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Abstract

We report the use of a 60 μ m thick superconducting NbTi vibrating wire resonator 
as a local probe of quantum turbulence in superfluid 4 He (He II). Wire resonance is 
driven via magneto-motive force, exclusively in the laminar hydrodynamic regime. 
For the detection of quantized vortices, changes in the probe resonant frequency and 
peak amplitude are measured in reaction to the applied external counterflow. Cali-
bration of the device response is obtained in thermal counterflow in the temperature 
range from 1.45 to 2.1 K against second sound attenuation data. The main motiva-
tion of this work is the development of local probes of quantum turbulence suit-
able for use in non-homogeneous systems such as flows with spherical or cylindrical 
symmetry. The frequency response of the devices is described with good accuracy 
at lower temperatures by considering the balance between viscosity and mutual fric-
tion and its effect on the boundary layer. Under the experimental conditions, the 
fluid–structure interaction cannot be modeled reliably by an effective turbulent vis-
cosity and agrees better with a model of the boundary layer modified by mutual fric-
tion. The obtained results may be extended to the interaction of nanoscale devices 
with sufficiently dense vortex tangles.

Keywords Superfluid helium · Vibrating wire · Local probes · Quantum turbulence

1 Introduction

Following the discovery of superfluidity, this captivating phenomenon akin to super-
conductivity in solids inspired numerous scientists to devote their time and effort 
to its deeper study and continues to be an important part of low-temperature phys-
ics research today. Soon after the first models of superfluid helium formulated by 
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Landau and Tisza were tested experimentally with significant success, it became 
apparent that superfluids had yet another trick up their sleeve: quantum turbulence.

The existence of quantized vortices in superfluid helium, first suggested by 
Onsager and confirmed experimentally by Vinen [1] using vibrating wires in the 
superfluid phase of 4He (He II), changed the situation dramatically. It became clear 
that new and more advanced models of superfluidity were required, while continu-
ally improved experimental techniques provided new insights. Today, the range of 
theoretical, numerical and experimental methods is quite certainly beyond the hopes 
of the founders of this field, yet many questions remain unanswered, and with more 
detailed understanding, new ones frequently emerge.

It is then perhaps no surprise that more than 60 years after Vinen’s famous exper-
iment [1], vibrating structures such as superconducting wires or their nanomechani-
cal counterparts are still used in the research of quantum turbulence (QT). In this 
work, we return to some of the original questions—how do solid structures interact 
with a quantum-turbulent flow? Can a small vibrating device be used for local detec-
tion of a tangle of quantized vortices in He II?

Due to the two-fluid character of He II, which consists of a normal viscous fluid 
and an inviscid superfluid component, we have to account for two types of turbu-
lence rather than one: classical-like turbulent flow of normal component, and a very 
specific turbulent flow of superfluid component which consists only of quantized 
vortices—topological line defects with circulation ≈ 10

−7 m2s−1 . At temperatures 
between ≈1 K and 2.17 K, where the superfluid transition occurs, both types of tur-
bulent flow may exist based on which flow experiences the first instability [2, 3], but 
typically soon after the transition, both forms of turbulence are present, as energy 
and momentum transfer between the two components is mediated by pressure or the 
mutual friction force.

While experimental detection of quantized vortices is generally quite challeng-
ing, many different techniques exist today. It is possible to directly visualize them 
with the use of frozen hydrogen particles illuminated by a laser sheet [4–6] or by 
helium excimers [7]. Second sound attenuation [8] represents a thoroughly tested 
technique allowing indirect quantification of the amount of quantized vortices, giv-
ing the average vortex line density, L, i.e., total length of vortex line per unit volume 
in the probed region. To allow the conversion of the second sound signal to L, typi-
cally, homogeneity and isotropy of the probed flows are assumed.

Recent numerical and experimental works discussing non-homogeneous tangles 
of quantized vortices generated in thermal counterflow in various geometries (oscil-
latory counterflow, cylindrically or spherically symmetric counterflow) [3, 9–11] 
showcased the need for new local detectors of QT. Local probes using second sound 
[12] represent a highly interesting choice, offering excellent spatial resolution and 
little or no parasitic effects, but limits are imposed on their sensitivity by the rela-
tively lower resonance quality factor that can be obtained in an open geometry.

