
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

BAKALÁŘSKÁ PRÁCE

Kamil Kos

Adaptace nových metrik strojového překladu
pro češtinu

Adaptation of New Machine Translation Metrics
for Czech

Ústav formálńı a aplikované lingvistiky

Vedoućı bakalářské práce: RNDr. Ondřej Bojar

Studijńı program: Informatika, obor Obecná informatika

2008

I would like to express my gratitude to my supervisor, RNDr. Ondřej Bojar, for
his suggestions and editing of the Bachelor Thesis. My thanks also belong to my
friend and fellow student Jan Tattermusch who implemented the Aho-Corasick
search algorithm that was used in this thesis.

I hereby declare that I have prepared this paper on my own, using only the
materials cited. Ideas taken from other sources are identified as such. I give consent
to publish this thesis.

August 4, 2008 Kamil Kos

2

Contents

1 Introduction 6
1.1 Evaluation of MT Systems . 6
1.2 Previous Work . 7
1.3 Outline of the Thesis . 8

2 Metrics 9
2.1 N-gram Metrics . 9

2.1.1 BLEU . 9
2.1.2 NIST . 10

2.2 Unigram Metrics . 11
2.2.1 F-measure . 11
2.2.2 Position-independent Word Error Rate 12
2.2.3 General Text Matcher . 12

2.3 Edit Distance Metrics . 13
2.3.1 Word Error Rate . 13
2.3.2 Translation Error Rate . 14

2.4 Semantic Metrics . 14
2.4.1 Meteor . 14
2.4.2 Semantic POS Overlapping 16

3 Quality of Metrics 18
3.1 Test Data . 18
3.2 Correlation with Human Judgments 19
3.3 Results . 20

4 MTrics Tool 23
4.1 Description . 23
4.2 Features . 24

4.2.1 Confidence Intervals . 24
4.3 Implementation Details . 25

4.3.1 Flow Control . 25

3

4.3.2 Optimization . 29

5 Conclusion 35
5.1 Summary . 35
5.2 Future Work . 35

A User Documentation 37
A.1 Synopsis . 37
A.2 Options . 38
A.3 Input format . 42
A.4 Output Format . 45

B DTD for mteval 47

4

Title: Adaptation of New Machine Translation Metrics for Czech
Author: Kamil Kos
Department: Institute of Formal and Applied Linguistics
Supervisor: RNDr. Ondřej Bojar
Supervisor’s e-mail address: Ondrej.Bojar@mff.cuni.cz

Abstract: In the present work we study semi-automatic evaluation techniques of
machine translation (MT) systems based on comparison of the MT system’s out-
put to human translations of the same text. Various metrics were proposed in the
past years, ranging from metrics using only unigram comparison to metrics that
try to take advantage of additional syntactic or semantic information. The main
goal of this thesis is to compare these metrics with respect to their correlation
with human judgments and to propose the most suitable ones for evaluation of
MT systems with Czech as target language. An implementation of a tool that
computes the MT metrics is part of this work.

Keywords: machine translation, evaluation, metric, Czech, natural language pro-
cessing

Název práce: Adaptace nových metrik strojového překladu pro češtinu
Autor: Kamil Kos
Katedra (ústav): Ústav formálńı a aplikované lingvistiky
Vedoućı bakalářské práce: RNDr. Ondřej Bojar
e-mail vedoućıho: Ondrej.Bojar@mff.cuni.cz

Abstrakt: V předložené práci studujeme poloautomatické zp̊usoby hodnoceńı systémů
strojového překladu, které jsou založeny na porovnáváńı výstupu systému s lidskými
překlady zdrojového textu. V minulých letech byly navrženy rozličné metriky.
Některé použ́ıvaj́ı pouze porovnáváńı unigramů, jiné se snaž́ı využ́ıt i syntak-
tické nebo sémantické informace. Ćılem této práce je porovnat korelaci vybraných
metrik s lidskými hodnoceńımi a navrhnout nejvhodněǰśı metriky pro hodnoceńı
systémů strojového překladu, které překládaj́ı z ciźıho jazyka do češtiny. Součást́ı
práce je implementace nástroje, který dané metriky poč́ıtá.

Kĺıčová slova: strojový překlad, hodnoceńı, metrika, čeština, zpracováńı přirozeného
jazyka

5

Chapter 1

Introduction

This work compares the quality of metrics that are being used in natural language
processing (NLP) to evaluate the quality of machine translation (MT) systems.
The goal is to find the most suitable metrics for evaluation of MT systems with
Czech as the target language.

The quality of metrics which are examined in this work has already been com-
pared many times to each other. However, it was usually done for English or some
other widespread language, but not for Czech. Because languages have different
sentence structure, especially if you compare languages with fixed sentence or-
der, e.g. English, to languages with relatively free sentence order like Czech, some
metrics can be more suitable for the one or the other language. Hence, we would
like to see if there are any differences in performance of these metrics for Czech
as the target language.

1.1 Evaluation of MT Systems

Machine translation belongs to one of the most demanding tasks in NLP. Even
though there are various approaches to machine translation, ranging from rule
based systems to statistical MT systems, there is only one thing that matters.
Namely the quality of the translation they deliver. But how to compare the qual-
ity of output of two MT systems? Which translation is better?

The easiest way to evaluate the quality of a MT system output (candidate
translation) is to give the source text and the output to a translator who can
check whether the translation is correct. Even if the exact understanding of a text
can differ among people, an experienced translator should be able to assess the

6

quality of a translation. However, this is a very expensive and time consuming
approach since every single translated sentence must read by a human and evalu-
ated. Besides, it is difficult to define quality criteria so that every translator would
evaluate the same translation in the same way.

Much better approach is to have a set of evaluation sentences with their cor-
rect translation(s) - reference translation(s). These translations can be prepared
in advance by human translators and shared for evaluation of various MT systems.
Then, it is possible to define some similarity metric that compares the candidate
translation (MT system output) to the given reference translation(s). The more
reference translations we have, the better because there are often several ways
how to translate the source sentences. Each reference translation is considered as
one possible way how to translate the source text.

In order to simplify the evaluation process, it is suitable to evaluate the can-
didate translation sentence by sentence. The amount of information contained
in one sentence is not excessively large and there are not too many ways how
to convey the information. Hence, the probability that the information in a cor-
rect candidate translation is expressed in similar way as in some of the reference
translations is relatively high. Therefore, a reasonable approach is to compare the
candidate translation and its structure to the reference translation on the sentence
level.

1.2 Previous Work

Early approaches to scoring a candidate translation with respect to a reference
translation were based on the idea that the similarity score should be proportional
to the number of matching words (e.g. [11]).

Another idea is that matching words in the right order should result in higher
scores than matching words out of order (e.g. [15]). Perhaps the simplest version
of the same idea is that a candidate text should be rewarded for containing longer
contiguous subsequences of matching words. One of the first metrics following this
principle was BLEU [13] introduced in 2001, which established itself as the stan-
dard metric in MT evaluation. In 2002, another version of this idea was proposed,
now commonly known as the NIST score [5]. However, most of the metrics were
using only the lexical level and syntactic or semantic features were ignored.

In 2005, Meteor metric [2] was introduced which not only used the morpholog-

7

ical level by working with stems of words but also incorporated word synonymy. In
the recent years new metrics emerged that try to take advantage of more syntactic
or semantic information that can be obtained by analyzing the translations, e.g.
a set of metrics based on linguistic features [7].

1.3 Outline of the Thesis

The following chapters are divided as follows: in Chapter 2, MT metrics are de-
scribed whose quality has been evaluated in this work. Chapter 3 contains descrip-
tion of experiments that have been conducted. Chapter 4 contains a description
of the MT evaluation tool MTrics that has been implemented as part of this work
and used for computing the metric scores. The last chapter summarizes this work
and provides suggestions for future work.

Appendix A contains user documentation of MTrics and Appendix B contains
the DTD specification of the mtveal file format that can be used for input files by
MTrics.

8

Chapter 2

Metrics

In this chapter, we describe the most common metrics in the MT system evalu-
ation. We use following notation: an MT evaluation metric scores a sequence of
MT system output segments (sentences in our case) S = s1, s2, ..., sI with respect
to a set of references R. References R are correct translations of the respective
segments. Since it is possible to have multiple reference translations of a candi-
date translation, we consider R = R1, R2, ..., RI , where Ri is a set of reference
translations of si.

2.1 N-gram Metrics

N-gram metrics can be considered as the most common metrics that are used for
MT system evaluation. They are easy and fast to compute since they just compare
normalized counts of n-grams in candidate and reference translation.

