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1. Introduction
Linear programming is a well-established discipline in optimization and modern
computer science with many applications in practice. In one of his articles [Bix12],
Bixby describes the immense theoretical advancements in algorithms for solving
linear programs since its early years, far outreaching the advancements of the
machines running them. We are therefore well-aware of the usefulness of theoretical
research in this area and we strive to contribute to its advancement.

One of the possible approaches at improving linear programming algorithms
is the use of scaling. Dadush et al. [Dad+20] have shown that the complexity of
an LP solving algorithm of Vavasis and Ye [VY96] can be bounded in terms of a
certain condition number κ of the constraint matrix A. This condition number can
be changed by scaling individual columns of A by positive real values. The authors
have further devised an algorithm to find a positive diagonal matrix D such that
the value κ after applying such rescaling is not too far from the minimum one. To
be precise, let κ∗ be the minimum κ that can be obtained by applying a column
rescaling. Then, applying the rescaling matrix D returned by the algorithm yields
a condition number κ ≤ (κ∗)3.

This thesis follows up on these results. In contrast to showing theoretical
improvements of the algorithm, we are interested in exploring its applicability
in practice and describing the effects of the condition number on performance of
practical LP solvers, including ones not based on interior-point methods.

1.1 Scaling
In an effort to avoid numerical instability issues when solving LPs on realistic
hardware, one may try to change the scaling of columns of the problem matrix. For
example, if values in a column represent very large distances in meters, it might
be useful to scale down the values, e.g., represent the distances in kilometers.

Scaling methods have been previously studied, e.g., by Tomlin [Tom75] and
are commonly used by practical LP solvers. In this thesis we are, however,
exploring a less traditional approach to scaling presented in the article by Dadush
et al. [Dad+20] and clearly described in later sections.

Note that while scaling rows of the problem matrix is also possible, it will not
be the focus of this thesis. We will therefore restrict ourselves only to scaling of
columns.

1.2 The Circuit Imbalance Measure
This thesis revolves around the matrix condition numbers κ and κ∗, as defined
in the article by Dadush et al. [Dad+20]. These numbers play a crucial role
in both implementation and analysis of their scaling-invariant algorithm for
linear programming whose running time depends only on the constraint matrix.
For a comprehensive overview of the algorithm see the full article by Dadush
et al. [Dad+20]. Specifically, the procedure for approximating κ∗ described in
Section 2.4 was originally devised as a subroutine of this linear programming
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algorithm and this algorithm remains our main motivation for research in this
area.

As the name suggests, the circuit imbalance measure relies on the concept of
circuits of a vector matroid. For reader not familiar with these notions, we refer
to Section 2.3, where some background and notation is given.

For every circuit C of the vector matroid of A we can consider its elementary
vector, which is an element of the kernel of A that has C as its support. The
circuit imbalance measure κ of matrix A is the maximum ratio of absolute values
of nonzero elements over all elementary vectors of the vector matroid of A.

If we scale the columns of A, the set of circuits C does not change. However,
the elementary vectors do change and so κ can also change. If we view κ as a
measure of how ill-conditioned the matrix is, it makes sense to ask what is the best
value of κ we can obtain by choosing a suitable column scaling. This is exactly
what the number κ∗ means.

1.3 Our Contribution
Our first contribution is an implementation of the algorithm for computing an
approximate optimal rescaling with respect to the circuit imbalance measure. To
the best of my knowledge, this is the first implementation of the algorithm. We
have discovered several issues that complicate implementing the algorithm in
practice and that are not apparent from the theoretical description. We try to
address these issues and propose reasonable solutions.

Secondly, we used the algorithm implementation to obtain an approximate
optimal rescaling of many problems in the benchmark sets Netlib [Gay85] and
MIPLIB [Gle+21] (here we consider the linear relaxations, since the scaling
approach is only applicable for purely continuous problems). Because of the
high complexity of the algorithm and size of the mentioned problems there
remain problem instances for which the computation of the rescaling using our
implementation would need more computational resources than what we deemed
as reasonable for the purposes of this thesis.

As our third contribution, we used some available LP solvers to evaluate the
impact of the computed rescalings on the time it takes the solvers to solve the
instances. We have used the solvers GLPK1, Gurobi [Gur23] and SCIP [Bes+21]
using all available solving methods and using both exact and inexact arithmetic
where available.

1Open source software available at http://www.gnu.org/software/glpk/glpk.html
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2. Preliminaries
In this chapter we provide the necessary background and definitions used through-
out the rest of the thesis. First, we introduce the notation conventions this thesis
follows (Section 2.1). Next, we include the background on linear programming
(Section 2.2), matroid theory (Section 2.3) and the algorithm for optimizing the
circuit imbalance measure (Section 2.4), which is central to this thesis.

2.1 Notation
We denote the sets of all real and natural numbers respectively by R and N. As is
customary in computer science, we consider zero to be a natural number.

Matrices are written as A ∈ Rm×n and vectors as x ∈ Rn. All vectors are
regarded as column vectors, the notation x⊤ is used to denote row vectors when
needed. Vector elements are provided with indices and not written in bold font, as
in x = (x1, x2, . . . , xn)⊤. Whenever used with the index in bold font, xi does not
denote the i-th coordinate, but it is a vector itself. The notation Diag(d) means
a diagonal matrix with elements of d on the diagonal.

When using the ≤ relation and derived relations (≥, <, >, =) on vectors, it is
understood to mean that the relation holds for every coordinate of the vectors.
More precisely, if x and y are vectors of the same dimension, the notation x ≤ y
means that xi ≤ yi for every coordinate i.

Sets are denoted with capital letters. We use the union symbol strictly for the
union of the sets, e.g., A∪B. When expressing a set with an extra added element,
we use the notation A ∪ {e}. For set difference we use the notation A \ B. We
use notation [n] to denote the set {1, 2, . . . , n}.

If F is arbitrary field, then the coordinate space whose elements are n-tuples
of elements of F is denoted Fn.

2.2 Linear Programming
In this section, we introduce the notion of linear programming. This notion is
central to this thesis, as it provides the framework for our further results.

Definition 1 (Linear program in standard form). Let A ∈ Rm×n, b ∈ Rm and
c ∈ Rn. Then a linear program in standard form (LP) is the problem

min c⊤x
Ax = b

x ≥ 0.

Solving LP problems is an extensively studied subject in the field of computer
science and many different algorithms have been proposed to tackle it. A particu-
larly convenient and widely known fact is that LPs can be solved in polynomial
time, as has been first shown by Khachiyan [Kha79].

For a more in-depth overview of LP we refer the reader to the textbook of
Schrijver [Sch99].
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2.2.1 Equivalent Forms
The standard LP form is convenient for researching and describing algorithms for
solving LP’s, because it gives a simple description of the constraints. However,
for formulating real-world problems as LP’s it may be easier to describe the
problem using a different form that allows to express real-world constraints more
naturally. We introduce a modelling form that is sometimes used in practical
software packages for working with LP’s.

Definition 2 (Modelling form). Let Aub ∈ Rm1×n, Aeq ∈ Rm2×n, bub ∈ Rm1,
beq ∈ Rm2, c ∈ Rn and l, u ∈ (R ∪ {−∞,∞})n such that l ≤ u. Then, a linear
program in modelling form is the problem

min c⊤x
Aubx ≤ bub

Aeqx = beq

l ≤ x ≤ u.

It is not difficult to see that every LP in standard form is already in modelling
form. What is, however, less clear, is that also every LP in modelling form can
be efficiently converted to an equivalent LP in standard form, rendering the two
forms easily interchangeable.

Proposition 1. Solving an LP in modelling form is reducible to solving an LP
in standard form in time O(m1n + m2n) where m1, m2, n have meanings as in
Definition 2.

This proposition can be proven using standard LP form reduction techniques.
For examples of such techniques, see e.g., the textbook of Gärtner and Ma-
toušek [GM07, Section 4.1].

2.2.2 Solving Scaled Instances
When constructing a scaled LP instance, it is required that we can obtain an
optimum of the original program from an optimum of a scaled instance. The
following proposition implies that this is in fact possible.

Proposition 2. Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn and let D ∈ Rn×n be a diagonal
matrix with positive entries on the diagonal. Let P be the standard-form LP

min c⊤x
Ax = b

x ≥ 0

and Q the standard-form LP

min c⊤Dx
(AD)x = b

x ≥ 0.

Then x′ is an optimum of P if and only if D−1x′ is an optimum of Q.
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Proof. Let x′ be an optimum of P . Because D has positive diagonal entries, D−1

also has positive diagonal entries, so D−1x′ ≥ 0 holds. The equality constraint is
also satisfied, which follows from (AD)(D−1x′) = A(DD−1)x′ = Ax′ = b. This
proves that D−1x′ is feasible for Q.

What is left to show is the optimality of D−1x′ for Q. For contradiction
consider that Q has a better solution x′′ such that c⊤Dx′′ < c⊤D(D−1x′). Then,
Dx′′ is feasible for P and it holds that c⊤(Dx′′) < c⊤x′, contradicting that x′ is
an optimum of P .

The proof of the opposite direction is symmetric.

2.3 Matroids
While it is possible to describe the objective our scaling algorithm is optimizing
using notions from elementary linear algebra, it is best described using the notion
of circuits from matroid theory. This is a well-studied entity and several results
regarding circuits together with other results from matroid theory are useful in
understanding and implementing the rescaling algorithm. This section strives to
introduce such results to the reader. Unless stated otherwise, the definitions and
results closely follow the book by Oxley [Oxl92].

Definition 3 (Matroid). A matroid M is an ordered pair (E, I) consisting of
a finite set E and a collection I of subsets of E satisfying the following three
conditions:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I. (Hereditary property)

(I3) If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1
such that I1 ∪ {e} ∈ I. (Augmentation property)

The members of I are the independent sets of M and E is the ground set of M .
A subset of E that is not in I is called dependent.

Notation. We use the notation E(M) and I(M) to refer to elements and inde-
pendent sets of M . Where the matroid M is clear from context, we only use the
symbols E and I.

The only matroid instance we interest ourselves in the scope of this thesis is
the vector matroid as defined below.

Definition 4 (Vector matroid). Let F be an arbitrary field and let A ∈ Fm×n.
Let E be the set of column labels of A, and let I be the set of subsets X of E for
which the multiset of columns labeled by X is linearly independent in the vector
space Fm. Then (E, I) is called the vector matroid of A and is denoted by M(A).

The use of the term vector matroid is justified by the following proposition.

Proposition 3 (Vector matroid is a matroid [Oxl92, Proposition 1.1.1]). For any
field F and any matrix A ∈ Fm×n, the vector matroid of A is a matroid.
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The fact that the matroid augmentation property holds for vector spaces is
a famous result in linear algebra known as the Steinitz Exchange Theorem. We
state it here for completeness, for the proof the reader may see the referenced
book.

Theorem 4 (Steinitz exchange theorem [Jän94, Section 3.6]). If a vector space V
has a basis of p vectors and if v1, . . . , vr are linearly independent in V , then there
exists a basis of p vectors for V , in which v1, . . . , vr all occur.

It is now time to introduce some definitions used throughout this thesis, namely
those of a matroid circuit and fundamental circuit.

Definition 5 (Circuit). A set C ⊆ E(M) is a circuit if and only if C is a minimal
dependent set of M . We shall denote the set of circuits of M by C(M).

Definition 6 (Basis). Any maximal independent set in a matroid M is a basis of
M .

Proposition 5 (Fundamental circuit). Let B be a basis of a matroid M . If
e ∈ E(M) \ B, then B ∪ {e} contains a unique circuit, denoted by C(e, B).
Moreover, e ∈ C(e, B). We call this circuit the fundamental circuit of e with
respect to B.

The set of all fundamental circuits of M with respect to the basis B will be
denoted by FB(M).

Notation. Where the matroid is clear from context, we only use the symbols C

and FB instead of C(M) and FB(M).
For the proof of Proposition 5 we will find handy the following result:

Proposition 6 ([Oxl92, Lemma 1.1.3]). The set C of circuits of a matroid has
the following property:

If C1 and C2 are distinct members of C and e ∈ C1 ∩ C2, then there is a
member C3 of C such that C3 ⊆ (C1 ∪ C2) \ {e}.

We are now set to present the proof of Proposition 5.
Proof of Proposition 5. Given that B is maximal independent and e is not in B,
the set B ∪ {e} is dependent. There must then be a subset C ⊆ B ∪ {e} which is
inclusion-minimal dependent and is therefore a circuit. Because B is independent,
all its subsets are also independent thanks to the matroid hereditary property and
therefore all dependent subsets of B ∪ {e} must contain e. That in turn implies
e ∈ C.