Vibrating wire resonators, in the form of superconducting NbTi loops, already 
proved as useful QT detectors close to 1 K and at sub-kelvin temperatures [13, 14], 
where the density of normal component of superfluid helium is negligible. Here, 
we report the use of a 60 μ m thick superconducting NbTi vibrating wire resona-
tor, driven via the magneto-motive scheme exclusively in its laminar hydrodynamic 
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regime. For the detection of quantized vortices, changes in its resonant frequency 
and amplitude in reaction to the applied external flow are analyzed. The probes are 
tested and evaluated in a well-understood system represented by thermal counter-
flow turbulence [15], with a pair of second sound sensors placed at the position of 
each probe, allowing their in situ characterization.

2  Experimental Method

All experiments were conducted in a helium bath cryostat with thermal PID temper-
ature stabilization to the level of 1 mK. Bath temperature was measured with Micro-
sensor TTR-G type [16] of Ge on GaAs film thermometer calibrated to saturated 
vapor pressure. Two brass channels were employed, each with a manganin resistive 
heater at its closed end, open to the bath on the other side, see Fig. 1.

The first channel with inner square cross section  7  mm ×  7  mm and length of 
167.5 mm included slots for both types of used QT detectors: second sound capac-
itive sensors [8] and vibrating wires. Vibrating wires were constructed from d = 
60 μ m thick bare NbTi wire in the shape of a semicircular loop with leg spacing D 
of 3 mm (varnish and Cu matrix were stripped in HNO

3
 ) and glued with 2850FT 

Stycast to a brass holder, see Fig.  2. The wire holders were constructed in a way 
that the top of the loop was positioned close to the center of the flow channel, with 
0.5 mm uncertainty. Pairs of sensors were installed at two different positions, 65 mm 
(for wire “L2” and sensors 3,4) and 115 mm (wire “L3” and sensors 1,2) from the 
channel inlet in such a manner that each vibrating wire was placed in a volume 
probed by the second sound sensors, see Fig. 1. The wire L2 was oriented so that 
its plane was perpendicular to the counterflow direction while L3 was parallel. The 
resonant frequencies of the wires L2 and L3 when immersed in superfluid helium 
were 6314 Hz and 5365 Hz, respectively, with a very small temperature-dependent 
variation of order 1  Hz. An additional TTR-G thermometer was installed 90  mm 

Fig. 1  Photographs of long and short channel assemblies together with their schematics. Left: Second 
sound ports in the long channel are displayed facing the viewer, while oscillators are installed from the 
bottom side. Permanent magnets are placed over the long channel assembly using separate plastic hold-
ers. Right: The circular cut-out in the short channel body serves for direct installation of permanent mag-
nets with grooves provided for gluing vibrating wire leads
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from the inlet, exactly midway between the positions of the two wires and close to 
the channel wall, for direct measurement of the thermal gradient inside the counter-
flow channel.

The second channel with inner square cross section 4 mm × 4 mm and length of 
40 mm included two vibrating wires, both oriented perpendicularly to the counter-
flow direction, at positions 12 mm (wire M2) and 20 mm (wire M1) from the chan-
nel inlet, see Fig. 1. A Ge thermometer was mounted at a distance of 16 mm, exactly 
midway between the wires. In this channel, no second sound sensors were installed. 
This channel was used to generate more intense vortex tangles at higher counter-
flow velocities obtained with the same heater power. The resonant frequencies of the 
wires M1 and M2 were 5830 Hz and 7250 Hz, respectively.

A driving static magnetic field B of order of 100 mT was applied for each wire 
by the pair of FeNdB permanent magnets. Relations between the driving force F and 
the driving alternating current I as well as between the induced Faraday voltage U 
and the wire velocity V that satisfy the conservation of energy are given for semicir-
cular geometry [2] as:

Minor discrepancies may result from deviations of the real geometry from a perfect 
semi-circle.

Due to a universal scaling of drag forces by the normal component acting on 
oscillators operated in high Stokes number regime [2], one can calibrate the real 
low-temperature value of the magnetic field from resonance measurements in lami-
nar flow using:

where   =  0.396 represents an effective mass prefactor for the fundamental reso-
nant mode [2], 

w
 is the density of the wire material, and Δf, U

p
 , I

p
 are the resonant 

width, the measured peak amplitude of the Faraday voltage and the peak ampli-
tude of the applied driving current, respectively. Both numerical prefactors 0.690 
for the force–current relationship and 0.396 for the effective mass are obtained by 

(1)F( ) = 0.690 I( )DB;V( ) =
U( )

0.690 DB
.

(2)B =
wΔf 3d2Up

4 × 0.6902 D Ip

,

Fig. 2  Photographs of the vibrating wire detectors installed on custom holders compatible with “long” 
channel (left) and “narrow” channel (right). The middle photograph shows a close-up view of a sample 
vibrating wire resonator
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integration along the length of the wire, of the driving force projected onto the reso-
nant mode profile, or of the squares of the local amplitudes of motion, respectively, 
see Ref. [2].

