, in

the first while loop, we do not change locations of tasks in sucCounts.

Therefore, no vertex can reach the 0th list of sucCounts during the first while

loop unless the vertex has been in the list before. Statement 1 has been

proved.

Proof of statement 2: Statement 1 says that step 1 removes all vertices

which are not parts of cycles. Thus, if any vertex left, it is a part of a cycle.

There may be n vertices left, n ∈ N U {0}. Assume that we have already gone

through n–1 vertices and up to now, we have not go to any of them twice.

Vertex, where we are currently, must have at least one successor. This

successor must be a vertex, we went through before, because we have only

n vertices. Thus, we found a cycle. Statement 2 has been proved.

Proof of statement 3: User must select at least one edge from those which

formed the found cycle. The selected edges are removed and the cycle

exists no more. Statement 3 has been proved.

With using statement 3, it has been proved that algorithm RmL removes all

cycles of graph Gschedule.

Proof of finiteness of algorithm RmL: We first prove the following

statement:

Statement 4: Each iteration of algorithm RmL is finite.

Proof of statement 4: We have n vertices, n ∈ N U {0}. Therefore, while loops

and for loops which are in step 1 are finite. Finiteness of step 2 has already

been proved in statement 2 (above). In graph Gschedule, there are m edges,

m ∈ N U {0}. Therefore, a number of iterations of for loop which is in step 3 is

finite. Statement 4 has been proved.

18

In each iteration in step 3, at least one edge is removed there. Thus,

a number of iterations of algorithm RmL is less or equal to m (the number of

edges). With using it and statement 4, it has been proved that algorithm RmL

removes all cycles in the finite number of iterations.

Correctness and finiteness of algorithm RmL have been proved.

3.2 Tasks in a temporal order (TmpO)

Two algorithms, TmpO-1 and TmpO-2, are described in this part. The reason

is that it is complicated to prove that TmpO-2, which returns more compact

schedules than TmpO-1 (see section 4.3), is finite. Thus, there are only

proved properties of algorithm TmpO-1 below.

Before we describe algorithms TmpO-1 and TmpO-2, we define auxiliary

variables for every tasks A, B such that A→B:

diffA,B ... equals sA + dA – sB. If dependence A→B breaks constraint 1,

diffA,B > 0. Otherwise, diffA,B <= 0.

freeOnTheLeftA ... equals sA – (slp(A) + dlp(A)). If task A has no

predecessor, freeOnTheLeftA = sA .

For organizing tasks in a temporal order, we use iterative algorithms TmpO-1

and TmpO-2. The algorithms runs while the schedule does not satisfy

constraint 1, i.e. while any dependence (=bad dependence) breaks

constraint 1 (A, B, A→B: diffA,B > 0). In each iteration, the algorithms take one

of these dependencies and modify it in such a way, that the dependence

does not break constraint 1.

19

The important thing which is considered in the algorithms is that we do not

want to spread out the schedule to the right unless it is necessary.

Therefore, in the algorithms, there are two possibilities how to resolve

inconsistency. It depends on the fact whether freeOnTheLeftA >= diffA,B (1) or

not (2).

Algorithm TmpO-1:

(1) freeOnTheLeftA >= diffA,B. sA := sA – diffA,B. The current value of

diffA,B = 0.

(2) freeOnTheLeftA < diffA,B. Then sA := sA – freeOnTheLeftA and

sB := sA + dA. The current value of diffA,B = 0.

while a bad dependence exists do
AB = a bad dependence A→B with the least sB

A = the first task of AB

B = the second task of AB

diffA,B = sA + dA – sB

if A has at least one predecessor then
freeOnTheLeftA = sA – (slp(A) + dlp(A))

else

freeOnTheLeftA = sA

end

if freeOnTheLeftA >= diffA,B then
(1)

sA = sA – diffA,B

else
(2)

sA = sA – freeOnTheLeftA

20

sB = sA + dA

end
end.

Pseudo code of algorithm TmpO-1.

Algorithm TmpO-2:

(1) freeOnTheLeftA >= diffA,B. sA := sA – diffA,B. The current value of

diffA,B = 0.

(2) freeOnTheLeftA < diffA,B. sA := sA – freeOnTheLeftA. Then, we calculate

the current value of diffA,B. diffA,B is still positive (> 0). Now, we have

two possibilities how we can continue. It depends on a fact whether

sA – diffA,B / 2 < 0 (a) or not (b). By both of them, we can break other

dependencies. They are corrected in the following iterations.

(a) sA – diffA,B / 2 < 0. Then sA := 0 and sB := sA + dA. The current

value of diffA,B = 0.

