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Abstract
The aim of this thesis is to explore the price dynamics of Bitcoin and Ethereum
with special emphasis on the role of transaction fees, which can provide insight
into network congestion and user behaviour, and may also reflect the future
economic viability of these networks. Previous research has shown intertwin-
ing relationships between variables and suggested possible endogeneity in a
cryptoasset environment. For these purposes, a system of two simultaneous
equations for transaction fees and price was developed and subsequently esti-
mated using the 2SLS method. The analysis covers relationships from both
long-term and short-term perspectives. It turns out that the price dynamics of
both assets is determined by a diverse mix of fundamental, economic and spec-
ulative factors, despite the narrative that the price of cryptoassets is primarily
driven by speculative factors. Furthermore, in the context of the fee-price re-
lationship, it turned out that the relationship is a priori that the price impacts
the fees, however, at some intervals, the opposite relationship is also shown,
which is rather an exception. An important contribution could be the finding
of a stable positive effect of the total number of active addresses in Bitcoin on
transaction fees, which might bring new insights to the discussion on Bitcoin’s
sustainability.

Keywords Cryptoassets, Bitcoin, Ethereum, time series,
transaction fees

Title Impact of total transaction fees on the price of
Bitcoin and Ethereum

Abstrakt
Cílem této práce je prozkoumat cenovou dynamiku Bitcoinu a Etherea se
zvláštním důrazem na roli transakčních poplatků, což může poskytnout vh-
led do přetěžování sítě a chování uživatelů, a může také odrážet budoucí eko-
nomickou životaschopnost těchto sítí. Předchozí výzkum ukázal vzájemně se
prolínající vztahy mezi proměnnými a naznačil možnou endogenitu v kryp-
toaktivovém prostředí. Pro tyto účely byl vytvořen systém dvou simultánních
rovnic, pro transakční poplatky a cenu, který byl následně odhadnut metodou
2SLS. Analýza pokrývá vztahy z dlouhodobého i krátkodobého hlediska. Ukázalo



se, že dynamika cen obou aktiv je určována různorodým mixem fundamentál-
ních, ekonomických a spekulativních faktorů, a to navzdory narativu, že cena
kryptoaktiv je primárně řízena spekulativními faktory. Dále se v souvislosti se
vztahem poplatků a ceny ukázalo, že a priori platí, že cena ovlivňuje poplatky,
nicméně na některých intervalech se ukazuje i opačný vztah, což je ale spíše
výjimka. Důležitým přínosem by mohlo být nalezení stabilního pozitivního
vlivu celkového počtu aktivních adres v bitcoinové síti na transakční poplatky,
což by mohlo přinést nové poznatky do diskuse o udržitelnosti Bitcoinu.

Klíčová slova Kryptoměny, Bitcoin, Ethereum, časové
řady, Transakční poplatky

Název práce Vliv celkových transakčních poplatků na
cenu Bitcoinu a Etherea
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Chapter 1

Introduction

The cryptoasset environment has received a lot of attention in recent years.
Cryptoasset investment is unique due to its massive volatility and extreme re-
turns, which are offset by the risk of substantial price drops. The first and
so far most successful representative of this ecosystem is Bitcoin introduced
by Nakamoto (2008). Bitcoin is an open-source protocol that forms a peer-to-
peer decentralized network, that allows users to conduct digital transactions all
around the world. All transactions are stored in a distributed database called
blockchain. Network security is continuously maintained by a process referred
to as mining, when participants (miners) perform a large amount of work re-
flected by a large electricity consumption, in order to fold a block with new
transactions to the blockchain. Miners are incentivized with a two-component
reward in the form of newly created bitcoins and transaction fees collected from
users. Inflation in the form of newly created bitcoins is determined by the di-
minishing function, which is encoded in the Bitcoin protocol. It is clear from
the monetary rules that in the future the Bitcoin network will have to survive
purely on transaction fees. Thus, the transaction fees will have to be high
enough, otherwise miners will not be sufficiently incentivised and the network
will be heavily vulnerable to external or internal attacks. Thus, the role of
transaction fees in Bitcoin will most likely become crucial in the future. Exam-
ining fee dynamics can not only give us clues about the long-term sustainability
of Bitcoin, but also shed light on network congestion and user behaviour. The
role of transaction fees in the case of Ethereum is slightly different due to the
fact that it does not have a limited money supply by design and there will not
be a situation in the future when the network will have to survive purely on
transaction fees. Thus, in the case of Ethereum, we do not address the issue
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of the long-term sustainability of the network, since it is not dependent on
transaction fees.

The economics of transaction fees has been previously discussed (Houy 2014;
Easley et al. 2019), however, the analysis of transaction fees in the context of
price dynamics has not, to the best of our knowledge, been properly conducted.
The purpose of this paper is to investigate the price dynamics of Bitcoin and
Ethereum, the second largest cryptoasset introduced by Buterin et al. (2014),
with an emphasis on the role of transaction fees and thus adding a new dimen-
sion to fee analysis.

Our work builds on Kubal & Kristoufek (2022), who point out the inter-
connectedness of relationships and a possible endogeneity, and further showed
how to deal with such a finding. To capture a potential bidirectional price-fee
relationship and to account for possible endogeneity, we developed a system
of two simultaneous equations (with an equation for price and an equation for
fees), which allows us to test the presence of endogeneity by statistical tests
and choose between OLS and 2SLS estimators. For the purpose of the analy-
sis, we use data from January 1, 2016 to August 31, 2022, which is motivated
by the comparability of Ethereum and Bitcoin, because in September 2022
Ethereum moved to version 2.0, which makes the comparison of the two assets
significantly more challenging due to the different consensual algorithm and
mechanics of transaction fees. We further divide the global interval into 3 dif-
ferent subintervals in order to capture long-term and short-term relationships.

The work is structured as follows: Chapter 2 provides a brief description
of Bitcoin and Ethereum fundaments and further summarizes existing knowl-
edge in the area of transaction fees and cryptoasset price dynamics. Chapter 3
focuses on model selection and describes the econometric methods used. Chap-
ter 4 presents the statistical tests that preceded the choice of the resulting es-
timation method, followed by the results of the analysis and the corresponding
implications. Finally, Chapter 5 concludes the thesis, summarizes the findings,
and suggests possible future extensions of the research.



Chapter 2

Literature review

The summary of existing knowledge takes the following structure. Firstly,
the development preceding the emergence of Bitcoin and today’s cryptoasset
ecosystem is discussed. Then the technological aspects of Bitcoin are intro-
duced, which is followed by a summary of relevant literature regarding trans-
action fees. The technology aspects are briefly discussed also for Ethereum.
Finally, we summarize the existing knowledge regarding the price dynamics of
the cryptoasset ecosystem.

2.1 Precursors of modernday cryptoasset enviro-
ment

Although the first so far successful attempt to create digital money was Bit-
coin, introduced by an unknown person with the pseudonym Satoshi Nakamoto
(2008), the first projects of this nature appeared even earlier and were mostly
linked by various criticisms of the fiat money.

Chaum (1983) argues that bank systems lack sufficient privacy, thus pro-
poses the concept of double signatures to ensure secure and anonymous pay-
ments. This concept called blind signature allows a user to obtain a valid
signature from a bank or other trusted party without revealing any informa-
tion about the transaction. The project was named DigiCash and eventually
went bankrupt in 1998 (Pitta 1999).

In his article Dai (1998) proposed the pseudonymous (the users interact
under pseudonyms) payment network named b-money. The network is based
on a distributed database, which stores the balances of user accounts.

Szabo (2005) criticized traditional currencies because of the need for a
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trusted third party to ensure monetary value. Szabo claims that this centraliz-
ing element can be abused, as could be demonstrated by periods of hyperinfla-
tion in the 20th century. In order to remove the trusted party, he proposed the
concept of bit gold, based on the algorithm called Reusable Proofs of Work1,
introduced by Finney (2004).

2.2 Bitcoin summary
Bitcoin is an open-source communication protocol designed to serve as digital
money. Users of the Bitcoin protocol together form a peer-to-peer decentralized
network, which allows users to send and receive irreversible transactions from
anywhere in the world, all they need is an internet connection. The monetary
unit of the payment system is 1 bitcoin 2, which consists of 108 satoshi (the
smallest unit, which cannot be further divided 3). Bitcoin money supply is lim-
ited by design (which is shown in the following section) and the total amount
of bitcoins in circulating supply will never be larger than 2.1 ∗ 107 coins 3.
Transactions are stored into distributed ledger, which can be accessed from any
computer with installed Bitcoin software client. The overall history of all trans-
actions is stored into data structure blockchain, which consists of blocks with
processed transactions. The security of the blockchain is maintained by the
algorithm PoW (Proof of Work), sometimes referred to as mining (Nakamoto
2008).

2.2.1 Bitcoin security

A typical problem digital cash systems must tackle is double spending - a sit-
uation, when one transaction input is spent multiple times (the most com-
mon solution is the introduction of a trusted third party). To prevent double
spending, without the loss of decentralization, Bitcoin uses cryptography. Each
unique address is assigned two cryptographic keys - public key and private key.
The public key is used as a verification of incoming transactions. The private
key allows the user to manipulate the bitcoin balance of the related address

1Precursor of the algorithm Proof of Work, which will be discussed in section Bitcoin
security.

2Note that bitcoin as a monetary unit is written with lowercase "b", but Bitcoin as the
network with capital "B".

3Assuming the protocol remains unchanged, technically this could happen by hardfork,
for more see Antonopoulos (2017).
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and serves as the transaction signature. The problem is that cryptographic
keys are not able to verify that there is no history of double spending, thus at
each block closure time the network must reach consensus, which is obtained
by PoW algorithm, using hashing.

Hash function is a function, which transforms input of any length into
an integer with specific bit length (called hash). For instance, the SHA256
algorithm transfers input into a 256 bit integer. The hash function is not
invertible, and compute inverse function is NP hard - cannot be solved in
polynomial time (Sobti & Geetha 2012; Loe & Quaglia 2018).

