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Abstract

This thesis studies the relationship between the first generation biofuels and

selected commodities and assets in the USA, Europe, and Brazil. It is the first

attempt to combine the taxonomy and wavelet analyses in a single research

application. Our unique dataset comprises 32 weekly price series covering the

2003–2015 time period. First, we employ a method of minimum spanning trees

and hierarchical trees to model a biofuel-related price network. We demonstrate

a development phase shift between Brazilian and the US/EU biofuel industries.

We reveal a strong and stable connection between Brazilian ethanol and its

main production factor, local sugarcane. We further find that US ethanol

is closely linked to corn. In the contrary, European biodiesel exhibits only

moderate ties to its production factors. Subsequent wavelet analysis scrutinizes

the identified price connections both in time and frequency domains. Both

Brazilian and US ethanols are found to be positively related to their respective

feedstock commodities. In particular, feedstock proves to lead the price of

the biofuel and not vice versa. Moreover, the dynamics remains qualitatively

unchanged when controlled for the influence of crude oil.
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Abstrakt

Tato práce zkoumá vztah biopaliv prvńı generace k vybraným komoditám a

daľśım aktiv̊um v USA, Evropě a Braźılii. Jedná se o prvńı aplikaci kombinuj́ıćı

taxonomńı a vlnkovou analýzu v rámci jedné práce. Unikátńı dataset obsahuje

32 týdenńıch cenových řad, které pokrývaj́ı obdob́ı let 2003 až 2015. Nejdř́ıve

použ́ıváme metodu minimálńı kostry grafu a hierarchického stromu, abychom

modelovali systém cen souvisej́ıćıch s biopalivy. Ukazujeme fázový posun mezi

brazilskou výrobou biopaliv a vývojem v USA a EU. Nalézáme silné a stabilńı

spojeńı mezi brazilským etanolem a jeho hlavńım výrobńım faktorem, tamńı

cukrovou třtinou. Dále odhalujeme, že americký etanol je silně spojen s cenou

kukuřice. Naproti tomu evropská bionafta vykazuje pouze slabé napojeńı na

své výrobńı faktory. Následná vlnková analýza zkoumá zjǐstěné závislosti v

časové a ve frekvenčńı doméně. Nacháźıme, že americký i brazilský etanol jsou

dlouhodobě pozitivně svázány s cenami svých výrobńıch surovin. Ceny biopaliv

jsou nav́ıc taženy cenami surovin, nikoli naopak. Naše výsledky z̊ustávaj́ı kva-

litativně nezměněny, i když odfiltrujeme možný vliv cen ropy.

Klasifikace JEL C22, C38, Q16, Q42
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Topic characteristics A lively global-scale discussion about the effects of bio-

fuels production became particularly intense with the outbreak of the 2007–2008

world food price crisis. Do the efforts to increase biofuels production have to do

with the increases in agricultural commodity prices? Is the future food supply

threatened by the production of biofuels intensified in the recent years? In this

thesis, we are going to explore what items form a food-fuel-biofuel system by

identifying relevant price transmission links. We intend to examine and sub-

sequently graphically visualize the nature of identified price interdependencies

stressing a broadly defined system of relevant biofuel-related commodities and

assets.

Hypotheses

1. There exists a structured biofuels-related system of interdependent com-

modities and assets.

2. Although biofuels and food are positively linked, we have to distinguish

between different biofuels. Biodiesel and ethanol have different places

and roles within the price system.

3. The price co-movements within the biofuel-related system evolve and

change over time.

Methodology This thesis intends to bring together two empirical approaches

which are both rather innovative in biofuel economics. In the first section of

the empirical part, we plan to identify the components (commodities as well
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as other items) which form an interlinked biofuel-related price system. At this

point, we are going to utilize the taxonomy methodology of minimum spanning

trees and hierarchical trees first employed on financial time series by Mantegna

(1999).

We aim to build on Krǐstoufek et al. (2012) who introduced the taxonomy

perspective into the biofuels context. We attempt to follow the suggestions

given in their 2012 paper and extend the analysis through increasing the scope

and complexity of studied price system. In particular, we will gather and em-

ploy a large dataset of time series including fossil fuels, biofuels and associated

feedstock, food as well as other relevant commodities and assets as outlined

for example by Savascin (2011). Through constructing the minimum spanning

trees we are going to reveal the most important price connection in the whole

framework. We will then describe the hierarchical structure of the biofuel-

related system using a perspective of hierarchical trees. We plan to employ

the (logarithmic transformation of) price series separately with both weekly

and monthly frequencies to see whether the observed relationships occur in the

short or medium term.

Once we will have selected the most important links within the biofuels price

system, we aim to study their evolution both in time and frequency domains.

In order to accomplish this goal we are going to employ the wavelet analysis of

the selected time series. In the biofuels context, partial wavelet coherence was

first utilized by Krǐstoufek et al. (2014). The method is model-free and allows

to study behavior of a given price link and to observe its evolution in time. We

will utilize the approach of wavelet coherence to explore, describe, and visualize

the time and scale evolvement of the most important pair interdependencies

while projecting them into two dimensional charts rich in information.

Expected Contribution Our contribution lies in utilizing the taxonomy ap-

proach for identifying the relevant items of the biofuels-related system. The use

of both minimum spanning trees and hierarchical trees is still rather an innova-

tive method to study the price transmission in biofuels system. The taxonomy

perspective allows for studying a high number of time series simultaneously thus

contrasting with previous econometric analyses which mostly focused only on a

small group of commodities. Covering a wide range of commodities and other

assets we will provide a new insight into the system of biofuel-related assets.

A further step towards a clearer understanding of food-fuel system will be

made through the wavelet analysis. Wavelet coherence will allow us to properly
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describe the behavior of important price co-movements taking into account

both time and frequency domains. Potential answers stemming from this work

are of interest especially for policy makers dealing with biofuels and setting

agriculture and energy-related regulations. They matter on both national and

international levels.
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Chapter 1

Introduction

This thesis undertakes an innovative research attempt in the field of biofuel eco-

nomics. Its coverage ranges from a rapid development of global biofuel industry

to the most recent period of falling commodity prices. First, we use the taxon-

omy method of Minimum Spanning Tree (MST) and Hierarchical Tree (HT) to

identify potential price transmission channels within a system of biofuel-related

commodities and assets. Second, the core price connections revealed between

biofuels and feedstock commodities are further explored using the wavelet co-

herence analysis. Here, we present the first attempt to combine the taxonomy

and wavelet analyses within a single research application. Our study focuses

on the world’s largest biofuel markets; the United States of America, Brazil,

and the European Union. On energy basis, we cover a vast majority of the

world’s biofuel production over the period of the last decade.

Whether we like it or not, biofuels matter. Until today, more than 60 nations

worldwide implemented biofuels blending mandates. Most importantly, with

54 billion liters of ethanol generated in 2014, the US itself accounts for more

than a half of the world’s ethanol production. First generation biofuels, i.e.

ethanol and biodiesel, are made from crops grown on agricultural land. About

90% of US ethanol is produced from corn. Ethanol now consumes 40% of the

country’s total corn production, a huge increase from just 5% in 2000. The

US ethanol industry is followed by Brazil, historically the world’s pioneering

biofuel economy. Brazilian ethanol is made from sugarcane. Annually, over

55% of Brazilian sugarcane harvest is used to produce ethanol (Conca 2014).

In contrast, European biofuel industry is based on biodiesel produced from

rapeseed and other vegetable oils. The EU produces almost a half of the world’s

biodiesel. Biofuels production represents a topic far exceeding national borders.
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Biofuels have become increasingly important since the oil export embargo

and resulting oil crisis of 1970s. Originally, biofuels attracted the attention of

policymakers as a way to support energy self-reliance especially as a substitute

for liquid fossil fuels in transportation. Biofuels were seen as an alternative mit-

igating the country’s dependence on crude oil imports while fostering domestic

employment, promoting technological innovation, and keeping the associated

income stream in the country. Fast growth of biofuel industries owes a lion’s

share of its success to a wide government-backed support. The major biofuel

markers have been shaped by targets, blending mandates, tax exemptions, and

subsidies. During the last decade, biofuels were often in the public eye be-

cause their intensified usage rose new economics, environmental, and ethical

concerns.

In the last years, we observed very volatile prices of agricultural commodi-

ties. Being made from crops, biofuels effectively compete over land and water

supply with the crop’s other uses, e.g. food or animal feed. For example, corn

represents not only a primary US biofuel feedstock, but also an essential animal

feed. At the same time, corn is largely used in both food and beverage indus-

tries. Since the US produces about 40% of the world’s corn, the US domestic

corn demand may significantly influence the commodity’s world price. Other

associated concerns include indirect land use change, increased use of fertil-

izers or water scarcity issues. As reviewed in Chapter 2, this area attracted

a lot of research attention in the last few years. Due to many unanswered

questions, this field of interest remains highly relevant and provides plenty of

opportunities for future research.

This thesis makes a major step towards a profound understanding of the core

price dependencies between biofuels, feedstock, fossil fuels, and other relevant

assets. The objective of this thesis is to analyze how the associated price

system is structured and whether it reflects the biofuels production logic in

respective geographic markets. We trace the system’s evolution in time and

elaborate on correlation patterns emerging throughout the analysis. Apart

from observing the network as a whole, we pay a special attention to individual

price relationships between the biofuels and their respective production factors.

Is the price of US ethanol tied to its feedstock price? What other commodities

does it depend on? How about the Brazilian or European biofuel markets,

do they exhibit any differences? Do the roles of individual biofuels change in

time and with different frequencies? These and similar questions will be in the

center of our research interest.
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Present study takes advantage of two methods that are novel to financial

time series analysis. First, we use the taxonomy method of minimum span-

ning trees and hierarchical trees introduced into biofuels context by Kristoufek

et al. (2012a). The taxonomy trees help us classify and visualize the system of

biofuel-related commodities and assets. Resulting structures highlight the most

important connections among studied items based on their mutual correlation.

We construct these taxonomy objects for several subperiods and different fre-

quencies (weekly and monthly). Second, particular biofuel–feedstock price pairs

resulting from taxonomy perspective get further explored using the wavelet co-

herence analysis. Wavelet analysis was first applied on biofuels data by Vacha

& Barunik (2012). This model-free approach allows for studying the correla-

tion between two time series in both time and frequency domains. Moreover,

wavelet framework evaluates the direction of the studied relationship. This fea-

ture makes up for a major limitation of taxonomy trees. Additionally, partial

wavelet coherence enables us to remove a possible influence of other variables

that may potentially correlate with both of the studied series. Here, we control

for a possible influence of crude oil. Our novel combination of taxonomy and

wavelet analyses is not limited by prior model assumptions (except for station-

arity required by correlation in the taxonomy part). Therefore, it is viable to

implement several recommendations of prior research and to provide a broad

data coverage.

The rest of the thesis is structured as follows: Chapter 2 reviews relevant

literature recently dealing with food–energy price links and economic impacts

of biofuels. Chapter 3 introduces the employed methodology and develops the

theoretical background of our toolbox. Chapter 4 describes both qualitative

and quantitative features of our dataset. Chapter 5 performs the taxonomy

analysis subsequently followed up by the wavelet analysis in Chapter 6. Finally,

Chapter 7 concludes.



Chapter 2

Literature Review

This chapter aims to deliver a review of recent literature focused on study-

ing the economic impacts of biofuels. There has been a variety of research

interests as well as methods employed to investigate the economics of biofu-

els worldwide. We will pay our primary attention to reviewing the literature

dealing with food–energy price links. We intend to provide a concise overview

of the latest attempts elaborating on the system of biofuel related commodities.

Notably, Ciaian & Kancs (2011) combine a theoretical framework with em-

pirical evidence to scrutinize the linkages between energy, biofuel, and agricul-

tural markets. Their aim is to address the role of biofuels for agricultural prices.

While employing a Vector Autoregressive Model, their cointegration analysis

uses 1993–2010 time series data on crude oil and frequently traded agricultural

commodities. The results are interpreted for three individual subperiods and

confirm that “energy prices do affect prices for agricultural commodities and

the interdependencies between the energy and food markers are increasing over

time”(Ciaian & Kancs 2011, p.15). For earlier studies focused on competitive

food–biofuel–fuel markets refer among others to de Gorter & Just (2009a;b) and

Drabik (2011). Although there has been a vivid research exploring the interna-

tional biofuel related markets, Serra & Zilberman (2013) note that a majority

of studies does not in fact include biofuel price data into their analyses.

As pointed out by Serra & Zilberman (2013), modeling the price level pat-

terns has received the main research attention as compared to price volatility

interactions. To introduce the price links between agricultural and energy com-

modities, the concept of partial equilibrium is often found useful. Kristoufek

et al. (2012a) use a partial equilibrium framework based on Serra et al. (2010)
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to motivate the theoretical background of their biofuel related price system.

In the model, the price of a particular biofuel would be simply determined by

forces of supply and demand. However, there exist two exogenous limitations

imposed on the model. A regulatory constraint (such as mandates, subsidies,

blending obligations or similar regulatory support) sets the minimum quantity

of a biofuel produced. On the other hand, technological feasibility (such as

production capacities) restricts the maximum biofuel amount available on the

market. While the prices of feedstock and fossil fuels are exogenous, the price of

biofuel is determined within the market operating under a constrained equilib-

ria setting. Kristoufek et al. (2012a) further remind us that both technological

and regulatory constraints may be responsible for preventing high and positive

correlation among prices in a widely defined biofuels commodity system.

In an effort to explore the impact of US biodiesel production on the price

level and volatility of agricultural commodities, Hao et al. (2013) study both

the short– and long–run relationships between fuel and agricultural commodity

markets. Under the Vector Error Correction Model, the study employs 2006–

2011 weekly price series representing biodiesel, its feedstock, and fossil fuels.

Biodiesel is found to have a long-run price connection with soybeans. The re-

sults indicate that an increase in soybeans’ price translates into a higher biofuel

price, although the causal relationship is rather week. Oil price movements,

however, represent an influential driving force for both agricultural and fuel

prices.

de Gorter et al. (2013b) also focus on the US biofuel market. They develop

an empirical model including biodiesel production from both soybeans and

canola feedstock. It is stressed that soybeans and canola are used both in

biofuel and meal production. A competing commodity allocation (feedstock

versus food) alters a usual direct link between biofuel and its feedstock. Market

equilibrium changes subject to volatility in the crude oil price. If biofuel enjoys

a tax exemption, rising crude oil prices increase also the price of biodiesel.

The opposite effect of crude oil price on biodiesel applies in case of a blending

mandate requirement. However, the effect of an oil price shock on feedstock

itself is not straightforward. Nonetheless, in case of blending mandate, the

shock translates into a smaller oilseed price change relative to tax exemption

setting. Other works focusing on the US food–biofuel market include Miller

et al. (2012); Wang & McPhail (2012) or Du & Hayes (2012).

