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Abstract: Kinetic Monte Carlo (kMC) is a stochastic method used to simulate
time evolution of a system. This algorithm finds application in various scientific
fields. It is also widely used in physics of thin films. In the thesis, we developed
models based on the kMC method to simulate growth and electronic properties
of thin film.

First, we developed the model to simulate the pulsed-laser deposition (PLD)
growth of multiferroic perovskite. The model was first validated with data from
literature and then used to clarify some of the phenomena observed during PLD
growth.

We innovatively explained the inter-layer transport crucial for film morphology
using natural configuration-based processes. In addition, we were able to identify
the cause of the experimentally observed decrease of surface roughness with
increasing laser frequency.

Second, we used the kMC method to study polaron diffusion with the aim to
further understand the charge transfer in doped hematite. We applied several
approximations of how dopants could affect the charge transfer and found that
they influence polaron diffusion globally rather than due to strong local effects.
Moreover, our model suggests that the diffusion process depends on the polaron
type. We also simulated the injection of hole polarons into doped hematite. Even
using the general simulation setup, we were able to reproduce the measurements
made during the injection process.
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Introduction
Monte Carlo (MC) methods are a family of algorithms which solve simulated
problems using random numbers. They find application in variety of disciplines
such as physics, especially in nuclear [Domain et al., 2004] and materials sci-
ence [Ohno, 1999, Kroese et al., 2014], biology [Manly, 2021] or even economics
[Brandimarte, 2014] and air traffic control [Lecchini Visintini et al., 2006]. The
first MC algorithms were developed in 1940’s and 1950’s [Metropolis et al., 1953]
in the form of Markov chain MC (MCMC) to simulate a stochastic process with
probability density known up to a constant of proportionality. The probability
density is represented by the Markov matrix that does not change during the
simulation. The MCMC is used when it is not possible to find independent states
of the stochastic process. Instead, the Markov chain of dependent states is formed
[Geyer, 1992]. However, since the Markov matrix is constant, it is not possible to
simulate the time evolution of the system. In order to study the time evolution,
different methods must be used.

The most straightforward method to simulate development of the system in
time is to solve the equations of motion for each particle of the system. This
approach is the foundation of the molecular dynamics (MD) method [Alder and
Wainwright, 1959]. The only necessary input to the simulation is the potential
used in the equations of motion. The time evolution and the dynamic behavior
of the system emerge naturally. The major disadvantage of the MD method for
simulation of large systems is that many particles must be simulated and their
positions and velocities calculated at each time step. The time-step must be
sufficiently short to reduce the error of the numerical integration.

To overcome the simulation domain and time step limitations, the MC based
algorithms are used to study the dynamical behavior of a larger system. For this
purpose, the kinetic Monte Carlo (kMC) algorithm was developed [Bortz et al.,
1975]. The kMC method was first used in 1966 to simulate radiation damage
annealing Beeler [1966]. Since then, the method has been successfully used in
a wide range of research areas including surface kinetics such as surface diffusion
and growth [Andersen et al., 2019].

The kMC solves the global dynamic behavior of the system without the
necessity to provide the exact evolution of each particle, although it is possible
in principle [Voter, 2007]. Unlike in the MD, where the simulation domain is
continuous, the usual implementation of the kMC method in physics of thin
films is represented by lattice models [Andersen et al., 2019]. These models
allow simulated units (atoms or molecules) to move only from and to predefined
locations. The shortest time step is constrained by the time necessary to move
from one lattice point to another. This process is usually limited by the diffusion
barrier and thermally activated. Even though the exact microscopic behavior is
not solved as precisely as in MD, it is possible to replicate measured macroscopic
quantities with great accuracy Šmilauer and Vvedensky [1993]. This property
of the kMC method is given by its stochastic nature. The capability to simu-
late larger system for long simulation times is not only an advantage but also
a necessity.

In the thesis, we focus on two different applications of the kMC model in
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physics of thin films. In Chapter 1, we give a brief introduction to the kMC
method. In Chapters 2 and 3, we introduce two different implementations of
the kMC model. In Chapter 2, we describe the simulation of the pulsed laser
deposition (PLD) growth. The difficulty of this simulation lies in the opposing
requirements. On the one hand, it is necessary to simulate each unit of the
deposited material in order to achieve the highest possible accuracy. On the
other hand, the growth temperature which influences the unit diffusion speed is
very high. To overcome this problem, we designed a new implementation of the
kMC method with infinitely fast diffusion. The results presented in this chapter
are published in Gabriel et al. [2020, 2022a].

In Chapter 3, we introduce an effective implementation of the kMC based
model for simulation of polarons diffusion. Polarons are quasiparticles which can
form in polarizable materials by interaction of charge carrier (electron or hole) and
lattice vibrations. Understanding their diffusion is of great importance for study
and subsequent enhancment of charge transfer in such materials. The model is
also used to simulate the interaction of polarons with dopants and defects inside
hematite and the injection of polarons into the hematite. At the time of finishing
this thesis the paper related to this topic is under review and can be downloaded
from the repository Redondo et al. [2023].
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1. Kinetic Monte Carlo
The Monte Carlo method is based on calculation of the system evolution by
making random changes. The simplest example is the Markov chain Monte Carlo
(MCMC) algorithm. In the MCMC algorithm, a new state is created by random
perturbation of an original state. If the new state is more suitable, for example
has lower energy than the previous one, it becomes the new original state. If it is
not more suitable, a new perturbation on the original state is made. This process
is repeated until the final state is reached.

To simulate the time evolution of the system, the kinetic Monte Carlo (kMC)
was developed. There are two main types of the kMC algorithm, which differ
in the choice of which new system configuration is accepted and how the list of
possible processes is constructed:

• Rejection kMC - Every time-step a process is chosen randomly from the list
of all the possible processes. The rate ri is calculated only for the randomly
selected process. The process is accepted with probability ri/rtot, where rtot

is an upper bound for the total rate. If the process is accepted, the time
advances. This algorithm is not suitable when there are many processes
with very low probability of being accepted and a few highly probable
processes. The advantage is that if rtot can be accurately estimated, only
one rate ri has to be calculated.

• Rejection-free kMC - Every time-step the list of all the possible processes is
created and their rates are calculated. From the list, a process is randomly
chosen. The advantage is that the process is always accepted and the
time advances. The disadvantage is that the list of all the rates has to
be calculated at every time-step for all the possible processes.

The rejection-free kMC is also called Bortz-Kalos-Lebowitz (BKL) algorithm
[Bortz et al., 1975]. In this work, we use only the BKL version of kMC.

1.1 Bortz-Kalos-Lebowitz algorithm
In this section, we introduce the kMC model. The goal of the model is to
calculate the time evolution of the simulated system. The simulation is split into
subsequent states between which the simulation time t is advanced by the time-
step ∆t. The time-step is a function of the total rate R which is characteristic
for each state of the system. The system is divided into a number of processes
which cover all the possibilities which can change the system during one time-
step. Each process is characterized by the partial rate Ri. The total rate is the
sum of all the partial rates. Only one process is chosen for each time-step. For
thermally activated processes, the rates Ri are function of the probability Pi of
overcoming a barrier Ei

Pi ∼ exp
(︃

− Ei

kbT

)︃
, (1.1)
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where kb is the Boltzmann constant and T is the simulation temperature. The
probability Pi can be transformed into the rate

Ri = R0 min
{︃

1, exp
(︃

− Ei

kbT

)︃}︃
, (1.2)

where R0 is a prefactor which describes the amount of attempts to overcome the
barrier per second. This interpretation of the prefactor means that if Ei < 0 the
process rate should be equal to the prefactor. Hence, the minimum function is
used in Eq. 1.2.

The kMC cycle can be split into the following steps:

1. Set the initial state of the system and initial starting time.

2. Determine the list of all the partial rates Ri, i ∈ 1, ..., N , where N is the
number of possible processes.

3. Calculate the sum of rates R =
i≤N∑︁
i=1

Ri.

4. Generate a random number X ∈ [0, R].

5. Choose the process i based on criteria
j<i∑︁
j=1

Rj < X <
j≤i∑︁
j=1

Rj.

6. Perform the process i.

7. Generate a random number ut ∈ [0, 1].

8. Advance time ti+1 = ti + ∆t, where ∆t = − log ut

R
. The ∆t follows Poisson

distribution with the mean value R.

9. If the end of the simulation has not been achieved, e.g., the preset total
simulation time has not been reached, go back to 2.
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2. Simulation of pulsed-laser
deposition
The ability to control and predict growth of epitaxial thin layers is of great
importance. The growth itself is governed by the kinetics of the growing species.
Unlike integrated characteristics such as the coverage of each growing layer, the
kinetics are difficult to extract from experiment. They can be obtained from
computer simulations which can be viewed as a complement to the experiment.
The experimental data are used to set the simulation parameters and then the
simulations can be used to fine tune the experiment to obtain specific properties
of the resulting film.

Depending on the binding energies of adatoms or molecules (hereafter we call
them units), a different types of growth are achieved. Three different types of
growth are usually distinguished:

• Volmer-Weber growth - the unit-unit binding energy is larger than the unit-
surface binding energy. 3D islands form on the surface and grow with
increasing mean thickness.

• Frank–Van der Merwe growth (Layer-by-Layer (LbL) growth) - the unit-
unit binding energy is smaller than the unit-surface binding energy. In the
ideal LbL growth mode, the deposited material forms a 2D layer until it
is fully covered. After that, a new layer starts to grow. Note that the
ideal LbL growth cannot be achieved [King and Woodruff, 1997]. In the
thesis, we consider a less strict definition of the LbL growth where several
not-fully-covered layers can coexist.

• Stranski–Krastanov growth - after the formation of several monolayers of
units, 3D islands start to grow on the surface.

The LbL growth is often the desired growth mode in experiments and thin
films preparation because it leads to homogeneous and smooth films. There are
many materials for which films can be prepared by the LbL growth. A scien-
tifically important group are so-called layered perovskites which have the same
general formula ABO3, where A and B are metal cations and O is oxygen. The
A and B cations can be atoms or molecules. Depending on their composition, the
layered perovskites offer a wide range of interesting properties, such as supercon-
ductivity [Maeno et al., 1994], multiferroism [Li et al., 2016], and are suitable for
use in different applications such as photovoltaics [Park, 2015, Wang et al., 2019,
Tailor et al., 2020].

