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Abstract: In this Thesis, we have characterized and used Microscopic Electrical
Mechanical Oscillators (MEMS) in the study of quantum turbulence. Experiments
were conducted in the temperature range of 20-920 mK in vacuum in various mag-
netic Ąelds and in superĆuid helium at temperature 20 mK. Resonance properties
of MEMS in vacuum showed nonlinear behavior. Low drive peaks showed frequ-
ency softening, and high drive peaks showed frequency hardening. We showed
that the origin of non-linear behavior lies in the geometry of MEMS. We have
shown that our devices are superconductive in Ąeld 12.6 mT and is resistive for
higher Ąelds. Resonance properties of MEMS do not signiĄcantly change with
magnetic Ąelds in range 37.8-504 mT. We shown that the motion of MEMS in
superĆuid helium is highly damped and all measured points were already in tur-
bulent state. MEMS devices can be used to generate quantum turbulence or as
itsŠ highly effective local probe.
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Introduction

Following the liquefaction of helium gas by H.K. Onnes in 1908, the examination
of its properties at different temperatures became a logical course of study. The
equilibrium phase diagram of Helium is shown in Fig. 1. This diagram differs from
the common one as it lacks a triple point, and helium can solidify only at very
high pressures. Another discrepancy with helium was discovered in an experi-
ment by Soviet scientist P.L.Kapitsa. He studied the inĆow of liquid 4He between
two glass discs[2] and he observed a sudden Ćow rate increase after reaching the
critical temperature of 2.17 K. This experiment is noted as a discovery of the
superĆuid phase of liquid helium. In the same year American team of Allen and
Misener [3] conducted similar experiment and they discovered the same thing.
Although Kapitza is acknowledged for this discovery, there exists a widespread
belief that it should be attributed to all three scientists involved.

SuperĆuid helium, historically He II, shows even more interesting properties,
such as inviscid Ćow and zero entropy. Temperature dependence of its heat capa-
city, Figure 2, shows a sudden spike for the temperature of 2.17 K and is similar
to the greek letter λ. This leads to the naming convention of transition tempe-
rature as λ - temperature. This shape is one of the signs that the transition to
the superĆuid phase is second order transition, carries no latent heat and can be
described by Landau theory.

Even though He II was discovered in 1938, developing a generally approved
theoretical description took years. On one side was L. Tisza, who proposed that
He II atoms, set on their base energy level and create Bose-Einstein condensate.
Consequently, helium atoms cannot dissipate energy, so they move without visco-
sity and carry no entropy. On the other side stood L.D. Landau, who argued that
He II atoms could not undergo Bose-Einstein condensation. LandauŠs assertion

Fig. 1: Phase diagram of 4He[1].
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Fig. 2: Heat capacity of liquid helium [4]

was based on the notion that the interaction between helium atoms, which cannot
be neglected, contradicts the primary requirement for condensation. He proposed
the idea of thermal excitation of He II atoms, which he described by introducing
quasiparticles rotons and phonons. Experiments showed that both descriptions
were partially correct and used in unison.

One of the most studied topics in the research of superĆuidity is quantum
turbulence [5]. This phenomenon shows some similarities to classical turbulence,
which we experience daily, but differs on a fundamental level. For example, the
circulation of classical vortices shows continuous circulation, but all quantised
vortices have the same quantised circulation. This phenomenon holds true due to
the fact that this is the most energy-favourable arrangement.

Mechanical oscillators are commonly used to study quantum turbulence be-
cause they provide a local view of this phenomenon. They are usually small
devices, i.e., quartz tuning forks or superconducting wires placed in a magnetic
Ąeld. They show resonance behaviour that depends on the state of the Ćuid. For
example, in the presence of vortices, the effective damping is higher, which lowers
the amplitude and broadens the resonance peak. These devices can even be used
to measure He IIŠs material properties, such as the normal Ćuid density, pressure
and viscosity [6] or at high driving force to generate turbulence around them.

Another unique feature of He II is the existence of different sound modes; in
addition to classical pressure wave (frst sound), the waves of entropy (second

sound) are present. Attenuation of second sound wave on quantised vortices is
commonly used as another probe of quantum turbulence [7].

SuperĆuidity is not a phenomenon only limited to 4He, but it is observed even
in 3He. The critical temperature for superĆuid 3He is in the range of milikelvin and
is dependent on the external magnetic Ąeld. The fermionic character of its nuclei
causes these differences. This shows that the origin superĆuidity in 3He is more
similar to conventional superconductors, where the Cooper pairs are created.

3



1. Theoretical background

This thesis will primarily focus on the examination and analysis of application
of Ćuid dynamics,which is part of the physics of continuum. Continuum can be
deĄned as medium that still contains many molecules even after considering in-
Ąnitesimally small volume. There are two basic approaches to Ćuid dynamics. In
the Lagrangian description, we follow one particle moving in the Ćow vector Ąeld.
In Eulerian description, we consider a particular regionin the volume of the Ćuid
and study itŠs Ćow, i.e. velocity Ąeld is dependent on the time and position v(x,t).
In this work, we will be using the lather description. As we will see in Section
1.2.1 to describe the dynamics of the quantum liquid, one may begin with the
dynamics of classical Ćuids.

1.1 Classical Ćuid dynamics

One of the fundamental laws in Ćuid dynamics is the equation of continuity

∂ρ

∂t
+ ∇(̇ρv) = 0. (1.1)

This equation illustrates that if the density ρ increases with time, It leads to
Ćow outwards from the enclosed area. The product of the ĆuidŠs velocity v and
its density carry the meaning of mass Ćux density. Overall, Equation 1.1 convey
the equivalent meaning as the law of conservation of mass in the Ćuid. This
equation holds true in general. In the following description, we assume that Ćuid
is incompressible, meaning the ĆuidŠs density is constant with respect to time. It
follows that the equation of continuity reduces to a simpliĄed form

∇ · v = 0.. (1.2)

In the context of potential Ćows, energy is an additional property that is conser-
ved. This fact is shown in BernoulliŠs Equation

p+
1

2
ρv2 = const (1.3)

The Ąrst term represents potential energy caused by the pressure p, and the second
term is the kinetic energy of the Ćuid. This equation holds only for isothermal
Ćow.

EulerŠs equations describe the Ćow of incompressible ideal Ćuid

∂v

∂t
+ (v · ∇)v = −∇p

ρ
(1.4)

The right side of Equation 1.4 represents the pressure force in the liquid. On the
other hand, the left side is in a unit of acceleration. Hence, it can be deduced
that EulerŠs equation embodies a form of NewtonŠs second law of mechanics.

EulerŠs equation is valid exclusively for ideal Ćuid, where the ĆuidŠs motion
remains unaffected by any dissipative forces. Adding viscous dissipative force, we
obtain Navier-Stokes equations

∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ ν∆v (1.5)
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in which ν stands for kinematic viscosity. These equations represent a system
of nonlinear equations for each component of velocity Ąeld v. In the case of
compressible Ćuids, the form of these equations becomes more complex.

To achieve complete information of the dynamics of the system, it is necessary
to solve both equation of continuity and the Eqs. 1.4 or 1.5.

An alternative approach to describing Ćuid dynamics involves utilizing di-
mensionless parameters, i.e. Reynolds, Mach or Nusselt number1. Which of these
parameters will be used depends on the problem. Probably the most common
dimensionless parameter is the Reynolds number, which can be derived from the
Navier-Stokes equation by introducing the dimensionless equivalent of the physi-
cal quantities

vŠ =
v

U
, ∇′ = D∇ (1.6)

using characteristic velocity U of the Ćow and D is characteristic dimension. The
latter parameter is highly dependent on the geometry of the problem, i.e., for
Ćow in the long channel, it would be the diameter of the channel. There are
two possible choices for the deĄnition of dimensionless pressure p’. In the case of
dominant inertia forces, p’ is deĄned as a) and vice versa.

a) p′ =
p

ρU
, b) p′ =

D

νU
p (1.7)

From that, we get the deĄnition of the Reynolds number

Re =
vD

ν
, (1.8)

which is used to describe the state of the Ćow. Three distinct regimes may be
observed. In laminar Ćow, Ćuid particles move across the non self-intersecting
smooth lines. In this state, the velocity of the Ćuid is relatively small, from which
follows that the Reynolds number is also small. In the following regime Ćow is in
transition to turbulent state, which, in circular pipes, happens for Re ≈ 1000 [8].
For high velocities and Reynolds number is the Ćuid in a fully developed turbulent
regime2. Even though the rigorous description of turbulence does not exist, in
the next Section, we will describe the basic concept of the phenomenological
Kolmogorov turbulence theory.