For each block, miners solve a computationally challenging problem, which
consists of a folding block with the format of a header with previous block hash
and nonce - 32 bit integer chosen by the miner, followed by new transactions
from mempool 4. The header is then hashed by hash function SHA256 and if
the hash starts with a sufficient amount of zeros i.e. it is a sufficiently small
number, the miner obtains a right to store transactions into the blockchain,
otherwise the miner should change the nonce and repeat process until the re-
sulting hash meets the criterion above. The mining is very computationally
intensive, but when the hash is found, it is straightforward for other Bitcoin
users, nodes, to verify the solution. The difficulty of the challenge is adjusted
every 2016 mined blocks, so the mean value of the difference between the blocks
would be 10 minutes. (Nakamoto 2008; Antonopoulos 2017).

In order to incentivize miners to participate in the mining process, the one
who mined the block obtains a two-component reward.

1. The first component is a reward in the form of newly created bitcoins (the
transaction is classified in the block as coinbase transaction). The amount
of newly created Bitcoins is designed to be diminishing. When Satoshi
Nakamoto mined the first block (called Genesis block), the reward was 50
bitcoins, but this reward is halved every 210 000 blocks (approximately
every 4 years), an event referred to as Bitcoin Halving.

From this definition, we can obtain a formula for the total monetary
supply of Bitcoin, as a sum of the infinite series. The resulting sum is

4Mempool is a place where all transactions, already verified by nodes, are collected before
they are put into the blockchain (Antonopoulos 2017).
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equal to 2.1 ∗ 107 bitcoins:

∞∑︂
k=0

210, 000 ∗ 50
2k

= 210, 000 ∗ 50 ∗ (1 + 1
2 + 1

4 + 1
8 + 1

16 + . . . )⏞ ⏟⏟ ⏞
=2

= 21, 000, 000 bitcoins

(2.1)

Although, technically, the halving will be stopped when the reward would
be less than 1 satoshi. This should occur exactly after 32 halvings, at the
block number 6,720,000 mined approximately in the year 2137. Thus the
formula 2.1 should be slightly modified and the theoretical total supply
should be slightly less than 21 milion bitcoins (Antonopoulos 2017).

32∑︂
k=0

210, 000 ∗
⌊︃50 ∗ 108

2k

⌋︃
= 2, 099, 999, 997, 690, 000 satoshis

Since in the future the mining will be stopped, this implies that it is im-
possible to incentivize miners just with reward from newly issued bitcoins,
and another reward component is required.

2. Together with newly issued bitcoins the miners are rewarded by transac-
tion fees. Each time a user sends a transaction, the transaction must be
accompanied by a transaction fee for the miner, who mines the upcoming
block. The amount of the transaction fee is arbitrarily chosen by the
user. Since the capacity of one block is limited by the upper bound of 1
megabyte (MB), the users face a trade-off between paid amount and the
speed at which the transaction is processed.

A significant threat that could compromise the reliability of the Bitcoin network
is majority attack (also sometimes referred to as 51% attack), which consists
of an attacker, who has more than a 50% share of the total Bitcoin hashrate
(variable indicating how many hashes are computed per second), taking control
of the network. The attacker can then theoretically carry out double spending
or even rewrite the history of the blockchain. In order to prevent such a threat it
is desirable to sufficiently incentivize miners with high rewards, as the prevailing
view is that the higher the total hashrate of the network is, the more difficult
it is to perform a potential attack (Aponte-Novoa et al. 2021).

Aponte-Novoa et al. (2021) analyzed the risk of a 51% attack and the cen-
tralization of the Bitcoin. The result shows that the threat is not negligible,
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since 18 miners (less than 0.01% of the total number of miners) represent
slightly more than 51% of the total hashrate 5.

On the other hand this might be caused by the fact that miners usually max-
imize expected reward and for small miners, it is more effective to join mining
pool, which is an entity that gathers miners. In the case of successful block
mining, the block reward is divided among pool participants proportionally to
the computational power provided 6 (Lewenberg et al. 2015).

2.2.2 Bitcoin transaction fees

The amount of newly created bitcoins plus the sum of the individual fees of all
transactions, i.e. total fees, included in the new block is referred to as security
budget (Pagnotta 2022). The amount of newly created bitcoins will diminish
every 210,000 blocks (approximately 4 years). This implies that without a
change of the protocol, the Bitcoin will cease to be inflationary in the future,
therefore the network will have to survive on a security budget consisting of
fees only. In order to ensure security of the network, transaction fees have to be
large enough, otherwise there is a significant security risk. For example, with a
too low security budget the network will be more vulnerable to double-spend.
The fact that the fees must not be too small might be obvious, although what
is the optimal level and how to achieve it is a matter of discussion.

In the early stage of adoption transaction fees were near zero, which as
Kaşkaloğlu (2014) argues cannot last forever. Kaşkaloğlu believes that in the
future a change of the protocol is inevitable and proposes to fix the transaction
fees amount to a specific level instead of the current voluntarily based fee
mechanism (Kaşkaloğlu 2014). Later in their study Möser & Böhme (2015)
found that as the Bitcoin network grew, the percentage of zero-fee transactions
dropped significantly, although they rejected the hypothesis that mining pools
systematically enforce non-zero fees. The factors affecting the percentage of
zero-fee transactions were then investigated by Easley et al. (2019). The results
indicated that the percentage of zero-fee transactions should be driven mainly
by median waiting time for transaction approval. The relationship between
these two variables turned out to be negative, i.e. with higher median waiting
time comes a lower proportion of zero-fee transactions, suggesting that the

5Aponte-Novoa et al. (2021) analyzed data from blockchain throughout the period 2009-
2021, the given statistics are from 9.5.2021

6How the block reward is divided depends on the mining pool policies.
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decrease in the percentage of zero-fee transactions might be attributed to the
escalating competition for block space.

Houy (2014) examined the economics of bitcoin transaction fees using game
theory and static partial equilibrium model. According to Huoy’s model, limit-
ing the block size or introducing a mandatory fee can achieve equivalent results
in terms of securing network security. On the other hand, if the size of the trans-
action fee is determined by market mechanisms without a limited block size,
then the security of the network might be insufficient, since the users would
stop facing the trade-off between paid amount of fees and speed of transaction
processing.

Furthermore, the crucial aspect of transaction fees has been described by
Easley et al. (2019)7, who firstly analyzed the transaction fees using game
theory and then supported the findings empirically. They point out that the
diminishing reward in the form of new bitcoins does not have a significant
impact on the increase in transaction fees, which should be driven primarily by
the large number of users struggling to push their transaction into the mempool
at the same time.

2.3 Ethereum
The proposal of the second most successful cryptoasset 8, Ethereum, was pub-
lished in late 2014 and the project was launched on 30 July 2015. Ethereum
founder Buterin et al. (2014) criticizes Bitcoin for using blockchain only as
digital currency, while arguing that the technology has a range of other poten-
tial use cases. Thus, Ethereum is not just a protocol providing a peer-to-peer
transaction system, but an entire platform that enables creation and execution
of smart contracts - digital contracts written in associated turing-complete
programming language Solidity, stored in a blockchain without the need for a
central authority enforcing the terms of the contract - and decentralized appli-
cations, providing a more extensive range of applications beyond just a digital
currency (Buterin et al. 2014).

All transactions in Ethereum network are processed by the Ethereum vir-
tual machine (EVM), which is stack-based state machine. The state machine

7The same paper that investigated the percentage of zero-fee transactions.
8As of July 5, 2023, Ethereum was the second largest cryptoasset by market capitalization,

where Ethereum’s market capitalization was approximately $229 billion, which is slightly less
than 40% of the market capitalization of Bitcoin (https://coinmarketcap.com/).

https://coinmarketcap.com/
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is powered by a utility token called ether (ETH). Similarly, as the smallest
monetary unit of the Bitcoin network is not bitcoin, but satoshi, the smallest
monetary unit of the Ethereum network is 1 wei, where 1 ETH = 1018 wei
(Wood et al. 2014; Buterin et al. 2014).

Ethereum, similar to Bitcoin, is an open-source protocol, whose source code
evolves over time through so-called Ethereum Improvement Proposals (EIP) 9.
Ethereum has undergone many protocol changes during its existence. Paris EIP
(implemented September 15, 2022) was probably the most discussed change.
The proposal consisted of hard fork 10 to version Ethereum 2.0. The key dif-
ference between these versions is primarily in the consensus algorithm. The
original version of Ethereum uses the Proof of Work (PoW) algorithm (de-
scribed in 2.2.1), while the newer version implements Proof of Stake (PoS)
algorithm (Ethereum.org 2023).

The transition to PoS was described by Buterin & Griffith (2017), who
criticize PoW algorithm for its high electricity demand and high barriers to
entry in the form of the need to invest into a mining technology. The new
mechanism is that validators, who have the right to assemble a new block, are
always chosen randomly among stakeholders, who were willing to stake a given
amount of ether at risk. If the stakeholders are not ’honest’, their entire stake
could be destroyed (Buterin & Griffith 2017).

Nevertheless, the Ethereum 2.0 version is not the subject of this paper, since
the fee mechanism is completely different from Bitcoin and hardly comparable.
Thus the following section, in which the monetary policy of Ethereum is dis-
cussed, will cover the period up to the Paris EIP, i.e. the period when PoW
served as a consensual algorithm.

2.3.1 Ethereum mining

The Ethereum blockchain can be viewed as a collection of stored global states
of the users’ accounts. The global state is modified by newly created transac-
tions in each block. Transactions could be divided into two types according to
their purpose. Message call transactions are transactions, which transfer value
between accounts, similarly to transactions in Bitcoin. Contract creation trans-
actions are transactions, which create a smart contract. Each computational

9Parallel to Bitcoin Improvement Proposals (BIP) in Bitcoin.
10The hardfork is a divergence from the current version of the software, i.e. an upgrade

that is not compatible with the older version of the Ethereum client (Antonopoulos & Wood
2018).
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operation of EVM is denominated in units called gas (gas price is denomi-
nated in qwei, which equals 106 wei). Thus, the price of a transaction could
be calculated as the gas amount of a given operation multiplied by the current
gas price, which, similarly to Bitcoin transaction fees, is determined by the
Ethereum users. Unlike Bitcoin, the Ethereum block is not limited by memory
usage, but is limited by the block’s gas limit, which could be voted down or up
by miners to some extent (Bashir 2017; Tikhomirov 2018).