We have performed experiments at temperatures ranging from 1.45 to 2.1 K, 
covering a wide range of normal-to-superfluid component ratios of He II. QT was 
generated by thermally driven counterflow in a slow pulse sequence at various 
powers ranging between 1 and 500 mW in ascending order. The resulting coun-
terflow velocity v

ns
 for the applied heat flux q̇ is given as:

where s and 
s
 are the specific entropy and the density of superfluid component, 

respectively, taken at temperature T. One heater power step consisted of two repeti-
tions of heater-ON and heater-OFF states with a duration of order 100  s for each 
state. During the power series, time evolution of the resonant amplitude and fre-
quency of both second sound and vibrating wire signals was measured for all detec-
tors. For this purpose, resonance was tracked with the use of a PID algorithm sta-
bilizing the quadrature signal component to zero (after background correction 
obtained from a full frequency sweep). In Fig. 3, we show a representative meas-
urement of rescaled amplitudes for one pair of detectors during the power series. 
The decrease of both signal amplitudes is caused by additional damping due to the 
generation of QT in counterflow and its interaction with the wires and the second 
sound wave.

The data show that the vibrating wire detects successfully only the highest 
applied powers and its sensitivity is less than that of second sound. Data such as 
those in Fig. 3 can be used for calibration of the wire response to a given vortex 

(3)v
ns
=

q̇

sT𝜌s

,

Fig. 3  Left: Measured time series of second sound and vibrating wire L3 amplitude at 1.65  K as the 
heater power is gradually stepped up. The heater is switched on/off twice at each given power. The 
microwire is visibly less sensitive than the second sound technique, as expected for a local, but fairly 
large, mechanical probe. Right: Changes in the resonant frequency of the microwire L3 at 1.65 K. For 
comparison, changes in second sound frequency reach units of percent at the highest applied powers 
despite operating near the local maximum in the dependence of second sound velocity on temperature. 
The insets show details of the individual heater switching events
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line density. The resonant frequency of the wires also shifts, as shown in the right 
panel of Fig.  3. In the following, we analyze the wire response in more detail, 
estimate its magnitude from HVBK equations [17] and evaluate the response that 
could be expected for finer (nano-)mechanical structures.

3  Results and Discussion

First of all, it is useful to convert the observed resonance frequency shifts to changes 
in the resonator effective mass, Δm

eff
 , and then express the extra damping due to 

counterflow as an inverse quality factor Q−1

cf
 using

where f
0
 and f denote resonance frequencies without and with the counterflow 

applied, respectively, and similarly A
0
 and A represent the amplitudes of the reso-

nant peak, with Δf
0
 standing for the resonant linewidth in the absence of counter-

flow. The obtained values of Δm
eff

 are much lower than the effective mass of the 
resonator, comparable to the mass of the viscous boundary layer of the normal fluid 
attached to its surface. Similarly, the excess damping is usually lower than the com-
bined background damping due to viscosity and intrinsic dissipation in the device. 
For these reasons, it is important to provide suitable corrections for parasitic effects. 
These include most notably variations of local temperature when the counterflow is 
applied, as the viscous damping scales with 

√

n
(T) (T) , where (T) is the dynamic 

viscosity and 
n
(T) the density of the normal component. At the same time, the 

effect of overheating by about 10 mK (see below) on the observed resonance fre-
quency is negligible except very close to the lambda point.

The temperature gradient in the channel was measured using sensitive TTR-G 
thermometers and follows the prediction of Eq. (5) below, derived from the HVBK 
equations [17] assuming that the mutual friction force dominates in thermal coun-
terflow over both turbulent and viscous drag and that the vortex line density is 
given by L =

2
v

ns
2
− v

crit
2  , which in our case fits the data slightly better than 

L =
2

v
ns
− v

crit

2
 . The leading role of mutual friction among dissipative phenom-

ena in counterflow experiments is expected from simple estimates and is found to be 
in agreement with a more detailed analysis performed for spherical geometry in Ref. 
[18]. For the purposes of comparison, the gradient ∇T  given by

with B
mf

 being the dissipative mutual friction coefficient and  being total helium 
density is converted to a finite temperature difference using the distance of the 

(4)
Δmeff

meff

=

f 2

0

f 2
− 1 ;Q−1

cf
=

Δf0

f0

A0

A
− 1 ,

(5)∇T =

Bmf n

2
vns

2
− vcrit

2

2s
vns,
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thermometer from the open bath, see Fig.  4, left panel. The agreement is quite 
remarkable, considering the simplifications involved in the derivation.