Multiferroic materials exhibit simultaneously two of the ferroic properties,
ferroelectricity, ferromagnetism, ferrotoroidicity or ferroelasticity. The combina-
tion of ferroelectricity and ferromagnetism is rarely found in nature. A material
exhibiting both properties could enable significant advancements in electric-field-
driven magnetic memories [Ederer and Fennie, 2008], magnetic field sensors, and
tunable microwave filters [Hu et al., 2016]. Ferroelectricity is usually present for
ions with empty d shells. The magnetic order is formed mostly in materials with
partially filled d shells [Hill, 2000]. An example of room temperature multiferroic
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that exhibits both ferroelectricity and ferromagnetism is a perovskite - hexagonal
LuFeO3 [Wang et al., 2013]. For epitaxial growth of single-crystalline thin films
of LuFeO3, the pulsed-laser deposition (PLD) is frequently used [Zhang et al.,
2017, Bauer et al., 2020].

The PLD [Chrisey and Hubler, 1994] is a standard method used for deposition
of metals and more complex compounds. Pulsed laser is used for repeated heating
of a target from which the material for growth is evaporated. A plume of very
hot atoms or molecules (units) forms and carries the material to the substrate
where growth occurs. The adjustable parameters of the PLD growth are:

• Laser fluence that determines the target temperature and thus the deposi-
tion rate,

• Laser frequency that governs the length of the period between two deposi-
tions,

• Substrate temperature that affects the growth temperature and all the
processes on the substrate.

The non-continuous nature of deposition and the very high temperature of
impinging units and hence substrate are the main features of the PLD method
and also the biggest obstacles of its simulation. Another limiting factors are the
very short timescales in which a large number of units impacts the substrate and
very high diffusion speed compared to the long timescales of the entire growth.
In order to simulate the PLD growth, it is necessary to overcome these opposing
demands on simulation time scales.

The PLD growth was investigated in situ by the X-ray scattering methods
during growth and by microscopy methods when growth was completed [Christen
and Eres, 2008]. Frequent in situ methods are the surface X-ray diffraction and
grazing incidence small-angle X-ray scattering (GISAXS). The GISAXS method
is suitable for studying the evolution of the monolayer islands growth and surface
roughness development during growth [Ferguson et al., 2009]. The surface X-ray
diffraction measurements are very sensitive to surface structure by measuring the
scattered X-rays and they can achieve a true atomic resolution. Their very high
sensitivity makes them very useful for investigation of LbL growth [Christen and
Eres, 2008, Zhang et al., 2017, Vlieg et al., 1988]. The in situ methods are usually
complemented by ex situ microscopy methods, e.g., atomic force microscopy
(AFM) and scanning tunneling microscopy. Both methods are based on scanning
the surface with a sharp tip. The resulting data give information about the
surface morphology and associated parameters such as surface roughness.

A suitable model can be used to further study of the measured data. Several
models based on different computational techniques were developed for PLD.
One of them is the rate-equation based models [Venables, 1973, Gabriel et al.,
2022b]. In this approach, a set of differential equations is solved in each time-
step to determine the time evolution of layer coverages. The disadvantage of this
approach is that it is not possible to calculate the morphology at a given time. On
the other hand, it is possible to simulate the measured surface X-ray diffraction
intensity (SXRD) time evolution.

Another possible approach is to use the kMC based model [Gabriel et al.,
2020]. Unlike the rate-equations approach, the exact morphology and SXRD can
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be extracted from the model at each time-step. However, the simulation time is
significantly increased. In physics of thin films growth, kMC is used in a wide
range of applications. A common way to simulate growth is by modelling the
surface diffusion of units [Zhu et al., 2010, Zhang et al., 2008]. In this model,
a diffusion barrier is present between each two cells and each unit has its own
probability of diffusion at each time-step according to the current configuration
of units on the surface. More complex models including the chemical processes
needed to form diatomic molecules on the surface were also developed [Weckman
et al., 2018]. Another possible improvement of the classical diffusion model is to
simulate the entire path through plasma from the source of units to the substrate
and then calculate the surface diffusion [Rashidian Vaziri et al., 2011]. However,
for simulations of the perovskite growth, these two improvements are not suitable
due to many possible chemical processes which can occur during growth. For the
PLD growth simulations, the kMC model with diffusion of units has very limited
use. So far, only very small surfaces ranging from 50×50 to 100×100 adsorption
spots for submonolayer thicknesses have been calculated [Huang, 2018, Zhu et al.,
2010, Zhang et al., 2008]. These scales are not sufficient for studying the SXRD
evolution during growth. For such study, the substrate size has to be larger than
the coherence length of the X-ray source and the simulation duration has to be
long enough to include many monolayers thick growth.

In the next section, we present our kMC algorithm which overcomes the
limitations mentioned above and simulate the PLD growth. First, we briefly
describe the experimental setup and the available experimental dataset. We use
the data measured by Eres et al. [2011] to verify the model results. Then, we
use the model to describe the dependence of growth parameters such as SXRD
or surface roughness on the laser frequency [Gabriel et al., 2022a].

2.1 Experiments used in simulations
The model was developed in the framework of an international collaboration be-
tween Charles University, Karlsruhe Institute of Technology (KIT) and Masaryk
University focused on the PLD growth of LuFeO3. Before describing the kMC
model, we present the experimental constraints for the model. In order to better
understand growth, it was necessary to simulate the PLD growth of hexagonal
perovskites over hours of deposition time to obtain a sufficient number of grown
monolayers. The model had to be preferably kMC based to replicate the mea-
sured SXRDs and to study how the PLD parameters influence growth. Due to
the simulations of SXRDs, the substrate dimensions had to be larger than the
correlation length of the used X-ray source which was over 1µm.

To make sure that the model is able to reproduce the measured data correctly,
it had to be calibrated using the data from literature. For this task, the data
published by Eres et al. [2011] were chosen because the article contains both
the SXRD measurements and the information about the layer coverage which are
suitable for the model calibration. The authors studied PLD growth of hexagonal
perovskite SrTiO3 with the deposition frequency of 0.02 Hz. During the growth,
the SXRD intensity I(t) was measured. The intensity can also be calculated as
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a function of the layer coverages θn(t)

I (t) =
[︄ ∞∑︂

n=0
(−1)n (θn (t) − θn+1 (t))

]︄2

. (2.1)

The authors assumed that there were at most three not fully covered layers
(substrate θ0 = 1 and two growing layers θ1, θ2) at any time. If the lower growing
layer θ1 was fully filled, a new layer began to grow. The increase of the combined
coverage of the two growing layers is equal to the number of monolayers grown per
laser pulse, i.e., ∆θ1 + ∆θ2 = 1/p, where p is a number of pulses per monolayer.
From the above assumptions Eq. 2.1 can be simplified to

I (t) = [θ0 + 2θ2 (t) − 2θ1 (t)]2 , (2.2)

from which the authors extracted the time evolution of coverage of each layer.
Figure 2.1 shows an example of both SXRD and layer coverage calculated from the
SXRD. Figure 2.2 shows the evolution of the layer coverage after one laser pulse.
The calculated data are fitted by a biexponential profile with characteristic times
τ1 and τ2, which according to the authors leads to the best fit of the data. Their
explanation of the biexponential behavior was that there were two subsequent
components of the inter-layer transport - fast and slow.

Based on the above results, two criteria were established to validate our kMC
model. First, the model has to be able to reproduce the measured SXRD with as
few parameters as possible. Second, the biexponential behavior of the inter-layer
transport has to be preserved.

Figure 2.1: The time evolution of SXRD and the selected layer coverarages.
Adopted from Eres et al. [2011].

2.2 The kinetic Monte Carlo model for simula-
tion of the pulsed-laser deposition

The kMC method is quite frequently used for simulations of the early stages
of thin films growth. Typically, models include diffusion of units on the surface.
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Figure 2.2: One selected coverage evolution after deposition. The dashed
line shows fit of the measured data by the biexponential function with the
characteristic times τ1,2. Adopted from Eres et al. [2011].

With this approach, however, only sub-monolayer or very small dimensions of the
substrate can be simulated. To reproduce the PLD growth experiment, it was
necessary to simulate at least a square with an edge length of one micrometer
for approximately two hours of deposition with 5 Hz laser frequency. During
deposition, more than 100 monolayers of material were deposited on the surface.
Thus, the standard diffusion model was not sufficient for this application.

To overcome limitations of the diffusion kMC model, simplifications had to
be made. The most fundamental simplification was to consider the system in
the limit of fast diffusion and to replace diffusion by a unit gas characterized
by its density on each layer. The gas acts as a source of non-condensed units.
At the same time, this approximates infinitely fast diffusion because units can
move between two cells on the same layer in an infinitely short time. Then, four
processes were implemented (see Fig. 2.3):

• Deposition, Fig. 2.3 b),

• Condensation on the surface from the gas Fig. 2.3 c), d),

• Dissolution of condensed units back to the gas, Fig. 2.3 e), f),

• Inter-layer transport, Fig. 2.3 g).

The deposition process (Fig. 2.3 b)) is controlled only by time. After each
deposition, the gas density on each layer is increased proportionally to the ratio of
the uncovered area to the total area. The total number of units in each deposition
is given by the deposition rate and is constant throughout the simulation.

The condensation from the gas (Fig. 2.3 c), d)) is considered to be a barrier-less
process, EC = 0 and thus RC = R0 (see Eq. 1.2). The probability of condensation
is the same for every cell. The surface geometry is fixed during the growth, and
condensation occurs on top of the existing condensed units.

The dissolution of the condensed units back to the gas (Fig. 2.3 e), f)) is
a thermally activated process. For each cell, the rate of this process is determined
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Figure 2.3: Scheme of the processes included in the model. a) is the original
state with unit gas densities ρi on layer i represented by partially filled hexagons
(blue filling) and condensed units Uj, j denotes the number of neighbors of the
unit. b) shows the deposition where the density of the unit gas is increased on all
the uncovered layers. c) and d) show the condensation from the unit gas which
is the barrier-less process (the probability is the same for all the cells on given
layer) and decreases the unit gas density on a given layer. The newly created
units are denoted as U ′

j. e) and f) show the dissolution back to the unit gas - its
probability depends on the number of neighbors j and the dissolution increases
the unit gas density on given layer. g) shows the inter-layer transport where the
unit gas density is decreased on a given layer and increased on the layer below.
Adopted from Gabriel et al. [2020].

by the binding energy to the lower layer or substrate ES and by the binding
energy to the unit’s neighbors EN , i.e. ED = ES + n · EN where n is the number
of neighbors.

The inter-layer transport (Fig. 2.3 g)) is a thermally activated process, the
barrier of which is described by the Ehrlich-Schwoebel (ES) barrier [Ehrlich and
Hudda, 1966, Schwoebel and Shipsey, 1966]; EJ = EES. The rate is proportional
to the number of step-edge positions. Details about the model implementation
can be found in Section 2.4.
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2.3 Simulation results
In this section, we briefly summarize the results obtained from the model. We
show that the limit of fast diffusion using the unit gas and the chosen parameters
are sufficient to imitate the data from the PLD growth experiment, including the
single shot time evolution of layer coverage, i.e., the inter-layer transport. We
use the model to show that the apparent increase of the surface smoothness with
increasing laser frequency is due to an increase of the surface temperature. The
data used in this section are published in Gabriel et al. [2020, 2022a].