From inception to the transition to version 2.0 consensus of the network was
achieved by the PoW algorithm with an underlying hashing function Ethash.
The mean time of block mining is between 10 and 19 seconds, which is much
shorter than in case of Bitcoin. If the block is mined at a time outside this range,
the difficulty will be adjusted. The reward for miners has two components -
newly created ethers and gas fees. The amount of newly created ethers was
fixed until the transition to version 2.0. At the inception of Ethereum it was
5 ETH, which was later reduced to 3 ETH. In addition, miners receive the gas
fees associated with the transactions included in their block. Thus the block
reward mechanism implies that the monetary policy of the ether is strictly
inflationary. Nevertheless, in 2021, Ethereum underwent an upgrade with EIP-
1559, changing the existing transaction fee mechanism. With this change a base
gas fee is burned and only an optional tip goes to miners. Thus the change has
brought another dynamic factor to the monetary policy of ether, and whether
the monetary supply will fall or rise might change for each block (Wood et al.
2014; Bashir 2017; Tikhomirov 2018; Leonardos et al. 2021).

2.4 Price Dynamics of Cryptoasset Market
For the purpose of our work it is essential to be able to describe the relationships
in the ecosystem of cryptoassets and especially which variables form their price.

There is a common narrative that the cryptoasset market is driven by Bit-
coin price movements. This narrative might be supported by Qiao et al. (2020),
who discovered that Bitcoin shows a positive correlation with all other cryp-
tocurrencies studied 11 and at the same time as a cryptoasset with a large mar-
ket capitalization and a long history can influence the development of other
cryptoassets.

11The dataset included the cryptoassets with the largest market capitalization (including
Bitcoin and Ether), which together accounted for 86% of the entire market capitalization of
the whole crypto market.
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One of the first to address what drives the Bitcoin price was Kristoufek
(2013). According to his paper, the standard models used for stock pricing can-
not be used to describe the price of Bitcoin, since the price is determined purely
by the forces of supply and demand. Therefore data from Google searches and
Wikipedia queries were used as a proxy variable representing the public in-
terest. The analysis was concluded using Vector Autoregression (VAR) and
Vector Error Correction (VACM) methods. The author also wanted to dis-
tinguish whether Bitcoin is in a growing bubble or in its bursting. For this
purpose a dummy variable was created to determine whether the price of Bit-
coin is below or above the moving average. The results indicated the existence
of a bidirectional relationship between the Bitcoin price and public interest.
If the price was above the moving average, then the price was positively af-
fected by the public interest and vice versa, conversely, if the price was below
the moving average, then again there was a bidirectional relationship, but a
negative one.

The relationship between bitcoin price and public interest was further sup-
ported by Kristoufek (2015), along with other findings. Wavelet coherence
analysis was used, which essentially examines the correlation and its changes
between two time series across different time frequencies. The author reveals
that the price of bitcoin is not driven by purely speculative factors, but is also
influenced by fundamental drivers. The hypothesis of whether the behavior of
bitcoin corresponds to the behavior of currency according to economic theories
has been tested. According to the quantitative theory of money should hold,
the higher the use of a currency, the higher the price. Variable trade-exchange
ratio was created as a proxy for currency usage, the lower the ratio, the higher
the Bitcoin usage. Bitcoin has been shown to actually behave in accordance
with this theory, i.e. the negative correlation between the trade-exchange ratio
and price was shown. It was also shown that bitcoin follows the Law of One
Price, or equivalently that there is a negative relationship between price and
price level. According to the results, the money supply appears to be slightly
positively correlated with price, although according to economic theory there
should be a negative relationship. Finally, the author examined technical fac-
tors, hashrate and difficulty, related to the mining mechanism, where a positive
relationship was found.

Ciaian et al. (2016) was inspired by Barro’s (1979) gold standard model,
based on which he derived hypotheses, which were further tested empirically
on daily data between 2009 and 2015 using Vector Autoregression (VAR), Vec-



2. Literature review 12

tor Error Correction (VAC) and Autoregressive Distributed Lag (ARDL) ap-
proaches. The author divided drivers of bitcoin price into 3 sets:

1. Market forces of supply and demand. This set contained demand
side variables such as the number of transactions, number of addresses
etc., and the supply side was represented by the number of bitcoins in cir-
culation. The results indicated that demand side variables show a positive
significant relationship with price, while the relationship between bitcoin
supply and price turned out to be negative with statistical significance.

2. Public interest, which is captured similarly as in Kristoufek (2013), but
without data from Google searches and with the newly added proxies,
which is the number of new members and the number of new posts on
the bitcointalk.com website. Although in the short run all variables
were significant, in the long run the only significant relationship turned
out to be the positive effect of the number of new posts on the price.

3. World economic growth, i.e. the assumption that bitcoin price dy-
namics could be driven by the global macroeconomic factors. For this
purpose, the Dow Jones index and oil price were chosen as proxies. The
analysis in this case did not reveal any statistically significant relationship
in the long run.

Kristoufek (2019) built upon his previous research and further explored
bitcoin price in terms of economic theories, namely Law of One Price and
Equation of Exchange. The Law of One Price states that

P = EP ∗

where in this case P is the Price Level of bitcoin, P ∗ is Price Level of $USD
and E is exchange rate between $USD and bitcoin, i.e. bitcoin price in $USD.
Bitcoin Price level was extracted from the Equation of Exchange as the ratio
of the total transaction volume and the number of transactions. Due to the
open-source nature of Bitcoin, there was no problem to receive daily data of
price level, although US price level, which was used as a benchmark, is at our
disposal only on a monthly basis, therefore it was necessary to transform the
Price Level to monthly data, which was done as a mean of daily data. The
results revealed that the bitcoin exchange rate is proportional to the ratio of
the $ USD price level to the bitcoin price level, from which the author, using

bitcointalk.com
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two time series log-log regression (one with added time trend and one without
it), estimated the relationship between the estimated exchange rate and the
actual bitcoin price. The results of the final models showed a relatively tight
following of the current price, with R2 coefficient of 0.9 for model with added
time trend and 0.88 for the second one.

Kubal & Kristoufek (2022) intended to describe dynamic aspects of the
relationship between bitcoin price and hashrate. In the previous works numer-
ous variables were suspected to be endogenous, which was later confirmed in
this paper and therefore a system of simultaneous equations was applied. A
separate equation was created for each variable that was assumed to be endoge-
nous - price, hashrate, transaction fees, and Google searches. Each equation
was estimated separately using the 2SLS method, which turned out to be more
consistent than OLS or 3SLS approaches. In our thesis we are motivated by
this paper and we build on it, especially how it addresses endogeneity and in-
terconnectedness of variables in a cryptoasset system, and thus describe the
findings in more detail:

1. Price equation contained variables such as hashrate, Google searches
and transaction fees (all assumed to be endogeneous), price level, ex-
change ratio, i.e. variables suggested by Kristoufek (2019) and S&P500,
index, which is generally considered as an indicator of world economic
growth. The results revealed that just hashrate, Google searches and
S&P500 affect the price significantly. For the purpose of our work it
is important to emphasize that no significant relationship was found for
transaction fees.

2. In the case of hashrate equation the model surprisingly implied that
the only significant factor at the 0.05 level of significance were transac-
tion fees, with p-value approximately 0.0345. Moreover, the relationship
between hashrate and price shows that only the price is affected by the
hashrate, not the other way around, which would be expected from Kris-
toufek (2015).

3. As outlined in the section 2.2.2, Bitcoin users face the trade-off between
the amount paid and the speed of transaction confirmation, which should
imply that the demand for fast transaction execution should have a crucial
impact on the amount of the fee. This observation was in line with the
approach chosen by Kubal & Kristoufek (2022) in the Transaction fees
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equation. The authors selected price, Google searches and total number
of addresses as explanatory variables. All variables were found to be
significant at any reasonable level. The total number of addresses and
Google searches turn out to have a positive effect, but the effect of price
surprisingly turned out to be negative, which was attributed to the fact
that the variable was denominated in the bitcoin base. Thus, when the
price increases, from a psychological point of view, users are not inclined
to pay the same fee, because in a dollar base the paid amount might
increase substantially.

4. Google searches were standardly used as an explanatory variable since
Kristoufek (2013), however the authors pointed out that the common
exogenous assumption does not hold and Google searches appear to be
endogenous. Therefore Google searches equation was added. Results
showed that Google searches are positively driven by price (as was indi-
cated by Kristoufek (2013)), bitcoin daily volatility and the total number
of addresses.

Kukacka & Kristoufek (2023) analyzed the price dynamics of major cryp-
toassets - Bitcoin, Ethereum, Litecoin, XRP and Dogecoin - utilizing the cusp
catastrophe approach, which could represent the sudden shifts in the market,
such as crashes or booms. According to the authors, factors affecting the price
of bitcoin can be divided into 3 groups: Technical factors, usually blockchain
metrics such as total number of addresses, transaction fees, hashrate or newly
emitted coins. Economic indicators such as S&P500 index or USD/EUR
exchange rate. And information demand-related factors - usually specu-
lative factors such as data about Google searches or Chicago Board Options
Exchange’s CBOE Volatility Index (VIX). The first two groups could also be
considered as fundamental factors and the last one as a speculative factor. It
turned out that for all assets (except for Dogecoin, which price is driven a
priori by speculative factors) the price is determined by a complex interaction
of speculative and fundamental factors. A very interesting implication of the
model for Bitcoin was the prominent role of transaction fees as a significant
price driver, which is in contradiction with Kubal & Kristoufek (2022), where
the transaction fees were not significant at all. Furthermore, the number of ac-
tive addresses, S&P500 (as a fundamental influences) and the VIX index and
standardly used variables - Wikipedia queries and Google searches (as a spec-
ulative influences) had a significant effect on bitcoin price. Surprisingly, the
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only significant technical influence for Ethereum turned out to be transaction
fees, however, Ethereum has also been shown to be significantly affected by
S&P500, Exchange Ratio and Google searches.



