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Introduction

Inflection Inflection is a process of word formation where a base word form
is modified to express grammatical categories. Dealing inflection in some
languages is quite simple: for example in English the nouns have the same
form in all cases and only change usually by adding “-s” when changing from
singular number to plural. Nevertheless, in morphologically rich languages
such as Czech, the inflection is much more profound: the nouns usually have
up to 7 distinct forms in singular and 7 in plural.

Morphological inflection in the terms of natural language generation is
the task of generating the inflected form subject to the lemma (base form)
and the morphological information about the desired form.

Ready-to-use systems The ready-to-use systems for Czech inflection
are either dictionary-based or rule-based. Dictionary-based systems provide
perfect inflection for the words present in their dictionary but no inflection
for the other words. An example is MorphoDiTa1 [Straková et al., 2014],
which contains a very large morphological dictionary. On the other hand,
rule-based systems2 are able to inflect any given word and therefore could be
used as a back-off for out-of-vocabulary words (OOV) when using a dictionary-
based system. However, they have relatively low accuracy due to insufficient
coverage of the hand-written rules they consist of.

Academic work In the academic world, the inflection has been extensively
explored in the recent years. Since 2016, SIGMORPHON has held an annual
shared task on morphological inflection, including datasets for up to 103
languages [Cotterell et al., 2016; Cotterell et al., 2017; Cotterell et al., 2018;
McCarthy et al., 2019; Vylomova et al., 2020; Pimentel et al., 2021; Kodner
et al., 2022]. The increasingly prevalent approach is the employment of the
sequence-to-sequence (seq2seq) neural network architectures [Sutskever et al.,
2014] based on LSTM [Hochreiter and Schmidhuber, 1997] or the Transformer

1https://lindat.mff.cuni.cz/services/morphodita/
2e.g. https://sklonuj.cz/
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[Vaswani et al., 2017], using the encoded lemma and morphological information
about the inflected form as the input for the network, and the inflected form
itself as the output. Especially the Transformer-based systems seemed to
almost completely master the task, achieving outstanding results, especially
when the training data was plentiful [Wu et al., 2020; Pimentel et al., 2021].
However, it has been shown that the performance was artificially inflated by
the presence of training lemmata in the test dataset, and that the systems
achieve rather poor results when tested on previously unseen inputs (OOV
words) [Liu and Hulden, 2021; Goldman et al., 2022]. The last year’s iteration
of the shared task [Kodner et al., 2022] evaluated the performance of submitted
systems in the OOV conditions, but Czech dataset was not included.

Our approach We produce a large dataset of Czech inflected nouns3

aimed at inflection evaluation on unseen words. The dataset is produced by
automated preprocessing, filtering and splitting of the pre-existing MorfFlex
dataset [Hajič et al., 2020] into pair-wise lemma-disjoint training, development
and test sets. Moreover, we manually create a small dataset of real-world
OOV words (neologisms).

We develop three different systems, all data-driven. The first one is the
retrograde model, which is dictionary-based and adapts the approach of
k-nearest-neighbors algorithm: when given a lemma, search the database for
a word that is most similar (has the longest common suffix) and inflect the
lemma according to it. The second and the third one follow the standard
neural approach using sequence-to-sequence architecture based on either
LSTM [Hochreiter and Schmidhuber, 1997] or Transformer [Vaswani et al.,
2017].

We adapt the systems to our OOV setting and extensively tune them.
Then we evaluate them and compare to one existing ready-to-use system,
and to SIGMORPHON shared task baselines [Pimentel et al., 2021] on our
datasets. Our systems either outperform the other evaluated systems or
perform comparably.

We train and evaluate one of our best setups on SIGMORPHON 2022
shared task data (18 languages, Czech not included) [Kodner et al., 2022] in
the large training data condition, and achieve either competitive or better
results in the OOV evaluation condition (feature overlap) compared to the
submitted systems.

Finally we address the lack of a reliable morpho-guesser for Czech by
3For simplicity we focus on nouns only. However, we hope that the systems we develop

and the approach we adapt is extendable to other parts of speech.
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releasing one of our best systems as a ready-to-use python library4.

Main contributions The main contributions of this work are as follows:

• building large train-dev-test split of an existing dataset for out-of-
vocabulary conditions for Czech nouns

• manually creating small real-world out-of-vocabulary dataset
• adapting the standard-architecture models to our setting and extensively

tuning them
• evaluation of established systems on our dataset and comparison with

our models
• achieving state-of-the-art results in the OOV evaluation condition in

6 out of 16 development languages from SIGMORPHON 2022 shared
task in large data condition

• releasing a ready-to-use morphological guesser for Czech nouns with
state-of-the-art performance, that could work as a complementary sys-
tem for MorphoDiTa [Straková et al., 2014] (especially once extended
to other parts of speech).

Contents In Chapter 1 we introduce the necessary concepts from the
linguistic background and define the task. In Chapter 2 we describe the
basics of neural network architectures, list the ready-to-use inflection systems
for Czech and summarize the academic approaches to the task.Chapter 3
describes the datasets and the process of their creation. In Chapter 4 we list
the baseline systems we use for comparison and the 2 systems we develop: the
retrograde model and the seq2seq model. Chapter 5 defines the evaluation
setup and reports all relevant experiments we conducted. In Section 5.5 we
compare all the systems on our test datasets and in Section 5.6 we report
our results on the SIGMORPHON’s 2022 dataset. Chapter 6 describes the
structure of the attached repository and provides a detailed description of
the most important parts of the code. Finally in Chapter 7 we present the
inflection library and describe how to install and use it.

4https://github.com/tomsouri/cz-inflect/releases/tag/BP_official

6

https://github.com/tomsouri/cz-inflect/releases/tag/BP_official


Chapter 1

Task and background

1.1 Linguistic Background
To be able to talk about the task of inflection properly, we first describe what
inflection is and remind the most important terms. Since this work deals
with Czech language, we usually translate the terms to Czech, introducing
the corresponding variants in italics.

1.1.1 Nouns and their morphological categories
Noun is the part of speech that includes words which refer to people, places,
things, ideas, or concepts. Nouns may act as subjects of the verb, objects of the
verb, indirect object of the verb, or object of a preposition (or postposition)1.

Examples of nouns in Czech are žena (woman), muž (man), hrad (castle)
or moře (sea).

The most important morphological (grammatical) categories of nouns are
gender, number and case. In Czech, gender (rod) can be feminine (ženský),
masculine animate (mužský životný), masculine inanimate (mužský neživotný)
or neuter (střední ). Number (číslo) can be singular (jednotné) or plural
(množné).

Case (pád) is a grammatical category determined by the syntactic or
semantic function of the noun2. There are seven different cases in Czech,
usually referred to by its number (1 to 7) or by so called case question (pádová
otázka) that can be used to ask and get answer in the corresponding case.

The list of all cases in Czech, together with corresponding case questions
and with examples in singular and plural is in Table 1.1.

1https://glossary.sil.org/term/noun
2https://glossary.sil.org/term/case
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Case Case question Singular Plural

1 Nominative
Nominativ

who? what?
kdo? co?

a man
muž

men
muži

2 Genitive
Genitiv

whom? of what?
koho? čeho?

(of) a man
muže

(of) men
mužů

3 Dative
Dativ

to whom/what?
komu? čemu?

(to) a man
muži

(to) men
mužům

4 Accusative
Akuzativ

whom/what?
koho? co?

(I see) a man
muže

(I see) men
muže

5 Vocative
Vokativ

addressing
oslovení

man!
muži

men!
muži

6 Locative
Lokál

about whom/what?
(o) kom? (o) čem?

(about) a man
muži

(about) men
mužích

7 Instrumental
Instrumentál

with whom/what?
(s) kým? (s) čím?

(with) a man
mužem

with men
muži

Table 1.1 Case in Czech with corresponding case number, case question and examples
in singular and plural. We can notice that in English, the word remains the same in all
cases in the same number, changing only from singular to plural, while in Czech the
word form is different in different cases.

Negation

Negation is sometimes considered as a separate morphological category in
Czech. This is probably caused by the fact that the negative variant of a
word is formed by simply adding the prefix “ne-” (e.g. pohodlí (comfort) and
nepohodlí (discomfort)).

The inflected forms of the negative variant of a lemma are considered as
inflected forms of the original lemma, and the original lemma has 14 negative
and 14 affirmative forms.

1.1.2 Inflection
Inflection is a process of word formation where a base word form is modified
to express grammatical categories. In Czech it is usually expressed by adding
or changing suffixes.

A simple example of inflection in English is forming a plural form usually by
adding suffix -s/-es to the singular form (e.g. robot/robots, process/processes).

While English nouns remain the same when changing the case, Czech
nouns change, leading to the total of 14 forms of one noun (7 cases in singular,
7 in plural), most of which are usually distinct.
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Some nouns have 7 forms only: pluralia tantum, having plural only (e.g.
kalhoty (trousers), nůžky (scissors) or geographical proper nouns, such as
Pardubice or České Budějovice), and some other geographical proper nouns
that do not form a plural (e.g. Rovensko).

Some nouns are inflexible, which means that they do not change the form
when changing the case and number. Those are usually loan words (e.g. filé
(fillet) or žervé (cream cheese)).

Inflection of nouns (and also adjectives, pronouns, numerals) can be called
declension, while inflection of verbs is called conjugation.

Czech term for inflection (ohýbání) is not used much, usually we speak
about declension (skloňování) and conjugation (časování). However, in En-
glish it is more common to speak about inflection in general, therefore we
will refer to noun declension as to inflection.

1.1.3 Lemma, Tag, Inflected form, Paradigm
In inflection we usually deal with a triple lemma, tag, inflected form.

Lemma (pl. lemmata, although the form lemmas has been used in the
recent years extensively), sometimes called citation form, is the base form
of a word, which is then modified by inflection. In terms of morphological
categories, lemma is usually equal to its nominative case in singular (or to its
nominative case in plural, for pluralia tantum).

Tag represents a bundle of morpho-syntactic features. A tag can be
represented in several ways. An example of a tag can be S3, which is a tag
representing a word form in singular (S) in dative case (3).