(b) sA – diffA,B / 2 >= 0. Then sA := sA – diffA,B / 2 and sB := sB +

 diffA,B / 2 . The current value of diffA,B = 0. Thus, if diffA,B is odd

integer, B is shifted more than A (the difference is 1).

while a bad dependence exists do
AB = a bad dependence A→B with the least sB

A = the first task of AB

B = the second task of AB

diffA,B = sA + dA – sB

if A has at least one predecessor then
freeOnTheLeftA = sA – (slp(A) + dlp(A))

else

freeOnTheLeftA = sA

21

end

if freeOnTheLeftA >= diffA,B then
(1)

sA = sA – diffA,B

else
(2)

sA = sA – freeOnTheLeftA

diffA,B = sA + dA – sB

if sA =< diffA,B / 2 then
(a)

sA = 0

sB = sA + dA

else
(b)

sA = sA – diffA,B / 2

sB = sB + diffA,B / 2

end
end

end.

Pseudo code of algorithm TmpO-2.

We can see that both algorithms, TmpO-1 and TmpO-2, are different only in

policy (2). Algorithm TmpO-2 can shift task A more to the left than algorithm

TmpO-1. Therefore, unlike algorithm TmpO-1, algorithm TmpO-2 can break

dependencies C→A.

22

Properties of algorithm TmpO-1

We have to prove that algorithm TmpO-1 organizes tasks in a temporal order

(proof of correctness) and that the algorithm is finite, i.e. organizes tasks in a

temporal order in finite number of iterations (proof of finiteness) and each

iteration is finite.

Proof of correctness of algorithm TmpO-1: First of all, we prove the

following statement:

Statement 1: Each iteration of algorithm TmpO-1 corrects a bad

dependence.

Proof of statement 1: All possibilities, how a dependence can be corrected

during an iteration, ends with diffA,B = 0. It means that the dependence

satisfies constraint 1 at the end of the iteration. Statement 1 has been

proved.

With using statement 1 and the fact that the algorithm does no finish until

a bad dependence exists, it has been proved that algorithm TmpO-1

organizes tasks in a temporal order.

Proof of finiteness of algorithm TmpO-1: We first prove two statements:

Statement 2: Each iteration of algorithm TmpO-1 is finite.

Statement 3: No dependence C→A can be broken.

Proof of statement 2: In algorithm TmpO-1 there is no loop inside the while

loop. Thus, each iteration must be finite. Statement 2 has been proved.

Proof of statement 3: In both policies (1) and (2) of algorithm TmpO-1, task A

is shifted to the left not more than about a value of freeOnTheLeftA. With

using the definition of the auxiliary variable freeOnTheLeftA (see above),

23

statement 3 has been proved.

With using statement 1 and statement 3 we have proved that in each

iteration a bad dependence A→B is corrected and no dependence C→A is

broken. It means that dependence A→B is corrected only once because we

correct dependencies from the left to the right (bad dependency with the

least sB is corrected first in each iteration). From these facts, from the fact

that a schedule has m ∈ N U {0} dependencies and with using statement 2, it

has been proved that algorithm TmpO-1 is finite.

Correctness and finiteness of algorithm TmpO-1 have been proved.

3.3 Satisfying constraints 2 (and 1) (C2C1)

Before we describe algorithm C2C1, we define an auxiliary variable for every

tasks A, B such that A→B and for every tasks A, B and resource R such that

A(R), B(R):

diffA,B ... equals sA + dA – sB. If dependence A→B breaks constraint 1 or

2, diffA,B > 0. Otherwise, diffA,B <= 0.

Iterative algorithm which is used in this phase is similar to algorithms TmpO-

1 and TmpO-2. Algorithm C2C1 runs until a schedule satisfies constraints 1

and 2 at the same time (until it is feasible), i.e. until a pair of tasks A, B such

that diffA,B > 0 exists. In each iteration there is selected one of them (one of

pairs of tasks) and it is modified in such a way, that it satisfies the constraint

which it has broken before. Pairs which break constraint 1 are modified at

first.

24

Both kinds of pairs, those which break constraint 1 as well as those which

break constraint 2, are modified the same way: sB = sB + diffA,B. Thus, A→B is

now correct. In comparison with algorithm TmpO, no dependence which task

A is part of can be broken by these modifications, because A stays on the

same place. By shifting B to the right, dependencies in which task B is

present can be broken. These dependencies are corrected in other iterations

of algorithm C2C1.

while a bad dependence exists or a conflict on a resource exists do
if a bad dependence exists then

AB = a bad dependence A→B with the least sB // heuristic 1

else
AB = a conflict of A, B on resource R, A(R), B(R) with the least sA and

the least sB // heuristic 2

end

A = the first task of AB

B = the second task of AB

diffA,B = sA + dA – sB

sB = sB + diffA,B

end.

Pseudo code of algorithm C2C1.