Chapter 3

Methodology

This chapter first outlines the reasons that motivated the direction of our re-
search and the choice of econometric methods. This is followed by a description
of the data and finally a detailed description of the econometric methods used.

3.1 Motivation
Many authors have tried to describe the price dynamics of bitcoin using various
methods. However, to the best of our knowledge, no research has yet been
conducted that would attempt to comprehensively describe the price dynamics
of bitcoin with an additional emphasis on transaction fees. In section 2.2.2
it was described that transaction fees play a critical role in Bitcoin (and in
Ethereum until the transition to version 2.0), and without high enough fees,
the network will not be secure and will be susceptible to all sorts of attacks.
We believe that exploring the relationship between price and transaction fees,
and vice versa, could be of great benefit not only to investors, but can also
be fundamental to the discussion about the long-term sustainability of Bitcoin
and other cryptoassets.

The endogenous nature of transaction fees in the cryptoasset system emerges
quite unambiguously from previous research. In order to obtain unbiased esti-
mates, endogeneity needs to be accounted. Kubal & Kristoufek (2022) found
a negative impact of price on transaction fees, however, the effect seems to be
only one-sided. Nevertheless, Kukacka & Kristoufek (2023) found a significant
positive relationship between transaction fees and price, both for Bitcoin and
Ethereum. Another contribution of our work might be to explain the discrep-
ancy between these two recent papers and to build on them.
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3.2 Benchmark Model
Our choice of research procedure and model is essentially based on Kubal &
Kristoufek (2022) (described in 2.4), which gives great guidance on how to
work with endogeneity in a cryptoasset system. Kubal & Kristoufek (2022)
created a system of simultaneous equations, where each equation belongs to
one endogenous variable. Within the scope of our work we propose a system
of only 2 equations, one for transaction fees and one for price, since we are
interested just in the price-fees relationship. Our system also differs from Kubal
& Kristoufek (2022) by adding volatility to both equations, and conversely,
some explanatory variables, such as exchange-ratio and US M2 money supply
have been removed, because previous work did not find them significant. The
choice of variables and a description of both equations will be described in
detail in the following section. The proposed benchmark system of equations
is defined as follows:

log(closet) = α0 + α1 log(total_feest) + α2 log(total_addressest)

+ α3 log(hash_rate_meant) + α4 log(google_trendst)

+ α5 log(sigmat) + α6 log(sp500t) + ϵ1t

(3.1)

log(total_feest) = β0 + β1 log(closet) + β2 log(total_addressest)

+ β3 log(google_trendst) + β4 log(sigmat) + ϵ2t

(3.2)

where t ∈ {1, ...T} is a time index, βi, i ∈ {0, ...6} and αj, j ∈ {0, ...4} are
standard regression coefficients and ϵ1 and ϵ2 are a residuals of each equation.

Table 3.1: The structure of the benchmark system.

Equation Exogeneous Endogeneous Instrument

close
total_addresses
sigma
sp500

total_fees
hash_rate_mean
google_trends

gold
vix
total_supply
transfers_med

total_fees sigma
total_addresses

close
google_trends

gold
vix
total_supply
transfers_med
sp500
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Model description

The proposed system consists of two equations. Equation 3.1 will be referred
to as price equation and equation 3.2 as transaction fees equation. For
both equations in the system we use log-log transformation, since the elastic-
ity representation better captures the nature of the cryptoassets environment,
where variables often grow exponentially and suffer from heteroscedasticity.

Price equation

The price is denoted as close in our model. Similar to Kukacka & Kris-
toufek (2023) and Ciaian et al. (2016), we distinguish 3 types of factors driv-
ing the cryptoasset price. Among the fundamental technical factors we in-
clude total transaction fees (denoted as total_fees), total number of ac-
tive addresses (denoted as total_addresses) and mean hasrate (denoted
as hash_rate_mean) in the price equation. We further included data about
Google searches (denoted as google_trends) and volatility (denoted as sigma)
as a proxy for public interest. Finally, we included S&P 500 index data as an
indicator of global economic growth.

The effect of Google searches and S&P 500 on the price of both bitcoin
and ether was found to be significant and positive by Kukacka & Kristoufek
(2023), which is in line with Kubal & Kristoufek (2022). The Google searches
as an explanatory variable have been part of early Bitcoin models (Kristoufek
2013; 2015) and intuition behind is quite clear - the more interest in a given
cryptoasset, the more people buy. On the other hand, the effect of S&P500
can be described as the effect of global economic growth on cryptoasset prices.
Google searches are further assumed to be endogenous, since it is indicated by
Kubal & Kristoufek (2022), which we see as reasonable with respect to possible
simultaneity error.

The effect of transaction fees on the price of an asset is practically the effect
of network clogging. We assume the endogeneity of transaction fees, since the
transaction fees are determined primarily by the demand for fast transaction
execution. This demand could be influenced by factors such as the number of
addresses etc., which is further discussed in section describing transaction fees
equation.

The total number of active addresses could be considered as a proxy variable
indicating the activity of the network. A larger number of addresses should
indicate a larger user activity a higher rate of adoption. Intuitively we expect
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that the more active users the asset has, the higher the price will be, which
should be in line with the findings of Ciaian et al. (2016) and Kukacka &
Kristoufek (2023).

Hashrate is considered as a metric indicating the network security - the
higher the hashrate, the more difficult and expensive it is for a potential at-
tacker to successfully control the network. Kubal & Kristoufek (2022) found a
positive effect of hashrate on the price of bitcoin, which might be intuitively
explained as the more secure the network is, the higher its price.

We believe that volatility could explain some of the variance in the price
equation. We expect that volatility could have a similar effect as Google
searches, given that the high volatility may be a factor that attracts new in-
vestors to the cryptoasset market, as investors might be attracted by higher
profits than in the standard stock market.

The positive correlation between the price of bitcoin and ether is indicated
by Qiao et al. (2020) (described in section 2.4) and could be clearly visible in
figure 4.2. For the purposes of our work, we will assume that bitcoin might
be the prime driver of the cryptoasset market, i.e. that bitcoin sets the price
trend. For this reason, the equation 3.1 will be slightly modified for ether - the
bitcoin price will be added as an explanatory variable.

Figure 3.1: Bitcoin and Ethereum price in $USD
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Transaction fees equation

The main objective of this paper is to examine the relationship between trans-
action fees and price. The price equation should answer the question of what
effect transaction fees have on price, but there is strong reason to believe that
the relationship might be bidirectional. Thus, the first possible influence that
could affect the demand after a fast execution of the transaction might be the
asset price. Initial intuition suggests that a high asset price could cause network
clogging and vice versa, i.e. have a positive effect on transaction fees. How-
ever, it is necessary to remember that transaction fees are denominated in the
relevant asset (i.e. ether/bitcoin), not in $USD or another fiat currency. Thus,
the effect of price might struggle with the psychological reluctance of users to
set the same or higher fee as before the price increase. Mentioned effect served
as an explanation of the negative effect of bitcoin price on transaction fees in
Kubal & Kristoufek (2022).

Kubal & Kristoufek (2022) also found a positive effect of Google searches
and total number of active addresses. The interpretation of both variables
appears to be quite straightforward. The number of addresses represents the
activity of the network, so transaction fees increase with larger amounts of
active users. On the other hand, Google searches serve as a proxy for public
interest, which can motivate investors to buy or sell quickly - thus influencing
demand for fast confirmation of a transaction.

Above-standard volatility is one of the factors that differentiate the cryp-
toasset market from the standard stock market. The volatility effect can be
perceived similarly to the Google searches effect. Volatility can be upside or
downside, but in both cases it could affect user activity - upside volatility might
motivate investors to buy, downside volatility might motivate investors to sell,
nevertheless, in both cases it could lead to an increase in demand for a quick
transaction execution. For this reason volatility can be expected to positively
impact transaction fees.

A possible future extension could be to include the median transaction
waiting time in the mempool, which Easley et al. (2019) found significant in
his empirical model of Bitcoin transaction fees. However, these data are not
directly observable and were derived from a theoretical model. In our case it
would be necessary to develop a different theoretical model for Ethereum, due
to the different fee mechanism, which would further complicate the acquisition
of this data. Easley et al. (2019) also included the factor of diminishing block
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reward in his model, which was not found to be significant, thus for this reason
we decided not to include it. Nevertheless, given the rapidly evolving dynamics,
it might be worthwhile to test this hypothesis again in the future.

Figure 3.2: Bitcoin and Ethereum total transaction fees

3.3 Data
The cryptoasset market is unprecedented in terms of data availability. Cryp-
toassets are traded continuously 24 hours a day, 7 days a week and due to the
open-source nature, most of the necessary metrics are easily accessible. For the
purpose of modelling the daily data from January 1, 2016 to August 31, 2022
will be used. The choice of the data range is motivated by the duration of the
PoW consensus algorithm on Ethereum 1 - to be able to meaningfully compare
both assets.

The data importing pipeline data consists of 3 sources - blockchain met-
rics, economic metrics and Google searches - which will be described in
the following subsections.

1As mentioned in the section 2.3, Ethereum was launched on July 30, 2015 and the
transition to version 2.0 occurred on September 15, 2022.
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3.3.1 Blockchain metrics

All blockchain metrics were obtained from glassnode.com2. Blockchain metrics
include the following variables:

Price OHLC: Daily $USD price data including the highest (high) and
lowest (low) daily price achieved, the price at the beginning of the day (open)
and the price at the end of the day (close). We use the close price as the price
in the proposed model.

Total transaction fees: The sum of the transaction fees of all blocks
mined on a given day.