2.3.1 Validation of the model
To validate the model, a set of simulations with different barriers and laser
frequencies was performed. Using this set, the dependence of surface roughness
on morphology and laser frequency was studied.

First, we discuss the effect of barriers. A comparison of the morphologies and
the corresponding SXRDs is shown in Fig. 2.4. Figure 2.4 a) shows the reference
case which was calculated for the set of energies ES = 0.5 eV, EN = 0.5 eV and
EES = 0 eV. The other cases are compared against it. The barrier values were
chosen as low as possible to show their influence on the results. Lower ES and
EN could not be simulated due to the rapid increase of simulation time with
decreasing barriers. All the simulations shown in Fig. 2.4 were performed with
the laser frequency of 5 Hz and the growth rate of 0.0135 monolayers per second
(ML/s). In the reference case, the SXRD oscillates between zero and a value close
to one. Together with the plotted layer coverages, it can be seen that the growth
is close to perfect LbL growth. However, since the SXRD does not reach exactly
one at its maximum and there is a small but visible non-zero layer coverage before
the previous layer is fully filled, there is no ideal LbL growth. The morphology
of the reference case shows the growth of small faceted islands which begin to
coalesce. In order to simulate ideal LbL growth using the presented model, the
surface and neighbor binding energies would have to be set to be as close to zero
as possible. However, this barrier setup cannot be simulated in finite time.

An example of the effect of increased surface binding energy ES = 0.9 eV is
shown in Fig. 2.4 b). This change leads to a decrease of the size of the islands.
This is due to the fact that the higher the surface binding energy, the more
stable are nucleation centers consisting of one or two adjacent units. The SXRD
evolution is similar to the reference case. However, the value it reaches in the
peak is lower than that of the reference case. This suggests that the next layer
appears earlier. Similar findings can be made when the neighbor binding energy
is increased to EN = 0.9 eV (Fig. 2.4 c)). In this case, the islands and the values
of the SXRD maxima are even smaller than in the previous case. The effect
of increased neighbor binding energy is stronger because it is multiplied by the
number of neighbors in the dissolution rate calculation which is an exponential
function of the barrier.

If the Ehrlich-Schwoebel barrier is introduced to the model, the resulting mor-
phology and subsequently calculated SXRD change significantly. Figure 2.4 d)
shows case with a non-zero ES barrier. In this case, the growth is clearly
3D. Naturally, the layer coverage in the right panel of Fig. 2.4 d) shows that
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EES=0.0 eV, En = 0.5 eV, Es = 0.5 eV

EES=0.0 eV, En = 0.5 eV, Es = 0.9 eV

EES=0.0 eV, En = 0.9 eV, Es = 0.5 eV

EES=0.2 eV, En = 0.5 eV, Es = 0.5 eV

a)

b)

c)

d)

Figure 2.4: Morphologies and SXRDs for various binding energies and Ehrlich-
Schwoebel barriers (listed under each case), blue line is 0.5 µm long, the size of
one molecule is considered to be 0.533 nm. The size of the inset is 500 × 500
units, i.e., 266.5 × 266.5 nm. The right panels show the SXRDs (black line) and
layer coverage (colored lines) evolution. Adapted from Gabriel et al. [2020].

after a certain time from the start of the simulation, many active layers grow
simultaneously.

Next, we present the behavior of the model when the laser frequency is
changed. In this case, the growth rate, i.e., number of monolayers per second, is
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kept constant. The case where the amount of material per pulse is constant is
discussed later. In this case, the deposition rate was 0.0135 ML/s. The studied
laser frequencies were 5 Hz, 0.5 Hz and 0.05 Hz. The process barriers are set to
be the same as in the reference case presented in Fig. 2.4 a). Figure 2.5 shows
the results for the changed laser frequencies.

f = 0.5 Hz

f = 0.05 Hz

a)

b)

Figure 2.5: Morphologies and SXRDs for various laser frequencies (listed under
each case), blue line is 0.5µm long, the size of one molecule is considered to
be 0.533 nm. The size of the inset is 500 × 500 units, i.e., 266.5 × 266.5 nm.
The right panels show the SXRDs (black line) and layer coverage (colored lines)
evolution. Adapted from Gabriel et al. [2020].

For the laser frequency of 0.5 Hz (Fig. 2.5 a)), morphology and SXRD behavior
are similar to the reference case. But there are slight differences. The islands are
smaller and more connected. The SXRD has a similar time evolution, but the
maxima reach lower values. In fact, the SXRD is more comparable to the SXRDs
produced by increased surface or neighbor binding energy. This may be due to
the fact that more units are deposited at each time-step for this laser frequency.
It means that the density of free unit gas on each open layer is higher, leading to
an increased probability of condensation of units next to each other and formation
of a stable island. The same argument can be used to explain why the islands are
smaller on average. One distinct difference from the results in Fig. 2.4 is that each
layer starts growing significantly earlier. The number of deposited units on each
layer is larger due to the higher number of units deposited in each pulse. Thus,
the probability of forming a stable island is sufficiently high even on partially
covered layers.

Decreasing the laser frequency to 0.05 Hz (Fig. 2.5 b)) leads to significantly
different results compared to the previous ones. The first major difference is the
completely different SXRD evolution, showing a clear pulse pattern. After each
pulse, the SXRD decreases sharply and then increases even faster. The decrease
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is caused by the formation of a large number of tiny islands. The increase is due
to the island dissolution and reaching an equilibrium. In the equilibrium, all units
are condensed on the surface and bound to a sufficient number of neighbors. The
SXRD shows that the equilibrium is reached rather fast, in a few seconds. The
second significant difference from the previous results is in morphology. Note,
that the deposition rate 0.0135 ML/s means that about 0.27 ML of units are
deposited per pulse. The gas density on each layer is very high and thus there is
a high probability of forming a large number of stable nucleation centers. Hence
all the units are bound to other units before they are able to form circular faceted
islands as in the previous cases.

2.3.2 Simulations of inter-layer transport
Eres et al. [2011] studied growth of SrTiO3 using PLD. From the SXRD measure-
ments, the authors were able to extract the time evolution of a single layer during
growth. Figure 2.2 shows an example of the time evolution with a biexponential
fit

θ(t) = A1 exp(−(t − t0)/τ1) + A2 exp(−(t − t0)/τ2) (2.3)
with the time constants τ1 = (0.9 ± 0.1) s and τ2 = (12.4 ± 0.6) s and constants
A1, A2. Since two different time constants are involved, the authors conclude that
there are two types of the inter-layer transport – slow and fast – each operating
on different timescales.

Using our model, we provide an alternative explanation that there is only one
inter-layer transport process which is driven by the dissolution of weakly bound
units (units with less than two neighbors) and subsequent transport to lower
layers. We hypothesize that the time constants of the biexponential behavior are
tightly connected with the barriers used in the model.

To prepare the simulations, all the necessary model parameters had to be
determined. First, the temperature T , laser frequency f , and deposition rate D
were set to the same value as in Eres et al. [2011], i.e., T = 940 K, f = 0.02 Hz,
D = 0.083 ML/s. Second, the jump to lower layer was considered barrier-less
- the Ehrlich-Schwoebel barrier EES = 0 eV. Finally, the surface and neighbor
binding energies (ES and EN) were calculated using the time constants τ1 and τ2
determined from the measured data, assuming that the ES barrier is not present.
In this case, the jump is almost instantaneous, and the energies can be obtained
from

τ−1
1 = R0 exp

(︃
− Es

kbT

)︃
, (2.4)

τ−1
2 = R0 exp

(︃
−ES + EN

kbT

)︃
. (2.5)

By solving these relations, we found the following values of the energy barriers:
ES = 2.05 and EN = 0.2 eV.

The results with this barrier setup are presented in Fig. 2.6 a). The time span
of both SXRD and layer coverage is the same as in Fig. 2.2, which shows the
experimental data. The simulated SXRD agrees well with the experimental data.
The small differences may be due to the unknown state of the substrate at the
start of the experiment (whereas the substrate is completely flat at the beginning
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a) b)

c)

d) e)

EES = 0.0 eV, En = 0.2 eV, Es = 2.05 eV

f)

EES = 0.1 eV, En = 0.2 eV, Es = 1.95 eV

L1

SXRD

L2

L3

L1

SXRD

L2

L3
L4

L4

Figure 2.6: a), d) The simulated SXRD for the same part of deposition as in
Fig. 2.1. The L1–L4 mark four different growing layers. The dashed square
indicates the part of the data shown in the detail of single shot transient of the
layer coverage increase after deposition (b) and e)) with the biexponential fit
proposed by Eres et al. [2011]. c), f) The sample morphology obtained from the
simulation. The blue bar indicates 100 nm. Adopted from Gabriel et al. [2020].

of the simulation). The layer coverages are also in very good agreement with the
experimental data.

The time evolution of the layer coverage after one pulse is shown in Fig. 2.6 b).
The associated step is marked with the dashed square in Fig. 2.6 a). The coverage
data were fitted by the biexponential function 2.3 with the time constants τ1 and
τ2 set to the same value as in the experiment. The only free parameters were
the scaling constants A1 and A2. The fit describes the simulation results very
well. Therefore, the biexponential behavior can be obtained using the kMC model
without any assumptions about the inter-layer transport processes. The fast and
slow processes proposed by Eres et al. [2011] could be dissolution of weakly bound
units and their jump to the lower layer. The two different timescales are then
given by the surface and neighbor binding energies.

However, there is some ambiguity in the energy barriers. If the ES barrier is
considered nonzero and the neighbor binding energy is decreased accordingly, the
SXRD and layer coverage profile look like in Figs. 2.6 d) and e), where a small ES
barrier is introduced. However, the introduction of the ES barrier has significant
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effects on the resulting morphology (compare Fig. 2.6 c), f)). When the ES barrier
is present (Fig. 2.6 f)), the islands are significantly smaller. To obtain the model
parameters including the ES barrier, other morphological characteristics would
have to be known from the experiment, such as the evolution of average island
sizes or surface roughness. With these data, it would be possible to tune the
model parameters to successfully replicate all the SXRD, inter-layer transport
behavior and morphology.