In the pseudo code of algorithm C2C1 (above), heuristic 1 is used for

selecting among bad dependencies. It selects such a dependence A→B,

where sB has the smallest value. If we do not use this heuristic, the algorithm

C2C1 will probably have more iterations, because a dependence can be

solved more times. In the pseudo code, heuristic 2 is used as well. It selects

among inconsistencies on resources. The heuristic takes such a conflict

25

between A, B where sA has the smallest value. If there are more pairs with

the same value of sA, then it selects that one which has the smallest value of

sB. Heuristic 2 is used because we want to have as few as possible

iterations. If we select sA with the smallest value, conflicts which break the

constraint are modified only once. If we select sB with the smallest value, it is

more likely that dependences in which B is part of will not be broken. If we

do not use the second condition, we probably broken more dependencies.

Properties of algorithm C2C1

We have to prove that algorithm TmpO-1 organizes tasks in such a way that

both constraints (1 and 2) are satisfied at the same time (proof of

correctness) and that the algorithm is finite, i.e. organizes tasks in finite

number of iterations (proof of finiteness) and each iteration is finite.

Proof of correctness of algorithm C2C1: First of all, we prove the

following statement:

Statement 1: Each iteration of algorithm C2C1 corrects an inconsistence.

Proof of statement 1: First, an inconsistence (a bad dependence or a conflict

on a resource) is selected. Then, task B is shifted just behind task A. So that

at the end of iteration, the inconsistence is corrected. Statement 1 has been

proved.

With using statement 1 and the fact that the algorithm do no finish until any

inconsistence exists, it has been proved that algorithm C2C1 organizes

tasks in such a way that both constraints (1 and 2) are satisfied at the same

time.

26

Proof of finiteness of algorithm C2C1: We first prove three statements:

Statement 2: Each iteration of algorithm C2C1 is finite.

Statement 3: In each iteration, sB is increased.

Statement 4: Tasks are shifted only to the right.

Proof of statement 2: In algorithm C2C1 there is no loop inside the while

loop. Thus, each iteration must be finite. Statement 2 has been proved.

Proof of statement 3: In each iteration, there is selected one inconsistence

(a bad dependence or a conflict of a resource) between two tasks A, B such

that diffA,B > 0. sB is modified only in the end of an iteration in this way:

sB = sB + diffA,B. Thus, statement 3 has been proved.

Proof of statement 4: In the algorithm, we do not shift any task to the left and

with using statement 3 we know that tasks are shifted to the right.

Statement 4 has been proved.

We know that a schedule has n tasks, n ∈ N U {0}, and that dT ∈ N U {0} for

each task in the schedule. We consider that a schedule, that we reschedule,

is feasible only when all tasks are performed in a different time, i.e. it must

be performed not more than one task at the time. So that, with using

statement 3 and statement 4, we can shift tasks to such places in finite

number of iterations. Since the number of iterations is the finite and with

using statement 2, we prove that algorithm C2C1 is finite.

Correctness and finiteness of algorithm C2C1 have been proved.

27

3.4 Properties of rescheduling algorithm

Rescheduling algorithm is formed by tree phases: removing of all loops

(RmL), tasks in a temporal order (TmpO) and satisfying constraints 2 and 1

(C2C1). Proofs of their correctness and finiteness were done with their

description.

Because algorithms of all phases are finite and correct, rescheduling

algorithm must be finite and correct too.

28

Chapter 4

Demonstration of the rescheduling algorithm

In this chapter, we demonstrate the applicability of the rescheduling

algorithm on some examples. For this reason, program GanttViewer was

developed. Rescheduling process in the program can be stopped at any

time and user gets a schedule with all changes which have already been

made. This can be used if the algorithm seems to run too long. User stops

the algorithm, makes required changes in the current schedule and starts

the algorithm again.

We demonstrate the algorithm on three schedules: Schedule8.xml,

Schedule5.txt and Schedule7.xml (all of them are at the attached CD in

directory test_input). Using schedule Schedule8.xml, we show the first two

phases of the algorithm, removing of all loops and tasks in a temporal order

(both algorithms, TmpO-1 and TmpO-2, are demonstrated), and using

schedule Schedule5.txt, we demonstrate the third phase, satisfying

constraint 2 (and 1). Finally, we test the algorithm on schedule

Schedule7.xml, which is larger than the previous ones. Results of the test

show us, whether the algorithm is efficient on larger data.

4.1 Demonstration of phases 1 and 2

On schedule Schedule8.xml, we demonstrate the first two phases, removing

of all loops and tasks in a temporal order. We also compare algorithms

TmpO-1 and TmpO-2.

29

figure 4.1 schedule Schedule8.xml before rescheduling

In figure 4.1, we see that each task has it's own resource on which it is

performed. Therefore, the schedule satisfies constraint 2 all the time.

After a start of the rescheduling algorithm, a loop formed by dependencies

T1→T2, T2→T1 (see figure 4.1). We remove the dependence T1→T2.

figure 4.2 schedule Schedule8.xml after removing of the dependence T1→T2

In figure 4.2, we see that no loop is in the schedule now. Thus, the phase of

removing of loops has finished and the phase of a temporary order of tasks

starts. In the schedule, there is only one dependence, which breaks

constraint 1. It is the dependence T2→T1. In both algorithms TmpO-1 and

TmpO-2, two auxiliary variables are calculated, diffT2,T1 and freeOnTheLeftT2

(see chapter 3.2). Variable diffT2,T1 = sT2 + dT2 – sT1 = 14 + 20 – 19 = 15 and

freeOnTheLeftT2 = sT2 – (sT3 + dT3) = 14 – (0 + 10) = 4. In both algorithms, we

use policy (2) (see chapter 3.2).