Inflected form or word form (also wordform) is the word (token) created
by inflection. Usually we want it to be exactly determined by a lemma and
tag.

However, in Czech there are lemmata that have multiple (usually 2)
different forms for a given tag, e.g. masculine animate nouns that belong to
inflectional paradigm pán (man/master), muž (man) or soudce (judge). For
dative (3rd case) and locative (6th case) in singular they have two different
forms, both equally correct (pánovi/pánu, muži/mužovi, soudci/soudcovi).

Paradigm table is the full set of inflected forms for a lemma. Each paradigm
cell is associated with a specific morphological feature bundle. An example
of a complete paradigm table is in Table 1.1, where the lemma is muž (a
man) and the considered morphological features are number and case. For
simplicity, we omitted the other possible different forms mužové, mužovi
(described in the previous paragraph) in the table.

When a lemma inflects the same as some other lemma, we say that the
other lemma is a paradigm for the lemma. Children at the primary school

9



learn some typical paradigms and how to inflect them and then apply the
knowledge to inflect other, previously unseen words, just by identifying to
which of the known paradigms the word belongs. An example of paradigm
taught at the primary school is hrad (castle). If we know the forms of hrad
(hrad, hradu, hradu, hrad, hrad, hradu, hradem, . . . ) and we know that hrad
is the inflectional paradigm for dub (oak), we can create the forms of dub by
adapting the suffixes of the forms of hrad: dub, dubu, dubu, dub, dub, dubu,
dubem, . . .

1.1.4 Homonyms
Homonyms in general are words that are written the same but have different
meaning. When the difference in meaning causes that two lemmata that
are equal in their base form have different paradigm tables, we talk about
morphological homonyms.

In our work we do not consider semantic-only homonyms (those that have
different meaning but their paradigm tables are equal, e.g. kolej (track/hall
of residence)) as different lemmata. When we mention homonyms in our
work, we mean the morphological homonyms. An example of morphological
homonyms are some words in masculine gender that can be both animate
and inanimate and they are the same in the base form, such as vyhledávač.
This can be both a search engine (inanimate) or a spotter/seeker (animate;
a person that searches something). Another example would be word rada
which can be either of masculine (councillor) or feminine (advice) gender.

1.1.5 OOV words
Out-of-vocabulary words (OOV words, unseen or previously unseen lemmata)
are generally novel lemmata, words seen for the first time. When we have
a system performing some language task, OOV words are the words not
present in the data that were used for training and adjusting such system.
Therefore the fact whether a word is OOV or not depends on the used data.
We can talk about general OOV words, words that are expected to be unseen.
Some common OOV words can be neologisms, proper nouns (e.g. names
or surnames), misspelled words or (in some languages) words with removed
diacritics.
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HRAD LINGEBRA
hrad hrady lingebra lingebry
hradu hradů lingebry lingeber
hradu hradům lingebře lingebrám

hrad −→ hrad hrady lingebra −→ lingebru lingebry
hrade hrady lingebro lingebry
hradu hradech lingebře lingebrách
hradem hrady lingebrou lingebrami

Table 1.2 The task: for a given lemma, generate all inflected forms (whole paradigm
table). An example for a standard paradigm hrad (castle) and an OOV word lingebra
(short for lineární algebra, linear algebra). Left column of the each paradigm table
corresponds to singular, right column to plural.

1.2 Task
This work aims at the task of morphological inflection, sometimes called
morphological generation, inflection generation or morphological inflection
generation. It is a task from the field of natural language generation.

We specifically focus on inflection of OOV nouns in Czech.
Our inflection task therefore is: given a previously unseen Czech noun

lemma, generate 14 forms corresponding to 7 different cases and 2 different
numbers (see Table 1.2 for an example).

This is a special variant of the paradigm table completion problem
(paradigm cell filling problem), which is a task of completing an incom-
plete inflection paradigm table. In our conditions, incompleteness means that
only the base form (the lemma itself) is present. There are 14 desired forms,
because Czech nouns have usually 7 forms both in singular and plural.

A broader task approached by this work is producing a ready-to-use system
capable of inflecting previously unseen lemmata of Czech nouns. To achieve
the best possible performance, we do not restrict the size of data used for
building (training and adjusting) the system.

We want the system to predict correctly not only the individual forms,
but also the whole paradigm tables, and we evaluate it accordingly.

Consequently, the data provided for training should consist of whole
paradigm tables, as well as the data for evaluating the system (see Figure
1.1).

The system should be as data-driven as possible. We would like to
omit hand written rules completely. In consequence, the system should be
theoretically extendable to other languages.
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Figure 1.1 The task during training and evaluation. Left: in the training condition,
we have a lot of complete paradigm tables. Right: in the test condition, we have only
the lemma itself and the system has to produce all inflected forms. (figure adapted
from Cotterell et al. [2017])

Since the lemma is given without any context and additional linguistic
information, our system will not be capable of correctly dealing homonyms.

For simplicity we only consider case and number as the relevant morpho-
logical categories. We do not consider negation as a morphological category
and we treat lemma and its negated variant as two different lemmata.

Also for simplicity we always want to generate 14 forms, one form per one
paradigm cell, even for lemmata that have several different forms for some
cells that are equally correct, and also for lemmata that have some stylistic
variants for some paradigm cells.

We do not want the system to decide whether a form exists (e.g. non-
existent singular forms for pluralia tantum). We rather want it to predict 14
forms for every given lemma.
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Chapter 2

Related work

In this chapter we report important topics from related work: neural network
architectures, ready-to-use inflection systems, and academic approaches to
inflection.

2.1 Neural network architectures
In this section we describe the basics of neural network architectures that are
broadly used for morphological inflection. The following subsections about
neural networks, recurrent neural networks, seq2seq models and transformers
were automatically generated by chatGPT1 and we post-edited them2.

2.1.1 Neural networks in general
Neural networks are an important class of machine learning models. They
consist of interconnected layers of artificial neurons (units), organized into
input, hidden, and output layers.

The training process of neural networks involves two main stages: forward
propagation and back-propagation. During forward propagation, the input
data is fed through the network, and each neuron performs a weighted sum of
its inputs, followed by the application of an activation function. This process
continues layer by layer until the output layer produces a prediction. The
predicted output is then compared to the ground truth, and the difference
(loss) is calculated.

1ChatGPT May 24 Version
2The original conversation is included in the attachment, and also available at this link:

https://chat.openai.com/share/76fcc235-8830-4f3d-9328-5888874abf52
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The goal of training is to minimize the loss by adjusting the network
weights, while processing the training data. This is achieved using an opti-
mization algorithm, such as stochastic gradient descent (SGD) [Ruder, 2016]
or Adam [Kingma and Ba, 2017], which iteratively modifies the parameters
to minimize the loss based on the gradient of the loss function with respect
to the network’s parameters.

Several factors play a crucial role in training neural networks. The batch
size determines the number of training samples processed together before
updating the parameters. The number of training steps refers to the total
number processed batches. An epoch represents a complete pass through
the entire training dataset. The number of epochs can be calculated as the
number of train steps multiplied by the ratio of batch size and the size of the
training dataset (see equation (2.1)).

# epochs = (batch size) · (train steps)
train size (2.1)

Model selection is a technique of choosing the best-performing model from
a set of trained models (checkpoints) that are evaluated on a development
dataset.

2.1.2 Recurrent neural networks (RNNs)
Recurrent neural networks (RNNs) are a type of neural networks that excel
in processing sequential data, such as natural language. Unlike traditional
feedforward neural networks, RNNs have connections between neurons that
form directed cycles, allowing them to retain information about previous
inputs.

The most important RNN architectures are Long Short-Term Memory
(LSTM) [Hochreiter and Schmidhuber, 1997] and Gated Recurrent Unit (GRU)
[Chung et al., 2014], both able to learn long-term dependencies. GRU is faster
than LSTM due to simpler architecture. However, LSTM outperforms it on
large datasets with short sequences [Yang et al., 2020].

2.1.3 RNN-based seq2seq models with attention
Sequence-to-Sequence (seq2seq) models [Sutskever et al., 2014] in general
have the ability to process variable-length input sequences and generate
corresponding output sequences of different lengths.

The architecture of RNN-based seq2seq model with attention (see Fig-
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Figure 2.1 Schema of RNN-based seq2seq architecture with attention: encoder with
single bidirectional layer and decoder with a single layer. Clf is the softmax classifier
used to obtain the output tokens from the network hidden state.

ure 2.13) consists of an encoder and a decoder, both built using RNNs. The
encoder (left part of the figure) processes the input sequence (x1 up to xN

in the figure), represented as a sequence of character embeddings (computed
by the embedding matrix, “E” box in the figure), to generate a sequence of
context vectors, one for every element of the input sequence (green arrows in
the figure).

The decoder (right part of the figure) uses attention mechanism [Luong
et al., 2015] (violet “attention” box in the figure) to focus on different parts
of the input sequence (context vectors) dynamically, attending to the most
relevant information for each output token, and generates the output sequence
step by step (y1, y2 up to end-of-sequence (EOS) token in the figure). At each
time step, the decoder’s hidden state is updated based on the previous hidden
state (left-to-right red arrows), the attended context vectors (violet arrows),
and the previously generated output token (embedded by the embedding
matrix - the “E” box).

Embeddings are dense vector representations of the input tokens (words or
characters) that capture semantic and syntactic properties. They are typically
learned jointly with the model during the training process. In case that the
source and target vocabularies do not differ much, it is possible to use shared
embeddings between the encoder and the decoder (in the schema in Figure
2.1 it would mean that the “E” box in the encoder part is the same as in the
decoder part).

3https://ufal.mff.cuni.cz/~straka/courses/npfl114/2122/slides/?09,
slide 11
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Figure 2.2 Transformer architecture [Vaswani et al., 2017]

2.1.4 Transformer
The Transformer [Vaswani et al., 2017] is a special type of seq2seq model.
Unlike RNN-based seq2seq models, the Transformer relies primarily on self-
attention mechanisms, eliminating the need for recurrent connections and
allowing for parallel processing of input sequences.

The core components of the Transformer architecture are the self-attention
mechanism and the feed-forward neural network layers, organized into an
encoder and a decoder.

