
Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR THESIS

Milan Burda

Mouse Gestures

Department of Software and Computer Science Education

Thesis supervisor: RNDr. Josef Pelikán

Study program: Computer Science, Programming

2008

I would like to thank my supervisor RNDr. Josef Pelikán, for many valuable
suggestions and for all the time spent at consultations. I would also like to
thank my friend Andrej Mikuĺık, for practical use of my application during
the development, useful feature requests and bug reports. I am grateful to
my friend Dominik Kosoŕın, for correcting the spelling of the thesis. Finally,
thanks to my sister Diana Burdová and my friend Michal Čermák, for mental
support during hard times while writing the thesis.

I hereby certify that I wrote the thesis myself using only the referenced sources.
I agree with publishing and lending of the thesis.

Prague, 8 August, 2008 Milan Burda

2

Contents

1 Introduction 6

1.1 Motivation . 6

1.2 Existing solution . 7

1.3 Gesture definition . 7

1.4 Goals . 7

1.5 Challenges . 9

1.6 Program structure . 9

2 Gesture recognition 11

2.1 Algorithm principle . 12

2.2 Neural network . 13

2.3 K-nearest neighbors . 14

3 Technologies used 16

3.1 Visual Studio 2008 + Feature Pack 16

3.2 Graphical user interface toolkit 17

4 Gesture capture library 20

4.1 Mouse input detection & filtering 20

4.2 Design . 22

4.3 Interface . 23

4.4 Implementation . 24

4.5 Issues experienced . 27

5 Main application 29

5.1 Application design . 29

5.2 Gesture capture library wrapper 30

3

5.3 Engine . 31

5.4 Gesture recognizers . 33

5.5 Action mapping . 35

5.6 Commands . 36

5.7 User interface . 37

6 Further development 40

6.1 64-bit Windows support . 40

6.2 QtScript . 41

6.3 D-Bus . 42

6.4 Miscellaneous . 42

7 Conclusion 44

Bibliography 46

A User documentation 49

4

Title: Mouse Gestures
Author: Milan Burda
Department: Department of Software and Computer Science Education
Supervisor: RNDr. Josef Pelikán
Supervisor’s e-mail address: Josef.Pelikan@mff.cuni.cz

Abstract: In the presented work, we design and implement a mouse gesture
recognition application. The program integrates transparently with the oper-
ating system, thus allowing existing unmodified Windows applications to be
controlled by gestures. In an editor provided, the user is able to define a cus-
tom set of gesture patterns that the program automatically learns to recognize.
The recognition algorithm is based on a preprocessing phase and two different
gesture classifiers: back-propagating artificial neural network and k-nearest
neighbors. The user is allowed to configure both general and application spe-
cific gesture mappings. These specify the commands to be triggered by the
individual gestures. Several new features and improvements have been pro-
posed for further development.

Keywords: mouse gestures, gesture recognition, neural network, k-nearest
neighbors, C++

Název práce: Mouse Gestures
Autor: Milan Burda
Katedra (ústav): Kabinet software a výuky informatiky
Vedoućı bakalářské práce: RNDr. Josef Pelikán
e-mail vedoućıho: Josef.Pelikan@mff.cuni.cz

Abstrakt: V predloženej práci navrhneme a implementujeme aplikáciu na
rozpoznávanie tzv. mouse gestures. Transparentná integrácia do operačného
systému umožňuje gestami ovládať existujúce aplikácie pre Windows bez akých-
kǒlvek úprav. Už́ıvatěl si v poskytnutom editore definuje vlastnú množinu
vzorov, ktoré sa program nauč́ı automaticky rozpoznávať. Rozpoznávaćı al-
goritmus je založený na fáze predpŕıpravy a dvoch rôznych klasifikátoroch:
neurónová sieť a k-najbližš́ıch susedov. Už́ıvatěl si môže nadefinovať všeobecné,
ako aj špecifické mapovanie gest pre rôzne aplikácie. Tieto mapovania definujú
pŕıkazy aktivované daným gestom. Pre budúci vývoj bolo navrhnutých niekǒlko
nových vlastnost́ı a vylepšeńı.

Kĺıčová slova: mouse gestures, rozpoznávanie gest, neurónová sieť, k-najbližš́ıch
susedov, C++

5

Chapter 1

Introduction

This paper deals with the analysis, design, and implementation of a program,
which would allow existing Windows applications, without code modification
or recompilation, to be controlled by user defined mouse gestures.

1.1 Motivation

On small touch screen devices without traditional keyboard, pen input involv-
ing handwriting recognition has become a standard. It is a very efficient input
method when the recognition accuracy is high enough. However, a similar
concept can be also partially adopted in traditional desktop applications or
even the whole windowing system. Mouse gestures are an additional way to
provide user input using a pointing device such as mouse or touch-pad.

On Windows, Opera web browser has probably been the first application which
introduced built-in in support for mouse gestures [17]. Firefox and Internet
Explorer do not support mouse gestures natively, however several extensions
providing gesture support exist [13, 18]. Mouse gestures are quite popular
among users as they allow certain frequent tasks to be performed in a much
more convenient way. For example, to go back in the browser history, it is much
faster just to move the mouse cursor a few points to the left while holding the
right button, than to click the back button in the tool-bar.

Application specific gesture support is a nice feature. However, a general
solution working across all the applications is much more desirable. No such
completely free to use application can be found on the Internet, surprisingly.
Despite the fact that mouse gestures are not a new idea. This lack of an
appropriate existing solution is the main motivation behind taking up the
challenge of developing a cross-application mouse gesture recognition engine
for Windows.

6

1.2 Existing solution

Still, one such application called StrokeIt [34] exists. However, it is not com-
pletely free and the source code is not available for download. Only the software
development kit (SDK) for plug-in developers can be downloaded. Moreover,
it has several quite serious limitations, including:

• the last version 0.95 has been released in 2005, no signs of active devel-
opment can be observed since

• the user interface is old-fashioned and not sufficiently intuitive

• the way the program paints the gesture feedback line on the screen is
unreliable and incompatible with the Desktop Window Manager (DWM)
[10] introduced in Windows Vista

1.3 Gesture definition

Before moving on, it is important to define the term gesture. A gesture is
a sequence of mouse movements performed while holding a specified trigger
button. Let us call this a regular gesture. Wheel scrolling while holding
the trigger button is also considered a gesture; this will be called a wheel
gesture.

From the programmer’s perspective, a gesture is a sequence of events. Gesture
start event is the first one, followed by a series of mouse movements and/or
wheel scrolling events, terminated by a finish event. The timespan between
the individual mouse movements is not taken into account. Hence we can also
represent the gesture as a vector of either relative or absolute mouse cursor
positions. The absolute position representation is more convenient and thus
will be used for our purposes.

The user, on the other hand, considers the whole gesture as one input event.
Using a gesture is essentially very much like striking a keyboard shortcut con-
sisting of multiple key presses.

1.4 Goals

Our task is to create a mouse gesture recognition application, called Universal
Gestures. The program has to support seamless integration with the operating
system, in order to enable mouse gesture support in all existing Windows
applications. Gestures will be detected by intercepting mouse input: button

7

clicking, cursor movement, and wheel scrolling. The gesture will be triggered
by holding a specified so-called trigger button, configured to the right button
by default. The user will be able to disable the gesture detection temporarily
for the given moment, by holding a specific key or by clicking a mouse button
different from the gesture toggle button. The user must also be able to use
the toggle button to perform clicking and drag & drop operations. A detailed
description of the gesture detection and the associated settings are provided
in the Gesture capture library chapter.

The program as well as the system integration should be as stable and reliable
as possible, to avoid any potential negative impact on the running applications.
Problematic applications like games, where mouse gestures interfere with the
way the mouse is used, or those with built-in gesture support, can be added
to an exclusion list. Gesture processing will be ignored completely in these
applications.

One of the most important objectives is the ability to recognize advanced, user-
defined gestures. The user will be able to define a custom set of patterns, in an
editor provided. The applications will then learn to recognize these patterns
automatically. Moreover, each user will be able to add a set of training samples
to each pattern, to increase the recognition accuracy. Simple gestures should
be supported as well, to satisfy users that do not demand more sophisticated
gesture recognition.

The user will be able to assign individual gestures to trigger commands, pro-
vided by the application. Gesture mappings are divided into two groups, the
defaults, which are available in any application, and program specific map-
pings. Applications will be identified by the executable file path, which is
simple, though reliable in most cases. The application should include at least
the following set of commands:

• basic window control - minimize, maximize / restore, close, resize

• special window attributes - always on top, transparency

• send a general or an application specific command message

• emulate keyboard shortcuts to invoke application commands

• control the Universal Gestures application itself

• execute any user defined application with given command-line arguments

• open a selected special folder, such as the Computer or the Control Panel

• switch between running applications

Universal Gestures will be a resident application running in the background.
It will be accessible by a tray icon located in the system notification area.