1.1.1 Phenomenological description of turbulence

In this Section, we will consider only the viscous Ćuids which satisfy Navier-
Stokes equations 1.5. Turbulent Ćows only occur for high Reynolds numbers and
show chaotic behaviour. From that follows the replacement of the deterministic
description with statistical analysis. Turbulent Ćows are highly diffusive, which
implies a high spread of velocity Ćuctuation. Phenomenological KolmogorovŠs
(K41) theory [9] assumes local isotropy and homogeneity This theory is limited

1Mach number is deĄned as local Ćow velocity u to the local speed of sound c.It can be
used to study wave propagation in the Ćuid and study different Ćow regime, i.e., subsonic or
supersonic. Nusselt number is used in describing convective Ćows and is deĄned as the ration
of convective and conductive heat transfer.

2Flow around the sphere is turbulent for Re ≈ 4000 [8]
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Fig. 1.1: k-dependence of energy spectrum of the turbulent Ćow [10]

uniquely to 3D turbulence. These assumptions, with the viscous nature of the
Ćuid, lead to the dissipation of the turbulent energy

ϵ = ν⟨ω2⟩ (1.9)

where circulation ω is ∇ × v.
Assuming turbulence generated by an external force, i.e., a gridŠs motion,

the ĆowŠs energy spectrum can be described at three different length scales. The
production range gives rise to signiĄcant eddies resulting from instabilities asso-
ciated with high Reynolds numbers. Due to the equipartition theorem, they show
k2 dependence on their wave vector k. Upon reducing the motion of the grid, the
eddies will commence a process of decay, with no dissipation of energy occurring.
Eddies do not dissipate energy because their motion is too unstable, and molecu-
lar viscosity is not effective enough in dissipating their turbulent kinetic energy.
In this inertial range, the KolmogorovŠs theory predicts famous k-dependence of
energy spectrum as

E(k) ∝ ϵ2/3k−5/3 (1.10)

Only eddies in the Kolmogorov length scales

η = (ν3/ϵ)
1

4 (1.11)

dissipate energy. The whole process, from the generation of large eddies to dis-
sipating eddies in KolmogorovŠs length scale eddies, is known as the Richardson
cascade and is shown in Figure 1.2. This phenomenon shows that unless the tur-
bulent Ćows constantly receive energy from an outside source, vortices will rapidly
decay and turn into the laminar Ćow.
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Fig. 1.2: Richardson cascade [11]

1.1.2 Boundary layers

A relatively common interest of Ćuid dynamics is the Ćow around the solid body
submerged in the Ćuid. It can be either wing of the plane in the air or our mecha-
nical oscillator in the superĆuid helium. When the submerged body undergoes a
motion, due to viscous force it carries portion of the Ćuid with it. This is called
the boundary layer. On the other hand, at location far from the body viscous
forces are not sufficiently strong to affect the Ćow. In this region, the Ćow can be
approximately described by BernoulliŠs Equation 1.3.

BlasiusŠ boundary layer

In this Section, we will take a closer look at the boundary layer and assume
stationary Ćow, ∂v/∂t = 0. In the immediate vicinity of the body, the no-slip
boundary conditions of the Navier-Stokes equation manifest. This condition states
that the ĆuidŠs velocity has to be zero at the bodyŠs solid walls. From that follows,
the velocity Ąeld must decrease in the proximity of the wall. The ĆuidŠs motion,
in BlasiusŠ boundary layer, cannot be described by Equation 1.5; instead one need
to use PrandtlsŠ equations

vx
∂x

∂x
+ vy

∂y

∂x
− ν

∂2vx

∂y2
= −1

ρ

dp

dx
= U

dU

dx
(1.12)

∂vx

∂x
+
∂vy

∂y
= 0 (1.13)

These two equations are only written in two dimensions because the motion of
the Ćuid takes place mainly parallel to the surface. PrandtlsŠ equations assume
no transverse pressure gradient in the boundary layer.

As discussed in Section 1.1 with Ćows with high ReynoldŠs number the Ćow
is in turbulent state. The same holds true in the boundary layer. At higher Ćuid

7



Fig. 1.3: Separation of boundary layer around the airfoil [12]

velocities, Ćow transitions to a turbulent state, where it is highly chaotic and full
of vortices. If the boundary layer Ćow is met with a strong pressure gradient in a
different direction, the boundary layer is separated at separation line. The shape
and behaviour of the boundary layer are highly dependent on the bodyŠs shape.
The boundary layer around the airfoil is shown in Fig. 1.3.

StokesŠ boundary layer

In this Section, we will describe Ćow around the oscillating bodies. LetŠs consider
inĄnite plane harmonically oscillating with frequency3 ω. The velocity Ąeld in the
boundary layer decreases exponentially at the length scale of δs, commonly called
depth of penetration.

v = v0 e
−x/δs ei(xδs−ωt) (1.14)

δs =

√︄

2ν

ω
(1.15)

In these equations, v0 represents an amplitude of the velocity Ąeld, and t is time.
The time evolution of the velocity Ąeld is shown in Figure 1.4, where the time
interval is 0.1 s, and the colour tone represents time evolution of the movement.
This is known as StokesŠs second problem of Ćuid dynamics.

1.1.3 Drag forces

In the previous Section, we discussed Ćow in the boundary layer.However, we
have yet to address the inverse query: How does the Ćow affect the body? The
movement of the body is slowed down by dissipative drag force. To deĄne this
force, one must clarify whether the Ćow is laminar or turbulent. In turbulent Ćow,
the body interacts with more eddies, which results in higher drag force. In the

3Detailed derivation is provided in [13] at pages 83-85
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yellow line indicates the velocity proĄle for t=0, and the time evolution is shown
in gradually darker colours.

Fig. 1.5: Dependancy of drag coeĄcient CD on Reynolds number Re for Ćow
around the sphere [14].
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purely laminar Ćow, the viscous drag forces are proportional to the velocity

F ∝ bv (1.16)

and in turbulent Ćow

FD =
1

2
ρv2CDA. (1.17)

Drag depends on the cross-section area perpendicular to Ćow direction A and
dimensionless drag coefficient CD. To describe the dependence of the drag coeffi-
cient on the Ćow, it is helpful to discuss relationship between drag coefficient and
ReynoldŠs number,see Figure.1.5. This Figure can be divided into three regions.
As the Reynolds numbers increase within the range of 0 to 102, the drag coeffi-
cient exhibits a linear decrease. These low Reynolds numbers imply fully laminar
state of Ćow. While the Reynolds number is increasing, the wake is the transition
to a turbulent state. Upon the attainment of fully developed turbulence in the
wake, a plateau is observed. The drag coefficient sharply decreases at the Rey-
nolds number ≈ 106. This can be explained by the fact that laminar boundary
layers have higher boundary layer thickness. This leads to sooner separation of
Ćow from the body than in turbulent state. As a consequence there is a lower
wake behind the body and, thus, lower drag. This effect is know as a drag crisis.

Another property impacting the drag coefficient is the shape of the body. A
lower drag coefficient indicates lower aerodynamic drag. This fact is commonly
used in improving the aerodynamic design of wings for planes.

1.2 SuperĆuid helium, quantum Ćuid dynamics

Below the critical temperature of Tλ = 2.17K at SVP, saturated vapour pre-
ssure, liquid helium undergoes a second-order transition to the superĆuid phase.
SuperĆuid helium shows quantum properties on a macroscopic scale, which le-
ads to the necessity of quantum-mechanical description. Helium can be described
as an ideal gas with small interaction that, under the critical temperature Tλ,
undergoes Bose-Einstein condensate 4.