Hashrate: Mean daily hashrate.
Total number of active addresses: Number of addresses involved in

completed transactions.
Total supply: The current number of mined coins - bitcoins/ethers.
Median Transfer volume: Median amount of coins transferred between

addresses in one transaction.
Volatility: Volatility, unlike the other data, was not downloaded from

glassnode.com, but was estimated from the price data according to Garman &
Klass (1980) as follows:

σt =
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ot

)︃]︃2
(3.3)

where o, h, l, c are OHLC price data described above.

3.3.2 Economic metrics

To download data about financial indicators we used a connector built on top
of the yfinance library3, which is a python integration of Yahoo Finance4. For
all used metrics we had to tackle the problem that data is available only for
weekdays, which we decided to solve by approximating the missing data by the
last available value. From the economic metrics we used the following variables:

S&P 500: Daily close prices of the Standard and Poor’s 500 (S&P 500)
index.

VIX: Daily values of the Chicago Board Options Exchange’s CBOE Volatil-
ity Index (VIX).

2https://glassnode.com/
3https://pypi.org/project/yfinance/
4https://finance.yahoo.com/

https://glassnode.com/
https://pypi.org/project/yfinance/
https://finance.yahoo.com/
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Gold: The traded price of a troy ounce of gold.

3.3.3 Google Searches

Google search volume for the keywords ’bitcoin’/’ethereum’ was obtained from
Google Trends5. Google searches data is scaled to values between 0 and 100
by default and is only available on a monthly, not daily, basis for large time
frames. To estimate daily data, we first imported daily data in monthly inter-
vals (daily data are available for such a short interval), subsequently imported
monthly data for the whole interval, and rescaled all daily data according to
the corresponding month. Obtained values were further rescaled into the range
of 0 to 1. Finally, it was necessary to avoid the case when the value is equal
to zero which would prevent the logarithmic transformation, for such case the
zero values were mapped to the smallest non-zero value.

Figure 3.3: Google searches volume

3.4 Estimation methods
When estimating a system of two simultaneous equations it is usually done
by estimating each equation separately. The standard OLS approach could be
used to estimate the equations, however, assuming that endogeneity actually
occurs in our system, the OLS estimator might be biased and inconsistent.

5https://trends.google.com/trends/

https://trends.google.com/trends/
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This problem could be solved by approaches based on instrumental variables,
for example 2SLS method (Wooldridge 2015).

3.4.1 Exogeneity assumption

The crucial assumption for the Ordinal Least Squares (OLS) estimator of time
series regression to be unbiased is the exogeneity assumption. Exogeneity im-
plies that the error terms are not correlated to the explanatory variables. Math-
ematically expressed as:

E[ϵt|X] = 0, t = 1, 2, ..., T (3.4)

Together with the assumptions of linearity of parameters and no perfect collinear-
ity of the explanatory variables, form the basic assumptions which, if valid,
imply the unbiasedness of the OLS estimator. Otherwise, if exogeneity as-
sumption is not valid, i.e. at least one variable is endogenous, then the OLS
estimator does not have to be unbiased (Wooldridge 2015).

3.4.2 2SLS

If assumption 3.4 does not hold one of the possible solutions is to use Two
Staged Least Squares (2SLS) approach. Assume a standard linear regression
model:

y1 = β0 + β1y2 + β2z1 + ϵ (3.5)

where
Cov(ϵ, y2) ̸= 0 =⇒ E[ϵ|y2] ̸= 0 (3.6)

y2 is endogenous, therefore OLS estimator might be biased. For the en-
dogenous variable it is first necessary to find the instrumental variables, where
instrumental variable z is a variable that meets two conditions:

1. z is not correlated with error term: Cov(z, ϵ) = 0,

2. Non-zero correlation with y2: Cov(z, y2) ̸= 0

Assume that z2 and z3 are instruments for y2. The whole 2SLS procedure can
be divided into 2 stages:
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First Stage

The endogenous explanatory variables are regressed on all exogenous variables
in the system (instrumental variables included) and the predicted values of the
endogenous explanatory variables are obtained using an OLS estimator.

ŷ2 = π̂0 + π̂1z1 + π̂2z2 + π̂3z3 (3.7)

Second Stage

The endogenous variables from equation 3.5 are replaced by the reduced form
from equation 3.7 and subsequently the regression coefficients from equation
3.5 are estimated using OLS.

y1 = β0 + β1ŷ2 + β2z1 + ϵ (3.8)

(Wooldridge 2015)
When choosing between OLS and 2SLS approach Hausman (1978) test can

be applied. Under the null hypothesis (H0) the OLS estimator is efficient
and consistent without present endogeneity, otherwise, under the alternative
hypothesis (HA) the OLS estimator is inconsistent due to endogeneity, thus the
2SLS is the preferred method.



Chapter 4

Results and Discussion

This chapter goes through the whole modeling procedure in detail, i.e. selection
of appropriate econometric methods, statistical testing, presentation of results,
and subsequent implications. A dataset of 2435 observations between 2016 -
2022 is used for the empirical analysis, as described in section 3.3.

Figure 4.1: Bitcoin: Transaction Fees vs Close Price with regression
line.
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The very first glance at the scatter plot in figure 4.1 might raise two ques-
tions:

1. Almost 7 years of data is collected. The relationships between variables
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in a rapidly evolving environment such as cryptoassets may have changed
substantially in that time.

2. On the whole interval a decreasing trend of transaction fees with respect
to the price (both variables in logarithmic transformation) can be seen.
However, there are relatively large intervals where an increasing trend is
visible, which can be selected from the chart. One possible explanation
is that these positive trends might occur in the short term in a grow-
ing or bursting bubble. Conversely, in the long term, the trend might
be negative because of the encounter with the factor of transaction fee
appreciation1. Note that the problem is purely Bitcoin - for Ethereum
the trend between price and fees is purely positive and with no obvious
intervals of reverse trend.

In order to mitigate the above mentioned problems, we divide our analysis
into two parts - analysis from a long-term perspective, i.e. the analysis
of the whole interval and analysis from a short-term perspective. In the
analysis from the short-term perspective, we divide the whole interval into 3
subintervals according to 2 arbitrary breakpoints (January 21, 2018, February
10, 2020).

Figure 4.2: Bitcoin: Transaction Fees and Close Price in time with
division into subintervals.
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1We define transaction fee appreciation factor as a psychological factor which, when
the cryptoasset price increases, discourages users from paying the same fee as before, as they
might pay significantly higher amounts in the fiat base.
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4.1 Long-Term analysis
To analyze the whole interval between 2015-2022, we use the benchmark system
of simultaneous equations 3.1, 3.2. Both equations are estimated separately
and OLS and 2SLS approaches are considered for estimation. The OLS and
2SLS approaches were tested by Hausman test (Hausman 1978) for both assets
with the result of rejecting the null hypothesis at any reasonable level, which
implies inconsistency of OLS. Therefore it is appropriate to stick with the 2SLS
approach.

The Wu-Hausman test (Wu 1973) was further used to test the assumed
endogeneity of the explanatory variables. The Wu-Hausman test is designed
to test whether it is necessary to use an instrumental estimator, i.e. whether
there is an endogenous variable in the system. The null hypothesis is that
explanatory variables can be considered exogenous. In our analysis, we rejected
the null hypothesis, which implies that the variables in our system are indeed
endogenous.

Table 4.1: Bitcoin: Endogeneity tests.

df1 df2 statistic p-value
Price equation:
Wu-Hausman 3 2427 187.23 <0.001 ***
Weak instruments (log(total_fees)) 4 2429 340.09 <0.001 ***
Weak instruments (log(hash_rate_mean)) 4 2429 3753.20 <0.001 ***
Weak instruments (log(google_trends)) 4 2429 84.67 <0.001 ***
Transaction Fees equation:
Wu-Hausman 1 2430 1497.10 <0.001 ***
Weak instruments 5 2427 3179.00 <0.001 ***

Table 4.2: Ethereum: Endogeneity tests.

df1 df2 statistic p-value
Price equation:
Wu-Hausman 2 2427 47.86 <0.001 ***
Weak instruments (log(total_fees)) 4 2427 345.11 <0.001 ***
Weak instruments (log(google_trends)) 4 2427 249.28 <0.001 ***
Transaction Fees equation:
Wu-Hausman 1 2430 231.10 <0.001***
Weak instruments 4 2428 1381.10 <0.001 ***

As described in section 3.4.2, for the 2SLS approach it is necessary to se-
lect appropriate instrumental variables, i.e. those that are not correlated with
residuals and at the same time have a non-zero correlation with endogenous
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variables. Testing for weak instruments together with the Wu-Hausman test
results is presented in table 4.1 and 4.2.

Subsequently, it is necessary to exclude that the residuals contain unit root.
If we cannot exclude the unit root, spurious regression might occur. Spurious
regression is a phenomenon where regression estimates suggest a causal rela-
tionship between a dependent and an independent variable because of a trend
or correlation with a non-included variable, even though there is actually no re-
lationship between them (Wooldridge 2015). To test the unit-root of residuals
we used Augmented Dickey-Fuller test (ADF) (Fuller 2009) and Kwiatkowski-
Phillips-Schmidt-Shin test (KPSS) test (Kwiatkowski et al. 1992). The null
hypothesis of the ADF test is that the residuals contain a unit root, thus rejec-
tion is crucial for our analysis. On the other hand, the null hypothesis of the
KPSS test is that the residuals are stationary. Ideally, it is appropriate not to
reject the null hypothesis, but if stationarity is rejected, then non-stationarity
does not imply unit root. In our analysis, the unit root was rejected for the
price and fee equations for both assets. The results of the unit root tests are
presented in Table 4.3.

Table 4.3: Unit-Root tests.

Equation ADF KPSS
Bitcoin:
Price ≤ 0.01 ≤ 0.01
Fees ≤ 0.01 ≤ 0.01
Ethereum:
Price ≤ 0.01 0.02
Fees 0.01 ≤ 0.01

Note: The table presents p-values for specified tests.