2.3.3 PLD growth of LuFeO3 – experiments used for kMC
simulations

After the model was tested, it was used to improve our understanding of the
experimentally measured data. The experiment was performed at the PLD
facility in KIT. LuFeO3 was grown on yttria-stabilized zirconium using four
different laser frequencies f = 1, 2, 3, and 5 Hz. After the growth was completed
(approximately 140 monolayers), images of the resulting surfaces were taken using
AFM (Fig. 2.7).

0 

4

1 

2 

3 

(a) (b) (c) (d)

Figure 2.7: AFM images of morphologies for frequencies (a) 1 Hz, (b) 2 Hz, (c)
3 Hz, and (d) 5 Hz. The colorbar denotes the height in nanometers, the lateral
image size is 1 µm. Adopted from Gabriel et al. [2022a].

All the samples are very smooth. The maximum measured height difference
is 4 nm and the root mean square roughness is 1.5 nm (1 Hz), 0.4 nm (2 Hz), and
0.6 nm (3 Hz and 5 Hz). For the 1 Hz laser frequency, the grains are protected
from coalescence by deep valleys. Steps on the surface are present for the 3 Hz
and 5 Hz samples.

Black line in Fig. 2.8 a) shows the in situ measured SXRDs for each frequency.
The colored lines in Fig. 2.8 a) show the calculated SXRD reconstructions

I(t) = const ·

⃓⃓⃓⃓
⃓⃓ N∑︂
j=1

θj(t)(−1)j

⃓⃓⃓⃓
⃓⃓
2

, (2.6)

obtained under the assumption that the j-th layer coverage θj(t) can be approx-
imated by hyperbolic tangent

θj (t) ∼
1 + tanh

(︄
t − tj

wj

)︄
2 , (2.7)

where tj is the time at which the j-th layer is half-filled and wj is the θj(t) profile
width. The reconstructed SXRD matches well the original SXRD. Hence, we
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a) b) c)

d)

e)

Figure 2.8: a) In situ measured SXRDs for four laser frequencies 1, 2, 3, and 5
Hz. For each, the first 20 hyperbolic tangent profiles were fitted (colored lines)
(Eq. 2.7). b) The relative widths pj of the hyperbolic tangent profiles and their
time evolution. The dashed lines denote dependence tβ, β = 0.3, 0.5, 0.7. c)
The growth rate r. d) The width of 20th profile p20. e) The growth exponent
β as a function of the laser frequency. For f = 2 Hz the exponent could not be
determined. Adopted from Gabriel et al. [2022a].

assume that the calculated coverages are close to the real ones. Figure 2.8 b)
shows the time evolution of relative profile widths pj = wjrj, where rj = 1/(tj −
tj−1) is the growth rate. The denominator is the time elapsed between the half-
filling of two subsequent layers.

The scaling of the subsequent profile widths pj was found to obey a power law,
i.e., pj ∼ tβ (Fig. 2.8 e)). β is a critical exponent called the growth exponent and
describes the interface width which is directly related to roughness [Barabási and
Stanley, 1995]. For less than monolayer thick, the Poisson growth dominates and
β = 0.5. The interface width grows as tβ until the saturation time tx is reached.
Then the interface width remains constant for the rest of the growth and is called
the saturation width wsat(L). Its dependence on the size of the simulation system
L follows the power law wsat(L) ∼ Lα, where α is the second critical exponent
called roughness exponent. The third critical exponent is the dynamic exponent
z, which describes when the system reaches the saturation time tx ∼ Lz. It can
be shown that z = α

β
[Barabási and Stanley, 1995].

2.3.4 PLD growth of LuFeO3 – kMC simulations
To further study the influence of the laser frequency, the presented kMC model
was used. The model parameters were set as in the experiment, i.e., the laser
frequencies f = 1, 2, 3, and 5 Hz; growth temperature T = 850◦C. From the
distance between two SXRD peaks, the deposition rate was determined to be
0.00258 ML/pulse. The simulation time was equivalent to 40000 laser pulses.
The last set of parameters were the neighbor and surface binding energies and
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ES barrier. In order to determine them, an extensive set of simulations was made
for the laser frequency f = 5 Hz to find the best SXRD match.

The simulated and experimental SXRD envelope functions were compared to
determine the match. First, the decreasing trend at the beginning of the growth
had to be removed from the measured data. This decrease is not physical and is
caused by the slight shift of the detector in the experimental setup. The trend
removal was done by subtracting the moving average of the data and removing
the first peak to reduce the influence of the substrate. Then, the local maxima
and minima were found and fitted by exponential functions. The characteristic
decay time obtained from the fits was compared with the simulated data which
were processed in the same way as the experimental data. The final set of
parameters is as follows: EN = 0.66 eV, ES = 1.30 eV, EES = 0.135 eV.
The results obtained for this set of parameters are presented in Fig. 2.9. The
evolution of the layer coverages (Fig. 2.9 a)) shows an increase of the widths of
the subsequent profiles. Figure 2.9 b) presents the simulated SXRD obtained
from the layer coverages using Eq. 2.6 and is compared with the measured
SXRD (Fig. 2.9 c)). Figure 2.9 d) shows the resulting morphology after the
the simulation is completed. The behavior of the selected layer coverage after
the pulse is in inset Fig. 2.9 e). Right after the deposition, the coverage sharply
increases. Then, it slowly decreases until the next deposition of units occurs. The
decrease is the result of dissolution and jumps of units to lower terraces.

b) c)

a) d)

e)

Figure 2.9: a) The time dependencies of layer coverages for the first 1000 seconds,
b) the simulated SXRD, c) the experimentally measured SXRD, and d) the
resulting morphology at the end of the simulation (8000 seconds). The inset
e) shows behavior of the layer coverage after one pulse, the vertical dashed lines
mark the deposition times and the horizontal dashed line marks the layer coverage
at the last point before the next pulse. Adopted from Gabriel et al. [2022a].

The obtained set of parameters was used for all the simulations for different
laser frequencies. Figure 2.10 shows the simulation results comparable to the
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measured data in Fig. 2.8. Figure 2.10 a) contains the simulated SXRDs for each
frequency. Note, that the vertical axis scale is different compared to Fig. 2.8 a)
which is due to the different scaling constant (see Eq. 2.6). The subsequent profile
widths are in Fig. 2.10 b). Figure 2.10 c) shows the width of 20th profile p20 and
in contrast to Fig. 2.8, the panel showing the growth rate r is not present because
it is fixed in the simulations.

a) b)
c)

d)

Figure 2.10: a) The SXRDs for simulations with different laser frequencies f =
1, 2, 3, and 5 Hz. b) The relative widths of individual layer coverages fitted by
hyperbolic tangent profiles. c) The characteristic profile width p20 as a function
of frequency and d) the evolution of β with frequency. Adopted from Gabriel
et al. [2022a].

In the following section, we compare the experimental data (Fig. 2.8) with
the data obtained from the simulations (Fig. 2.10). An important note which is
necessary to understand the similarities and differences between these two data
sets is that model parameters were determined for the laser frequency f = 5 Hz.

We start by comparing the scaling exponent β behavior (Fig. 2.8 e) and
Fig. 2.10 d)). For f = 5 Hz, β has similar values in both the experiment
and simulations. For lower frequencies, however, its behavior is significantly
different. In the simulations β decreases, i.e., the surface is smoother, while in
the experiment β increases. The explanation of this model behavior can be seen
from Fig. 2.9 e). In the simulation, the layer coverage is not static during the
pulses, the units tend to dissolve until the next plume of material arrives. This
effect is physical, i.e., it is determined by the rates of dissolution of weakly bound
units, and it is stronger the longer time period between pulses is. As the laser
frequency decreases, the system gets closer to equilibrium before the next pulse.
This effect leads to smoother surfaces. The same behavior as for the scaling
exponent β can be observed for the characteristic profile width p20 (Fig. 2.8 d)
and Fig. 2.10 c)). Again, the slope of p20 in the experiment and in the simulations
are also completely opposite. For 5 Hz laser frequency, the SXRDs are similar in
the simulations and experiment. Several gradually decreasing oscillations occur
before the SXRD becomes a straight line with small fluctuations. However, for the
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lower frequencies, the SXRDs are again very different. For 1 Hz laser frequency,
the simulated SXRD oscillates for the entire time period shown which is opposite
to the experiment where the SXRD is close to that measured for 5 Hz laser
frequency.

The comparison of the simulated and measured data indicates that the laser
frequency itself is not the governing factor which drives the experimentally ob-
served decrease of roughness for higher laser frequencies. This factor can be
determined from the model parameters, assuming that the model has all the
parameters necessary to simulate such behavior.

The results obtained from the model depend on the rates of the individual
processes since these determine which process is chosen at each time-step. The
rates depend on the constant prefactor and εi (see Eq. 1.2 where εi = −Ei/(kbT )).
Based on the previous findings, the exponent εi changes with the laser frequency
f . If it was constant, the simulated and measured behavior of β would be the
same. εi is a function of the Boltzmann constant and two variables - the energy
barrier Ei and the growth temperature T . We assume that there is no physical
reason why the energy barriers Ei should depend on f . If the opposite were true, it
would mean that the most fundamental processes on the surface are dependent on
some external events. After eliminating the parameters that cannot be affected
by the laser frequency, the only remaining parameter is T , which is set in the
experiment.

T [K]

a)

d)

b)
c)

Figure 2.11: a) The SXRDs for simulations for chosen temperatures T = 825,
840, 850, 860, and 875◦C. b) The relative widths of individual layer coverages
fitted by hyperbolic tangent profiles. c) The characteristic profile width p20 as a
function of temperature and d) the evolution of β with temperature. Adopted
from Gabriel et al. [2022a].

We propose that the increase of growth temperature drives the experimentally
observed decrease of surface roughness. To prove this idea, we performed a study
similar to that presented in Fig. 2.10, but with variable temperature. The results
are shown in Fig. 2.11. The first supporting argument for this idea can be derived
from Fig. 2.11 d). The figure shows that the scaling exponent β decreases with
increasing growth temperature. If we compare Figs. 2.11 a) and 2.10 a), we can
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see that the increase of temperature has a similar effect to the decrease of laser
frequency. This is in agreement with previous findings that longer time between
pulses (or generally higher rates which technically scale each time-step and allow
more processes in the same time period - see Eq. 1.2) leads to the decrease of
surface roughness.

In the experiment, the temperature is usually set on the back side of the
substrate using a thermocouple or laser heating. This arrangement does not
guarantee that the front side where the film grows will have the same set temper-
ature. Especially for PLD, the impinging units are significantly hotter than the
substrate. The heat of the impinging units can significantly increase the surface
temperature which is the true growth temperature. Using our simulations, we
determined the difference between the ”experimental” and ”true” temperatures
for the case where the laser frequency is f = 5 Hz. For this study, we repeated
the model parameter determination procedure used in the case of f = 5 Hz for f
= 1 Hz.