It is left to show that this circuit is unique. Consider that there exists another
circuit C ′ ⊆ B ∪ {e}. Applying the same argument as above, it must hold that
e ∈ C ′. By Proposition 6 there exists a circuit C ′′ s.t. C ′′ ⊆ (C ∪ C ′) \ {e} ⊆ B,
giving us a dependent subset of B and thus contradicting that B is a basis.

Another notion to define is matroid connectivity and components. Prior to
introducing these definitions, for each element e of a matroid M let γ(e) be the
set

γ(e) := {e} ∪ {f ∈ E(M) |M has a circuit containing both e and f}.
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Define the relation γ on E by e γ f if and only if e ∈ γ(f). Without proof
we claim that this relation is an equivalence, for a proof refer to the book by
Oxley [Oxl92, Proposition 4.1.2].

It is now time to properly define the notions introduced in Section 1.2. In the
article by Dadush et al. [Dad+20], some of the following notions are expressed in
terms of a linear subspace. To keep things simple, we modify the definitions to
work directly with matrix A.

Definition 7 (Elementary vector). An elementary vector for a circuit C ∈
C(M(A)) is a vector gC ∈ Ker(A) such that supp(gC) = C.

Note that the elementary vector is unique up to scalar multiplication.
Prior to defining κ itself, we first introduce pairwise circuit imbalance measures

κij. These will not only come in handy when defining κ itself, but they also play
a key role in the procedure in Section 2.4.

Definition 8 (Pairwise circuit imbalance measure [Dad+20, Definition 2.7]). The
pairwise circuit imbalance measure for coordinate pair i, j ∈ [n], i ̸= j is the value

κA
ij(C) :=

⃓⃓⃓
gC

j

⃓⃓⃓
|gC

i |
, κA

ij := max{κA
ij(C) | C ∈ C(A), i, j ∈ C}.

By convention we set κij = 0 if there is no circuit supporting i and j.

Definition 9 (Circuit imbalance measure). The circuit imbalance measure is
defined as

κA := max{κA
ij | i, j ∈ [n]}.

Notation. For convenience, we will also be using the notation

κA(C) := max{κA
ij(C) | i, j ∈ C}

that satisfies that κA = max{κA(C) | C ∈ C(M(A))}.

Definition 10. The set D is the set of n× n real diagonal matrices with positive
entries on the diagonal.

Definition 11 (Optimal circuit imbalance measure). The optimal circuit imbal-
ance measure for A is the number

κ∗
A := inf{κAD | D ∈ D}.

It is not a priori clear that the infimum is indeed attained. Proposition 7 gives
justification that it is (without proof).

Proposition 7. There exists D ∈ D such that κ∗
A = κAD. Consequently,

κ∗
A = min{κAD | D ∈ D}.

Notation. If clear from context, we will sometimes omit the A subscript or super-
script from κ and its variants.

Let us now introduce some more background from matroid theory.
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Definition 12 (Matroid components). For a matroid M , its components are the
equivalence classes of the relation γ on E(M).

Definition 13 (Matroid connectivity). A matroid is connected if and only if it
has a single component.

Let us explicitly state a simple corollary that will be later very useful for us.

Corollary 8. The matroid M is connected if and only if, for every pair of distinct
elements of E(M), there is a circuit containing both.

Matroid connectivity can be also characterized by connectivity of its funda-
mental circuit graph.

Definition 14 (Fundamental circuit graph). Let B be a basis of a matroid M .
The fundamental circuit graph with respect to the basis B is the undirected graph
FGB = (V, E) defined as V := [n] and

E :=
{︄
{i, j} ∈

(︄
[n]
2

)︄ ⃓⃓⃓⃓
⃓ i and j are both contained in some fundamental circuit

}︄
.

In their article [Dad+20, Proposition 2.19], Dadush et al. give several charac-
terizations of matroid separability. The two following results straightforwardly
follow from these characterizations.

Proposition 9. A matroid M is connected if and only if its fundamental circuit
graph FGB is connected for any choice of the basis B.

Lemma 10. The connected components of FGB correspond to components of M .

Again omitting a technical proof which the reader can find in the article by
Dadush et al. [Dad+20], we present one more important proposition revolving
around circuits.

Proposition 11 ([Dad+20, Lemma 2.21]). Let B be a basis of the matroid M =
([n], I), and let U = {u1, u2, . . . , uℓ} ⊆ B, and V = {v1, v2, . . . , vℓ, vℓ+1} ⊆ [n] \B.
Assume C(B, v1) ∩ U = {u1}, C(B, vℓ+1) ∩ U = {uℓ}, and for each 2 ≤ t ≤ ℓ,
C(B, vt) ∩ U = {ut−1, ut}. Then, (B \ U) ∪ V contains a unique circuit C, and
V ⊆ C.

2.4 Algorithm for Optimizing the Circuit Imbal-
ance Measure

In this section, we show a way to approximate κ and give an overview of the
scaling algorithm from the article by Dadush et al. [Dad+20] that is implemented
and used in experiments in later chapters. The purpose of the algorithm is to find
the diagonal matrix D such that κAD is not much larger that κ∗

A.
First, we leverage Corollary 8 to restrict ourselves to matrices whose vector

matroid is connected.
Notation. For B ⊆ [n], we will let AB denote the submatrix of A obtained by
selecting exactly columns with indices in B and similarly we will let vB denote
the subvector of v obtained by selecting exactly the entries of v with indices in B.

10



Proposition 12. Let A ∈ Rm×n and let V1, V2, . . . , Vk be the components of M(A).
Then, it holds that

κA = max{κAVℓ
| ℓ ∈ [k]}. (2.1)

Proof. We will show a bijection f : C(M(A))→ ⋃︁
ℓ∈[k] C(M(AVℓ

)) for which for
every circuit C of A in component Vℓ and every i, j ∈ C holds that

κA(C) = κAVℓ
(f(C)).

That will yield (2.1) because

κA = max{κA
ij | i, j ∈ [n]}

= max{κA
ij(C) | C ∈ C(A), i, j ∈ C}

= max{κA(C) | C ∈ C(A)}
= max{κAVℓ

(f(C)) | C ∈ C(A), ℓ ∈ [k]}
= max{max{κAVℓ

(C) | C ∈ C(AVℓ
)} | ℓ ∈ [k]}

= max{κAVℓ
| ℓ ∈ [k]}.

Now, it suffices to show the bijection f . Let us choose an arbitrary circuit C
with its elementary vector gC. By Corollary 8, C lies inside a single component
Vℓ. Then, gC

Vℓ
∈ Ker(AVℓ

) is a vector corresponding to a circuit in C(M(AVℓ
)). We

therefore define
f(C) := supp(gC

Vℓ
).

As gC and gC
Vℓ

have the same non-zero entries, it must hold

{κA
ij(C) | i, j ∈ C} \ {0} = {κAVℓ

ij (f(C)) | i, j ∈ f(C)}

and consequently also
κA(C) = κAVℓ

(f(C)).
The very last remaining thing is to show that f is indeed bijective. The mapping

is clearly injective, as vectors corresponding to different vectors have different
supports. Now choose any ℓ ∈ [k] and C ∈ C(M(AVℓ

)) and let g ∈ Ker(AVℓ
) be

the corresponding vector. By “lifting” the vector back to the original Rn space,
we get a vector h ∈ Ker(A) such that f(h) = g. Hence, the mapping is also
surjective.

As a corollary, this is not only useful for obtaining the value of κA from results
for matrices of individual components, but also for finding a good rescaling from
rescalings of individual components.

Corollary 13. Let D1 ∈ R|V1|×|V1|, D2 ∈ R|V2|×|V2|, . . . , Dk ∈ R|Vk|×|Vk| be rescaling
matrices for individual components. Let D̂1, D̂2, . . . , D̂2 ∈ Rn×n be the rescaling
matrices lifted back to the space Rn×n. More precisely, let γ(α) be the element of
M(A) corresponding to α ∈ Vi. Then, let

(D̂i)γ(α)γ(β) := (Di)αβ ∀α, β ∈ Vi

and let all the undefined values be zero.
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Now combine the lifted matrices into a single matrix D. Since at most one of
D̂i has a non-zero value at any position α, β, this can be expressed simply as

D :=
∑︂
i∈[k]

D̂i.

Then, it holds that

κAD = max{κAVℓ
| ℓ ∈ [k]}.

In the rest of this section we can therefore assume for M(A) to be connected.
As noted in the article by Dadush et al. [Dad+20], it follows from an article

by Tuncel [Tun99] that approximating κ up to a factor of 2O(m) is NP-hard. The
algorithm provided in the following text offers to find a κ̂A satisfying

κ̂A ≤ κA ≤ n(κ∗
A)2κ̂A

in polynomial time. Note that this is not a contradiction to the NP-hardness
claim, because the bound depends on κA and κ̂A, which can both be arbitrarily
large.

The idea of approximating κ is to first show that when possessing the values
κA

ij , one can efficiently compute the value of κ. The values κij are also NP-hard to
compute, but it is possible to efficiently find their proxies and use them to obtain
a good enough approximation κ̂. In the way it is stated in the article by Dadush
et al. [Dad+20], the theorem focuses on concepts that are not substantial in the
setting of this thesis. We therefore formulate the theorem in a way that is more
suited to our situation.

Theorem 14 ([Dad+20, Theorem 2.5]). For every i, j ∈ [n] let κ̂ij satisfy

κ̂ij ≤ κij ≤ (κ∗)2κ̂ij. (2.2)

Define κ̂ := max{κ̂ij | i, j ∈ [n]}. Then it holds that

κ̂ ≤ κ ≤ n(κ∗)2κ̂.

Notation. From now on, we will be using the notation κ̂ij for any value satis-
fying (2.2). While possibly many values satisfy this, the same value is always
considered when κ̂ij occurs multiple times with the same indices.

That leaves us with the task to find the pairwise approximations κ̂ij . The idea
is actually simple: find any circuit that contains both i and j and estimate κij

based on this circuit.

Proposition 15 ([Dad+20, Corollary 2.13]). Let i, j ∈ [n] and let C be any circuit
such that i, j ∈ C. Then,

κij(C) ≤ κij ≤ (κ∗)2κij(C).

We put the task of finding such circuit aside for now, as it will be the central
topic of Subsection 2.4.1.

Computing the diagonal matrix which witnesses an approximation κ̂∗ of κ∗

is more involved, but can still be done efficiently. This is again described in the
article by Dadush et al. [Dad+20, Theorem 2.5], we just formulate the result in a
more algorithm-centric way.
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Definition 15 (Circuit ratio digraph). The circuit ratio digraph is a directed
graph CG •

•
:= ([n], E), where

E := {(i, j) ∈ [n]2 | i ̸= j, κij > 0}.

Remark. From Proposition 15 it follows that κij > 0 if and only if κ̂ij > 0. The
edge set can therefore be equivalently defined as

E := {(i, j) ∈ [n]2 | i ̸= j, κ̂ij > 0}.

Theorem 16 ([Dad+20, Theorem 2.5]). Consider the optimization program

min t

κ̂ijdj/di ≤ t ∀(i, j) ∈ E(CG •
•
) (2.3)

d > 0.

Let d̂ be the optimal value of d for (2.3) and D := Diag(d̂). Then,

κAD ≤ (κ∗
A)3.

Remark. Note that (2.3) can be made into a linear program by substituting all
variables by their logarithms.
Notation. In the following text, let d̂ always denote the optimal value of d for (2.3).

This optimization problem can be solved in polynomial time using linear pro-
gram solving techniques. There also exists an equivalent combinatorial description
for the rescaling, which will yield additional insights.

Theorem 17 ([Dad+20, Theorem 2.5]). Consider a weighted directed graph G
given by assigning

V (G) := [n],
E(G) := {(i, j) ∈ [n]2 | i ̸= j, κ̂ij > 0},
wG(e) := κ̂ij ∀e ∈ E(G).

Define t̂ as the maximum geometric mean of a cycle in G, that is

t̂ := max
⎧⎨⎩
(︄∑︂

e∈C

wG(e)
)︄ 1

|C|
⃓⃓⃓⃓
⃓⃓C is a cycle in G

⎫⎬⎭ .

Let H be a weighted directed graph given by assigning

V (H) := V (G) ∪ {r},
E(H) := E(G) ∪ {(r, i) | i ∈ [n]},

wH(e) :=
⎧⎨⎩log t̂− log κ̂ij for e ∈ E(H) s.t. r ̸∈ e,

0 for e ∈ E(H) s.t. r ∈ e.

Note that this graph has negative edge weights, but has no negative cycles. This is
the case, because t̂ is defined as the maximum geometric mean of weights over all
cycles in G. Graph H has the same cycles as graph G, so for every cycle C of H

13



it must hold that |C| log t̂ ≥ ∑︁(i,j)∈C log κ̂ij. Therefore, the Bellman-Ford shortest
path algorithm can be used to determine the length of the shortest path from r to i
in H. Let si denote this value.