Specifics of recent development on the Brazilian biofuel market have been

investigated by de Gorter et al. (2013a). The paper specifies an empirical
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model of a unique Brazilian sugar–ethanol fuel market. The analysis yields

surprising results. The authors clearly identify two policies that actually harm

the ethanol industry instead of helping it as generally believed. Namely, a low

tax on gasoline and a high tax exemption for anhydrous ethanol were found to

translate into lower ethanol prices which contrasts with the mechanism known

from the US.

Drabik et al. (2014) study how biofuels affect the price transmission within

the food chain. Their analysis focuses on the US corn and ethanol markets.

Depending strongly on a source of the market shock and policy regime, the exis-

tence of biofuels is found to considerably impact the elasticity of price transmis-

sion. Interestingly, the authors find that the presence of biofuels substantially

tempers the reaction of corn and food prices to shocks in their respective mar-

kets. The dependence of agricultural production on food markets may be thus

reduced through the existence of biofuels.

Other environmental benefit is attributed to biofuels by Piroli et al. (2014).

The authors study an impact of a rising bioenergy production on global CO2

emissions. Employing a structural vector autoregression framework the study

covers 1961–2009 time series data on both global biofuel production and CO2

emissions. Although biofuels may increase CO2 emission in the short–term,

they are associated with a global significant CO2 reduction in medium to long-

term.

Biofuels have been recently studied in other environmental contexts, too.

For example Rajcaniova et al. (2014) explore how a global production of biofuels

affects the land use worldwide. An econometric analysis of time series on fuel,

biofuel and agricultural commodities (both price and production) is performed.

The results indicate that in the context of rising energy prices, the increasing

production of bioenergy adds to a land use change. In particular, the study

reports two effects. First, agricultural area is increasing due to a rising biofuel

production. Second, there exists a substitution effect from food to energy crops

being planted on the existing agricultural land.

Various implications identified during the years since the introduction of

biofuels are brought together by Hochman (2014). An indirect land use change

is one of the most evident phenomena accompanying biofuels commercializa-

tion. Not only biofuels compete with food, but their commercial production

still requires further technological progress to become competitive. The process

of biofuels commercialization proves more costly than expected.

In order to understand both the existing and upcoming food-price chal-
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lenges, a lot of literature focus predominantly on food, energy, and environ-

mental policy regulations and their mutual coordination (refer to Carter et al.

2012; McPhail & Babcock 2012; Abbott 2013; Peri & Baldi 2013; Rausser &

de Gorter 2013; Drabik et al. 2014, inter alia). In particular, a recent article

by Zilberman et al. (2014) focuses on both macro and micro level aspects of

the political economy of biofuels.

An innovative line of research is represented by Kristoufek, Janda, & Zil-

berman (2012a;b; 2013; 2014; 2015). They have studied various aspects of the

biofuel–fuel–food system. Adopting an international perspective, they cover

the US, Brazilian and European biofuel markets instead of limiting their atten-

tion to one market only. While employing the actual biofuel price data which

is rather rare, the authors have introduced unconventional tools into the bio-

fuels research. Kristoufek et al. (2012a) are the first to apply the taxonomy

methodology of MST and HT in the context of biofuels. Price series on biofuels,

respective feedstock and fossil fuels are analyzed for 2003–2011 time period.

The paper identifies a structured price system. The links among the commodi-

ties are weaker in the short term. However, the connections become stronger

in the medium term. While ethanol tends to the food part, biodiesel is more

prone to belong to the fuel part.

Another innovative attempt by Vacha et al. (2013) introduces the wavelet

methodology to biofuels research. Wavelets–not a traditional tool in economics–

are usually used to analyze the information contained in signals. This model

free approach allowed the authors to study the correlation between fossil fuels,

biofuels, and agricultural commodities in both time and frequency domains.

The analysis reveals two strongly correlated pairs: ethanol–corn, biodiesel–

German diesel and shows that during a food crisis period biofuels do react

more rapidly to changes in the price of their producing factors.

The paper has been recently followed by another wavelet application. Kris-

toufek et al. (2015) use wavelet coherence methodology to explore the relation-

ship between both Brazilian and US ethanols and their respective feedstock

commodities. Their results illustrate that there exists a strong and stable re-

lationship between both US ethanol–corn and Brazilian ethanol–sugar price

pairs. Moreover, both pairs are characterized by feedstock leading the price of

ethanol.



Chapter 3

Methodology

This chapter introduces individual items of a quantitative toolbox employed

throughout the empirical part of the thesis. We use analytical methods that

are not common in economics. In a consecutive manner, we describe the prin-

ciples used in the construction of Minimum spanning trees and Hierarchical

trees before arriving at the methodology of Wavelet coherence analysis. A sub-

stantial part of this section is attributed to previous works of Mantegna (1999);

Mantegna & Stanley (2000); Kristoufek et al. (2012a), and Vacha et al. (2013).

Mantegna (1999) was the first to use the taxonomy method of MST and HT on

financial data to study the structure formed by components of S&P 500 index.

This thesis further benefits from Kristoufek et al. (2012a) who introduced the

taxonomy technique into the context of biofuels. The use of wavelet coherence

approach on biofuels data was pioneered by Vacha et al. (2013). In order to

extend previous research and to allow for comparability of results, presented

methodology will be motivated by the above mentioned studies.

3.1 Distance metric

We are interested in establishing a metric that we will use to measure the in-

terconnections within a group of commodities and assets. Before eventually

arriving at a distance measure, we introduce important concepts which we will

build our methodology upon. Following definitions and concepts are provided

based on Wooldridge (2008).
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Let X(t) be a stochastic process. X(t) is then a time ordered sequence of

random variables given as {X(t) : t ∈ T, T ⊂ N}.

Definition 1. (Stationarity)

A stochastic process {X(t) : t = 1, 2, . . . } is stationary if for every collection

of time indices 1 ≤ t1 < t2 . . . < tm, the joint distribution ofX(t1), X(t2), . . . , X(tm)

is the same as the joint distribution of X(t1 + h), X(t2 + h), . . . , X(tm + h) for

all integers h ≥ 1.

Definition 2. (Weak Stationarity)

We say that a stochastic process {X(t) : t = 1, 2, . . . } with finite second

moment
[
E(X(t)2) <∞

]
is weakly stationary1 if it holds that:

(1) E
(
X(t)

)
is constant,

(2) V ar
(
X(t)

)
is constant,

(3) for any t, h ≥ 1, Cov
(
X(t), X(t+ h)

)
depends only on h and not on t.

It is a standard practice to employ the sample correlation coefficient2 to

measure linear dependence between two time series. Having a pair of assets i

and j with values Xit and Xjt where t = 1, . . . T we obtain the sample Pearson

correlation coefficient as:

ρ̂ij =

∑T
t=1(Xit −Xi)(Xjt −Xj)√∑T

i=1(Xit −Xi)2
∑T

i=1(Xjt −Xj)2
, (3.1)

where Xi and Xj stand for the time series averages defined as Xi = 1
T

∑T
t=1Xit

and Xj = 1
T

∑T
t=1Xjt. Value of the correlation coefficient ranges from -1 to 1

with the following logic:

ρij =


1 perfect positive correlation

0 no correlation

−1 perfect negative correlation

It needs to be stressed that a sample correlation coefficient can only be mean-

ingfully computed for series with well defined means and variances. Thus, the

above defined (weak) stationarity is required (Kristoufek et al. 2012a).

1A term covariance stationary is preferred by Wooldridge (2008).
2A mention about correlation coefficient will always refer to the concept of Pearson’s

product-moment correlation coefficient.
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Correlation matrix C is a matrix of correlation coefficients given as:

C =


ρ11 ρ12 . . . ρ1n

ρ21 ρ22 . . . ρ2n
...

...
. . .

...

ρn1 ρn2 . . . ρnn

 =


1 ρ12 . . . ρ1n

ρ21 1 . . . ρ2n
...

...
. . .

...

ρn1 ρn2 . . . 1

 , (3.2)

where n is the number of assets. Correlation matrix C fulfills following prop-

erties that will be important for further analysis, see Mantegna (1999).

(1) With n rows and n columns C is a n× n square matrix,

(2) All items on the diagonal of C are equal to 1, thus ∀ρij, i = j, it holds that

ρii = 1,

(3) Since ρij = ρji : ∀i, j ∈ N it follows that C is a symmetric matrix,

(4) It follows from (1),(2) and (3) that n·(n−1)
2

correlation coefficients suffice to

fully describe C.

Mantegna (1999) argues that a simple correlation coefficient cannot be used

as a measure of distance because it violates the axioms of the Euclidian metric.

However, he shows how to transform correlation into a distance measure. In

line with Kristoufek et al. (2012a), we employ the following transformation of

correlation coefficient:

dij =
√

2(1− ρij). (3.3)

Unlike ρij, dij fulfills the axioms of Euclidian distance:

(1) Identity: dij = 0 ⇐⇒ i = j,∀i, j ∈ N

(2) Symmetry: dij = dji,∀i, j ∈ N

(3) Triangle inequality: dij ≤ dik + dkj,∀i, j ∈ N

Once the Euclidian axioms are satisfied, the proposed non-linear transfor-

mation dij can be used as a suitable measure of distance. Since the correlation

coefficient ranges between -1 and 1, it follows that dij takes corresponding

values between 0 and 2.



3. Methodology 11

dij =


0 perfect positive correlation
√

2 no correlation

2 perfect negative correlation

Using dij, we transform each correlation coefficient ρij in matrix C into a

distance measure and obtain the following distance matrix D :

D =


d11 d12 . . . d1n

d21 d22 . . . d2n
...

...
. . .

...

dn1 dn2 . . . dnn

 =


0 d12 . . . d1n

d21 0 . . . d2n
...

...
. . .

...

dn1 dn2 . . . 0

 (3.4)

Having originated from C through a transformation of individual correla-

tion coefficients, D shares the properties that have been stipulated for C. In

particular, it immediately follows from (2) that all items on the main diagonal

of D are equal to zero.

3.2 Minimum Spanning Tree

In order to become acquainted with concepts of MST and HT, let us first in-

troduce a few principles from the graph theory. For this purpose, we refer to

Bondy & Murty (1976), Diestel (2000) and Matousek & Nesetril (2008).

A graph is an ordered pair G = (V,E) of sets such that E ⊆ [V ]2. While

V represents a nonempty set of vertices (also nodes or points), M stands for a

set of edges (also called lines or links) that is disjoint from V . Set E forms a

2-element subset of V . A graph G is said to be non-empty, if it at least V 6= ∅.
We say that a non-empty graph G is connected, if any two of its vertices

are linked by a path in G. An edge both beginning and ending in the same

vertex forms a loop since it does not connect two different vertices. An acyclic

graph—the one without a loop—is called a forest. Combining the concept of a

connected graph with that of a forest we arrive at the following definition.

Definition 3. (Tree) A connected forest is called a tree.
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Following Diestel (2000), we say that a graph G′ is a subgraph of G (or

G′ ⊆ G), if V ′ ⊆ V and E ′ ⊆ E. Moreover, if V ′ = V , than G′ ⊆ G is a

spanning subgraph of G.

Definition 4. (Spanning Tree) A tree that is a spanning subgraph of G is said

to be a spanning tree of G.

Diestel (2000) shows that for every connected graph there exists at least

one spanning tree. However, we strive to find a specific spanning tree among

all the available trees—a Minimum Spanning Tree, MST. Edges of such a tree

represent then the most important links in the underlying network. To allow

edges of the same graph to be of different importance we introduce a concept

of weight. We assume a real-valued function w : E → R defined for every edge

e ∈ E. This weight function assigns a weight w(e) to every edge of the graph.

A Problem of Finding a Minimum Spanning Tree

We formulate the task of finding a MST and describe the associated algorithm

based on Matousek & Nesetril (2008), pp.171-174 as follows:

Given a connected graph G = (V,E) with a nonnegative weight function w

on the edges, find a spanning tree T = (V,E ′) of the graph G such that the sum

of edges w(E ′) =
∑

e∈E′ w(e) has the minimum possible value.

There exist several algorithms, that can be used to find a MST of a graph.

These include Kruskal’s, Jarnik’s (also called Prim’s) or Boruvka’s algorithms.

In accordance with Mantegna (1999) and Kristoufek et al. (2012a) we are going

to employ the Kruskal’s algorithm introduced by Kruskal (1956).

The algorithm begins with a connected graph G = (V,E) with weight func-

tion w defined on its edges. Having ordered the edges according to their weight

in a nondecreasing order, the algorithm marks the edge with the minimum

weight. Should there be more than one edge of minimum weight, the algorithm

selects one of them randomly. The algorithm keeps choosing the edges of min-

imum weight among the so far unmarked edges. The next edge can only be

chosen if it does not create a loop. This step-by-step process continues until

the selected edges connect all vertices and form a MST of G. Computations

associated with the construction of the taxonomy objects will be processed in

R software. MSTs and HTs will be visualized using the igraph package.
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3.3 Hierarchical Tree

The methodology necessary for construction of HT further elaborates on the

toolbox of MST. This section is primarily based on Mantegna (1999) and Man-

tegna & Stanley (2000) from where the methodology of HTs was sourced.

First, we need to become familiar with the concept of ultrametric distance.

In addition to satisfying the first two properties of the Euclidian metric dis-

tance, the usual triangular inequality changes now into an ultrametric inequal-

ity, given in (iii), which is even stronger. Triangular inequality is implied by

current ultrametric inequality.

(i) Identity: dij = 0 ⇐⇒ i = j,∀i, j ∈ N ,

(ii) Symmetry: dij = dji,∀i, j ∈ N ,

(iii) Ultrametric inequality: dij ≤ max{dik, dkj},∀i, j ∈ N .

Second, we say that an ultrametric space is such a space in which the dis-

tance between objects is given by the ultrametric distances. We learn that:

“Ultrametric spaces provide a natural way to describe hierarchically structured

complex systems, since the concept of ultrametricity is directly connected to the

concept of hierarchy” (Mantegna & Stanley 2000, p.107).

Third, among all available ultrametric distances we identify the longest one,

called subdominant ultrametric distance, d∗ij. In an arbitrary MST, this distance

corresponds to the longest edge one comes across on the way from vertex i to

vertex j. Formally, this is written as:

d∗ij = max(dkl), (3.5)

where k and l represent all vertices of a MST along the way from i to j, including

i and j.

Fourth, there are n− 1 links connecting n vertices in every MST. Therefore

there exist a maximum of n− 1 subdominant ultrametric distances associated

with a particular MST. All values of d∗ij in a given MST constitute the subdom-

inant ultrametric distance matrix, D∗.
Inspecting D∗, the first pair of HT originates by linking the two items con-

nected by the minimal d∗ij. With increasing mutual distance, we keep matching

the other items, clusters with equal d∗ij get connected together. Proceeding

along these lines, we eventually arrive at the final form of HT.
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3.4 Stability of Links

Kristoufek et al. (2012a) pointed out the major weakness of described tax-

onomy methodology, an issue of potential link instability. When inspecting

the taxonomy objects, one cannot be certain whether the observed links are

relevant for the network or have appeared merely coincidentally. In order to

assess stability (importance) of individual links, we employ the bootstrapping

technique presented by Tumminello et al. (2007).