8

Right clicking the icon will display the main menu, which provides access
to all features of the application, such as the configuration windows. User
friendliness is important. The user interface and the configuration should be
intuitive and easy to use.

The minimum operating system version supported will be a 32-bit edition of
Windows XP, which is the most commonly used version of Windows at present.
Older versions, including Windows 2000, are now obsolete as they lack a lot of
functionality introduced in later versions. Windows Vista, as well as Windows
Server 2003 and 2008 will be supported too. The application as a whole will
not be portable, as the system integration involves use of platform specific
functions. However, due to the modular design, many parts of the program
will be platform independent.

The application will be developed in C++, to achieve good performance and
keep the resource use low. The actual tools employed will be described in
more detail in the Technologies used chapter. The program configuration will
be stored in the convenient XML format. Plug-in support will allow further
extension of the functionality.

1.5 Challenges

In addition to laborious tasks such as the user interface design and implementa-
tion, we expect having to deal with a few challenges. A way to detect gestures
performed in any application reliably has to be found. The development of
an accurate gesture recognition algorithm is also expected to be a non-trivial
task. On the other hand, we expect to gain a lot of knowledge and experience
while developing the application.

1.6 Program structure

Modularity is one of the main goals that have been set. Modular architecture,
when properly designed, yields many benefits:

• possible porting to another operating system in the future will be easier

• the source code will be well organized and more readable

• debugging will be easier, as self-contained functional units can be devel-
oped and tested separately

• plug-in system can be implemented, allowing 3rd party developers to
extend the application’s core functionality

9

Our application will be divided into the following parts:

• gesture capture library

• main application

• modules - gesture recognizers & commands

These parts are described individually in more detail in the following chapters.
Design, interface, and implementation information is included.

10

Chapter 2

Gesture recognition

Our main objective is to design an accurate and efficient gesture recognition
algorithm, able to recognize user defined gesture patterns.At the same time, a
simple four-direction recognizer is necessary. The design of the latter proved to
be a rather trivial task. The principle lies in the detection of cursor movement
in one of the supported directions. The movement is only registered when
the distance between the actual cursor position and the previous base point
exceeds a minimum threshold value. To prevent diagonal motion from being
detected as a sequence of horizontal or vertical movements, the angle of the
line between the actual position and the base point must be within a specified
range. This can be seen in figure 2.1. When a new section is about to be
added to the resulting gesture, the previous one is checked, as consequent
section must be different.

Up

Down

Right Left

Figure 2.1: Angle range in different directions

Thus, from now on, we only deal with more sophisticated gesture recognition
methods, which classify gestures into groups given by the user defined gesture
patterns.

11

The goal of the gesture recognition algorithm is to determine, which gesture
pattern, if any, corresponds to the given gesture. As already defined in the In-
troduction, the program treats gestures as directed sequences of mouse cursor
positions, represented by vectors of points. The time span between the indi-
vidual movements is not considered significant and therefore is not taken into
account. As it was observed in [2], gestures are expected to be simple shapes,
which can be drawn on the screen easily, in order to be useful. It should be
possible to repeat them multiple times with sufficient similarity. Suitable ges-
ture patterns include straight lines, simple geometric shapes such as triangle,
circle, square, etc., letters of the alphabet, which can be painted with a single
stroke.

The output of the algorithm is a regular gesture, identified by the name of
the corresponding pattern. Patterns are defined by their base shape, mainly
used by the user interface for graphical representation. However, user entered
samples assigned to each pattern are more important. They are crucial for
successful gesture recognition, as the variable shape and size of the performed
gestures cannot be expressed by a single definition. In case there are not
enough pattern samples present, it is possible to emulate them by adding
noise to the base pattern shape. However, this trick is unable to substitute
real, user-entered samples.

We decided to search for a suitable gesture recognition algorithm, instead of
taking the risk of failure, while trying to invent a completely new solution, and
to avoid reinventing the wheel. Several different sources have been consulted.
However, most of the papers deal with different kinds of gestures, such as hand
gestures. The results of the research done in [2] are the most interesting. The
algorithm proposed in this paper is simple, yet powerful. Hence, our solution
will be based on this algorithm.

2.1 Algorithm principle

The algorithm consists of two separate phases: preprocessing and classification,
as outlined in figure 2.2.

raw sequence
of points

preprocessing
normalized

input
classification

Figure 2.2: Recognition process overview

The purpose of the preprocessing phase is to produce appropriate input for the
actual gesture classification. The length of the raw sequence of points varies
from gesture to gesture. Therefore, the input has to be transformed into a

12

vector of fixed length, called the key point count. The algorithm, described
in [2], breaks the gesture down into a sequence of characteristic points that
define significant changes in the shape of the gesture. It works as follows:

• iterate through the list of points in the input sequence. Skip the first
and the last point

• remove the point from the result, if:

– the angle between the consequent segments is close to 180◦

– the distance from the last point kept is less than a given threshold

The remaining points now define the shape of the gesture. However, the num-
ber of points can still be different from the requested amount. The polyline
has to be interpolated to achieve the given key point count, by splitting the
longest segments and joining the shortest ones. An overview of the algorithm
can be seen in figure 2.3.

Key point identification Interpolation

Figure 2.3: Overview of the preprocessing algorithm

Now when the input is normalized, we can proceed with the classification. Two
different gesture classifiers will be used. They both use the same preprocessing
algorithm. However, the input representation is different.

2.2 Neural network

A standard artificial neural network [4] with following properties will be used:

• three layers - input, hidden, output

• log-sigmoid activation function

• back-propagation training

• variable learning rate with momentum

13

The data delivered to the neural network is encoded as a sequence of cosines
and sinuses of the angles between the subsequent segments [7]. Hence, the
number of inputs equals twice the amount of lines in the normalized shape.
Each output corresponds to a single recognizable gesture pattern. Thus, the
number of outputs is the same as the size of the pattern list. Therefore, every
time a new gesture is added to or removed from the list, the neural network
has to retrain from scratch.

To recognize a gesture, we transform the normalized sequence of points into the
proposed input format and propagate it through the neural network. We find
the maximum value, which signals the corresponding gesture pattern, when it
is above a defined threshold value. On overview of the neural network can be
seen in figure 2.4.

cos α

sin α

cos β

sin β

cos γ

sin γ

Figure 2.4: Neural network overview

The training is performed by repeating the standard back-propagation algo-
rithm. Preprocessed and transformed pattern samples are used as the training
input. Expected output samples are constructed by taking a vector filled with
zeros except for a one on the index, which is assigned to the given gesture
pattern. The training process is finished when either the error rate reaches the
target value, or the number of cycles exceeds the maximum count.

2.3 K-nearest neighbors

The k-nearest neighbors [15] is the second available gesture classifier. Big
advantage over the neural network is the lack of the learning phase. The
idea of the algorithm is very simple. To recognize a gesture, we compare
it with all pattern samples from the list. By applying a specified distance

14

measure, we get K nearest objects. The samples are grouped according to the
corresponding gesture pattern. The winner is the pattern with more than half
of the nearest samples. In case there is no winner, the recognition is reported
to be unsuccessful.

The distance measure will be calculated as the sum of Euclidean distances of
the corresponding points. To make the coordinates comparable, the shapes of
the gesture as well as all the pattern samples have to be normalized to the
same coordinate space after the preprocessing phase. The geometric center
of the shape will be in the middle of the coordinate space. An example of a
normalized shape can be seen in figure 2.5.

0.0 x 0.0

1.0 x 1.0

Figure 2.5: Normalized shape example

The results of the algorithm depend on the value of K. If the number of
samples per pattern is the same, there is no problem. However, when it is not,
the K has to be calculated somehow. We will use the most frequent number
of pattern samples. Patterns, which do not contain the required number of
samples, will not be recognized. On the other hand, the patterns containing
at least the sufficient number of patterns, will only use the first K patterns.
The other possible solution would be to take the minimum number of pattern
samples. However, this would handicap “well behaved” patterns.

15

Chapter 3

Technologies used

The application has been developed in C++, as already mentioned in the Intro-
duction. The main reasons for choosing C++ were high performance and the
ability to write low-level system code easily. After selecting the programming
language, the development tools and libraries had to be decided. C++ is an
extremely widespread language offering dozens of development environments
and thousands of different libraries and toolkits.