Define values
di := exp(si) ∀i ∈ [n].

Then, it holds that d = d̂.

The proof of Theorem 17 in the article by Dadush et al. [Dad+20] gives
interesting insight that allows us to exactly determine the value of κ∗ for some
matrices and see that not every matrix has κ̂ = 1:

Proposition 18. For every i, j ∈ [n], i ̸= j it holds that

κijκji ≤ (κ∗)2.

Lemma 19. For every κ̄ > 1 the matrix

A :=
(︄

κ̄ 1 κ̄ 0
κ̄ κ̄2 0 κ̄2

)︄

satisfies κ∗
A = κA = κ̄.

Proof. The vector matroid M(A) has exactly four circuits with elementary
vectors

g1 = (κ̄2,−κ̄, 1− κ̄2, 0)⊤,

g2 = (1,−κ̄, 0, κ̄− 1)⊤,

g3 = (−κ̄, 0, κ̄, 1)⊤,

g4 = (0, κ̄,−1,−κ̄)⊤.

By taking the maximum over all pairwise circuit imbalance measures, we obtain
κ∗

A ≤ κA = κ̄. We can further observe that κ12 = κ21 = κ̄. By Proposition 18 it
also holds that

κ̄2 = κ12κ21 ≤ (κ∗)2.

Combining the two inequalities yields κ∗
A ≤ κA = κ̄ ≤ κ∗

A and consequently
κ∗

A = κA = κ̄.

2.4.1 Finding Circuits
The last remaining thing to do is to find circuits Cij that include both i and j.
Note that we only consider connected matroids, so by Corollary 8 such circuits
always exist. We provide an algorithm to find these circuits described in the
article by Dadush et al. [Dad+20, Theorem 2.14].

Let us suppose we have a basis B of M(A) and we start with the set of all
fundamental circuits FB with respect to B. If there is a circuit C ∈ FB with
i, j ∈ FB, we set Cij := C and we are done. Otherwise, we will find such circuit.

14



Figure 2.1: An example of G with shortest path between C(B, i1) and C(B, i4)
drawn in black. Only the solid lines form the actual graph, the dotted lines only
show which elements of B correspond to which fundamental circuit. Every color
(other than black) corresponds to one fundamental circuit.

B[n] \B
C(B, i1)

C(B, i2)

C(B, i3)

C(B, i4)

v1

v2

v3

u1

u2

We construct an undirected graph G with V (G) = B and edges between ele-
ments that are both contained in a fundamental circuit. Because of Proposition 9,
G is connected.

First assume i, j ̸∈ B. We can find a shortest path in G between any vertex
in the set C(B, i) \ {i} and any vertex in the set C(B, j) \ {j}. This can be
represented by the sequences V := {v1, v2, . . . , vℓ+1} ⊆ [n] \ B, v1 = i, vℓ+1 = j,
and U = {u1, u2, . . . , uℓ} ⊆ B. The set V corresponds to vertices of G and the
set U to edges of G. More precisely, we set vi := b for some b ∈ B such that i-th
edge on the path connects vertices in C(B, b).

An illustration of this is shown in Figure 2.1. According to Proposition 11, the
set S := (B \U)∪ V contains a unique circuit C that contains all vt’s, including i
and j.

If {i, j} ∩ B ̸= ∅, without loss of generality it can be assumed that i ∈ B.
Then, for any choice of V = {v1, v2, . . . , vℓ+1} and U = {u1, u2, . . . , uℓ} as in
Proposition 11 such that i ∈ C(B, v1) and i ̸∈ C(B, vt) for t > 1, the unique
circuit in (B \ U) ∪ V also contains i. If both i, j ∈ B, we proceed in a similar
manner with j. For more details see the original algorithm description in the
article by Dadush et al. [Dad+20].

It remains to show how to find the unique circuit in S together with its
elementary vector. There are standard tools of linear algebra that can be utilized
for this task, but the article by Dadush et al. [Dad+20] also provides an alternative
solution. We provide both of these solutions here and comparing their efficiency
and suitability in our practical setting will be an important topic of Section 3.2.

Lemma 20. Let A ∈ Rn×m and let S ⊆ [n] such that M(AS) contains a unique
circuit C. Then, Ker(AS) has dimension 1. We let the basic vector of Ker(AS)
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(unique up to scalar multiplication) be denoted by v. Then, v is an elementary
vector for C and it holds that C = supp(v).

Proof. We will only prove that dim(Ker(AS)) = 1, the rest of the lemma statement
follows in a straightforward way. Let C be a circuit of M(AS) and let v1 be
its elementary vector. For contradiction, suppose that dim(Ker(AS)) ≥ 2. That
implies that there exists another vector v2 ∈ Ker(AS) that is linearly independent
from v1.

Let i be any element such that i ∈ C. If (v2)i = 0, define v3 := v2. Otherwise,
let v3 := v2 − (v1)i

(v2)i
v1. In both cases, i ̸∈ supp(v3). Because v3 ∈ Ker(AS),

supp(v3) is a dependent set in M(AS). Let C ′ be any inclusion-wise minimal
dependent subset of supp(v3).

Because i ∈ C and i ̸∈ C ′, it must hold that C ̸= C ′, which is a contradiction
with the claim that M(AS) has exactly one circuit.

Proposition 21 ([Dad+20, Inside proof of Theorem 2.14]). Let us define an
elementary vector g for circuit C. Start by setting gv1 := 1. Using Gauss-Jordan
elimination, convert the matrix A to the form A′ = (Im|H). It then holds that
for each t ∈ [ℓ], the row of A′

S corresponding to ut contains only two nonzero
entries: A′

utvt
and A′

utvt+1. Propagate the value gv1 by assigning gv2 , gv3 , . . . , gvℓ+1.
Uniquely extend g to the indices in B ∩ S for any basis B so that g ∈ Ker(A).
Then, g is an elementary vector for C and it holds that C = supp(g).

2.4.2 Algorithm Overview
To not only give all the ingredients, but also to give a high-level overview of how
these ingredients should be put together, we provide a coarse outline of the main
steps of the algorithm.

Data: Matrix A ∈ Rn×n

Result: Matrix D ∈ D such that κAD is not too far from κ∗
A

split A into AV1 , . . . , AVℓ
, where V1, . . . , Vℓ are the components of M(A) ;

foreach A′ := AVi
do

find circuits Cij of A′ for every i ̸= j together with elementary vectors
gij ;

find an approximate rescaling matrix Di of A′ using these circuits and
elementary vectors ;

end
combine the matrices D1, D2, . . . , Dℓ into a single matrix D ;

Algorithm 1: High-level overview of the algorithm
We do not overwhelm the reader with time complexities of the individual steps.

It is, however, important to note that the whole algorithm can be implemented in
time O(n2m2 + n3).

2.5 LP Dataset
To be able to evaluate algorithms related to linear programming, we will be using
a publicly available LP collection [Gay85] that is a part of Netlib repository. For
brevity, we will be referring to this dataset as “Netlib” throughout this thesis.

16



There exists a similar, larger repository MIPLIB [Gle+21] for mixed integer
programs (MIP). The ideas in this work are only suitable for linear programming
problems and cannot be directly applied to mixed integer programs. To be able to
utilize this dataset, we will be considering LP relaxations of problems in MIPLIB,
that is their modifications where real values are allowed for all variables, instead
of requiring integrality for some of them.

2.5.1 Problem Format
Both Netlib and MIPLIB problems are in MPS format, which is the industry
standard for linear programming problems. That implies that the MPS format is
capable of expressing integrality constraints on variables. As we are only interested
in linear programming problems (that have no such constraints), we can safely
assume that the MPS files used in our experiments do not use this capability.

We will not describe the internal details of the MPS format here, but it
needs to be noted that the internal representation is very similar to a sparsely
represented modelling LP form described in Subsection 2.2.1. Reading the problem
file into a convenient representation will be discussed later in Section 3.1. Most
of the problems from both datasets have many zeroes and therefore the sparse
representation is efficient.

The Netlib dataset does not directly provide the MPS files for the problems,
but compressed versions of the MPS files are provided instead for most problems.
These files can be decompressed using the utility emps, also available in Netlib, to
obtain the actual problem MPS files. Several of the problems are only available
as fortran programs generating the problem file in MPS. There are only several
such problems, so we exclude these problems from our dataset for simplicity.
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3. Algorithm Implementation
This chapter strives to describe the details of our implementation of the approx-
imation algorithm, to explain the choices that were made along the way and
compare them to alternative approaches. We also describe the challenges that we
discovered in the process.

The SageMath [The22] software will be used for the implementation of the
algorithm. SageMath uses Python and can be used directly from Python code,
which gives the advantage of a variety of available scientific packages. SageMath
itself has support for working with both densely and sparsely represented matrices
over both exact and inexact fields, working with graphs and it has some support
for working with matroids. These capabilities make SageMath a good fit for our
application.

With Python being an interpreted language, it might be possible to achieve
smaller run-times by using a more low-level programming language. However,
a large portion of the run-time of our implementation is spent inside library
functions that have their heavily optimized low-level implementations. For this
reason, the performance gain cannot be expected to be too large. Following this
observation, and also taking into account the possible greater implementation
complexity of alternative approaches, we have not further explored this possibility.

3.1 Reading LP Problems
As mentioned in Subsection 2.5.1, the Netlib LP dataset provides its problems
in the MPS format that has nearly identical representation as the modelling LP
form. The algorithm from Section 2.4, however, works with an LP in the standard
form. That gives two different challenges for this section to deal with. The first
one is solving how to read the problem matrix from the MPS file to a format that
can be conveniently used within SageMath.

The second problem is solving the form mismatch. As the reader learned in
Subsection 2.2.1, this problem could be remediated by performing an efficient
conversion of the problem representation to one in standard form. We present a
more efficient approach that allows us to run the algorithm with a smaller problem
matrix.

3.1.1 Reading Problem Matrix from MPS
Several well-known and maintained Python libraries allow reading linear programs
from the MPS format. The problem with most of these libraries is that it is not
easy to access the problem matrix itself. In order to avoid writing an MPS parser
from scratch, we utilize a Python package scikit-glpk1, licensed under the GNU
General Public Licence v3.0. This package provides Python bindings for GLPK
and allows to read the problem into modelling form as sparse SciPy matrices and
vectors, that can be easily converted to sparse matrices and vectors native to
SageMath.

1Available from https://github.com/mckib2/scikit-glpk
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Prior to our work, this package was not able to read all MPS files that are
used in Netlib and MIPLIB. To allow efficient reading all of the problems, we
have made some changes to the library. The changes were contributed back to
the original package in the form of GitHub pull requests2 and are now a part of
the original codebase.

The first modification of the library was a simple bug fix. The bug was caused
by earlier modifications of the library that rendered the MPS reading and writing
capabilities defunct.

The second modification solved the fact that the MPS reader inside GLPK
sometimes internally represents constraints bounded from both sides, i.e.

b1 ≤ a⊤x ≤ b2.

As this does not directly correspond to a constraint in modelling form, the
library did not support reading the problems whose internal GLPK representation
contained such a constraint. We have modified the library to split any such
constraint into two constraints

b1 ≤ a⊤x
b2 ≥ a⊤x.

Lastly, we have significantly improved the library performance for working
with sparse matrices. The original implementation required the use of a dense
representation for combining two matrices in one and only then converted the
resulting matrix into a sparsely represented one. We used a sparse implementation
for the combining step, avoiding the need for costly conversion to the dense
representation altogether.

3.1.2 Solving Form Mismatch
The standard procedure to convert an LP in modelling form to an LP in standard
form turns inequality constraints into equality constraints and turns generic
bounds into non-negativity bounds. The key insight is that converting the bounds
is not needed, as this step does not change the value of κ nor the value of κ∗.

Definition 16 (Semi-standard LP Form). Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn and
l, u ∈ (R ∪ {−∞,∞})n. Then a linear program in semi-standard form is the
problem

min c⊤x
Ax = b

l ≤ x ≤ u.

We can observe that the standard algorithm for converting an LP in semi-
standard form to an LP in standard form only uses the following operations:

2 https://github.com/mckib2/scikit-glpk/pull/24,
https://github.com/mckib2/scikit-glpk/pull/25,
https://github.com/mckib2/scikit-glpk/pull/23
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(O1) Take a variable xi and express it as xi = x+
i −x−

i for new variables x+
i , x−

i ≥ 0.
Let, without loss of generality,

A =

⎛⎜⎜⎜⎝
...

A∗i
...

Ā

⎞⎟⎟⎟⎠, x =

⎛⎜⎜⎜⎜⎜⎜⎝
xi

...
x̂
...

⎞⎟⎟⎟⎟⎟⎟⎠.

The problem matrix after this operation is then

A′ =

⎛⎜⎜⎜⎝
... ...