2.1.1 BLEU

The BLEU metric [13] is based on the geometric mean of n-gram precision. The
score is given by:

BLEU = BP ∗ exp

[
N∑
n=1

wn ∗ log(pn)

]
where N is the maximum n-gram size and wn has the uniform weight 1/N for all
n = 1 . . . N . The n-gram precision pn is given by:

pn =
∑

i∈I |{ngram | ngram ∈ ngrn(si) ∩maxngrn(Ri)}|∑
i∈I |{ngram′ | ngram′ ∈ ngrn(si)}|

9

where ngrn(si) is a bag of n-grams of the length n found in candidate transla-
tion si and maxngrn(Ri) is a bag of n-grams of the length n which contains for
each unique ngram ∈

⋃
i=1...|Ri| ngrn(ri) the maximum number of occurrences of

ngram found in some ri ∈ Ri. The n-gram precision pn is accumulated over all
sentences that are being evaluated.

The brevity penalty BP penalizes MT output for being shorter than the cor-
responding references and is given by:

BP =
{

1
exp(1 - r/c)

if c >r
if c ≤ r

where c is the accumulated number of words in the candidate sentences and r is
the accumulated number of words in the corresponding reference sentences. In
case of multiple reference translations, the reference whose length is the closest
to the candidate on the sentence level is taken.1 The BLEU brevity penalty is a
single value computed over the whole set of sets.

2.1.2 NIST

The NIST metric [5] also uses n-gram precision, differing from BLEU in that
an arithmetic mean is used, weights are used to emphasize informative word se-
quences and the formula for brevity penalty is different.

NIST = BP ∗
N∑
n=1

∑
i∈I,ngram∈ngrn(si)∩maxngrn(Ri)

info(ngram)∑
i∈I |{ngram′ | ngram′ ∈ ngrn(si)}|

where ngrn(si) is a bag of n-grams of the length n found in candidate transla-
tion si and maxngrn(Ri) is a bag of n-grams of the length n which contains for
each unique ngram ∈

⋃
i=1...|Ri| ngrn(ri) the maximum number of occurrences of

ngram found in some ri ∈ Ri.

The function info(ngram) is computed over the set of reference translations,
according to the following equation:

info(ngram = w1w2 . . . wn) = log2

(
count(w1w2 . . . wn−1)
count(w1w2 . . . wn)

)
where count(ngram) is the number of reference translations, in which ngram
can be found. Note that the weight of an n-gram occurring in many references is

1The original paper does not specify which length to take if two references, one longer and one
shorter than the candidate sentence, have the same distance to the candidate. We have decided
to take the shorter one.

10

considered to be lower than the weight of a phrase occurring only in one reference.

For NIST, the brevity penalty is computed as

BP = exp
(
β ∗ log2 min(

c

r
, 1)
)

where c is the length of the MT system output, r is the average number of words
in the reference translation and β is chosen to make BP = 0.5 when c = 2/3.

2.2 Unigram Metrics

Unigram metrics compare counts of single tokens (words) between the candidate
and the reference translation. Like n-gram metrics, they are easy to compute.
However, they suffer from deficiencies in the evaluation of the fluency of a candi-
date translation. Hence, some of the metrics try to compensate this drawback by
additional features, such as runs in GTM metric.

2.2.1 F-measure

F-measure metric is defined as the harmonic mean of precision (prec) and recall
(rec): prec+rec

2∗prec∗rec . In case of multiple references, precision preci and recall reci are
defined as:

preci =
maxri∈Ri [clip(si, ri)]

|nrg1(si)|
reci =

maxri∈Ri [clip(si, ri)]
|ngr1(bestClipRef (si, Ri))|

where clip(si, ri) is the number of tokens observed both in si and ri,
i.e. clip(si, ri) = |ngr1(si) ∩ ngr1(ri)|. BestClipRef (si, Ri) returns the reference
ri ∈ Ri such that clip(si, ri) is the biggest. In case that for two references ri1 and
ri2 clip(si, rij) has the same size, bestClipRef (si, Ri) returns the shorter reference.

Intuitively, in case of one reference, precision is the number of words that co-
occur in candidate and reference sentence divided by the size of the candidate
sentence, and recall is the number of words that co-occur in candidate and refer-
ence sentence divided by the size of reference sentence.

If a complete text is to be evaluated, the co-occurring words are summed up for
all sentences at first and then divided by the total candidate or reference length.

prec =
∑

i∈I maxri∈Ri [clip(si, ri)]∑
i∈I |ngr1(si)|

rec =
∑

i∈I maxri∈Ri [clip(si, ri)]∑
i∈I |ngr1(bestClipRef (si, Ri))|

Sometimes, it is useful to assign weights P and R to precision and recall. The
score is then computed as P∗prec+R∗rec

(P+R)∗prec∗rec .

11

2.2.2 Position-independent Word Error Rate

PER [19] is similar to WER (see Section 2.3.1) except that word order is not
taken into account. Both sentences are treated as bags of words:

PER(si, Ri) =
minri∈Ridist(si, ri)

|ngr1(bestDistRef (si, Ri))|

where dist(si, ri) is the distance between si and ri defined as

dist(si, ri) = max
[
|ngr1(si)\ngr1(ri)|, |ngr1(ri)\ngr1(si)|

]
and bestDistRef (si, Ri) returns the reference ri ∈ Ri such that dist(si, ri) is the
smallest.

To evaluate the complete set of sentences S, the distance between si and ri is
accumulated for all i ∈ I and then divided by the reference length:

PER(S,R) =
∑

i∈I minri∈Ridist(si, ri)∑
i∈I |ngr1(bestDistRef (si, Ri))|

.

2.2.3 General Text Matcher

GTM metric [20] is inspired by the plain F-measure trying to eliminate (one of)
its major drawbacks. Since F-measure is based only on unigram matching, two
sentences containing the same words always get the same F-measure rating re-
gardless of the correct order of the words in the sentence.

GTM uses the notion of matching. A matching is a one-to-one assignment of
words from candidate sentence to words of reference sentence which are the same.2

It is possible that some words stay unmatched if they do not have a counterpart in
the reference sentence. The match size of a matching is the number of words that
have a counterpart in the other sentence. A maximum matching is a matching
of maximum possible match size for a particular pair of candidate and reference
translations.

A contiguous sequence of words such that their counterparts are also a con-
tiguous sequence (in the correct order) is called a run. Now, we can describe how
GTM is computed. GTM value is defined as the harmonic mean of precision preci
and recall reci where

preci =
size(Mi)
|ngr1(si)|

reci =
size(Mi)
|ngr1(ri)|

2The word dog can be matched only to dog but not to dogs.

12

and Mi is a maximum matching. The size of maximum matching is bounded by
the average reference length in case of multiple reference translations. In order to
prefer longer contiguous sequences, the size of maximum matching M3 is defined
as follows:

size(M) = e

√∑
r∈M

length(r)e

where r is a run in matching M . The exponent e is used to prefer longer sequences
of words. If e = 1, the function size(M) only returns the number of words of the
matching M , i.e. the match size of M .

To score the whole S, accumulated precision prec and recall rec are used:

prec =
∑

i∈I size(Mi)∑
i∈I |ngr1(si)|

rec =
size(Mi)∑
i∈I |ngr1(ri)|

.

2.3 Edit Distance Metrics

Edit distance metrics define the quality measure of a candidate translation on the
basis of distance of the candidate translation to the reference translation. This
distance is defined by the number of edit operations that are needed to transform
one sentence into another.

2.3.1 Word Error Rate

WER metric [17] is defined as the minimum number of edit operations required
to transform one sentence into another normalized by the length of the reference
translation

WER(si, ri) =
min (I(si, ri) +D(si, ri) + S(si, ri))

|ri|

where I(si, ri), D(si, ri) and S(si, ri) are the number of insertions, deletions and
substitutions respectively. The numerator of the equation above is also known
as the Levenshtein distance. In case of multiple references, we take the reference
for which the Levenshtein distance to candidate sentence is the smallest. The
cumulative score for S is

WER(S,R) =
∑

i∈I min (I(si, ri) +D(si, ri) + S(si, ri))∑
i∈I |ngr1(ri)|

.

3Note, that size of maximum matching M is something different from match size of M

13

2.3.2 Translation Error Rate

TER metric [16] is also based on the number of operations needed to transform the
candidate sentence into the reference sentence. However, it allows one additional
operation: the block shift. Hence, possible operations include insertion, deletion,
and substitution of single words as well as shifts of word sequences. A shift moves
a contiguous sequence of words within the candidate sentence to another location
within the candidate sentence. All edits, including shifts of any number of words,
by any distance, have equal cost

TER(S,R) =
∑

i∈I min (I(si, ri) +D(si, ri) + S(si, ri) + Shift(si, ri))∑
i∈I |ngr1(ri)|

where I(si, ri), D(si, ri), S(si, ri) and Shift(si, ri) are the number of insertions,
deletions, substitutions and block shifts respectively.