3.1 Visual Studio 2008 + Feature Pack

The choice of the integrated development environment (IDE) was straightfor-
ward. Microsoft Visual Studio is a quality product, probably the best choice
for Windows development. A student license for non-commercial purposes is
available through the MSDN Academic Alliance program. The C++ compiler
offers very good performance of the generated binary code. MSDN provides
extensive documentation of the Windows API, which cannot be avoided. The
program has to interact with and control other user’s applications in ways not
offered by higher-level frameworks.

Smart pointers, included in Technical Report 1 (TR1) [35], have been used.
TR1 is an addition to the Standard Template Library (STL). By using the
shared ptr template class, the majority of explicit object destruction could be
eliminated. This helps to avoid potential memory leaks and problems related
to passing of object instances. There are two ways how to get TR1. Either
from the Visual C++ 2008 Feature Pack [24], which has been released recently
and will be a part of the upcoming Service Pack 1. The second possibility is to
use Boost, a collection of free high quality C++ libraries for various purposes.

16

3.2 Graphical user interface toolkit

The decision which graphical user interface (GUI) toolkit to use was harder.
Nevertheless, the choice that has been made proved to be the right one. The
main requirements imposed upon the toolkit were:

• native look & feel, matching dedicated Windows applications as closely
as possible

• clean object-oriented design allowing simple extensibility

• well documented, examples and sample applications should be provided

• must be free for use in non-commercial applications; no particular type
of license is demanded

• a cross-platform framework is a big plus, as it allows potential porting
to Linux or Mac OS X in the future

• extra functionality such as network and XML support would be appreci-
ated, to eliminate the need to use other libraries with a different naming
conventions, data types, etc.

There are many widget toolkits and frameworks available for C++. The major
ones include: Qt, wxWidgets, GTK+, Microsoft Foundation Classes
(MFC), Windows Template Library (WTL) and Windows Forms. All
of them have both pros and cons:

• GTK+ [14] does not provide the level of conformance to the Windows
user interface guidelines [27] as users would expect. Widget rendering
differs from the native look & feel. Buttons in dialog boxes are ordered
differently and they use non-standard icons and labels. A custom file
open/save dialog, which is confusing and less capable, is used instead of
the standard one provided by Windows. One of the limitations could
also be the use of UTF-8 encoded strings, which have to be converted
into the native UTF-16 representation used by the native Windows API
functions

• wxWidgets’ [39] design dates several years back, when C++ compilers
were much less capable than they are today. Therefore, the library lacks
support for modern C++ features, such as templates or the STL library.
The code is not exception safe; the programmer has to be careful to
avoid program crashes. wxWidgets do not implement their widgets from
scratch, but rather wrap the native ones provided by Windows. This
approach offers high performance and native look on one hand, but on
the other hand, it limits the possibilities. Moreover, the library does not
have a full-featured painting system with vector graphics support. This
is essential in order to create appealing user interface elements

17

• MFC [16] is for Windows only. It has a long tradition and vast amounts
of documentation. Nevertheless, it is not included with the freely avail-
able Express edition of Visual Studio. It is quite heavyweight, large
amounts of code have to be written in order to create the user interface.
The recently released Visual C++ 2008 Feature Pack would make MFC
a bit more attractive, if released before design process has started

• WTL [37] is a lightweight alternative to the MFC, an extension of the
Active Template Library (ATL). It is an open-source project from Mi-
crosoft, however without any technical support. There is practically no
documentation available, only some tutorials and applications written
in WTL can be found on the Internet. The whole library consists of
header files only. The application does not have to be linked to any
library. However, heavy use of templates slows down the compilation
significantly. Like MFC, this framework is for Windows only

• Windows Forms [36] and the .NET Framework offer a comprehen-
sive set of cleanly designed classes covering all aspects of application
programming. Visual Studio supports development of Windows Forms
applications natively. The System.Drawing provides rich painting abil-
ities, but the underlying GDI+ library, itself a wrapper of the GDI, is
rather slow. System.Xml provides excellent XML support, etc. The
biggest disadvantage and the main reason for refusing this toolkit is the
dependency on the .NET Framework and managed code. The conse-
quences are increased memory usage and slower performance, especially
on lower-end computers

The Qt toolkit [32, 33], which has the most benefits has been chosen:

• Qt is cross-platform and free for non-commercial use

• modern C++ features including templates, exceptions, precompiled head-
ers are supported

• Qt is modular; the application is only linked with the modules providing
the necessary functionality. Many modules with consistent interfaces are
provided beyond the widget system. For example, comprehensive XML
support, network connectivity, database access, HTML engine (WebKit),
scripting and multimedia playback (Phonon) modules are included

• Qt mimics the native platform look on Windows and Mac OS X as closely
as possible by using the platforms’ default theme rendering APIs. The
Linux version renders the controls on its own, as there are no native
system widgets

• Qt extends the limited C++ object model [29] by using a custom pre-
processor tool invoked automatically by the build system

18

• QObject instances are organized into a tree-like hierarchy. They are
deleted automatically in their parent’s destructor. Larger widget hier-
archies can be constructed without having to worry about the memory
management

• QObject interaction is based on a powerful signal/slot mechanism, which
is an application of the Observer design pattern [1]

• Qt provides native support for Unicode strings. QStrings are encoded in
UTF-16, hence the performance is not being degraded unnecessarily by
character encoding conversions

• Qt provides its own implementation of container classes. Compared to
the STL library, they have more useful methods provided. Conversion
functions between Qt and STL containers are provided. Iterators to Qt
container classes can be passed to STL functions

• all Qt data types including containers, bitmaps, and others are implicitly
shared, using a private implementation and reference count internally.
This allows them to be passed as function arguments and returned by
value without copying. Thread-safety is provided too

• Qt classes can be easily extended by standard C++ object inheritance;
plug-ins can be written to provide support for new image formats, database
servers, etc. The plug-in system can be employed effortlessly in user ap-
plications too

• Qt has a powerful 2D and 3D graphics support. 2D graphics is vec-
tor based with integrated support for Scalable Vector Graphics (SVG),
Portable Document Format (PDF), printing, etc. 3D graphics is accel-
erated by OpenGL

• Qt has a comprehensive documentation. Along with a complete refer-
ence, many examples, overviews, and tutorials are available

• the knowledge gained while developing an application in Qt should be
a good investment into the future. Many companies developing cross-
platform solutions in C++ use the Qt toolkit. As it is being developed by
a commercial company, paying customers receive full technical support.
The commercial version also offers full Visual Studio integration, which
is not provided by the competing toolkits. An alternative IDE has to be
used for wxWidgets or GTK+

The most recent version 4.4.1 of the Qt library has been used. A custom patch
has been applied, containing bug fixes and feature additions, which have not
yet been resolved by Trolltech. The problems were particular to the Windows
version of Qt. The following Qt modules have been used: QtCore, QtGui,
QtNetwork and QtXml.

19

Chapter 4

Gesture capture library

As mentioned in the Challenges section of the Introduction, the first and funda-
mental problem that we have to solve is how to detect gestures in any Windows
application. The reason for the decision to separate the gesture detection code
into a separate library was not only to comply with the modularity goal. It
also proved to be an inevitable consequence of the final mouse input capturing
solution.

4.1 Mouse input detection & filtering

According to the gesture definition, a gesture consists of elementary mouse
input events. Therefore:

• we need to detect or be notified of the basic mouse input events: key
press/release, mouse cursor movement, and wheel scrolling

• we must be able to prevent the affected program from receiving these
events while the gesture is being performed. Otherwise, two actions will
be performed. The application’s default response to mouse dragging as
well as a possible command associated with the gesture

The traditional mouse input mechanism in form of Qt events or direct handling
of Windows messages cannot be used. The reason is simple; mouse messages
are only sent to the window hovered by the mouse cursor. Something more
sophisticated has to be used.