A∗i −A∗i
... ...

Ā

⎞⎟⎟⎟⎠.

(O2) Take a bound ±x ≥ l and turn it into a constraint. If we assume the same
layout of x as in (O1), the problem matrix after this operation is

A′ =

⎛⎜⎜⎜⎜⎜⎜⎝

... 0
A∗i
... 0

0 0 ±1 1

Ā

⎞⎟⎟⎟⎟⎟⎟⎠.

We will show that performing neither operation changes the values κ, κ∗. By
induction it then follows that performing the conversion algorithm also does not
change these values.

Lemma 22. κA ≥ 1.

Proof. Let us choose any C ∈M(A). For all i, j ∈
(︂

C
2

)︂
, both values κA

ij(C) and
κA

ji(C) are considered when determining the value of κA(C). Because κA
ij = 1/κA

ji,
it must be the case that max{κA

ij(C), κA
ji(C)} ≥ 1. Therefore, the maximum over

all pairs of i, j is also greater than 1, meaning that κA(C) ≥ 1 for any circuit C.
By taking maximum over all circuits, we get the lemma statement.

Lemma 23. Performing operation (O1) does not change the value of κ.

Proof. Let A, A′ be problem matrices before and after performing the operation
respectively. Firstly we will show the inequality κA ≤ κA′ . Let C ∈ C(M(A))
be the circuit that κA = κA(C) and let gC = (ḡC, gi)⊤ be its elementary vector.
Define the vector gC′ := (ḡC, gi, 0)⊤. For this vector it holds that

⎛⎜⎜⎜⎝
... ...

A∗i −A∗i
... ...

Ā

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ gi

0

...
ḡC

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= AgC = 0.

20



We will show that C ′ = supp(gC′) is a circuit of M(A′). From the above it
directly follows that C ′ is a dependent set. For contradiction let us now assume
that there exists a dependent set of M(A′) denoted by C ′′ ⊂ C ′. Let (ḡC′′

, 0)⊤ be
an elementary vector for this set. Then, supp(ḡC′′) ⊂ C is an independent set of
M(A), which contradicts that C is a circuit.

Because gC′ has the same non-zero values as gC, it holds that κA(C) = κA′(C ′).
From this it follows that

κA = κA(C) = κA′(C ′) ≤ κA′ .

For the other inequality, let us consider any C ′ ∈ C(M(A′)) together with its
elementary vector gC′ . Because the last two columns of A′ are linearly dependent,
gC′ can only have one of two forms:

1. Either gC′ = (ḡC′
, gi, 0)⊤ or gC′ = (ḡC′

, 0,−gi)⊤. In that case, (ḡC′
, gi)⊤

is an elementary vector for some vector C ∈ C(M(A)) and it holds that
κA′(C ′) = κA(C).

2. Otherwise, gC′ = (0, gi, gi)⊤. Then clearly κA′(C ′) = 1.

For any circuit C ′ it therefore holds that κA′(C ′) ≤ max{κA, 1}. By using the
previously stated Lemma 22, we get the inequality κA′(C ′) ≤ κA.

Consider C ′′ such that κA′ = κA′(C ′′). Then it is holds that

κA′ = κA′(C ′′) ≤ κA.

Lemma 24. For any D ∈ D, C(M(A)) = C(M(AD)).

Proof. Multiplying vectors by nonzero constants in a set of vectors does not
change the linear dependence of the set. Therefore, rescaling columns with matrix
D does not change dependent sets nor inclusion-wise minimal dependent sets.

Lemma 25. Performing operation (O1) does not change the value of κ∗.

Proof. Let A, A′ be matrices as in the previous proof. We will start by showing
that κ∗

A′ ≤ κ∗
A. Consider D ∈ D such that κ∗

A = κAD. Define

D′ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0
di 0

0 0 di

D̄

⎞⎟⎟⎟⎟⎟⎟⎟⎠.

Consider the circuit C ′ ∈ C(M(A′D′)) such that κA′D′ = κA′D′(C ′) with an
elementary vector gC′ .

Using Lemma 24, we again know that this circuit can be of one of two types:

1. If gC′ = (ḡC′
, gi, 0)⊤ or gC′ = (ḡC′

, 0,−gi)⊤, then the vector gC := (ḡC′
, gi)⊤

is an elementary vector for a circuit C ∈ C(M(AD)). Because this vector
shares the same nonzero values with gC′ , it holds that

κ∗
A′ ≤ κA′D′ = κA′D′(C ′) = κAD(C) ≤ κAD = κ∗

A.
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2. Otherwise, gC′ = (0, gi, gi)⊤. In that case, κA′D′(C ′) = 1. By Lemma 22,

κ∗
A′ ≤ κA′D′ = κA′D′(C ′) = 1 ≤ κAD = κ∗

A.

To prove the other inequality, consider the (n + 1)× (n + 1) diagonal matrix
with positive entries on the diagonal

D′ =

⎛⎜⎜⎜⎜⎝
0

0
0 0 dn+1

D′¯
⎞⎟⎟⎟⎟⎠

such that κ∗
A′ = κA′D′ .

Define D := D̄
′ and consider C ∈ C(M(AD)) such that κAD = κAD(C)

together with the elementary vector gC. Then, the vector gC′ := (gC, 0)⊤ is an
elementary vector of a circuit in M(A′D′) with κA′D′(C ′) = κAD(C). Therefore it
must hold that

κ∗
A ≤ κAD = κAD(C) = κA′D′(C ′) ≤ κA′D′ = κ∗

A′ .

Lemma 26. Performing operation (O2) does not change the value of κ.

Proof. Let A, A′ be matrices as before, C ′ ∈ C(M(A′)) such that κA′ = κA′(C ′)
and its elementary vector gC′ . For the elementary vector it must hold that⎛⎜⎜⎜⎜⎝

0

0
0 0 ±1 1

A

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

...
ḡC′

...
gn+1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
...
0
...
0

⎞⎟⎟⎟⎟⎟⎠.

This can be split into two conditions

ḡC′ ∈ Ker(A)
gn+1 = ±gn.

We will show that gC := ḡC′ is an elementary vector of a circuit C :=
supp(ḡC′) ∈ C(M(A)). We already know that C is dependent. For contradiction
let us now suppose that there exists another dependent set Ĉ ⊂ C. This circuit
can be extended to a circuit Ĉ

′
∈ C(A′) such that Ĉ

′
⊂ C ′, contradicting that C ′

is a circuit. The set C is therefore maximal dependent.
Vectors gC′ and gC have the same nonzero absolute values, which yields

κA(C) = κA′(C ′). Consequently,

κA′ = κA′(C ′) = κA(C) ≤ κA.

For showing the opposite inequality, it suffices to observe that every elementary
vector gC for a circuit C ∈ C(A) can be uniquely extended to an elementary
vector gC′ for a circuit C ′ ∈ C(A′) such that κA(C) = κA′(C ′). Specifically for C
such that κA = κA(C), it then follows that

κA = κA(C) = κA′(C ′) ≤ κA′ .
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Lemma 27. Performing operation (O2) does not change the value of κ∗.

Proof. We again denote the matrices A and A′ before and after performing the
operation. First let us show that κ∗

A′ ≥ κ∗
A. Let D′ be a diagonal matrix with

positive numbers on the diagonal such that κ∗
A′ = κA′D′ . The scaled matrix can

be written as

A′D′ =

⎛⎜⎜⎜⎜⎝
0

0
0 0 ±dn dn+1

AD′¯
⎞⎟⎟⎟⎟⎠.

For any elementary vector gC′ = (ḡC′
, gn+1)⊤ of a circuit in C(M(A′D′)) it

must hold that

ḡC′ ∈ Ker(A(̄D′))
gn+1 = ± dn

dn+1
gn.

Let C ∈ C(AD̄) be a circuit such that κAD̄(C) = κAD̄ with an elementary vector gC.
Define gC′ := (gC,± dn

dn+1
gn)⊤ and observe that C ′ := supp(gC′) ∈ C(M(A′D′)).

Because gC′ contains all the non-zero elements that gC contains, it must be
the case that κA′D′(C ′) ≥ κAD̄(C), leaving us with

κ∗
A′ = κA′D′ ≥ κA′D′(C ′) ≥ κAD̄(C) = κAD̄ ≥ κ∗

A.

For the other direction, consider D ∈ D such κ∗
A = κAD . Choose D′ such that

D′ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0
dn 0

0 0 dn

D̄

⎞⎟⎟⎟⎟⎟⎟⎟⎠.

Consider the circuit C ′ ∈ C(M(A′D′)) such that κA′D′(C ′) = κA′D′ together with
its elementary vector gC′ = (ḡC′

, gn+1)⊤. Plugging into the conditions above, it
must hold that

ḡC′ ∈ Ker(AD)
gn+1 = ±gn.

We can observe that ḡC′ is an elementary vector of a circuit C ∈ C(M(AD)).
The vectors gC′ and ḡC′ have the same nonzero absolute values, therefore
κA′D′(C ′) = κAD(C). By putting everything together, we get

κ∗
A = κAD ≥ κAD(C) = κA′D′(C ′) = κA′D′ ≥ κ∗

A′ .

By combining Lemmas 23, 25, 26 and 27, we finally get the following theorem.

Theorem 28. Let A be a problem matrix of an LP in semi-standard form and A′

a problem matrix for the same LP converted to standard form using the standard
construction. Then, κA = κA′ and κ∗

A = κ∗
A′.
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3.2 Practical Aspects of Dealing With the Vector
Matroid

In Section 2.3 we have introduced the mathematical notions of matroid and vector
matroid. In order to successfully perform computations with the vector matroid
and to understand their efficiency, it is important to understand how some of
the operations with vector matroids can be implemented. These details will have
great implications for the practicality and scalability of the experiments.

3.2.1 Exactness of Computation
When performing computations with real numbers on modern computers, a
floating point number representation is typically used. While this representation
is convenient in many cases, practical calculations using these numbers suffer from
an inherent precision loss. We will show that this causes issues when using float
computations for working with the vector matroid of a matrix. Not only can small
numerical differences in values of the matrix completely change the structure of
the vector matroid, but they may also arbitrarily change both the values κ and
κ∗.

Example 1 (Floating-point arithmetics and vector matroid). For a ∈ R consider
the matrix

A :=
(︄

a a 4a
0 a a

)︄
.

Because 3 ·A∗1 +A∗2 = A∗3, {1, 2, 3} is not an independent set of M(A). However,
when using floating-point operations ·F and +F , one may get the result

3 ·F
(︄

a
0

)︄
+F

(︄
a
a

)︄
=
(︄

4a + ε1
a + ε2

)︄

for small values of ε1 and ε2. This might lead an algorithm relying on floating-point
arithmetics to believe that all the three columns are linearly independent and that
{1, 2, 3} is an independent set of M(A).

We tried to take advantage of the fast calculations in limited precision for
finding a unique circuit in a subset of elements by using Lemma 20. The key idea
is to use inexact arithmetics with increasing precision to obtain the solution and
then check the (potentially) small solution using exact arithmetics. The approach
is described in detail in Algorithm 2.
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Function CheckIsCircuit(C, A)
if dim(Ker(AC)) ̸= 1 then

return false ;
end
g← find kernel element in AC with exact arithmetics ;
if g contains a zero then

return false ;
end
return true ;

end
Data: Matrix A, subset of columns S such that M(AS) has a unique

circuit, values ε0 ∈ R+, εδ ∈ (0, 1), p0 ∈ N+, pδ ∈ N+

Result: The unique circuit of M(AS)
p← p0, ε← ε0 ;
repeat

g← find unique kernel element in AS with p-bit precision arithmetics ;
C ← {i | |gi| < ε} ; // support with tolerance ε
p← p + pδ ; // increase precision
ε← ε · εδ ; // decrease tolerance

until CheckIsCircuit(A, C) = true;
Algorithm 2: Find-and-verify approach to finding a unique circuit

This approach turned out to be impractical because all attempted choices of
pδ, εδ led to much larger iteration counts than was reasonable in exchange for the
time improvement given by running the exact algorithm on a smaller instance. As
a matter of fact, the algorithm converged in reasonable time only for very small
problem instances.

While it may be possible to work with a vector matroid using inexact arith-
metics in a consistent way (i.e. the sets that an algorithm working with inexact
arithmetics marked as independent satisfy matroid axioms), I have not discovered
such a sensible way. For this reason, we will be forced to use exact arithmetics
throughout the algorithm. To do that, we will be using the support for rational
numbers that SageMath provides.

SageMath also lacks support for working with vector matroids of matrices over
the Real Field with limited precision. It is possible to create a LinearMatroid
object with such matrix and call its methods, but they may not give consistent
results. We have observed this deficiency and reported it, which led to creation
of a ticket3 on SageMath bug tracker. At the time of writing this text, the
documentation nor the behavior have been fixed yet.