In case of multiple references, we take the reference ri ∈ Ri for which the
number of edit operations is the lowest.

2.4 Semantic Metrics

2.4.1 Meteor

Meteor metric [2] was one of the first metrics that tried to incorporate some
semantic information in the evaluation process. Originally, it was designed for
English as the target language and here we propose some minor modifications to
adapt it for Czech.

Given a candidate translation si and a reference translation ri ∈ Ri, Meteor
creates an alignment between the two translations. An alignment is defined as a
mapping between unigrams, such that every unigram in each translation maps
to zero or one unigram in the other translation, and to no unigrams in the same
translation. Thus in a given alignment, a single unigram in one translation can-
not map to more than one unigram in the other translation. This alignment is
incrementally produced according to Meteor modules that are being used.

Each module defines a set of word-to-word mappings (one word being from si
and the other one from ri) such that mapped words can be matched. The map-
pings contain only unigrams that have not been mapped to any unigram in any of
the preceding stages. In the original implementation, the modules are exact, porter
stem and WN synonymy. Exact module matches two words if they have the same

14

surface representation (e.g. dog matches dog but not dogs). Porter stem module
matches two words if they have the same stem according to Porter stemmer [14]
(e.g. dogs matches dog) and WN synonymy module matches two words if they are
synonyms. Our modification of the metric replaces the porter stem module with
lemma module which matches two words, if they have the same lemma.

For each module, the largest subset of these unigram mappings is selected such
that the resulting set constitutes an alignment as defined above (that is, each un-
igram must map to at most one unigram in the other string). If more than one
subset constitutes an alignment, and also has the same cardinality as the largest
set, Meteor selects that set that has the least number of unigram mapping crosses.
Intuitively, if the two strings are typed out on two rows one above the other, and
lines are drawn connecting unigrams that are mapped to each other, each line
crossing is counted as a unigram mapping cross.

After all modules have been run, precision preci and recall reci are computed
for the obtained alignment Ai (the maximal alignment with minimal unigram
mapping crosses):

preci =
size(A)
|ngr1(si)|

reci =
size(A)
|ngr1(ri)|

where size(A) is the number of mapped pairs in A. Then, Fmean is computed:

Fmeani =
10 ∗ preci ∗ reci
9 ∗ preci + reci

.

To take into account longer matches, Meteor introduces the notion of chunks
and uses them to compute score penalty. A chunk is a contiguous sequence of uni-
grams such that their counterparts in the other translation are also a contiguous
sequence (in the correct order).4 The penalty is then computed as follows:

Penalty = 0.5 ∗
(
chunks(A)
size(A)

)3

where chunks(A) is the number of chunks in A. Finally, the METEOR Score for
the given alignment is computed as follows:

Meteor = Fmean ∗ (1− Penalty)

For multiple reference translations, Meteor computes the above score for each
reference translation, and uses the best score as the score for the sentence transla-
tion. The score of the whole candidate translation is calculated based on aggregate

4Chunks are equivalent to runs by GTM metric.

15

statistics accumulated over the entire test set, similarly to the way this is done in
BLEU. We calculate aggregate precision, aggregate recall, an aggregate penalty,
and then combine them using the same formula used for scoring individual seg-
ments.

In 2007, the authors modified the parameters that are used for the compu-
tation of Meteor. They put more weight on recall than before and use different
parameters in the penalty formula:

Fmeani =
5 ∗ preci ∗ reci
4 ∗ preci + reci

Penalty = 0.28 ∗
(
chunks(A)
size(A)

)0.83

2.4.2 Semantic POS Overlapping

Semantic Part of Speech Overlapping metric is inspired by [7] which introduced
a set of metrics using various linguistic features on syntactic and semantic level.
One of the best performing metrics was semantic role overlapping. Since we did
not find a tool that would assign semantic roles as defined in [7] to words in a
Czech sentence, we decided to use a slightly different metric. The TectoMT frame-
work [1] can assign semantic part of speech (semantic POS) to words. The set of
semantic POS tags in TectoMT is depicted in Table 2.1.

The semantic POS overlapping for a given semantic POS type t is defined for
a candidate sentence si and a set of reference sentences Ri as

overlapping(t) = maxri∈Ri

[
clip(si, ri, t)
count(ri, t)

]
where t is a semantic POS type (as defined in Table 2.1), clip(si, ri, t) is the num-
ber of matched unigrams of type t between si and ri (one-to-one mapping) and
count(ri, t) the number of unigrams of type t in ri.

The semantic POS overlapping score is averaged over all semantic POS types:

overlapping =
1
|T |
∗
∑
t∈T

overlapping(t)

where T is the set of semantic POS types.

To evaluate the whole MT system output, we compute aggregate counts at
first and then compute overlapping for each type.

16

Semantic POS tag Description
n.denot denominating semantic noun
n.denot.neg denominating semantic noun with which the

negation is represented separately
n.pron.def.demon definite pronominal semantic noun: demonstra-

tive pronoun
n.pron.def.pers definite pronominal semantic noun: personal pro-

noun
n.pron.indef indefinite pronominal semantic noun
n.quant.def definite quantificational semantic noun
adj.denot denominating semantic adjective
adj.pron.def.demon definite pronominal semantic adjective: demon-

strative pronoun
adj.pron.indef indefinite pronominal semantic adjective
adj.quant.def definite quantificational semantic adjective
adj.quant.indef indefinite quantificational semantic adjective
adj.quant.grad gradable quantificational semantic adjective
adv.denot.ngrad.nneg non-gradable denominating semantic adverb, im-

possible to negate
adv.denot.ngrad.neg non-gradable denominating semantic adverb,

possible to negate
adv.denot.grad.nneg gradable denominating semantic adverb, impos-

sible to negate
adv.denot.grad.neg gradable denominating semantic adverb, possi-

ble to negate
adv.pron.def definite pronominal semantic adverb
adv.pron.indef indefinite pronominal semantic adverb
v semantic verb

Table 2.1: Semantic POS types

17

Chapter 3

Quality of Metrics

All metrics described in the previous chapter were examined with respect to their
correlation with human judgments. We wanted to find metrics that correlate best.

3.1 Test Data

The test data and human judgments were taken from the data used at the Third
Workshop on Statistical Machine Translation [4]. We have chosen only systems
and human judgments which had Czech as the target language.

The output of the following systems was considered:

• BOJAR - Charles University, Bojar [3]

• TMT - Charles University, TectoMT [1]

• UEDIN - University of Edinburgh [9]

• PCT - PC Translator (a commercial MT provider from the Czech Republic)

The test data consisted of two test sets. The first one contained a total of 90
articles which were selected from a variety of Czech, English, French, German,
Hungarian and Spanish news sites. The other test set was drawn from Czech-
English news editorials. The articles test set contained 2050 sentences and the
editorials test set contained 2028 sentences. The reference translations contained
only one human translation for each sentence.

The human judgments contained 243 system scores of 156 unique sentences1

for the editorials test set and 267 system scores of 165 unique sentences for the
1The difference is due to the fact that some sentences were scored several times.

18

Human score Metric score Human rank Metric rank
1 0.62 1.5 1
3 0.54 3 3
1 0.54 1.5 3
5 0.54 4 3

Table 3.1: Conversion of scores to rankings

articles test set. We considered human scores of the same sentence as independent
of each other and included all of them in the ratings.

3.2 Correlation with Human Judgments

To measure the correlation of the metric ratings with the human judgments we
used the Pearson correlation coefficient. This coefficient captures the extent to
which two different rankings correlate with each other.

The human judgments contained scores of the translation quality on the scale
1 to 5, one being the best. It was possible that several translations obtained the
same score. We transformed these human scores to rankings for each sentence. If
several systems obtained the same score, we used the average position for each of
them. In the case that all systems had the same score, we did not use the human
judgment.

For automatic metrics, we computed the system scores on the sentence level
and converted the scores to rankings in the same manner as for human judgments.
Table 3.1 shows how we created the rankings.

In order to measure the correlation, we compared the metric rankings to the
human rankings and calculated the Pearson correlation coefficient ρ using the
equation:

ρ =
n (
∑
xiyi)− (

∑
xi) (

∑
yi)√

n
(∑

x2
i

)
− (
∑
xi)

2
√
n
(∑

y2
i

)
− (
∑
yi)

2

where n is the number of evaluated systems and xi, yi the position of the ith system
in the human and metric rank. The possible values of ρ range between 1 (all
systems are ranked in the same order) and -1 (systems are ranked in the reverse
order). Thus, an evaluation metric with a higher value for ρ reflects the human
judgments better than a metric with a lower ρ.