Basically, we are interested to find out whether the established links remain

and prove to be stable as the procedure is repeated with reordered samples.

Once the MST has been constructed, we take the underlying time series and

create its bootstrapped version. Although its length stays fixed (studied pe-

riod remains unchanged), its items get randomly reordered while allowing for

repetitions3. A new MST is then constructed based on this bootstrapped time

series and its links are recorded. Repeating this procedure 1,000 times, for each

edge we end up with a number indicating how many times out of a thousand

repetitions that particular link appeared in MST. Resulting bootstrap values

are reported for each edge in form of a ratio bij that divides the number of

occurrences by the total of bootstrapped realizations, thus bij ∈ [0; 1].

3.5 Wavelet Coherence

Wavelet coherence represents an analytical framework that is not technically

related to that of MST or HT. It is a model-free approach that allows for ex-

ploring the relationship between two time series. Specifically, we will use this

tool to further study the connections identified through the taxonomy perspec-

tive. Without imposing any prior assumptions, wavelet coherence enables us

to study correlation between two series both in time and across frequencies.

In the rest of this chapter, we are going to briefly introduce the wavelet

framework. We aim to deliver a guideline instructing readers on how to un-

derstand the concept and use it as a tool. This section is primarily based

on Grinsted et al. (2004). We also permanently refer to Vacha et al. (2013);

Vacha & Barunik (2012), and Kristoufek et al. (2015) who pioneered the use

of wavelets in the context of biofuels.

Traditionally, financial series are studied from the time perspective. In fact,

3Thus, some observations may be included repeatedly in bootstrapped series while others
may be missing completely.
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a time series can also be understood as a signal having several components

of different properties. Generally, a signal may be composed of individual

waves cycling with different speed, i.e. with different frequencies. Individual

components of the signal get separated in the frequency domain. A central

feature of wavelet analysis is that it captures both time and frequency domains.

A wavelet ψu,s(t) is a real or complex-valued function given as

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
, (3.6)

with a scale (dilation) parameter s and a location (translation) parameter u.

Under certain conditions, in detail discussed by Daubechies (2004), the original

series {xt} can be fully reconstructed from its wavelet transform Wx(u, s)

Wx(u, s) =

∫ +∞

−∞
x(t)

1√
s
ψ∗
(
t− u
s

)
dt, (3.7)

where * stands for a complex conjugate operator preventing an information loss

in the transformation. The degree of similarity between {xt} and the shape

of wavelet is measured by the integral above. The studied event is further

described by parameters u and s. While u specifies its location in time, s

indicates its time length. Most often, economic applications of wavelet analysis

use Morlet wavelet since it enables studying multivariate relationships between

series. To ensure comparability with previous research of Kristoufek et al.

(2015), we employ Morlet wavelet with central frequency of ωo = 6 defined as

ψ(t) = π−1/4et(6i−t)/2. (3.8)

Our analysis is going to focus on relationships between pairs of time series.

Under a bivariate setting, the cross wavelet spectrum is given by

Wxy(u, s) = Wx(u, s)W ∗
y (u, s), (3.9)

where Wxy(u, s) stands for the continuous wavelet transform of series {xt} and

W ∗
y (u, s) marks a complex conjugate of continuous wavelet transform (Torrence

& Compo 1998). Since the cross wavelet spectrum is complex, the cross wavelet

power is given by |Wxy(u, s)|. It is usually understood to be a measure of local

covariance between two series at a given frequency. Nonetheless, we cannot

easily assess the strength of a detected co-movement since the cross-wavelet

power is not bounded. Thus we introduce squared wavelet coherence defined as
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R2
xy(u, s) =

|S
(
1
s
Wxy(u, s)

)
|2

S
(
1
s
|Wx(u, s)|2

)
S
(
1
s
|Wy(u, s)|2

) , (3.10)

with S being a smoothing operator (Torrence & Webster 1998). By definition,

the value of squared coherence varies between 0 and 1. Moreover, squared

wavelet coherence corresponds to the usual squared correlation coefficient for

a specific time and frequency. As the cross-wavelet spectrum translates into a

the squared coherence, the information about the direction of the relationship

is lost. Therefore, we need to study the phase difference specified as

ϕxy(u, s) = tan−1

(
I
[
S
(
1
s
Wxy(u, s)

)]
R
[
S
(
1
s
Wxy(u, s)

)]) , (3.11)

with R and I representing a real and imaginary part, respectively. Further-

more, we test statistical significance of the coherence using the Monte Carlo

simulation method. For technical details please refer to Grinsted et al. (2004).

As pointed out by Kristoufek et al. (2015), wavelet coherence is limited

by the same technical constraint as usual correlation. It may suffer from the

omitted variable bias since it does not control for a possible influence of other

variables. Thus, we may observe a (seemingly) high coherence between two

price series; however, the observed relationship can in fact be caused by their

mutual ties to a third variable. To overcome this issue, we follow Kristoufek

et al. (2015) in using partial wavelet squared coherence, an analogy of partial

correlation defined as

RP 2
y,x1,x2

=
|Ryx1 −Ryx2R

∗
yx1|2(

1−R2
yx2

)2 (
1−R2

x2x1

)2 . (3.12)

Partial wavelet coherence evaluates the relationship between {y} and {x1} while

controlling for the effect of {x2}, please see Mihanovic et al. (2009) for details.

An outcome of wavelet analysis is presented in a two-dimensional chart. The

way of interpreting these charts is demonstrated in Chapter 6 where the results

for both the wavelet squared coherence and the partial wavelet coherence are

delivered. The whole computational process of wavelet analysis was processed

in MATLAB R2014b (version 8.4) using packages by Aslak Grinsted4 and E.

K. W. Ng and T. W. Kwok5.

4Wavelet coherence package was provided by A. Grinsted.
5The software for the partial wavelet coherence was provided by E. K. W. Ng and T. W.

Kwok and is available at: cityu.edu.

 http://www.cityu.edu.hk/gcacic/wavelet


Chapter 4

Data

In this chapter, we provide a description of the dataset employed in our study.

Together with motivating the data choice we introduce the sources used. We

further examine statistical properties of the dataset and describe the adjust-

ments necessary for our empirical approach. This unique dataset was gathered

entirely for the purpose of this thesis and belongs to its core contributions.

4.1 Dataset Description

In search for a system of commodities and assets that are related to biofuels,

we decided to choose a comprehensive approach. Our dataset was gathered

from various sources in order to systematically include representative items of

the following asset classes: biofuels (both ethanol fuel and biodiesel), ethanol

feedstock, biodiesel feedstock, fossil fuels including the crude oil, food, stock

indices, exchange rates, and interest rates. In contrast with previous studies we

intend to substantially increase the number of items considered in the analysis.

Our attempt results in a dataset composed of 32 price series.

Throughout the thesis we analyze time series data. Each series carries an

information about price development of a specific item over time. We work

with weekly price data covering an 11 year period starting from November 24,

2003 until January 19, 2015. Some of the data was available even on higher

frequency, e.g. daily data from stock exchanges. In such a case, we kept using

the prices observed for Mondays. For exchange traded commodities we used

Monday closing prices. Occasionally, when a particular exchange was closed on

Monday, e.g. due to a bank holiday, we included the closing price recorded on

the previous business day.
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The time period we are about to analyze is rather long. Over those 11 years,

commodity markets went through a number of structural changes. Resulting

price development exhibits several different patterns. In order to account for

various market environments we decided not to analyse the period as a whole.

Instead, we divided it into individual subperiods. For this purpose, the Food

Price Index was used. The index published by Food and Agricultural Or-

ganization of the United Nations (FAO) provides a broader notion about the

development of agricultural commodity prices. The FAO Food Price Index

(measured in points) captures the monthly change in international prices of

food commodities. It is a weighted average of the five commodity group price

indices. Weights are represented by the average export shares of each of the

groups during 2002-20041. Figure 4.1 shows the development of the index over

the 11/2003–03/2015 period. One can observe an upward sloping trend result-

ing in the 2007-2008 world food price crisis with the index value peaking in

June 2008. Subsequently, the agricultural prices fell bottoming in September

2009 before taking up again for a new food commodity rally. The index reached

its new peak in February 2011 without attacking it since then.

Figure 4.1: Food Price Index
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Having inspected the index’s historical behaviour, we assigned the two afore-

mentioned index peaks to be our dividing points. This way we obtained three

subperiods of unequal lengths as depicted in Figure 4.1 in color.

1Detailed description together with the underlying data can be found under: www.fao.org

http://www.fao.org/worldfoodsituation/foodpricesindex/en/
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Hence, our analysis will be carried out with the following time perspective:

I. Period: November 24, 2003 — June 30, 2008; 241 weekly observations

II. Period: July 7, 2008 — February 28, 2011; 139 weekly observations

III. Period: March 7, 2011 — January 19, 2015; 203 weekly observations

In the taxonomy analysis we study three subperiods as we hope to distin-

guish between development stages of the biofuel industry. Moreover, we found

several structural changes which are likely to have affected the connections

within the price system. The US Energy Policy Act of 2005 or the EU’s Re-

newables Directive 2009/28/EC may serve as an example2. Our dividing points

exactly correspond to those the World Bank identified as terminal points of the

two global food price crises in 2008 and 2011. As summarized by Cuesta et al.

(2014) for this purpose, the World Bank developed a methodological approach

to identify a situation resulting into a potential food price crisis.

Having commented on the time perspective of our analysis, we are going to

provide a detailed description of the commodities and assets employed. The

items are grouped according to their specific type. To ensure a quick orientation

in resulting taxonomy objects, individual groups are graphically differentiated

by colors. Table A.1 in Appendix A provides a summary of data and sources.

1. Biofuels

Since our primary focus is on the first generation biofuels, their inclusion is

clearly justified. Although the prices are not volatile enough on daily basis,

studied biofuel markets exhibit sufficient liquidity to be analyzed on weekly

frequency. In MST structure, biofuels will be colored in green.

� US and Brazilian Ethanol

A majority of the world’s ethanol is produced in the USA, followed by

Brazil. Therefore, we include prices of both US ethanol and Brazilian

ethanol represented by the New York Harbor Price and Centro de Estudos

Avancados em Economica Aplicada (CEPEA) Ethanol Index, respectively.

New York Harbor price is a spot price Free on Board (FOB) quoted in

US cents per gallon. The data was obtained from Bloomberg database

under the ticker ETHNNYPR Index. It is a denaturated anhydrous fuel

2The legislations set mandates for blending biofuels into US and EU fuels, respectively.
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ethanol purposed for blending with gasoline as disclosed by Kristoufek

et al. (2012a). Brazilian ethanol price is reported by CEPEA for anhydrous

fuel ethanol. The data was downloaded from CEPEA’s website.

� Biodiesel

As opposed to ethanol which leads the biofuels production in the USA and

Brazil, biodiesel is primarily produced in Europe. Biodiesel stands for the

most important biofuel in the European Union accounting for about 80%

of its biofuel used in transportation. Therefore, we searched for suitable

data which would represent the price of European biodiesel. At this point,

we had to cope with a severe data unavailability. The variety of suitable

European biodiesel tickers available from a standard Blooblerg terminal

is very limited. Many of the time series are too short to be meaningfully

employed. We finally solved the issue by including the data from two

different sources. Spot price of German consumer biodiesel (sourced from

the Bloomberg terminal as BIOCEUGE ATPU FOL Index) is used for

periods I. and II. Period III. is then covered by Dutch biodiesel data

which was gathered and provided by Reuters. Specifically, we employ a

price series labeled as FAME 0 FOB ARA Spot. The label corresponds

to FOB spot price of Fatty Acid Methyl Ester traded OTC in harbors of

Amsterdam, Rotterdam, and Antwerp. Being quoted in USD per metric

ton, this type of biodiesel conforms to EN 14214 norm set at 0°C with a

maximum water content of 350 ppm.

2. Ethanol Feedstock

Ethanol is produced from crops that are rich in sugars. Most of the world’s

ethanol is obtained from corn (in the USA), followed by sugarcane (in Brazil).

Other frequent ethanol feedstock include wheat and sugar beets. Still other

agricultural commodities may be technically used to produce ethanol, for ex-

ample cassava, potatoes, cotton or sorghum. In case of the US, we consider

the following American commodities: corn, wheat, sugarcane, and sugar beets

since they account for a vast majority of American ethanol production. The

data represents USD prices and come from Bloomberg as specified in Table A.1.

In Brazil we include the price of Brazilian sugar to proxy for local sugarcane

price. The data is provided by CEPEA3. In MST structure, ethanol feedstock

will be represented by red color.

3Price series on Brazilian sugar may be downloaded from CEPEA’s website.

http://cepea.esalq.usp.br/english/sugar/?id_page=210&full=1
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3. Biodiesel Feedstock

As mentioned above, biodiesel represents the primary European biofuel. The

EU is the world’s biggest producer of biodiesel. Nonetheless, the global vol-

ume of produced biodiesel is substantially smaller than the the world’s ethanol

production. Technically, biodiesel may be produced from a variety of both

vegetable oils and biolipids. However, rapeseed and soybean oils are the most

frequent feedstock commodities. In addition to rapeseed and soybean oils, we

include also sunflower4 and palm oil in our dataset. The data was obtained

from Bloomberg as specified in Table A.1. In MST, biodiesel feedstock will be

visualized in pink color.

4. Fossil Fuels

Biofuels represent an alternative to traditional fossil fuels that are their substi-

tutes. Our dataset thus contains crude oil price. Crude oil is not only the main

input into the other fuels’ production, but it also stands for a very lively traded

commodity. Since our focus is on ethanol and biodiesel we include those fossil

fuels that compete with our biofuels from a local perspective. Thus, German

diesel and German gasoline are considered because of their competitive rela-

tion to European biodiesel. Similarly, we include US gasoline and US diesel as

well as Brazilian gasoline and Brazilian diesel to serve as a counter party for

US and Brazilian ethanol, respectively. The price of (Brent) crude oil comes

from Bloomberg. Details are disclosed in Table A.1. Retail prices of both

US/German gasoline and US/German diesel were obtained from the website

of U.S. Energy Information Administration (EIA). Prices were quoted in USD

per gallon, excluding taxes. For the Brazilian fuel prices we referred to the Na-

tional Agency of Petroleum, Natural Gas and Biofuels5. We employ the weekly

weighted average consumer prices for gasoline and diesel which we previously

converted to US dollar prices per gallon. In MST structure, fossil fuels will be

differenced by gray color.

4Due to data unavailability, sunflower seeds (Bloomberg ticker SU1) are used instead of
sunflower oil.

5Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis - ANP. Price series quoted
in Brazilian real per liter are available from www.anp.gov.br

http://www.anp.gov.br/?pg=68638&m=&t1=&t2=&t3=&t4=&ar=&ps=&cachebust=1417818984625


4. Data 22

5. Food

In addition to agricultural commodities that are used as biofuel feedstock both

in Americas and in Europe, we cover selected purely food commodities as well.

Our dataset contains coffee, cocoa, rice, and oranges. First, these commodities

cannot be used to produce biofuels. Second, all of them are frequently traded

agricultural products that compete with biofuel feedstock over the cultivated

land. Food commodity prices come from Bloomberg with details provided in

Table A.1. Food commodities will be visualized in purple.

A comprehensive overview of non-energy commodities by Savaşsçin (2011)

serves as a good inspiration when sourcing the data for similar purposes. As

proposed by Serra & Zilberman (2013), an analysis investigating potential price

links between biofuels and other commodities should not omit external factors

that might affect price links within the food–energy system. These factors

include price development of stocks or futures, policy regulations, and macroe-

conomic conditions, e.g. exchange rates or interest rates. Similarly, Kristoufek

et al. (2012a) recommend to extend the taxonomy analysis not only in terms

of goods or commodities but also by inclusion of assets such as stocks, ex-

change rates or interest rates. These recommendations motivated our decision

to experimentally increase the complexity of our price system.

6. Stock Indices

Our data set contains a group of five frequently quoted stock indices. A na-

tional stock index may serve as a proxy of GDP reflecting the atmosphere

in a particular market at a given point in time. The choice of stock indices

is suitable because usual GDP data is not available at a weekly frequency.

Stock indices can provide information about the overall state of economic per-

formance. We cover the major indices that geographically correspond to the

markets of our interest. Namely, we include Dow Jones Industrial Average and

S&P 500 to represent the US stock market, Financial Times Stock Exchange

100 Index (FTSE 100) and Deutscher Aktienindex (DAX) to account for the

British and German stock markets, respectively. Moreover, due to our interest

in Brazilian ethanol, we also include the Brazilian Bolsa de Valores do Estado

de Sao Paulo (Bovespa) index. Market data for all the indices was obtained from

Bloomberg platform as summarized in Table A.1. The group of stock indices

will be differenced by orange color.
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7. Interest Rates

From a general perspective, interest rates reflect the nature of macroeconomic

conditions. In our case though, there arises an issue with data frequency since

a lot of key interest rates are not set on a weekly basis. However, we chose

two interest rates that are set daily. US Federal funds rate represents the base

interest rate of the US Federal Reserve. Fed funds is the interest rate one

bank uses for the overnight lending to another bank and results from the open

market. The data was downloaded from the Fed’s website6.

London Interbank Offered Rate (LIBOR)–former BBA LIBOR–is now quoted

daily by the Intercontinental Exchange. It serves as a global benchmark for

short term interest rates. Out of the variety of currencies and borrowing pe-

riods we take 3 months USD LIBOR as it is supposed to be the most frequent

one. The data was obtained from the ECONSTATS’s website7. Interest rates

will be visualized in blue.

8. Exchange Rates

Our analysis focuses on three geographical markets where a majority of the

world’s biofuels is produced; the USA, the EU, and Brazil. For this reason, we

consider the USD/EUR and USD/BRL exchange rates. As stressed by Algieri

(2014), international food (as well as other commodity) prices are denomi-

nated in US dollars. However, since consumers pay for commodities in their

local currency, changes in dollar exchange rate affect supply and demand which

translates in price changes. We may observe that a strengthening dollar means

falling commodity prices. Historical data on USD/EUR was gathered from the

European Central Bank8. The USD/BRL rate was obtained from the US Fed-

eral Reserve web page9. Exchange rates are going to be depicted in yellow color.

6Federal funds rate available under www.federalreserve.gov/
7ECONSTATS data available under www.econstats.com/
8Data downloadable from sdw.ecb.europa.eu/
9Data can be downloaded from www.federalreserve.gov/

http://sdw.ecb.europa.eu/
http://www.federalreserve.gov/releases/h10/Hist/dat00_bz.htm
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4.2 Descriptive Statistics

Table A.2 delivers basic descriptive statistics of our dataset. For the sake of

simplicity, the term price will be also used in a natural reference to stock in-

dex values, interest rates or exchange rates throughout this paper. Figure 4.2

presents the development of selected weekly logarithmic USD prices. In the

price chart (a), we can observe that both US and Brazilian ethanols follow a

similar path. To ensure legibility of the figure, crude oil price was plotted to-

gether with biofuels instead of fossil fuels. All fossil fuels in (b) exhibit a strong

co-movement. However, both Brazilian fuels still stand a bit aside showing a

relatively milder price development during the great recession. Ethanol feed-

stock prices are plotted in two separate graphs. In (c), corn exhibits a very

strong co-movement with wheat. Similarly, there is a natural similarity be-

tween price movements of sugar beets and sugarcane in (d). Vegetable oils

which are feedstock for biodiesel all follow a similar path at different price

levels (e). Furthermore, the development stock indices is captured in chart (f).

For the purpose of our analysis, we will convert our price series data Pt into

logarithmic returns rt defined as:

rt = log(Pt)− log(Pt−1) = log

(
Pt

Pt−1

)
(4.1)

The use of logarithmic returns is suitable due to their symmetry as dis-

cussed by Hudson & Gregoriou (2010). We also benefit from an earlier analysis

by Kristoufek et al. (2012a) who chose the same transformation. Thus, we

ensure comparability of results. Moreover, the use of logarithmic returns in-

stead of simple prices is beneficial for a technical reason. As will be further

explained bellow, when transforming prices into returns, we technically obtain

first differences. This fact turns out to be crucial for the discussion of time

series stationarity.

4.3 Stationarity Tests

Our analysis will process a construction of MST and HT using a distance metric.

Strictly speaking, our distance metric dij is merely a transformed correlation

coefficient. As we are going to compute correlations, stationarity plays a vital

role. Thus, we need to check for stationarity of our time series. For this

purpose, we will employ the following two tests.
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Augmented Dickey-Fuller test

Augmented Dickey-Fuller test (ADF) is an augmented version of an original

test introduced by Dickey & Fuller (1979) which tests for the presence of a unit

root. To establish stationarity, we aim to reject the null hypothesis of a present

unit root. Observed ADF statistic will always be a negative number. The more

negative statistic we obtain the stronger is our ability to reject the null.

Kwiatkowski–Phillips–Schmidt–Shin test

Kwiatkowski–Phillips–Schmidt–Shin test (KPSS) was developed by Kwiatkowski

et al. (1992). It tests a null hypothesis of stationarity against an alternative of

a unit root. At this point, we wish not to reject the null hypothesis in order to

establish the stationarity of a series.

An attempt to run the stationarity tests on the price series before trans-

forming them into logarithmic returns results in an undesirable outcome. Both

ADF and KPSS tests yield non-stationarity for all but one logarithmic price

series. Table A.3 in Appendix A summarizes the outcomes of performed sta-

tionarity tests. The only exception where stationarity seems not to get rejected

on reasonable p-values is US gasoline under the ADF test. However, even this

series does not prove to be stationary under both tests. Therefore, we have to

state that all of our logarithmic price series are non-stationary.

Further adjustment is needed to achieve stationarity in order to be able to

compute correlations. This urge for a technical adjustment constitutes another

justification for the use of returns (first differences) instead of simple prices.

Both stationarity tests performed on the series of logarithmic returns (582 ob-

servations) yield straight and satisfactory results. All analyzed series turn out

to be stationary under both ADF and KPSS tests. Non-stationarity is strongly

rejected without any exception. Tests’ results can be inspected in Table 4.1.
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Table 4.1: Stationarity Tests – Log Returns

ADF p-value KPSS p-value

Biodiesel -8.2985 < 0.01 0.1045 > 0.1

US Ethanol -9.1553 < 0.01 0.0918 > 0.1

BR Ethanol -8.2474 < 0.01 0.0797 > 0.1

Crude Oil -5.6530 < 0.01 0.3120 > 0.1

Corn -6.5972 < 0.01 0.1209 > 0.1

Wheat -8.0847 < 0.01 0.1036 > 0.1

Sugarcane -7.4650 < 0.01 0.1691 > 0.1

Sugar Beets -7.6338 < 0.01 0.2776 > 0.1

Soybeans -6.7541 < 0.01 0.0845 > 0.1

Sunflower -7.5821 < 0.01 0.0586 > 0.1

Rapeseed -6.9994 < 0.01 0.0935 > 0.1

Palm Oil -6.7438 < 0.01 0.0682 > 0.1

US Gasoline -7.2226 < 0.01 0.1795 > 0.1

US Diesel -6.3976 < 0.01 0.2315 > 0.1

DE Gasoline -6.8158 < 0.01 0.1998 > 0.1

DE Diesel -6.3632 < 0.01 0.2932 > 0.1

BR Gasoline -7.0856 < 0.01 0.1641 > 0.1

BR Diesel -7.3788 < 0.01 0.2072 > 0.1

Coffee -7.5110 < 0.01 0.1472 > 0.1

Cocoa -9.0287 < 0.01 0.0636 > 0.1

Rice -7.3896 < 0.01 0.1202 > 0.1

Oranges -6.2106 < 0.01 0.2487 > 0.1

Dow Jones -7.8402 < 0.01 0.1297 > 0.1

S&P 500 -7.5160 < 0.01 0.1452 > 0.1

FTSE 100 -8.2013 < 0.01 0.0774 > 0.1

DAX -8.2896 < 0.01 0.0791 > 0.1

Bovespa -7.8316 < 0.01 0.2887 > 0.1

Fed Funds -7.0904 < 0.01 0.1874 > 0.1

Libor -5.3280 < 0.01 0.2855 > 0.1

USD/EUR -8.3592 < 0.01 0.1674 > 0.1

USD/BRL -6.8069 < 0.01 0.3493 > 0.1

Source: Author’s Computation
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4.4 Normality Tests

In our normality testing, we combine Shapiro–Wilk test (SW) and Jarque–Bera

test (JB). The SW test was introduced in 1965 by Samuel Sanford Shapiro and

Martin Wilk. The test is based on an estimated variance and can be used even

for relatively small samples (Shapiro & Wilk 1965). In 1987, Carlos Jarque

and Anil K. Bera introduced their goodness–of–fit test that checks whether

the third and fourth central moments correspond with the normal distribution

(Jarque & Bera 1987). Both test share the same null hypothesis of the data

coming from the normal distribution. The null is tested against a contradictory

alternative.

We performed both test on our logarithmic returns with very similar re-

sults. The tests strongly reject the null hypothesis of normality for all of our

price series without any exception. Having supplied the tests with a sufficient

amount of observations we have to state that our time series do not come from

the normal distribution. Detailed results of JB and SW tests together with

associated p-values may be inspected in Table A.4 in the Appendix A.

Having said this, the normality assumption being made by Pearson corre-

lation turns out to be very complicated here, although required by standard

statistical literature. Usually, the normality assumption has to be disregarded

as a frequent issue in social sciences. Earlier, Chance (1986) showed that the

distribution of linear correlation coefficient does not depend on either of the

underlying data distributions. In the same vein, Good (2010) demonstrates

that non-normality of the underlying data does not come at cost of validity or

precision of the correlation coefficient. Nonetheless, we need to keep in mind

this specific property of our data especially when interpreting the results.

In this section, we provided a detailed description of our dataset including

its sources. A summary can be inspected in Table A.1 in Appendix A. We

discussed our motivation for the use of individual price series. Due to their

revealed statistical properties, we chose to transform simple prices into loga-

rithmic returns. The data is provided on weekly frequency. In order to exploit

the highest possible amount of information, we will also use the same data set

on monthly frequency. The monthly data is extracted from our weekly series

by simply taking one observation every four weeks.
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Figure 4.2: Selected Logarithmic Prices
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(c) Corn and Wheat
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(d) Sugar Crops
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(f) Stock Indices
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Chapter 5

Taxonomy Analysis

Having previously described both the employed methodology and the dataset

we are now going to elaborate on the results of our taxonomy analysis. Fol-

lowing a step-by-step approach, this chapter builds and visualizes an intercon-

nected system of biofuel-related commodities and assets. The chapter begins

by outlining an experimental system of assets before proceeding to its simplified

version that contains physical commodities only. Construction and visualiza-

tion of MST and HT structures were performed using R software.

5.1 Experimental Price System

To our knowledge, we are the first to construct a similarly complex system of

commodities and assets that are associated with the global production of bio-

fuels. As described in Chapter 4, the complexity of our price system increases

due to employing a comprehensive pool of items as well as through covering an

exceptionally long period of time. The inclusion of purely food commodities

was inspired by a recommendation of Serra & Zilberman (2013). We also took

an advice from Kristoufek et al. (2012a) who had proposed considering relevant

financial series such as exchange rates, interest rates or stocks indices.

5.1.1 Period I, 2003 – 2008

In order to explain a practical use of the taxonomy methodology described in

Chapter 3 we start with a description of how a particular MST and an associated

HT come to existence. For each period, we employ logarithmic returns on

weekly and monthly frequency to differentiate short term and medium term

effects.
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When constructing a MST, we are interested in visualizing the most impor-

tant connections among the vertices. The importance of an edge is determined

by the strength of correlation between the two given vertices. Simple correla-

tion is transformed into the distance measure, dij – the stronger the correlation,

the shorter the edge. Actual values of realized distances dij are indicated by

blue bold numbers attached to the edges.

Figure 5.1: MST – Experimental Taxonomy, Period I, Weekly
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Apart from distances between the vertices, we also test the stability of the

links using the bootstrap method. We then inspect how many times out of

a thousand bootstrapped realizations a particular connection appeared in the

MST. A robust link being present more than 500 times is marked by a double

asterisk sign. On the contrary, single asterisk designates a rather unstable link.
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Exploring the weekly logarithmic returns, we found the shortest edge (dij =

0.251) between the US stock indices. Hence, Dow Jones and S&P 500 cre-

ate the first pair a nascent MST. The second shortest link (dij = 0.482) was

identified between German gasoline and German diesel. The third strongest

correlation exists between the European stock indices, FTSE 100 and DAX,

(dij = 0.517). At this point, our MST consists of three separate pairs: Dow

Jones–S&P 500, GE gasoline–GE diesel, and FTSE 100–DAX. The next short-

est distance (dij = 0.639) is then found between DAX and S&P 500 which

are both already present in the MST. By matching these vertices we create

a quadruple through connecting the two pairs. The fifth highest correlation

exists between US gasoline and US diesel, (dij = 0.688). We add a new sep-

arate pair since neither of these fuels has yet been present in the MST. The

connection between Brazilian gasoline and Brazilian diesel (dij = 0.708) creates

a separate fuel pair. The next shortest edge (dij = 0.744) connects Bovespa to

the S&P 500 on the already existing quadruple of the remaining stock indices.