While investigating the possibilities, several approaches have been considered,
ranging from the simplest ones to the most advanced. The following ideas
seem plausible:

20

1. the most naive idea is the user of a timer (QTimer or SetTimer), in-
voking a handler routine in periodic intervals. This procedure would de-
termine the mouse cursor position (GetCursorPos) and check whether
the individual mouse buttons are pressed (GetAsyncKeyState). This
solution is very inefficient and unreliable. Events can be lost between
two consequent polling intervals. However, the biggest and unavoidable
shortcoming is the inability to filter mouse events, rendering this option
useless

2. the second idea is to use Raw Input API [23] introduced in Windows
XP. After registering for input notifications by calling the RegisterRaw-
InputDevices function, our application would receive WM INPUT
events, generated directly by the mouse. However, there is the same
critical problem that we are not able to filter these events

3. DirectInput [19] is another option, although not a good one. It is
primarily meant to be used in games. When initialized in the exclusive
mode, our program would receive all the mouse input events, while no
other application gets any. This is a bad idea. All the standard mouse
messages supposed to be send by Windows would have to be generated
manually and routed to the corresponding windows

4. hooks [26] are the right choice. When set, a specified callback function
will be called on every mouse input event. The function decides whether
to swallow the message or pass it to the affected window. The first
available hook type - WH MOUSE LL may seem to be the best as it
does not involve a library injection. The callback function is located in
the hooking application. Nevertheless, this means that context is being
switched between the hooked and hooking application on every event.
This makes this hook type quite inefficient. If used, every single mouse
cursor movement would cause two extra context switches. Therefore,
the second alternative, WH MOUSE hook type has been chosen as the
final solution. A library containing the callback function is injected into
the address space of all applications running in the current login session.
The function is called directly before the message reaches the window
procedure, hence no context switch is involved

5. subclassing [25] has also been considered as a potential alternative to
hooks. By replacing the original window procedure, we can process all
messages including the mouse events and decide whether to pass them
to the previous window procedure, effectively implementing a filtering
mechanism. But this approach is very problematic, a library containing
our window procedure has to be loaded into the target process by some
kind of code injection technique [38, 8]. Separate procedure variants
have to be written for both ANSI and Unicode window types. The
window procedure has to be replaced for all windows separately. Another
hook type - WH SHELL, would have to be used to detect new window
creation

21

4.2 Design

Hook libraries are usually written as thin wrapper around the hook callback
function, passing events of interest to the main application. The main reason
for this approach is to keep the hook library as simple as possible. The code
of the library is being executed in the context of other process instances. Any
bug in its code, can cause the application to crash or behave incorrectly. This
minimalistic approach is worthwhile, as the stability of user applications is not
threatened. However, context switches still occur, when the library communi-
cates with its parent application.

In order to maximize efficiency, at the expense of potential instability if not
done properly, part of the gesture processing is implemented directly in the
mouse hook library. In fact, the whole gesture detection algorithm, based on
elementary mouse input events is implemented. The gesture capture library
and the mouse hook library are one and the same. This is possible, as the
gesture capture library has been designed as a separate dynamically linked
module in the program structure. Thus it can be injected to all applications.
In fact, the integration simplifies the decision the hook callback function has
to make, whether to filter the particular mouse event. The decision can be
made directly according to program state without having to perform another
callback to the actual gesture-processing library. The overall amount of context
switches is minimized. Mouse movement events are only being reported when
a gesture is in progress. When the mouse is being moved without pressing
the toggle button, no further processing happens outside the hook callback
function.

Modularity of the gesture capture library simplifies potential porting to an-
other operating system. The whole library providing the same interface would
be implemented using the platform specific facilities. In addition, the library
could be used to implement a different gesture recognition application that
would not have to deal with gesture capturing details. To keep the library
as small and versatile as possible, Qt cannot be used; all the code has to be
written using standard Windows API only. In order to maintain stability, the
library has to be tested thoroughly.

The gesture capture library has to meet the following criteria:

• application behavior should not be influenced negatively, when gesture
recognition is enabled. Problematic windows should be detected and
ignored automatically

• a callback to the main application to determine whether the affected
application is to be ignored completely has to be made

• the toggle button can be selected by the user. All possible mouse buttons
have to be supported. Both horizontal and vertical wheel scrolling should

22

be supported too

• the user must be able to use the toggle button to perform a single click,
without starting a gesture

• gestures should be activated only after the cursor has been moved at
least a given distance, so-called activation distance, from the starting
point. It is designed to prevent accidental activation when a single click
has been intended, but the user moved the cursor a few pixels

• holding a specified ignore key on the keyboard suppresses gesture acti-
vation

• the gesture while in progress can be cancelled by clicking an opposite
button. Left and right buttons are opposite. However, when the middle
or extra buttons are configured to be the toggle button, the left button
is considered opposite

• when the cursor has not been moved for a specified amount of time, the
gesture is cancelled automatically. The timeout feature can be disabled

• possible mouse button swapping configurable in Windows mouse control
panel has to be supported correctly

• only one application in the login session can use the library at the same
time to avoid conflicts

4.3 Interface

The gesture catcher library contains a main class called GesturesHook with
respect to the hook library nature. The class is a singleton with only one
globally unique instance possible.

GestureEvent structure:

• eventType - GestureBegin, GestureEnd, GestureMove, GestureWheel,
GestureCancel

• windowHandle - handle of the top-level window in which the gesture
is performed

• cursorPos - cursor position at the moment of the event

• wheelDirection - the mouse wheel direction on GestureWheel event
(up, down, left, right)

• timeout - on GestureCancel specifies whether the gesture has been can-
celled automatically by a timeout or manually by the user

23

Callbacks:

• Callback GestureEvent - this function is being called to notify the
main application about the gesture capture phases

• Callback WindowIgnored - the application is asked every time a ges-
ture should be activated whether the given window should be ignored

Methods:

• instance - return a reference to the GesturesHook singleton instance

• initialize - set the mouse hook and start capturing gestures, the return
value indicates success or failure

• terminate - stop capturing gestures and release the mouse hook

• setCallback GestureEvent - gesture-event callback setter

• setCallback WindowIgnored - window-ignored callback setter

Properties:

• enabled - gesture capturing can be disabled temporarily

• toggleButton - toggle button (left, right, middle, X-button 1 & 2)

• activationDistance - activation distance in pixels

• timeout - timeout interval in milliseconds

4.4 Implementation

Every application instance has its own virtual memory address space. There-
fore, all instances of the gesture catcher library are separated from each other.
The code segment, which is read only, is mapped to the same physical memory
to save resources. The data segment is private to each instance. As we need
to have a globally shared instance of the GesturesHook singleton class, a
shared data segment has to be created using compiler directives. The instance
is being instantiated into a pre-allocated buffer in this memory area using
C++ placement new operator. Dynamic memory allocation from heap must
be avoided completely, as pointers valid in the context of one application are
no longer valid in other applications’ address spaces. As the result, STL data
structures such as strings and containers cannot be used.

24

Global uniqueness of the statically linked library instance inside the main
application is guarded by a system-wide mutex. The mutex is destroyed au-
tomatically in case the application crashes. Hence, the library initializes cor-
rectly after the application has been restarted. No false reports of a pre-
vious instance are reported. In case a previous instance exists, the Ges-
turesHook::instance() method throws an exception.

The gesture detection algorithm is based on a finite state machine. Transitions
between states occur in response to mouse input events, in context of the
mouse-hook callback function. The states are listed and described in figure
4.1. The actual finite state machine, showing all possible state transitions, can
be seen in figure 4.2.

•Initial state after the class instantiation. The mouse hook is
inactive.Uninitialized

•The mouse hook is active, no gesture is in progress. The
library waits for the toggle button to be pressed.Idle

•The current gesture has been ignored. Either automatically,
manually or by the main application's decision.Ignored

•The gesture toggle button is pressed, but the mouse cursor
has not been moved at least the activation distance.GesturePending

•A gesture is active, mouse movement events are being
reported to the main application.GestureActive

•The toggle button has already been released, but no
button up event has been received.GestureBroken

•The gesture has been cancelled by the user or by the
timeout timer.Cancelled

•Final state. The hook has been released.Terminated

Figure 4.1: Finite state machine states

According to the specification, the user must be able to click the toggle button
without starting a gesture. When the toggle button is pressed, the event is
filtered and the affected window does not receive the message. When the
button is released, this event has to be filtered too. If not, the application
would only receive a button up message without a preceding button down
message. The button down message has to be sent manually. Care has to
be taken not to activate the gesture processing again. The state switches to
Ignored meanwhile. Otherwise, the event handling would hang in an endless
loop. At first, a simple PostMessage call has been used. However, the results
were not correct, as seen in the Spy++ application included with Visual Studio.

25

SendInput function had to be used to emulate the mouse click. The effect
is the same as if a real mouse button was clicked. Windows sends a correct
message to the underlying window for us.

Uninitialized

Idle

Ignored

GesturePending

GestureActive

GestureBroken

Cancelled

Terminated

Figure 4.2: State transitions

Without event filtering, inactive windows are normally activated when clicked
on, immediately after the button has been pressed, not when it was released.
Nevertheless, since the window does not receive the button down message, it
is not activated automatically. It has to be done in code by calling SetFore-
groundWindow. Furthermore, SetCapture must be used in order to receive
mouse movement events when the cursor moves over to another window. The-
oretically, this should not be necessary. The hook callback function should be
called for the other window. And the library state is globally shared. However,
in reality, the gesture only worked in the original window, no mouse messages
have been received from the outside.