30

figure 4.3a schedule Schedule8.xml after the first application of policy (2) of

algorithm TmpO-1

figure 4.3b schedule Schedule8.xml after the first application of policy (2) of

algorithm TmpO-2

We see that algorithm TmpO-2 shifts task T2 more to the left (see figure

4.3b) than algorithm TmpO-1 (see figure 4.3a). Therefore, in algorithm

TmpO-1, there is broken only the dependence T1→T4 on the right from the

dependence T2→T1. In algorithm TmpO-2, there is also broken the

dependence T3→T2 on the left.

If we simulate algorithm TmpO-1 further, we see that only dependencies on

the right from T2→T1 are broken just one time. So that the algorithm finishes

after another two iterations.

If we simulate algorithm TmpO-2 further, we see that each dependence is

broken at least at one time. However, after some iterations of the algorithm

(more than two), tasks T1, T2, T4 and T5 are shifted enough to the right and

31

the schedule satisfies constraint 1.

figure 4.4 schedule Schedule8.xml satisfies constraint 1

Since the schedule must satisfy constraint 2 (each task is performed by

different resource), in figure 4.4, we see the feasible schedule. Therefore,

both rescheduling algorithms have finished. Their results are the same. We

see that the schedule is as compact as it is possible. So that, algorithms

solved conflicts locally and they return a compact schedule. That is what we

want.

4.2 Demonstration of phase 3

On schedule Schedule5.txt, we demonstrate the third phase, satisfying

constraints 2 (and 1).

figure 4.5 schedule Schedule5.txt before rescheduling – tasks

32

figure 4.6 schedule Schedule5.txt before rescheduling – resources

In schedule Schedule5.txt, there is no loop (see figure 4.5). So that, the

schedule satisfies constraint 1. In figure 4.6, we see that on both resources,

R1 and R2, there are conflicts of tasks. Thus, the schedule does not satisfy

constraint 2. According to algorithm C2C1, the first pair of tasks which

breaks constraint 2 is T2, T4 on resource R1. sT2 is less than sT4, so that, the

algorithm shifts T4 behind T2 (see figure 4.8).

figure 4.7 schedule Schedule5.txt after shifting task T4 behind task T2 – tasks

figure 4.8 schedule Schedule5.txt after shifting task T4 behind task T2 –

resources

33

By shifting task T4 to the right, there are two dependencies in the schedule

which break constraint 1: T4→T3 and T4→T5 (see figure 4.7). In the

following three iterations, the algorithm shifts tasks T3, T1 (T3→T1 will break

constraint 1) and T5 in turn to the right.

figure 4.9 schedule Schedule5.txt after shifting tasks T3, T1, T5 to the right –

tasks

figure 4.10 schedule Schedule5.txt after shifting tasks T3, T1, T5 to the right –

resources

The current schedule satisfies constraint 1 again. On resource R2, there are

still tasks which break constraint 2. Thus, the algorithm repeats the previous

steps for a pair of tasks T3, T5. Since T5 will be shifted behind T3 (T5 has no

successor), the steps are also repeated for pair T1, T5.

34

figure 4.11 the final schedule Schedule5.txt – tasks

figure 4.12 the final schedule Schedule5.txt – resources

We can see the final schedule in figures 4.11 and 4.12. We see that in figure

4.12, tasks tie together closely (free space on resource R1 is caused by

dependencies). The schedule is compact. If we compare figure 4.5 and 4.10,

we see that tasks except T5 are almost at the same place.

4.3 Test on large data

On schedule Schedule7.xml, we test whether the designed algorithm is

efficient on larger data. The schedule has 26 tasks, 3 resources and 78

dependencies.

35

figure 4.13 schedule Schedule7.xml before rescheduling – tasks

36

figure 4.14 schedule Schedule7.xml before rescheduling – resources

In the first phase (removing of all loops), we remove for example T12→T11,

T12→T17, T13→T11 and T13→T20. No other dependence must be

removed, because there is no loop in the current schedule.