A macroscopic wave function describes superĆuid helium

ψ(r, t) = ψ0e
iΦ(r,t) (1.18)

where r is the space vector, Ψ is the macroscopic phase and ψ0 =
√︂

ρs/m4 is the

amplitude, which is function of superĆuid phase density and the mass of the 4He
atom. This wave function is deĄned for the whole condensate, which explains the
helium atomsŠ coherent behaviour.

1.2.1 Two-Ćuid model

In 1946, Landau proposed the experiment to E.L.Andronikashvili, which lead to
a new view on superĆuid helium. In the experiment, he put very closely packed
disc torque oscillators on the wire, applied torque force and measured the angular

4Without the interaction among the helium atoms, the Bose-Einstein condensation wouldnŠt
be possible [15]
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Fig. 1.6: Temperature dependence of normal and superĆuid component of He II
[16]

velocity of his apparatus. The surprising result arose after decreasing the tem-
perature, which led to an increase in resonant frequency [17]. From this result,
he induced that He II contains two separate components, normal and superĆuid.
Both of these components carry their density, and they sum to the total density
of the whole liquid

ρ = ρn + ρs. (1.19)

The resonant frequency increase can be attributed to the dependence of the com-
ponentŠs density on temperature, Fig. 1.6. Normal and superĆuid components are
mutually independent unless quantised vortices are present in He II. This links
them via mutual friction force Fns.

Dynamics of normal and superĆuid components are described with HVBK
equations [18]

∂vs

∂t
+ (vs · ∇) vs = −1

ρ
∇p+ s∇T + T − ρn

ρ
Fns (1.20)

∂vn

∂t
+ (vn · ∇) vn = −1

ρ
∇p− ρs

ρn

s∇T + νn∆vn +
ρs

ρ
Fns (1.21)

where vi is the velocity of an individual component, s is a speciĄc entropy of
the system, T is the tension force5 which describes changes in shape and form of
quantised vortices. If the Ćow is isotropic and without the presence of quantum
vortices HVBK equation transition to EulerŠs 1.4 and Navier-StokeŠs1.5, therefore
superĆuid component can be considered as an analogy to ideal Ćuid and normal
component to classical, viscous Ćuid.

5In classical Ćuid mechanics exists similar quantity called vortex stretching and
νn = η / rhon is the kinematic viscosity of normal component. The Ćow lengthens Eddies
due to the law of conservation of angular momentum.
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Fig. 1.7: Dispersion curve of in He II [15].

This theory provides only a phenomenological description of superĆuid helium.
A more accurate perspective would involve considering He II as a superposition of
the normal state and the superĆuid state, rather than as comprising two distinct
entities..

1.2.2 Microscopic description of He II

First microscopic description of He II was Ąrstly introduced L.D.Landau. He
described the interaction between helium atoms as quasiparticles, which behave
as perturbations of the ideal non-interactive state. In addition to that, Landau
proposed the dispersion curve of these quasiparticles, shown in Fig 1.7. The dis-
persion curve begins with the long-wave phonon part, which can be described by
Debye law

ϵ = pc (1.22)

where ϵ is energy of quasiparticle, p is its momentum and c is the speed of sound.
Following that, the roton minimum is seen, which is described by

ϵ = ∆ +
p2

2µ
(1.23)

where µ is the effective mass of the roton [19] and ∆ represents roton energy
gap. Probably the grates success of LandauŠs theory is the introduction of critical
velocity vL. He states that if the He II Ćows faster than

vL =

⎟

ϵ(p)

p

⟨︂

min

(1.24)

the quasiparticles will generate in the liquid. This excitations lead to the annihi-
lation of superĆuidity and transition to the normal phase.
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Experiments show that for high temperatures, the roton part plays a dominant
role in heat capacity [20]. The roton energy gap ∆ signiĄcantly rise under the
temperature of the 1 K. Consequently, the contribution of the rotonic component
can be disregarded or considered negligible.

1.2.3 Quantum Turbulence

Similar to turbulence in a classical viscous Ćuid in He II exists a phenomenon
known as quantum turbulence, see Fig. 1.8. Quantized vortices are always present
in superĆuid helium and belong among the most interesting and studied problem
of quantum Ćuids. In the following Section, we provide a short introduction to
them.

In Section 1.1.1, we described the turbulence in classical Ćuids. The difference
between classical turbulence and turbulence in He II can be shown by calculating
the circulation of He II

Γ =
⌊︂

c
vs · dr. (1.25)

While integrating along the curve c, the integral has two possible solutions. Con-
sidering simple-connected Ćuid region, we can use StokesŠ Theorem to reduce the
integral to 0. If the region is not simple-connected, StokesŠ Theorem canŠt be
applied.

Γ =
⌊︂

c
vsdr =

ℏ

m

⌊︂

c
∇Φ · dr (1.26)

where superĆuid velocity has been obtained from momentum operator ( p̂ =
mv̂ = −iℏ∇ on wave function ψ. From the periodicity of macroscopic phase Φ,
we see that the phase difference between starting and Ąnal point along the curve

Fig. 1.8: Quantum turbulence computed using vortex Ąlament method [21]
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c must be 2πq. Comparing this result with Equation 1.26 we get

Γ =
h

m
q = κq. (1.27)

where κ = 9.97 × 10−8 m2/s is quantum of circulation. This leads to topological
defects, quantised vortices, in which the superĆuid component Ćows around vortex
core. Vortex core is in normal state. Quantised vortices are formed spontaneously
during the superĆuid phase transition or are generated by adding an external
velocity Ąeld.

Classical vortices lose energy due to the viscous nature of the Ćow. Under
T = 1 K He II is almost pure superĆuid which leads to increase of the stability
of vortex cores. However, this is different for quantised vortices, as waves were
observed on them. This phenomenon is known as Kelvin waves [22, 23]. The
Cascade of Kelvin waves is a dissipative process and leads to increased length of
vortex lines. If this effect is continually driven, it may lead to the reconnection of
individual vortices into a tangle of quantised vortices, called quantum turbulence.
Vortex line density L, deĄned as length of vortex line normalized to unit volume, is
property commonly used to describe intensity of quantum turbulence. Vortex line
density is usually measured by attenuation of second sound6, where the amplitude
a of standing wave is attenuated on quantized vortices to value a0 and L is
obtained using

L =
6π∆f0

Bκ

⎤

a0

0
− 1

⎣

(1.28)

where B is the inner friction and ∆f0 is width of original resonance peak. For
details see [7].

1.2.4 Mechanical oscillators in He II

This Section will discuss commonly used probes of turbulence and mechanical
oscillators. Among the most commonly used are superconducting wires in semi-
circular shape [24], quartz tuning fork [25], oscillating grids [26], or oscillating
microspheres [27]. The oscillator moves in a medium which damps its movement.
In the Ąrst description, we can consider only damping linear with the velocity of
the oscillator. Constant determining damping in the Ćuid is commonly denoted
as Γ. The restoring force affects the motion, determined by the k. To describe the
motion of the oscillator, we can combine all the previous forces mentioned above
with NewtonŠs second law of mechanics and get

m
d2x

dt2
+ Γ

dx

dt
+ kx = Feiωt. (1.29)

This is the equation of a damped linear harmonic oscillator driven with force with
the amplitude F and angular frequency ω. The solution can be found in the form

u = u0̂e
iωt (1.30)

where the complex amplitude u0̂ is

Re¶u0̂♢ =
F

m

γω2

(ω2
0 − ω2)2

, Im¶u0̂♢ =
F

m

ω(ω2
0 − ω2)2

(ω2
0 − ω2)2

(1.31)

6Second sound is wave mode unique for He II where the superĆuid and normal phase is
oscillating out-of phase.
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Fig. 1.9: Complex amplitude of velocity of the linear harmonic oscillator. The
black line shows an in-phase amplitude component, and the red line represents a
velocity shifted by 90 degrees.

in which γ = Γ/m and ω0 =
√︂

k/m. This is Lorentz curve and is shown in Fig. 1.9.
The resonance behavior of the oscillator is affected by the damping coefficient,
which broadens the resonance peak. The width of the peak can be found either as
Full Width at Half Maximum (FWHM) of the in-phase component (black curve)
or as a difference in frequencies of maximum and minimum of the out-of-phase
component (red curve).