The effect of the temperature is demonstrated in Fig. 2.12. Both Figs. 2.12 a)
and b) are split into two halves. The results of simulations with the parameters
obtained from the experiment for f = 5 Hz is in the upper and for f = 1 Hz in the
lower half. The SXRDs and morphology comparisons are shown in Fig. 2.12 a)
and Fig. 2.12 b), respectively. It can be seen that the growth is much more
different from the LbL growth in the lower set of figures. If we compare these
data with those in Fig. 2.11, we see that the f = 1 Hz and f = 5 Hz cases
are similar to the cases with low and high temperature, respectively. From the
obtained barriers, we determined that the effective temperature increase is about
7 % for f = 5 Hz. Because the rates are an exponential function of temperature,
the increase of process rates is much more pronounced - the rate of jump down
increases by about 9 %, the rate of dissolution of units without neighbors increases
approximately 2.5 times and with one neighbor approximately 3.75 times.

a)

b)

Figure 2.12: a) The comparison of SXRDs and b) morphologies for the nominal
temperature obtained from 5 Hz experimental data (upper half) and for the
corrected temperature obtained from 1 Hz experimental data (lower half).
Adopted from Gabriel et al. [2022a].

The dependence of the surface roughness and the average island diameter on
the temperature and laser frequency is in Fig. 2.13 a) and b), respectively. The
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roughness behavior confirms our previous findings deduced from the behavior of
the scaling exponent β, i.e., the roughness decreases with increasing temperature
and increases with increasing laser frequency. This finding is consistent with the
example shown in Fig. 2.9 e). The layer coverage reaches equilibrium throughout
the time period between two pulses. If the temperature is increased and the
laser frequency is decreased, the system gets closer to equilibrium before the next
pulse. The average island size is calculated by autocorrelation of the given surface
and determination of the correlation length. The dependence of the correlation
length on both parameters is similar to that of the roughness.

a) b)

Figure 2.13: Dependence of the simulated roughness and correlation length on
temperature a) and laser frequency b). The lines are guides for the eye. Adopted
from Gabriel et al. [2022a].

In this chapter, we presented the kMC model for simulations of the PLD LbL
growth. We tested the model using the data from literature and applied it
to the data measured by the research group at KIT. We used the model to
provide an alternative explanation of the characteristic times of the inter-layer
transport. We found that the previously proposed solution with two competing
mechanisms of the inter-layer transport can be simplified if dissolution of units
and their subsequent jump to a lower layer are considered. Moreover, we found
that the effect of substrate heating may be responsible for the experimentally
observed decrease of surface roughness. This effect can be demonstrated by
calculation of the scaling exponent β. To fully understand and quantify this,
we also calculated the dependence of the surface roughness and average island
diameter on temperature and frequency.

2.4 Implementation details
The standard kMC model for simulations of thin films growth includes the dif-
fusion of more or less mobile units on the surface. A more detailed approach
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includes the kinetics of atoms, their chemical reactions and bond formation. The
main issue of the standard models is their time complexity.

The time complexity is caused mainly by the large number of atoms for which
diffusion has to be simulated. The diffusion itself is a random walk of atoms
which means that many steps are needed to reach a stable configuration. This
effect is stronger the higher the adatoms temperature is. Additionally, Maksym
[1988] showed that when diffusion is included, the best achievable scaling of the
kMC selection algorithm is N3/2.

In order to simulate sufficiently large simulation domains, both these obstacles
have to be overcome. First, we address the ”diffusion problem”. The solution and
introduction of the unit gas was described in detail in Section 2.1. The unit gas
approach removes the necessity to simulate many steps of random walk where
the unit goes back and forth in a very limited space, only slowly reaches another
unit with which it can create a stable nucleus. The existence of the unit gas and
the condensation and dissolution processes allow units to form stable nuclei faster
because the speed of diffusion is unlimited. At the same time, the kMC nature
of the model is preserved because the places where the units condense or from
which they dissolve are chosen randomly. The fact that the unit gas is shared by
all the terraces with the same height, regardless of whether they are connected,
also helps units to find neighbor faster, especially in cases where the ES barrier is
high (jump to lower layer is limited) and very few units are randomly walking on
the terrace. In this case, the elapsed simualation time moves very slowly because
the rate of a single diffusing unit can be very high, especially for PLD, as the rate
is a function of temperature.

The second issue was overcome by building a data structure in which all the
information is stored in a way that allows a constant event selection time no mat-
ter how large the domain is. Hence, all the scaling is caused by simple dependence
”larger domain ⇒ more units added to the system after every deposition ⇒ more
processes occurring”.

In the following lines, we explain the implementation of the model in the
situation where each unit has six neighbors. The model can be easily modified to
simulate any structure as long as it does not change during the simulation. The
model was implemented in C++ language using only standard libraries.

First, the substrate is divided into cells ci (Fig. 2.14 a)) following the pre-
scribed geometry. These cells are numbered from one to N by indices i, where N
is the total number of cells. The index is denoted by a shade blue in Fig. 2.14 a).
For each cell, a list with the indices of neighboring cells is created. This method
allows us to quickly find a neighbor of neighbor and modify its properties. Each
cell also contains information about its height h, i.e., the number of condensed
units at a given cell with coordinates x, y on the substrate, and the number of
neighbors n for which hi ≤ ha, a ∈ neighbors list.

A secondary structure to calculate the rates of each process is created
(Fig. 2.14 d)). The data are grouped into a 3D matrix Mhnj. The first index
groups all the cells with height h, the second index number of neighbors n, and
the third index j where the index of the cell i is stored.

At the start of the simulation, all the cell indices are stored in M06j because
their height is zero and they have six neighbors each. For now, the indices i and
j coincide. After the first deposition when the first unit condenses on the surface
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Figure 2.14: The visualisation of the data structure in the model. a), c) The
hexagonal grid represents the substrate geometry. b) Each hexagonal cell is split
into three parts which are stored in it - the number of neighbors at the same
or higher layer (n; left third), the height, i.e., the number of condensed units in
given cell (h; top third) and the index where the cell in the data structure (i,
bottom third). a) and d) show the state before dissolution of an unit. c) and e)
show the state after an unit dissolves in the central cell. After the dissolution the
height value of the cell decreases and the number of neighbors are recalculated
for the central cell and its neighbors. In the second structure (d) and e)) which
is used to determine which process is chosen at each time-step this is represented
by moving one cell from the original state (h = 1, n = 6) to (h = 0, n = 6). The
neighboring cells are moved to (h = 1, n = 5). The index position after the move
in (h = 1, n = 5) is given by moving the cell one-by-one clockwise starting from
the cell above the one in which an unit dissolves. The indices in the original state
(h = 1, n = 6) are given by swapping the index of the last cell in the list with
the moved cell. The new last cell (the moved cell) is then removed from the list.

25



in cell ck (its height increases to one), the index k is moved to M100 (there are
no units with h = 0 and hence n = 0). Its neighbors are kept inside M06j. From
now on the indices i and j do not coincide because instead of keeping empty cell
in M06j the last index (j = N − 1) is swapped with the index k. The k index
which is now the last index is removed from M06j. The index j is also stored in
the cell ci. Moving the cell indices i in the matrix Mhnj is performed after every
time-step. Figure 2.14 shows example how the indices are shifted after dissolution
from a surface where all the cells are on the same height (h = 1). In this case
the indices of neighbors are moved from M16j to M15j because they have one less
neighbor which satisfies the condition of neighbor (see above).

Figure 2.15: The dependence of computational time on the number of cells.
Adopted from Gabriel et al. [2020].

Setting the structure this way and using the build-in constant time complexity
function in the C++ language vector.size() which returns the number of elements
in the array, we are able to obtain the total rate R of all the processes at each time-
step with constant time complexity. For example the total rate of the dissolution
process Rd can be obtained by

RD =
h>hmax∑︂

h=0

n≤6∑︂
n=0

[︃
Mhn.size() · R0 exp

(︃
−ES + nEN ′

kbT

)︃]︃
. (2.8)

The EN ′ denotes the neighbor binding energy. The other two processes can be
calculated in the same way by multiplying by corresponding exponential function.
The bounds of the sums are independent of the substrate size. Figure 2.15 shows
the time necessary for the whole simulation as a function of the number of cells.
The data are fitted by curve f(x) = a · xb + c with b = 1.026.

Hence, the following are always stored in memory and updated at each time-
step:
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• total rate R

• total rates of each process RA (condensation RC , dissolution RD and jump
down RJ)

• rates of each process for each current height RA;h

• rates of each height and each number of neighbors RA;hn (see for example
for dissolution Eq. 2.8 without the sums over h and n, similarly for RA;h)

The event selection procedure is as follows:

• Generate random number X ∈ [0; R]

• Choose process A ∈ {C = condensation, D = dissolution, J = jump down}
based on cycle:

for A ∈ {C, D, J}:
if X − RA < 0:

return X, A
else:

X = X − RA

• For selected process A select height h0:
for h ∈ [0, hmax]:

if X − RA;h < 0:
return X, h

else:
X = X − RA;h

• For selected process at selected height A; h0 select for which number of
neighbors the process will happen:

for n ∈ [0, nmax]:
if X − RA;hn < 0:

return X, n
else:

X = X − RA;hn

• Obtain the searched index j:

j = Trunc
(︄

X

R0 exp(· · · )

)︄

where Trunc is a truncation function and · · · denote the argument of the
exponential function based on the selected process.
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3. Simulation of polaronic
diffusion
Polaron is a quasiparticle formed by the interaction of a charged particle (electron
or hole) and crystal vibrations in a polarizable material [Franchini et al., 2021].
Polarons can be either localized (small polarons) [Holstein, 1959] or delocalized
(large polarons) [Fröhlich et al., 1950]. The formation of polarons was observed in
many different materials, for example, small polarons were detected in hematite
(Fe2O3) by Zhou et al. [2019].

Hematite is a promising material for photoelectrochemical water splitting,
the process in which water is split into hydrogen and oxygen by sunlight [Sivula
et al., 2011, Tamirat et al., 2016]. When a photon of sunlight hits the hematite, an
electron-hole pair is created. These charge carriers provide the necessary charge
for the water splitting reaction. The main obstacle impeding wider application
is that the experimentally achievable efficiency is significantly lower than the
theoretically possible one. The limiting factor is the charge carrier mobility. In
the case of hematite, the carriers are small polarons. It was observed that doping
by titanium [Kronawitter et al., 2014] or nickel [Li et al., 2012], i.e. substitution
of one iron atom with titanium or nickel, increases the mobility of electron or
hole polarons, respectively.