The self-attention mechanism allows the model to weigh the importance of
different positions in the input sequence when generating each output token.
It enables the model to capture dependencies between all positions in the
sequence simultaneously, effectively modeling long-range dependencies.

A schema of the architecture is in Figure 2.2. The model has several
important hyperparameters:

• The number of layers (N in the figure) - determines the depth of the
model and its capacity to capture complex relationships.
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• The hidden layer size - the dimensionality of the model’s hidden repre-
sentations.

• Attention heads and their count - Attention heads allow the model to
focus on different aspects or subspaces of the input sequence. Increasing
their count improves the model’s ability to capture diverse dependencies.
(see Multi-Head Attention in the figure)

• The size of the feed-forward layer - determines the dimensionality of the
intermediate representation in the Transformer’s feed-forward neural
networks. (see Feed Forward in the figure)

• The embedding vector size - determines the dimensionality of the input
token embeddings. (see Input Embedding in the figure)

• Positional encoding - encodings added to the input embeddings, provid-
ing the model with information about the order of the tokens, allowing
the Transformer to capture the sequential nature of the input sequence.
(see Positional Encoding in the figure)

• Dropout - is a regularization technique. It randomly sets a fraction
(based on the dropout parameter) of the activations to zero during train-
ing, which encourages the model to learn more robust representations.

• Attention dropout - applying dropout to the attention scores during
self-attention calculations. It helps prevent attention from focusing too
strongly on specific positions, promoting more diverse and balanced
attention patterns.

For further information about how the Transformer works please refer to
Vaswani et al. [2017].

2.2 Inflection systems
There are generally two types of inflection systems: (i) ready-to-use sys-
tems, possibly publicly available on web, accessible to general public, and
(ii) experimental systems, pushing the limits of morphological inflection.

In the following sections we review both types. We report the linguistic
module of ASIMUT information retrieval system [Králíková and Panevová,
1990] as a special case, because it had been a ready-to-use system, yet is no
longer available for usage.
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2.2.1 Ready-to-use systems
There are several ready-to-use inflection systems for Czech available on web.

We divide them according to the main approach to inflection they take,
into rule-based and dictionary-based systems.

Rule-based systems

• Sklonuj.cz4 - we use it as a baseline for comparison

• Ucitel.net5

• Aztekium.pl6

Based on the information provided by the web maintainers (we asked
them by email) we can conclude that all these systems work mostly the same:
they explicitly list the ending segments of lemmata together with ending
segments of corresponding forms, trying not to rely on any database. To be
able to correctly inflect common words that would be inflected incorrectly,
they include a list of exceptions with their complete paradigm tables.

If a lemma is not present in the exception database, the guesser part of
the system matches the lemma with a specific paradigm based on the ending
segment, and generates forms according to the paradigm. Thanks to the
guesser they can inflect any given word. But on the other hand, the lists of
exceptions are usually too limited, and the classification to paradigms too
rough, resulting in relatively low accuracy of the systems. Moreover, they
are all focused on inflection of nouns, adjectives, pronouns and numerals, but
completely omit inflection of verbs, which we believe is because the paradigm
tables of Czech verbs are completely different and much larger.

Dictionary-based systems

• NLP services of Masaryk University7 [Šmerk and Rychlý, 2009] - use a
morphological dictionary (approx. 3.4 million lemma-tag-form entries)

• MorphoDiTa8 [Straková et al., 2014] is a morphological analyzer, mor-
phological inflection generator, tagger and tokenizer with state-of-the-art
results for Czech. Its generation part is based on a large morphological

4https://sklonuj.cz/, Czech only
5https://www.ucitel.net/online-nastroje/sklonovani, Czech only
6http://aztekium.pl/sklonovani, Czech only
7https://nlp.fi.muni.cz/languageservices/#gen
8https://lindat.mff.cuni.cz/services/morphodita/

18

https://sklonuj.cz/
https://www.ucitel.net/online-nastroje/sklonovani
http://aztekium.pl/sklonovani
https://nlp.fi.muni.cz/languageservices/#gen
https://lindat.mff.cuni.cz/services/morphodita/


dictionary MorfFlex [Hajič et al., 2020] (approx. 125 million lemma-tag-
form entries), and therefore covers significantly more wordforms than
the previous system. However, it also does not contain any guesser for
OOV words.

Compared to rule-based systems, dictionary-based systems implement
only the list of exceptions, completely missing the guesser part. They focus on
having extensive coverage of words, and on effective storing of the dictionary
together with fast search in it.

In contrast to the listed rule-based systems, they also provide inflection of
verbs.

Nevertheless, they miss the guesser part - they perform perfect inflection
of words present in the dictionary, but for unseen lemmata they do not do
anything.

2.2.2 ASIMUT - inflection in Czech
One of the very early systems addressing automatic inflection specifically in
Czech was ASIMUT system [Králíková and Panevová, 1990]. It focused on
information retrieval in Czech documents. The authors introduced a linguistic
module for inflection (of nouns, adjectives, pronouns, numerals and verbs in
Czech), which allowed to search for occurrences of all forms of a given lemma,
without the need of explicit listing of the forms.

The main concept is similar to that of rule-based ready-to-use systems:
based on the ending segment of lemma decide how the word inflects. They
defined list of abstract paradigms (tables of changing suffixes) and developed
a sophisticated algorithm that would determine the specific paradigm for a
given lemma. Moreover, it would generate all its possible stems and assign
one of them to every paradigm cell. Finally, it would combine the stems
with the suffixes from the assigned abstract paradigm table to produce the
inflected forms. Unlike the listed rule-based systems, they were also able to
inflect verbs.

They utilized a retrograde dictionary [Slavíčková, 1975] to define the
decision rules of the algorithm and to conclude whether a rule is specific
enough or needs to be refined to be able to unambiguously determine the
paradigm for all words. For example, they checked that “-ý” as the ending
segment of a lemma “is so unambigous that all the 14,000 words having
this ending and included in the retrograde dictionary of Slavíčková [1975],
with the single exception of úterý (Tuesday), belong to a single declensional
paradigm (it is the ending of the “hard” adjectives such as mladý (young), of
substantivized adjectives such as vrátný (janitor), and of adjectival pronouns
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and numerals, such as který (which), nějaký (some) or druhý (second))”
[Králíková and Panevová, 1990, pp. 18].

In addition, they developed a variant for text without diacritics, yet facing
much more challenges due to highly increased amount of ambiguities of ending
segments.

Although this inflectional module improved the performance of the in-
formation retrieval system a lot by eliminating the necessity of listing all
the forms of a lemma by the user, it has several drawbacks: it is not always
possible to unambiguously determine the paradigm; exceptions must be added
because of the small scope of the retrograde dictionary; too coarse classifi-
cation (too little paradigms); does not work as reliably for verbs (too much
ambiguity of end segments of base forms of verbs).

2.2.3 Experimental systems
In this section we summarize the most relevant academic approaches to the
task of inflection, in particular the systems competing in SIGMORPHON
shared tasks.

Early approaches

The early approaches to automatic inflection generation were very diverse.
Some of them focused on extracting transformation rules and learning a
statistical or machine learning model to decide which rules apply.

Dušek and Jurčíček [2013] proposed a method for statistical morphological
generation aimed at robustness to unseen inputs. They utilize lemma-form
edit scripts based on the Levenshtein string distance metric [Levenshtein,
1965]. They extract the edit scripts from the training data and train a multi-
class logistic regression classifier to predict the edit script for a given lemma
and features. They treat separately changes at the beginning of the word
and changes in the stem or at the end of the word. They evaluate the system
on six languages included in the CoNLL 2009 Shared Task data sets [Hajič
et al., 2009], including Czech. These are just tokenized texts, and therefore
contain a lot of inflexible words (adverbs, participle, conjunctions, and also
punctuation). They report the performance not only on the whole evaluation
set for each language, but also on a subset containing forms unseen in the
train set (OOV words), to be able to measure the robustness of the system
to unseen inputs. However, they do not report the performance on unseen
lemmata. They report a significant improvement compared to a dictionary
baseline (which simply remembers the train set and outputs the lemma itself
for forms unseen in the train data).Therefore they conclude that their system
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is beneficial - at least as a back-off for unseen forms - even if a large-coverage
morphological dictionary is available.

Durrett and DeNero [2013] solve a slightly different task, whole paradigm
table prediction. They automatically acquire orthographic transformation
rules of paradigms from Wiktionary data9 (complete paradigm tables) and
train a discriminative sequence model to apply the transformation rules cor-
rectly to unseen base forms. They evaluate the system on held-out Wiktionary
data (complete paradigm tables, in this case unseen lemmata), reporting re-
sults for three languages and two parts of speech, obtaining satisfying results,
concluding that they built a model that can be used in any language where a
substantial number of example inflection tables is available.

The Rise of RNNs

Faruqui et al. [2016] were one of the first to try to adapt the RNN encoder-
decoder architecture to the task of inflection, inspired by the great success
of that architecture in machine translation. They feed the encoder with
individual characters of the input lemma to encode it into a vector, and then
decode the vector one character at a time to obtain the inflected form. They
tried two different settings: (1) train an individual encoder-decoder for each
target tag, (2) train a single encoder for all input lemmata, and then train
an individual decoder for each target tag. They report evaluation on several
languages, obtaining better or comparable results to previous state-of-the-art
systems.

In 2016, the first shared task on morphological inflection was organized
[Cotterell et al., 2016] and started a sequence of SIGMORPHON inflection
Shared tasks. They included 3 subtasks, one focused on general task of
inflection (given lemma and tag, produce the form) and the other two on
reinflection (given a form, produce another form). Czech was not included in
the 10 languages covered by this iteration of shared task. The best performing
non-neural system [Sorokin, 2016] extracted the complete set of abstract
paradigms and reduces the problem to multi-way classification. Nevertheless,
RNN-based neural systems were the clear winner of the task, especially in
high data conditions. It was shown that pre-extracting edit operations is not
likely to achieve top-level performance.

Aharoni et al. [2016] introduced a method to bias the seq2seq model to
copy individual characters (motivated by the fact that different forms in a
paradigm table usually share most of the characters), making it easier to
generalize, which was especially important when working with small datasets.