To describe more complex behavior, non-linear models of oscillators are used.
They are described by DuffingŠs equation

d2x

dt
+ γ

dx

dt
+ α1x+ α3x

3 = fcos(ωt) (1.32)

in which α1 represents a coefficient of linear restoring force and α3 is a coeffi-
cient of cubic restoring. This equation is just an extension of Equation 1.29 with
another non-linear restoring force. The duffing equation does not have an explicit
analytical solution, but the implicit solution for the complex amplitude can be
found in [28]. This equation has three solutions, one for the linear case α3 = 0,
and one for positive and negative α3. These solutions are shown in the Fig. 1.10

The experimental use of mechanical oscillators is based on their interaction
with the Ćuid Ćow. The motion of the resonators is damped by viscous forces,
resulting in a decrease in amplitude and a broadening of the width of the reso-
nance peak. By introducing external Ćow or turbulence, the dampening of the
resonance peak is even stronger. Thanks to that, mechanical oscillators can be
used as a local probe of the quantum turbulence [24]. This method will be further
discussed in Section 2.3.
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Fig. 1.10: Solution of Duffing equation for three different parameter values α3. The
dark blue line represents linear solution α3 = 0; the green line represents a curve
with positive cubic restoring force α3 >0 and light blue for negative restoring
force. Similarly to the linear case, coefficient gamma correlates with FWHM of
the resonance curve [28].
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2. Experimental apparatus

Experiments were conducted in a standard helium bath cryostat. In order to
observe the surface level of liquid helium within a dewar, we used a surface level
meter.

The utilization of a dewar necessitates the implementation of safety protocols.
The Ąrst one arises from the fact that the volume ratio of gas and liquid is 700:1.
If the dewar was not open to the return line, the inside pressure would rise to
several atmospheres. The pressure gauges installed and the walls of the dewar are
unable to withstand such forces and would consequently incur damage. In order to
prevent this it is common to install safety gauges, which, in case of overpressure,
would open and realease the gas out of the cryostat.

The experiments in the sub-kelvin temperature range meet with another com-
plication. At the interface of the solid and liquid phases, occurs thermal KapitzaŠs
resistance. This phenomenon occurs as a result of variations in the speed of sound
among different states of medium. KapitzaŠs resistance is proportional to T−3,
which explains why it can be neglected at higher temperatures, even though it is
a crucial restriction for reaching millikelvin temperatures.

2.1 Thermometry

Precise knowledge of temperature is essential part of cryogenic experiments. In
low-temperature thermometry we use dependence of temperature dependence of
various physical properties1. For example electrical resistance of the metallic ther-
mometers shows almost a linear decrease with the temperatures. This holds true
until the resistance reaches plato, it saturates. As a result, metal resistance ther-
mometry cannot be used in very low temperatures. Due to that limit, we used
PT-100 thermometers only during the precooling. In the lower temperatures,
semiconductive RuO2 thermometers are used, wherein resistance exponentially
rises with the decreasing temperature. But for Ąne and precise temperature me-
asurements of sub milikelvin temperatures, we use a SQUID-noise2 thermometer
MFFT-1 by Magnicon. Brownian motion of conduction electrons leads to the
temperature-dependent Ćuctuation of electrical voltage. In the interval of frequ-
encies, (ν + ∆ν), the mean square error of noise amplitude can be calculated
by

⟨u2⟩ = 4kTR∆ν. (2.1)

where k is the Boltzmann constant and R is the resistance.

2.2 Dilution Refrigerator

In the previous Section, we discussed ways of measuring the temperatures, but
we omitted how to ways to achieve sub-kelvin temperatures. One viable method
for achieving this is by taking advantage of unique properties of a mixture of
3He and 4He. In the x-T phase diagram3, see. Fig.2.1, there are three distinct

1These are secondary thermometers and they require calibration.
2Superconducting QUantum Interference Device
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Fig. 2.1: Phase diagram of the mixture of 3He and 4He. [29]

sections. While cooling the mixture in the normal phase, we can cross the λ line
where the 4He undergoes a superĆuid transition. Another process arises if we
cool the mixture down. In this case we arrive at phase separation region. Here
the mixture separates into 4He rich phase and 3He rich phase. The density of these
two phases is temperature dependent. These phases have different densities, from
which follows that the less dense 3He phase Ćoats on the top. As we decrease the
temperature, due to Ąnite solubility, the diluted 3He phase concentration does not
reach zero. The cooling power of the dilution process origins in different enthalpy
of diluted and concentrated phases and shows weaker temperature dependence
than evaporation of cryoliquid.

We use commercial dilution refrigerator MNK-126 by Leiden Cryogenics,
shown in Fig.2.2. A signiĄcant part of the dilution refrigerator is mixing cham-

ber, where the transfer of 3He is transferred from the concentrated to the diluted
phase of the mixture. In the still 3He is evaporated and returns to the circu-
lation circuit. As a consequence of different evaporation temperatures, we can
safely assume that the circulated substance is mainly composed of pure 3He. Du-
ring the whole circulation, the gas goes through various heat exchangers. Helium
molecules in the circuit are transferred with a scroll and turbo-molecular pump.

Before releasing the helium mixture into the circuit, we used turbo-molecular
pumps to drain the air from the gas handling system and the experimental cell.
This is necessary because the internal components of a dilution refrigerator are
made of thin capillaries, in which the non-helium gas could freeze and create a
solid seal. This would prevent the helium mixture from the circuit and thus make
the refrigerator unusable.

We have already established that vacuum purity is necessary for a properly
working dilution refrigerator. To ensure this purity in the volume of the vacuum
chamber, the coal trap is installed on one of the plates. The coal absorbs the
impurities. After the experiment, the coal trap is heated by the AC voltage source,

3x is the concentration of 3He in the mixture
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Fig. 2.2: Dilution refrigerator MNK-126. 1 - mixing chamber, 2 - heat exchangers,
3 - still, 4 - 1K plate, 5 - 1K pot.

leading to increased temperature and release of the trapped gases. Another way
of trapping non-helium gas is to use cold traps. They are built of a tube placed in
liquid nitrogen. When the non-helium gas travels through the cold trap, it lowers
its temperature to a nitrogen level, condensates, and keeps them in the trap.

The last remaining inquiry is about temperature manipulation. Reaching hig-
her temperatures is accomplished by introducing AC-powered heater to the sys-
tem. After introducing small power to heater we can Ąnely control the tempera-
ture in experimental cell.
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Tab. 2.1: Electrical resistance of MEMS

WIRE Mag. Ąeld range [mT] Electrical Resistance [Ω]
G1L 31.5-81.9 4-6
G1R 31.5-81.9 4-6
G3R 31.5 0.1

2.3 MEMS devices

Our experiments use single-crystal, goal-post-shaped Microscopic Electrical Me-
chanical Oscillators (MEMS). These devices are placed in the homogenous mag-
netic Ąeld B, generated by a superconductive electromagnet provided with the
cryostat, capable of reaching 9 T. Magnet is excited with driving AC electrical
current I. This leads to the movement of the wires via Lorentz force

F = BLI (2.2)

with L being leg spacing. Combination of driving current with measured indu-
ced Faraday voltage U regards the electrical response of MEMS with lorentzian
character, described in Section 1.2.4. These properties can be recalculated to
respective mechanical properties, i.e, Lorentz force deĄned in Eq. 2.2 and peak
velocity of the microwire

vpeak =
U

BL
(2.3)

All devices show gradual rise of electical resistance shown in Table. 2.1 This
gradual change can be explained by the gradual rise of the aluminium Ąlm on
the micro-chip. These devices are fabricated using optical lithography. Details of
fabrications can be found in [30].

The experimental setup involved the utilization of three Microelectromecha-
nical Systems (MEMS) devices, speciĄcally a solitary G3R device and a pair of
G1R and G1L wires, which were positioned on a single microchip. The motion of
the wires was excited by the waveform generator Agilent 33220A with 10kΩ resis-
tors and 20 dB attenuator. The response was measured by the Stanford Research
SystemsŠ phase-sensitive Lock-in SR830 and preampliĄed with voltage ampliĄer
SR-560. Dimensions of the wires are provided in Table 2.2

The connections for double wire microchip is more complicated due to sha-
red pin connection. For this microchip, the scheme of connections is shown in
Figure 2.3.