As already mentioned, all program instances have their own address space. In
order to invoke a callback function in the main application, the code flow has to
switch the address space of the main application, where the callback function
resides. To achieve this, message passing is used. The initialize function
spawns a new so-called message thread running in our process. This thread
creates a hidden message-only window receiving standard window messages.

26

The function supposed to invoke the gesture-event or window-ignored callback
checks whether the current thread is the message thread. If not, the code is
being executed in context of a foreign process. By sending a message to the
hidden window, the context switches to our application, where the message is
handled. Now the same function is dispatched, but now running in the correct
context and thus it is able to call the callback function this time directly.

The timeout feature is implemented using a timer. There are two types of
timers in Windows, standard and multimedia. Standard timers have been tried
first. The main advantage of the multimedia timer [22] being more accurate is
not required. However, problems have been experienced with standard timer
behavior, while the multimedia one worked correctly. Hence, this type of timer
has been selected. The code setting and clearing the timer has to be executed
in the context of the main application. Therefore, a timer handler routine is
called just before the gesture-event callback function. We have to use a single
shot timer to prevent multiple invocations of the handler function. The timer is
started on the GestureBegin event, restarted on every GestureMove event
a finally destroyed on all other events. If the timer handler procedure happens
to be executed, the timeout interval has been reached. A GestureCancel
event is sent to the main application.

4.5 Issues experienced

The development of the gesture capture library proved a challenge as predicted
in the Introduction. Some parts of the actual implementation had to be revised
a few times, to solve some problems, which have been discovered only when
the fully functional application started to be used practically. The experienced
issues include:

• some kinds of windows are problematic, such as the Start menu. These
have to be detected reliably and ignored automatically. It is not an
easy task though, window classes and styles have to be checked. The
detection has to be as accurate as possible. Otherwise, windows that use
a non-typical combination of attributes may be accidentally ignored

• useless mouse movement events are being reported in some cases. In
some cases, the mouse-hook callback is being called periodically, even
if the mouse cursor does not move, reporting the same cursor position.
The last position has to be saved and compared with the “new” position
every time, to avoid reporting fake events to the main application

• to support mouse button swapping correctly, logical and physical but-
tons had to be distinguished. The logical button identifiers, reported to
the mouse-hook callback function are swapped. However, the physical

27

buttons as used by the SendInput and GetAsyncKeyState functions
remain and thus have to be remapped manually

• in addition, the timeout timer has originally been implemented in the
main application. However, problems due to thread scheduling and
shifted time-spans between events when processed in the main applica-
tion have emerged. The other reason was that the library did not know
about the timeout actually. Gesture events were still being sent and ig-
nored immediately by the main application. Therefore, the timeout had
to be implemented fully in the library

• high processor usage condition is also problematic. The application con-
suming the CPU can prevent the program, in which a gesture is being
performed, from being scheduled sufficiently regularly. This leads to a
significant number of points missing in the gesture shape, preventing any
possible recognition. This problem has not been solved, as it proved to
be a rare issue, although quite complex and time consuming to deal with

28

Chapter 5

Main application

5.1 Application design

The application has a modular, object oriented design taking advantage of
class inheritance and virtual methods. More advanced C++ features, such as
templates, exceptions and smart pointers have been used to increase produc-
tivity and reliability. We also tried to exploit the potential of the Qt toolkit as
much as possible by taking advantage of the modules and features it provides.
These include QPointer, QObject, signals and slots, custom events, multi-
threading, XML, etc. However, there were many cases where the platform
dependent Windows API had to be used to achieve things not possible in Qt.
This is mainly due to the nature of the application. We have to control other
applications and deal with the operating system.

The application implementation is divided into separate more or less indepen-
dent classes. The majority of the code belongs to class methods. Only small
helper routines used all over the application are standard functions. By their
nature, classes can be separated into four distinct groups:

• core logic

• helper classes

• user interface

• command implementations

Application configuration is based on Extensible Markup Language (XML)
[12] in order to be modular. It proved to be beneficial during the development,
when the user interface has not yet been implemented. As the format is user
readable, the configuration could be easily modified using a simple text editor

29

only. Now that the application has been finished, it allows adjustment of ad-
vanced parameters, which are not accessible from the user interface. To achieve
the concept, classes that need to retain persistent state have to implement:

• constructor accepting an XML element (in some cases a separate method
loadFromXml is provided)

• a method returning the actual state represented by a hierarchy of XML
elements (toXmlElement / saveToXml)

Hierarchical object structure used in the application maps perfectly to the
tree-like structure of XML documents. State of an object corresponds to an
XML element, which is a sub-tree in the document. The root of the document
represents the state of the whole application. While saving or loading the
state, parent objects delegate the XML parsing / assembling to their child
elements. It is also possible to store only a part of the configuration to a
separate document. This is used in the user interface to implement export and
import functions.

5.2 Gesture capture library wrapper

The gesture capture library communicates with the main application using
callback functions. This is a low-level interface provided by the library. The
capture library has been designed to be independent of any frameworks or
toolkits that could be used in the hosting application. The callback interface
had to be wrapped for two main reasons:

• it is reasonable to translate the low-level library events into Qt events, to
allow further processing using standard Qt event loop mechanism. This
also makes the dependency on the capture library modular. The rest of
the application would not be affected, if we decided to replace the gesture
capture library. Only the wrapping code would have to be modified

• the callback function is executed in the context of the message thread
created by the capture library. By posting an event to the default Qt
event loop running in the main thread, we switch the context in which
the event is being actually handled to the main thread. Thus, we prevent
possible synchronization problems and the limitation of Qt, which does
not allow certain operations to be performed outside the main thread

Only the gesture-event callback function posts events to the main event loop.
The window-ignored callback has to be processed immediately. As the opera-
tion is constant and thread-safe, the decision can be delegated directly to the
ActionMapping class, mentioned later.

30

The gesture capture library identifies the affected window by a top-level win-
dow handle used by the Windows API. Application::Window and Appli-
cation classes have been created to wrap the concept of a window and the
corresponding application. The window handle is wrapped as soon as possible
in the event handler and never used directly in the rest of the application.

The Application::Window object provides higher-level methods to manipu-
late other windows. These are mainly used in the commands implementation
classes. The Application object provides access to the program’s executable
icon and version information mainly used in the user interface. It is also used
in the action mapping process as described later.

5.3 Engine

The main application class is the Engine, which descends from QApplica-
tion. It represents the application instance and provides the main event loop.
Only one instance is allowed. In Qt based applications, this is the first class to
be instantiated. However, before the Engine is initialized, we need to make
sure that the following conditions are met:

1. a previous instance of our application must not be already running. Mul-
tiple instances would be sharing the configuration file, one overwriting
changes by the other. In addition, the gesture capture library can only
be used by one application at a time

2. the gesture capture library must initialize properly. Setting up the mouse
hook can fail for some reason. A personal firewall solution may be pre-
venting applications from setting system wide hooks for example

If any of these conditions fail, it is considered a fatal error and the start-up pro-
cess is aborted. When all conditions are met, the Engine class is instantiated
and initialized. Then the main event loop is entered. It is being executed until
the application quits, either by the user or automatically when the operating
system is being shutdown.

The Engine is responsible for many aspects. It has to:

• set-up various application specific parameters, such as the application
name and icon, used throughout the user interface

• manage the configuration. The XML based configuration as well as a set
of special configuration independent settings which have to be loaded at
start-up. Configuration is saved automatically in certain situations, such
as when the applications exits or the user clicks a save button

31

• instantiate important classes, used in the gesture processing, and provide
access to their instances. The important objects, as can be seen in figure
5.1, include:

– PatternList containing a list of user-defined gesture patterns and
corresponding samples

– RecognizerModule instances, one per each gesture recognizer
available

– ActionMapping, which holds the actual configuration of gesture
to action mappings

• enumerate and load plug-ins containing gesture recognizers or command
implementation

• handle gesture-detection events, delegate the gesture recognition and fur-
ther related tasks

• provide methods to control the application, including:

– enabling or disabling the gesture recognition

– quitting the application

– forcing the configuration to be saved immediately

– showing individual configuration windows

– replacing the currently used PatternList or ActionMapping

– setting the active gesture recognizer

Engine

Recognizer modules

Recognizer
Simple

Recognizer
K-nn

Recognizer
NeuralNet

Pattern
List

Action
Mapping

Figure 5.1: Engine and the important classes

The gesture processing is a rather straightforward process. While the gesture is
being performed, the cursor position as reported by the gesture capture library
is being reported continuously to the active gesture recognizer. The recognizer

32

is given the opportunity to perform the recognition on the fly. In case a wheel
gesture has been performed, no recognition is necessary. Wheel gestures are
processed immediately. Regular gestures are processed right after they have
been finished, unless a timeout or user cancellation has occurred. The active
ActionMapping object determines the action to be executed according to
the recognized gesture and the affected application. A simplified overview of
the code flow can be seen in figure 5.2.