9http://en.wiktionary.org
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They achieved promising results, taking the 2.-3. place in the shared task.
The all-around best performing system in the shared task was Kann and

Schütze [2016]. In contrast to Faruqui et al. [2016], they train a single encoder-
decoder for all target tags. More specifically, they use the bidirectional-RNN
encoder-decoder with attention [Bahdanau et al., 2016]. To allow the usage of
a single encoder-decoder for all tags, they concatenate the target tag symbols
and the source lemma characters to obtain the input for the encoder. The
target characters are produced one-by-one by the decoder. They also make use
of special tokens to mark the start and the end of the sequence (both in source
and in target). They perform only a few experiments for hyperparameter
tuning (hidden layer size, embedding size and the way of initialization) and
to compare different input representations. An improved system [Kann and
Schütze, 2016] adds an automatic correction method for the outputs based
on edit trees.

The next iteration of the shared task [Cotterell et al., 2017] included
two subtasks: the general inflection task, and paradigm table completion.
Almost all participants used GRU or LSTM with attention, with the common
strategy of feeding in the input lemma character by character, along with
the morphological subtags of the desired form. The systems were evaluated
on 52 languages including Czech, and in three different data conditions (low,
medium, high). The results confirmed that the encoder-decoder architecture
performs strongly when the training data is plentiful. Kann and Schütze
[2017] and Bergmanis et al. [2017], both based on the 2016’s winning system
[Kann and Schütze, 2016] and adding some data augmentation methods, were
amongst the best performing systems for both the tasks and all languages.
Kann and Schütze [2017] achieved especially good results in the task of
paradigm completion. An alternative approach [Zhou and Neubig, 2017]
made use of additional unannotated data utilizing the multi-space variational
encoder-decoder.

The 2018’s iteration of the shared task [Cotterell et al., 2018] introduced
data from 103 languages, including Czech. Some of the competing systems
focused on the lower data condition, in which the encoder-decoder models are
known to perform worse due to data sparsity. The winner in that conditions
made use of sequences of edit-operations, and learned to predict them using
RNNs [Makarov and Clematide, 2018]. Some other systems reused the
successful RNN encoder-decoder approach from previous years, improving its
performance by creating artificial training data to bias the model towards
copying.

The 2019’s iteration of the shared task [McCarthy et al., 2019] was
quite different, focusing on cross-lingual transfer to perform inflection in
low-resource languages, and to the task of complete morphological tagging
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of a sentence. Some of the approaches utilized in the task were again RNN
encoder-decoder (with attention) and learning edit actions.

The Rise of Transformers

Although the Transformer [Vaswani et al., 2017] had become a popular
architecture for sequence-to-sequence problems shortly after being introduced,
outperforming RNN-based seq2seq models in various word-level NLP tasks
(most significantly, in neural machine translation), the first work successfully
applying it on the task of morphological inflection was Wu et al. [2020],
reporting state-of-the-art results on the SIGMORPHON shared task data
from 2017 [Cotterell et al., 2017].

They adapted the architecture used for machine translation by reducing
its capacity. They also observed that batch size plays a crucial role when using
the Transformer on character-level tasks, showing the performance improves
steadily as the batch size increases. They finally fixed it at value 400, which
is especially large, considering that the used training data contains only 10k
examples.

The next iteration of the shared task [Vylomova et al., 2020] reacted to
the recent success of the Transformer architecture, employing it as one of
the baselines. The task provided data for 90 languages (Czech not included)
and aimed at generalization across languages. A lot of systems used the
Transformer, utilizing data hallucination (generating synthetic training exam-
ples that mimic the patterns and characteristics of the original data, thereby
increasing the size and diversity of the training set) and other augmenta-
tion techniques, and for low-resource languages also multi-lingual training.
Amongst the four winning systems, two of them were multilingual, RNN-based
with attention, and two were monolingual, based on Transformer (e.g. Liu
and Hulden [2020], developing an ensemble of three Transformers, all with
the same architecture, but with different input data format).

The Fall of Transformers on Unseen Lemmata

However, Liu and Hulden [2021] showed that the Transformer almost com-
pletely fails in the task of inflection when asked to inflect a previously unseen
lemma.

They criticize the common-practise test conditions used in 2016-2020
SIGMORPHON shared tasks [Cotterell et al., 2016; Cotterell et al., 2017;
Cotterell et al., 2018; McCarthy et al., 2019; Vylomova et al., 2020], where
there is an uncontrolled overlap between lemmata in the training and test
set. They use 2018 shared task development and test data for six languages
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to evaluate the approaches again. They build new corresponding training
datasets by extracting full paradigm tables from UniMorph, such that the
lemmata are not present in the dev nor test dataset. The built training
datasets have the same size as the 2018 datasets (10k forms), but have zero
lemma-overlap. In addition, they utilize the 2020 shared task data for some
low resource languages, rebuilding the provided dataset (obtained by joining
train, dev and test) in the same ratio, assuring empty lemma-overlap.

They evaluate the previously successful system [Liu and Hulden, 2020]
using the original training data and the new training data, reporting a huge
gap in performance between these two conditions.

In addition, they suggest several techniques of hallucination methods
improving the performance even in the zero-lemma-overlap condition.

Nevertheless, we think that the training datasets they utilized to compare
the performance were not directly comparable, because beside having different
lemma overlap, the new training datasets covered far fewer distinct lemmata
in total (because they were created from the whole paradigm tables).

The 2021 SIGMORPHON shared task [Pimentel et al., 2021] focused
on generalization across typologically diverse languages. The organizers
probably did not have enough time to react to the presented findings about
the bad properties of the common-practise testing with lemma-overlap [Liu
and Hulden, 2021]. Accordingly, the train-dev-test split they performed was
again on the instance level, with uncontrolled lemma overlap.

Nevertheless, they at least evaluated all the systems (4 Transformer
baselines and 2 submitted systems, both based on RNN encoder-decoder
with attention, each with different data augmentation method) also on the
subsets of test set containing unseen lemmata only, reporting the drop in
systems’ performance on previously unseen lemmata. They report that the
drop is larger for Transformer-based systems. On the other hand, systems
that utilized some data augmentation method did not lose that much in the
performance in the OOV condition.

However, this analysis was only possible in the languages where the test
set contained at least some unseen lemmata. In consequence, for Czech
and several other languages, the evaluation on unseen lemmata is not included.

Goldman et al. [2022] investigate more the problem of lemma overlap
between training data and test data. They propose a split-by-lemma method
for the train-test split, performing such re-split on the data from SIGMOR-
PHON’s 2020 shared task. They re-evaluate 3 of the 4 top-ranked systems
(2 Transformers, one RNN-based encoder-decoder) from that iteration of
shared task, comparing the performance on the original data and on the
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new data, without lemma overlap. They reveal that the new splits lead to
a decrease of 30 points (averaged over the 3 systems, for all 90 languages).
They conclude that generalizing inflection to unseen lemmata is far from
being solved, although it is a desired function in practise. Nevertheless, they
show that on high-resource languages with 40k training examples or more,
the systems do not lose much with the new split.

Finally, SIGMORPHON’s 2022 shared task [Kodner et al., 2022] em-
phasizes generalization along different dimensions, evaluating test examples
with unseen lemmata and unseen features separately. The data consist of
33 languages (30 development languages and 3 surprise languages). They
provided two different training data conditions: small and large, yet for some
languages the large training dataset was missing due to insufficient amount of
data. Czech language was not included; the most similar to Czech was Polish
and Slovak.

They split the test dataset into 4 parts: with lemma overlap (the lemma
was seen in the training data, but the feature was not), feature overlap (the
feature was seen in the training data, but the lemma is novel - that is our
task), both overlap (both the lemma and the feature were seen in the training
data) and neither overlap (both the lemma and the feature are novel), and
evaluate the systems in all the conditions separately.

Some participated systems used Transformers, but not all (some also
made use of Finite State Transducers [Merzhevich et al., 2022], alignments
or RNNs for edit sequences). The overall best-performing system was based
on Transformer [Yang et al., 2022]. It made use of hallucination methods,
lemma copying and other methods to generalize to unseen lemmata.

Generally, the performance on novel features was much worse than on
novel lemmata. Some systems even seem to possess a significant ability to
generalize to unseen lemmata. The results also show that the models perform
substantially better with more training data.

In the time of writing this thesis, SIGMORPHON’s 2023 shared task has
not been evaluated yet and the paper is not available. Nonetheless, from
the task description10 it seems that it does not focus on the generalization
on novel lemmata nor novel features, but rather on the interpretability of
morphological reinflection models.

10https://github.com/sigmorphon/2023InflectionST
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2.3 Conclusion of related work
The state-of-the-art system for morphological generation in Czech, Mor-
phoDiTa [Straková et al., 2014] does not have a guesser for OOV words, and
there is no publicly available system that would complement it and work
reliably.

Although SIGMORPHON included Czech in several iterations of its’
shared task, the performance of systems on unseen lemmata has never been
evaluated systematically.

The best performing models in the shared tasks usually employed seq2seq
models based on RNN or Transformer, frequently utilizing some data aug-
mentation techniques, which brought the greatest benefit when the training
data was scarce, yet did not help much when the data was plentiful.
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Chapter 3

Data

To build a data-driven inflection system, we obviously need some data: a
training data to build or train the model, development data to decide, which
parameters are better, and also to compare different models, and test data,
to finally evaluate the best models.

3.1 Why to build our own dataset
The aim of our work is to perform inflection of OOV words (especially nouns)
in Czech. Therefore we need a Czech morphological dataset, and we need the
development and test set to be lemma-disjoint with train set (ideally those
three sets should be lemma-disjoint).

And since we want to build best system possible, there is no need to limit
the size of the data, as long as we have enough computational resources.