Subsequently, we can account for thermally induced changes of the viscous 
damping Q−1

th
 at the positions of the wires using

where Q−1

hd
 is the total hydrodynamic viscous damping in the absence of external 

counterflow and the temperature T
0
 is that of the helium bath, while T is the inferred 

temperature at the wire locations using the gradient obtained from Eq.  (5). The 
damping due to quantum turbulence may thus be expressed as Q−1

QT
= Q−1

cf
− Q−1

th
 . 

We note that at all heater powers where the wire detects an excess damping, the 
thermally induced contribution is always at least an order of magnitude lower than 
the one due to quantum turbulence, for both counterflow channels used. The result-
ing values of Q−1

QT
 are shown in the right panel of Fig. 4.

Additionally, second sound measurements were performed in the same chan-
nel, allowing us to establish an approximately linear calibration between the wire 
response and vortex line density, as is summarily shown in Fig. 5. It is evident that 
the wire sensitivity is a limiting factor here and that mechanical probes of this size 
are useful only in highly turbulent tangles. The wires detect no (measurable) addi-
tional damping at vortex line densities lower than the threshold given by the com-
parison of the mean intervortex distance with the characteristic dimension—wire 
diameter d = 60 μm.

To test the linearity of the calibration relationship at higher L, we repeated the 
experiment in the second channel of smaller cross section, where tangles of higher 
density could be easily produced. The  factors from the above measurements were 
used to deduce vortex line density here, as direct measurement was not available. 
The  values are summarized in Table 1, and the results are shown in Fig. 6. The 

(6)Q−1

th
= Q−1

hd

⎛⎜⎜⎝

�
n
(T) (T)

n
(T

0
) (T

0
)
− 1

⎞
⎟⎟⎠

Fig. 4  Left: Temperature rise inside the channel when the heater driving the counterflow is switched on. 
Right: Corrected microwire excess damping Q−1

QT
 vs. counterflow velocity
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Fig. 5  Left: Vortex line density obtained from second sound measurement in the long channel. The 
observed  factors in Eq. (5) are consistent with earlier work [19, 20], see also Table 1. Right: Calibration 
of microwire response against the vortex line density L. The solid blue line shows a linear relationship 
which is observed only in the upper decade of L. The mean intervortex distance 

L
= L

−1∕2 becomes 
equal to the diameter of the wire at L = 2.78 × 10

8 m−2 , indicated by the vertical dashed line

Table 1  Values of  used for calculation of vortex line density in the small channel, together with the 
parameter c relating the inverse quality factor and the vortex line density by Q−1

QT
= cL . The last column 

contains a theoretical value for c∕
s
 based on Eq. (23) below for wire M1

T c c∕
s

c
th
∕

s

[K] [10
6 s m −2] [10−15 m2] [10

−17 m5kg−1] [10
−17 m5kg−1]

1.45 0.98 4.0 3.0 0.61

1.65 1.22 1.6 1.4 0.59

1.85 1.49 1.1 1.2 0.60

2.00 1.81 0.9 1.4 0.71

2.05 2.05 0.8 1.5 0.90

Fig. 6  Microwire damping 
vs. vortex line density L in 
the narrow channel. The solid 
lines depict linear relationships 
Q−1

QT
= cL . Two distinct regimes 

are observed. First, at lower 
L, the damping is temperature 
dependent. For the values of 
the prefactors c, see Table 1. 
At higher L, the temperature 
dependence is suppressed; the 
linear relationship between 
damping and vortex line density 
appears with c ≈ 2 × 1015 m2
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plot shows two regimes which differ by the temperature dependence of the observed 
damping. At lower L, the proportionality constant c in the relation Q−1

QT
= cL 

depends systematically on temperature and appears to scale approximately with the 
superfluid density, 

s
 (showing a notable deviation only at 1.45 K), while at higher L 

the temperature dependence is mostly suppressed, see also Table 1.

3.1  Interpretation

When the heater is switched on and thermal counterflow is generated, the oscillat-
ing wire changes its resonant frequency as well as the damping, as discussed above. 
Importantly, the frequency increases in all observed instances.