Engine

execute action
wait for gesture events

Active recognizer

recognize gesture

Gesture
Action mapping

determine action

Action

Figure 5.2: Simplified code flow

5.4 Gesture recognizers

Gesture recognizers implement the actual gesture recognition, according to the
analysis done in the Gesture recognition chapter. There is one Recognizer-
Module instance per each recognizer available. An instance of the module
exists during the whole application life cycle. However, the recognizer itself
does not have to be instantiated. The instance is created on demand. Recog-
nizers can be loaded and unloaded dynamically to conserve system resources
occupied by the class instance. In case the recognizer is a plug-in, the cor-
responding library is only mapped while in use. The mechanism has been
implemented manually using QLibrary, even though Qt supports plug-ins
natively and provides a QPluginLoader class. However, it is not able to
return any plug-in identification data without returning the class instance. In
our case, when the plug-ins are enumerated, the recognizer itself is not instan-
tiated, only meta-data information is retrieved from the library. The library
is then unloaded when no longer needed. To retain the recognizer state, Rec-
ognizerModule stores the configuration for the recognizer, while it is not

33

instantiated.

There are three levels of gesture recognizers, prescribing the interface:

1. IRecognizer is a simplified recognizer, which does not use user defined
gesture patterns. The gesture identification has to be generated from the
actual gesture shape. The RecognizerSimple implements this interface

2. IPatternRecognizer is supposed to recognize gestures corresponding
to user defined gesture patterns stored in a PatternList provided by
the Engine. When the PatternList is modified, the owning Recog-
nizerModule notifies the recognizer. The recognizer should respond by
updating any internal structures that may be affected. From this moment
on, only patterns from the new list must be recognized. RecognizerK-
nn is the actual implementation of this recognizer class

3. ITrainableRecognizer extends the IPatternRecognizer interface to
support training. Training is considered a lengthy operation, which can
take a relatively long time to complete. Therefore, a IPatternRecog-
nizer::Trainer class is provided. The code of the training procedure
is executed in a separate low-priority thread to keep the application re-
sponding. While being trained, the recognizer is still able to perform
recognition, if it is up-to-date with the current PatternList. The Rec-
ognizerNeuralNet implements this most advanced interface

The actual class hierarchy of the provided recognizers is shown in figure 5.3.

Recognizer

Pattern Recognizer

Trainable Recognizer

Recognizer Neural
Network

Recognizer K-nn

Recognizer Simple

Figure 5.3: Recognizer class hierarchy

The PatternList is a container for Pattern classes. A Pattern represents a
single user defined gesture pattern. It is actually a named polyline defining the

34

shape of the gesture. It can also contain a variable number of pattern samples,
defined by individual user to allow better recognition. Pattern recognizers can
use the samples either optionally or exclusively. The current PatternList
owned by the Engine cannot be edited; it can only be replaced completely by
a new one. Whenever the PatternList is modified, all trainable recognizers
have to be retrained. If changes were allowed, new training would be started
on every single modification. Moreover, the user would not be able to discard
the changes without affecting the state of the recognizers.

The recognized gesture is represented by a Gesture class. It is a simple
structure containing a flag to determine whether it is a regular or wheel gesture.
Regular gestures are identified by their name, wheel gestures by the wheel
direction.

5.5 Action mapping

The purpose of the ActionMapping class is to store and provide access to
user-defined configuration:

• application exclusions specify a list of programs, in which the gesture
processing is ignored. The isApplicationIgnored method is a simple
look-up to determine whether the exclusion list contains the given appli-
cation. Individual exclusions can be enabled or disabled

• gesture to action mappings, which are divided into three different groups:

– default settings are general mappings valid in any application

– desktop settings are a special application like group, they match
gestures performed on the Desktop

– specific settings define separate application specific list of map-
pings

Applications in specific settings, as well as individual gesture mapping
items in all three groups, can be enabled or disabled

The main method provided by the ActionMapping class is determineAc-
tion, which is given an Application::Window and a Gesture. The result
is an Action. This class is a convenience wrapper for ICommand instances,
described in the following section. The decision process is simple. Firstly, the
application specific or desktop settings are consulted. If specific settings for
the given application exist and the list contains the gesture, the corresponding
action is returned. Otherwise, the default settings are used. However, there
is a property called inheritDefaults, which affects further processing in case
the gesture has not been found on the list. Unless cleared, the default settings

35

are used. In any case, when no corresponding action can be found, an empty
Action object is returned.

Unlike the currently used PatternList, the active ActionMapping can be
modified safely. The next time a gesture is performed, the corresponding action
is determined according to the current state. This is beneficial as the user is
able to see the changes done in the user interface immediately. To achieve good
performance, the internal implementation uses QMap classes, which can be
indexed directly by an Application and a Gesture.

5.6 Commands

Action commands have been designed to be modular and easily extensible.
The interface is based on the command and prototype design patterns [1].
There are two classes of commands:

• ICommand is a basic command, which does not support configuration.
It must implement the execute method. A finalize method, which can
be overridden optionally, is also provided. This method is called when
wheel gestures are performed. The purpose is to finalize the sequence
of multiple command executions, each for one wheel-scrolling event. It
gives the command an opportunity to restore any state it might have
altered, such as releasing emulated key presses, etc.

• ICommandConfigurable is an extended variant of ICommand, which
is user configurable. It must implement methods, which store and restore
the actual command configuration in XML. To present the configuration
options in the user interface, the command implementation is supposed
to fill a provided container with any widgets it may need. It must be
also able to fill the widgets with the current configuration and to retrieve
the configuration from the widgets. This is done by implementing a few
virtual methods, prescribed by the interface

Instances of the actual command implementations are managed by the Com-
mandFactory. The factory is a globally accessible singleton, initialized by the
Engine at start-up. The factory owns prototypes of all available commands.
Other objects can browse the list of commands or directly request a certain
command by its name. If it has been found, the prototype of the command is
returned to the caller. Prototypes cannot be executed; they must be cloned to
create a separate instance.

A list of all commands with their descriptions can be found in the user’s
manual. Some of the commands have been proposed in the goals, others have
been designed while implementing the application.

36

5.7 User interface

Universal Gestures are a resident application running in the background. It can
be configured to be launched automatically on system start-up. It is accessible
by a tray icon located in the system notification area. Right clicking the tray
icon displays the main menu, containing important commands that control the
application. The application configuration interface is divided into two main
windows accessible from the tray icon’s pop-up menu:

Configuration provides access to the current ActionMapping, which can be
edited on the fly. All changes take effect immediately. The window is divided
into three main parts, as can be seen in figure 5.4. The tree on the left displays
the application exclusions, default, desktop and application specific settings.
The list on the right side shows the gesture mappings of the item selected
in the tree. Configurable commands display their configuration interface in
the panel below the gesture-mapping list. Two smaller dialog windows can be
seen. Gesture Selector provides an interface to select a gesture. Both regular
and wheel gestures are supported. Program Settings dialog configures the
gesture-capture library parameters as well as toggles the use of special user
interface elements that are described later.

Figure 5.4: Configuration window

Pattern-list Editor (figure 5.5) is an editor for the PatternList object. It
works with a copy of the current PatternList. All changes are independent
from the main list, which is replaced only when the editing is done by invoking
the save command. A modified unsaved list can be discarded at any time.

37

The actual pattern editing is done in a separate window called the Pattern
Editor (figure 5.6). A custom widget able to display and edit a polyline has
been developed. The user can also force re-training of all available trainable
recognizers and display the training progress.

Figure 5.5: Pattern-list Editor window

The tree and list controls in the applications use a model/view/controller
(MVC) framework provided by Qt. Custom models and item delegates have
been implemented:

• ApplicationTreeModel provides data for the application tree in the
Configuration window

• GestureMappingModel is responsible for a particular gesture map-
ping from an ActionMapping object

• CommandDescriptionDelegate had to be created to customize the
way the command descriptions are displayed on the list

• CommandSelectorDelegate provides a combo-box with a list of all
available commands for each item on the list

• PatternListModel is used in the PatternListEditor window to dis-
play all user defined gesture patterns, as well as in the GestureSelector
to provide a list of gestures corresponding to these patterns

• PatternSamplesModel displays the list of patterns samples for a given
Pattern in the PatternEditor dialog

38

Figure 5.6: Pattern Editor window

The user interface tries to be as user-friendly as possible. Alpha blending
has been used to make special purpose notification windows good looking.
Unfortunately, the Qt toolkit does not provide a native support for this feature.
A custom QAlphaWidget class had to be implemented. This was, however,
quite simple as widget painting can be redirected into an off-screen bitmap,
which is then used to set the shape of the layered window [21]. The following
special purpose windows can be observed:

• GestureOverlay displays the shape of the active gesture. It is being
updated continuously as the mouse cursor moves

• OnScreenDisplay notifies the user of various events such as successful
gesture recognition, an unknown gesture, etc.