19

Editorials Articles Average
NIST 0.258±0.623 0.22±0.596 0.239
F-measure 0.23±0.626 0.24±0.582 0.235
GTM 0.23±0.626 0.24±0.582 0.235
Meteor 0.236±0.617 0.228±0.570 0.232
Meteor(orig) 0.228±0.622 0.233±0.566 0.231
PER 0.243±0.627 0.218±0.599 0.231
GTM(e=2) 0.219±0.629 0.237±0.582 0.228
WER 0.233±0.62 0.206±0.601 0.22
TER 0.233±0.62 0.206±0.601 0.22
SemPOS 0.192±0.608 0.215±0.571 0.204
BLEU 0.023±0.617 0.032±0.625 0.028

Table 3.2: Average sentence-level correlations for the metrics including standard
deviation show that BLEU is not an accurate metric on the sentence level

Editorials Articles
0.516±0.548 0.515±0.492

Table 3.3: Average inter-human correlations (standard deviation in brackets)

3.3 Results

The results of the experiment are depicted in Table 3.2. They show that the corre-
lation of the metric evaluation with human judgments is not very high. The best
metric on the news editorial test set was NIST. On the articles test set F-measure
and GMT obtained the best correlation coefficient. The correlation between the
BLEU metric and the human judgments suggests that there is no relation of the
two rankings on the sentence level.

The correlation of automatic metric ratings with human judgments on the sen-
tence level is not very high. This can be either because the metrics are not suitable
to evaluate the quality of system outputs with Czech as the target language or the
human judgments are themselves inaccurate. Therefore, we computed the corre-
lation of human judgments with each other.

We took the human scores for sentences for which there were at least two
human judgments and computed the Pearson’s correlation coefficient for them. If
there were more than two ratings of the same sentence, we considered all possible

20

Editorials Articles Average
SemPOS 0.8 0.8 0.8
Meteor 0.8 0.4 0.6
Meteor(orig) 0.8 0.4 0.6
BLEU 0.4 0.4 0.4
NIST 0.4 0.4 0.4
F-measure 0.4 0.4 0.4
GTM 0.4 0.4 0.4
GTM(e=2) 0.4 0.4 0.4
PER 0.4 -0.2 0.1
WER 0.4 -0.4 0
TER 0.4 -0.4 0

Table 3.4: System-level correlations for the metrics

(distinct) pairs and used them to compute the coefficient. For the editorials test
set, we obtained 63 pairs of human judgments and for the news articles test set
112 pairs. The results are shown in Table 3.3.

According to the results from Table 3.2, the best metric to evaluate MT sys-
tems on the sentence level is NIST, which has the highest correlation coefficient
on the editorials test set. Other metrics that showed high correlation with hu-
man judgments are F-measure and GTM. Both of them are based on combination
of precision and recall. The best metric from error rate metrics was PER which
ranked on the shared 5th place with the (original) Meteor metric. However, the
difference in the correlation coefficients for the metrics (except for SemPOS or
BLEU) is very low and does not provide any clear evidence which metric is better
to distinguish the quality of the metrics on the sentence level.

We were surprised by the extremely low correlation of BLEU on the sentence
level. Therefore, we measured the correlation of metrics with human judgments
on the system level for both test sets. We computed the automatic metric system-
level scores and converted them into rankings. For human judgments, we created
the system rankings based on the percent of time that a sentence (produced by the
system) was better than or equal to the translations of any other system. Then
we computed the Pearson correlation coefficient ρ. Since there were no ties in the
scores, the Pearson correlation coefficient is equivalent to the Spearman’s rank
correlation coefficient defined as:

21

ρsp = 1− 6
∑
d2
i

n(n2 − 1)

where di is the difference between the ranks for systemi and n is the number of
systems.

Table 3.4 shows the Pearson correlation coefficients for both test sets on the
system level. We can see that the Semantic POS Overlapping metric has the
biggest correlation, followed by the Meteor metric. Moreover, the correlation co-
efficients on the system level are significantly higher for all metrics except for the
distance metrics PER, WER and TER than on the sentence level.

However, the average correlation coefficients are based only on two test sets.
Hence, we would need more test sets or use bootstrapping in order to get more
accurate results.

If we compare our results with the correlation coefficients on the system-level
that were published in [4], we can see that the results for Czech and English as
the target language are very similar. Meteor and SemPOS (which is similar to
Semantic Roles Overlapping (SR) metric from [4]) correlate the best with human
judgments, while TER (mTER in [4]) has one of the lowest correlation coefficients.
Even if the close relation of the results for Czech and English is obvious, we cannot
make any exact conclusions because the values we obtained are based only on two
test sets. Therefore, more experiments should be done to obtain conclusive results.

22

Chapter 4

MTrics Tool

4.1 Description

MTrics is a command-line tool which evaluates the quality of machine translation
(MT) systems. The evaluation is based on comparison of MT system output to
reference translation(s).

MTrics supports the most common metrics which are used in machine transla-
tion evaluation and provides some additional features, such as confidence intervals.
Implemented metrics are:

• BLEU [13],

• NIST [5],

• F-measure,

• Position-independent WER (PER) [19],

• General Text Matcher (GTM) metric [20],

• Word Error Rate (WER) [17],

• Translation Error Rate (TER) [16],

• Meteor [2],

• Semantic POS Overlapping.

In some NLP literature, it is possible to encounter metrics like mPER or
mWER where the letter m stresses that PER or WER consider multiple refer-
ences. In MTrics, this is handled automatically. Depending on how many reference

23

translations are provided for evaluation, MTrics computes either PER (single ref-
erence) or mPER (multiple references). The same applies to WER.

Mtrics is written in C++. It does not use any platform dependent libraries
so it is possible to compile it under Unix/Linux as well as under Windows. How-
ever, Meteor and Semantic POS Overlapping metrics require the TectoMT frame-
work [1] for computation of these metrics. This framework is available only under
Unix/Linux and the authors do not intend to port in under Windows in the near
future. Nevertheless, other metrics can be computed under Windows without any
problems.

Figure 4.1 on page 33 shows the names of source files and classes that are
included in these files. Classes in italics are abstract classes which define interface
for derived classes.

4.2 Features

4.2.1 Confidence Intervals

Confidence intervals are one of the useful features MTrics supports.

Confidence intervals are used for interval estimation of a parameter. They
indicate the reliability of an estimate. Confidence intervals, compared to point
estimates, can express more information, because they do not only convey the
information about the current estimate, but also an indication of the accuracy
with which the parameter is computed.

Confidence intervals are constructed on the basis of a sample from a popu-
lation. Given a sample (X1, . . . , Xn), the observed outcome can be treated as a
random variable X characterized by the unobservable parameter θ. The confidence
interval is specified by two functions u(X) and v(X), such that

PrX;θ(u(X) < θ < v(X)) = 1− α

The number 1−α, α ∈ (0, 1) is called the confidence level or confidence coefficient
and the interval estimate (u(X), v(X)) is denoted as (1 − α) confidence interval
for θ.

In case of machine translation evaluation, the population consists of all possible
translations by a machine translation system. We want to approximate the quality
of the system based on the sample we were provided for evaluation. However, we

24

have only one sample from the population of all possible translations. Therefore,
some method must be used that creates additional samples. We use a method
called bootstrapping.

Bootstrapping

Bootstrapping [6] is a statistical technique used to study the distribution of a
random variable based on an existing set of values. This is done by randomly
resampling with replacement (i.e. allowing repetition of the values) from the ex-
isting sample and computing the desired parameters of the distribution of the
samples. It is required that the original sample is from an independent and iden-
tically distributed population.

The bootstrapping algorithm can be summarized as follows:

1. Given a sample X = (X1, X2, . . . , Xn) from a population P, generate N ran-
dom samples of size n by drawing n values from the sample with replacement
(each value having the probability of 1/N).

2. The resulting population P̄ , denoted as X̄ = (X̄1, . . . , X̄N), with
X̄i = (X̄i1 , X̄i2 , . . . , X̄in), i = 1..N , constitute the N bootstrapped samples.

3. If the original estimator of a given population parameter was θ(X), with
the bootstrapped samples we can calculate the same estimator as θ(X̄).

An important parameter of bootstrapping is N , the number of bootstrapped
samples, or the number of times the process is repeated. This number should be
large enough to build a representative number of samples, however not too large,
which would negatively influence the computation time. Hence, a compromise has
to be found. Values of N = 200 were shown to provide slightly biased estimations
[6] so a larger N is preferred, for example N = 1, 000 [6, 8].

A source of errors in inference statistics is that we use a particular sample to
represent the whole (unknown) population. Therefore, the quality of confidence
intervals is also influenced by the size of the sample which is being evaluated. The
larger the original sample is, the better the confidence interval estimation.

4.3 Implementation Details

4.3.1 Flow Control

The main class that steers the flow of the whole program is the class MTrics. This
class represents a framework into which specialized classes for input parsing or

25

computing the metric scores can be plugged. The class MTrics provides functions
for parsing command line parameters and functions that control the computation
of metrics. The flow control can be divided into the following phases:

1. loading of candidate and reference translations,

2. processing of translations segment by segment and computing relevant data
for each metric,

3. computing the final score for each metric,

4. output of the results.