It would be useful to select a dataset already used in some research,
ideally in some iteration of the SIGMORPHON’s shared tasks, to be able
to compare our system performance with some other relevant approaches.
Nevertheless, as far as we know, in the previous work there was no dataset
complying our conditions. The only Czech dataset obtained by lemma-split
(ensuring that there are no common lemmata in train and test set) used in the
SIGMORPHON Shared tasks was the one for Task 2 in 2017 [Cotterell et al.,
2017], which was used for paradigm table completion (the train set contains
200 full paradigm tables, and the test set 50 incomplete paradigm tables).
Although the report of 2021 Shared task [Pimentel et al., 2021] examines the
performance of the systems on previously unseen lemmata, curiously, in the
Czech test dataset there were no unseen lemmata. And finally, Czech was
not included in the 2022’s iteration of the shared task [Kodner et al., 2022],
which investigated the performance on OOV lemmata.
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Although we could make use of the dataset from 2017, or perform a
disjoint-lemma-resplit of a dataset from another iteration of the shared task,
we consider their size too limited. The shared tasks mostly focused on
performance in low-resource conditions. However, Czech is no longer low-
resource language with regard to morphological inflection. And as we already
emphasized, our main aim is to build a good system. Therefore we decide not
to constrain our system to only use a small dataset to learn, and we build
our own datasets.

Motivated by the fact that in our task, OOV words are those that are not
present in the training morphological dictionary (we build a complementary
system to MorphoDiTa which lacks a morphological guesser for generation),
and by the tremendous coverage of inflected forms it has, we decide to utilize
MorfFlex [Hajič et al., 2020] to build 3 large lemma-disjoint datasets: training,
development and test set. Besides, it is relatively simple to process MorfFlex
thanks to its format.

To be able to evaluate the final models in the real-world OOV conditions,
we decided to build a dataset some true OOV words.

We considered several options of what to use as the real OOV words: mis-
spelled words, words with removed diacritics, proper nouns, and neologisms.

We think that misspelled words should not be treated as OOV words. It
would be better to automatically correct them and then inflect as standard
dictionary words.

As for words with removed diacritics (i.e., from undiacritised variant of a
lemma create undiacritisied variants of the inflected forms), it would be an
interesting work to investigate. Králíková and Panevová [1990] built a separate
inflection system for words without diacritics and faced several difficulties
caused by high number of ambiguous lemmata in the undiacriticised variant.
Generally we would like to decide ahead whether the generated forms should
be with or without diacritics. Therefore it would be reasonable to build two
distinct models: one for general inflection (the one we are building in this
work) and one for inflection of lemmata without diacritics, which would be
built probably in the same way and from the same data, only with removed
diacritics. However, it would be important to consider that this would lead to
more ambiguities in the data as pointed out by Králíková and Panevová [1990].
Consequently, even undiacritised words are not appropriate representatives of
real-world OOV words (for the undiacritised model they would not be OOV).

Proper nouns could be an interesting class to inflect, yet we consider
them too specific in the meaning (names of people, places etc.), probably also
too specific in the morphological properties. Moreover, lot of proper nouns
are included in dictionaries (MorfFlex contains more than 150k proper-noun
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lemmata).
In consequence, we finally choose to build the real-world OOV dataset of

neologisms, which are words that cannot be included in a dictionary by their
very nature.

3.2 Design decisions
The task of noun inflection in our setting is defined quite precisely: given a
lemma, provide 14 inflected forms. Since we would like to evaluate not only
the correctness of single forms, but also of the whole paradigm tables, it makes
sense to build the development set and the test sets from complete paradigms.
However, sometimes it can be convenient to evaluate the models also on the
training data (e.g. to detect whether a neural network is overfitting or not).
This leads us to accepting a specific requirement: all data should be composed
of whole paradigm tables. In other words, if we have one line per inflected
form, we have 14 lines for each lemma.

In the following subsections we discuss the special cases that may be
problematic regarding this requirement.

3.2.1 Non-existent forms in the data
Nonetheless, from the very beginning we were aware that there are some
lemmata that simply do not have 14 forms (e.g. pluralia tantum forming
plural only). Omitting the entries corresponding to the missing forms would
lead to problems when evaluating the accuracy on whole paradigm tables, and
it would not follow the requirement stated in the previous paragraph. Hence
we decided to introduce a special token representing the non-existent forms.
Further in the text we denote the “special token representing the non-existent
form” simply as non-existent form. The fact that the presence of non-existent
forms in the training data could cause problems is discussed in Section 4.3.2.

3.2.2 Multiple forms in a paradigm cell
Moreover, in Czech there are sometimes natural ambiguities with regard to
a specific form in a paradigm cell, as discussed in Section 1.1.3, e.g. páni
vs. pánové for nominative in plural of lemma pán (man, gentleman). These
ambiguities mean that for some specific paradigm cells, there are several
possible forms and we cannot definitely decide which one is more appropriate,
because it is dependent on the style and context. In general, it would be
reasonable to include all possible forms in the training data, with the objective
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of covering the heterogeneity of the language, so that the models would be
able to generate all forms. Furthermore, it is even more logical to include the
ambiguities in the testing data, in order to avoid penalization of some models
generating correct forms, yet different from those present in the data.

Nonetheless, to simplify the process of dataset building and dealing with
the data during splits and training, we decide not to include multiple forms
in one paradigm cell, while being aware of all the drawbacks mentioned above
and knowing that in future work, the dataset could be built more carefully.

The only exception we make is for the real-world OOV dataset. The main
reason is that for OOV words, it is even more difficult to decide which of the
possible forms is more appropriate. For example for dirty words (which are
common in our data), a form that would ordinarily be labeled as non-standard
or informal, seems more appropriate than the standard form, because dirty
words are usually used in informal speech. Besides, we consider the true OOV
dataset hard enough for prediction by itself and we do not want to increase
the difficulty by penalizing the models for generating correct, yet different
forms.

To make this exception feasible, we introduce a separation token, which
can only be used in evaluation data (in the gold targets) and which separates
multiple different forms in one paradigm cell.

It is interesting to note how this problem was dealt with in some previous
research. In the 2021 and 2022 iterations of SIGMORPHON’s shared tasks
[Pimentel et al., 2021; Kodner et al., 2022] they report completely removing
all instances with duplicated lemma-tag pair. This includes not only forms of
lemmata with multiple possible forms for a specific paradigm cell, but also
entries corresponding to homonymous lemmata. Both these cases appear the
same in the data (duplicated lemma-tag pair), but semantically are different.
However, since in Czech some particular word classes allow consistently more
than one form in a specific single paradigm cell (refer to Section 1.1.3), we
think that by dropping all these examples they are omitting a specific structure
from the data. For evaluating of inflection systems it is not necessarily an
issue (and as such, it is suitable for the needs of a shared task). Yet for
building an inflection system capable of providing inflections for any word,
completely omitting the examples (i.e., both variants if there are more than
one) is probably not the best approach.

3.3 MorfFlex - the morphological dictionary
MorfFlex CZ 2.0 [Hajič et al., 2020] is a Czech morphological dictionary
originally developed as a spelling checker and lemmatization dictionary. It
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babička NNFS2-----A---- babičky
babuška_,h_^(babička) NNFP4-----A---- babušky
Písek-2_;G NNIP6-----A---- Píscích

Table 3.1 MorfFlex entry examples: babička (grandma), babuška (granny) and Písek
(a town located in the south of Czechia).

contains more than 125 million entries. Each entry consists of a lemma-tag-
wordform triple. For each wordform, full inflectional information is coded
in the tag (not only the traditional morphological categories, but also some
semantic, stylistic and derivational information).

The entries cover lemmata that occur in real Czech texts (Prague Depen-
dency Treebank – Consolidated 1.0 (PDT-C 1.0) [Hajič et al., 2020]), e.g.
Czech words, foreign words and loan words, abbreviations, proper nouns,
isolated letters, parts of words numbers and other non-alphanumeric charac-
ters. Apart from standard Czech, the paradigms contain also non-standard
variants (even defective forms, misspelling, typos), which are marked in the
tag [Mikulová et al., 2020].

First, we briefly describe the data format of MorfFlex. Then we explain
how we process and filter the data, obtaining one huge dataset complying
with the conditions described in Section 3.2. Finally we report how the
train-dev-test split is performed, and discuss the limitations of our approach
to process the data.

3.3.1 MorfFlex data format
The MorfFlex dictionary is a flat list of lemma-tag-wordform triples (see some
examples in Table 3.1). It follows the principle of unique analysis (lemma
and tag together uniquely identify the wordform). To achieve this, lemma
numbering is used to capture homonyms that are morphologically different,
and tag numbering is used to capture different types of wordform variants
[Mikulová et al., 2020].

All information in the following sections about lemma, tag and wordform
are taken from the complete technical specification and explanation of the
format [Mikulová et al., 2020]. It is really complex and we mention the most
important parts only.

Lemma

Lemma represents the whole paradigm. An example lemma is Písek-2_;G.
Lemma has two parts. The first part, lemma proper (Písek-2 in the example),
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is “a unique identifier of the paradigm. Usually it is the base form of the word
(we call it raw lemma in context of MorfFlex), possibly followed by a number
distinguishing different lemmas with the same spelling but different formal
morphological behavior” [Mikulová et al., 2020]. Those are morphological
homonyms. Amongst noun raw lemmata, almost 2% are homonymous.

The second part, additional information, is optional and can contain name
or style label, and variant or derivation information, etc. In the example, it
is _;G, indicating that it is a capitalized word of type geographical name.

We can notice that in the example of lemma babička in Table 3.1 the
lemma only consists of the base form, omitting the number and additional
information.

We call the whole lemma (lemma proper together with the additional
information) rich lemma.

Tag

Tag (positional tag) is a string consisting of 15 characters. An example of
a tag is NNFP7-----A---6. Each position in the string corresponds to one
morphological category. The most important categories for us are:

• part of speech (1st position, N=noun)
• number (4th position, P=plural, S=singular, X=any)
• case (5th position, 1-7, 1=nominative, 7=instrumental, X=any)

Another noteworthy categories are:

• gender (3rd position, F=feminine, N=neuter, I=masculine inanimate,
M=masculine animate, and some combinations)

• negation (11th position, A=affirmative, N=negated)
• variant (15th position, -=basic variant, 1-4=standard variant, 5-9=non-

standard variant).

Please note that the stated values are just the most frequent ones, not
the only possible values for that categories.

We can see that in MorfFlex, negation is treated as a separate morpho-
logical category. With a few exceptions, all negation forms in MorfFlex are
formed by adding prefix “ne-”.