So far we have tested the first three assumptions of the time series regres-
sion, which should imply unbiasedness of the estimates. Furthermore, it is
necessary to perform tests for homoskedasticity and no serial autocorrelation.
Homoskedasticity states that regardless of time the variance of the residuals is
constant. Expressed mathematically:

V ar(ϵt|xt) = σ2 (4.1)

Further, no serial correlation demands a correlation between a variable and its
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own lagged values equal to zero. Formally expressed:

E [ϵt, ϵs|xt, xs] = 0, ∀t ̸= s (4.2)

Both assumptions are essential to the validity of standard errors and t-statistics
(Wooldridge 2015).

To test for homoscedasticity we used the Breusch-Pagan test (Breusch &
Pagan 1979), with the null hypothesis of constant variance of residuals, and
to test for serial autocorrelation we used the Durbin-Watson test (Durbin &
Watson 1950), with the null hypothesis that the true autocorrelation is equal
to zero.

Table 4.4: Breush-Pagan test.

Equation χ2 df p-value
Bitcoin:
Price 138.83 4 < 0.001
Fees 177.12 3 < 0.001
Ethereum:
Price 100.76 5 < 0.001
Fees 35.461 3 < 0.001

Breusch-Pagan test revealed heteroscedasticity for each of the two equations
for both cryptoassets at any statistically reasonable level.

Table 4.5: Durbin-Watson test.

Equation DW p-value
Bitcoin:
Price 0.208 < 0.001
Fees 0.339 < 0.001
Ethereum:
Price 0.156 < 0.001
Fees 0.163 < 0.001

Similarly, the Durbin-Watson test suggested non-zero autocorrelation for
all equations examined. To obtain valid t-statistics, we followed MacKinnon &
White (1985) and used heteroscedasticity and autocorrelation consistent stan-
dard errors (HAC).

Due to the sufficient sample size, it was not necessary to test the normality of
the residuals, but we still performed a Shapiro-Wilk test (Shapiro & Wilk 1965)
with the null hypothesis that the residuals are normally distributed. Given
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the volatile nature of the cryptoasset environment and the typically skewed
and heavy-tailed data, we expected the rejection of normality. Normality was
indeed rejected for all 4 tested equations.

Table 4.6: Shapiro-Wilk test.

Equation W p-value
Bitcoin:
Price 0.997 <0.001
Fees 0.994 <0.001
Ethereum:
Price 0.997 <0.001
Fees 0.954 <0.001

Discussion of long-term relationships

This section contains the interpretation and implications of the results of the
long-term analysis. The resulting estimates together with the HAC standard
errors and the corresponding statistical values are shown in Table 4.7 and Table
4.8.

Bitcoin Results

Bitcoin’s price has been shown to be driven by a diverse range of factors.

Table 4.7: Bitcoin: 2SLS estimator.

Estimate Std. Error t-statistic Pr(>|t|)
Price equation:
(Intercept) -19.222 3.877 -4.958 <0.001 ***
log(total_fees) -0.081 0.049 -1.637 0.102
log(hash_rate_mean) 0.198 0.045 4.413 <0.001 ***
log(google_trends) 0.597 0.174 3.421 <0.001 ***
log(sp500) 2.611 0.452 5.775 <0.001 ***
Transaction Fees equation:
(Intercept) -40.092 4.171 -9.613 <0.001 ***
log(close) -0.844 0.073 -11.609 <0.001 ***
log(sigma) 0.515 0.075 6.862 <0.001 ***
log(total_addresses) 4.045 0.338 11.984 <0.001 ***

R2 Adj. R2

Price Equation 0.965 0.965
Transaction Fees Equation 0.502 0.502
Number of observation 2435

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The representative of the fundamental factors is the positive impact of the
mean hashrate. The hashrate effectively serves as a proxy for network security
because the higher the hashrate, the more difficult it is to successfully control
the network. Thus, network security plays a significant role in bitcoin price
dynamics, which is logical given that the moment the hashrate is too low, it
will be easy to attack the network and the price of bitcoin can be expected to
become negligible compared to today’s values.

Furthermore, it turns out that in the long term, bitcoin reacts most strongly
to global economic development, represented by the S&P500 index, with an
elasticity of 2.611. It will be convenient to compare the impact of the S&P500
from a short-term perspective, as we believe that this effect is due to the pop-
ularization of Bitcoin and the arrival of investors from the standard markets.
Further, this effect might contradict the safe haven narrative of Bitcoin.

The influence of Google searches as a traditional proxy for public interest
(used since Kristoufek (2013)) comes out positively as expected. We consider
this influence to be representative of speculative factors. The higher the Google
searches, the greater the public interest, which might increase the demand for
buying bitcoin, which according to Law of Demand and Supply should increase
the price ceteris paribus.

Finally, the impact of transaction fees turned out to be negative, however
with a p-value of 0.102 the effect is not significant. The finding contradicts
Kukacka & Kristoufek (2023), although this is likely to be explained by a dif-
ferent base currency (mentioned paper use $USD base). Since Bitcoin has a
relatively short history and the majority of block rewards consists of newly
mined bitcoins, we predict that the larger the share of fees in the security bud-
get, the more significant their impact on the Bitcoin price will be. Considering
that the moment Bitcoin inflation becomes negligible, the transaction fees will
become closely linked to the security of the network, as they form the only
motivation for the miners.

Overall, the estimates of the long-term price dynamics are in line with Kubal
& Kristoufek (2022), who also revealed that the bitcoin price is positively driven
by network security, stock market trends and public interest.

In the case of the fees equation, it should be repeated that the dynamics
of transaction fees is in principle driven by the demand for fast transaction
execution, thus in this framework, the interpretation of the results is relatively
straightforward.

The strongest effect with elasticity 4.045 is the effect of the number of
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active addresses, as a proxy for the network activity. The number of active
addresses can provide insight into the level of interest, adoption and engagement
in the Bitcoin network. The model shows that the higher the network activity
and adoption, the higher the transaction fees, which might bring a crucial
contribution to the discussion about the future of Bitcoin, given that fee growth
with a higher user adoption tends to ensure a sufficient security budget.

We believe that the negative effect of the price on the transaction fees
(elasticity -0.844) is due to the factor of the transaction fees appreciation. The
problem is that when the price of Bitcoin rises, the potential profit for the
attacker also rises and therefore at the moment when the network will live
primarily from the transaction fees, the value of the fee needs to increase at
such a moment. In principle, this finding does not contribute much to the
discussion of Bitcoin’s long-term sustainability because, although we found a
negative relationship, we expect that the majority of Bitcoin users still consider
fiat currency (instead of bitcoin or satoshi) to be their unit of account2, and
therefore it would be more beneficial in this context to examine the effect
between price and fees in a fiat basis.

Finally, the positive effect of volatility was expected, given that high volatil-
ity can motivate bitcoin holders to either buy or sell quickly, depending on the
market phase, but in any case, it can motivate users to make a transaction
quickly, which can result in a network clogging, thus increase transaction fees.

Ethereum Results

Compared to Bitcoin, speculative factors play a much bigger role in the price
dynamics of Ethereum, which can be explained by the fact that Ethereum has
a shorter history than Bitcoin and at the beginning of the analyzed period was
shortly after the launch, and it could be assumed that for new cryptoassets
speculative factors play a major role in price formation, and the fundamental
factor will begin to develop during stabilization.

The strongest speculative factor turns out to be Google searches with an
elasticity of 0.780, which is a slightly stronger relationship than 0.597 in the
case of Bitcoin. This difference might again point to the more speculative
nature of Ethereum, and it can be assumed that the effect of Google searches
may decrease over time as both cryptoassets become more and more widely
known.

2One of the three basic characteristics of money, the unit in which an individual operates.
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Table 4.8: Ethereum: 2SLS estimator.

Estimate Std. Error t-statistic Pr(>|t|)
Price equation:
(Intercept) -0.935 1.173 -0.796 0.426
log(total_fees) -0.131 0.117 -1.126 0.260
log(btc) 0.481 0.139 3.452 <0.001 ***
log(google_trends) 0.780 0.150 5.209 <0.001 ***
log(sigma) -0.194 0.053 -3.688 <0.001 ***
log(total_addresses) 0.391 0.088 4.425 <0.001 ***
Transaction Fees equation:
(Intercept) 0.832 2.097 0.397 0.692
log(close) 0.886 0.138 6.406 <0.001 ***
log(sigma) 0.042 0.078 0.534 0.593
log(total_addresses) 0.080 0.229 0.351 0.726

R2 Adj. R2

Price Equation 0.967 0.967
Transaction Fees Equation 0.807, 0.807
Number of observation 2435

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Volatility as another speculative factor has turned out to have a negative
effect on the price of ether. Thus, high volatility brings uncertainty among
investors, and due to high liquidity, investors may, for example, look for a tem-
porarily more stable asset to store value - for example, bitcoin or stablecoins3.

Another important finding is that Ethereum appears to be positively driven
by the price of bitcoin (elasticity 0.481), which supports the nature of bitcoin
as the primary driver of the cryptoasset market, which is consistent with our
initial hypothesis in the model proposal and in line with Qiao et al. (2020).
We classify the impact of bitcoin price as an economic factor and might be
analogous to the impact of the S&P500 on bitcoin price.

It turns out that Ethereum responds positively to the total number of active
addresses, which is the only representative of the fundamental factors. The
interpretation of this effect is relatively straightforward. The number of active
addresses can be understood as a proxy of the Ethereum demand side and
should according to the law of supply and demand increase the price of ether
ceteris paribus.

In the transaction fee equation, only the effect of price appears to be sig-
nificant. In contrast to Bitcoin, the price effect has been shown to be positive.
One possible explanation is that Ethereum indicates a weaker transaction fee
appreciation factor than Bitcoin, which may be due to two factors:

3Cryptoassets, which aim to peg their value to another asset, usually fiat currency.
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The block time is much shorter for Ethereum than for Bitcoin (about 15s
vs 10 min), so Ethereum scales better and has more network activity, for this
reason, there might be larger competition for the transaction execution.