In each phase, several classes are dominant and responsible for the computa-
tion. They are designed in a modular way so that they can be replaced or enhanced
easily.

Translation Loading

Classes responsible for loading of the translations are derived from abstract classes
InputParser and SentenceTokenizer. For non-semantic metrics, the class Input-
Parser gets an input stream and extracts the translations from it. It uses class
SentenceTokenizer which obtains a sequence of characters from InputParser and
returns it divided into words. The words are stored in an instance of class Trans-
lation, whose only purpose is to store the translations in the first phase of compu-
tation, i.e. the translation loading phase. Semantic metrics require a special input
file format (see User Documentation in Appendix A). The input loading is done
in class TMTInputParser which calls a Perl script tmt to mtrics.pl in order to
extract the necessary information from input files via the API of TectoMT.

The rules for the extraction of the individual words from a sequence of charac-
ters are implemented in classes derived from SentenceTokenizer : WhiteSpaceTo-
kenizer and MTevalTokenizer. WhiteSpaceTokenizer assumes that all words are
separated by white space,1 e.g. blank space or tabulator. However, this behavior
is not suitable in some cases. Punctuation marks should be regarded as separate
words even if they directly follow a word, like the full stop at the end of a sentence.
These rules are respected in MTevalTokenizer. The tokenization of words follows
the rules which are used in the MT evaluation script mteval [12]. MTevalTokenizer
implements the following rules:

• punctuation marks are tokenized (they are considered as separate tokens),
except for hyphen (-), apostrophe (’), full stop (.) and comma (,)

1A sequence of white space is considered as one white space, thus no empty words can occur.

26

• if full stop (.) or comma (,) are not followed by a digit, they are also tokenized

• hyphen (-) preceded by a digit is tokenized

• sequences of digits separated by blank spaces are joined together

If other tokenization rules should be used, it is possible to implement a de-
scendant of the class SentenceTokenizer. The only method to reimplement is
SentenceBlock * parseTranslation(string T & str), which gets a string and
returns a pointer to the class SentenceBlock.2 While implementing a new child of
SentenceTokenizer, implementation details of MTrics should be taken into ac-
count: If a new word is recognized, it is checked whether the same word has not
been already loaded in the preceding text. If so, the old instance is returned. Oth-
erwise, a new word is created. This is done in the class WordStorage. More about
this optimization technique can be found in Section 4.3.2. However, if TMTInput-
Parser is used to load the input files, no tokenization is performed since all words
are already tokenized by the TectoMT framework.

After all input files are processed, the sentences are restructured and stored in
Metric::candidates and Metric::references. The restructuring takes place
in order to store translations of each source sentence3 in one vector for eas-
ier manipulation during the computation of metrics’ ratings. If Meteor of Se-
mantic POS Overlapping metric are computed, the translations are also stored
in Meteor::meteorCandidates, Meteor::meteorReferences for Meteor or in
LEMetric::leMetricCandidates, LEMetric::leMetricReferences for Seman-
tic POS Overlapping.

Metric Representation

The evaluation of the candidate translations is done in the second phase segment
by segment. The central role in this phase is played by the descendants of abstract
classes Metric and MetricInfo. Metrics are divided into five major classes: Ngram-
Metric, UnigramMetric, DistanceMetric, Meteor and LEMetric. The purpose of
this division is to cluster similar metrics and reuse computed values, if possible.
Hence, it is possible to save computation time if more metrics are to be computed
on the same input.

The class hierarchy of metrics is depicted in Figure 4.2 on page 34. The ab-
stract class Metric defines an interface so that all metrics can be processed in a
uniform way. The classes NgramMetric, UnigramMetric, DistanceMetric, Meteor

2This data structure stores the words of a sentence.
3This is the case if multiple candidate or reference translations are present.

27

and LEMetric are also abstract and they refine the interface in order to fit it to
the needs of their descendants.

Metric ratings are not stored in descendants of class Metric directly. The
children serve only as proxies to descendants of class MetricInfo, which reflect
the hierarchy of Metric. The reason for this implementation is that Metric should
serve only as enclosing box for lightweight storage classes that collect the necessary
data for the metric computation. This is useful especially if confidence intervals
are computed. A lot of instances of the storage class are needed4 for each metric.
Another reason is to have only one class that represents each of the metrics, if
more MT systems are to be evaluated. This improves the readability of the code
and gives the possibility to modify the code easier, if necessary.

Sentence Segment Evaluation

The most important part of the computation is performed in the function

void MTrics::updateMetrics(...).

In this function, ratings for each sentence segment are computed and updated
for descendants of NgramMetric, UnigramMetric and DistanceMetric. Meteor and
LEMetric are not updated in this function because they work with their own rep-
resentation of sentences that cannot be shared with other metrics. Each of the
three abstract classes NgramMetric, UnigramMetric and DistanceMetric has its
own block of code, so that computed values can be reused for all metrics descend-
ing from the same abstract class. Nevertheless, NgramMetric and UnigramMetric
share part of the code: The number of occurrences of n-grams is computed only
once and than relevant information for descendants of NgramMetric and Unigram-
Metric is extracted.

The n-gram count is computed in the class aho corasick,5 an implementation
of the Aho-Corasick search algorithm. The implementation uses TRIE to store
the search automaton. Nevertheless, the edges in the TRIE are not stored in a
vector with constant access to elements, but in the C++ STL class Map. This
STL class has logarithmic complexity in the number of stored elements to find an
item. Therefore, the complexity of parsing one sentence segment is O(log(n) ∗n),
where n is the total number of words (see Section 4.3.2 for details on representa-
tion of words) in candidate and reference sentence. The pattern search automaton
of Aho-Corasick algorithm is initialized with all unique n-grams from candidate

4One thousand instances is the default value.
5The implementation of the algorithm was provided by Jan Tattermusch [18].

28

sentence. Then, the candidate sentence is searched for the patterns in order to
get the count of individual patterns. The same search is done for the reference
sentence.

For each sentence segment, metrics’ internal data are updated in function

void updateSentenceLevelCount(...).

This function has different parameters for NgramMetric, UnigramMetric,
DistanceMetric, Meteor and LEMetric. It computes the necessary data for each
metric and passes it on to

void updateSentenceLevelMetricInfo(...).

This function is also specific for each metric. It stores the data in a descendant
of the class MetricInfo. If confidence intervals are to be computed, this is the place
where data are distributed among the instances of the class MetricInfo.

After all sentence segments are processed, the total rating is computed for all
required metrics. Data collected during the sentence segment processing are used
to compute the final score.

4.3.2 Optimization

Computational efficiency is the main focus of MTrics so that large amounts of
data can be evaluated quickly. MTrics is designed as a tool which supports various
metrics and takes advantage of the simultaneous computation of them.

Unigram- and NgramMetrics

Since the metrics belonging to these classes are based on comparison of n-grams
found in candidate and reference translation(s), it is possible to reuse the com-
puted values if several metrics are processed on the same input. The n-gram
counts for each metric are extracted from the global n-gram counts computed by
the Aho-Corasick algorithm which is computed only once.

DistanceMetrics

The WER metric uses dynamic programming to compute the Levenshtein distance
between two sentences. Algorithm 1 shows the pseudocode. Hence, the complexity
for a sentence pair (si, ri) is O(|si| ∗ |ri|).

In the case of TER metric, an optimal sequence of edits (with shifts) is very
expensive to find. Therefore, a greedy search is used to select the set of shifts.

29

Algorithm 1 Calculate the Levenshtein distance
Input: Candidate sentence s, reference sentence r
Output: Levenshtein distance d
m← |si|
n← |ri|
D is a table with m+1 rows and n+1 columns
for i = 0 to m do
D[i, 0]← i

end for
for j = 0 to n do
D[0, j]← j

end for
for i = 1 to m do

for j = 1 to n do
if s[i] = r[i] then
cost← 0

else
cost← 1

end if
D[i, j]← minimum(D[i− 1, j] + 1, D[i, j − 1] + 1, D[i− 1, j − 1] + cost)

end for
end for
return D[m,n]

Moreover, several other constraints are used in order to further reduce the space
of possible shifts.

• The shifted words must match the reference words in the destination position
exactly.

• The word sequence of the candidate sentence si in the original position and
the corresponding reference words must not exactly match.

• The word sequence of the reference that corresponds to the destination
position must be misaligned before the shift.

Algorithm 2 shows the pseudo-code for calculating the number of TER edits
for a candidate sentence si and reference sentence ri. The minimum-edit-distance
algorithm is O(n2) in the number of words. We use beam search, which reduces
the computation to O(n). Because the loop in Algorithm 2 can be iterated at most
|si| times, the complexity of the finding the minimal number of TER edits isO(n2).