Wordform

The third part of each entry is the word form itself. It is always the word
form without any additional information.
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Data # lemmata # forms
whole MorfFlex 1,055,757 125,348,901
nouns only 459,554 10,824,178
basic-variants only 459,554 9,268,047
no negations 459,554 6,268,561
no unusual tagsets 449,044 6,144,804
completed paradigm tables 449,044 6,286,616

Table 3.2 Data filtering: the numbers of lemmata (homonyms counted multiple
times) and inflected forms during the data filtering.

3.3.2 Data filtering and conversion
We start with the whole MorfFlex, an extremely large set of individual entries,
each identified by the unique (rich lemma, tag) pair, and our goal is to obtain
data as described in Section 3.2. That is, list of raw noun lemmata, each
associated with a list of 14 forms, either present or non-existent.

It is important to keep in mind that there are homonymous lemmata – for
those we will have multiple entries (paradigm tables) in the final dataset.

To achieve our goal, we perform several processing and filtering steps,
while following the principles formulated in Section 3.2 (see data counts after
each relevant step in Table 3.2):

1. remove all but noun entries

2. convert rich lemma to the corresponding raw lemma
(e.g. babuška_,h_^(babička) to babuška), while preserving the asso-
ciation of each wordform with the specific lemma

3. remove all non-basic-variant forms

4. remove all negation forms

5. remove lemmata with unusual sets of tags

6. complete all incomplete paradigm tables.
The reason for only keeping nouns is straightforward since our work

focuses on nouns. We elaborate more about the other steps in the following
paragraphs, mentioning the limitations caused by each step. It is important to
note that the decisions about the process of data filtering were made without
exploring the effect of each step to the performance of a system trained and
evaluated on the corresponding data. We believe that the effect is low or even
negligible. Nevertheless, in future work it would be better to perform deeper
analysis.
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Keep homonyms (Rich lemma to raw lemma)

The step of converting rich lemma to raw lemma is connected with the decision
of keeping or dropping entries for homonyms. We decide to keep them.

Before the conversion, each lemma is different, thanks to MorfFlex format.
However, after the conversion, for homonymous lemmata there are multiple
paradigm tables with the same base form. This is generally an issue, because it
leads to having duplicate lemma-tag pairs with different target form. Having
such duplicates in training data can in general be reasonable, and is similar
to the problem of ambiguous forms in a paradigm cell (discussed in Section
3.2.2). However, if such examples appear in the evaluation data, it causes that
any system that for a specific input (lemma and tag) consistently returns a
specific output (target form) cannot achieve 100% accuracy. That is probably
the reason why Pimentel et al. [2021] and Kodner et al. [2022] decided to
drop all lemma-tag duplicates.

As we deal with the paradigm table as atomic, we can either drop the
whole paradigm (ideally for all homonymous lemmata) to get rid of ambiguity,
or keep paradigms for all homonyms. We decide to keep them all, with the
objective of not removing any significant information from the dataset. To
resolve the issue with evaluation, we compare the systems with an oracle
system that represents the upper bound of the performance of any system
that that for given lemma-tag pair consistently returns the same inflected
form.

Non-basic forms removal

As discussed in Section 3.2.2, we decided to include only a single form to one
paradigm cell. Therefore we have to resolve the issue of other standard and
non-standard forms, present in MorfFlex data.

One possible approach would be creating a special paradigm table when
there are multiple forms possible. However, this would lead to excessively
copying the forms that have only one possibility, and to artificially inflating
the size of the dataset.

To simplify the processing, we remove all non-basic forms (i.e., other forms
marked as standard or non-standard).

Negation removal

MorfFlex treats negation as a morphological category (see Section 3.3.1), i.e.,
the negated forms have the same lemma as the affirmative forms. However,
we do not deal with it this way. Our task is the inflection by number and case
only - we consider a lemma and its negated form as two different lemmata,
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that in general could be both present in the training data as independent
lemmata. (Nevertheless, for the purpose of OOV words, if the affirmative
lemma was seen in the training data, we would never consider its negative
variant as unseen, and vice versa.)

Hence, dealing with negation forms in MorfFlex data could be done in
two different ways: (i) adding two paradigm tables to the data for those
lemmata that have negation forms - one paradigm for affirmative forms and
one for negated forms, with the base form negated too), and (ii) removing
the negation forms from data completely

As already discussed (Section 1.1.1), negation forms are created very
simply in Czech, by adding prefix “ne-”. Therefore we would expect a system
that is capable of inflecting a specific lemma to be capable of inflecting its
negation too. That plays in favor of the second approach. Moreover, since the
affirmative and negative forms are so similar, adding the negative paradigm
tables to the data would lead to artificially increasing importance of those
words that form negation, compared to the words that do not form it. Besides,
it would result in unnecessarily large dataset.

We evaluate the ability of a system trained without negation forms to
inflect negated lemmata in Section 5.4.5.

Deficient paradigm tables removal

Removing lemmata with unusual sets of tags was a simplifying step. As a
usual set of tags we consider the full 14-tag set, 7-tag sets of singular or
plural forms, and then tag sets that we believe correspond to inflexible words
(forming nominative in singular only).

We manually inspected the data, examining some of the lemmata with
unsual tag sets, seeing that they frequently miss some wordform or they
include some extra form. Considering that they are only a small part of the
whole dataset, we decided to drop them. (We are aware that by this we
reduced the coverage of our dataset. Consequently, it is possible that we
consistently miss some particular class of words and our system is neither
able to inflect them correctly, nor we can measure the incorrectness.)

Partial paradigm completion

Completing the incomplete paradigm tables is a problem connected with
the preceding step. We had to decide how to complete the paradigms that
do not have all 14 forms. Following the decisions we made when choosing
which paradigms to drop, we fill in the incomplete paradigms as follows:
insert non-existent form token to the cells corresponding to singular forms
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of pluralia tantum (and also to the cells corresponding to plural forms of
lemmata forming only singular). For the inflexible lemmata, we fill in the
copy of the lemma to every empty cell.

Again, we are aware that especially the latter leads to some bias of our
dataset: specifically bias to copy the lemma. If the corresponding lemmata
were indeed inflexible, it is not a problem because their forms are equal to the
lemma itself. Yet we were able to manually inspect only a small part of the
dataset, hence it is possible that we were mistaken. The other option would
be dropping these lemmata, nonetheless we considered that they form too
large part of the dataset. Other option would be completing the empty cells
with non-existent forms, which would lead to having too much non-existent
forms in the data. Nevertheless, it is an option to be considered for future
work.

3.3.3 Train-dev-test split
Once we obtain the dataset processed by the steps described in the previous
section, we perform a train-dev-test split on the dataset. Based on its size we
decide to build a train-set consisting of 360k lemmata and both dev-set and
test-set of 44k lemmata.

To truly comply with the OOV-condition of our task, we follow the
split-by-lemma method as proposed by Goldman et al. [2022], who criticized
the standard random split by form used in the SIGMORPHON Shared
tasks (2016-2021), because after using the standard split, there were non-
empty intersection of lemmata contained in the train-set and in the test-set;
additionally, the size of the intersection was uncontrolled.

We execute the split-by-lemma as a random split, yet satisfying the
condition that train-lemmata, dev-lemmata and test-lemmata are all pair-
wise distinct. To achieve that, we carefully treat homonyms (lemmata that
are equal in the baseform but have distinct paradigm tables) present in the
data.

We considered also other options of performing the split by lemma, not
only the random one, such as frequency-based, as applied by Cotterell et al.
[2017], who split the data based on the frequencies of corresponding tokens
in Wikipedia text. However, we focus on OOV words. Without any further
research we cannot claim that the best way to model them is to take the
most frequent dictionary words, or contrarily the most rare ones. Therefore
we chose the random split.
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3.3.4 Limitations of data processing
Some of the limitations of our approach to data processing were already
discussed in Sections 3.2 and 3.3.2. Here we only provide a comprehensive
list and add some more:

1. negations removal

2. non-existent forms in data

3. removal of non-basic forms

4. keeping homonyms

5. omitting lemmata with unusual tag set

6. completing incomplete paradigm tables with copy of lemma

7. We simply use mostly all data present in morfflex to train the model,
without any reasoning which data to use and which not. This follows a
simplifying assumption that OOV words are similar to all words from
dictionary. This does not necessarily need to be true, yet without any
further research we cannot reason whether they are more similar to
newer words, less frequent, more frequent, etc. After performing some
research in this area, it would perfectly make sense to train the model
(which would aim at inflection of OOV words only) on a specific subset
of the data.

8. We did not remove duplicates (i.e. equal paradigm tables) from the
development data before performing all development experiments. It
is important to note that in general we could suppose there are no
duplicates, because if two lemmata are equal in the base form and have
the same paradigm tables (together with their content), they would
be only once in MorfFlex. However, we have caused the presence of
duplicates, probably by removing the non-basic forms and reducing the
scope to case and number. We mention it here, although the counts
of duplicates were very low: 145 paradigm tables in train data (from
the total of 360k; 0.04%) and 14 paradigm tables in development data
(from total 44k; 0.03%). We removed them from the training dataset for
experiments in final evaluation. Neither the test set, nor the test-oov
dataset (used in final evaluation) contained duplicate paradigms.

37



3.4 True OOV
To be able to evaluate our model in real-world conditions, we decided to build
our own dataset of true out-of-vocabulary words: neologisms. We collect
words from a dictionary of neologism Čeština 2.0 (Czech language 2.0).

3.4.1 Čeština 2.0 - about the project
Čeština 2.01 is a dictionary that includes brand new words, but also slang,
regional or otherwise interesting expressions from the Czech language. Some
of them are actually word phrases or existing words that were given a new
meaning (e.g. “powerpoint karaoke” with the meaning of reading the whole
slides during a presentation). In June 2023, the dictionary contained almost
27k words (and phrases). Users can “like” or “dislike” the published words.

Looking into the most popular ones2, we can say that a lot of them were
derived from dirty words3 4, or come from political context5 (usually with
negative sentiment).

According to the web of the project “it shows that Czech has a flair, a wit
and a future. The dictionary is being created by users who are generally any
Czech speakers”6.