Our MST consists now of a quintuplet of stock indices and three separate

(gasoline-diesel) retail fuel pairs. Further steps add a separate sugarcane–sugar

beets pair and then connect USD/BRL exchange rate to the Bovespa index.

Each time, before a potential new edge is constructed, we need to make sure it

will not create an undesirable loop in the MST. Next steps form a fuel quadruple

by linking the US and German gasolines (dij = 0.924), before establishing the

first vegetable oilpair, rapeseed–palm oil(dij = 0.973). Following this logic we

eventually obtain a complete MST as shown in Figure 5.1.

A HT is paired with a particular MST for the purpose of classification and

visualization of the MST’s hierarchical structure. With a form of an inverted

tree, the composition of a HT uses a following logic which corresponds to that of

MST. Construction of the HT depicted in Figure A.3 begins with matching Dow

Jones and S&P 500, the closest pair from the underlying MST in Figure 5.1.

Intuitively, next pairs arise from connecting German gasoline to German diesel

and DAX to FTSE 100. The fourth pair is formed by the already present

DAX and S&P 500. Graphically, we connect the two relevant pairs. Assigned

distance (dij = 0.639) applies now to all potential connections among these four

vertices. After establishing the US and Brazilian fossil fuel pairs, respectively,

Bovespa is connected to the existing cluster of stock indexes. The associated

distance (dij = 0.744) is now assigned to all the four possible pairs. Consecutive

steps according to this logic result eventually in the complete HT in Figure A.3.
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Inspecting Figure 5.1 we observe the visualized characteristics of our exper-

imental network. A core of the MST is formed by a compact group the stock

indices. It follows from the interconnected nature of stock markets that the

indices are strongly correlated with stable mutual links. We see that not only

stock indices but also a number other items gather according to their type. In

broader terms, there seems to be a group of agricultural commodities–a food

branch– and fuel branch of the MST at the opposite sites of the network. A

cluster of vegetable oils together with ethanol feedstock commodities constitute

the food part of the tree. On the other hand, fossil and biofuels form the fuel

branch. While no other biofuel is connected to its feedstock, Brazilian ethanol

makes a notable exception. Its robust link to Brazilian sugar is evident already

during the first studied period. US ethanol and even biodiesel have stable links

to their US fossil substitutes.

As opposed to the exchange rates which bridge the stock market cluster

with fuel and food parts, interest rates do not seem to interact a lot. Brazilian

retail fuels are not integrated into the fuel branch, they stand at the edge of

the network being only linked to Libor. The isolated position of Brazilian fossil

fuels is implied by a specific setting of national fuel market in Brazil. Due to a

decisive influence of Petrobras1 on local fuel prices, Brazilian fossil fuels do not

necessarily follow the global markets’ development. As we will see during the

whole studied period, they do not usually integrate into the fossil fuel cluster.

We should not forget about the four purely food commodities which cannot be

used to produce biofuels. These items do not form any cluster and are only

individually connected to different nodes of the network.

In contrast with the MST on weekly frequency, the MST depicted in Fig-

ure 5.2 was based on monthly data. Although reflecting the same period of

time these two MSTs differ in some details. We still observe a strongly con-

nected stock market cluster linked together with interest rates and Brazilian

fuels. The food branch shrunk somewhat but vegetable oils cluster and cereals

remain almost untouched. On the other hand, lower frequency brings interest-

ing changes into the fuel part of the MST. Not only is US ethanol still linked to

US gasoline but it also becomes connected to sugars. Biodiesel and Brazilian

ethanol keep their links to US diesel and Brazilian sugar, respectively. Specifi-

cally, Brazilian ethanol moves with its feedstock to the fuel part of the network

getting attached to German diesel. Here we need to point out a natural feature

1Petroleo Brasileiro S.A is the Brazilian largest energy corporation with multinational
presence. A share of up to 64% is directly or indirectly controlled by the government.
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of our taxonomy approach. When interpreting the results, one needs to keep

in mind that the longer is the link the weaker is the mutual correlation. In

particular, a link of length close to
√

2 effectively refers to no correlation.

Figure 5.2: MST – Experimental Taxonomy, Period I, Monthly
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A first look separately at HTs depicted in Figure A.3 and Figure A.4 in

Appendix A does not immediately tell us an intuitive story. When comparing

these two HTs though, the difference becomes more evident. Foremost, we may

observe that in the monthly HT realized connections take place on relatively

lower levels. Thus, the whole price system gets more closely interconnected on

a lower frequency – a sign we do not observe for the last time.
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5.1.2 Period II, 2008 – 2011

Our first period covered an era of rising food prices and increasing global signif-

icance of biofuels preceding the first world food price crisis. We now continue

investigating our network’s development in a changed market environment. Af-

ter several years of accelerating agricultural and energy prices, these slumped

quickly during the second half of 2008 hand in hand with a global economic

crisis. After the bottom was reached in 2009, both energy and agricultural

prices started a new rally until approaching a new peak in February 2011. At

this period, we expect to see signs of an established biofuel production not only

in Brazil but also in the US and Europe. Figure A.5 delivers a MST generated

from weekly data. Compared to the previous period, US ethanol moved to the

food branch connecting to corn. The US ethanol–corn link is relatively short

(dij = 0.930) and stable. It reflects an important connection between main US

biofuel and its primary feedstock.

The lower frequency (Figure A.7) turns out to be suitable since it reveals

some essential connections within the network. The MST becomes meaningfully

structured and its links get shorter. All three biofuels connect to their feedstock

reflecting the underlying production logic. In case of biodiesel, this is observed

for the first time. In particular, biodiesel gets attached to rapeseed oil which is

its main European feedstock commodity. US ethanol preserves its link to corn

and their mutual distance even reduces from dij = 0.930 to dij = 0.659. No-

tably, Brazilian ethanol and sugars form a relatively isolated cluster reflecting

strong ties of Brazilian ethanol production to local sugar prices.

Let us briefly compare the HTs depicted in Figure A.6 and Figure A.8 vi-

sualizing weekly and monthly hierarchical structures, respectively. We quickly

notice an obvious difference. It becomes evident now that the network gets

considerably more interconnected when data frequency is lowered. The real-

ized links get shorter. The monthly HT appears to be much more readable. We

notice that a number of links are now established at heights of about 0.6− 0.8

rather than previous 1− 1.2.

The second period further develops our knowledge of the biofuel-related

price system. Especially the taxonomies resulting from the monthly data re-

flect a well established biofuel production in the US, Brazil, and Europe. We

observe all biofuels connected to their respective productions factors. In im-

portant move in the European context is biodiesel getting eventually connected

to rapeseed.
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5.1.3 Period III, 2011 – 2015

During the last studied period, the values of FAO Food Price Index (Figure 4.1)

experienced a gradual slowdown continuing until and including January 2015.

Considered food and energy prices went through a volatile season during which

they approached considerably lower values. At the same time, stock indices

grew reaching new all time highs.

Figure 5.3: MST – Experimental Taxonomy, Period III, Weekly
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Inspecting the weekly MST in Figure 5.3 we may draw a clear line separating

the fuel from the food branch with the stock indices just in between. Now

the visual difference between fossil fuels and agricultural commodities becomes

obvious. Exceptionally, both Brazilian fossil fuels get integrated into the fuel

cluster. In accordance with the previous findings, the biofuels stay attached
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to their respective feedstock clusters; however, their mutual links are rather

weak. There exist very stable interconnections between palm oil, rapeseed,

and soybeans with biodiesel being attached to both sunflower and palm oil.

Although the monthly MST (Figure A.10) is very similar to the previous

weekly MST, there are several structural differences. Foremost, the whole tree

seems to be more complicated. Suddenly, it becomes challenging to make a

clear cut between the fuel and food regions. Even the food branch itself gets

divided into two parts as the sugar cluster moves away with Brazilian ethanol.

Biodiesel still remains connected to the vegetable oils cluster. In each of the

trees, we have observed a stable link between soybeans and corn. The unstable

US ethanol–soybeans connection may look little surprising here. However, since

US ethanol is also correlated with wheat and corn it oscillates among them in

bootstrapped realizations.

Unlike the previous period, the weekly (Figure A.9) and monthly (Fig-

ure A.11) HTs are now somewhat more similar to each other. We again observe

that the links get shorter with lower frequency, but the difference is smaller

now. In both HTs, we identify the clusters formed by stock indices, US and

German fossil fuels, and food commodities grouped around the US ethanol.

Having modeled the experimental price system over the period of 11 years,

we have learned about several patterns that emerge from MST and HT struc-

tures. Nonetheless, we still wonder whether it is possible to reveal even more

dynamics with use of the taxonomy method. After all, one can never be en-

tirely sure their asset selection was optimal. In order to find out, we decided to

adjust our price system by reducing the selection of analyzed items. This way,

we will be able to compare the outcomes of both systems. During the adjust-

ment procedure, we tried several different settings before eventually arriving

at the preset form. Strictly speaking, the final design eliminates four out of

the previously employed asset groups. We excluded the group of stock indices,

pure food commodities, exchange rates, and interest rates in order to find out

whether these are vital for the system.

Looking back at the constructed MSTs, it comes natural that some compo-

nents are more important for the network than others. The food commodities

that cannot be used in biofuel production (i.e. rice, oranges, cocoa, and cof-

fee) have not been effectively integrated into the network. Very often, they

got only unstably connected to various vertices at the edge of the tree. These

food commodities do not form any cluster. Similarly, the interest rates do not
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exhibit any reasonably strong position within the network. Judging from the

HTs, their links to other items belong among the longest (i.e. weakest). The

group of stock indices, on the other hand, does form a very strongly intercon-

nected cluster of an exceptionally stable design. However, this stocks cluster

merely separates the food from the fuel branch without actually interacting

with either part. It further makes a good sense that the exchange rates are

always attached to the stocks cluster. No wonder that Bovespa index (quoted

in Brazilian reals) establishes a stable link to USD/BRL exchange rate. Let us

now explore what the taxonomy looks like if we exclude the above mentioned

four groups. By doing so we allow for including only those commodities that

are physically related to the process of biofuels’ production and consumption.
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5.2 Adjusted Commodity System

Using only physical commodities, the adjusted system aims to provide a more

structured view delivered and interpreted in the context of the individual bio-

fuel markets under consideration. All items in the following taxonomy objects

play a physical role in either production or sales process of the respective bio-

fuels. We include the biofuels together with their production factors and their

fossil fuel alternatives2. This way, we hope to increase precision and foster the

interpretability of resulting taxonomies.

For the sake of comparison, we keep presenting the MSTs and HTs on both

weekly and monthly frequencies while also preserving all the previous technical

features of our tree objects. Thanks to a smaller number of analyzed items, the

length of the link (dij) is now supplemented by an exact bootstrap value (bij)

indicated in square brackets. The bootstrap value signals how many times out

of thousand repeated realizations a particular link appeared in the MST.

5.2.1 Period I, 2003 – 2008

The MST in Figure 5.4 results from weekly data. Our network is composed of

stable food and fuel branches that are relatively well separated in the short

term. Individual items within these branches are closely interconnected with

very stable links. For instance, in the food region, corn–wheat and sugarcane–

sugar beets pairs were found in every bootstrapped case. Similarly, connections

established between the pairs of national fossil fuels have also very high stability.

It follows from the design of the present MST that by excluding some of

the previous items we actually made no substantial changes to the rest of the

network. Compared to the corresponding MST in the experimental system,

the structure shrank by 13 vertices. However, realized connections among the

remaining items were not actually affected. Put simply, by removing some of

the vertices we simplified the system without altering the links existing among

the remaining vertices. We can still compare structural composition of whole

branches between the experimental and adjusted system with a high accuracy.

The gaps resulting from removal of financial and food items are bridged by

three new links. Namely, crude oil connects to sugarcane, Brazilian diesel to

US ethanol, and Brazilian ethanol to German diesel. However, these edges are

very long and represent the most unstable three links within the MST (bij < 0.3).

2Although not a consumer fuel itself, crude oil represents the main production factor for
all fossil fuels irrespective of the geographic market.
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Figure 5.4: MST – Adjusted Taxonomy, Period I, Weekly
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Figure 5.5: HT – Adjusted Taxonomy, Period I, Weekly
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All biofuels belong now to the fuel branch. Biodiesel and US ethanol are

connected to their US fossil counterparts with weak but stable links (bij =

0.713 and bij = 0.844, respectively). Brazilian ethanol is tied to its BR sugar

feedstock. Their link is rather long but stable bij = 0.713. While US and

European biofuels connect to fossil fuels and not to their feedstock, Brazilian

ethanol behaves differently. It primarily depends on its feedstock while the

connection to fossil fuels is unimportant.

In terms of complexity, HTs generated for the adjusted system will obviously

be more plausible to read and to interpret. In Figure 5.5 we observe several

clusters. There are two large clusters of fuels and feedstock that correspond to

the above mentioned main tree branches. A little apart, Brazilian commodities

create two separate pairs. We see that Brazilian fossil fuels are tight together

but practically uncorrelated with other items, they connect to the rest of the

network at dij = 1.341. This behavior reflects a heavily regulated Brazilian

fuel market with local prices that do not necessarily follow the price of oil.

The MST in Figure 5.6 originated from monthly data. The tree shares

a majority of characteristics described for the higher frequency. Its links are

highly similar to those observed within the experimental system. In the medium

term, they also become stronger than in the short run. US ethanol and biodiesel

keep their connections to corresponding US fossil fuels. However, the stability

of these fuel–biofuel links decreases considerably. In the medium term, biofuels

depend on other commodities as well. Now, US ethanol moves closer to the

food branch by connecting to sugarcane. We cannot make any strong judgment

as the link is rather weak dij = 1.157 and only moderately stable bij = 0.562.

HT in Figure 5.7 shows more details. In particular, we can distinguish five

clusters. A big feedstock cluster and a fuel cluster are the main ones. Then

there are three separate pairs: sugarcane–sugar beets, BR ethanol–BR sugar,

and Brazilian fossil fuels. Apparently, biodiesel stands aside not interacting

with other items both in short and medium term. During the first period, we

observe different patterns in behavior of Brazilian and the other biofuels.

We identify a significant phase shift in development stages of Brazilian and

the US/EU biofuel industries. In the US but especially in Europe, this period

is associated with a rise of an immature biofuel industry. In Brazil though,

the ethanol–sugar connection represents a traditional but still growing ethanol

production. In 2000, the US ethanol production stood at 6.1 billion liters while

Brazil produced 10.7 billion liters. Five years later, the USA already generated

14.8 billion liters compared to 16 billion liters produced in Brazil.
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Figure 5.6: MST – Adjusted Taxonomy, Period I, Monthly
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Figure 5.7: HT – Adjusted Taxonomy, Period I, Monthly
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In the global context, Brazil represents a unique scenario. The dawn of

Brazilian ethanol industry dates back to the 1970s. At the time of the oil crises,

Brazil was covering as much as 80% of its oil demand by imports. A rocketing

oil price triggered an enormous Brazilian biofuel effort. Due to the country’s

large size and favorable geographic location, Brazil enjoys perfect conditions to

grow sugarcane, its main ethanol feedstock. Being part of a broader energy se-

curity scenario, Brazilian ethanol industry has been massively subsidized. For

decades, various forms of governmental support range from blending mandates

and infrastructural subsidies to promoted sales of ethanol fueled vehicles. Al-

though the demand for ethanol decreased temporarily after the biofuel market

was deregulated in 1990s, Brazil experienced a renewed ethanol boom in early

2000s. Starting from 2003, flex fuel vehicles3 were massively introduced to

Brazilian market. A decade later, flex fuel cars account for about a half of the

local vehicle fleet and almost 90% of new cars sold in Brazil.