30

Algorithm 2 Calculate number of TER edits
Input: Candidate si, reference ri
Output: Number of edits E
E ← 0
s′i ← si
repeat

Find shift S that reduces MinEditDistance(s′i, ri) the most
if S reduces edit distance then
s′i ← apply S to s′i
e← e+ 1

end if
until No shifts that reduce edit distance remain
e← e+MinEditDistance(s′i, ri)
return E

The implementation of GTM metric (see Algorithm 3) also takes advantage of
some optimizations. To compute the maximum matching and the corresponding
runs, greedy search is applied. The maximum matching is built iteratively by
adding the largest non-conflicting aligned blocks to already computed matching.
Experiments in [20] have shown that this approximation finds the true maximum
matching 99% of the time. In the rare remaining cases, the size of the output
matching is at least 80% of the maximum.

Meteor

Algorithm 4 depicts how an alignment between a candidate and a reference sen-
tence is computed. The creation of the set P has the complexity ofO(|si|∗|ri|). The
subset P ′ is computed by a depth-first search. The depth-first search is bounded
by the maximum number of steps which is set to 10000. Hence, it is possible that
only a suboptimal solution is found for longer sentences.

Semantic POS Overlappling

The complexity of computing an overlapping for a candidate sentence si and a
reference sentence ri is O(|si| ∗ |ri|).

Word Representation

Source sentences in MT are mostly taken from a newspaper or a book and often
speak about one topic. Many words occur more than once in the translations. So,

31

Algorithm 3 Calculate the maximal GTM matching
Input: Candidate si, reference ri, maximum number of matched words m, expo-

nent e
Output: Size of the matching M
M = ∅; size← 0
Compute the set of runs R for the pair (si, ri)
for r ∈ R do

if |M | > m then
break

end if
if M ∩ r is empty then

add r to M
size← length(r)e

end if
end for
return e

√
size

it is sensible to represent same words only with one object. The longer the trans-
lations are, the more storage space can be saved. Class WordStorage is responsible
for keeping only one instance of each word. When translations are parsed, each
word is checked, whether it has already occurred. If so, pointer to the old instance
is returned. Otherwise, an instance of the new word is created and stored in class
WordStorage. Another advantage of this approach is that words can be compared
only on the level of pointers, which also speeds up the computation.

Algorithm 4 Calculate the maximal Meteor alignment
Input: Candidate si, reference ri, vector of Meteor modules M
Output: Alignment A

for k = 1 to size(M) do
compute the set P of possible word pairs (si[m], ri[n]) such that si[m], ri[n]

are not yet aligned and can be aligned according to module mk

select some P ′ ⊂ P such that P ′ is an alignment, size(P ′) ≥ size(P ′′),
P ′′ ⊂ P an alignment and P ′ contains minimum unigram mapping crosses

A = A ∪ P ′
end for
return A

32

File name Classes included Description
mtrics.h, mtrics.cpp MTrics Class containing the entry

point, validation of param-
eters

metric.h, metric.cpp Metric, NgramMetric,
UnigramMetric, Distance-
Metric, Nist, Bleu, PER,
Fmeasure, WER, TER,
GTM, MeteorWord, LE-
MetricWord, Meteor,
LEMetric

Implementation of the MT
metrics

metricInfo.h,
metricInfo.cpp

MetricInfo, Ngram-
MetricInfo, Unigram-
MetricInfo, Distance-
MetricInfo, NistMetricInfo,
BleuMetricInfo, Fmeasure-
MetricInfo, PERMetric-
Info, WERMetricInfo,
TERMetricInfo, GTM-
MetricInfo, LEMetricInfo,
MeteorMetricInfo

Classes storing metric data

inputParser.h,
inputParser.cpp

InputParser, Normal-
InputParser, MTevalInput-
Parser, TMTInputParser

Extraction of sentences
from input files

sentenceTokenizer.h,
sentenceTokenizer.cpp

SentenceTokenizer,
WhiteSpaceTokenizer,
MTevalTokenizer

Tokenization of sentences
into separate words

translation.h,
translation.cpp

Translation, SentenceBlock Storage classes for transla-
tions

wordStorage.h,
wordStorage.cpp

WordStorage Storage class for words (fly-
weight design pattern)

ac.h aho corasick Implementation of Aho-
Corasick search algorithm

support.h,
support.cpp

– Support functions

typedef.h – Type definitions

Figure 4.1: Source files

33

Figure 4.2: Metric and MetricInfo class hierarchy

34

Chapter 5

Conclusion

5.1 Summary

This work has examined the most common MT system evaluation metrics that
are currently used. The experiments have shown that the most suitable metrics
for the system-level evaluation of MT systems with Czech as target language are
Semantic POS Overlapping and Meteor, followed by BLEU and NIST. These re-
sults are consistent with data that were published for systems with English as
target language.

The evaluation of metrics on the sentence level proved as unsuitable because
of a relatively low correlation with human judgments and because it was not
possible to distinguish the quality of metrics very well. We only found out that
BLEU does not correlate with human judgments on the sentence level. However,
the results were influenced by the quality of human judgments which had only
moderate intra-human correlation.

We implemented a command line tool MTrics that was used to compute all
metric ratings in this work. The tool supports computation of multiple metrics
on the same input. For metrics requiring additional syntactic or semantic infor-
mation, we used the TectoMT framework.

5.2 Future Work

More accurate results about the quality of MT metrics for Czech as the target
language can be obtained if the experiments we have done on the system level
would be repeated on more data or bootstrapped samples.

35

Moreover, other metrics that emerged recently can be implemented and evalu-
ated. This concerns especially metrics that were published in [7]. Several of them
show high correlation with human judgments for English. The TectoMT frame-
work can provide most of the required features to compute these metrics for Czech
sentences.

36

Appendix A

User Documentation

A.1 Synopsis

mtrics -c | - -candidate candidateFile [candidateFile2 ... candidateFileN]
-r | - -reference referenceFile [referenceFile2 ... referenceFileN]
[-o | - -output outputFile]
[-b | - -bleu [ngramList]]
[-n | - -nist [ngramList]]
[-p | - -per]
[-f | - -fmeasure [P,R]]
[-g | - -gtm [exponent]]
[-w | - -wer]
[-t | - -ter]
[-m | - -meteor [orig]]
[-sempos | - -semantic-pos-overlap]
[-T | - -tokenize]
[-M | - -mteval-file-format]
[-MT | - -mteval-input]
[-TMT | - -tectomt-input [layer]]
[-conf | - -confidence-intervals [num]]
[-cl | - -confidence-level percent]
[-s | - -case-sensitive]
[-v | - -verbose]
[-h | - -help]

At least one of the metric parameters -b, -n, -p, -f, -g, -w, -t, -m, -sempos has to
be specified. However, -sempos cannot be used at the same time with other metric
parameters.

37

A.2 Options

Input and Output

• -c | - -candidate candidateFile [candidateFile2 ... candidateFileN]
Parameter -c is mandatory. It is followed by a sequence of filenames contain-
ing candidate translation(s). Candidate translations must be translations of
one source document, e.g. generated by various MT systems. It is not pos-
sible to score translations of different source documents at the same time.
For more details on input format, see Section A.3.

• -r | - -reference referenceFile [referenceFile2 ... referenceFileN]
Parameter -r is mandatory and is followed by a sequence of filenames con-
taining reference translation(s). The order of reference files can be arbitrary.
If several references are specified, all of them will be used in metric scoring
process. The reference translations must have the same source document as
the candidate translations.

• -o | - -output outputFile
Write results to file outputFile.

Metrics

• -n | - -nist [ngramList]
Parameter -n stands for NIST metric [5]. This metric uses n-grams for the
computation of ratings. By default, unigrams up to 5-grams are used for
the evaluation. Nevertheless, it is possible to choose only some n-grams.
This can be done by appending the list of n-grams to parameter -n. The
list consists of numbers or intervals separated by commas. Example 1 shows
several examples how to use parameter -n.

Example 1.
mtrics ...-n 1-4 ...
mtrics ...-n 3,1,5 ...
mtrics ...-n 6,1-3,7 ...

Note that it is possible to omit some n-grams like in the third example, in
which 5-grams are not evaluated. The order of numbers or intervals can be
arbitrary.

The NIST score is in interval (0,∞). The higher the score, the better the
machine translation.

• -b | - -bleu [ngramList]
Parameter -b stands for the BLEU metric [13]. If no n-gram specification

38

follows the -b parameter, the metric uses unigrams to 4-grams by default.
Otherwise, it is possible to choose n-grams in a similar way as for the param-
eter -n. For example, one can compute BLEU score of a translation using
only unigrams and bigrams by specifying -b 1-2 or -b 1,2.