The resonant frequency 
0
= 2 f

0
 is determined by the effective hydrodynamic 

mass, m
eff

 , of the device and by its spring constant, k
s
 . The resonant frequency 

defined as the frequency at which maximum power is absorbed from a drive mech-
anism, or equivalently, maximum velocity (rather than displacement) amplitude 
is reached, is given by 2

0
= k

s
∕m

eff
 , irrespective of the magnitude of the linear 

damping. Generally speaking, the observations in the right panel of Fig. 3 may be 
explained either by an increase in the spring constant, or by a decrease of the effec-
tive mass.

The spring constant could change, e.g., due to vortices pinned between the loop 
of the wire and its base, as long as they are not directed exactly parallel to the direc-
tion of motion, in which case only a constant vortex tension would act on the wire. 
For straight vortices attached to the wire going directly toward a pinning site at its 
base, the total force projected on the direction of motion would be given by:

where F
1
 stands for the force acting due to one quantized vortex (vortex tension), a

0
 

is the vortex core size, b being a cutoff distance (intervortex spacing in the case of 
many vortex problem), N denotes the estimated number of attached vortices, x is the 
immediate displacement of the wire and f is a geometric factor of order unity. This 
would yield an enhancement to the spring constant due to quantized vortices kQV , 
and its relative magnitude can be estimated as:

For T = 1.65 K and L = 3 × 10
9 m−2 , this gives kQV∕ks ≃ 10−8 , i.e., three orders of 

magnitude too small to explain the frequency shift observed in Fig. 3.

(7)FQV =fNF1 2x∕D,

(8)F1 =

s
2

4
ln

b

a0

,

(9)N =LdD,

(10)
kQV

ks

=
s

2
Ld

2 meff
2
0

ln(b∕a0).
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Similarly, following Ref. [21], one may consider quantized circulation around the 
NbTi wire itself interacting with its mirror image reflected through the plane of the 
base (as per boundary conditions). This interaction produces a static Magnus force, 
attracting the wire toward its base and changing its tension. However, a semicircular 
loop with diameter significantly exceeding that of the wire is under tension only due 
to its curvature. In a situation without vortices, from the neutral line passing through 
the center of the wire inside, the tension felt by the wire material is negative, while 
toward the outside it is positive. An integral of the tension taken over the full cross 
section of the wire in equilibrium position would yield zero. Circulation trapped 
around the wire may, in principle, affect this balance of tension forces, but in effect, 
such a tiny change1 of the tension due to curvature could not contribute significantly 
toward the spring constant, which is determined mostly by the elastic modulus of 
the material itself, seeing as the curved half-loop behaves essentially like a cantile-
ver. We therefore consider it a valid approximation to neglect these effects for our 
device.

As we cannot justify the observed frequency shift by considering elastic effects, 
in the following, we analyze the results under the assumption that it is the effec-
tive mass that is changing rather than the spring constant. This requires that at high 
counterflow velocities, the effective mass of the device, or rather, its hydrodynamic 
enhancement, decreases appreciably. In an ideal fluid (superfluid component), the 
hydrodynamic mass enhancement of an oscillating object is given in terms of the 
potential backflow. In a viscous fluid, the same effect exists and additionally, the 
mass of the viscous boundary layer moving with the object [22, 23] must be con-
sidered. For an oscillating body, the backflow contribution is constant regardless of 
any externally applied stationary flow, we are thus most likely seeing effects related 
to the viscous boundary layer in the normal component. Generally, for an oscillating 
body in an external stationary viscous flow, two types of boundary layers need to 
be considered: (i) a stationary Blasius-type boundary layer, and (ii) a periodically 
changing Stokes-type boundary layer. The interaction of these two types of bound-
ary layers is presently not understood in its entirety and represents a challenging 
topic with relevance, e.g., in the treatment of waves in shallow water [24] or to some 
extent in aeronautics, via Interacting Boundary Layer models.

At zero counterflow, the effective mass of the device is given by [2, 23]:

where the first term expresses the effective mass of the device in vacuum (differing 
from its gravitational mass due to the profile of the resonant mode), the second term 
represents the ideal backflow and the last term is the boundary layer mass, with V 
and S being the volume and surface area of the body, respectively, 

n
=
√

2 ∕
n

 

(11)meff = m + V +
�
S n n,

1 For a nanobeam displaced 2 μ m from the substrate, the attractive force was estimated to be of order 
10 pN in Ref. [21]. For a microwire loop of diameter 3 mm, this is expected to be roughly three orders of 
magnitude lower.