5.2.2 Period II, 2008 – 2011

Our analysis continues through an era of very volatile agricultural prices be-

tween the first and second food price crisis. The weekly MST in Figure 5.8 brings

several new features along with those we already know. As a matter of course,

we again find the BR ethanol–BR sugar link. However, the stability of this link

decreases considerably compared to the previous weekly MST. In about 50% of

bootstrapped cases, BR ethanol interrupts the connection with its feedstock.

At that time, unfavorable weather conditions caused several poor sugarcane

harvests. In turn, high sugarcane prices diverted the industrial attention from

ethanol to production of sugar. Moreover, artificially low price levels of local

fuels contributed to a temporary crisis of Brazilian ethanol industry.

At the same time, we observe notable changes for the US and European

biofuels. First, US ethanol moves to the food branch establishing a relatively

strong (dij = 0.930) and stable link (bij = 0.834) to its primary US feedstock,

corn. Second, European biodiesel connects to the cluster of vegetable oils by

attaching to palm oil. Thus, we begin to see signs of the phase shift approaching

the US and also more delayed European biofuel markets. During the second

period, the short run behavior of all studied biofuels depends on feedstock

commodity prices.

3Engine of a flexible-fuel vehicle is capable of running either on gasoline or ethanol or any
combination of the two.
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Figure 5.8: MST – Adjusted Taxonomy, Period II, Weekly
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Figure 5.9: HT – Adjusted Taxonomy, Period II, Weekly
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The associated HT (Figure 5.9) is less structured compared to the previous

period. It is dominated by several closely linked pairs formed by vegetable

oils, cereals, US and German retail fuels, and sugars. Separation into food

and fuel clusters is less clear now. Interestingly, US ethanol moves away from

the fuel cluster and even crude oil is quite far from the retail fuels. This

finding supports our claim that the US have already developed a mature biofuel

industry. Indeed, as of 2010 the US produced 50.3 billion liters of ethanol, an

increase by 240% from 2005 levels and far ahead of Brazil’s 26 billion liters.

When the data frequency is lowered to one month the resulting MST (Fig-

ure 5.10) extends our findings to the medium term. Apparently, the tree gets

clearly and logically structured. One can now distinguish several commodity

groups. Apart from a typical fossil fuel group, we see a cluster of vegetable

oils with soybeans in the position of a central node with five vertices. Biodiesel

is now connected to rapeseed, its primary European feedstock. Compared to

weekly frequency, biodiesel gets closer to vegetable oils but its connection (to

rapeseed) becomes less stable (bij = 0.352) since it is correlated with multi-

ple items from that cluster. Biodiesel is now further linked to Brazilian diesel

which is a change from US diesel in the previous period. Starting from scratch,

the EU biodiesel production more than quadrupled during 2000-2005, reaching

3.2 megatonnes in 2005. Then, over the course of the next five years, the pro-

duction volumes of EU biodiesel tripled reaching 9.6 megatonnes in 2010. Also

US ethanol firms its ties to corn both in terms of distance and link stability.

Their mutual distance decreases considerably from dij = 0.930 to dij = 0.659.

At the same time, stability of the link rises from bij = 0.834 to bij = 0.932.

We are able to learn more details from the corresponding HT (Figure 5.11).

The overall length of the links shortens as individual correlations strengthen

hand in hand with a lower data frequency. We observed this phenomenon al-

ready within the experimental system. Hence, we can now argue with more

certainty that commodities get more interconnected in the medium term. The

HT shows three closely linked clusters which correspond with the structure of

the MST. We notice that biodiesel still behaves differently from both US and

Brazilian ethanols. In particular, ethanols keep their close ties to feedstock,

biodiesel, on the other hand, remains far from the rest of the network. Alto-

gether, the monthly taxonomy is in accordance with our findings for the weekly

frequency. During the second period, not only Brazilian ethanol but also the

other biofuels lively interact with their production factors in both short and

medium terms. Studied biofuel markets have already reached a mature stage.
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Figure 5.10: MST – Adjusted Taxonomy, Period II, Monthly
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Figure 5.11: HT – Adjusted Taxonomy, Period II, Monthly
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5.2.3 Period III, 2011 – 2015

Our analysis continues by exploring the most recent period following after the

second food price crisis culminating in Q1 2011. In terms of agricultural com-

modity prices represented by FAO Food Price Index (Figure 4.1), this period

is characterized by a gradual price decline. Except for a few temporary fluc-

tuations, the decreasing tendency ruled the agricultural commodity markets

throughout the whole period until January 19, 2015. Crude oil price remained

high, mostly above USD 100 per barrel, and relatively stable until a radical

drop to as low as USD 47 during the last studied months. This period covers

a recent development of biofuel-related prices and reflects thus an established

biofuel producing industry in Brazil, the US, and in Europe.

The MST in Figure 5.12 shows a short term (weekly) taxonomy perspective.

Looking from fuels towards its food part we notice that crude oil bridges the

fossil fuel and food clusters—a feature we have observed in every MST gener-

ated from weekly data. According to our expectation, the food part is again

structured in a way corresponding with the biofuels production logic. As usual,

the BR ethanol–BR sugar pair is present. Moreover, it is comparable to that

observed in the second period. The pair is a little more stable but a little less

correlated, too. It further connects to the sugarcane–sugar beets pair. The

resulting short term sugar cluster is relatively isolated since it is far from both

fossil fuels (dij = 1.196) and the rest of the food items (dij = 1.242).

During the second period, US ethanol was attached to corn, the ethanol pro-

duction volumes and its price were rising quickly. On both weekly and monthly

frequencies, this link used to be very stable. Now US ethanol gets connected

to wheat with relatively high mutual distance (dij = 1.201) and considerably

lower stability (bij = 0.475). Ethanol’s short run behavior becomes less tied

to the crop price, its price is volatile and follows a decreasing trend. In 2014,

US ethanol adds only a 7.8% increase to its 2010 production levels. Compared

to the previous weekly MST, biodiesel adds sunflower to its earlier palm oil

connection. The geographically pairwise closely interlinked fossil fuel cluster

contains now Brazilian fuels as well. However, this unstable (bij = 0.482) link

is the longest (dij = 1.274) in the MST and thus not of a high importance.

The HT (Figure 5.13) clearly reveals what was already visible from the MST–

the edges become longer. Not only get the biofuels less tied to feedstock but the

network becomes less interconnected as a whole. In an environment of bearish

commodity prices, some of the previously close ties slacken in the short term.
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Figure 5.12: lMST – Adjusted Taxonomy, Period III, Weekly
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Figure 5.13: HT – Adjusted Taxonomy, Period III, Weekly
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Compared to the previous period, the current monthly MST in Figure 5.14

gets little more complicated. Although a basic distinctions between individual

clusters remains, we also identify some changes in the network’s design. The

whole tree structure gets slightly rearranged and its edges expand as individual

items get less interrelated. The average length of the link extends to dij = 0.849

compared to dij = 0.778 obtained for the previous monthly MST.

As observed in each of the earlier MSTs, BR ethanol keeps its connection

to BR sugar. Because we are well acquainted with the presence of this link,

we notice that on monthly frequency its stability has been gradually decreas-

ing since the first period. In a consecutive order, we obtain bootstrap values

bij = 0.705, bij = 0.625 and bij = 0.462. On weekly level, the total decrease

in this link’s stability from bij = 0.916 to bij = 0.577 is also obvious. In the

last five years, Brazilian ethanol market suffered from multiple negative effects.

Due to temporary supply shortages in 2010 and 2011, ethanol price increased

substantially. Brazilian government intended to reduce the demand for ethanol

by introducing lower blending mandates while maintaining artificially low gaso-

line prices. Many flex fuel car owners switched to conventional gasoline because

of ethanol’s high price. As a result, a share of flex fuel cars regularly run on

ethanol dropped from 66% in 2009 to as low as only 23% at year end 2013.

Biodiesel maintains its link to rapeseed. However, their connection becomes

also a little weaker and even less stable (bij = 0.245). In fact, this is the least

stable of all connection we have observed between biodiesel and its feedstock.

This instability results from biodiesel’s strong ties to several other items. In

almost 65% of bootstrapped cases, biodiesel connects to some of the vegetable

oils (mainly palm and rapeseed oils). Apart from vegetable oils, biodiesel often

attaches to either corn or wheat. We repeatedly notice that the behavior of

biodiesel differs from that of US and Brazilian ethanols.

Perhaps, the most surprising change occurs in the case of US ethanol, al-

though it still remains a part of the food branch. Already the weekly MST did

not contain US ethanol’s previously stable connection to corn. With decreasing

frequency, it moves further away from its feedstock and becomes primarily con-

nected to the pair of Brazilian retail fuels. Although the US ethanol’s link to

feedstock commodities may have loosened somehow, there is not any technical

reason for the US biofuel to attach to Brazilian fossil fuels. We will focus on

this anomaly in the next chapter where the ethanol’s relationship to feedstock

crops will be further studied. The associated HT in Figure 5.15 completes the

story of the third period considered by the taxonomy analysis.
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Figure 5.14: MST – Adjusted Taxonomy, Period III, Monthly
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Figure 5.15: HT – Adjusted Taxonomy, Period III, Monthly
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In this chapter, we modeled a system of biofuel related prices. We covered

a period of the last decade focusing on world’s major biofuel markets, the US,

the EU, and Brazil. We started with a broadly defined experimental system.

The initial price system consisted of biofuels, corresponding fossil fuels and

crude oil, biofuel feedstock and food commodities along with selected financial

items. Our first results then shaped a simplified version of the system that

better reflects the biofuels production logic. The adjusted system includes only

physical commodities; biofuels, fossil fuels, crude oil, and feedstock crops.

The taxonomy approach of MSTs and HTs was employed on the three consec-

utive subperiods divided by the first and second food price crises. Moreover, to

distinguish between short and medium term effects, weekly and monthly data

frequencies were used. Link stability was tested by the bootstrapping method.

We were especially interested in describing the strength and stability of the

links between biofuels and their production factors. The taxonomy perspective

proved to be very useful. Resulting tree objects tell us how a given commodity

system was interconnected during particular periods of time.

A key advantage of this concept is its straightforward principle and a wide

applicability. In fact, the concept is based on transforming a simple correlation

into a distance metric. A potential weakness stemming from the method’s

simplicity is that taxonomies do not tell us anything about the directions of

the relationships identified among individual items.

Our taxonomy analysis results in selecting particular biofuel–feedstock con-

nections to be subject of further study. Since the nature of these connections

is of our central interest, we are going to explore them further. Thus, a pool

of selected connections is followed up with the wavelet analysis in the next

chapter.



Chapter 6

Wavelet Analysis

This chapter builds on the knowledge acquired through the taxonomy toolbox.

Having identified several links between biofuels and their feedstock, we now

approach these pair connections separately. We intend to learn mainly about

their importance and their evolution in time. To accomplish this goal we em-

ploy the wavelet coherence methodology explained in Chapter 3. In short, we

use continuous wavelet framework to study each biofuel’s links over the 11 year

time period.

Usually, statistical correlation is only studied in time dimension. Wavelet

analysis basically adds the frequency dimension into the analysis. Therefore,

wavelet framework allows for exploring the correlation relationship in both time

and frequency domains. The output for each studied biofuel–feedstock pair is

presented in form of two charts. While the horizontal axes show time (in years),

there is also the frequency or period (in days) on the vertical axes. Coherence

is indicated by color according to a spectrum shown at the right edge. Pale

colored corner areas are not of a reliable interpretation. They resulted from

artificially adding zeros to the beginning and to the end of analyzed series. A

central bright colored area delivers reliable results. Furthermore, regions with

statistically significant coherence are bounded with a thick black curve.

In the left panel, we preset the squared wavelet coherence between biofuel

and a given feedstock commodity. Since there is no negative wavelet coherence,

phase difference between the series is indicated by directed arrows. Put simply,

the arrows show what the direction of the relationship is. Rightward pointing

arrows mean that biofuel is positively correlated with that particular feedstock

while leftward pointing arrows indicate a negative relationship. If the arrows
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point straight down, biofuel leads the price of feedstock by π/2. In the contrary,

upward pointing arrows imply that price of biofuel is led by feedstock.

In the right panel, we preset the partial wavelet squared coherence in detail

described in Chapter 3. In the food–fuel system, crude oil plays a role of

an important price driver affecting both fuel and food part of the commodity

system. To some extent, food, fuel, and biofuel prices can all depend on crude

oil price. Therefore, our wavelet coherence output (left) is supplemented by

partial wavelet coherence charts (right) where we control for the the influence

of crude oil.

6.1 Brazilian Ethanol

In the context of global biofuel production, Brazil represents a unique scenario.

Brazilian ethanol is produced from sugarcane. Intuitively, its price is supposed

to be related to the price of feedstock. As documented by previous taxonomy

objects, the price of ethanol is directly linked to the price of Brazilian sugar.

Moreover, their connection seems to be relatively strong and stable, it appeared

in every but one of the constructed MSTs. Hence, we are especially keen to

explore Brazilian ethanol’s correlation with local sugar price in more detail.

The left panel of Figure 6.1 shows a strong relationship placed approxi-

mately between 500 and 700 days, i.e. roughly between 1.5 and 2 years. Thus,

we observe a long term relationship between BR ethanol and BR sugar that is

remarkably stable in time. Apart from this main relationship, we identify only

several minor coherence islands associated with relatively quick price interac-

tions in the short term. The phase arrows in the main significant region point

to the right and upwards indicating a positive correlation between the prices

of ethanol and sugar with sugar leading the price of ethanol.

The right panel of Figure 6.1 delivers the output of partial wavelet coher-

ence when the influence of crude oil has been controlled for. Apparently, crude

oil consumed only a little portion of the correlation. Even if we see an in-

terruption corresponding to the first food price crisis, our qualitative findings

stay unchanged. Hence, we report a stable and positive relationship between

BR ethanol and BR sugar with sugar leading the price of ethanol in the long

term. We found the ethanol–sugar dependence which represents a long term

systematic co-movement of biofuel and its central feedstock.



6. Wavelet Analysis 53

Figure 6.1: Wavelet Coherence: BR Ethanol versus Feedstock

Wavelet squared coherence (left) and partial wavelet coherence (right)
Coherence color spectrum shown at the right edge. Thick black curve marks
significant regions. Phase differences are indicated by the directed arrows.