The BLEU score lies in the interval (0, 1). Higher score means better quality
of the translation.

• -p | - -per
The parameter -p specifies the Position-independent Word Error Rate (PER)
metric [19]. This metric is a distance metric and ignores ordering of words
within the sentence. It is defined as the minimum number of deletions, inser-
tions and substitutions to transform the bag of words of the candidate sen-
tence into the reference sentence words, normalized by the reference length.

The PER score ranges between zero and one. Because PER is an error
metric, the best score is zero.

• -f | - -fmeasure [P,R]
F-measure is computed by -f parameter. The standard implementation com-
bines precision (prec) and recall (rec) into one value according to the follow-
ing expression: prec+rec

2∗prec∗rec , also known as the harmonic mean. MTrics allows
to assign weights P and R to precision and recall. The rating is then com-
puted by P∗prec+R∗rec

(P+R)∗prec∗rec . Both weights are specified after -f, separated by
comma. If precision should have weight 9 and recall weight 1, the parameter
would look like -f 9,1.

The F-measure score ranges from zero to one. Higher score means better
quality of the translation.

• -g | - -gtm [exponent]
General Text Matcher (GTM) [20] is a metric based on precision and recall.
Compared to plain F-measure, it takes word order into account by scoring
contiguous sequences of words better. The optional parameter exponent de-
termines the rate of preferring longer sequences of words. The default value
is one.

The score ranges from 0 to 1, one being the best score.

• -w | - -wer
Word Error Rate (WER) [17] is another distance metric. It is defined as the
Levenshtein distance [10] between the candidate sentence and the reference
sentence, divided by the reference length for normalization. The Levenshtein
distance is the minimum number of deletions, insertions and substitutions
of single words to transform one sequence of tokens (words) into another.

39

Similar to PER, the score ranges between zero and one, zero being the best
score.

• -t | - -ter
Translation Error Rate (TER) metric [16]. This is a distance metric, similar
to WER. Beside three basic edit operations (insertion, deletion and substu-
tution), it also allows movements of contiguous word sequences.

The score is from the interval (0, 1), zero being the best score.

• -m | - -meteor [orig]
Meteor metric [2]. This metric uses exact, lemma and WordNet synonymy
modules and can be used to compute score only for Czech sentences. If you
use the optional string parameter orig, the score is computed according to
the original paper [2], in which Meteor was introduced. Otherwise, different
parameters (higher significance of precision and modified penalty) are used.
These parameters are taken from the latest version of the evaluation script
meteor.pl1 provided by the authors of Meteor.

This metric must be used with the -TMT parameter. The translations can
be extracted either from the analytical or the morphological layer, which
can be specified after the -TMT parameter. By default, the TCzechA layer
is used. The selected layer must contain the lemma attribute for each word.
This metric can be computed with other metrics, except for the Semantic
POS Overlapping.

The score is from the interval (0, 1), one being the best score.

• -sempos | - -semantic-pos-overlap
Semantic Part-of-Speech Overlapping metric inspired by [7]. This metric
computes the ratio of matched words to the reference length with respect
to their semantic POS type.2 The score is the average of the ratios of all
semantic POS types.

This metric must be used with the -TMT parameter which specifies the
exact name of the tectogrammatical layer from which the translations are to
be extracted. The tectogrammatical layer must contain the sempos attribute
for each word. It is not possible to compute this metric with any other
metrics for the same input.

The score ranges from 0 to 1, one being the best score.
1Version 0.6 from May 3, 2007 - http://www.cs.cmu.edu/~alavie/METEOR/
2Semantic POS types are taken from PDT 2.0 -

http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/t-layer/html/ch05s03s01.html

40

Input Parsing

• -s | - -case-sensitive
Use case sensitivity. Default value is insensitive.

• -T | - -tokenize
Use advanced tokenization of words. The tokenization rules are as follows:

– punctuation marks are tokenized (they are considered as separate to-
kens), except for hyphen (-), apostrophe (’), full stop (.) and comma
(,)

– if full stop (.) or comma (,) are not followed by a digit, they are also
tokenized

– hyphen (-) preceded by a digit is tokenized
– sequences of digits separated by blank spaces are joined together

By default, words are separated by white-space characters.

• -M | - -mteval-file-format
Use input files in mteval file format. For more details, see Section A.3.

• -MT | - -mteval-input
This parameter can be used instead of specifying -M and -T.

• -TMT | - -tectomt-input [layer]
Use input files in TectoMT file format. The optional parameter layer is
a string that specifies the TectoMT layer from which the translations are
extracted, e.g. TCzechA or TCzechM. The default layer is TCzechA. For
more details, see A.3.

Confidence Intervals

• -conf | - -confidence-intervals [num]
Confidence intervals (95% confidence level by default) are computed by pa-
rameter -conf . We use bootstrapping [8] to generate the necessary amount
of samples from the candidate sentences. The default number of samples
is 1000. The user can specify a different number of samples in order to re-
duce the computational costs or to increase the statistical significance of
confidence intervals by writing the required number after -conf, like -conf
5000.

• -cl | - -confidence-level percent
Set confidence level to percent. Percent must be a number from (0,1), e.g.
0.9 meaning the 90% confidence level.

41

Output Details

• -v | - -verbose
Show detailed information about metric scores for all sentence segments.

Help

• -h | - -help
Print out help on STDOUT.

A.3 Input format

MTrics requires all input files in UTF-8 encoding.

Plain Text

The default input file format is plain text. Every sentence must be on a separate
line and all files must have exactly the same number of lines: on the ith line of
each file must be the translation of the ith source sentence.

If a line is left blank, it is supposed that the translation of the line is missing,
i.e. the line translation contains zero words. After the input files are processed,
MTrics checks whether each translation contains the same number of sentences.

Names of the candidate files are used to identify the MT systems in output
summaries.

mteval Input Format

In order to be compatible with other MT scoring programs, MTrics supports the
input data format specified by the National Institute of Standards and Technology
for the evaluation script mteval [12]. The translations are stored in SGML files
with some additional information, like source and target language or MT system
name. The script mteval requires three input files: source, candidate and refer-
ence documents. A simplified structure of the files is shown below. For detailed
description of the file structure see the DTD specification in Appendix B.

• Source documents:

<srcset setid="[tst-set-name]" srclang="[src-lang]">
<DOC docid="[doc-name]">

42

<seg> . . . </seg >
.
.

</DOC>
</srcset>

where

– setid is a unique identifier for the test set

– docid is a unique identifier for each document of the test set.

• Candidate documents (MT system output):

<tstset setid="[tst-set-name]" srclang="[src-lang]" trglang="[tgt-lang]">
<DOC docid="[doc-name]" sysid="[system-name]">
<seg> . . . </seg >

.

.
</DOC>
</tstset>

where

– setid is the same unique identifier for the test set, as given in the source
documents

– docid is the same unique identifier for each document of the test set

– sysid is the MT system identifier. This name will be used to identify
the system in the scoring reports.

• Reference documents:

<refset setid="[ref-set-name]" srclang="[src-lang]" trglang="[tgt-lang]">
<DOC docid="[doc-name]" sysid="[system-name]">
<seg> . . . </seg >

.

.
</DOC>
</refset>

where

– setid is the reference set name

– docid is the same unique identifier for each document of the test set

43

– sysid identifies reference translations. Each reference translation should
have its own identifier.

The data segments in a document are tagged with a segment tag <seg>. For
example:

<seg> This is a sample language data segment. </seg>

With this scheme, each experiment is defined by the unique combination of a
ref-set-name and a tst-set-name.

For the purposes of MTrics, the file with source sentences is not used, since it
only serves to check whether an experiment is well-formed. It is supposed that all
files comply with the file format specification. Their correctness is not explicitly
checked. Nevertheless, if the tags are mismatched, an error occurs.