37

figure 4.15a the final schedule Schedule7.xml – tasks (TmpO-1 used)

figure 4.16a the final schedule Schedule7.xml – resources (TmpO-1 used)

38

figure 4.15b the final schedule Schedule7.xml – tasks (TmpO-2 used)

figure 4.16b the final schedule Schedule7.xml – resources (TmpO-2 used)

In figures 4.15a, 4.15b, 4.16a and 4.16b, we can see that the final schedules

are feasible (in figure 4.15a (4.15b), there is no cell with red background

39

color and in figure 4.16a (4.16b), there is one row per resource). However,

the final schedule returned by algorithm using TmpO-1 is less compact than

the second final schedule (the latest task T22 finishes later in the first

schedule). If we look at figure 4.16a (4.16b), we see that resource R1 use

more than 90% of it's time to perform tasks (the schedules are scheduled

from 0 to 364 and from 0 to 352 time units and resource R1 perform tasks

for 331 time units). Thus, both rescheduling algorithms return very compact

schedules. If we compare figures 4.13 and 4.15a (4.15b), we see that the

schedules has been dramatically spread out to the right. It is a consequence

of a fact that there are 26 tasks and only 3 resources.

If we measure how long the algorithm runs in program GanttViewer we find

out that in the first phase (removing of all loops), dependencies which form

loops are shown in tenths of second (technical details about machine are

below in section 4.4). Other phases take few seconds.

4.4 Summary

In this chapter, we demonstrated the designed algorithm in program

GanttViewer. The program works fine with both small and large data (tens of

tasks). Rescheduling takes few seconds (we cannot calculate time which

user spend by selecting dependencies which should be removed).

The program was demonstrated and tested on a machine with Intel Core 2

1.83GHz, 1GB RAM, Windows VistaTM Business with Service Pack 1, Java

Development Kit 6 (Sun Microsystems).

40

Conclusion

This bachelor thesis deal with problems of interactive rescheduling in Gantt

charts. In the work, we designed two rescheduling algorithms. Both of them

have been realized. However, there have not been proved properties of the

second algorithm which returns more compact schedule than the first one.

We demonstrated both algorithms and compared results.

Program GanttViewer, a part of the thesis, implements both algorithms. The

program has a graphic user interface so that, it can be used for creating and

editing schedules in Gantt charts. Using the program, user can compare

algorithms himself.

In the future, this thesis can be used as a draft for another work because the

second rescheduling algorithm has not been proved. The development of

rescheduling algorithm is also possible, e.g. the algorithm could be probably

applied for rescheduling schedules with cumulative resources. These

resources can perform more than one task at a time.

41

Literature

[1] Cesta A., Oddi A., Policella N., Smith S. F.: Boosting the Performance

of Iterative Flattening Search, Springer Berlin / Heidelberg, August

2007

[2] Cesta A., Oddi A., Policella N., Smith S. F.: Hybrid Variants for Iterative

Flattening Search, Springer Berlin / Heidelberg, May 2008

[3] Müller T.: Interactive Timetabling, Master Thesis, KTIML MFF UK,

Prague, September 2001

42

Appendix A

User guide

A Preface

Program GanttViewer is designed for displaying, modifying and
optimizing project schedules in Gantt charts.

In the program, the user can create new schedules. He can load (save)

schedules from (to) text files with the specified format (TXT format, XML

format) as well. The user can add or remove tasks or resources or modify

them at all. Finally, the user can use rescheduling function to get the feasible

schedule.

Program GanttViewer is independent on a computing platform. It means that

it runs on any operation system.

A-1

Chapter A.1

Start and exit

A.1.1 Start

Before the user starts program GanttViewer, JAVA SDK or JRE is needed to

be install. He can download it on http://developers.sun.com/downloads/.

He has to execute “GanttViewer.jar” file to start program GanttViewer.

After the start of the program, the main window appears. The user can

display and modify a project schedule in it.

figure 1.1 the main window of program GanttViewer

A-2

http://developers.sun.com/downloads/

A.1.2 Exit

If the user wants to exit from the program, click on File > Exit or a cross in

the top right corner or type Alt+F4. Before the program terminates, all open

schedules are checked whether they are saved. If a schedule is not saved,

the program offers the user to save it.

A-3

Chapter A.2

Work area

A.2.1 Menu bar and toolbars

If the user wants to create a new schedule, to switch to “Resources” pane or

to remove a selected task, he can do that using a menu bar or toolbars.

There are details about them below.

figure 2.1 | File toolbar | Tools toolbar

File
> New Schedule... creates a new schedule.

(see Creating schedules)

> Open Schedule... loads a schedule from a file.

(see Opening schedules)

> Reload loads the shown schedule again. The user is asked

whether he wants to save unsaved changes.

(see Opening schedules)

> Close... closes the shown schedule. The user is asked

whether he wants to save unsaved changes.

(see Closing schedules)

> Schedule Properties for changing properties of the shown schedule.

(see Modifying schedule properties)

> Save saves the shown schedule.

A-4

(see Saving schedules)

> Save As... saves the shown schedule to a file with the specified

name.

(see Saving schedules)

> Exit exits from the program.

(see Exit)

figure 2.2 File menu

Edit
> Undo undoes changes.

(see Undo and redo changes)

> Redo redoes changes.

(see Undo and redo changes)

figure 2.3 Edit menu

A-5

View
> Resources switches to “Resources” pane.