Source: Author’s Computation

For decades now, Brazil represents an example of a biofuel economy. During

more than forty year history, Brazilian ethanol industry went through numer-

ous changes. Owing to its geographic and weather conditions, Brazil is well

predisposed to grow sugarcane, from which ethanol fuel is produced at lower

costs than from corn. Since its early days in 1970’s, Brazilian biofuel industry

has been primarily shaped by governmental policies. On the local retail fuel

market, Brazilian sugarcane ethanol has always competed with conventional

gasoline, whose regulated price has not always followed the world price. A

single feedstock biofuel industry depends on annual harvests and crop yields.

Unfavorable season may cause high sugarcane and ethanol prices resulting in

intensified needs for foreign biofuel imports. Due to a supply shortage, Brazil

imported about 1.5 billion liters of ethanol form the US during 2011-2012.

As a part of national energy security, Brazilian ethanol industry is expected

to grow further. In early 2015, Brazilian government announced a new blending

mandate increasing the ethanol share in gasoline from 25% to the new level of

27%. As of late 2014, Brazil was expected to generate as much as 26.9 billion

liters of ethanol in 2015, a 5% increase from actual 2014 levels. Moreover,

ethanol exports are projected to increase by 200 million liters reaching 1.8

billion liters in 2015. At present, flex fuel cars constitute some 55% of Brazilian

fleet and the percentage is rising. In particular, more than 90% of new cars sold

in Brazil are flex fuel vehicles. An 80% fleet share is expected to be reached by

2020 (Barros 2014).
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6.2 US Ethanol

The biofuel–feedstock relationship of US ethanol (Figure 6.2) gets a little more

complex compared to the Brazilian scenario. We explore the connections of US

ethanol to corn, wheat, and sugarcane, respectively. We find that US ethanol

is significantly tied to its feedstock and that the dynamics alter for individual

commodities. In the taxonomy structures, US ethanol was further repeatedly

linked to US and BR gasolines. For completeness, we also examine both of

these dependencies with the same toolbox (Figure A.1) attributing them to

the influence of crude oil.

Corn

About 90% of US ethanol is made from corn. In 2014, the US ethanol industry

consumed almost 127 megatons of corn accounting for 40% of the US corn

production (Conca 2014). Compared to Brazilian sugarcane industry, the US

ethanol production from corn is a more technically demanding process. Put

simply, corn crops first need to be converted to sugar before ethanol fuel gets

produced. It implies higher production costs for US ethanol.

Our results (Figure 6.2 top) show that the relationship between US ethanol

and corn consists of two strong dependencies of different kind. We find signifi-

cant coherence areas associated with both short term and long term horizons.

First, a long term relationship approximately at the level of 500 days (almost

1.5 years) has been steadily present since the period following the food crisis of

2008. Second, its rightwards pointing phase arrows tell us that US Ethanol has

been positively correlated with corn throughout the second half of the stud-

ied time frame. Third, we learn that corn leads the price of ethanol since the

arrows are also pointing slightly upwards.

The other type of dependency is a collection of short term price interactions.

These time-limited episodes are associated with very high corn prices, e.g. the

first food price crisis. During those events, the phase difference between the

series decreases. Altogether, we claim a stable long term relationship accom-

panied by several short term episodes associated with very high corn prices

especially between 2010 and 2013. Throughout the last decade, the relation-

ship has always been positive with corn leading the price of ethanol. When the

influence of crude oil is controlled for, we apparently loose a part of correlation.

Especially the long term relationship between ethanol and corn gets somewhat

reduced. However, other qualitative results do not get affected in fact.
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Wheat

Our wavelet coherence output (Figure 6.2 middle) shows there exists a stable

relationship between US ethanol and wheat that persists over the whole time

frame. The significant coherence region begins at the period of approximately

800 days, i.e. just over two years. However, the reaction time keeps shortening

up to a 500 day level. This long term dependency is accompanied by several

quick interactions mostly at medium term horizon. Vast majority of phase

arrows imply positive correlation between ethanol and wheat. From the long

term perspective, wheat is obviously a leader of this price relationship since

phase arrows are pointing upwards. Most of the short term correlation gets

eliminated by removing the influence of crude oil. Our long term results get

reduced especially during the first food price crisis of 2008. However, the basic

dynamics remains unchanged when controlled for the effect of crude oil.

Although representing a major ethanol feedstock both in Canada and in the

UK, only a marginal share of ethanol is produced from wheat in the US. As

seen in Figure 4.2 and demonstrated by the taxonomy analysis, wheat price is

closely linked to corn price. A major part of correlation between ethanol and

wheat is therefore attributed to wheat’s precise price co-movement with corn.

Sugarcane

The last panel of Figure 6.2 demonstrates the convenience of accounting for

a possible influence of crude oil. It may appear from the wavelet coherence

chart there exist strong and stable ties between US ethanol and sugarcane.

Nonetheless, effectively all the correlation in the interpretable cone of influence

disappears when the effect of crude oil is controlled for. Based on the wavelet

analysis, we conclude that US ethanol has not been significantly related to sug-

arcane price in the last decade.

Since 2005, the US maintains a position of the world’s major ethanol pro-

ducing county, ahead of Brazil which used to be the previous leading ethanol

producer for decades. In 2014, the US produced about 54 billion liters of

ethanol. On the other hand, the US also represents the world’s biggest con-

sumer of oil. Based on EIA’s statistics, the 2014 US consumption totaled 517

and 189 billion liters of gasoline and diesel, respectively. With recently expired

tax credits and import tariffs, the biofuel industry has to face imports from

Brazil, low crude oil prices and even attempts to reduce the blending mandate.
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Figure 6.2: Wavelet Coherence: US ethanol versus Feedstock

Wavelet squared coherence (left) and partial wavelet coherence (right)
Coherence color spectrum shown at the right edge. Thick black curve marks
significant regions. Phase differences are indicated by the directed arrows.

Source: Author’s Computation
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6.3 European Biodiesel

From the viewpoint of the previous taxonomy objects, biodiesel exhibited a

price behavior different from both US and Brazilian ethanol. It was poorly

integrated into either of the constructed networks. Now we separately ana-

lyze biodiesel’s connection to its feedstock commodities; rapeseed, palm, and

sunflower oil, respectively. Associated wavelet coherence output is presented

in Figure 6.3. For completeness, we also examine biodiesel’s relationship to

selected fossil fuels and deliver the output in Figure A.2 in Appendix A.

Unlike both major ethanol producing countries, the European biofuel in-

dustry builds on biodiesel. On energy basis, biodiesel represents approximately

80% of the total transport biofuels market. It was the first EU biofuel em-

ployed in the road transport starting from 1990s. At that time, biofuel’s

rapid expansion was driven by increasing crude oil prices and regulations such

as the Blair House Agreement and resulting provisions on the production of

oilseeds under Common Agricultural Policy. Biodiesel enjoyed generous tax

incentives, mainly in Germany and France. EU biofuels goals set out in Di-

rective 2003/30/EC, subsequent Renewables Directive 2009/28/EC and Fuel

Quality Directive 2009/30/EC further pushed the use of biodiesel. Today, the

EU represents the world’s largest producer of biodiesel. With 10.9 billion liters

generated in its 266 refineries during 2014 the EU itself accounts for about

45% of the world’s biodiesel production. The EU is also a primary consumer

of biodiesel. In 2014, the EU consumption totaled 12.3 billion liters including

1.7 billion liters of imports (Flach et al. 2014).

The fact that today’s EU biofuel market is dominated by biodiesel as op-

posed to ethanol is not random and can be attributed to several government

policies which shape the European biofuel industry. As pointed out by Kris-

toufek et al. (2012a), the EU and US biofuel targets follow different settings.

The US requirements are set in volumes. In this sense, a liter of ethanol is

considered the same as a liter of biodiesel. On the other hand, the EU blend-

ing rules are set in energy units. According to Hofstrand (2008), the amount

of energy available from one liter of biodiesel equals to 1.54 liters of ethanol1.

Historically, the European biofuel scheme was designed so as to prefer biodiesel

due to its considerably higher energy density.

1According to Hofstrand (2008), 1 liter of biodiesel contains 32.6 MJ compared to 21.1
MJ in 1 liter of ethanol, energy considered in terms of net heating value.
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Figure 6.3: Wavelet Coherence: Biodiesel versus Feedstock

Wavelet squared coherence (left) and partial wavelet coherence (right)
Coherence color spectrum shown at the right edge. Thick black curve marks
significant regions. Phase differences are indicated by the directed arrows.

Source: Author’s Computation
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The original Diesel engine was developed by Rudolf Diesel to run on natural-

fats-based fuels. Generally, biodiesel can be used in any diesel engine type. The

use biodiesel causes less wear and tear on engines, increases lubricity and engine

efficiency. Compared to conventional diesel, biodiesel’s combustion process

releases up to 60% less CO2 emissions (Conca 2014). Kristoufek et al. (2012a)

highlights a historically higher proportion of diesel vehicles in Europe relative

to gas vehicles in the US. Considerably higher European fuel taxes provided

another incentive for the use of diesel engines with lower fuel consumption.

In accordance with the previous taxonomy findings, wavelet analysis does

not yield much of a reliable relationship between European biodiesel and its

feedstock. However, when an occasional correlation appears, it is positive and

biodiesel is being led by the price of feedstock. In case of rapeseed, we sus-

pect certain dependency with a very low frequency. Unfortunately, this thin

coherence island is mainly outside the interpretable area. Besides, we detect a

few short lasting episodes of positive correlation. Specifically, we recognize a

low frequency price interaction associated with the 2007–2008 food price crisis.

Once controlled for the crude oil influence, effectively all the coherence between

biodiesel and rapeseed oil disappears. Furthermore, there is no significant re-

lationship between biodiesel and palm oil that would persist for longer than

a year. Although we see several short lived positive price interactions, they

do not allow for any strong conclusion. Perhaps, there seems to be a positive

stable relationship between biodiesel and sunflower oil. However, it appears to

have been caused by their mutual ties to crude oil.

In summary, there are certain signs of a time limited positive correlation

between biodiesel and its feedstock. During these episodes, feedstock led the

price of biodiesel. Compared to the results obtained for Brazilian and US

ethanol, we argue that the price of European biodiesel is very weekly connected

with prices of individual feedstock commodities. In this respect, European

biodiesel market substantially differs from the analyzed ethanol markets.

The US and Brazilian biofuel industries are dominated by corn and sug-

arcane, respectively. A single feedstock accounts for a vast majority of local

biofuel production. In case of biodiesel, rapeseed oil represents the main feed-

stock from which up to 58% of European biodiesel is made. Rapeseed is followed

by palm oil, which became more important in recent years, especially due to

large price discounts as reported by Flach et al. (2014). Nonetheless, during

the analyzed period, no more than 2/3 of the EU biodiesel production was fed

by one crop type.
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In Brazil there is effectively no possibility to switch for another feedstock.

In the US, there exists a very limited possibility to switch from corn to wheat.

However, this process is not flexible, it requires time and additional investment

in technology. In contrast, the European biofuel production facilities can switch

between several feedstock types including rapeseed, palm, soybeans or sunflower

oil. These vegetable oils have similar consistency and can even be mixed with

each other within the same production facility. In contrast with major ethanol

markets, the EU biodiesel industry enjoys therefore higher short term flexibility

of production factors and better operates in an environment of fluctuating

feedstock prices.

In 2015, the EU biodiesel production is expected to remain flat at about

11 billion liters. The EU domestic biodiesel consumption will likely continue

in its slightly decreasing trend intensified by lower crude oil prices. In the

next years, the demand for biofuels in the EU will be primarily shaped by

mandates of individual member states. The most recent development of the

EU bioenergy policies brought important changes in April 2015. The member

states are still required to supply at least 10% of energy used in transport from

renewable sources by 2020 (RED 2009/28/EC). However, the new legislation

limits the share of energy coming from the first generation biofuels at a 7%

level. In other words, the biofuels generated from crops grown on agricultural

land cannot exceed 7% of energy used in transportation by 2020. Although

a political compromise was reached, the recent decision has its loud critics.

Nonetheless, this political choice restores regulatory certainty and improves

investors’ understanding of the EU biofuel industry and its development until

2020.

Having analyzed the EU biofuel industry in the context of its main regu-

latory drivers, we conclude that European biodiesel plays a different role than

do US and Brazilian ethanols in their domestic markets. The difference was

demonstrated by the results of the taxonomy and wavelet analyses. European

biodiesel industry does not depend on a single feedstock. In the same vein,

our results show that biodiesel has been very weekly tied to its production fac-

tors. This result contrasts with strong biofuel–feedstock price co-movements

we found in both US and Brazilian ethanol markets.
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Conclusion

This thesis delivered an innovative research effort within the context of biofuel

economics. Our analysis focused on the world’s major biofuel markets; Brazil,

the United States of America, and the European Union. Present study covers

83% of global ethanol production and about 45% of biodiesel production. We

studied the relationships between ethanol, biodiesel, associated agricultural

commodities, crude oil, relevant fossil fuels, and a group of financial assets. For

this purpose, we compiled a unique dataset containing as many as 32 weekly

price series. Compared to peer research attempts, our dataset is especially

comprehensive and covers 2003–2015 time period.

We combined two methods that are still new to financial series analysis.

First, we used the taxonomy method of minimum spanning trees and hierar-

chical trees to classify and visualize an experimental system of biofuel-related

commodities and assets. Such a broad attempt has not been undertaken be-

fore. Second, we introduced an adjusted version of the initial food–fuel system

based solely on physical commodities. Third, the identified biofuel–feedstock

price pairs were followed up using the wavelet analysis. Please note that this

paper represents the first attempt to combine the taxonomy approach with the

wavelet analysis toolbox within a single research application.

To differentiate the short term effects from the medium term effects, we

constructed the tree objects separately for data with weekly and monthly fre-

quency. In our tree structures, we use several innovations that were employed

for the first time in the biofuel context. First, vertices of a MST were color coded

to allow for tree’s better legibility. Second, the length of constructed edges re-

flects their weight. Finally, our non-rectangular MST arrangement allows for

visualizing complicated systems with high number of items.
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In accordance with our initial hypothesis, resulting commodity systems get

meaningfully structured. The interconnected networks consist of a fuel and food

branch. Generally, the food part includes clusters of vegetable oils, sugars,

and cereals, while retail fuels and crude oil belong stably to the fuel part.

Fundamental connections emerge already for weekly frequency. In the medium

term then, the networks get more structured as individual links shorten, the

connections become closer. Our results show several crucial patterns.