Here is an example of the structure of files containing data for evaluation:

Example 2 (Example of source, candidate and reference translation files).
<srcset setid="PCEDT WSJ" srclang="Czech">
<DOC d̄ocid="docxxx" sysid="cz">

<seg id="1"> Konsorcium soukromých investorů fungujı́cı́ jako
LJH Funding Co. sdělilo, že dalo nabı́dku za 409 milionů dolarů
v hotovosti na vetšinu holdingů v oblasti realit a nákupnı́ch
center firmy L.J.Hooker Corp.</seg>
<seg id="2"> Tato 409milionová nabı́dka zahrnuje také
odhadovaných 300 milionů dolarů v zaručených závazcı́ch na tyto
nemovitosti, jak uvádı́ nabı́zejı́cı́ strana.</seg>

</DOC>
</srcset>

<tstset setid="PCEDT WSJ" srclang="Czech" trglang="English">
<DOC docid="docxxx" sysid="exp ugly pako union/f-dev.std.pbt.hyp">

<seg id="1"> The private investors working as UNKNOWN LJH
Funding Co. said that could offer for 409 million dollars
in cash for most UNKNOWN holdingů in the area real and shopping
centers firm L.J. Hooker Corp.</seg>
<seg id="2"> The 409 million offer includes also an estimated
$ 300 million in the guaranteed commitment to these real
estate , according to the bidding party .</seg>

</DOC>
</tstset>

<refset setid="PCEDT WSJ" srclang="Czech" trglang="English">

<DOC docid="docxxx" sysid="retran1">

44

<seg id="1"> A group of private investors operating under the
name LJH Funding Co. has announced that they have submitted a
bid of $409 million in cash for the majority of L.J. Hooker
Corp. holdings in the field of real-estate and shopping
centers.</seg>
<seg id="2"> This offer of $409 million also includes a
estimated $300 million in secured bonds of this real estate,
claimed the bidder.</seg>

</DOC>

</refset>

TectoMT Input Format

Meteor and Semantic POS Overlapping metrics require additional information
about the translations like lemmata of the words or their semantic POS. This
information can be obtained for a translation by the TectoMT framework [1].
This framework uses different layers in which the information about a translation
is stored. The basic layers are

• word layer

• morphological layer

• analytical layer

• tectogrammatical layer.

For the purpose of MTrics, only the last three layers are supported. Morpho-
logical and analytical layer can be used for computation of all metrics except for
Semantic POS Overlapping. Semantic POS Overlapping metric cannot be com-
puted with other metrics for the same input and can use only the tectogrammatical
layer.

The translations are extracted from the TectoMT files with ending .tmt by a
perl script tmt to mtrics.pl which uses the TectoMT API. By default, the layer
TCzechA is used for extraction but it is possible to use a different layer by spec-
ifying its name after the -TMT parameter. The layers are identified by the last
letter of their name, e.g. TCzechM stands for the morphological level. The layer
name must exactly match the layer in which the translation is stored in the .tmt
file.

A.4 Output Format

The evaluation results are written to the standard output (STDOUT), by default.
Another possibility is to output the results to a file specified after the -o param-

45

eter. The format of the output is plain text. Example 3 shows a sample output of
MTrics.

Example 3 (Example of MTrics output).
MT evaluation run on Thu May 15 20:08:45 2008

Computation finished in 2 seconds

Parameters: -c cand.xml -r ref4.xml -MT -g -w

Total score:

f-dev.std.pbt.hyp.keepunk: GTM: 0.7322
f-dev.std.pbt.hyp: GTM: 0.6963
f-dev.std.pbt.hyp.dropunk: GTM: 0.7409
f-dev.std.pbt.hyp.keepunk: WER: 0.5373
f-dev.std.pbt.hyp: WER: 0.611
f-dev.std.pbt.hyp.dropunk: WER: 0.5352

46

Appendix B

DTD for mteval

<!DOCTYPE MTEVAL [

<!ELEMENT MTEVAL -- (srcset|refset|tstset|DOC+)>
<!ELEMENT (srcset|refset|tstset) -- (DOC+)>
<!ATTLIST (srcset|refset|tstset) setid CDATA #REQUIRED

srclang (Chinese|Arabic) #REQUIRED
trglang (English) #IMPLIED

>

<!--
Files of type "srcset" contain source documents to be translated.
Files of type "refset" contain reference translations to be used
in evaluation.
Files of type "tstset" contain output translations to be evaluated.

-->

<!ELEMENT DOC -- ((hl|p|poster|seg)*)>
<!ATTLIST DOC docid CDATA #REQUIRED

sysid CDATA #IMPLIED
genre CDATA #REQUIRED

>

<!ELEMENT hl -- (seg*)>
<!ELEMENT p -- (seg*)>
<!ELEMENT poster -- (seg*)>
<!ELEMENT seg -- (#PCDATA)*>
<!ATTLIST seg id CDATA #IMPLIED>

]>

47

Bibliography

[1] Zdeněk Žabokrtský, Jan Ptáček, and Petr Pajas. TectoMT: Highly modular
MT system with tectogrammatics used as transfer layer. In In Proceedings
of the Third Workshop on Statistical Machine Translation, pages 167–170,
Columbus, Ohio, June 2008. Association for Computational Linguistics.

[2] S. Banerjee and A. Lavie. METEOR: An Automatic Metric for MT Eval-
uation with Improved Correlation with Human Judgments. In Proceedings
of Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or
Summarization at the 43th Annual Meeting of the Association of Compu-
tational Linguistics (ACL-2005), pages 65–72, Ann Arbor, Michigan, June
2005.

[3] Ondřej Bojar and Jan Hajič. Phrase-based and Deep Syntactic English-
to-Czech Statistical Machine Translation. In In Proceedings of the Third
Workshop on Statistical Machine Translation, pages 143––146, Columbus,
Ohio, June 2008. Association for Computational Linguistics.

[4] Chris Callison-Burch, Cameron Fordyce, Philipp Koehn, Christof Monz, and
Josh Schroeder. Further Meta-Evaluation of Machine Translation. In Pro-
ceedings of the Third Workshop on Statistical Machine Translation, pages
70–106, Columbus, Ohio, 2008. Association for Computational Linguistics.

[5] George Doddington. Automatic evaluation of machine translation quality
using n-gram co-occurrence statistics. In Proceedings of the Second Interna-
tional Conference on Human Language Technology Research, pages 138–145,
San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[6] B. Efron and G. Gong. A Leisurely Look at the Bootstrap, the Jackknife,
and Cross-Validation. In The American Statistician, volume 37, pages 36–48.
American Statistical Association, February 1983.

[7] Jesús Giménez and Llúıs Màrquez. Linguistic Features for Automatic Evalu-
ation of Heterogenous MT Systems. In Proceedings of the Second Workshop

48

on Statistical Machine Translation, pages 256–264, Prague, June 2007. Asso-
ciation for Computational Linguistics.

[8] P. Koehn. Statistical significance tests for machine translation evaluation. In
Proceedings of EMNLP, pages 388–395, Spain, July 2004.

[9] Philipp Koehn, Abhishek Arun, and Hieu Hoang. Towards Better Machine
Translation Quality for the German-English Language Pairs. In In Pro-
ceedings of the Third Workshop on Statistical Machine Translation, pages
139––142, Columbus, Ohio, June 2008. Association for Computational Lin-
guistics.

[10] Vladimir I. Levenshtein. Binary Codes Capable of Correcting Deletions,
Insertions, and Reversals. Technical Report 8, 1966.

[11] I. Dan Melamed. Automatic Evaluation and Uniform Filter Cascades for
Inducing N-Best Translation Lexicons. In David Yarovsky and Kenneth
Church, editors, Proceedings of the Third Workshop on Very Large Corpora,
pages 184–198, Somerset, New Jersey, 1995. Association for Computational
Linguistics.

[12] National Institute of Standards and Technology. MT evaluation software.
http://www.nist.gov/speech/tests/mt/2008/scoring.html. Last visited on
July 18, 2008.

[13] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
Method for Automatic Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting on Association for Computational Linguistics,
pages 311–318. Association for Computational Linguistics, July 2002.

[14] Martin Porter. The Porter Stemming Algorithm.
http://www.tartarus.org/martin/PorterStemmer/index.html. Last vis-
ited on July 16, 2008.

[15] M. Rajman and T. Hartley. Automatically predicting MT systems rankings
compatible with Fluency, Adequacy or Informativeness scores. In In Proceed-
ings of the Workshop on Machine Translation Evaluation: “Who Did What
To Whom”, pages 29–34, Santiago de Compostela, Spain, 2001.

[16] Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John
Makhoul. A Study of Translation Edit Rate with Targeted Human Anno-
tation. In Proceedings of the 7th Conference of the Association for Machine
Translation in the Americas, pages 223–231, Morristown, NJ, USA, August
2006. The Association for Machine Translation in the Americas.

49

[17] K. Su and J. Wu. A New Quantitative Quality Measure for Machine Trans-
lation Systems. In Proceedings of the 14th International Conference on Com-
putational Linguistics, pages 433–439, Nantes, France, July 1992.

[18] Jan Tattermusch. Implementation of Aho-Corasick Algorithm. www.atrac.cz.
Last visited on September 18, 2007.

[19] Christoph Tillmann, Stefan Vogel, Hermann Ney, A. Zubiaga, and H. Sawaf.
Accelerated DP Based Search for Statistical Translation. In Proceedings of the
5th European Conference on Speech Communication and Technology, pages
2667–2670, Rhodes, Greece, September 1997.

[20] Joseph P. Turian, Luke Shen, and I. Dan Melamed. Evaluation of Machine
Translation and its Evaluation. In Machine Translation Summit IX, pages
386–393. International Association for Machine Translation, September 2003.

50