In addition to the fact that working with the vector matroid without using
exact arithmetics is at least tricky, we can also observe that small changes in
matrix values can inflict large changes of both κ and κ∗. This can be dangerous if
we obtain a nearly optimal rescaling of a matrix and then try to use it in inexact
context (e.g., run an LP solver that uses float arithmetics).

Example 2 (Floating-point arithmetics and κ). For a, C ∈ R+ consider the
3Now available at: https://github.com/sagemath/sage/issues/33657
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matrix
A :=

(︄
a a Ca + ε
a a Ca

)︄
.

In a mathematical sense, the only circuit of M(A) is {1, 2} and g = (1,−1, 0)⊤

is its elementary vector, implying κA = 1. An algorithm based on floating-point
numbers could however falsely believe that {2, 3} is a circuit with an elementary
vector (0, C,−1)⊤ and therefore that κA = C.

Example 3 (Floating-point arithmetics and κ∗). The vector matroid of matrix

A :=

⎛⎜⎝κ̄ 1 κ̄ 0
κ̄ κ̄2 0 κ̄2

ε 0 0 0

⎞⎟⎠
for κ̄ > 1 has a single circuit {2, 3, 4}. The scaling matrix

D :=

⎛⎜⎜⎜⎝
1

κ̄
1

κ̄

⎞⎟⎟⎟⎠ gives AD =

⎛⎜⎝κ̄ κ̄ κ̄ 0
κ̄ κ̄3 0 κ̄3

ε 0 0 0

⎞⎟⎠ .

The only circuit then has an elementary vector g = (0, 1,−1,−1)⊤, witnessing
κ∗

A = κAD = 1.
An algorithm using floating-point numbers may however give results as if ε = 0

due to loss of precision. The situation is then similar to the one in Lemma 19,
which, as observed by the algorithm, effectively makes κ∗

A = κ̄.
If we try to use the exactly computed scaling matrix D in inexact context

(assuming ε is treated as 0), we get κAD = κ̄2. That shows that not only the value
κ∗ is sensitive to inaccuracies, but the same is also true for the scaling matrix D.

3.2.2 Needed Matroid Operations
For the purposes of the algorithm, there is no need to worry about implementation
aspects of every single vector matroid operation. We will only be interested in
the following operations that the implemented algorithm uses:

• Components() splits the vector matroid to matroids for its components,

• Basis() finds any basis of the vector matroid,

• FundamentalCircuits(B) finds all fundamental circuits with respect to
basis B,

• ElementaryVector(C) finds an elementary vector for the circuit C and

• UniqueCircuit(B, U , V ) finds a circuit contained in (B \ U) ∪ V that is
guaranteed to be unique, where U ⊆ B, V ⊆ [n] \B.
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3.2.3 Utilizing SageMath
SageMath comes with a class LinearMatroid that provides most of the operations
out of the box and the rest is not hard to implement using the tools it provides.
If M is an instance of LinearMatroid, then Components() can be implemented
by using M.components(), Basis() can be implemented by using M.basis()
and FundamentalCircuits(B) can be implemented by using the method
M.fundamental circuit(B, e) for every non-basic element e.

The operations ElementaryVector(C) and UniqueCircuit(B, U , V )
can be implemented either using the method in Lemma 20 or the one in Propo-
sition 21. In both cases, we will work directly with the matrix A. In the first
case this can be done using A.matrix_from_columns(C).right_kernel().basis()
[0] for ElementaryVector(C) and A.matrix_from_columns(B.difference(U)
.union(V)).right_kernel().basis()[0].support() for implementing the opera-
tion UniqueCircuit(B, U , V ).

The latter option is a bit more involved. Firstly, the matrix A needs to be
converted to RREF using Gauss-Jordan elimination. Then, we construct a “vector
finding graph” that will allow for efficient implementation of the procedure.

Definition 17 (Vector finding graph). Let A be a matrix in RREF such that
M(A) is connected, let U , V and B be sets as above and let S := (B \ U) ∪ V .
Consider the submatrix Ā obtained by selecting exactly the columns in S and the
rows where columns in U have their only nonzero-value (this value is 1). Let uv
denote the indices such that Āuv corresponds to Auv.

Then, the vector finding graph of A is a weighed directed graph G such that

V (G) := [n],

E(G) :=
{︃

(u, v) ∈ [n]2
⃓⃓⃓⃓
there is a row ruv in Ā whose only nonzero
values are in columns ū and v̄

}︃
,

wG((u, v)) := −Āruvū

Āruv v̄

.

This vector finding graph can be constructed in time O(nm). The meaning
of this graph is that for an elementary vector g of the unique circuit of M(A) it
holds that if (u, v) ∈ E(G), then gv

gu
= wG((u, v)).

Practically, the procedure from Proposition 21 can be implemented as follows:
we start with an empty vector w and set wv1 ← 1. Then, we run a depth-first
search (DFS) from v1 in the vector finding graph and for every discovered edge
(i, j), we set wj ← wi · wG((i, j)). This order of processing edges of the graph
guarantees that we use every edge (i, j) only after the value wi is known, everything
that can be propagated is propagated and no value gj is computed more that once.
Lastly, we need to set values to indices in B ∩ S such that w ∈ Ker(A). This can
be done by solving a system of linear equations, or specifically by setting

wB∩S ← −(Aw)B∩S.

Remark. Note that it suffices to convert the matrix A to RREF only once in the
runtime of the entire algorithm and then reuse the result for many invocations of
ElementaryVector and UniqueCircuit.
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Upon inspection of the source code of SageMath, we have discovered that its
vector matroid implementation can not leverage matrix sparsity. In particular,
the matrix is converted to an internal dense representation when constructing
the vector matroid object. Because matrices of problems in Netlib and MIPLIB
usually have many zeroes, representing them densely has great impact on both
memory and runtime of the operations. It is therefore natural to explore other
options that work with the matrix directly in its sparse representation.

3.2.4 Sparsity and RREF
While it might seem sufficient to modify the algorithm internal details to work
directly with the sparse representation, there are more fundamental problems that
make it impossible to fully avoid the memory blow-up caused by converting to a
dense representation. The root of the problem lies in needing the RREF of matrix
A. Even when the original matrix has many zeroes and its sparse representation is
efficient, after converting it to RREF it is often not the case and the representation
becomes inefficient. This is referred to as matrix fill-in and has been studied for
example by Brayton, Gustavson and Willoughby [BGW]. This means that the
memory savings (and consequently the time savings) that motivated the use of
sparse matrices are not directly possible.

Note that while we can avoid using RREF explicitly by using the alternative
method in Lemma 20, the SageMath implementation of vector matroid echelonizes
the matrix A internally.

I am aware that it might be possible to reorder columns of the matrix in a
way that minimizes the fill-in. While there are strategies that minimize the fill-in
when computing LU and QR decompositions, I do not know of any strategies that
do the same for computing RREF. Also, any such algorithm would need to be
manually implemented either in Python or Cython and its fast implementation
would arguably not be trivial. For these reasons, we do not further explore this
approach as we consider it to be out of scope of this thesis.

3.2.5 Implementing Vector Matroid Using Sparse Opera-
tions

To implement vector matroid operations in a way that uses sparsity, we use
SageMath abilities to work with sparse matrices. Note that we do not examine the
internals of SageMath implementations of sparse matrix operations and assume
that they are optimal. In particular, we are not concerned whether the operations
cause any fill-in internally.

For implementing Components we leverage Lemma 10 and determine matroid
components by looking for components of the graph of fundamental circuits. Note
that we need this graph later in the algorithm so we can cache the result and
compute it only once.

For the implementation of Basis we construct the basis iteratively. We start
with the empty set. Then, for every vector, try adding it to the set and if the result
is a linearly independent set of vectors, keep it there. By the Steinitz exchange
theorem (Theorem 4) the obtained set is a basis.
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For computing ElementaryVector and UniqueCircuit we can use the
approach from Subsection 3.2.3 using Lemma 20.

Operation FundamentalCircuits can be implemented very similarly using
Lemma 20, by following the definition of a fundamental circuit. As in the case of
the first two operations, the result of this operation can be cached.

3.2.6 Comparison of the Methods
The choice of a suitable methods depends on the available computational resources.
Thanks to its efficient use of sparsity, the second method based on sparse operations
is a good fit for scenarios where available memory is limited. The SageMath-based
method exhibited higher memory usage during our tests, but this method has the
benefit considerable shorter run times than the alternative.

Because of our time constraints, we have opted for the SageMath-based method.
It is, however, not clear whether using the slower method can be more practically
feasible for some extremely memory-demanding problems, and there is potential
for further research in this direction.

3.3 Other Implementation Concerns
There are other operations that the algorithm needs to perform that do not
concern the vector matroid. This is most notably the case of solving the maximum
geometric mean problem for the pairwise imbalance measure digraph and the
single-source shortest path problem for finding the rescaling diagonal values.

3.3.1 Maximum Geometric Mean Problem
The maximum geometric mean problem can be converted to the minimum geo-
metric mean problem in a straightforward way. Then, this problem can be further
reduced to the minimum arithmetic mean problem by first computing logarithms
of all edge weights. This is a well-known problem that can be solved by using
Karp’s algorithm [Kar78].

As far as I am aware, there is no implementation of Karp’s algorithm inside
SageMath. We have therefore decided to implement the algorithm in plain Python.
While this dynamic programming algorithm is a textbook example of an algorithm
with great potential to be sped up by being implemented in a more low-level
language, this procedure runs only for a small portion of the total algorithm
runtime. Any optimizations of the implementation of this method would therefore
have only a small effect on the total performance.
Remark. At the point in the algorithm where maximum geometric mean is com-
puted there is no longer the need for exact arithmetics. By inaccuracies from
computing the logarithms, the maximum geometric mean can change only by a
small amount. In the shortest path finding step, the shortest path lengths will
also only change by a small amount. In Lemma 29 we will later show that this is
not a problem.
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3.3.2 Single-source Shortest Path Problem
The graph in which we need to find shortest paths from u to all other vertices
v does contain negative edges, so the natural choice for finding single-source
shortest paths is the Bellman-Ford algorithm. This is implemented in Sage-
Math as the method shortest_paths(u, by_weight=True, algorithm="Bellman-
Ford_Boost") of SageMath graph objects. This uses the Bellman-Ford algorithm as
implemented in Boost and it does not support weights that are SageMath-specific
infinite-precision rational numbers.

By using inexact arithmetic, the shortest paths can only change by a very
small amount. Because the shortest path lengths are exactly the diagonal elements
of the obtained rescaling matrix, this causes us to have found a slightly different
rescaling. The following lemma shows that this rescaling can be at most slightly
worse than the one with exact values.

Lemma 29. Let D ∈ D and let D′ ∈ D such that

D′
ii ∈

[︃ 1
α

Dii, αDii

]︃
for every i ∈ [n] and some α ≥ 1. Then, κAD′ ≤ α2κAD.

Proof. Consider the circuit C and indices i, j such that κAD′ = κAD′
ij (C). Let gAD

and gAD′ be the elementary vectors corresponding to C such that gAD ∈ Ker(AD)
and gAD′ ∈ Ker(AD′). Then,

κAD′ = κAD′

ij (C) =
⃓⃓⃓⃓
⃓g

AD′
j

gAD′
i

⃓⃓⃓⃓
⃓ ≤ α

⃓⃓⃓
gAD

j

⃓⃓⃓
α−1 |gAD

i |
≤ α2κAD.

Even though the original graph is guaranteed to not contain any negative
cycles, it might happen that by using inexact arithmetic some cycles with slightly
negative weight sum emerge. Shortest paths are well-defined only if no negative
cycles exist and the Boost implementation fails if it discovers any such edges.
For this reason, we increase all edge weights by a value ε to compensate for the
inaccuracies. In this way, all computed shortest path lengths change by at most
n · ε.
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4. Scaled Instances Performance
As our final contribution, we have evaluated the performance of some practical
LP solvers both on the original problem and the problem after applying the
approximate optimal rescaling. We have then made an effort to evaluate the
impact of the rescaling. We note that while there are some performance guarantees
given by Dadush et al. [Dad+20], their relevance in our case is somewhat limited.
Firstly, all claims in the article by Dadush et al. [Dad+20] are relevant for the
LP solving algorithm by Vavasis and Ye [VY96]. As far as I am aware, none of
the tested algorithms directly use this method and to the best of my knowledge,
no theoretical claims have been made about the effects of the rescaling for other
algorithms.

The second issue is that for problems with large κ∗, the rescaling may be very
far from the optimal one and the theoretical complexity bound is therefore weak.
However, real-world instances may exhibit nice properties that may cause the
rescaling algorithm to be efficient in practice.