1 3

Journal of Low Temperature Physics 

is the Stokes boundary layer thickness and the  and  are constants of order unity 
determined by the exact geometry of the body.

In the following, we consider only the Stokes boundary layer, as it is relevant 
to the oscillating motion of the device which we are measuring, whereas the Bla-
sius-type boundary layer would only affect its steady state characteristics, which 
are not probed experimentally. Specifically, for an oscillating cylinder, the mass 
of the Stokes boundary layer, m

bl
 , given by the last term on the RHS of Eq. (11) 

can be expressed as:

 and may be used to normalize the observed change of the effective mass. Naively, 
one might expect that once the counterflow is switched on and turbulence is created 
in the main flow, vortices will interact with the Stokes boundary layer and cause 
mixing. This would, in turn lead to partial boundary layer separation, reducing its 
contribution to the effective mass. The left panel of Fig. 7 shows the mass decrease 
obtained from the resonant frequency change plotted as a fraction of m

bl
 against 

L. First of all, we find that the mass change is lower than (but comparable to) the 
boundary layer mass, making this effect a likely explanation of the experimental 
data and deserving a closer analysis.

Before proceeding further, let us turn for a moment to the origin of the addi-
tional damping. First, let us consider this excess damping due to turbulent motion 
of both fluids for a moment as if it were a manifestation of some effective dynamic 
viscosity, 

eff
 , mediating an excess force acting on the oscillator. To begin with, 

(12)mbl =

2

2
nD n d + n ,

Fig. 7  Left: Change in effective mass normalized by the mass of the Stokes boundary layer plotted 
against counterflow velocity. The solid lines are calculated using the ratio of effective masses (a − b) as 
obtained from Eq. (22), showing remarkable agreement with the data. Right: Ratio of extra drag due to 
quantum turbulence, Q−1

QT
 , to the hydrodynamic viscous drag in zero counterflow, Q−1

hd
 . The solid lines are 

obtained using the ratios (a + b) from Eq. (22). The data show higher damping than predicted, see text
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let us state that this notion of an effective viscosity is conceptually different from 
the usual definition based on turbulent energy dissipation given by =

eff
( L)2 , 

as the latter relates to dissipation of the kinetic energy of the externally driven 
turbulent flow, whereas in our case we are interested in the dissipation of the 
kinetic energy of the mechanical resonator via fluid–structure interaction. A 
viscous-like behavior would correspond to a situation, where quantized vortices 
exist in sufficient density to effectively exchange momentum between layers of 
fluid adjacent to the body. This requires vortex spacing lower than the boundary 
layer thickness, which may be estimated from Ref. [2], Eq. (9) in the high Stokes 
number limit, reprinted here for convenience using the present notation:

where = 2 is the flow enhancement factor for a cylinder, S
r
 is the effective sur-

face area incorporating roughness, 
eff

=
√

2
eff
∕  is the effective viscous penetra-

tion depth and m stands for the (full, not effective) mass of the resonator. The sur-
face area can be approximated by that of a smooth semicircular loop of wire giving 
S

r
≃ 2

dD∕2 , while the mass of the NbTi wire is given by m =
w

2
d

2
D∕8 with 

w
= 6550 kg m−3 . Finally, we arrive at:

which could be used to extract the experimental effective penetration depth 
eff

 and 
hence the effective dynamic viscosity 

eff
 . The high Stokes number limit manifests 

by the requirement 𝛿
eff

≪ d here, with the wire diameter d = 60 μ m. The values of 

eff
 obtained from our data always fall below 1 μ m, requiring L > 10

12 m−2 in order 
for this scenario to work, which is not satisfied in our experiments. In view of this 
evidence, we rule out dissipation by an effective viscous-like transfer of momen-
tum via interactions with quantized vortices, although the possibility remains that 
at higher drives beyond those investigated here, this mechanism may yet come into 
play.