Each entry in the dictionary contains the word or word phrase together
with the explanation and usually also an example of usage in sentence or
conversation.

We asked the webpage maintainers and they kindly provided us with a
significant part of the dictionary (we received a dataset containing all words
beginning with ’e’ or ’j’ on 12th of March, 2022). We are aware that this
subset of data cannot be generally viewed as a random subset (and therefore
as a representative subset). Nevertheless, we hope that the first character of a
lemma does not have a significant influence on the way the word inflects. (This
hope is supported by the fact that Czech is mostly suffixing language and that
changing case or number usually affects the ending segments only.) Therefore
we treat the data subset as a subset representing the whole dictionary without
bias.

1https://cestina20.cz/, in Czech only
2https://cestina20.cz/zebricek/nejoblibenejsi/
3https://cestina20.cz/slovnik/kurvitko/
4https://cestina20.cz/slovnik/pracurak/
5https://cestina20.cz/slovnik/milosekunda/
6https://cestina20.cz/o-cestine-2-0/, Czech only

38

https://cestina20.cz/
https://cestina20.cz/zebricek/nejoblibenejsi/
https://cestina20.cz/slovnik/kurvitko/
https://cestina20.cz/slovnik/pracurak/
https://cestina20.cz/slovnik/milosekunda/
https://cestina20.cz/o-cestine-2-0/


3.4.2 Data filtering and manual inflection
The provided data are in CSV format. We start by extracting the words
together with their explanation and the example of usage, omitting other
information. We remove all word phrases and words that are actually present
in MorfFlex. We shuffle the entries randomly and filter them manually,
removing all not-noun entries. Then we randomly choose more than 100
entries.

We continue by manually inflecting the words. To make the process
simpler and more resistent to typos, we actually generate the whole paradigm
tables by a publicly available inflection system7 and then carefully correct the
forms based on our linguistic knowledge, always checking the explanation of
the word and the example (to be able to properly classify the word to some
morphological categories usually affecting the actual inflected form, such as
gender). In case of doubts, we review the Internet Language Reference Book8.
It is managed by Czech Language Institute of Czech Academy of Sciences,
and contains inflected forms for vocabulary words. There we find a standard
word such that it would be inflected in the same way (again, according to our
linguistic knowledge), and inflect the new word based on the found inflected
forms.

If there are more possible forms for a given paradigm cell, we include all
of them. If a form corresponding to a paradigm cell does not exist (such as
singular forms for pluralia tantum), we use a special token for non-existent
form.

It is important to emphasize that the correction and completion of inflected
forms were performed manually and thus there is no guarantee that it is
completely correct. Moreover, in case of neologisms, the way how it is inflected
can be sometimes highly subjective and it is difficult to decide which is the
proper form.

3.5 Datasets
After performing all the data processing, we have four datasets (see Table 3.3).
Train-set is aimed at training the models, dev-set at (hyper)parameter tuning
and deciding which models are used in final evaluation. On the contrary,
test-set and test-oov-set are strictly prohibited to be used for anything else
but for the final evaluation and models comparison.

7https://sklonuj.cz/
8https://prirucka.ujc.cas.cz/en
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Set # lemma # form # non-existent forms Source
train 360k 5.04M 42,973 MorfFlex
dev 44k 616k 5,383 MorfFlex
test 44k 616k 5,257 MorfFlex
test-oov 101 1.4k 35 Čeština 2.0

Table 3.3 Datasets. The four datasets, with lemma (paradigm table) counts, form
counts and counts of non-existent forms.

Each pair of the four datasets has zero lemma overlap (a lemma included
in one dataset is not included in any other dataset).

We can say that train-set, dev-set and test-set originate from the same
distribution (they were sampled randomly from the same source), while test-
oov-set comes from a completely different distribution. Test-oov-set aims to
represent the real-world condition of OOV words. Therefore we expect the
performance of the systems to be lower on this set.

The first three sets were built automatically, while the fourth one was built
manually, leading to a significant difference in the size of datasets (test-set
contains 440-times more data than test-oov).

All four sets contain incomplete paradigm tables (paradigms where some
forms are non-existent). On the other hand, only test-oov-set contains for
some paradigm cells multiple different forms; the other three sets contain at
most one form per a paradigm cell.
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Chapter 4

Approach

In this chapter we describe the main approach we follow. We describe the
baseline systems, our retrograde system and the seq2seq models. We discuss
the data representaion for the neural systems and briefly describe their
architecture.

The approach in general (without the specifics of any model) is as follows.
Take the training data and utilize it to extract rules or learn parameters.
Then generalize and inflect lemmata unseen in the training data.

We focus on inflection of unseen lemmata, because the inflection of seen
(dictionary) lemmata is solved perfectly by MorphoDiTa [Straková et al.,
2014] and we try to create a complementary system.

The main difference between our task (and therefore our approach) and
the SIGMORPHON shared tasks (and corresponding approaches) is that we
focus specifically on nouns in Czech, with the aim of developing the best
system possible (no need to restrict the size of training dataset), and our goal
is to inflect especially the unseen lemmata.

4.1 Baselines
In this section we present the baseline systems we use for comparison with our
models. We involve a simple copy baseline, rule-based ready-to-use system
Skloňuj.cz, and three standard baselines from the SIGMORPHON shared
tasks.

We cannot use a dictionary-based system (such as MorphoDiTa [Straková
et al., 2014]) as a baseline for comparison, because we are building the
complement part of such system, the guesser part, focusing on inflection of
unseen words.
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4.1.1 Copy baseline
Copy baseline completely ignores the training data and treats every given
lemma as inflexible. For each paradigm cell, it produces the lemma itself
as the inflected form. Its performance represents the lower limit for any
reasonable system.

The reason why we expect this baseline system to work at least to some
extent is that in Czech, usually at least one inflected form is the same as the
lemma itself (most frequently the nominative (1st case) in singular). Words
in neutral gender that inflect according to the paradigm stavení (building,
house) even have 10 forms equal to the lemma (6 in singular, 4 in plural).

This system is not suitable for any real application, we only use it for
comparison.

4.1.2 Rule-based Sklonuj.cz
The first reasonable baseline is a rule-based inflection system Sklonuj.cz,
publicly available on web1. It represents the class of ready-to-use systems
that are able to deal with OOV words. We use its offline version, which was
provided to us by the authors. For a given lemma it produces 14 forms, 7 in
singular and 7 plural. For further information refer to Section 2.2.1.

4.1.3 SIGMORPHON Shared task baselines
To compare our system with some systems from academic works, we utilize
the baselines used in SIGMORPHON Shared tasks, namely the non-neural
baseline used in the 2022 iteration [Kodner et al., 2022] and two neural
baselines used in the 2021 iteration [Pimentel et al., 2021]. The source code
of all the baselines is freely available2.

To be able to run the baselines on our datasets, we need to convert our
datasets to the format of SIGMORPHON datasets. They use lemma-tag-form
triples, where the tag is a semicolon-separated set of morphological features,
where the number of the features in general differs for each entry. Since our
dataset deals with number and case only, we decided to encode the tags in
the format number;case, where number is either S (singular) or P (plural),
and case is a number (1-7).

It is important to note that all the baseline systems where developed to
work in low data condition and on all languages. Our dataset is exceptionally
large, compared to the SIGMORPHON datasets (5M train entries, compared

1https://sklonuj.cz/
2https://github.com/sigmorphon/2022InflectionST/tree/main/baselines
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to 10k entries in high-data condition). We discuss separately for each system
whether running it on our data is sensible.

Non-neural

The non-neural baseline from 2022 iteration of SIGMORPHON Shared task
is identical to the non-neural baselines used in 2017, 2018 and 2020.

According to the summary of the principle of the baseline [Kodner et
al., 2022] it “first heuristically extracts lemma-to-form transformations; it
assumes that these transformations are suffix- or prefix-based. A simple
majority classifier is used to apply the most frequent suitable transformation
to an input lemma, given the morphological tag, yielding the output form.”
For a more thorough explanation see Cotterell et al. [2017].

As it is based on frequencies of transformation rules in training data, we
think that running it on a larger dataset is not a disadvantage, at least not
with regard to the accuracy, although with regard to the prediction speed it
could be.

Neural - transformers

The organizers of 2021 iteration of the Shared task [Pimentel et al., 2021]
provided two neural baselines, a standard vanilla transformer [Vaswani et al.,
2017] and an input-invariant transformer, an adaptation of the transformer
to character-level transduction tasks [Wu et al., 2021] (an identical system
was used as a baseline also in 2022). Both models follow hyperparameters of
Wu et al. [2021]. The organizers of the task also introduced an optional data
augmentation method, which we omit because our data is already plentiful.

The important training parameters are set up as follows: 20k training
steps, batch size 400, saving periodically up to 50 checkpoints during the
training time (extending the number of training steps to always finish an
epoch and only allowing to save a checkpoint at the end of an epoch), and
then choosing the checkpoint that performs the best on development data.

This works well on SIGMORPHON datasets: e.g. with 10k training
examples, one epoch takes 25 training steps, and we run 800 epochs, choosing
then from the 50 checkpoints, which were saved once per 16 epochs.

However, with 5M training examples, we need 12.5k training steps for
one epoch, and therefore it runs at most for 2 epochs and finally we can
choose from only two checkpoints. By this, the usage of development data is
eliminated almost completely. To address this issue a little bit, we perform
an elementary hyperparameter tuning, trying to adjust the batch size and
number of training steps such that it would fit our dataset better and allow
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the use of model selection. To allow more comparison, we report results of
both the default system and the one with longer training (larger batch size
and higher number of training steps).

4.2 Retrograde model
First of our inflection models is retrograde model, which focuses on simple
implementation. It adapts the basic idea of the linguistic module in ASIMUT
[Králíková and Panevová, 1990], described in Section 2.2.2 - deciding how the
lemma inflects based on its ending segment.

Unlike in ASIMUT, we do not extract the abstract paradigm tables manu-
ally. When building the model, we rather save all available words as possible
paradigms, and during prediction we automatically extract the paradigm ta-
ble, which is equivalent to automatically pre-extracting the abstract paradigm
tables. Our requires much less human labor and linguistic expertise, and
allows extending the model to other suffixing languages without any need of
substantial change in the source code. Other important difference is that we
do not explicitly deal with changes inside the stem. This is done implicitly
by changing the ending segment if it is long enough. Furthermore, since we
focus on nouns only, we do not face difficulties with complex inflection tables
for verbs.