One of Ethereum’s main features is support for smart contracts, which
are technically a type of transaction. Thus, transactions on Ethereum have a
wider scale of use cases than just peer-to-peer transfers in Bitcoin. This factor
is likely to increase the demand for transaction execution, as more than just
value transfer is at stake. Even though it can be assumed that if the price of
bitcoin drops significantly, fees and network activity will drop significantly as
well, in the case of Ethereum this effect is likely to be mitigated, as many smart
contracts transactions can operate regardless of price.

These factors could also partially explain the difference between the overall
trend of transaction fees between Bitcoin and Ethereum (shown in Figure 4.3).

Figure 4.3: Ethereum: Transaction Fees and Close Price in time with
division into subintervals.
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4.2 Short-Term analysis
The analysis of short-term effects was performed separately by subintervals,
defines arbitrary as follows: Interval I from January 1, 2016 to January 21,
2018. Interval II from January 22, 2018 to February 10, 2020. Interval III
from February 11, 2020 to August 31, 2022. In this section, we first describe



4. Results and Discussion 36

the characteristics of the individual inter, then the modeling process and finally
a discussion of the results.

Interval I can be characterized by the cryptoasset environment becoming
more mainstream and rapid price growth. During this period, Bitcoin halving
occurred, i.e. inflation decreased. Subsequently, both assets struggled with
internal issues that escalated into hardfork 4. Furthermore, the year 2017 is
notable for emerging ICO5 bubble, which fueled the 2017 crypto bull run. Both
assets underwent astronomical growth during this period, which is shown in
Table 4.9.

Table 4.9: Subinterval characteristics.

Interval I Interval II Interval III
Bitcoin:
Total Returns 2547% -23% 98%
Volatility 0.0303 0.0260 0.0282
Ethereum:
Total Returns 110006% -81% 579%
Volatility 0.0558 0.0343 0.0372

Interval II begins with the bursting of the ICO bubble. The whole interval
is characterized by a market crash and gradual recovery. This period turned
out to be less volatile than the previous interval and at the same time for both
assets the price failed to return to the original values before the crash. About
halfway through the interval, the price of Bitcoin began to stabilize and rise
again and recovered significantly more than in the case of Ethereum, which was
nowhere near its original values.

Finally, the interval III is characterized by the colorful events in the cryp-
toasset markets. The interval starts with a Covid19, from which, however,
the cryptasset market was able to quickly recover. Further In May 2020, the
third bitcoin halving occurred, which, together with the growing interest of
institutional investors associated with a new wave of quantitative easing and
fiscal stimulus in the US, started a rapid growth, which inflated the first bub-
ble that escalated to all time high (ATH) of both Ethereum and Bitcoin. The

4Ethereum experienced an event called the Dao hack, where a vulnerability in smartcon-
tact was exploited and an anonymous hacker stole $60 million worth of ethers. The stolen
Ether was subsequently returned by a rollback that was performed by a hardfork (Morrison
et al. 2020). Bitcoin experienced an event called blocksize wars, which was a discussion
about Bitcoin scaling, which resulted in a hardfork on Bitcoin core - the original version, and
Bitcoin Cash, which solve scaling by increasing the block from 1MB to 4MB (Morgan 2017).

5Initial Coin Offering (ICO) is a process of raising capital for cryptoasset projects analo-
gous to a standard IPO on the stock market.
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bubble then quickly burst, which may have been influenced by the cryptoasset
ban in China, which was followed by a massive drop in hashrate 6. However,
the crypto environment quickly stabilized and by the end of 2021, Bitcoin and
Ethereum made a new ATH. There was a major correction at the end of the
interval, followed by the crash of the Terra Luna7, which brought panic to the
cryptoasset environment.

Discussion of short-term relationships

The modeling process was carried out in an analogous way as in the case of the
analysis from a long-term perspective. We used the same methods to choose
between OLS and 2SLS approaches, and we also used the same statistical tests
to verify the assumption of time series regression. In principle, the statistical
tests led us to the same choice of model as in the first analyzed part, with only
a minor problem, when on interval II for Ethereum the p-value of the ADF test
was 0.05092, which did not allow us to reject the null hypothesis at conventional
0.05 significance level, however, at any other conventional significance level the
unit-root of residuals can be rejected and the p-value is very close to rejection,
thus we decided to assume that the unit-root is not present and proceeded
accordingly. Thus, all models in this section were estimated using the 2SLS
approach with HAC standard errors.

Bitcoin results

The only significant effect on Bitcoin price that is present across all intervals
is the positive effect of public interest, represented by Google searches. It
might be difficult to interpret the difference in effect strengths. Public interest
showed the strongest impact (elasticity 0.977) at the second interval, which
captures the bear market. This finding is contrary to our intuition, given that
the strongest influence of the Google searches was expected in the bull market
where sentiment is rising. However, a possible explanation could be that the
public interest in this period was the least ’volatile’, and therefore the respective
outliers could cause a big shock and therefore have a relatively large impact on
the price.

An interesting finding is the strong positive relationship of the hashrate
(elasticity 0.957, close to unit elasticity) on interval I, which shows that the

6For more see Cox (2021).
7for more see Kharpal & Browne (2022)
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Table 4.10: Bitcoin: Short-term analysis results.

Equation Interval I Interval II Interval III
Price equation: (2SLS) (2SLS) (2SLS)
(Intercept) -31.198 *** -14.273 * 2.115
log(total_fees) -0.183 0.001 -0.288 ***
log(hash_rate_mean) 0.957 *** -0.651 *
log(google_trends) 0.480 *** 0.977 *** 0.559 ***
log(sigma) -0.143 *
log(sp500) 3.133 *** . 2.354 ***
log(total_addresses) 1.560 **

R2 0.958 0.331 0.842
Transaction Fees equation: (2SLS) (2SLS) (2SLS)
(Intercept) -13.576 * -24.896 *** -40.7334 ***
log(close) 0.484 *** -0.367 -0.967 ***
log(sigma) 0.066 0.443 *** 0.420 ***
log(total_addresses) 1.158 * 2.550 *** 4.153 ***
log(google_trends)

R2 0.792 0.4275 0.411
Number of observation 750 750 935

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Bitcoin price was driven at an early stage also by fundamental factors and even
more so than speculative factors. In the context of the bullrun 2017, we can
suspect a bidirectional relationship between the hashrate and the price (which
cannot be shown by our model, because it is not the purpose of our work to
explore hashrate through separate equation) given that a rapid rise in price can
strongly incentivize the miners, which increases the hashrate and conversely
the price is likely to further react to increased network security. Significant
influence of the hashrate was further shown at interval III. The effect turned
out to be negative, which is a very unexpected and counterintuitive finding. It
can be assumed that this effect might be related to the fact that at the end of
the interval, the hashrate was continuously rising steeply towards its maximum
at the time when the price significantly dropped from ATH.

On Interval II, the price was mostly driven by S&P500 (elasticity 3.133).
The significant influence of S&P500 begins in this interval and continues with
a substantially strong effect (elasticity 2.354) in the last interval. We interpret
this phenomenon to mean that at this time Bitcoin is no longer the domain
of enthusiasts and fundamentalists, but is beginning to attract mainstream
investors from the stock market.

Furthermore, interval II indicates a negative impact of volatility, which
makes sense given that interval II is characterized by a deep bear market and
high fear after the bursting of the ICO bubble, and thus increased volatility
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can scare investors who start panic selling.
A relatively strong effect of the number of active addresses was in interval

III. During this period there was a rapid price rise that went up to the ATH
and thus this finding shows that this rise was strongly driven by the network
activity and adoption rate.

Finally, a significant impact of transaction fees was discovered only in the
last period. The effect turns out to be negative, bidirectional and relatively
weak (elasticity -0.288 in the opposite direction is the elasticity of almost unit
-0.967), which means that clogging lowers its price and at the same time in-
creasing the price lowers its clogging. At the end of interval III, fees were the
lowest of the whole global interval, indicating a strong effect of the transaction
fees appreciation factor - the Bitcoin price is at an ATH and therefore transac-
tion fees are logical. In this context, there is again a potential future research
direction, where it might be appropriate to conduct a similar research with the
use of transaction fees in the fiat base.

In the case of the transaction fees equation, it turns out that the dynamics is
determined primarily by the total number of active addresses with a gradually
increasing positive elasticity effect (1.158, 2.550, 4.153), which further confirms
the strong long-term influence of addresses found on the global interval.

The negative effect of the price in interval III was discussed above, however,
the price turned out to be a significant driver also in the first epoch. It turns out
that transaction fees on the interval I reacted positively to the price increases.
This period is practically the first Bitcoin bullrun that started to catch the
attention of mainstream investors. The positive effect is likely to be explained
by the perception of new investors who could see Bitcoin as a ’get-rich-quick’
scheme with the prospect of unprecedented astronomical returns, which could
mitigate the transaction fee appreciation factor, i.e. investors probably do not
attribute much importance to the appreciation of fees in the fiat base.

The last factor with a positive impact on transaction fees turns out to
be volatility. The positive impact of volatility is not surprising for the same
reason as described in the long-term analysis, i.e. that volatility can increase
the demand for buying/selling, i.e. for carrying a transaction. An interesting
finding is that volatility was not found to be significant in the first interval, nor
had any significant effect on price found in this interval. This phenomenon is
expected to be explained by the fact that the first interval is characterized by
the highest volatility of the whole global interval and due to its commonness
investors may not have reacted to its increase.
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Ethereum results

The price dynamics of the ether turned out to be quite diverse, none of the
variables appears to be significant for all intervals.

Table 4.11: Ethereum: Short-term analysis results.