T = 4.7 KT = 4.7 K T > 4.7 K T = 4.7 K

a) b) c) d)

1)

1)

2)2)
1) 2)2)

2)

Figure 3.1: The schematic of the polarons injection (blue circles). a) The tip
approaches near the hematite surface. b) The tip is slightly retracted 1) to
measure the outside potential 2). c) The tip is retracted far away from the sample
1) to reduce its influence on the polaron mobility and the sample is annealed for
about 10 minutes 2). d) The sample is cooled back to 4.7 K and the tip approaches
the sample 1) to measure the outside potential 2). Then, the steps c) and d) are
repeated until the set of temperatures is measured.

In the experiment made in Martin Setvin’s group, a diffusion of polarons in
hematite was studied. For the study, about 300 polarons from the tip of a qPlus
AFM sensor [Giessibl, 2019] were injected into the sample at 4.7 K (Fig. 3.1 a)).
After the injection, the tip was retracted and the local contact potential difference
(CPD) was measured at a constant distance above the injection point using Kelvin
probe force microscopy (KPFM) (Fig. 3.1 b)) [Nonnenmacher et al., 1991, Zerweck
et al., 2005]. The tip was then retracted further away from the sample to reduce
its influence on the polarons. The sample with the injected polarons was kept
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at low temperature (4.7 K) for a long period of time to ensure that they were
not mobile under these conditions. Subsequently, the tip was again put near the
sample and the potential map was measured. The tip was then retracted and
the sample was annealed for ten minutes at a higher temperature (Fig. 3.1 c)).
After the annealing was completed, the sample was cooled again to 4.7 K and the
outside potential was measured (Fig. 3.1 d)). The procedure described above was
repeated for a set of temperatures. For clarity, a 1D cut including the maximum
of each potential map was plotted (Fig. 3.2).

Figure 3.2: Example of the measured potential map and the set of 1D cuts through
the maps. The potentials were measured along the diagonal line.

To study the dependence of polaron mobility on doping, the experiment was
repeated with the hematite sample doped with various amounts of titanium.

3.1 Model of polaronic diffusion
The experimental data against which the model results are compared were pre-
sented in the previous section. In this section, we present the kMC model to
simulate the polaronic diffusion. In all the simulations, the annealing and cooling
cycle (presented in Fig. 3.1) are the same as in the experiment. The kMC model
is a 3D cubic lattice diffusion model. During each time-step, one polaron is
either injected or jumps to a neighboring cell. A diffusion barrier ED is present
between every two cells (see Fig. 3.3 b)). To calculate the rate of possible jumps
of polaron i, it is necessary to compute the electrostatic potential Vin (rin) around
polaron n acting on polaron i

Vin (rin) = qn

4πε|rin|
, (3.1)

qn is the charge of polaron n, |rin| is the distance between the polaron i and the
polaron n and ε is the permittivity of the material. Here and in the following we
assume that i ̸= n.
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Figure 3.3: a) A 2D sketch to illustrate how Vin(rin + rs) is determined. First,
Vin(rin) (red line) is enumerated for original configuration of polarons i and n
and Vin(rin + rs) (green dashed lines) is calculated for the polaron i moved to the
neighboring cell (dashed circles). b) An explanation of the one half factor in the
Eq. 3.2 for ∆Eins. The diffusion barrier ED is assumed to be present at the centre
between two cells. Vin(rin) and Vin(rin+rs) are calculated in original (filled circle)
and neighboring (dashed circles) positions, respectively. The 1/r dependence
(gray profile) in the potential equation (Eq. 3.1) is linearly interpolated (black
line) between r1 and r2 (the neighboring and given positions, respectively). At
the center between these two points, the diffusion barrier is modified by potential
1
2 [Vin(rin + rs) − Vin(rin)].

To determine the rate of a jump to the neighboring cell by vector rs (change
of x or y or z component of the vector rin by ± unit cell size), the difference of the
electrostatic potential in the neighboring cell and original cell multiplied by qi,
∆Eins needs to be determined (Fig. 3.3 b)). Hence, the electrostatic potential has
to be enumerated in the original positions of polarons rin and in the neighboring
cells rin + rs

∆Eins = qi

2 [Vin(rin + rs) − Vin(rin)]. (3.2)

The one half factor in Eq. 3.2 is based on the assumption that the distance
between two neighboring cells is small, so the potential can be linearized between
them. The potential difference in the central point between two cells is 1

2 [Vin(rin+
rs) − Vin(rin)] (see Fig. 3.3 b)). Then, the rate of jump in the direction rs of
polaron i can be determined as

Ris = R0 exp
(︄

−ED + ∆Eis

kbT

)︄
, (3.3)

where R0 is the prefactor, ∆Eis = ∑︁n≤N
n=1 ∆Eins, N is the number of polarons, kb

the Boltzmann constant and T the sample temperature. To obtain the total rate
R during each time-step, the partial rates Ris has to be summed

R =
i≤N∑︂
i=1

∑︂
rs∈{±x,±y,±z}

Ris, (3.4)

where the second summation is performed over six different cells in the 3D cubic
lattice neighboring the current cell containing polaron i.

After every polaron movement, all the corresponding potentials Vin (rin), bar-
rier changes ∆Eins, and rates Ris, and R have to be recalculated. The presented
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model was designed to efficiently calculate these updates and thus be able to
simulate domains with hundreds of thousands of interacting positive and negative
charges. Information about the implementation is in Section 3.3.

3.2 Simulation results
In this section, we present the results of our polaron simulations. First, we focus
on polaronic diffusion in titanium-doped hematite. Using these data, we describe
the behavior of the model. Furthermore, we use the model to simulate different
phenomena observed during experiments with polarons.

The measurements were made mostly by Jesus Redondo at TU Wien and
Dominik Wrana at Charles University. They used KPFM to study the movement
of about 300 polarons inside hematite. Four different hematite samples with dif-
ferent titanium dopancies were measured - 0 % (Fig. 3.4 a)), 0.03 % (Fig. 3.4 b)),
0.7 % (Fig. 3.4 c)), and 3 % (Fig. 3.4 d)), i.e., x % of iron atoms in the hematite
was substituted by titanium. Comparing the profiles for temperatures 11 K in
Figs. 3.4 a) and b) and 10 K in Figs. 3.4 c) and d), we see that increasing dopancy
leads to broader profiles. This indicates that the injected polarons diffuse further
away from the injection point in approximately the same time period. Thus,
the diffusion (speed) and polaron mobility increases with increasing titanium
dopancy. In the case of the undoped sample, the measurements were not fully
aligned due to the use of an asymmetric AFM tip.

Figure 3.4: The measured CPDs for dopancies a) 0 %, b) 0.03 %, c) 0.7 % and
d) 3 %.
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Figure 3.5: Illustration of the differences between the four models (M1 - M4).
For each of them, the top row shows the realization of the model with the lower
dopancy, and the bottom row corresponds to the higher dopancy. The red and
blue circles denote dopant’s positive and negative charge, respectively.

The kMC model presented in the previous section was used to describe the
polaronic diffusion in the titanium-doped hematite and to understand the mech-
anism by which doping affects diffusion. The studied dopancies were the same as
in the experiment, i.e., 0 %, 0.03 %, 0.7 % and 3 %. Four variants of the model
were tested. Each of them simulated the presence of dopants and the diffusion
barrier differently. Figure 3.5 illustrates the four models:

Model 1 (M1): The diffusion barrier ED is constant in the whole domain. In-
creased dopancy decreases the barrier, i.e. ED;0% > ED;0.03% > ED;0.7% >
ED;3%.

Model 2 (M2): Dopants influence the injected polaron by electrostatic potential
in their vicinity. Using ab-initio simulations, it was found that electrons are
located in the vicinity of titanium [Liao et al., 2011]. Hence, dopants are
modeled by a pair of mobile negative charge (electron) and static positive
charge (titanium). At the start of the simulation, these two charges are
in two neighboring cells. The number of pairs is determined by dopancy.
The cells in which the positive charges are located are chosen randomly.
We assume that in their vicinity, the difference in the exact location of the
positive and negative charges should affect the polaron mobility, while at
larger distances both added charges should cancel each out. The diffusion
barrier ED = ED;0% is constant in the whole domain for all the dopancies.
This value is chosen to test whether the presence of the pairs are sufficient
to increase the mobility of the injected polarons.

Model 3 (M3): Dopants locally reduce the diffusion barrier. Dopants are modeled
without putting additional charges into the domain. Random cells are
chosen where the dopant is assumed to be present. In a sphere of radius
a around the chosen cells, the diffusion barrier is set as for the highest
dopancy in M1, i.e., ED = ED;3%. Everywhere else, the diffusion barrier is
set as ED = ED;0%. The electrostatic interaction with dopants is neglected.

Model 4 (M4): The dopants are modeled by both the charge pair and the de-
creased barrier in the sphere around the positive charge. The barrier
configuration is the same as in M3.
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3.2.1 Model 1: Barrier constant in the whole domain
In this section, we describe the basic model of the titanium dopping influence.
The diffusion barriers between any two cells (ED in Eq. 3.3) are constant. The
barriers were estimated from the measured data: From the CPD measurements,
we determined the temperature T0 at which each polaron jumps on average about
once per minute. Setting Ri in Eq. 1.2 to 1/60 and T = T0 gives the energy barrier
dependent on the prefactor R0. Two different prefactors were used, R0 = 106 s−1

and R0 = 1011 s−1. The value R0 = 1011 s−1 was chosen as it is the phonon
frequency. However, as it is shown below, the values R0 = 106 s−1 leads to better
results. The corresponding barriers ED are presented in Table 3.1.

Dopancy [%] 0 0.03 0.7 3
T0 [K] 29 21 10 7

ED for R0 = 1011 s−1 [meV] 74 53 25 18
ED for R0 = 106 s−1 [meV] 45 32 16 11

Table 3.1: The diffusion barriers ED for all the measured titanium dopancies and
both studied prefactors.

Figure 3.6: The diffusion rate R as a function of the temperature T for R0 =
106 s−1 (orange) and R0 = 1011 s−1 (blue). ED is taken from Table 3.1 for 0.7 %
dopancy.

Figure 3.6 shows the rate R of jump over the barrier as a function of tem-
perature T for both prefactors. Both profiles intersect at T = 10 K = T0. For
temperatures lower than T0, the rates are higher for the lower prefactor, and vice
versa. Next, we present two sets of results, one for each prefactor, and discuss
the influence of the prefactor in more detail.

Figure 3.7 shows an example of the polaron cloud after three annealing cycles.
The polaron positions are captured at the ends of three annealing cycles (4.7 K
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Figure 3.7: Top and side view of an example of the polaronic diffusion at the end
of three different annealing cycles - 4.7 K (blue), 6 K (green), and 7 K (red).