Wires were placed in the experimental cell, shown in Figure 2.4. Wires G1L
and G1R are denoted as 1,2, respectively, and 4 signiĄes the location of G3R.

Tab. 2.2: Dimensions of the MEMS used in the experiment l - length of the beam,
h - leg height, t - beam thickness, w - width of the beam, mvac is weight of MEMS
in vacuum and resonance frequency in vacuum fvac.

wire l [mm] h [mm] t [µm] w [µm] mvac × 10−10 [kg] fvac [Hz]
G1L 1 0.9 7 22 5.38 4911
G1R 1 1 7 22 5.20 5537
G3R 1 0.5 7 22 4.49 -
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Fig. 2.3: Electrical scheme of a microchip with wires G1L and G1L.

Number 3 shows the location of the quartz tuning fork used for creating turbu-
lence in the front of a double-wire microchip. Lastly, another quartz tuning fork
was placed on the bottom of the channel insert, 5. After this fork was submerged
in the Ćuid, its resonance frequency is shifted to lower frequencies. This is the re-
ason why tuning fork is used for determining the state of Ąlling the experimental
chamber.
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1
3

2

4

5

Fig. 2.4: Experimental setup on the insert of the chamber. 1 - G1L MEMS device,
2 - G1R MEMS device, 3 - tuning fork used for generating turbulence, 4 - G3R
MEMS device, and 5 - tuning fork used while Ąlling the chamber.
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3. Results of measurement

Prior to the start of the experiment, we drained the air out of the system and
thoroughly checked all the electrical connections.

After these necessary tests, we proceeded to the cooling of the experiment.
Using a dilution refrigerator, we cooled the system down to T ≈ 20 mK. This was
the lowest reached stable temperature, and we considered it the base tempera-
ture. All measurements were done in custom software programmed in LabVIEW
environment.

In the Ąrst step we tried to Ąnd the resonant frequencies of oscillators in a va-
cuum in B = 13 mT. In the beginning, we could not Ąnd the resonance peak due
to narrow FWHM and broad sweeping frequency range. Stated differently, the in-
terval between neighboring frequencies was broader than the width of resonance
peaks.We solved this issue by increasing the magnetic Ąeld to B = 63 mT, which
led to a wider peak width and higher amplitudes. This change in the magnetic
Ąeld does not signiĄcantly affect the resonant frequencies, so these new-found
frequencies can be used to Ąnd the resonance peaks in the lower Ąelds in the nar-
rower frequency range. An alternative approach is to increase the driving voltage
of the microwires. While increasing the drive, one must be careful, as this app-
roach introduces a new heating source in the system. An example of one of the
long-frequency sweeps for G1L wire is shown in Figure 3.1. In this Figure, we can
see that instead of clear Lorentz resonance peaks, as in Figure.1.9, we measured
the exponential decay of the system. This behavior can be explained by the fast
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Fig. 3.1: Frequency sweep in long frequency range measured in a vacuum with
G1L wire.
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measurement in which the response of the oscillator did not have enough time to
relax to a stable value. To ensure this will not happen, we set the measurement
parameters to waiting for time tw = 80 s and the Lock-in time constant to 10 s
which should be better than minimal settling time 1/2π∆f where ∆f represent
FWHM. Table 3.1 shows the measured resonant frequencies for wire G1L, G1R,
and G3R. The difference in resonant frequencies results from the different geomet-

Tab. 3.1: Measured resonant frequencies of MEMS in vacuum

G1L G1R G3R
f0 [Hz] 4909.97 5535.65 14868.19
∆f [Hz] 0.19 0.17 0.6

rical dimensions given in Table 3.1. This dependency can be seen in the similar
resonant frequency of G1L and G1R wire, for which the only different dimension
is the height of the legs. On the other hand, the G3R shows exceedingly different
frequencies. The different resonance frequencies are necessary for simultaneous
measurement on all three microwires, preventing the electrical cross-talk between
induced electrical voltages. Measured resonant frequencies differ from frequencies
previously found. This change will be discussed in Section 4.

After that, we made sequential measurements of the resonance curves with
different driving voltages in the range of 0.1 V to 1 V. This measurement was
repeated for Ąve temperatures between 20 mK and 920 mK. Response of the oscil-
lator above the temperature of 1000 mK was not measured because the oscillators
transitioned from superconducting to normal state, given critical temperature of
Aluminium. Measured data are shown in Figs. 3.3 - 3.8. At T = 500 mK we
measured with voltages up to 6.95 V, see. Figure 3.5. Insert shows the resonance
curve for the three lowest drives. These curves were measured from lower to hig-
her frequencies and gradually transitioned from frequency-softening at low drives
to frequency-hardening at high drives. All Ągures show the measured signal with
subtracted electrical background and are plotted only for in-phase component of
the signal. In the Figure 3.6 we show the out-of phase component of measured
FaradayŠs voltage at T = 500 mK and B = 12.6 mT. This Figure shows highly
non-linear behavior for drives 2.98 V and 6.95 V.

Figure 3.9 shows the wiresŠ response in higher magnetic Ąeld B = 63 mT.
It was measured from high to low frequencies. This signal shows the difference
in amplitude compared to measurement in lower magnetic Ąeld. The change in
frequency response might be caused by the geometrical non-linearities affecting
the motion of the wire at lower driving voltages.

After vacuum measurements, we proceeded to Ąlling of the experimental cham-
ber. We used a quartz tuning fork to see if the liquid helium was in the chamber.
We excited the resonance response from the tuning fork, with the resonance fre-
quency 32712 Hz (black line in Figure 3.2). When the liquid helium reached the
tuning fork, its motion was damped, which increased the FWHM of the reso-
nance peak and shifted the resonance frequency to 32071 Hz. This frequency
shift is shown in Figure 3.2.

The last measurement was done at T = 20 mK in the magnetic Ąeld
B = 9.45 mK, for drives ranging from 0.43 V to 2.33 V and is shown in Fi-
gure 3.10. During the experiments, the supply of liquid He was limited, leading
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Fig. 3.2: Response of quartz tuning fork in vacuum (black) and in liquid helium
(red) with clear resonance frequency shift and change in FWHM.

to the insufficient liquid inside the cryostat. As the liquid level dropped below the
1K pot of dilution refrigerator, some impurities probably got into a thin capillary
connecting 1K pot and the liquid helium bath. This resulted in its blockage, and
we were forced to stop the experiment. In the following Chapter, a discussion of
the results will follow.
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Fig. 3.3: Low to high frequency sweep of G1L (upper left), G1R (upper right)
and G3R (lower left) at B = 12.6mT and T = 20 mK in vacuum.
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Fig. 3.5: Low to high frequency sweep of G1L (upper left), G1R (upper right)
and G3R (lower left) at B = 12.6mT and T = 500 mK in vacuum.
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Fig. 3.6: Out of phase component of the induced voltage on G3R wired measured
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shows high non-linear behavior.
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Fig. 3.7: Low to high frequency sweep of G1L (upper left), G1R (upper right)
and G3R (lower left) at B = 12.6mT and T = 700 mK in vacuum.
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Fig. 3.8: Low to high frequency sweep of G1L (upper left), G1R (upper right)
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4484.5 4485

0

4x10-6

8x10-6

Vo
lta

ge
 [V

rm
s]

He II
T = 20mK, B = 9.45 mT

 0.43V
 0.99V
 2.33V

G1L

5062 5062.2

0

5x10-6

1x10-5

1.5x10-5

Frequency [Hz]

G1R

G3R

13421.6 13421.8
0

1x10-5

2x10-5

Vo
lta

ge
 [V

rm
s]

Frequency [Hz]
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4. Discussion