Detailed description of all windows and commands, as well as the installation
process, can be found in the user’s manual.

39

Chapter 6

Further development

6.1 64-bit Windows support

The amount of system memory in personal computers increases simultaneously
with their processing power. It is due to the permanently increasing demands
of applications such as graphics processing software or computer games. This
leads to the increasing popularity and adoption of 64-bit operating systems,
which are necessary if we want to take advantage of more than 4 GiB of system
memory.

CPUs implementing the most popular 64-bit architecture - x86-64 [40] are able
to run both 32-bit and 64-bit applications at native speed while running on a
64-bit operating system. These include Windows, Linux, BSD variants, Mac
OS X, Solaris, and others. The ability to use existing applications is essential.
Many of them work correctly without any or with only small modifications.
However, certain kinds of programs, especially those which force other appli-
cations to load their libraries, are problematic. The reason is that in Windows,
64-bit application are unable to load 32-bit modules and vice versa [28].

Our application uses a system wide mouse hook. The callback function resides
in a dynamically linked library, which is being loaded into the address space of
all running application instances. Since the application and the library is com-
piled either as 32-bit or 64-bit binary, it is unable to hook all the applications
[26]. The second problem is caused by a feature called File System Redirector
[20]. File and directory names are being translated transparently in order to
avoid conflicts between 32-bit and 64-bit file versions. Thus when compiled as
a 32-bit binary, the application has to disable this feature in order to see the
real file-system structure. This is necessary, because executable file names are
used to identify applications.

To provide full support for the 64-bit version of Windows, the following simple

40

steps would have to be taken:

1. modify the build system to compile the main application, the hook library
and all the plug-ins in 64-bit mode

2. create a separate 32-bit helper application, able to load a 32-bit version
of the hook library

3. modify the hook library to use dynamically allocated shared memory, so
that both the 32-bit and 64-bit versions of the hook library can share
the common state information

4. skip creation of the helper thread catching messages in the 32-bit version,
send the messages to the 64-bit version’s message thread

The main reasons why this feature has not been implemented were time con-
straints and the lack of a computer with a 64-bit CPU running a 64-bit version
of Windows such as Windows XP Professional x64 Edition or Windows Vista
64-bit.

6.2 QtScript

QtScript is a Qt module, which provides powerful scripting support to Qt based
applications. The scripting language is based on ECMAScript 3rd edition [11],
an internationally recognized standard. JavaScript, which is implemented in
all major web browsers to allow client-side scripting in rich web-based appli-
cations, is also based on this standard. QtScript features include the ability
to use the standard Qt signal/slot mechanism, QObject descendants can be
exposed to the script, and values converted to their equivalent C++ type and
vice versa, etc.

Using QtScript, a new type of command, called script or macro can be im-
plemented. This would allow execution of user defined macros, written in a
well-known and powerful ECMAScript/JavaScript like language. Taking ad-
vantage of the QtScript abilities, macros would not only be able to access
all the existing commands, but could also retrieve various window or system
properties.

However, with ability comes the responsibility. The design of this feature has
to be well advised in order to preserve the stability of the application, for ex-
ample in case the script falls into an endless loop. The script command would
have to be executed in a separate thread. A mechanism to allow termination
of unresponsive scripts has to be provided. The script could be possibly ter-
minated automatically after a specified timeout interval. A watchdog timer
mechanism could be also implemented.

41

6.3 D-Bus

D-Bus [9] is a remote procedure call (RPC) and inter-process communication
(IPC) mechanism. It was originally developed on Linux, to unify existing in-
compatible solutions. Windows port is under development. The specification
itself is open, as well as the underlying technologies, such as a XML based in-
terface description language (IDL). Binary message passing protocol promises
low overhead and low latency.

The goal of D-Bus is to allow applications:

• communicate with each other within the same user’s login session (session
channel), providing an efficient IPC mechanism

• communicate with the operating system, system services and device
drivers (system channel), applications can listen to various system-level
events, such as printer status changes, connection of new hardware, etc.

D-Bus is implemented in several layers. The main component is the central
server - bus daemon, whose responsibility is to route messages between the
sender and the receiver in the many-to-many paradigm. Direct peer-to-peer
connections are possible too. Client applications are linked with libdbus.
However, this low-level library is usually not used directly, but different pro-
gramming languages and framework provide high-level wrappers. Applications
provide services by exporting objects. Each object must have a globally unique
name. Reverse domain path-like names are preferred. Qt provides D-Bus sup-
port in QtBus [30] module. It is fully integrated with QObject and signal/slot
mechanism.

D-Bus is a promising technology, which could potentially increase the pos-
sibilities of our applications. It would allow much more flexible invocation
of user’s applications provided functions. These could even be launched on
demand, if not running at the given moment. Although not yet used on Win-
dows, the forthcoming release of KDE 4.1 applications for Windows should
start the adoption of D-Bus on this platform. Plug-ins adding D-Bus support
for existing extensible applications such as Firefox can be written. In case the
application was ported to Linux, many Linux applications are already D-Bus
enabled. Moreover, system-level commands, such as volume control, which
does not have a common API generally, can be invoked easily.

6.4 Miscellaneous

As multi-core processors are becoming a standard in personal computers,
multi-threaded programming is gaining importance. In our case, paralleliza-

42

tion can be exploited in some parts of the application, most notably the rec-
ognizer training process. Training is the most time-consuming process in the
whole application. Commands can also be executed in a separate thread to
avoid glitches in the user interface. Some of them already create a new thread
to perform a lengthy operation. However, there is no common mechanism for
threaded execution. Qt toolkit has an extensive support for multi-threaded
programming, including QtConcurrent, which is an implementation of the
MapReduce [3] algorithm invented by Google. This technique might be uti-
lizable by our application.

The user interface has been designed to be as simple as possible, to provide
the best possible user experience. Nevertheless, there will always be space for
improvement. Many new features can be added, such as:

• more configuration options for the special purpose windows described in
the User interface section

• floating window to display the training progress. The window would
show a graph of the recognition error value and buttons to control the
training process

• separate configuration dialogs should be provided by each gesture recog-
nizer to allow advanced users to adjust recognition parameters

The list of built-in commands can be expanded to support relevant functions
that would be convenient if triggered by mouse gestures. Moreover, some of
the existing functions may be improved by adding more or better configuration
options.

Finally yet importantly, the gesture recognition accuracy is a subject of future
improvement. There are many different methods how to perform the recogni-
tion, ranging from trivial ones to more advanced solutions involving artificial
neural networks or other complex data structures. Hence, there are several
possible directions. The existing gesture recognizers can be surely improved,
by using a better gesture pre-processing algorithm, choosing a different con-
figuration of the recognition parameters, more suitable neural network input
representation, etc. Moreover, the development of a new recognizer, based on
a completely different algorithm, should also be considered. Application of the
Bayesian network [5] seems to be one of the available options.

43

Chapter 7

Conclusion

Our task was to create a mouse-gesture recognition application for Windows,
called Universal Gestures. It would enable faster and easier control of other
Windows applications, thus greatly enhancing user experience. In order to
function as intended, Universal Gestures had to satisfy a number of criteria.
The application was supposed to be integrated transparently into the operating
system, in order to allow gesture support in existing unmodified applications.
It had to intercept mouse input in order to detect gestures. The system inte-
gration as well as the program itself was required to be as reliable as possible,
to avoid negative impact on other applications. The user was supposed to be
able to prevent the gesture recognition both temporarily at a given moment,
as well as permanently for a defined set of specific applications.

The main goal of the program was to recognize advanced, user-defined ges-
tures. An editor, serving as a platform for defining custom gesture patterns
and associated pattern samples, was therefore necessary. The application had
to implement a reasonably accurate gesture recognition algorithm, which would
automatically learn to recognize the given set of patterns every time the list
changed. At the same time, a simple four-direction algorithm was imple-
mented, in order to satisfy less demanding users.

The user was supposed to be allowed to configure both general and application
specific gesture mappings. These would specify the commands to be triggered
by the individual gestures. To keep the configuration simple, applications were
designed to be identified by an executable file path. A certain basic set of com-
mands was desired, including the ability to minimize, maximize, restore and
close windows, set special window attributes, send general application com-
mands corresponding to special purpose keys found on multimedia keyboards,
emulate any user defined shortcuts, control the Universal Gestures themselves,
execute other applications, open special folders such as the Computer, switch
between running applications, etc. The program was designed to run in the
background, and be accessible through a tray icon, giving access to the main

44

menu. One of the main goals was modularity and extensibility based on plug-
ins. User friendliness has been regarded important as well.