(see “Resources” pane)

> Tasks switches to “Tasks” pane.

(see “Tasks” pane)

figure 2.4 View menu

Insert
> New Resource for adding a new resource.

(see Adding new resources)

> New Task for adding a new task.

(see Adding new tasks)

figure 2.5 Insert menu

Task
> New for creating a new task.

(see Adding new tasks)

> Edit for editing a focused task.

(see Editing tasks)

> Remove removes a focused task.

(see Removing of tasks)

> Edit Predecessors for editing predecessors of a focused task.

A-6

(see Editing task's predecessors)

> Edit Resources for editing resources of a focused task.

(see Editing task's resources)

> Edit Operations for editing operations of a focused task.

(see Editing task's operations)

figure 2.6 Task menu

Resource
> New for creating a new resource.

(see Adding new resources)

> Edit for editing a focused resource.

(see Editing resources)

> Remove removes a focused resource.

(see Removing of resources)

> Edit Tasks for editing tasks of a focused resource.

(see Editing resource's tasks)

figure 2.7 Resource menu

A-7

Tools
> Reschedule reschedules the shown schedule to get a feasible

schedule.

(see Rescheduling)

figure 2.8 Tools menu

Window
> [an opened file with schedule]

switches to other loaded schedule.

figure 2.9 Window menu

Help
> About shows some information about the program.

figure 2.10 About menu

A-8

figure 2.11 dialog About

A.2.2 “Tasks” and “Resources” panes

In these panes, schedules are shown. Both panes are divided into two parts:

the left one is a table and the right one is a chart.

Tables of both panes can be sorted by any columns (Task ID, Resource ID

- sorted alphabetically; Duration, Start, Finish, Allocated Time - sorted

numerically; Predecessors, Resources, Task - sorted by the number of

values).

Both charts have time on x axis. Imaginary time units are used. The least

correct value of time is 0 and the least difference between two values is 1.

When the user wants to zoom in (out) a chart, he only needs to press the

left button of his mouse when the mouse is above a header of a chart and

drag his mouse to the right (left). Values in cells of the header change when

cells' widths are big or small enough.

figure 2.12 default view of a header of a chart

A-9

figure 2.13 zoomed out view of a header of a chart

“Tasks” pane

In the table, there are shown all tasks and details about them. All columns

are editable.

figure 2.14 header of the table in “Tasks” pane

In the chart, there are images of tasks and images of dependencies
between tasks. Each image of a task is next to the row of the table with this

task.

figure 2.15 “Tasks” pane

If the user wants to move an image of a task, he has to press the left button

of his mouse when the mouse is above the image and drag his mouse

where he wants to place the image.

If the user wants to resize an image of a task, he has to press the left button

of his mouse when the mouse is above the left or the right side of the image

and drag his mouse.

A-10

(see Editing tasks)

“Resources” pane

In the table, there are shown all resources and details about them.

“Allocated Time” represents how long a resource performs its tasks. All

columns except “Allocated Time” are editable.

figure 2.16 header of the table in “Resources” pane

In the chart, there are images of tasks. No images of dependencies are

displayed there. Each image of a task is next to the row of the table with

resource which performs this task. It means that if a task is performed by two

resources, there is one image of the task next to the first resource and

another image next to the second one.

figure 2.17 “Resources” pane

The user can move and resize images of tasks as in “Tasks” pane.

If the user wants to move a task from one resource to another, he has to

press the left button of his mouse when the mouse is above the image of the

task and drag it above the second resource.

(see Editing resources)

A-11

Chapter A.3

Creating, opening, closing and saving
schedules

A.3.1 Creating schedules

If the user wants to create a new schedule, he has to click on File > New

Schedule... or New Schedule... in “File toolbar” or type Ctrl+N.

The new schedule has an ID in the form “Unknown-[number]” where

“[number]” is the first free number of schedules with not specified ID.

A.3.2 Opening schedules

If the user wants to load a schedule from a file, he has to click on File >

Open Schedule... or Open Schedule... in “File toolbar” or type Ctrl+O. If the

user wants to load the shown schedule again, he has to click on File >

Reload or Reload current schedule in “File toolbar” or type F5.

The input file has to be a text file and have a fixed format (TXT format or

XML format). If the input file is not in a correct format, “Input errors” dialog

shows details about errors and a schedule which is in that file is loaded

without data with errors.

A-12

figure 3.1 “Input errors” dialog

A.3.2.1 TXT format

Lines which begins with '#' character are comments. On the first line which

is not comment, there is an ID of a schedule. Other lines which are not

comments represent tasks. Each line is divided into cells by tabulators and

in these cells, there are TaskID, OrderID, ProductID, PartsIDs, Start, Finish,

PredecessorsIDs, ResourcesIDs in this order.