- blue, 6 K - green, 7 K - red) right before the next annealing starts. During the
injection and the first annealing cycle (4.7 K), the polaron mobility is very low.
They form a pyramid-like shape with the majority of polarons along the x and y
axes. After the second annealing, the cloud expands due to repulsive electrostatic
interaction between polarons and increased rate of polaron hopping. The polaron
hopping rate in the absence of electrostatic interaction is inversely proportional
to temperature. In the side view, there is a notable separation, with polarons
present predominantly on the top or bottom side. The separation is even more
pronounced for the highest temperature. It forms because once polarons leave the
top side, they are repulsed by all the polarons remaining there until they diffuse
to the bottom side. If there were more polarons on the bottom side, the effect
would be the same with only the sides swapped. At the highest temperature, the
electrostatic repulsion is strong enough compared to the diffusion barrier that
the pyramid-like compact structure in the center is no longer present. All the
polarons are scattered across the shown part of the simulation domain. Even
higher temperatures were simulated, but for them polarons hopped far enough
from the center that only a few polarons would still be visible in the shown cutout
of the domain. If a larger cutout was shown, the important center of the domain
would not be clearly visible. Therefore, the results for the remaining simulated
temperatures are not shown in the figure.

Figure 3.8 shows the simulation results for each dopancy and R0 = 106 s−1

and Fig. 3.9 shows the same for R0 = 1011 s−1. In both figures, panels a) to d)
are ordered by dopancy from the lowest to the highest. For comparison with the
experiment, the actual values of the outside potential are not important. Two
characteristics are needed to understand the experiment: the first is the decrease
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Figure 3.8: The results with the constant diffusion barrier for prefactor R0 =
106 s−1 and dopancies a) 0 %, b) 0.03 %, c) 0.7 % and d) 3 %.

of maxima, and the second is the potential as a function of distance from the
center.

From Fig. 3.6, the influence of the prefactor can be deduced. For temperatures
higher than T0, the diffusion rate, and thus the polaron mobility, is significantly
higher for R0 = 1011 s−1. This is evidenced by the larger spacing of each
subsequent maxima in Fig. 3.9 a)-d) compared with Fig. 3.8 a)-d). This effect is
the most pronounced for the higher two dopancies, where the highest simulated
temperature profile is a straight line. Thus, the distribution of polarons in the
simulation domain is close to a random distribution. Polarons are no longer
predominantly found near the injection point. For temperatures lower than T0,
the spacing between the profiles is slightly bigger for R0 = 106 s−1.

Due to the better agreement with the experiment, the lower prefactor is pre-
ferred for the simulations of electron polarons. For both prefactors, the decrease
and spacing of the maxima behave similarly to the measured data. The difference
can be seen at lower temperatures, when the distance between the maxima is
larger in the experiment (compare Fig. 3.4 d) with Fig. 3.8 d) and Fig. 3.9
d)). The cause of the issue is that the diffusion rate grows exponentially with
temperature. It cannot be sufficiently high at low temperatures to increase the
difference between the maxima while not being too high for higher temperatures.
Using this model, this issue cannot be avoided unless even smaller prefactor is
used. However, the physical interpretation of the R0 = 106 s−1 and hence of the
even smaller prefactor is not clear.
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Figure 3.9: The results with the constant diffusion barrier for prefactor R0 =
1011 s−1 and dopancies a) 0 %, b) 0.03 %, c) 0.7 % and d) 3 %.

3.2.2 Other models: Dopants influencing the domain only
locally

In Section 3.2.1 we introduced the polaronic diffusion model where the diffu-
sion barriers were constant in the whole simulation domain. The results were
promising, but the effect of dopants was only considered to be global. To further
study whether the global effect can be a sum of local effects, we present three
more models (M2 – M4 presented in Section 3.2). Each of them is used to
study a different phenomenon which might influence the polaron diffusion: M2
studies the electrostatic potential of dopants, M3 the local effects on the diffusion
barrier, and M4 both the electrostatic and local effects of dopants, thus M4 is
a combination of M2 and M3. These models are chosen to determine whether the
apparent global decrease of barriers may be a combination of local effects.

M2: Dopants influencing the domain by electrostatic interaction

Dopants are simulated as pairs of an immovable positive charge and a movable
negatively charged electron polaron to replicate the charge configuration from the
ab initio simulations. This configuration is suitable for studying how the electro-
static potential introduced by dopants influences the injected polaron diffusion.
The positive charges are randomly distributed in the domain and the negative
charges are put in cells neighboring the positive charges. This setup is not feasible
for 3 % dopancy and for R0 = 1011 s−1 due to the very large number of movable
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Figure 3.10: Dopants influencing the domain by electrostatic interaction. a), b)
simulated outside potential for dopancies 0.03 % and 0.7 %, respectively.

polarons. The barriers between every two cells are set to the value of the undoped
sample.

Only the presence of the additional charges may affect the polaronic diffusion
compared to M1. Figure 3.10 shows the simulated CPDs for 0.03 % dopancy
(panel a)) and 0.7 % dopancy (panel b)). In all the cases, the influence of the
additional charges is not sufficient to overcome the diffusion barrier. In addition,
polarons are not movable and they get stuck after the injection. This set of
simulations proved that the effect of titanium doping goes beyond simple addition
of more charges into the system.

M3: Dopants influencing the domain by local decrease of diffusion
barriers

Figure 3.11 shows the case in which dopants lower the diffusion barriers (see
Fig. 3.5 M3) in their close proximity. If dopants were only decreasing the barriers
instead of increasing the minima, the diffusing polarons would be trapped inside
the lower barrier areas with only a small probability of leaving them. The barriers
are either the same as in the undoped case (far from the nearest dopant) or the
same as in the most doped case (close to the nearest dopant). The barriers are
chosen based on the assumption that for the highest dopancy, the spheres of
the dopant influence overlap completely and there are no barriers which are not
close enough to any dopant. Dopants are modeled only by the decreased barrier
around the randomly chosen lattice points. The only charges in the model are the
injected polarons. This configuration is made to test whether a possible strong
local effect is sufficient to explain the observed increase of mobility with dopancy.

Figure 3.11 shows that even though it is possible to find the sphere radii
suitable for reproduction of the measured data, these radii are not consistent
for the two dopancies shown. For 0.03 % dopancy, the sphere radius is around
7.75 nm. However, it is significantly smaller (around 3.8 nm) for 0.7 % dopancy.
Hence, the strong local effect is also not suitable to explain how the dopancy
influences the polaron mobility.
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Figure 3.11: Dopants modeled only by the decreased barrier. Two different radii
of spheres with decreased barrier are shown for dopancies 0.03 % and 0.7 %.

M4: Dopants influencing the domain by local decrease of diffusion
barriers and by electrostatic potential

This model is a combination of the M2 and M3 models. Dopants are modeled
by pairs of positive and negative charges and by local barrier decrease. Several
simulation runs were made for setups with different radii of the sphere of dopant
influence. Figure 3.12 shows an example of result of such simulations. The com-
bination of both effects is not sufficient to fully model the increase of diffusivity
with increasing dopancy.

None of the three (M2-M4) models aimed at modelling the local influence of
dopants gave results that matched the experiment better than the M1 model. It
can be assumed that the influence of the titanium doping is not simply adding
more charges and increasing attractive or repulsive electrostatic force or locally
decreasing the diffusion barriers. These mechanisms are either not strong enough
to significantly influence the polaronic diffusion or they are not consistent for all
the dopancies. For further simulations, the M1 model is the preferred choice.

3.2.3 Simulations of hole polarons
In this section, we describe the simulations of small hole polarons in nickel-doped
hematite. The main differences between hole and electron polarons lie in the sign
of their electric charge and in their mobility. Electron polarons are negatively
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Figure 3.12: Dopants are modeled by both decreased barrier and electrostatic
interaction. a) Example for 0.03 % dopancy, the radius of sphere with decreased
barrier r = 2.7 nm. b) Example for 0.7 % dopancy, the radius of sphere with
decreased barrier r = 2.7 nm. Note that only temperatures up to 10 K are
simulated for 0.7 % dopancy. Simulations for higher temperatures are not possible
because all the added pairs of dopants are in the area of decreased barriers.

charged, while hole polarons are positive and have significantly lower mobility.
Since the interaction between two polarons depends on the square of their charge
(3.2), the M1 model does not need to be modified. The only change is the sign
of the potential measured above the sample.

The experimental procedure was mostly the same as for the above described
electron polaron measurements. The main distinction was the temperatures at
which the CPDs were measured. The difference between the lowest and the
highest temperature was significantly larger and fewer measurements were made.
To determine the diffusion barrier for hole polaron, we used the relative decrease
of CPD the maxima between 77 K and the 91 K. The prefactor and the estimated
value of the diffusion barrier were determined from a set of simulations. In
the experiment, the ratio of the potential maxima of the two lowest measured
temperatures (77 K and 91 K) was approximately 0.75. Using R0 = 106 s−1, this
ratio could not be reached in the simulation for any diffusion barrier. The lowest
ratio achieved was around 0.85 for very low diffusion barriers. For R0 = 1011 s−1,
it was possible to find the diffusion barrier ED = 200 meV corresponding to the
measured ratio. This is in contrast to the electron polaron simulations where the
lower prefactor was the preferable choice.

Figure 3.13 a) shows the measured CPDs of hole polarons. Figure 3.13 b)
shows the simulation results for the best-found estimate of the diffusion barrier
and prefactor. The main difference between the measured and simulated data
is in the profile for the third measured temperature (125 K). In the measured
data, there is a very small difference between 91 K and 125 K. We assume that
polarons are stuck in trapping centers from which they cannot escape even at
the highest temperature. The trapping can be caused, for example, by impurities
in the crystal. To quantify the number of traps, we introduced trapping centers
into the simulation domain. Polarons are free to move into the trap as if it was
a regular cell, but the barrier to jump out is set several orders of magnitude higher
(10 eV). The trap positions are chosen randomly. We performed simulations for
different concentrations (relative abundances) of traps and the results are shown
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Figure 3.13: a) Measured outside potential for hole polarons. b), c), d), e), f)
Simulated outside potential for various concentrations of trapping centers - 0 (no
trapping), 10−2, 10−3, 10−4, 10−5, respectively.

in Fig. 3.13 c) - f). The concentration of 10−3 (Fig. 3.13 d)) gives the best match
between the simulated and measured data. For higher concentration, polarons
trapping is too pronounced and all the injected polaron are trapped even at
91 K. On the other hand, smaller concentrations do not sufficiently slow down
the polaronic diffusion.