The choice of the programming language and the integrated development envi-
ronment was straightforward. The application was written in C++ to achieve
good performance and low resource consumption. Microsoft Visual Studio
2008 with Feature Pack was used, since a free non-commercial license is avail-
able for students. The choice of the user interface toolkit was a harder one.
Several frameworks have been evaluated. The Qt toolkit was finally selected
and it proved the right choice. The development with Qt was pleasurable and
convenient, despite the fact that some minor issues have been experienced,
leading to a custom set of patches applied to the source code. Bugs found
were reported to the developer of Qt, and will be fixed in future versions.

As expected, design of an accurate gesture recognition solution proved a chal-
lenge. Two different gesture classification algorithms with a common prepro-
cessing phase were implemented, resulting in two separate gesture recognizer
modules. However, it is hard to compare them reliably. Each classifier is
good for a certain kind of gesture patterns, while being less suitable for others.
There are many factors influencing recognition accuracy, including the num-
ber of key points used, classifier input representation, adjustable preprocessing
phase parameters, amount and quality of user defined pattern samples, neural
network training method utilized, etc. During the development, a reasonable
configuration of parameters has been found. These were set as defaults in the
initial application configuration file.

The development of a reliable gesture detection solution was expected to be,
and in fact became, a challenge as well. The initial idea was to create the
gesture capture library first, and then focus on the rest. However, parts of the
actual implementation had to be rewritten during the development, in order
to respond to the issues experienced only when the application already started
to be used practically. Despite all the obstacles encountered, a reliable yet not
perfect result has been achieved. There are many cases to be handled in order
to avoid incorrect behavior.

The main application was implemented according to the proposed design. The
interface is user friendly and easy to use. Even a couple of features not orig-
inally planned have been implemented. The gesture line indicator may be
considered the best example.

Thus, we can consider the overall result a success. The expectations set at
the beginning have been met. Nevertheless, there will always be room for im-
provement. Complete support for 64-bit editions of Windows is probably the
most important and will be added in the future. Other directions of further
development include the research of better gesture recognition algorithms, im-
provements in the user interface, introduction of scriptable commands, D-Bus
integration, etc.

45

Bibliography

[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, 1994.

[2] Hofman, P., Piasecki, M.: Efficient Recognition of Mouse-based Gestures,
Proceedings of Multimedia and Network Information Systems, p. 89-98,
Wyd. PWr., 2006

[3] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large
Clusters, OSDI’04: Sixth Symposium on Operating System Design and
Implementation, San Francisco, CA, December, 2004,
http://labs.google.com/papers/mapreduce-osdi04.pdf

[4] Artificial neural network - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Artificial_neural_network

[5] Bayesian network - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Bayesian_network

[6] Boost C++ Libraries,
http://www.boost.org/

[7] CodeProject: Mouse gestures recognition,
http://www.codeproject.com/KB/system/gestureapp.aspx

[8] CodeProject: Three Ways to Inject Your Code into Another Process,
http://www.codeproject.com/KB/threads/winspy.aspx

[9] D-Bus - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/D-Bus

[10] Desktop Window Manager - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Desktop_Window_Manager

[11] ECMAScript - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/ECMAScript

[12] Extensible Markup Language (XML),
http://www.w3.org/XML/

46

http://labs.google.com/papers/mapreduce-osdi04.pdf
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Bayesian_network
http://www.boost.org/
http://www.codeproject.com/KB/system/gestureapp.aspx
http://www.codeproject.com/KB/threads/winspy.aspx
http://en.wikipedia.org/wiki/D-Bus
http://en.wikipedia.org/wiki/Desktop_Window_Manager
http://en.wikipedia.org/wiki/ECMAScript
http://www.w3.org/XML/

[13] FireGestures,
http://www.xuldev.org/firegestures/

[14] GTK+ - About,
http://www.gtk.org/

[15] k-nearest neighbor algorithm - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

[16] Microsoft Foundation Class Library - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_

Library

[17] Mouse Gestures in Opera,
http://www.opera.com/products/desktop/mouse/index.dml

[18] Mouse Gesture for IE,
http://www.ie7pro.com/mouse-gesture.html

[19] MSDN - DirectInput,
http://msdn.microsoft.com/en-us/library/bb219802.aspx

[20] MSDN - File System Redirector,
http://msdn.microsoft.com/en-us/library/aa384187(VS.85).aspx

[21] MSDN - Layered Windows,
http://msdn.microsoft.com/en-us/library/ms632599(VS.85)

.aspx#layered

[22] Multimedia Timers,
http://msdn.microsoft.com/en-us/library/ms712704(VS.85).aspx

[23] MSDN - Raw Input,
http://msdn.microsoft.com/en-us/library/ms645536(VS.85).aspx

[24] MSDN - Standard C++ Library TR1 Extensions Reference,
http://msdn.microsoft.com/en-us/library/bb982198.aspx

[25] MSDN - Subclassing Controls,
http://msdn.microsoft.com/en-us/library/bb773183(VS.85).aspx

[26] MSDN - Using Hooks,
http://msdn.microsoft.com/en-us/library/ms644960(VS.85).aspx

[27] MSDN - Windows Vista User Experience Guidelines,
http://msdn.microsoft.com/en-us/library/aa511258.aspx

[28] MSDN - WOW64 Implementation Details (Windows),
http://msdn.microsoft.com/en-us/library/aa384274(VS.85).aspx

[29] Qt 4.4.1: Qt Object Model,
http://doc.trolltech.com/4.4/object.html

47

http://www.xuldev.org/firegestures/
http://www.gtk.org/
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library
http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library
http://www.opera.com/products/desktop/mouse/index.dml
http://www.ie7pro.com/mouse-gesture.html
http://msdn.microsoft.com/en-us/library/bb219802.aspx
http://msdn.microsoft.com/en-us/library/aa384187(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms632599(VS.85).aspx#layered
http://msdn.microsoft.com/en-us/library/ms632599(VS.85).aspx#layered
http://msdn.microsoft.com/en-us/library/ms712704(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms645536(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb982198.aspx
http://msdn.microsoft.com/en-us/library/bb773183(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms644960(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa511258.aspx
http://msdn.microsoft.com/en-us/library/aa384274(VS.85).aspx
http://doc.trolltech.com/4.4/object.html

[30] Qt 4.4.1: QtDBus module,
http://doc.trolltech.com/4.4/qtdbus.html

[31] Qt 4.4.1: QtScript Module,
http://doc.trolltech.com/4.4/qtscript.html

[32] Qt Cross-Platform Application Framework - Trolltech,
http://trolltech.com/products/qt/

[33] Qt (toolkit) - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Qt_toolkit

[34] StrokeIt - Mouse Gestures for Windows,
http://www.tcbmi.com/strokeit/

[35] Technical Report 1 - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Technical_Report_1

[36] The Official Microsoft WPF and Windows Forms Site,
http://windowsclient.net/

[37] Windows Template Library - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Windows_Template_Library

[38] Working with the AppInit DLLs registry value,
http://support.microsoft.com/kb/197571

[39] wxWidgets,
http://www.wxwidgets.org/

[40] x86-64 - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/X86-64

48

http://doc.trolltech.com/4.4/qtdbus.html
http://doc.trolltech.com/4.4/qtscript.html
http://trolltech.com/products/qt/
http://en.wikipedia.org/wiki/Qt_toolkit
http://www.tcbmi.com/strokeit/
http://en.wikipedia.org/wiki/Technical_Report_1
http://windowsclient.net/
http://en.wikipedia.org/wiki/Windows_Template_Library
http://support.microsoft.com/kb/197571
http://www.wxwidgets.org/
http://en.wikipedia.org/wiki/X86-64

Appendix A

User documentation

49

	Introduction
	Motivation
	Existing solution
	Gesture definition
	Goals
	Challenges
	Program structure

	Gesture recognition
	Algorithm principle
	Neural network
	K-nearest neighbors

	Technologies used
	Visual Studio 2008 + Feature Pack
	Graphical user interface toolkit

	Gesture capture library
	Mouse input detection & filtering
	Design
	Interface
	Implementation
	Issues experienced

	Main application
	Application design
	Gesture capture library wrapper
	Engine
	Gesture recognizers
	Action mapping
	Commands
	User interface

	Further development
	64-bit Windows support
	QtScript
	D-Bus
	Miscellaneous

	Conclusion
	Bibliography
	User documentation