Lastly, in Subsection 3.2.1 we have explored the pitfalls of working with the
circuit imbalance measure using non-exact arithmetic. In spite of this,we also
evaluate the performance of non-exact linear programming algorithms. We do so
for completeness and because most LP solvers used in practice do not use exact
arithmetic.

4.1 Exact Solvers
Some of the solvers can be configured to find the solution using exact arithmetic.
In Subsection 3.2.1 it has been discussed why this will interest us.

However, even the exact solvers read its input from MPS files and at least some
of them parse the numeric values in it into floating-point numbers and only then
into an infinite precision data type. Because of issues outlined in Subsection 3.2.1,
if the exact solver is used naively, problems with precision loss will not be avoided.

Due to properties of the IEEE 754 floating-point number arithmetic used
in modern computers, multiplying a number in this arithmetic by a (possibly
negative) power of two does not cause precision loss, if the mathematically correct
result can be represented as a IEEE 754 floating-point number. Therefore, if we
restrict the elements of our rescaling matrix to be such powers of two, the rescaled
problem as loaded by the exact solver will be mathematically precisely the original
problem with scaled columns of the problem matrix.

As the following lemma shows, if we round down the obtained the values of
the rescaling matrix to integral powers of two, we obtain a solution that is not
much worse than the original one.

Lemma 30. Let D = Diag(d) ∈ D. Define dî to be the nearest smaller integral
power of two than di for every i ∈ [n] and let D̂ := Diag(d̂). Then,

κAD̂ ≤ 2 · κAD.

The proof of this lemma is almost identical to the proof of Lemma 29, so we
do not repeat it.
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4.2 Experimental Methodology
We have measured solving times for both original and rescaled instances using the
open-source solvers GLPK and SCIP [Bes+21] and using the proprietary solver
Gurobi [Gur23]. We have used Python libraries pyglpk, gurobipy and pysciopt.
In the case of the exact version of SCIP, we have interfaced with its terminal client
using the pexpect Python package. In all cases, garbage collection was disabled
during the measuring process to keep it from interfering with the measurement.
The measured time is the time that the solving method needed to finish, not
including problem parsing.

We tried to ensure that any built-in scaling for the solvers is disabled, so that
it does not interfere with our scaling, but we did not manage to verify whether
the flags for disabling scaling actually worked as expected. We repeat every
measurement 10 times and then consider the arithmetic mean to mitigate faulty
measurements.

We are mainly interested in the relative effect the rescaling has on the solver
run time. Formally speaking, let τo be the time in seconds that a solver needs to
solve the original instance of the problem and τr the time in seconds the solver
needs to solve the rescaled instance. Then, define the time change ratio of the
rescaling as

ρ :=
(︃

τr

τo

· 100
)︃

%.

For solving methods with non-exact arithmetic, we measure τr considering the
precise rescaling, while for methods with exact arithmetic we consider the rescaling
rounded to powers of two as described in Section 4.1.

The software versions used to perform the measurements were GLPK v4.65,
Gurobi v10.0.2, SCIP v8.0.3 for measurements using non-exact arithmetic and an
exact version1 of SCIP v8.0.0.1 for measurements using exact arithmetic.

For GLPK, we make separate measurements for its simplex solving method,
interior point solving method and exact solving method. For Gurobi we only test
the default solving method. For SCIP, we measure both with exact arithmetic
enabled and disabled. All solver settings not regarding scaling or exact arithmetic
are set to their default values.

For measuring original instances, an MPS file created from the problem
converted to semi-standard form is used in contrast to using the original MPS
files. This is done so that the difference between the two tested problems is
solely in column scaling and structural differences of the matrices can not affect
performance.

For the computation we used a cluster of computers with identical hardware
specifications. The cluster machines are equipped with AMD EPYC 7532 CPU’s
and they have a SPECfp2017 score of 6.9 per core. The solvers were limited to
use a single CPU core.

4.3 Measurement Results
We managed to obtain the approximate optimal rescaling for a total of 142
problem instances of MIPLIB and Netlib. We ran the measurements for all

1Available from https://github.com/scipopt/scip/tree/exact-rational
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solution methods and all problem instances. Several of the measurements did not
finish in the alloted time slot, so we exclude these measurements from the results.

Best mean time change ratio was attained for GLPK using an interior-point
method with the value 1.32 %. The highest number of problem instances with
time change ratio under 100 % was attained for Gurobi with 51 said problem
instances. Both these values suggest that the overall impact of the rescaling in
the measured cases is neutral at best.

On the other hand, let us point out that the lowest achieved time change ratio
is 7.6 %, meaning that applying the rescaling led to 13× shorter runtime of the
solver. On a similar note, for 112 of the problem instances the rescaling had time
change ratio smaller than 100 % for at least one of the solution methods, causing
solving speedup.

We have not observed strong correlations between which instances are sped
up for which solvers.

Detailed results of the experiment can be found in Figure 1.1. Columns of
the scatter plot correspond to individual problem instances. In addition to time
change ratios for all solving methods, we have included the best and the mean
time change ratio for every problem instance.

For raw results of measurements for individual problems, see Attachments A.1,
A.2 and A.3.
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Figure 1.1: A plot of time change ratios for all rescaled instances and all tested
LP solving methods. (repeated from page 4)
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Conclusion
In this work, we have explored the implementation possibilities for an algorithm by
Dadush et al. [Dad+20] for computing an approximate optimal rescaling of an LP
optimizing a condition value κ of the constraint matrix. After tackling challenges
regarding sparsity of the LP representation, numeric errors and implementing
matroid operations, we devised and implemented two possible approaches the
algorithm: one offering smaller memory usage, and a second one with higher
memory requirements, compensating them by shorter runtime.

These implementations allowed us to compute approximate optimal rescalings
of problem instances in the benchmark sets Netlib [Gay85] and MIPLIB [Gle+21].
The size of some of the instances prevented successfully finishing running the
demanding algorithm on a big part of the dataset. We have, however, managed to
obtain a sufficient amount of rescalings to allow us to run experiments to explore
the impact the rescalings have on the performance of real-world LP solvers.

In the experiments, we used solving methods using the LP solver GLPK,
methods using SCIP and one method using Gurobi. The evaluated methods are
of three kinds: simplex methods based on non-exact arithmetic, interior-point
methods based on non-exact arithmetic and simplex methods based on exact
arithmetic. The exact solvers were included in the experiment suspecting that
non-exact solvers will suffer from sensitivity of κ to numeric errors.

We have measured the ratio in which time to solve an instance changes by
applying a rescaling for all the successfully rescaled instances and solving methods.
The experiment results are not too encouraging, as for all of the solution methods
applying the rescaling has negative impact on runtime for more instances than it
has positive effect. Furthermore, average time to solve an instance also rises by
applying the rescaling for every method.

While this may be in contrast with the fact that the rescaling was chosen to
approximate a rescaling that should reduce the runtime, I believe this result may
be caused by a combination of several factors. Firstly, it may be the case that the
computed approximations were simply not close enough and instead of reducing
the real value of κ, further numerical issues were introduced. This is perfectly
possible, as the approximation error is given by a cube of the value κ∗, which can
by itself be arbitrarily large. This possible issue might be mitigated by discovering
a method for finding a closer approximation of the optimal rescaling.

A second possible factor is that the LP solving method for which a complexity
bound on κ is proven is an interior-point method based on exact arithmetic. None
of the solving methods used in our experiments is of this kind and using such
method might arguably have a better chance of yielding better results.

Lastly, we have only managed to compute the approximate rescaling for
problems of fairly small sizes that are mostly easy for the solvers to solve. It
might be the case that benefits of applying the rescaling start emerging only when
dealing with sufficiently-sized problems.

4.3.1 Further Work
There are several directions in which it is possible to follow up on this work. One
such direction may be further looking into implementations of the approximating
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algorithm. This thesis does not provide any rigorous observations or measurements
regarding the implementations and further research in this direction may be
beneficial. Research oriented towards finding heuristics that in practice obtain
better approximations than the theory guarantees is certainly also possible.

One more direction to explore is looking for correlations between properties
of constraint matrices and benefits of applying the approximate rescaling. If any
such correlations were to be discovered, it would be possible to choose candidate
problems with greatest potential to benefit from applying the rescaling.
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A. Attachments

A.1 Raw GLPK Timings

Original/
simplex

Rescaled/
simplex

Original/
interior

Rescaled/
interior

Original/
exact

Rescaled/
exact

Rescaled
by powers
of 2/exact

Problem

MIPLIB problems

22433 0.0215 0.0186 0.0405 0.0478 2.1793 7.0406 2.9850
23588 0.0096 0.0077 0.0457 0.0420 0.5510 4.7355 1.1617
assign1-5-8 0.0203 0.0120 0.0180 0.0166 3.0127 133.9219 3.6466
b-ball 0.0010 0.0008 0.0008 0.0008 0.0079 0.0103 0.0060
beavma 0.0058 0.0132 0.0055 0.0075 0.1601 0.5865 0.2551
blend2 0.0057 0.0067 0.0080 0.0086 0.4917 1.7490 0.6580
bppc8-02 0.0036 0.0027 0.0163 0.0157 0.1699 0.1847 0.1081
control30-3-2-3 0.0294 0.0351 0.0070 0.0049 10.5879 4.3302 4.0303
dcmulti 0.0084 0.0093 0.0035 0.0034 0.2391 0.5333 0.2864
ej 0.0002 0.0001 0.0001 0.0006 0.0002 0.0001 0.0001
enlight11 0.0003 0.0002 0.0025 0.0024 0.0013 0.0014 0.0010
enlight4 0.0002 0.0002 0.0004 0.0003 0.0002 0.0003 0.0004
enlight8 0.0003 0.0001 0.0011 0.0011 0.0006 0.0009 0.0006
enlight9 0.0003 0.0001 0.0014 0.0014 0.0008 0.0010 0.0007
enlight hard 0.0004 0.0003 0.0017 0.0019 0.0038 0.0037 0.0037
f2gap40400 0.0035 0.0034 0.0041 0.0059 0.0394 0.6135 0.1213
fhnw-sq2 0.0060 0.0039 0.0070 0.0183 0.8986 6.1749 0.4197
flugpl 0.0004 0.0002 0.0003 0.0003 0.0014 0.0020 0.0010
flugplinf 0.0003 0.0002 0.0004 0.0003 0.0023 0.0029 0.0013
g503inf 0.0005 0.0005 0.0006 0.0011 0.0092 0.0379 0.0079
gen-ip002 0.0007 0.0005 0.0009 0.0008 5.1582 6.6361 5.9827
gen-ip016 0.0007 0.0005 0.0007 0.0007 2.3639 3.4358 3.6892
gen-ip021 0.0008 0.0008 0.0016 0.0009 11.9920 5.7461 6.8744
gen-ip054 0.0007 0.0007 0.0007 0.0007 3.3315 2.0978 1.9132
glass4 0.0027 0.0017 0.0714 0.1044 0.8203 1.1188 0.6289
gr4x6 0.0003 0.0003 0.0004 0.0005 0.0028 0.0025 0.0028
graphdraw-gemcutter 0.0131 0.0185 0.0556 0.0767 0.4780 1.7407 0.6347
gt2 0.0003 0.0007 0.0018 0.0018 0.0053 0.0097 0.0068
ic97 tension 0.0062 0.0076 0.0112 0.0050 0.1778 0.2352 0.2802
k16x240b 0.0024 0.0024 0.0043 0.0045 0.0227 0.0637 0.0229
mad 0.0014 0.0015 0.0112 0.0116 0.0880 3.0784 0.2112
markshare1 0.0002 0.0002 0.0007 0.0008 0.0019 0.0030 0.0021
markshare2 0.0002 0.0002 0.0009 0.0010 0.0029 0.0079 0.0033
markshare 4 0 0.0001 0.0001 0.0004 0.0004 0.0005 0.0016 0.0006
markshare 5 0 0.0001 0.0002 0.0005 0.0006 0.0008 0.0019 0.0008
mas74 0.0013 0.0014 0.0112 0.0088 0.7670 1.0044 0.6986
mas76 0.0012 0.0011 0.0145 0.0108 0.2204 0.4706 0.3316
misc05inf 0.0112 0.0159 0.0637 0.1030 0.3915 20.9772 1.0397
mod008inf 0.0005 0.0006 0.0109 0.0112 0.0140 0.1554 0.0236
neos-1425699 0.0011 0.0010 0.0017 0.0014 0.0123 0.0126 0.0119
neos-2624317-amur 0.0118 0.0087 0.0077 0.0108 7.9862 21.9949 4.4570
neos-2626858-aoos 0.0161 0.0145 0.0137 0.0135 11.6869 32.4151 7.2545
neos-2652786-brda 0.0059 0.0069 0.0069 0.0102 0.4562 1.7868 0.6744
neos-2656603-coxs 0.0048 0.0060 0.0068 0.0115 0.3198 0.5251 0.2307
neos-2657525-crna 0.0063 0.0077 0.0073 0.0102 0.2076 1.8050 0.5954
neos-3046601-motu 0.0147 0.0240 0.0379 0.0461 0.3659 0.7095 0.5018
neos-3046615-murg 0.0149 0.0187 0.0283 0.0338 0.2668 0.4022 0.3943
neos-3072252-nete 0.0085 0.0085 0.0046 0.0041 0.2120 0.2483 0.2116
neos-3610040-iskar 0.0135 0.0142 0.0094 0.0092 0.5592 2.3035 0.4095
neos-3611447-jijia 0.0197 0.0201 0.0124 0.0137 0.7839 0.9845 0.7427
neos-3611689-kaihu 0.0165 0.0160 0.0115 0.0104 0.5268 7.5782 0.6125
neos-3754480-nidda 0.0243 0.0110 0.1583 0.0784 20.0167 51.9247 30.6436
neos-5140963-mincio 0.0106 0.0056 0.0186 0.0185 1.1822 0.2487 0.1983
neos-5192052-neckar 0.0011 0.0012 0.0014 0.0011 0.0210 0.0292 0.0218
neos5 0.0028 0.0023 0.0065 0.0063 0.3012 0.1817 0.4197
neos859080 0.0010 0.0008 0.0044 0.0050 0.0214 0.0727 0.0165
nexp-50-20-1-1 0.0103 0.0265 0.0047 0.0046 0.2927 0.7512 0.7101
noswot 0.0030 0.0035 0.0034 0.0045 0.3692 0.1497 0.0656
opt1217 0.0069 0.0071 0.0061 0.0079 0.1062 1.5610 0.2129
p0201 0.0037 0.0047 0.0095 0.0144 0.2072 0.9206 0.1990
p2m2p1m1p0n100 0.0001 0.0001 0.0005 0.0007 0.0004 0.0004 0.0004
pb-market-split8-70-4 0.0003 0.0003 0.0024 0.0024 0.0047 0.4218 0.0100
pk1 0.0006 0.0008 0.0017 0.0025 0.0241 0.5869 0.0570
ran12x21 0.0054 0.0065 0.0026 0.0026 0.1985 0.1853 0.1858
ran13x13 0.0028 0.0031 0.0018 0.0019 0.0907 0.0850 0.0709
rlp1 0.0045 0.0042 0.0030 0.0036 0.0539 0.1915 0.0700
rout 0.0070 0.0112 0.0113 0.0123 0.3643 9.7253 0.7100
sp150x300d 0.0060 0.0066 0.0071 0.0055 0.1394 0.1388 0.1688
stein15inf 0.0004 0.0004 0.0006 0.0007 0.0063 0.0063 0.0065
stein45inf 0.0119 0.0099 0.0598 0.0601 0.5071 1.0171 0.6953
stein9inf 0.0002 0.0002 0.0003 0.0002 0.0010 0.0013 0.0006
supportcase14 0.0054 0.0048 0.0054 0.0057 0.2018 1.8468 0.1619
supportcase16 0.0030 0.0032 0.0044 0.0052 0.1122 0.4465 0.0915
timtab1 0.0022 0.0036 0.0077 0.0075 0.0387 0.1009 0.0895
timtab1CUTS 0.0148 0.0178 0.0264 0.0397 0.8703 15.2763 0.7048