First, we will analyse results measured with 100x ampliĄcation in vacuum, see
Figures 3.3 - 3.8. The amplitude of the resonance peak scales with the driving
voltage, according to Eqs. 2.2 and 2.3. The driving current was determined using
OhmŠs law. For voltages up to 0.462 V, the peaks are Lorentzian. In stark con-
trast to that highly driven peaks show nonlinear behavior. Amongst the wires
G3R showed the most non-linear behaviour. This can be explained by its shor-
test length. This leads to higher mechanical tension with the same displacement.
Measurement at higher magnetic Ąeld B = 63 mT, provided in Figure 3.9, shows
the same behaviour as the lower Ąelds, only with higher amplitudes. Overall
signals received from low drives show a frequency-softening; the response Ćips to
hardening for higher drives. This may be caused by the geometrical nonlinearities
in addition to changes in nonlinear stresses inside the thin metallic layer. Similar
softening-hardening behavior was seen in [31]. In forthcoming measurements, our
intention is to replicate the experiment while adjusting the sweeping direction
in accordance with the speciĄc type of non-linearity. For frequency-hardening,
it is adequate to use low to high-frequency sweep and vice versa for frequency-
softening. Frequency sweep in the opposite direction can show hysteresis more
discussed in [32]. An alternative approach to characterizing resonance behavior
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Fig. 4.1: Log-log dependency of electrical properties (driving current and induced
voltage) and their related mechanical properties (driving force and wire peak
velocity) plotted for all measured temperatures and drives in the magnetic Ąeld
B = 12.6 mT and were measured with 100x ampliĄcation. All MEMS shows the
same linear behaviour with the same slope.
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is using the quality factor deĄned as

Q =
f0

∆f
(4.1)

where f0 is the resonance frequency of the peak and the ∆f is FWHM.
In the next Section, we will discuss the width of the resonance peaks. This qu-
antity is correlated with the inverse of the quality factor and thus it gives us the
quantitatively the same information about the system as the Q-factor.

4.1 Measurement in vacuum

The Ąrst step in describing oscillating devices is to calculate the relationship
between electrical properties (driving current and induced voltage) and the cor-
responding mechanical properties (driving force and wire peak velocity). These
properties were calculated using formulae given in Section 2.3. Unless otherwise
mentioned, all values are given as RMS (Root Mean Squared). Interrelationship
between mechanical and electrical properties is shown in Figure 4.1. Induced
voltages are plotted as amplitudes using Uamp = Urms/

√
2. The driving current

exhibits a linear correlation with the induced voltage, as anticipated, owing to
the sole presence of linear dissipation within the material.

The same analysis was repeated for measurement in the higher magnetic Ąeld
at T = 20 mK and is shown in Figure 4.2. This graph shows the difference between
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Fig. 4.3: Complex amplitude Ąt of experimental data for G1L wire driven by
V = 500mK for drives U = 2.98 V (left) and U = 7 V (right) with clearly seen
frequency hardening.

the same MEMS measured in low and high magnetic Ąelds. Even though datasets
are not measured at the same driving currents, we assume the trend extends even
to higher drives. As expected, both lines show almost linear behavior with the
same slope, and results differ only in the amplitude of induced voltages.

Analysis was conducted by Ątting the measured data. We used custom made
Python software developed by Marek Talǐr and discussed in [28]. Software Ąts
only the complex amplitude z = Re(x) + Im(x) and does self-correction for phase
and background. While Ątting vacuum data, we only considered linear damping,
described by γ1 and the higher order damping parameters were Ąxed to constant
zero. We used the weight function in the shape of a Gauss curve to compensate
for a low number of measured points on the peak.

Example Ąt of the G1L dataset at T = 500 mK for driving voltages 2.98 V and
7 V is provided in Figure 4.3. The red curve shows the initial guess of the Ątted
curve and the blue curve shows Ąnal Ątted curve. Even though the initial guess
does not align well with the measured data, the Ąnal curve Ąts well. The evolution
of resonance peak width ∆f with different drives is shown in Figure 4.4. The Ąt
of resonance peak at V = 7 Vrms did not converge so we removed it from this
analysis. Resonance peak at T = 20 mK (red points) shows smallest width and
its rise might be caused by geometrical distortions of the device or by entrapment
of magnetic Ćux quanta in the device. Difference between T = 20 mK and other
temperatures can be explained by transition to resistive state which introduce
additional dissipation mechanism. In the future, we will focus our attention on
measurement with Ąner driving currents at different temperatures.

To evaluate validity of the Ątting procedure we can compare obtained results
with the quantitive analysis. From measured data we see that width of the reso-
nance curve is: for G1L and G1R in 12 mT Ąelds only 10 Hz, but for Ąelds they
broaden to 26 mT and more. For G3R we can see that in lowest Ąeld its width is
40 Hz. G3R wire was not measured at higher Ąelds. These quantitatively obtai-
ned data lies are in agreement with qualitative Ątting procedure. Broadening of
the resonance peak implies presence of new dissipative force, MEMS transition
to resistive state.

Magnetic Ąeld place crucial part in our experiments. Mechanical force exciting
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the oscillations of MEMS is function of magnetic Ąeld. Similarly detected velocity
of oscillator is deeply affected by the magnetic Ąeld. Until this point we have fully
omitted effect of external magnetic Ąeld and we will adress itsŠ effect in following
Section.

4.1.1 Response of MEMS in different magnetic Ąelds

In this Section we will discuss response of MEMS in different magnetic Ąelds. In
the upcoming analysis, we will use data measured in our experiment, see Figure
3.5 and in an experiment conducted by Šimon Midlik, who measured resonant
response of the same G1L and G1R wires at different magnetic Ąelds B. Both
measurements were conducted at T = 20 mK in magnetic Ąelds 12.6 mT, 37.8 mT,
252 mT, 504 mT. Single dataset was obtained in lowest Ąeld B = 12.6 mT and
higher temperature of 500 mK.

To demonstrate effect of magnetic Ąeld, in Figures 4.5 and 4.6, we present the
maximum displacement of MEMS as function of the lorentz driving force. Peak
displacement x, was determined from the peak velocity and resonance frequency
f0 of device as

xamp =
vamp

2πf0

, (4.2)
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Fig. 4.4: Evolution of the resonance peak width ∆f received from a Ąt of expe-
rimental results for all wires and all temperatures in vacuum. For most points,
the dependence is constant with discrepancy for driving voltage V = 7 V in
T = 500 mK. Due to a inefficient number of points at the peak, the Ąt of the
resonance peak at V = 7 V did not converge with the required accuracy and it
was removed from this discussion. Devices shows signiĄcant rise of damping in
the temperature higher 20 mK which is explained by transition to resistive state.
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and the estimated amplitude was obtained from Q-factors as

F

xamp

= γ1ω0meff = 4π2meff∆ff0. (4.3)

As a consequence of different resonance linewidths for datasets in Ąeld 12.6 mT
and in higher Ąelds we show two lines depicting estimated amplitude, purple for
Ąelds 12.6 mT and blue for other Ąelds. With the exception of responses from
magnetic Ąeld B = 12.6 mT all data lies on single line. Origin of this difference
lies in radiation shield in our apparatus. This shield is made out of stainless steel
304 which, although marketed as Ťnon-magnetic steelŤ, shows fascinating ferro-
magnetic properties. Childress et. al. [33] showed, that the mass magnetization
of stainless steel 304 saturates at 130 emu/g1 which corresponds to saturation
Ąeld of Bs = 16 mT. From that follows that magnetic Ąeld of 12 mT is not
sufficient enough to saturate the magnetization in steel shield and the wire thus
experiences lower effective Ąeld. This effect is signiĄcant as both driving force and
wire displacement is dependent on magnetic Ąeld. To demonstrate this effect we
have artiĄcially lowered the magnetic Ąeld in our calculation to a one Ąfth of the
nominal value. Resulting data (cyan cros in 4.5 and 4.6) lies right with the other
data points. Data measured for Ąelds higher than 12.6 mT does not lie on the
expected value (blue dashed line). This difference cannot be explained by losses
in electrical circuit, thus we believe that it is caused by unknown electrical losses
on the microchips. In the following discussion we will provide real magnetic Ąeld
in our experiment. The corrections required for G1L/G1R wires and the G3R
wire exhibit notable differences. While a similar Ąeld on G1L and G1R can be
attributed to nearly identical spatial locations, the G3R wire is subjected to a
higher magnetic Ąeld intensity. This disparity arises from the presence of sharp
edges surrounding the lower region of the vacuum shield, where the G3R wire is
placed. Consequently, the magnetic Ąeld lines penetrate the interior of the shield.