TaskID an ID of a task

OrderID an ID of an order

ProductID an ID of a product

PartsIDs IDs of operations which are parts of the task

Start time when the task starts

Finish time when the task finishes

PredecessorsIDs . . IDs of tasks which must finish before the task starts

ResourcesIDs IDs of resources which perform the task

A-13

In PartsIDs, PredecessorsIDs and ResourcesIDs, there are values divided

by ',' character.

comment

ScheduleID

TaskID OrderID ProductID PartID,...,PartID Start Finish

PredecessorID,...,PredecessorID ResourceID,...,ResourceID

...

TaskID OrderID ProductID PartID,...,PartID Start Finish

PredecessorID,...,PredecessorID ResourceID,...,ResourceID

Definition of TXT format

this is schedule Sch1

Sch1

Task1 O1 P1 10 35 Resource1,Resource2

Task2 Pt,Pt2 40 50 Task1 Resource1

Example of a text file in TXT format

A.3.2.2 XML format

There is a definition of this format in DTD below.

<!ELEMENT Schedule (ScheduleID, Tasks)>

<!ELEMENT ScheduleID (#PCDATA)>

<!ELEMENT Tasks (Task*)>

<!ELEMENT Task (TaskID, OrderID, ProductID, Parts, Start, Finish, Predecessors,

Resources)>

A-14

<!ELEMENT TaskID (#PCDATA)>

<!ELEMENT OrderID (#PCDATA)>

<!ELEMENT ProductID (#PCDATA)>

<!ELEMENT Parts (PartID*)>

<!ELEMENT PartID (#PCDATA)>

<!ELEMENT Start (Value)>

<!ELEMENT Finish (Value)>

<!ELEMENT Value (#PCDATA)> // integer

<!ELEMENT Predecessors (TaskID*)>

<!ELEMENT Resources (ResourceID*)>

<!ELEMENT ResourceID (#PCDATA)>

Definition of XML format in DTD

<Schedule>

<ScheduleID>Sch1</ScheduleID>

<Tasks>

<Task>

<TaskID>Task1</TaskID>

<OrderID>O1</OrderID>

<ProductID>P1</ProductID>

<Parts></Parts>

<Start><Value>10</Value></Start>
<Finish><Value>35</Value></Finish>

<Predecessors></Predecessors>

<Resources>

<ResourceID>Resource1</Resource>

<ResourceID>Resource2</Resource>

</Resources>

</Task>

<Task>

<TaskID>Task2</TaskID>

<OrderID></OrderID>

<ProductID></ProductID>

A-15

<Parts>

<PartID>Pt</PartID>

<PartID>Pt2</PartID>

</Parts>

<Start><Value>40</Value></Start>
<Finish><Value>50</Value></Finish>

<Predecessors><TaskID>Task1</TaskID></Predecessors>

<Resources><ResourceID>Resource1</Resource></Resources>

</Task>

</Tasks>

</Schedule>

Example of a text file in XML format

A.3.3 Closing schedules

If the user wants to close the shown schedule, he has to click on File >

Close... or type Ctrl+W.

The user is asked whether he wants to save unsaved changes.

A.3.4 Saving schedules

If the user wants to save the shown schedule, he has to click on File > Save

or Save in “File toolbar” or type Ctrl+S. If the user wants to choose

a filename and save the shown schedule to a file with it, he has to click on

File > Save As....

The user can save a schedule in text file in TXT format or XML format.

A-16

Chapter A.4

Modifying schedules

A.4.1 Undo and redo changes

If the user adds or removes a task or a resource, he can undo it by clicking

on Edit > Undo or typing Ctrl+Z.

The user can also redo changes by clicking on Edit > Redo or typing Ctrl+Y.

A.4.2 Modifying schedule properties

If the user wants to change properties of the shown schedule, he has to click

on File > Schedule Properties. After that, “Schedule Properties” dialog

displays.

In the dialog, the user can change an ID of the schedule.

figure 4.1 “Schedule Properties” dialog

A-17

A.4.3 Adding new tasks

If the user wants to add a new task, he has to click on Insert > New Task,

Task > New or New Task in a popup menu which is above the table of

“Tasks” pane or in “Tasks” and “Predecessors” dialog, he can use “New

Task” button. After any of these possibilities, dialog “New Task” displays.

In the dialog, the user can edit details of the new task. (see Editing tasks)

figure 4.2 “New Task” dialog

A.4.4 Editing tasks

If the user wants to edit a focused task, he has to click on Task > Edit or Edit

Task in a popup menu which is above the table of “Tasks” pane. After any of

these possibilities, dialog “Edit Task” displays.

In the dialog, the user can change details of the focused task.

A-18

figure 4.3 “Edit Task” dialog

Task ID an ID of the focused task

Order ID an ID of an order

Product ID an ID of a product

Operations IDs of operations which are parts of the task

(see Editing task's operations)

Start time when the task starts

Finish time when the task finishes

Predecessors IDs of tasks which must finish before the task starts

(see Editing task's predecessors)

Resources IDs of resources which perform the task

(see Editing task's resources)

If the user only wants to change values of time, he can move or resize an

image of the task in any chart. (see “Tasks” pane, “Resources” pane)

A-19

Editing task's predecessors

If the user wants to select other predecessors of the focused task, he has to

click on Task > Edit Predecessors. After that, “Predecessors” dialog displays.