Continued on next page
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Original/
simplex

Rescaled/
simplex

Original/
interior

Rescaled/
interior

Original/
exact

Rescaled/
exact

Rescaled
by powers
of 2/exact

Problem

Netlib problems

25FV47 0.2681 0.0429 0.0973 0.1096 2295.5904
ADLITTLE 0.0013 0.0018 0.0010 0.0011 0.0329 0.3993 0.0478
AFIRO 0.0002 0.0003 0.0003 0.0003 0.0007 0.0016 0.0015
AGG 0.0037 0.0166 0.0307 0.0397 0.1276 2.1830 0.9667
AGG2 0.0034 0.0310 0.0393 0.0393 0.1202 12.1306 1.6656
AGG3 0.0036 0.0019 0.0439 0.0382 0.1383 2.3668 0.8945
BANDM 0.0304 0.0284 0.0110 0.0126 7.8485 146.4538 15.5079
BEACONFD 0.0025 0.0054 0.0087 0.0096 0.0447 7.7300 0.2892
BLEND 0.0010 0.0018 0.0014 0.0014 0.0297 0.0749
BNL1 0.0761 0.1018 0.0458 0.0395 15.0224 441.1302 14.9258
BOEING1 0.0144 0.0341 0.0349 0.0816 1.1725 6.6550 2.5074
BOEING2 0.0028 0.0053 0.0082 0.0169 0.1116 0.7452 0.4368
BORE3D 0.0038 0.0042 0.0089 0.0114 0.1435 0.0634 0.6347
BRANDY 0.0126 0.0174 0.0081 0.0083
CAPRI 0.0068 0.0112 0.0134 0.0095 1.4671 5.8932 1.1274
DEGEN2 0.0320 0.0475 0.0287 0.0423 1.9854 45.2887 3.4645
DEGEN3 0.4826 0.7135 0.5645 0.5651 135.9188 12460.6241 878.2734
E226 0.0098 0.0258 0.0104 0.0106 2.2084 76.4171
ETAMACRO 0.0140 0.0184 0.0257 0.0279 0.4996 40.1687 1.9062
FFFFF800 0.0243 0.0329 0.0957 0.0727 5.9050 13.0782 5.0861
FINNIS 0.0126 0.0234 0.0149 0.0239 1.3846 0.6259 0.4987
FIT1D 0.0279 0.0336 0.1973 0.2389 10.0379 815.4271 24.4242
FIT1P 0.0760 0.0847 0.8835 0.9226 14.1801 50.1393 17.6639
FORPLAN 0.0063 0.0491 0.0165 0.0171 4.0903
GANGES 0.0681 0.0836 0.0418 0.0524 2.1474 10.1157 2.7896
GFRD-PNC 0.0209 0.0223 0.0083 0.0071 0.5884 0.7076 0.6395
GROW15 0.0271 0.0257 0.0175 0.0253 251.3215 1712.2708 71.4001
GROW22 0.0809 0.0663 0.0254 0.0348 907.7583 4859.8624 207.3977
GROW7 0.0080 0.0060 0.0076 0.0126 19.9438 204.4021 18.2176
ISRAEL 0.0038 0.0084 0.0233 0.0244 0.4246 25.0247 1.0386
KB2 0.0009 0.0012 0.0012 0.0013 0.1346 0.3389 0.1121
LOTFI 0.0022 0.0050 0.0038 0.0038 0.1144 0.3448 0.1055
MAROS 0.1901 0.0030 0.0582 0.0910 32.0731 140.5513
MODSZK1 0.0581 0.0455 0.0329 0.0356
PEROLD 0.2104 0.0068 0.0706 0.1063 10000.6069 102583.0157 24811.1619
PILOT4 0.0984 0.0103 0.0573 0.1044 16720.8471 23104.4407 20236.8544
RECIPE 0.0004 0.0004 0.0013 0.0012 0.0050 0.0054 0.0062
SC105 0.0010 0.0013 0.0008 0.0008 0.0235 0.1192 0.0247
SC205 0.0040 0.0045 0.0014 0.0014 0.1060 3.1341 0.1660
SC50A 0.0004 0.0005 0.0004 0.0004 0.0049 0.0219 0.0055
SC50B 0.0004 0.0004 0.0004 0.0004 0.0050 0.0233 0.0069
SCAGR25 0.0168 0.0354 0.0035 0.0036 0.7996 27.1560 1.9427
SCAGR7 0.0020 0.0035 0.0013 0.0012 0.0463 0.3373 0.0823
SCFXM1 0.0121 0.0251 0.0100 0.0111 0.6151 20.1405 2.0601
SCFXM2 0.0378 0.0096 0.0230 0.0230 2.2007 47.7846 13.7650
SCFXM3 0.0738 0.0012 0.0327 0.0353 5.4403 48.2828 20.0830
SCORPION 0.0074 0.0093 0.0036 0.0061 0.2034 0.1740 0.2478
SCRS8 0.0287 0.0367 0.0113 0.0129 4.6556 20.3965 1.8168
SCSD1 0.0028 0.0290 0.0029 0.0028 0.5358 22.0673 18.6108
SCSD6 0.0096 0.0267 0.0052 0.0055 1.1599 51.5837 16.4151
SCTAP1 0.0095 0.0137 0.0050 0.0058 0.1897 1.4933 0.4739
SEBA 0.0181 0.0286 0.1551 0.1562 0.4987 1.6321 1.1513
SHARE1B 0.0048 0.0065 0.0026 0.0033 0.5948 16.6080 1.6061
SHARE2B 0.0011 0.0019 0.0018 0.0016 0.0530 0.7711 0.1031
SHELL 0.0189 0.0149 0.0135 0.0068 0.3994 1.3161 0.5080
SHIP04L 0.0118 0.0137 0.0141 0.0129 0.5411 0.5969 0.5449
SHIP04S 0.0105 0.0106 0.0086 0.0080 0.2664 0.3638 0.4333
SHIP08S 0.0242 0.0304 0.0145 0.0133 0.7836 1.0948 1.1876
SHIP12S 0.0549 0.0580 0.0182 0.0182 1.7979 2.4589 1.8187
STAIR 0.0240 0.0433 0.0408 0.0385 142.3757 9135.2192 452.4875
STANDATA 0.0017 0.0084 0.0127 0.0127 0.0367 0.3480 0.2864
STANDGUB 0.0017 0.0081 0.0132 0.0128 0.0333 0.3634 0.2937
STANDMPS 0.0071 0.0145 0.0241 0.0291 0.1290 0.7027 0.7777
STOCFOR1 0.0010 0.0017 0.0012 0.0018 0.0152 0.0432 0.0258
STOCFOR2 0.1720 0.5404 0.0384 0.0460 6.5906 2809.1620 94.5011
TUFF 0.0165 0.0192 0.0204 0.0279
VTP.BASE 0.0042 0.0046 0.0074 0.0055 0.1503 0.4712 0.1339
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A.2 Raw Gurobi Timings

Original Rescaled
Problem

MIPLIB problems

22433 0.0092 0.0094
23588 0.0044 0.0071
assign1-5-8 0.0137 0.0224
b-ball 0.0009 0.0009
beavma 0.0028 0.0039
blend2 0.0031 0.0050
bppc8-02 0.0023 0.0022
control30-3-2-3 0.0115 0.0188
dcmulti 0.0077 0.0061
ej 0.0004 0.0004
enlight11 0.0005 0.0005
enlight4 0.0005 0.0003
enlight8 0.0017 0.0016
enlight9 0.0004 0.0004
enlight hard 0.0004 0.0006
f2gap40400 0.0022 0.0021
fhnw-sq2 0.0066 0.0047
flugpl 0.0006 0.0004
flugplinf 0.0004 0.0005
g503inf 0.0030 0.0008
gen-ip002 0.0011 0.0010
gen-ip016 0.0009 0.0032
gen-ip021 0.0010 0.0011
gen-ip054 0.0008 0.0008
glass4 0.0013 0.0014
gr4x6 0.0007 0.0022
graphdraw-gemcutter 0.0111 0.0069
gt2 0.0007 0.0010
ic97 tension 0.0048 0.0021
k16x240b 0.0039 0.0035
mad 0.0011 0.0013
markshare1 0.0014 0.0005
markshare2 0.0011 0.0006
markshare 4 0 0.0004 0.0006
markshare 5 0 0.0005 0.0015
mas74 0.0017 0.0015
mas76 0.0017 0.0019
misc05inf 0.0033 0.0047
mod008inf 0.0006 0.0021
neos-1425699 0.0019 0.0007
neos-2624317-amur 0.0049 0.0084
neos-2626858-aoos 0.0149 0.0108
neos-2652786-brda 0.0041 0.0058
neos-2656603-coxs 0.0018 0.0031
neos-2657525-crna 0.0020 0.0099
neos-3046601-motu 0.0023 0.0018
neos-3046615-murg 0.0016 0.0018
neos-3072252-nete 0.0016 0.0021
neos-3610040-iskar 0.0064 0.0060
neos-3611447-jijia 0.0053 0.0107
neos-3611689-kaihu 0.0068 0.0066
neos-3754480-nidda 0.0127 0.0119
neos-5140963-mincio 0.0011 0.0012
neos-5192052-neckar 0.0008 0.0014
neos5 0.0045 0.0027
neos859080 0.0006 0.0007
nexp-50-20-1-1 0.0057 0.0045
noswot 0.0013 0.0018
opt1217 0.0038 0.0100
p0201 0.0016 0.0023
p2m2p1m1p0n100 0.0005 0.0006
pb-market-split8-70-4 0.0007 0.0008
pk1 0.0011 0.0012
ran12x21 0.0036 0.0086
ran13x13 0.0035 0.0029
rlp1 0.0047 0.0020
rout 0.0074 0.0095
sp150x300d 0.0032 0.0030
stein15inf 0.0005 0.0005
stein45inf 0.0037 0.0026
stein9inf 0.0005 0.0006
supportcase14 0.0039 0.0027
supportcase16 0.0019 0.0041
timtab1 0.0012 0.0010
timtab1CUTS 0.0046 0.0063