3.2.4 Simulations of the hole polaron injection
The last but not least application of the model presented in the thesis is the study
of the hole polaron injection. In all the previous cases, a constant time elapsed
between two subsequent injections of polarons. Instead, based on measurements
of the times between two polaron injections, we modified the injection to be a new
process in the model and to have its own rate.

Figure 3.14 a) and b) shows the measured times elapsed between two individ-
ual polaron injections obtained as explained below and the evolution of outside
potential during the measurements, respectively. Note that the frequency shift
measurements are shown in Fig. 3.14 b) instead of the potential. The frequency
shift describes the frequency of the KPFM tip vibrations which is influenced by
the potential of polarons. The shape of the frequency shift profile is closely related
to the shape of the potential profile.

Figure 3.14 b) shows the frequency shift during polaron injection. Each
increase in frequency shift indicates increase in potential of the polaron cloud and
hence polaron injection. From the elapsed time between two subsequent frequency
shift increases, it is possible to determine the elapsed time between two polaron
injections. Figure 3.14 a) shows the measured times between two subsequent
polaron injections. At the start of the experiment, the time between injections is
very short. As more polarons are injected, the times between injections increase.
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Figure 3.14: a) Measured times between two subsequent polaron injections.
b) Snapshots of the measured KPFM frequency shift. The frequency shift is
closely related to the outside potential.

This is caused by polarons not hopping from the area under the tip fast enough.
Their presence decreases the probability of injection and hence increases the time
between two injections. Figure 3.14 b) shows three 100-second snapshots from
the experiment, which show the frequency shift measured by KPFM at different
stages of the experiment. The increase of frequency shift is generally connected
with the polaron injection. The decrease indicates hopping of polaron further
away from the tip.

The measured data can be used to modify the simulation of the injection
by two different methods. First, the probability of injection per second can be
determined from the measured times between injections. Then, the probabilities
can be approximated by a polynomial fit, and from this the rates as a function of
time can be calculated. This is only a slight modification of the injection and it is
set to match the measured data. Second, we can assume that the injected charge
with energy E has to tunnel through a potential barrier with height V0. V0 is the
difference between the tip potential U and the potential acting on the tip from the
sample V1; V0 = U −V1. The transmission factor T can be calculated as a function
of E, V0 and the distance between the tip and the sample d [Voigtländer, 2015]

T = 16E (V0 − E)
V 2

0
exp

⎛⎝−2d

√︄
2m

ℏ
(V0 − E)

⎞⎠ , (3.5)

where m is the electron mass and ℏ is the reduced Planck constant. The distance
of the tip is fixed, d = 0.5 nm (Fig. 3.15 a)). For simplicity, the tip can be
considered as a conductive sphere with radius R = 5 nm (Fig. 3.15 b)). The
sphere itself can be modeled by a point charge whose potential at the distance R
is equal to U . In this case, it corresponds to approximately 17 positive elementary
charges at the distance d + R = 5.5 nm (Fig. 3.15 c)).

Using the modified injection, we simulated the time evolution of the outside
potential (shown in Fig. 3.16) at the injection point. The results corresponding
to the experiment (Fig. 3.14) are presented in Fig. 3.17.

Comparing the times between two subsequent injections (Fig. 3.14 a) and
Fig. 3.17 a)) shows that this charge injection model is able to reproduce the
measured data very well. Figure 3.17 b) and Fig. 3.14 b) show the outside po-
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Figure 3.15: The setup of the simulations including the tip. The nearly parabolic
tip is approximated by a conductive sphere which is modeled by a point charge
at its center.

Figure 3.16: The outside potential as a function of time for simulation with the
modified polaron injection.

tential evolution for the simulation and experiment, respectively. The simulation
data were selected to show the time period corresponding to the experimental
data. For the experiment, there are three 100-second snapshots at different
stages of the measurement. In all the cases, the simulated outside potential and
the measured frequency shift time evolution look similar. For the line labeled
”Polaron #80”, both data show a singular polaron injection event (increase in
potential / frequency shift) followed by a decrease in the measured quantities
caused by polaronic diffusion. In the case of the ”Polaron #73 – #76” line, both
profiles are again very similar. There are several subsequent injections. The most
notable is the event at a time of about 240 seconds in the simulated data and
20 seconds in the measured data (note that in the measured data time refers to
the time since the start of the highlighted part of the profile; in the simulation it
denotes the time elapsed since the start of the simulation). In this case, a clear
decrease of both profiles is quickly followed by the polaron injection. In both
measured and simulated data, the injection peak is followed by a sharp decrease.
This is more evident in the simulated data due to their better time resolution.
In the last measured case (”Polaron #20 – #40”), there is a larger difference
between the measured and simulated data. However, the general behavior is still
similar in both cases. There are many visible injections and jumps of polarons
followed by plateaus, suggesting that no events are occurring during these time
periods.
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Figure 3.17: a) Simulated times between two subsequent polaron injections.
b) Snapshots of the simulated outside potential corresponding to measured data
in Fig. 3.14 b).

3.3 Implementation details
Figure 3.18 shows a schematic of the different model versions. The colored squares
denote which parts of the numbers stored in memory are calculated at each time-
step. The row of squares with the ∑︁ symbol labels the part of the memory which
stores the sum of all the squares in the column above. The only exception is
Fig. 3.18 c) where all the information is stored in the squares marked with the ∑︁
symbol.

The bottleneck of the model described in Section 3.1 are both the large
memory usage and large number of potential calculations. The time complexity
of each time-step of the simplest model implementation is of the order of N2

because all the potentials are recalculated (N2) and then summed (N) at each
time-step. Figure 3.18 a) illustrates the first version of the model. The colored
squares are updated during each time-step.

Figure 3.18 b) shows the scheme of significant optimization, i.e., storing the
previous values of ∆Eins in a 3D table (dimensions N ×N ×6). During each time-
step, only the values associated with the moved polaron are recalculated - the
electrostatic potential acting on the moved polaron and the electrostatic potential
of the moved polaron acting on all the other polarons. This optimization reduces
the time complexity to order of N . If the symmetry of the system ∆Eins =
∆Eni(−s) is taken into account, the calculation time can be further halved. This
is shown by the identically colored rows and columns in Fig. 3.18 b). The (−s)
subscript means that instead of a shift of ±x or ±y or ±z there is a shift of ∓x
or ∓y or ∓z.

Second optimization is to store the sums Ris in memory and at each time-
step the previous ∆Eins (which is stored in the 3D matrix) is subtracted from
Ris and the newly calculated ∆Eins is added. The summation is reduced to
two operations for every polaron. The Ris of the moved polaron is set to zero
and then the calculated values of ∆Eins are added. Figure 3.18 b) also shows
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Figure 3.18: The matrix ∆Eins to calculate the rates of hopping of every polaron
is shown as cuts in each direction s. Colored squares show which values have
to be recalculated every time a polaron moves for: a) the simplest approach
where all the values in the table and the column sums are always recalculated.
Note, that on the diagonal can be stored non-zero values such as the diffusion
barrier. b) The first simplification in calculation of the matrix where only the
values corresponding to the moved polarons are calculated. The combination of
rows and columns in the same colour show which values are calculated at the
same time, e.g., row for +x and column for −x. All the column sums has to be
recalculated at the end. c) To reduce the computational costs, only the column
sums are kept in the memory. The current values for the chosen polaron are first
calculated and subtracted and then the new values are added to the sums.

this optimized version of the model in which only subtraction and addition are
performed instead of summation of the entire column.

The second optimization gives the most time optimized algorithm. However,
for a larger number of interacting polarons, it is not possible to keep all ∆Eins

in memory because the size of the table grows as 6N2. The memory issue can
be eliminated if only partial sums Ris are kept (Fig. 3.18 c)). The size of the
∆Eins matrix is N times larger than the size of the Ris matrix. To illustrate the
difference, consider the M2 model for 0.7 % dopancy . There are about 700 000
moving polarons in the simulation. A memory of about 24 terabytes would be
required to store the ∆Eins matrix. In contrast, the Ris matrix size is just over
34 megabytes. The disadvantage of this approach is that at each time-step, one
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has to not only calculate a new set of ∆Eins, but also recalculate the current set
of ∆Eins which is subtracted from Ris. In the worst case, if we assume that the
summation can be made in much shorter time than the potential calculation, the
time necessary for one full simulation is doubled. Even in the worst case, doubling
the simulation time is well worth significantly lower memory requirements.
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Conclusion
The main aim of the thesis was to apply the kinetic Monte Carlo method on
the problems of pulsed-laser deposition growth of thin films and on polaronic
diffusion.

We designed and developed a novel model for the simulations of PLD growth.
Unlike the widely used models, the new model does not resolve diffusion as a ran-
dom walk but simulates it by inclusion of the unit gas which is equivalent to the
limit of fast diffusion. This model was first validated with data from literature and
subsequently used to clarify some of the phenomena observed during PLD growth.
There are two major results. First, the inter-layer transport can be considered
as a single process even though there are two typical timescales. Second, the
decreasing roughness of the resulting film with increasing laser frequency is not
an effect of the laser frequency itself. We found that increasing the laser frequency
leads to more coarse surfaces. We determined that the increase of the surface and
substrate temperature was responsible for the increased smoothness. This effect
is especially pronounced for substrates with low thermal conductivity.

Next, we used the model of polaronic diffusion to further understand how
the dopancy affects charge transfer in hematite. For this purpose, we made
a model which included all the electrostatic interactions of the injected polarons.
We studied several approximations of how dopants could influence the charge
transfer, namely the diffusion barriers. Even though we implemented three more
precise models which introduced dopants into the simulation domain, we found
that the most successful model was the simplest one. In it, we model dopants
only by decreasing all the diffusion barriers in the whole domain. We were able to
determine that any combination of local influences such as the locally decreased
barriers is not sufficient to correctly reproduce the experimental data. This leads
to understanding that in reality there has to be a process which is responsible for
the global barrier reduction when the titanium doping is present. The model was
also used to study hole polarons in nickel-doped hematite. The main discrepancy
between the electron and hole polaron simulations was in the used prefactor. For
electron polarons, the most suitable one was 106 s−1 while for hole polarons it was
1011 s−1. This hints that the diffusion process of each polaron type is different.
However, this question cannot be fully answered using the kMC model. We also
simulated the process of the injection of the hole polarons. In this case, the
only additional assumption we made was that holes tunnel through the energy
barrier between the AFM tip and the hematite surface. The tunneling rate is
only a function of the local potential. Even with this general setup, we were
able to reproduce the measurements made during the injection process, including
changes of the measured outside potential at one location above the surface.
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• R. Hrach, D. Novotný, V. Gabriel, S. Novák. Morphology of discontinu-

ous metal films with pronounced secondary nucleation. Vacuum, 162, pp.
168–174, 2019
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