Equation Interval I Interval II Interval III
Price equation: (2SLS) (2SLS) (2SLS)
(Intercept) 6.406 ** -38.560 * -31.817 ***
log(total_fees) 0.141 0.668 . -0.014
log(hash_rate_mean) 1.034 * 0.406 ***
log(google_trends) 1.212 *** 0.763 ***
log(sigma) -0.385 *** 0.045 .
log(sp500) 2.185 ***
log(total_addresses) 0.612 .
log(btc) 0.731 ***

R2 0.426 0.560 0.986
Transaction Fees equation: (2SLS) (2SLS) (2SLS)
(Intercept) 6.523 2.492 -48.181 *
log(close) 0.096 0.121 0.902 *
log(sigma) -0.114 0.104 ** 0.691 *
log(total_addresses) 0.023 0.273 3.815 **
log(google_trends) 0.768 * -1.493 .

R2 0.832 0.141 0.259
Number of observation 750 750 935

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

On interval I it is visible that Ethereum reacts purely to speculative factors,
which is logical given its very short history. The most significant effect is the
effect of public interest, i.e. Google searches (elasticity 1.212). Furthermore,
Ethereum reacts negatively to increased volatility, which is surprising given
that Bitcoin did not react to volatility at all during this period. However, it
can be assumed that Ethereum showed the highest volatility relatively shortly
after the launch - i.e. at the beginning of the interval - and then volatility
stabilized, which could lead to a slightly lower volatility than at the beginning
of the interval and thus a negative effect when the ICO bubble grows.

Interval II is very diverse, mixing fundamental factors with speculative fac-
tors represented by volatility and a very strong public interest effect, which
is the only one that remains significant at any conventional significance lev-
els. Of the fundamental factors, the most important for the purposes of our
work is the positive impact of transaction fees. This relationship appears to
be only unidirectional with an elasticity of 0.668 and p-value of 0.0745. As
described in the long-term analysis, it can be assumed that the influence of the
transaction appreciation factor is smaller in the case of Ethereum than in the



4. Results and Discussion 41

case of Bitcoin, which is better observable in the opposite direction, but also in
this direction can be seen that the clogging of the network, which only reflects
the demand for fast transaction execution, is likely to be more continuous as
Ethereum users react less to the appreciation of fees, and thus be reflected in
the price increase.

In the last interval, there is an obvious reduction of speculative factors,
which may be due to the stabilization of Ethereum’s position as number two
on the market, and therefore investors are beginning to see its fundamental
value. It turns out that Ethereum reacts the strongest to the economic factor -
Bitcoin, an indicator of cryptoasset market growth, and S&P500, an indicator
of global economic growth. The price of bitcoin positively affects the dynamics
of ether with an elasticity of 0.731, which means that with a 10% increase in the
price of bitcoin we predict a 7.31% increase in the price of Ethereum, which
supports the results of the long-term analysis. Further, the positive impact
of the S&P500 (elasticity 2.185) is likely to indicate that Ethereum has also
attracted the attention of mainstream investors. Finally, the positive effect of
the hashrate proved to be significant (in contrast to the previous interval it is
significant at any conventional level), which only shows that Ethereum users
value higher network security. An interesting observation is that the influence
of Google searches has ceased to be significant. We do not believe that the
public interest factor has ceased to be significant, but rather has begun to be
captured by a different proxy than Google searches. Google might be replaced
by, for example, Discord, Telegram or Twitter, since these platforms are now
primarily used for discussion of cryptoasset environment.

In the case of the fee equation, as in the analysis of the long-term perspec-
tive, it appears that Ethereum’s fees are driven by a single prevailing factor
rather than a diverse mix. In interval I, this factor is the influence of the pub-
lic interest, which we interpret that with higher public interest more users are
motivated to conduct a transaction, which according to the law of supply and
demand should ceteris paribus increase transaction fees. In interval II this effect
is captured by the effect of volatility, with essentially the same interpretation
as before.

Finally, Interval III revealed the significance of all variables included in the
benchmark model. The positive impact of price and volatility is not a big
surprise, the interpretation of both variables has already been discussed and
remains the same. The negative relationship of Google searches is surprising,
especially because it does not play a significant role in price dynamics. With
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a p-value of 0.0898, it is close to the rejecting of significance and no logical
explanation for negative trend appears to us. Further, a very strong positive
effect of the total number of active addresses (elasticity 3.815) is shown, which
logically implies that the fees on interval III reacted most to the activity of
the network. In contrast to Bitcoin, this effect is not omnipresent, but only
occurs at the most recent interval - interval III. All of this likely demonstrates
that Ethereum’s fee drivers are dynamic and rapidly changing, while Bitcoin
fee dynamics appear to be relatively more stable, as shown for example by the
constant influence of the total number of active addresses.



Chapter 5

Conclusion

The aim of this work was to shed light on the role of transaction fees in the
cryptoasset ecosystem, namely Bitcoin and Ethereum, and to further identify
the factors driving the dynamics of transaction fees and price. Previous re-
search, such as Kubal & Kristoufek (2022), has shown that variables in the
cryptoasset environment are interconnected and exhibit signs of endogeneity,
and in order to reflect this nature a system of two simultaneous equations - one
for price and one for transaction fees - was developed and further estimated
using 2SLS method. Given the dynamically evolving cryproasset sentiment,
it cannot be assumed that the relationships between variables remain stable
over the entire interval, but rather evolve. In order to capture this feature we
divide our empirical research into an analysis of the long-term and short-term
perspective. The analysis of the long-term relationship is conducted on the
data between January 1, 2016 and August 31, 2022. In contrast, the analysis
of the short-term relationship is conducted on 3 approximately 2 year intervals,
where each of them differs in market sentiment.

It has been shown that the price dynamics of both assets is determined by
a diverse range of factors that could be categorized into fundamental, economic
and speculative influences. The fundamental difference is that speculative fac-
tors play a slightly bigger role in the dynamics of Ethereum, which might be
expected due to the more stable market position of Bitcoin. It is worth men-
tioning that the price of both assets reacts substantially to events in the more
developed markets. In the case of Bitcoin, it is the stock market represented
by the S&P500, while Ethereum is influenced by Bitcoin over the long term
and mostly in the most recent examined period. One of our research questions
was how transaction fees impact the price. This effect did not prove to be sys-
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tematically significant, except for one short-term interval for both assets. For
Bitcoin, it was the period between 2020 and 2022 where the negative impact
is evident, indicating that network clogging discourages users from conducting
transactions. On the contrary, for Ethereum it is the period after the bursting
of the ICO bubble until the beginning of 2020, where the positive impact of fees
is shown, indicating that the clogging of the site does not discourage investors
to continue buying, but instead drives the price.

We were also interested in what variables drive the fee dynamics. In particu-
lar, whether and how the price of the asset, the total number of active addresses
and volatility affect the fees. The fee dynamics of Ethereum and Bitcoin differ
significantly. The dynamics of Bitcoin is quite stable and there was found to
be a long-term and short-term influence of all the mentioned variables. The
effect of the price turned out to be rather negative, which is explained by the
transaction fee appreciation factor, i.e. the fees are denominated in the base
currency of the network (bitcoin), and therefore in case of a price increase the
same value of the fee might mean a significant increase in the fee in the fiat
base, which can motivate users to lower the fees. The positive effect of volatil-
ity is also practically omnipresent, which is very logical, since volatility drives
investors to buy/sell, which according to the law of supply and demand should
increase the demand for fast execution of the transaction, which can increase
the clogging of the network. The strongest driver is the positive effect of the
total active addresses, which is significant in the long and short term, which
implies that with increasing network activity and higher adoption rates, trans-
action fees increase. This finding is very important for the future discussion
about the sustainability of Bitcoin, because without a change in the protocol,
in the future, miners will only be incentivized by rewards in the form of trans-
action fees, i.e. the transaction fees will have to be large enough, otherwise the
network cannot survive, and therefore the found growing trend can play a sig-
nificant role. On the other hand, Ethereum’s transaction fee dynamics appear
to be rapidly evolving, less structured, and more influenced by one prevailing
factor rather than a mixture of them. From a short-term perspective, all of
the examined variables turned out to be significant, but none of them seems
to have a consistent effect. There is no structural difference in the effect of
individual variables compared to Bitcoin, except for the price effect, which is
the only factor that is significant in the long term. The price effect turns out to
be positive, which we attribute to the fact that the transaction fee appreciation
factor is mitigated in the case of Ethereum, primarily due to a different funda-
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ment which implicitly results in systematically higher activity on the network,
which might play a role in the higher demand for fast transaction execution,
which could exceed the fee appreciation factor.

We would also like to highlight the space for future extension of our work.
One extension could be the inclusion of additional explanatory variables that
could explain further variance in our model. One example might be the new
proxy for public interest, given that we believe that the influence of Google
searches is beginning to diminish and the cryptoasset discussion is moving to
platforms such as Twitter, Discord or Telegram, where it is much more diffi-
cult to extract relevant data. It might also be useful to include a proxy for
crosschain dynamics that could account for the substitution factor between
other cryptoassets. Furthermore, it can be assumed that transaction fees can
be determined by the average waiting time for transaction execution, which
is unobservable, although it is possible to estimate this variable according to
a theoretical model similar to Easley et al. (2019). Another logical extension
could be a higher data frequency, which could better describe the dynamic envi-
ronment of transaction fees and network clogging. Given that the relationship
between price and fiat has been shown to be quite strongly influenced by the
transaction fee appreciation factor, it may be beneficial to mitigate this factor
and perform an analysis with transaction fees in the fiat base. Finally, it is rec-
ommended to update the dataset and possibly add more cryptoassets. In this
respect, it is important to be aware of the circumstances of Ethereum transition
to the PoS consensus mechanism, and although transaction fees in version 2.0
still play the same role in principle, these intervals cannot be combined due to
the significantly different functioning of the whole network.
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Appendix A

Additional materials

All the necessary material to replicate the work, together with an R script to
retrieve data from google trends and a python connector to the Glassnode API
is publicly available and easily accessible at https://github.com/cedav12/
Impact-of-total-transaction-fees-on-the-price-of-Bitcoin-and-Ethereum

https://github.com/cedav12/Impact-of-total-transaction-fees-on-the-price-of-Bitcoin-and-Ethereum
https://github.com/cedav12/Impact-of-total-transaction-fees-on-the-price-of-Bitcoin-and-Ethereum
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