We demonstrated an important phase shift between Brazilian and the US/EU

biofuel producing sectors. Brazilian mature ethanol industry was characterized

by a stable link between ethanol and sugar since the beginning of the studied

time frame. The US ethanol market established a similar link between ethanol

and corn with certain delay. In the same vein, a rise of European biodiesel in-

dustry became visible in late 2000s. While both Brazilian and US ethanols de-

veloped stable links to their primary feedstock commodities, biodiesel reflected

a different production logic. It did not become particularly tied to either of

the relevant feedstock crops. Biodiesel’s unstable links confirmed it was not

dependent on a single feedstock. In the contrary, biodiesel lively interacted

with several commodities.

Subsequent wavelet analysis reported a strong long term relationship be-

tween Brazilian ethanol and its feedstock. We showed that the price of Brazilian

ethanol was positively correlated with local sugar price and their relationship

was stable in time. Importantly, sugar led the price of ethanol throughout the

period. The dynamics remained qualitatively unchanged when the influence of

crude oil was controlled for.

Furthermore, we found a similarly strong relationship between US ethanol

and its main production factor, corn. Their price co-movement consisted of

two positive dependencies. A long term stable relationship was accompanied

by several coherence episodes at higher frequencies. These short run events

coincided with periods of very high corn prices. We found that corn led the

price of ethanol across the frequencies. Moreover, the ethanol–corn relationship

proved to be robust to removing the influence of crude oil.

Finally, the showed that the behavior of biodiesel contrasts with both major

ethanol markets. In accordance with the previous taxonomy structures, we

conclude that biodiesel and ethanol have different positions in the food-fuel

system. Over the course of the last decade, we saw a few short lived price

interactions between biodiesel and the analyzed feedstock crops. However,

major European biofuel did not exhibit any strong co-movement with feedstock.



7. Conclusion 63

In summary, we succeeded in confirming our initial hypotheses. First, we

described an interconnected system of biofuel-related commodities. Moreover,

we commented on its evolution over the course of eleven year period. Second, we

documented a phase shift that initially occurred between mature Brazilian and

belated US/European biofuel industries. Third, we demonstrated a positive

price co-movement of ethanol and its respective production factors. We further

showed that this relationship is stable in time with feedstock leading the price

of ethanol. Finally, we explained that the price of biodiesel did not depend on

a single feedstock commodity. Biodiesel weakly interacted with several crops

through more random price adjustments. Thus, the European biofuel industry

substantially differs from both Brazilian and the US establishments.

The main contribution of this thesis lies in its innovative and comprehensive

approach. Employed methods make as few ex-ante assumptions as possible. In

particular, the wavelet coherence methodology represents a widely applicable

model-free toolbox. Therefore, our results are not model specific. Our findings

contribute to the current biofuel policy discussion. Specifically, we stress the

difference between ethanol and biodiesel production processes. Eventually, we

shed new light on biofuel–feedstock connections on the leading global markets.

Our results can be used as a suitable starting point for further (possibly

more advanced) research. First and foremost, we recommend focusing on var-

ious other specification of sub-periods considered in the taxonomy analysis.

Setting shorter periods may bring smoother resolution of a varying market en-

vironment. Perhaps, taxonomy structures shall be constructed based on lower

frequency data, too. Further research attempts may focus on quarterly and

yearly data to account for longer term patterns. In the realm of subsequent

wavelet analysis, we suggest controlling simultaneously for multiple sources of

possible spurious correlation. Lastly, it would be very interesting to rerun the

wavelets also on associated demand/consumption data. Most likely, such an

effort would have to cope with serious data unavailability.
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Appendix A

Additional Results & Tables

To provide a complete analysis, we also used wavelet coherence framework

to examine the relationship between biofuels and their traditional fossil fuel

counterparts.

US Ethanol

In the MSTs, US ethanol was repeatedly connected to US gasoline and BR

gasoline. Especially US gasoline represents its direct competitor on domestic

retail fuel market. Moreover, ethanol is also blended to gasoline in both Brazil

and the US. In Figure A.1 we observe that both ethanol–gasoline relationships

appear due to the commodities’ strong mutual ties to crude oil. Once crude oil

has been controlled for, effectively all the correlation disappears.

European Biodiesel

We performed a similar attempt for European biodiesel which was often tied

to US diesel. Moreover, we examined biodiesel’s relation to German diesel, its

counterpart in the geographic market. Not surprisingly, all the coherence was

found due to a strong influence of crude oil on price of biofuel and both retail

fuels (Figure A.2).
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Figure A.1: Wavelet Coherence: US Ethanol versus Fossil Fuels

Wavelet squared coherence (left) and partial wavelet coherence (right)
Coherence color spectrum shown at the right edge. Thick black curve marks
significant regions. Phase differences are indicated by the directed arrows.

Source: Author’s Computation
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Figure A.2: Wavelet Coherence: Biodiesel versus Fossil Fuels

Wavelet squared coherence (left) and partial wavelet coherence (right)
Coherence color spectrum shown at the right edge. Thick black curve marks
significant regions. Phase differences are indicated by the directed arrows.

Source: Author’s Computation
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Table A.1: Analyzed Data and Sources

Asset Ticker Source Type

US Ethanol ETHNNYPR Index Bloomberg Spot, FOB, anhydrous ethanol

Brazilian Ethanol - CEPEA Anhydrous ethanol

Biodiesel
BIOCEUGE Index Bloomberg German biodiesel, spot

FAME FOB ARA Reuters Spot price, ARA OTC

Corn C 1 Comdty Bloomberg 1st month futures, CBOT

Wheat W 1 Comdty Bloomberg 1st month futures, CBOT

Sugarcane SB1 Comdty Bloomberg 1st month futures, ICE

Sugar Beets QW1 Comdty Bloomberg 1st month futures, LIFFE

Brazilian Sugar - CEPEA Spot USD Price

Rapeseed Oil IJ1 Comdty Bloomberg 1st month futures

Soybean Oil S 1 Comdty Bloomberg 1st month futures, CBOT

Sunflower Seeds SU1 Bloomberg 1st month futures

Palm Oil KO3 Comdty Bloomberg 1st month futures

Brent Crude Oil CO1 Comdty Bloomberg 1st month futures, ICE

German Diesel - EIA Retail Diesel Prices

German Gasoline - EIA Retail Premium Gasoline

US Diesel - EIA Retail Diesel Prices

US Gasoline - EIA Retail Premium Gasoline

Brazilian Diesel - ANP Brazil Weighted av. consumer price

Brazilian Gasoline - ANP Brazil Weighted av. consumer price

Coffee AX1 Comdty Bloomberg Arabica, 1st month futures

Cocoa CC1 Comdty Bloomberg 1st month futures, NYBOT

Rice RR1 Comdty Bloomberg 1st month futures, CBOT

Oranges OR1 Comdty Bloomberg 1st month futures

Dow Jones DJI Index Bloomberg US Dow Jones Ind. Average

S&P 500 SP1 Index Bloomberg US S&P 500 Index

FTSE 100 UKX Index Bloomberg British FTSE 100 Index

DAX DAX Index Bloomberg German DAX Index

BOVESPA IBOV Index Bloomberg Brazilian BOVESPA

Federal Funds - Federal Reserve US Fed Funds Rate

LIBOR - ECONSTATS 3 months USD LIBOR

USD/EUR - ECB

USD/BRL - Federal Reserve
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Table A.2: Descriptive Statistics

Mean St. Dev. Min Median Max

Biodiesel −0.0013 0.0883 −0.4613 0.0000 0.3159

US Ethanol −0.0003 0.0570 −0.2201 0.0000 0.2085

BR Ethanol 0.0015 0.0433 −0.2952 0.0026 0.2213

Crude Oil 0.0010 0.0428 −0.1595 0.0036 0.2019

US Gasoline 0.0008 0.0244 −0.1040 0.0000 0.1816

DE Gasoline 0.0008 0.0462 −0.1807 0.0000 0.2250

BR Gasoline 0.0005 0.0212 −0.1241 0.0013 0.0896

US Diesel 0.0015 0.0225 −0.1095 0.0000 0.1394

DE Diesel 0.0008 0.0400 −0.1268 0.0000 0.1435

BR Diesel 0.0012 0.0220 −0.1240 0.0015 0.1031

Dow Jones 0.0010 0.0237 −0.1251 0.0019 0.1310

S&P 500 0.0011 0.0257 −0.1491 0.0023 0.1295

FTSE 100 0.0007 0.0246 −0.1303 0.0029 0.1426

DAX 0.0017 0.0298 −0.1604 0.0041 0.1482

BOVESPA 0.0015 0.0408 −0.2926 0.0032 0.2619

Fed Funds −0.0036 0.1545 −1.4663 0.0000 1.0415

LIBOR −0.0026 0.0383 −0.2461 0.0000 0.2207

USD/EUR −0.00003 0.0138 −0.0745 0.0004 0.0498

USD/BRL 0.0002 0.0200 −0.1243 0.0014 0.0869

Corn 0.0009 0.0452 −0.2546 0.0036 0.1774

Wheat 0.0006 0.0445 −0.1204 −0.0024 0.1636

Sugarcane 0.0016 0.0477 −0.2372 −0.0007 0.1493

Sugar Beets 0.0013 0.0387 −0.1713 0.0014 0.1135

Sugar Brazil 0.0017 0.0354 −0.1595 0.0027 0.1399

Soybeans 0.0005 0.0416 −0.2809 0.0013 0.1390

Sunflower 0.0012 0.0366 −0.1849 0.0032 0.2060

Rapeseed 0.0005 0.0275 −0.1200 0.0018 0.0905

Palm Oil 0.0005 0.0388 −0.1877 0.0016 0.1811

Coffee 0.0020 0.0421 −0.1450 0.0004 0.2552

Cocoa 0.0012 0.0430 −0.1867 0.0017 0.2097

Rice 0.0005 0.0377 −0.2842 0.0012 0.1269

Oranges 0.0002 0.0420 −0.2583 0.0000 0.3021

Source: Author’s Computation
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Table A.3: Stationarity Tests – Log Price

ADF p-value KPSS p-value

Biodiesel -2.3663 0.4232 2.2572 < 0.01

US Ethanol -3.0861 0.1186 0.7632 < 0.01

BR Ethanol -1.0217 0.9352 2.1431 < 0.01

Crude Oil -2.807 0.2367 2.1194 < 0.01

Corn -1.9261 0.6096 2.0771 < 0.01

Wheat -1.9438 0.6021 1.6961 < 0.01

Sugarcane -2.4172 0.4017 2.0697 < 0.01

Sugar Beets -1.8895 0.6251 2.1029 < 0.01

BR Sugar -2.1896 0.4981 1.8264 < 0.01

Soybeans -2.5349 0.3519 2.3310 < 0.01

Sunflower -2.8746 0.2081 2.4920 < 0.01

Rapeseed -1.9080 0.6172 2.0757 < 0.01

Palm Oil -2.2951 0.4534 1.6788 < 0.01

US Gasoline -3.3778 0.0572 2.0791 < 0.01

US Diesel -2.6930 0.2850 2.1536 < 0.01

DE Gasoline -2.9360 0.1821 2.3059 < 0.01

DE Diesel -1.8853 0.6269 2.1440 < 0.01

BR Gasoline -1.8845 0.6272 1.4796 < 0.01

BR Diesel -1.9533 0.5981 1.7767 < 0.01

Coffee -2.1033 0.5346 1.8896 < 0.01

Cocoa -1.9540 0.5978 2.3167 < 0.01

Rice -1.7621 0.6790 2.0414 < 0.01

Oranges -1.5344 0.7754 1.3045 < 0.01

Dow Jones -1.5401 0.7730 1.4927 < 0.01

S&P500 -1.4610 0.8065 1.1970 < 0.01

FTSE 100 -2.1243 0.5257 1.0243 < 0.01

DAX -1.9883 0.5833 1.9936 < 0.01

Bovespa -1.5339 0.7756 2.0589 < 0.01

Fed Funds -1.9916 0.5819 2.6192 < 0.01

Libor -2.4946 0.3689 2.5366 < 0.01

USD/EUR -2.2157 0.4870 0.5765 0.0247

USD/BRL -1.4212 0.8233 1.0486 < 0.01

Source: Author’s Computation



A. Additional Results & Tables VII

Table A.4: Normality Tests – Log Returns

JB Test SW Test

χ2 p-value W p-value

Biodiesel 45,049.5 < 0.01 0.6331 < 0.01

US Ethanol 725.9 < 0.01 0.9308 < 0.01

BR Ethanol 2,372.8 < 0.01 0.8722 < 0.01

Crude Oil 116.9 < 0.01 0.9706 < 0.01

Corn 211.5 < 0.01 0.9702 < 0.01

Wheat 23.2 < 0.01 0.9884 < 0.01

Sugarcane 56.9 < 0.01 0.9843 < 0.01

Sugar Beets 49.2 < 0.01 0.9852 < 0.01

BR Sugar 171.7 < 0.01 0.9489 < 0.01

Soybeans 658.1 < 0.01 0.9708 < 0.01

Sunflower 494.1 < 0.01 0.9405 < 0.01

Rapeseed 125.5 < 0.01 0.9708 < 0.01

Palm Oil 188.1 < 0.01 0.9707 < 0.01

US Gasoline 1,177.6 < 0.01 0.9672 < 0.01

US Diesel 941.2 < 0.01 0.9201 < 0.01

DE Gasoline 157.3 < 0.01 0.9672 < 0.01

DE Diesel 21.7 < 0.01 0.9853 < 0.01

BR Gasoline 248.9 < 0.01 0.9661 < 0.01

BR Diesel 549.2 < 0.01 0.9544 < 0.01

Coffee 194.0 < 0.01 0.9774 < 0.01

Cocoa 42.8 < 0.01 0.9892 < 0.01

Rice 797.1 < 0.01 0.9607 < 0.01

Oranges 2,464.2 < 0.01 0.8867 < 0.01

Dow Jones 549.2 < 0.01 0.9409 < 0.01

S&P500 863.7 < 0.01 0.9212 < 0.01

FTSE 100 544.5 < 0.01 0.9427 < 0.01

DAX 344.9 < 0.01 0.9531 < 0.01

Bovespa 1,451.5 < 0.01 0.9373 < 0.01

Fed Funds 25,358.9 < 0.01 0.6493 < 0.01

Libor 4,813.6 < 0.01 0.7156 < 0.01

USD/EUR 105.7 < 0.01 0.9821 < 0.01

USD/BRL 324.1 < 0.01 0.9626 < 0.01

Source: Author’s Computation
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Figure A.3: HT – Experimental Taxonomy, Period I, Weekly
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Figure A.4: HT – Experimental Taxonomy, Period I, Monthly
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Figure A.5: MST – Experimental Taxonomy, Period II, Weekly
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Figure A.6: HT – Experimental Taxonomy, Period II, Weekly
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Figure A.7: MST–Experimental Taxonomy, Period II, Monthly
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Figure A.8: HT – Experimental Taxonomy, Period II, Monthly
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Figure A.9: HT – Experimental Taxonomy, Period III, Weekly
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Figure A.10: MST – Experimental Taxonomy, Period III, Monthly
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Figure A.11: HT – Experimental Taxonomy, Period III, Monthly
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