Effect of temperature can be seen in the same Ągure by half-full symbols.
In the same Figure we show the results obtained from measurement at higher
temperature. Displacement at 500 mK is smaller than at 20 mK. That can be
explained by the transition of device to resistive state, see Section 4.1. Resistive
state comes with higher dissipation rate which lowers the Q-factor of resonance
peak. This leads to lower maximum displacement of the device.

4.2 Measurement in He II

In this Section, we will be discussing the response of MEMS in He II; see Figure
3.10. The difference in measured data is striking. The resonance peak is broader
for the highest driving current, V = 2.33 V, than for the lower drives. This may
be caused by the interaction of MEMS devices with quantized vortices. This
type of response corresponds to turbulence generation from remnant vortices as
observed by other oscillating devices - oscillating wires [24] or vibrating forks [25].
In order to prove this turbulence hypothesis we will again draw the dual plot of
driving current to induced voltage and mechanical driving force to wire peak
velocity; see Figure 4.7. Here we can see that, unlike the vacuum measurement,

1Figure 2 in [33]
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Figure 4.1 the induced voltage is not linear with the driving current but it is
Ćattened. In other words, the motion of the MEMS is affected by the Ćow of
He II in its surroundings. This again points to the possibility of turbulent Ćow in
the experimental channel. As a consequence of insufficient number of points on
the resonance peak this measurements suffers from high inaccuracy of measured
amplitude of induced voltages. This mainly affects measurements conducted with
drives 0.43 and 2.33 V

Tab. 4.1: Critical voltages and velocities of MEMS in He II.

wire Vcrit[V] vcrit [mm/s]
G1L 0.08 6
G1R 0.013 20
G3R 0.1 26

The subsequent step in the analysis involves Ątting nonlinear peaks with the
same custom-made Python software as in Section 4.1. In this case we considered
linear and quadratic damping, described by quadratic damping coefficient γ2.
We chose a slightly different Ątting model because the resulting Ątted curves
were signiĄcantly more stable. In Table 4.2 we present the result of a data Ątting
procedure applied to measurements conducted in the He II. In contrast with the
vacuum measurement, Figure 4.4), the resonance peaks are more damped. This
behaviour again leads to the conclusion that the Ćow around the MEMS is for
driving voltages 0.99 and 2.33 V already turbulent. Motion of MEMS in He II
generates quantized vortices similar to classical case, see Section 1.1.1. Eddies
reconnect and lead to full-on quantum turbulence. They interact with MEMS
by receiving their energy. This effect explains increase in FWHM of resonance
peaks for driving currents 0.99 V and 2.33 V. In the future, we will replicate the
experiment at more driving voltages. This will allow us to see the transition point
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Fig. 4.7: Left: Log-log dependency of electrical properties (driving current and
induced voltage) and their related mechanical properties (driving force and wire
peak velocity) plotted for all driving voltages at the temperature T = 20 mK in
B = 12.6 mT in He II. G1R and G3R MEMS shows Ćattening of the curve for
driving current higher than I = 1.4 µA. This implies generations of quantised
vortices by MEMS the experimental channel. Right: Measured data in He II at
T = 20 mK and B = 9.45 mT.
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to turbulence, as the force-velocity response will change in character from linear to
quadratic or a higher power law. This behavior lets us estimate critical velocities
of MEMS and afterwards (using Equation 2.3) determine critical velocities. These
results are shown in Table 4.1. Due to long relaxation times one frequency sweep
took 2 hours and 42 minutes which with addition to blockage of the capillary lead
to insufficient amount of driving voltages.

In Figure 4.8, we show the difference in peak velocity as a function of driving
voltage for measurement in vacuum (full symbols) and in He II (empty symbols)
at the same temperature T = 20 mK. With dashed line we present the estimated
velocity of MEMS calculated from Equation 4.2. In fully laminar Ćow, its velocity

Tab. 4.2: Fit parameters of measurement in He II depicting the evolution of the
linear damping coefficient γ1, quadratic damping coefficient γ2, and coefficients α1,
α3 from DuffingŠs equation 1.32 of experimental results for all wires in T = 20 mK
and B = 9.45 mK in He II. For increasing drive, the γ2 rises rapidly, implying
that the quantised vortices damp the motion of MEMS in a nonlinear fashion.

wire Vrms [V] f0 [Hz] a1 × 108 [N kg−1 s−2] a3 × 1027 [m−2 s−2] γ1 [s−1] γ2 ×105 [kg m−2]
G1L 0.1 4484.6 0.79 1.80 0.03 5.37
G1L 0.233 4484.6 0.79 -2.11 6.45 ×10−9 16.4
G1R 0.043 5062.1 1.01 -33 0.02 0
G1R 0.1 5062.1 1.01 -65 0.004 1.21
G1R 0.233 5062.1 1.01 -33 1.1 ×10−8 4.27
G3R 0.043 13421.69 7.11 -0.24 0.014 0
G3R 0.1 13421.69 7.01 -1.41 2 ×10−7 0.92
G3R 0.233 13421.67 7.01 -1.19 1.7 ×10−7 2.2
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should connect to vacuum data. In our case experiments does not perfectly align.
This can be explained if the Ćow around our devices is already turbulent. To
conĄrm that we can used known relationship between resonance frequency f0,
quantum of circulation κ and critical velocity, where Ćow transitions to turbulent
state

vcrit =
√︂

2πβκf0. (4.4)

Value of constant β can be determined as 0.53. To calculate that we determi-
ned critical velocity of G3R wire as intersection of vacuum and helium curve in
Fig. 4.8. Critical velocities for wires are 0.07 ms−1 for G3R wire, and 0.04 ms−1

for other wires. Thus we can conclude that all wires were measured already in
turbulent Ćow. Hypothesis of quantum turbulence also supports the increase of
resonance line width of MEMS from 10 to 25 Hz for G1L and G1R wire. Qu-
antum turblunce had to be generated by MEMS themselves. In this analysis we
have assumed same correction with respect to magnetic shielding. In the future
we will closely study properties of MEMS in low magnetic Ąeld, which can lead
to removing this strong assumption.

4.2.1 Hydrodynamic description of MEMS in He II

All results discussed above point to the MEMSŠs ability to locally probe quantum
turbulence created by themselves, similarly to slightly larger semicircular wires
in thermal counterĆow, see Attachment A.1.

Another useful analysis lies in converting frequency shifts of resonance frequ-
ency to changes in effective mass. From the resonance frequency in vacuum f0
and resonance frequency in He II f we can determine ∆meff using Equation

∆meff = m

⎠

f 2
0

f 2
− 1

⎜

(4.5)

Mass of MEMS m is provided in Table 2.2. The Ąnal results are shown in Tab.
4.3. All MEMS have the same basic mode shape of resonance proĄle and the
ratio of densities of helium and silicon is constant. From that follows the ratio
of ∆meff and m should also be constant. The effective hydrodynamic mass of
goalpost-shaped MEMS can be determined as ρSi(VBEAM + 0.5VL) where ρSi is
the density of silicon, VBEAM is the volume of beam and factor 0.5 before the
volume of legs VL takes in an account number of legs (factor 2) and the resonance
proĄle of leg (factor 1/4). Assuming that the relevant volume for Ćow past the
wire is comparable to the volume of the wire itself, we can estimate the Ćow
enhancement factor ϵ using the equation

ϵ =
ρSi

ρHe

∆meff

mvac

(4.6)

Flow enhancement factor for G1L and G1R is 3.7 and 3.65, respectively and for
G3R is 4.23; all of these are constant with 10% margin of error. Because of ϵ > 1,
we can conclude that Ćow around the MEMS is accelerated, which agrees with
the classical description of Ćow around the bodies with sharp corners; for more
info, see [13].