Netlib problems

25FV47 0.1550 0.2424
ADLITTLE 0.0013 0.0014
AFIRO 0.0005 0.0005
AGG 0.0047 0.0082
AGG2 0.0033 0.0095
AGG3 0.0038 0.0104
BANDM 0.0103 0.0177
BEACONFD 0.0039 0.0047
BLEND 0.0014 0.0020
BNL1 0.0363 0.0549

Continued in next column

Original Rescaled
Problem

BOEING1 0.0154 0.0159
BOEING2 0.0022 0.0042
BORE3D 0.0030 0.0033
BRANDY 0.0106 0.0084
CAPRI 0.0034 0.0093
DEGEN2 0.0164 0.0255
DEGEN3 0.1555 0.1922
E226 0.0091 0.0141
ETAMACRO 0.0127 0.0161
FFFFF800 0.0166 0.0151
FINNIS 0.0073
FIT1D 0.0066 0.0050
FIT1P 0.0325 0.0300
FORPLAN 0.0068 0.0060
GANGES 0.0138 0.0185
GFRD-PNC 0.0114 0.0119
GROW15 0.0685 0.0518
GROW22 0.1466 0.1174
GROW7 0.0101 0.0131
ISRAEL 0.0032 0.0051
KB2 0.0009 0.0007
LOTFI 0.0118 0.0111
MAROS 0.0651
MODSZK1 0.0048 0.0083
PEROLD 0.0754 0.1710
PILOT4 0.0422 0.0458
RECIPE 0.0009 0.0034
SC105 0.0019 0.0019
SC205 0.0046 0.0042
SC50A 0.0007 0.0012
SC50B 0.0007 0.0010
SCAGR25 0.0120 0.0184
SCAGR7 0.0026 0.0072
SCFXM1 0.0089 0.0133
SCFXM2 0.0187 0.0287
SCFXM3 0.0306 0.0637
SCORPION 0.0037 0.0071
SCRS8 0.0114 0.0151
SCSD1 0.0020 0.0064
SCSD6 0.0069 0.0199
SCTAP1 0.0044 0.0052
SEBA 0.0021 0.0023
SHARE1B 0.0027 0.0025
SHARE2B 0.0015 0.0019
SHELL 0.0112
SHIP04L 0.0075 0.0057
SHIP04S 0.0069 0.0041
SHIP08S 0.0094 0.0082
SHIP12S 0.0119 0.0137
STAIR 0.0254 0.0233
STANDATA 0.0036 0.0033
STANDGUB 0.0030 0.0033
STANDMPS 0.0072 0.0055
STOCFOR1 0.0055 0.0019
STOCFOR2 0.0816 0.0777
TUFF 0.0052 0.0076
VTP.BASE 0.0081 0.0070
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A.3 Raw SCIP Timings

Original/
non-exact

Rescaled/
non-exact

Original/
exact

Original
by powers
of 2/exact

Problem

MIPLIB problems

22433 0.0326 0.0383 0.2692 0.2269
23588 0.0177 0.0279 0.1995 0.1820
assign1-5-8 0.0557 0.0455 0.3081 0.2934
b-ball 0.0214 0.0151 0.0813 0.0764
beavma 0.0154 0.0147 0.1509 0.1588
blend2 0.0281 0.0207 0.1372 0.1473
bppc8-02 0.0214 0.0266 0.2270 0.2501
control30-3-2-3 0.0281 0.0659 0.2500 0.4868
dcmulti 0.0211 0.0224 0.2002 0.1992
ej 0.0006 0.0006 0.0947 0.0778
enlight11 0.0019 0.0020 0.0683 0.0752
enlight4 0.0007 0.0009 0.0573 0.0565
enlight8 0.0014 0.0014 0.0606 0.0613
enlight9 0.0016 0.0018 0.0625 0.0636
enlight hard 0.0021 0.0019 0.0640 0.0632
f2gap40400 0.0088 0.0130 0.1092 0.1121
fhnw-sq2 0.0270 0.0281 0.1509 0.1440
flugpl 0.0024 0.0028 0.0861 0.0674
flugplinf 0.0026 0.0025 0.0696 0.0679
g503inf 0.0029 0.0030 0.0739 0.0743
gen-ip002 0.0087 0.0094 0.1482 0.1498
gen-ip016 0.0043 0.0056 0.1417 0.1423
gen-ip021 0.0097 0.0095 0.1806 0.1552
gen-ip054 0.0050 0.0050
glass4 0.0317 0.0238 0.2836 1.5969
gr4x6 0.0026 0.0026 0.0740 0.0734
graphdraw-gemcutter 0.0119 0.0142 0.2594 0.2670
gt2 0.0052 0.0053 0.0843 0.0892
ic97 tension 0.0201 0.0218 0.1601 0.1558
k16x240b 0.0082 0.0085 0.1298 0.1349
mad 0.0301 0.0413 0.1485 0.1821
markshare1 0.0033 0.0037 0.0740 0.0744
markshare2 0.0038 0.0039 0.0784 0.0787
markshare 4 0 0.0026 0.0028 0.0706 0.0706
markshare 5 0 0.0029 0.0030 0.0717 0.0736
mas74 0.0155 0.0178 0.1365 0.1290
mas76 0.0143 0.0169 0.1083 0.1109
misc05inf 0.0363 0.0431 0.1820 0.3646
mod008inf 0.0088 0.0096 0.1212 0.1211
neos-1425699 0.0043 0.0044 0.0880 0.0880
neos-2624317-amur 0.0246 0.0253 0.1675 0.1843
neos-2626858-aoos 0.0252 0.0327 0.1715 0.1839
neos-2652786-brda 0.0183 0.0219 0.1612 0.1696
neos-2656603-coxs 0.0176 0.0183 0.1643 0.1691
neos-2657525-crna 0.0169 0.0221 0.1643 0.1806
neos-3046601-motu 0.0128 0.0155 0.1850 0.1787
neos-3046615-murg 0.0110 0.0128 0.1636 0.2261
neos-3072252-nete 0.0164 0.0187 0.3349 0.3090
neos-3610040-iskar 0.0161 0.0188 0.1664 0.1629
neos-3611447-jijia 0.0147 0.0185 0.1561 0.1571
neos-3611689-kaihu 0.0174 0.0192 0.1494 0.1519
neos-3754480-nidda 0.0211 0.0246 0.3072 0.3023
neos-5140963-mincio 0.0083 0.0096 0.1445 0.1370
neos-5192052-neckar 0.0067 0.0073 0.0936 0.0935
neos5 0.0106 0.0144 0.1327 0.1284
neos859080 0.0120 0.0153 0.1121 0.1125
nexp-50-20-1-1 0.0101 0.0144 0.1397 0.1352
noswot 0.0158 0.0110 0.1265 0.2786
opt1217 0.0176 0.0234 0.1559 0.1901
p0201 0.0191 0.0167 0.1211 0.1268
p2m2p1m1p0n100 0.0072 0.0086 0.0715 0.0714
pb-market-split8-70-4 0.0125 0.0106 0.0927 0.0933
pk1 0.0099 0.0155 0.0994 0.1030
ran12x21 0.0088 0.0109 0.1479 0.1432
ran13x13 0.0062 0.0068 0.1146 0.1129
rlp1 0.0535 0.0590 0.1254 0.1230
rout 0.0635 0.0724 0.3618 0.3723
sp150x300d 0.0513 0.0120 0.1451 0.1280
stein15inf 0.0074 0.0078 0.0735 0.0719
stein45inf 0.0162 0.0196 0.1333 0.1262
stein9inf 0.0067 0.0107 0.0682 0.0724
supportcase14 0.0123 0.0149 0.1154 0.1174
supportcase16 0.0106 0.0156 0.1157 0.1114
timtab1 0.0073 0.0085 0.1161 0.1085
timtab1CUTS 0.0211 0.0355 0.1860 0.1833
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Original/
non-exact

Rescaled/
non-exact

Original/
exact

Original
by powers
of 2/exact

Problem

Netlib problems

25FV47 0.7653 1.4841 1.5760 2.7314
ADLITTLE 0.0074 0.0080 0.0817 0.0993
AFIRO 0.0027 0.0031 0.0680 0.0742
AGG 0.0104 0.0183 0.1275 0.2569
AGG2 0.0185 0.0338 0.1971 0.2923
AGG3 0.0171 0.0075 0.1908 0.3777
BANDM 0.0275 0.0289 0.2778 0.2849
BEACONFD 0.0076 0.0120 0.1128 0.1253
BLEND 0.0069 0.0098 0.0929 0.1020
BNL1 0.0881 0.1489 0.4276 0.5704
BOEING1 0.0320 0.0483 0.1718 0.2549
BOEING2 0.0076 0.0175 0.1129 0.1290
BORE3D 0.0085 0.0025 0.1138 0.1191
BRANDY 0.0296 0.1725 0.1707
CAPRI 0.0178 0.0217 0.1837
DEGEN2 0.0612 0.0745 0.2351 0.2632
DEGEN3 1.0368 0.9119 1.6931 1.6204
E226 0.0376 0.0567 0.1928 0.2454
ETAMACRO 0.0353 0.0325 0.1989 0.2335
FFFFF800 0.1420 0.1833 0.4280 0.4865
FINNIS 0.0323 0.0132 0.1852 0.0815
FIT1D 0.1212 0.0915 0.3790 0.4752
FIT1P 0.2504 0.3000 1.9414 1.3051
FORPLAN 0.0303 0.0561 0.3448 0.2688
GANGES 0.0646 0.0861 0.4241 0.4229
GFRD-PNC 0.0287 0.0309 0.3315 0.3649
GROW15 0.0822 0.1065 1.0074 2.4927
GROW22 0.2204 0.2427 1.2943 5.4675
GROW7 0.0280 0.0396 0.6239 0.6402
ISRAEL 0.0166 0.0375 0.1356 0.2086
KB2 0.0039 0.0043 0.0756 0.0820
LOTFI 0.0097 0.0123 0.1291 0.1496
MAROS 0.1011 0.0104 0.7263 0.2725
MODSZK1 0.0327 0.0432
PEROLD 0.3250 0.8875 1.2975 2.8978
PILOT4 0.1260 0.2454 1.0170 1.3846
RECIPE 0.0084 0.0216 0.0802 0.0819
SC105 0.0049 0.0051 0.0868 0.0933
SC205 0.0067 0.0093 0.1138 0.1353
SC50A 0.0028 0.0041 0.0748 0.0760
SC50B 0.0028 0.0032 0.0732 0.0738
SCAGR25 0.0167 0.0214 0.2037 0.2445
SCAGR7 0.0057 0.0067 0.0964 0.0997
SCFXM1 0.0291 0.0488 0.2231 0.3018
SCFXM2 0.0632 0.0059 0.4573 1.0126
SCFXM3 0.1045 0.0080 0.7879 0.2473
SCORPION 0.0097 0.0066 0.1141 0.1367
SCRS8 0.0433 0.0651 0.3802 0.4198
SCSD1 0.0210 0.0263 0.3105 0.5913
SCSD6 0.0463 0.0644 0.6068 1.3746
SCTAP1 0.0179 0.0264 0.1928 0.2617
SEBA 0.0112 0.0178 0.1799 0.1921
SHARE1B 0.0135 0.0204 0.1271 0.1035
SHARE2B 0.0077 0.0094 0.0940 0.1201
SHELL 0.0337 0.0446 0.4133 0.3806
SHIP04L 0.0477 0.0514 0.9875 0.6637
SHIP04S 0.0315 0.0318 0.5239 0.3887
SHIP08S 0.0449 0.0558 0.8788 0.6103
SHIP12S 0.0502 0.0631 1.3144 0.7179
STAIR 0.0565 0.0998 0.9555 1.6282
STANDATA 0.0179 0.0308 0.1655 0.2878
STANDGUB 0.0252 0.0247 0.1912 0.3172
STANDMPS 0.0252 0.0328 0.2319 0.4484
STOCFOR1 0.0058 0.0070 0.0867 0.1039
STOCFOR2 0.1105 0.1617 0.4977 1.4164
TUFF 0.0440 0.0916 0.2675 0.2850
VTP.BASE 0.0052 0.0074 0.0857 0.0938
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