Here we must consider that while quantized vortices cannot mediate a viscous-
like dissipation directly (and should be treated either ballistically, or better, within 
detailed numerical simulations of the vortex filament model), they may still have a 
nonzero net effect on the viscous boundary layer via the mutual friction force. As 
the vortex spacing exceeds the boundary layer thickness, vortices interact with the 
BL only sporadically. Thus, in a similar fashion to Reynolds decomposition in clas-
sical fluids, one may define an mean vortex line density in the boundary layer ⟨L⟩ 
and separate the HVBK equations of motion into steady and fluctuating parts. As 
the experimental data obtained using the lock-in technique are in any case averaged 
over thousands periods of oscillation of the device, we must assume that the meas-
urements, in fact, correspond to the mean value ⟨L⟩ . The question arises: How is the 
Stokes boundary layer effectively modified in the presence of mutual friction? In the 
following, we re-derive its properties, extending Stokes’ second problem—in-plane 
oscillations of a planar infinite boundary—to superfluid helium.

(13)Q−1
QT

=

Sr eff

2m
,

(14)Q−1
QT

=

4 eff

wd
,
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3.2  Stokes Boundary Layer with Mean Mutual Friction

Setting the pressure and temperature gradients to zero and neglecting the vortex ten-
sion in the HVBK equations [17], we start from

where v
ns
= v

n
− v

s
 . We seek solution in the form

where z is the distance from the plane, and we require ℑ(k) > 0 to obtain vanishing 
solutions at infinity. Both velocities oscillate in the same direction as the plane, i.e., 
we are dealing with a 2D flow, see, e.g., Ref. [22] for a classical hydrodynamical 
treatment. It follows that the nonlinear terms are identically zero due to symmetry of 
the problem. The superfluid component is expected to be set in motion by the mean 
mutual friction force, and the relation between v

n
 and v

s
 is obtained from the sec-

ond equation in Eqs. (16). The vortex line density may be expressed as L = ⟨L⟩ + L̃ , 
where L̃ represents both random fluctuations in the turbulent flow and oscillations at 
the frequency of the resonator,  . Focusing only on terms that oscillate with the fre-
quency  , neglecting the product (v

n0
− v

s0
)L̃ in comparison to (v

n1
− v

s1
)⟨L⟩ as the 

oscillator is not expected to generate turbulence of its own at low drive, we arrive at 
the condition for the wavenumber k

where we use the usual viscous penetration depth of the normal component 
2

n
= 2 ∕(

n
) . Note that the expression B ⟨L⟩∕2 ≡

−1

mf
 represents a mean inverse 

relaxation time associated with mutual friction. For ⟨L⟩ = 10
10 m−2 , the relaxation 

time is 
mf

≈ 2  ms, meaning that mutual friction is sufficiently fast to act in the 
experimental window given by the lock-in time constant typically of order 100 ms, 
but certainly cannot follow each oscillation of the device with a characteristic time 
given by −1

≈ 30 μ s; hence observation of a “mean-field effect” on the boundary 
layer is indeed expected. Introducing a dimensionless quantity w = (

mf
)−1 analog-

ical to the Weissenberg number used for dilute classical gases, the above expression 
may be simplified to

(15)n

vn

t
= −

n s

2
B Lvns + Δvn,

(16)s

vs

t
= +

n s

2
B Lvns,

(17)vn =vn0 + vn1e
i(kz− t)

,

(18)vs =vs0 + vs1e
i(kz− t)

,

(19)(k n)
2 = 2i

(2 )2 + n (B ⟨L⟩)2 + 2i s B ⟨L⟩

(2 )2 + ( nB ⟨L⟩)2
,
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where x
n
=

n
∕  and x

s
=

s
∕  . The argument of the complex quantity in the frac-

tion is always between 0 and ∕2 and one may take the positive square root in 
Eq. (19) to obtain

with a ≥ 1 ≥ b ≥ 0 , satisfying the requirement that ℑ(k) > 0 . The wavenumber k 
may be substituted in Eq.  (18) to obtain the exact velocity profiles satisfying the 
boundary condition that the normal fluid moves together with the oscillating plane 
at z = 0 . The viscous stress at the boundary will be then given by

where v
p

exp(−i t) is the velocity of the planar surface. Comparison of this result 
with the classical treatment in Ref. [22] shows that the viscous dissipation will be 
rescaled by the factor a + b > 1 compared to the case without counterflow (and thus 
without mutual friction) while the added mass will be rescaled by a − b , in agree-
ment with the observations of increased damping and decreased effective mass 
( a − b < 1 for our experimental conditions). We also note specifically that the phase 
shift between the viscous force and the plane velocity generally differs from ∕4 
that is obtained in the case without mutual friction [22], and is restored here in the 
limit L → 0 . It may be also noted that in order for an effective viscosity to describe 
this problem correctly, the two prefactors a + b and a − b would have to be identical, 
contrary to both this simple model and experimental observations.