Another comparison can be made with the numerical results from [34]. They
calculated hydrodynamic function with respect to aspect ratio of an oscillating
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Tab. 4.3: Relative change in effective mass∆meff/meff of MEMS in vacuum and
He II as a function of driving voltage.

wire Vrms [V] ∆meff/meff

G1L 0.1 0.06884
G1L 0.23 0.0689
G1R 0.042 0.01964
G1R 0.1 0.01968
G1R 0.23 0.01972
G3R 0.042 0.02004
G3R 0.1 0.02004
G3R 0.23 0.02005

rectangular beam (thickness / width of the wire), see Figure 4.9. For our wires
the aspect ratio is 0.31 and the real part of the corresponding hydrodynamic
function is 1.285. With this we calculated the theoretical Ćow enhancement factor
as 3.172.Their study was conducted for Ćows around 2D objects, which can explain
a slight difference compared to our experimental results, given in Tab. 4.3.

4.3 Reversal in non-linear effects

At the beginning of this Chapter, we showed that direction of non-linearties
changes after reaching a certain driving voltage. In this Section, we will provide

2Real component of hydrodynamic function represent added apparent mass. Flow enhan-
cement factor was determined using value with deĄnition of hydrodynamic force Eq. (2) from
[34] and compared to effective mass of MEMS in vacuum.
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a short analysis that will explain the origin of this behavior.
To describe the dynamics of the MEMS, one can use the dynamic Euler-

Bernoulli beam theory. Assuming small displacement, the displacement is descri-
bed by

EI
∂2x

∂z4
= −µ∂

2ω

∂t2
+ q (4.7)

where E is elastic modulus and I is the second moment of area of the cross-
section of the beam, z is primary coordinate (along the beam), q is force per
unit length and µ is the linear mass density. This approach assumes homogeneity
of the beam and that E and I are not dependent on z. This approach does not
fully describe our problem because displacement is in order of the dimension of
the wire. Euler-BernoulliŠs beam theory was extended in [32] using Non-Linear
Rayleigh Method. They used wires of the same design and similar dimensions;
thus, their analytically derived equations can be applied to our case. The non-
linearities can have an origin in either the geometry of the wire or an elastic
origin. The elastic limit of silicon is in order of several GPa [35]. Our devices
experience stresses expressed as

σ = −zEd
2x

dx2
(4.8)

from the E-B beam theory in the order of MPa. Thus we conclude that we are
still in the linear part of the deformation curve. On the other hand thin aluminum
layer has a lower elastic limit, and its plasticity may even permanently shift the
resonant frequency [32]. This can explain the difference in the resonant frequency
of MEMS measured in the previous run 2.2 and in our measurement 3.1.

Geometrical non-linearities in material lead to a change of effective spring
constant keff and effective mass meff of MEMS in a vacuum. According to Collin
et al., [32], the effective parameters for a homogenous beam can be determined
using

keff =
3EzIz

h3

⎠

1 − 9t

4h

⎤

a

h

⎣

+
288

1120

⎤

a

h

⎣2
⎜

(4.9)

meff = ρV
33

140

⎠

1 − 146190t

58080h

⎤

a

h

⎣

− 2118666

1490720

⎤

a

h

⎣2
⎜

(4.10)

where Ez is z component of elastic modulus E. a is amplitude of displacement
and V = twh is the volume of MEMS. The ratio of these two properties gives
the new resonant frequency of the wire, which explains the frequency hardening
observed at high drives. In Graph 4.10 we compare experimental and theoretical
(black line) frequency shift calculated using Eqs. 4.9 and 4.10. For G1L and G1R
wire experimental data agrees well with theory except at the highest amplitude.
We suspect that thermal effects may be responsible, as it is difficult to ascertain
that the devices are sufficiently thermalized in the high cryogenic vacuum.

The bending of the beam produces stress in the material. This stress is a com-
bination of dissipative and reactive components of stress with respect to the mo-
tion of the beam. SpeciĄcally, the non-linear reactive component, which oscillates
in phase with the wire acceleration, leads to an imbalance of these components,
which leads to frequency softening at smaller drives. For higher drives, this effect
is negligible in comparison with the geometrical non-linearities discussed above.
For more details, see [32].
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Fig. 4.10: Comparison of experimental and theoretical (black line) frequency shift
for all three MEMS.

4.3.1 Transition to resistive state

After reaching critical parameters, thin superconductive layer will transition to
resistive state. This would introduce new dissipative effects and thus would change
properties of MEMS. Critical current density of thin aluminum in B = 0 is
jc ≈ 7.5 × 1010 A/m2 [36]. Using the cross-section of our devices 154×10−12 m2

we can Ąnd its critical current as Ic = 45 mA which is several orders more than
the highest current Ćowing in our devices. Thus we conclude that we did not reach
resistive phase due to passing of the critical current. Critical magnetic Ąeld Bc

for 120 nm thick aluminum layer is determined from [37] as Bc = 60 mT. Alter-
native approach of calculating critical Ąeld was using Equation 8 from [38] with
penetration depth of bulk λ0 = 5150 nm and coherent length χ = 16000 nm.
This method gives critical magnetic Ąeld 94 mT. Critical temperature Tc of bulk
aluminum is Tc = 1.175 K [39]. This value holds true only for bulk materials
and would vary for thin Ąlms. Thus we conclude that transition to resistive state
occurred due to combination of reaching critical Ąeld and critical temperature,
which are linked via [15]

Bc(T ) = B(T = 0K)

⎠

1 −
⎤

T

Tc

⎣2
⎜

. (4.11)
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Conclusion

In this Thesis, we studied the resonance response of three MEMS devices pla-
ced in various homogeneous magnetic Ąelds. MEMS wires were lithographically
made with a silicon base and a thin aluminum layer. Aluminum coats were used
because they transition to a superconductive phase at temperatures below 1 K.
Measurements were conducted at 20 mK, 250 mK, 500 mK, 700 mK and 920 mK.
Two MEMS were placed on one micro-chip and measured simultaneously without
electrical cross-talk. We began with measurements in a vacuum, and afterwards,
we transitioned to experiment in a superĆuid helium at a temperature of 20 mK.
Even though the experiment ended due to technical issues, it led to these conc-
lusions:

1. Resonant frequency of MEMS change in comparison with the previous
measurement. This was explained by crossing the elastic limit in the aluminum
layer, leading to a permanent shift in resonance frequencies. The width of the
resonance peak was not affected.

2. Measurements in vacuum showed linear amplitude-drive dependency wit-
hout signiĄcant damping. All resonance peaks showed non-linear behavior. Low
drive peaks showed frequency softening, and high drive peaks showed frequency
hardening. Our measurements were compared to the previous measurement with
the same devices but conducted at different magnetic Ąelds. The devicesŠ res-
ponses did not quantitatively differ with respect to various magnetic Ąelds with
sole exception of measurement at B = 12.6 mT. This behavior was explained by
ferromagnetic properties of steel radiation shield in our apparatus.

3. We explained the nonlinear behavior of MEMS. Devices were unaffected by
elastic non-linearities because the elastic limit of silicon was not crossed. Elastic
non-linearities of the aluminum layer are not the dominant effects; thus, origin
of non-linearities lies in the geometry of MEMS. Frequency-softening in low-
drive measurement was explained with increased stress in MEMS, leading to
an imbalance of dissipative and reactive stress components with respect to the
neutral axis. This effect was negligible to the change of effective mass and spring
constant of motion of MEMS.

4. Experiments in He II showed that the resonant response of MEMS at higher
driving currents is highly damped. We showed that MEMS devices can be used
both as generators or as probes of quantum turbulence. We determined the change
of effective mass and compared it with the theory. We showed that the Ćow around
the MEMS is accelerated.

5. Increase in resonance line-width in magnetic Ąelds higher that 12.6 mT
showed that our devices transitioned to resistive state.

In conclusion MEMS devices can be used in various ways. Firstly they are
highly sensitive local probe of quantum turbulence, thus can be used to study
complex tangles of quantum turbulence. Another use of MEMS lies in using their
motion at higher drives as a source of quntized vortices. In the future we plan
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to transition from micro-scale MEMS devices to nano-scale NEMS which should
consequently be much more sensitive to quantized turbulence. These devices can
be used to trap and measure a single quantized vortex.
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