In the dialog, the user can select tasks, new predecessors of the focused

task.

figure 4.4 “Predecessors” dialog

Editing task's resources

If the user wants to change resources of a focused task, he has to click on

Task > Edit Resources. After that, “Resources” dialog displays.

In the dialog, the user can select resources, which perform the focused task.

A-20

figure 4.5 “Resources” dialog

Editing task's operations

If the user wants to change operations of a focused task, he has to click on

Task > Edit Operations. After that, “Operations” dialog displays.

In the dialog, the user can modify operations, which are parts of the focused

task.

A-21

figure 4.6 “Operations” dialog

A.4.5 Removing of tasks

If the user wants to remove a focused task, he has to click on Task >

Remove or Remove Task in a popup menu which is above the table of

“Tasks” pane or type Ctrl+D.

A.4.6 Adding new resources

If the user wants to add a new resource, he has to click on Insert > New

Resource, Resource > New or New Resource in a popup menu which is

above the table of “Resources” pane or in “Resources” dialog, he can use

“New Resource” button. After any of these possibilities, dialog “New

Resource” displays.

A-22

In the dialog, the user can edit details of the new resource. (see Editing

resources)

figure 4.7 “New Resource” dialog

A.4.7 Editing resources

If the user wants to edit a focused resource, he has to click on Resource >

Edit or Edit Resource in a popup menu which is above the table of

“Resources” pane. After any of these possibilities, dialog “Edit Resource”

displays.

In the dialog, the user can change details of the focused resource.

figure 4.8 “Edit Resource” dialog

Resource ID an ID of the focused resource

Tasks IDs of tasks which are performed by the resource

(see Editing resource's tasks)

A-23

Editing resource's tasks

If the user wants to change tasks of a focused resource, he has to click on

Resource > Edit Tasks. After that, “Tasks” dialog displays.

In the dialog, the user can select tasks, which are performed by the focused

resource.

figure 4.9 “Tasks” dialog

A.4.8 Removing of resources

If the user wants to remove a focused resource, he has to click on Resource

> Remove or Remove Resource in a popup menu which is above the table

of “Resources” pane or type Ctrl+D.

A-24

Chapter A.5

Rescheduling

Schedule is feasible whether:

1) no task starts earlier than all it's predecessors finish,

2) no resource performs more than one task at a time.

If the user wants to have a feasible schedule, he has to click on Tools >

Reschedule or Reschedule in “Tools” toolbar. Then, rescheduling is

performed.

Conflicts are resolved locally. It means that the tasks are shifted as few as

possible and nothing is modified except tasks' start time.

There are two steps of rescheduling:

1) Removing of cycles of dependencies,

2) Shifting tasks.

A.5.1 Removing of cycles of dependencies

Until there is no loop of dependencies in the schedule, the schedule is

checked.

If a loop is found, “Loop of Dependencies” dialog shows dependencies which

formed a loop. If the user selects at least one dependence and he clicks on

“OK” button, rescheduling continues. If the user selects no dependence and

he clicks on “OK” button, the dialog is still visible. If the user selects “Cancel”

button, rescheduling is stopped.

A-25

figure 5.1 “Loop of Dependencies” dialog

A.5.2 Shifting tasks

If there is no loop in the schedule, “Continue with rescheduling” dialog

shows. If the user selects “OK” button, tasks are locally rescheduled. If he

selects “Cancel” button, rescheduling is stopped.

figure 5.2 “Continue with rescheduling” dialog

A-26

Appendix B

Contents of CD

On CD which is attached to the bachelor thesis, there are the bachelor

thesis itself in PDF format, program GanttViewer using algorithm TmpO-1

and program GanttViewer using algorithm TmpO-2, developer guide, source

code of the program and others.

Directory or file Contents

./thesis/interactive_gantt_chart.pdf this thesis

./thesis/interactive_timetabling.pdf Master thesis of T. Müller [3]

./gantt_viewer directory of program GanttViewer

./gantt_viewer/gantt_viewer_tmpo-1.jar executable file of program GanttViewer
which using algorithm TmpO-1

./gantt_viewer/gantt_viewer_tmpo-2.jar executable file of program GanttViewer
which using algorithm TmpO-2

./gantt_viewer/developer_guide.pdf developer guide of program GanttViewer

./gantt_viewer/user_guide.pdf user guide of program GanttViewer

./gantt_viewer/installation_guide.pdf installation guide of program GanttViewer

./gantt_viewer/test_input directory of test inputs

./gantt_viewer/javadoc.zip documentation of program GanttViewer
generated by JavaDoc

./gantt_viewer/src.zip source code of program GanttViewer

B-1