In linear approximation, the prefactors may be expanded in terms of L with

In the case of flow past a circular cylinder, a similar treatment holds as for the planar 
surface if 𝛿

n
<< d and we may approximate its surface by planar elements. Both 

terms in the stress tensor in Eq.  (22) would further contain the flow enhancement 
factor = 2 expressing the ratio between the velocity of the cylinder surface and 
that of the potential flow around it, but the comparison to the case without counter-
flow would yield the same ratios a + b , and a − b for the dissipation and the effec-
tive mass, respectively.

The modification of the Stokes boundary layer by mutual friction is not the 
only mechanism responsible for additional dissipation in our experiment. Addi-
tionally, one should consider direct momentum transfer from collisions with 
quantized vortices impacting on the device. While a rough estimate may be 
obtained from a simplistic model of ballistic vortex ring propagation that agrees 
in order of magnitude with the observed additional damping, it cannot be for-
mulated precisely without a detailed knowledge of the distribution of sizes of 

(20)(k n)
2 = 2i

1 + xnw2 + ixsw

1 + (xnw)2
,

(21)k n = (1 + i)(a + ib) = a − b + i(a + b),

(22)=
vn

z z=0

= [−(a + b) + i(a − b)]
vp

n

e
−i t,

(23)a ≈ 1; b ≈
1

2
wxs =

s B L

4
.
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vortex rings, and a thorough analysis would require running numerical simula-
tions that would be heavily influenced by the boundary conditions at the device 
surface. The experimental data follow the same temperature dependence as given 
by Eq. (22), which exhibits scaling with 

s
 in linear approximation, see the right 

panel of Fig. 7, but the data are consistently higher than the theoretical predic-
tion. Thus, we expect that direct momentum transfer from impacting vortex rings 
will also contribute to the dissipation significantly. The results indicate that the 
frequency shift is indeed a safer way to measure the vortex line density with simi-
lar devices.

Although we cannot ascertain that the presented crude model is fundamen-
tally correct and further studies using different techniques are certainly required, 
let us, for a moment, consider its implications for measurements with nanoscale 
devices. The sensitivity of the nanodevice would be again given by the prefac-
tors expressed in Eqs.  (22,23), which will be to some extent influenced by the 
detailed geometry of the device and its density, but for a wire-like geometry, it 
will be always inversely proportional to the resonance frequency. This result may 
be used to design the approximate dimensions and frequencies of devices with a 
given sensitivity to quantized vortices present in flows of superfluid helium. For 
example, one may expect nanomechanical beams resonating at MHz frequencies 
to display a lower relative change in frequency, while the absolute frequency shift 
would be approximately the same. Thus, if suitable demodulation techniques are 
used in the high frequency measurements, the nanoscale devices would operate 
equally well as far as sensitivity to the average vortex line density L is concerned. 
However, due to their reduced size, they would perform two or three orders of 
magnitude better in terms of spatial resolution, or equivalently, the total length of 
vortex line that they can detect locally in comparison to the current, rather large, 
superconducting wire. Finally, we note that detection of quantized vortices stably 

attached to nanodevices will behave differently from the model presented here, 
as both the dissipation and the frequency shifts will be dominated by different 
mechanisms than discussed here.

4  Conclusion

We have tested several NbTi superconducting microwires as probes of quantum tur-
bulence in thermal counterflow of He II generated in the two-fluid regime above 
1  K. The devices respond to the counterflow, displaying changes in damping and 
resonant frequency. In both cases, the effect is proportional to the vortex line density 
and the observations can be approximately described by considering a net effect of 
quantized vortices modifying the Stokes boundary layer due to mutual friction. The 
observed dissipation displays two regimes differing by their temperature dependence 
and agrees within an order of magnitude with that given by the above model, but 
exceeds it systematically, leaving momentum transfer by collisions with vortex rings 
as a likely additional dissipative mechanism. On the other hand, the observed fre-
quency shift corresponds quite well to the modified Stokes boundary layer model, 
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allowing a local quantification of the mean vortex line density, especially after 
device calibration in a well-characterized flow. This is a promising advance in view 
of studies of inhomogeneous flows such as cylindrically or spherically symmetrical 
thermal counterflow and may be extended to modern nanomechanical devices. We 
hope that our results will stimulate further work both theoretical and experimental 
and that the simple model presented will help to provide a basic understanding of 
fluid–structure interactions in turbulent superfluids.
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