In simple words, our system could be described as follows: If we have a
database of words we know how to inflect, and we receive an unseen lemma,
we find the database-word most similar to it and inflect the lemma according
to it.

We describe further details of our approach in the following sections.

4.2.1 Assign paradigm and inflect
When building the model, we start with a morphological dictionary that
contains complete paradigm tables for all covered lemmata. We save all
the lemmata together with their inflection tables in a way such that we can
effectively search them based on the suffixes.

When we want to inflect lemma X, we search in the database for lemma
A, such that X and A are most similar (have the longest common ending
segment), and inflect lemma X according to the paradigm of lemma A.

If there are multiple lemmata A in the dictionary that have the same
longest common ending segment with lemma X, we inflect X according to
all of them and combine the predictions performing majority vote for each
paradigm cell.
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lemma X to inflect: úřad (1)
database lemma A with longest common suffix: hrad (2)
lemma X stem: úř (3)
database lemma A stem: hr (4)

HRAD ÚŘAD ÚŘAD
hr-ad hr-ady úř-ad úř-ady úřad úřady
hr-adu úř-adu úřadu
hr-adu ... −→ úř-adu ... −→ úřadu ...
... (5) ... (6) ...
hr-adem hr-ady úř-adem úř-ady úřadem úřady

Table 4.1 Retrograde model: example of inflection according to a paradigm. Lemma
X for inflection: úřad (office), found database lemma A with the longest common
suffix: hrad (castle).

The inflection of lemma X according to paradigm A is performed as follows
(see Table 4.1, numbers reference to the table): remove longest common suffix
from lemma X (1) and lemma A (2) to obtain X-stem (3) and A-stem (4).
Then for each paradigm cell take the corresponding A-form and replace the
A-stem by X-stem (5, 6).

This was only a brief summary explaining the basic idea of retrograde
model. A thorough description can be found in Chapter 6, Section 6.5.

4.2.2 The model in context
It is interesting that the retrograde model is generally k-nearest neighbors
algorithm in discrete space, where the distance is measured by the length
of the longest common suffix (the longer it is, the closer two words are).
Unlike the standard algorithm, we do not fix k and we rather find all nearest
neighbors, that have the same distance from the word. The prediction part is
more complex here: instead of simply combining of the labels (values) from
the neighbors, we adapt the edits on the lemma suggested by the neighbors.

Also, the approach of our retrograde model is similar to the non-neural
SIGMORPHON baseline (see Section 4.1.3). The main difference is that
in the retrograde model we expect no prefixing changing when performing
inflection, while they consider both prefix and suffix changes. On the other
hand, we tune our model to provide fast inference even with relatively large
training set. The authors of the baseline claim that it was designed for speed
of application [Cotterell et al., 2017], yet the speed is acceptable only when
little training data is provided.
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4.2.3 Limitations
The model relies on two properties of Czech language: (i) when two lemmata
have the same ending segment, they also inflect the same, and (ii) during
inflection (by number and case), only the ending segment changes while the
rest of the word remains the same. This mostly holds in Czech but does not
hold at all in some other languages (e.g. semitic languages).The retrograde
model is therefore strongly language dependent and we do not expect it to
work in some languages.

4.3 Seq2seq model(s)
Inspired by a significant success of neural architectures in morphological
inflection tasks[Cotterell et al., 2016; Cotterell et al., 2017; Cotterell et al.,
2018; McCarthy et al., 2019; Vylomova et al., 2020; Pimentel et al., 2021;
Kodner et al., 2022], we decided to investigate some approaches using neural
networks.

More specifically, we employ the RNN-based encoder-decoder as used
by Kann and Schütze [2016], and the Transformer as used by Wu et al.
[2021].Both are seq2seq architectures (character-level encoder-decoder, where
the length of the input and the target sequence in general differ between
entries), both with attention. The main idea is feeding the lemma together
with the target tag (each character by character) into the encoder. The
encoder produces a sequence of vectors as a representation of the whole
input, and the decoder then decodes it and generates the characters of the
inflected form one by one. The attention mechanism helps the decoder to
“pay attention” to specific parts of the input when generating specific parts
of the output. In fact, neither the encoder, nor the decoder work directly
with the individual characters (and tags). There is an embedding layer which
provides a vector representation of the characters (of the lemma and the tag)
to the encoder. Both the encoder and decoder then work with the character
embeddings. The embeddings are trained together with the encoder and
decoder parts. For further description of the architecture, refer to Section
2.1.2.

To be able to run the experiments smoothly, without the need of imple-
menting the architectures on our own, we make use of a practical toolkit
OpenNMT [Klein et al., 2017], which provides easy access to both these
architectures. Its main aim is the task of neural machine translation (NMT),
however the architectures it implements are not necessarily dependent on the
task.
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We start by explaining the analogy of the inflection task with the task of
NMT, continue by discussing the data representation for the seq2seq models.
Then we briefly describe the two architectures we use and their most important
hyperparameters.

4.3.1 Adapting of the inflection task to NMT world
We can view each individual character of the lemma as a token in the
source language, and each target tag symbol as another token in the source
language. By combining the lemma and the tag we obtain a “sentence” in the
source language (where the individual characters represent the “words” of the
language). Each character of the desired inflected form likewise corresponds
to a “word” in the target language.

The task of morphological inflection is then simply translation of sentences
from the source language to the target language.

However, there are some important differences between the tasks. For
example, in the task of inflection the vocabulary size (the count of different
tokens in the “languages”) is much lower than in NMT. Therefore, the
architectures need to be adapted to the inflection task by reducing their
capacity.

4.3.2 Data representation for MT models
To be able to run the inflection task with the MT models, we have to decide
how to represent the data.

In the rest of the work, we consider the task of inflection as generating 14
forms for a given lemma. Nevertheless, the approach of using encoder-decoder
architecture to produce the whole paradigm table when given the base form
has never been used in the previous work, at least up to our knowledge.
A common approach is to encode the morphological features of the desired
form together with the lemma as the input for the encoder [Kann and Schütze,
2016]. To generate the whole paradigm table, it is then sufficient to encode
the lemma multiple times, each time with one desired tag, and generate the
forms separately.

We think that generating the whole paradigm table when given the lemma
would theoretically be possible with encoder-decoder architecture, yet the
network would need to remember a lot of additional information, such as how
many forms it should generate and which form is it generating right now in
each step of generation. As such, the network would have to spend a lot of
its capacity to deal with this technical stuff.
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src sequence tgt sequence
J A B L K O # P 7 J A B L K Y

Table 4.2 Baseline data representation. # is the separator token. P 7 is the
morphological tag corresponding to plural (P) and intrumental case (7).

Therefore we build a system that takes a lemma and a tag as the input
and produces one form as the output.

Similarly to Kann and Schütze [2016], we use the individual characters
of the lemma together with the morphological tag as input. To encode the
morphological features we need (number and case), we introduce two-character
positional tag: one character for number (S=singular, P=plural) and one for
case (1-7). That is slightly different from the approach of Kann and Schütze
[2016], who needed to encode more information to the tag since their system
did not aim specifically on nouns and inflection according to number and
case only, and therefore used variable number of features. In addition, we
introduce a special token to separate the lemma from the tag in the input.
We think that this could be beneficial since it allows the model to distinguish
between the lemma and the morphological tags.

We use individual characters of the form as output, as proposed by
Kann and Schütze [2016]. Also we use the start-of-sequence and end-of-
sequence tokens both in the input and the output (it is included by default
in OpenNMT).

In this way we define a baseline data representation: the input consists
of characters of the input lemma, followed by the separator token, followed
by the tag, where each feature has its own token. The output consists of
characters of the desired form only. In Table 4.2 we can see an example for
Czech word jablko (an apple) with the form in instrumental of plural.

Furthermore, we propose some experiments to compare the performance
of systems using different data representation, namely: tag as one token or as
two separate tokens; using the separator token or not; tag at the beginning
of the input or at the end; reversed characters in the input lemma and the
output form or not. We report the results of comparison of different data
representations in Section 5.4.3.

We could also discuss what to include in the training data. The dataset
contains non-existent-form tokens. If we do not drop the corresponding
lemma-tag-form triples from the data we use for training, the network learns
to predict the non-existent forms too. If our aim was deciding whether a given
desired form exists and generating it only if it does, it would be reasonable
to keep the entries in the training data. Yet our aim is to predict the form,
regardless of how probable its existence is. Therefore it may be beneficial to
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Figure 4.1 RNN seq2seq architecture [Bahdanau et al., 2016, Figure 1]; 1-layer bi-
directional encoder (at the bottom), 1-layer decoder (at the top); xi = input character,
yi = output character, hi = encoder hidden state, at,i = attention weight, si = decoder
hidden state

drop the corresponding entries.
The other question for discussion are lemma-tag-form duplicates. Those

are present in the data because of homonyms. Although they have different
paradigm tables, usually they share some forms - and for these forms, we
obtain duplicate lemma-tag-form entries. The presence of the duplicates
could be problematic, because they add importance to the specific forms.
Nevertheless, it is difficult to decide whether to include or exclude them by
theoretical means.

We investigated the impact of excluding the non-existent forms or lemma-
tag-form duplicates from the training data to the performance of models. The
experiments are briefly described in Section 5.4.4.

4.3.3 Architecture and hyperparameters
RNN encoder-decoder

Our RNN model is character-level encoder-decoder with attention. See Figure
4.1 for a schema of the architecture. We adapt the architecture from Kann
and Schütze [2016] (we denote the approach of these authors as “KS-16” in
this text). We use LSTM units [Hochreiter and Schmidhuber, 1997] as the
type of RNN both in the encoder and the decoder instead of GRU [Chung
et al., 2014], because it has been shown that LSTM performs better than

49



GRU on larger datasets with shorter sequences [Yang et al., 2020].
Unlike KS-16, we employ Luong attention [Luong et al., 2015] instead of

Bahdanau attention [Bahdanau et al., 2016], since it is used by default in
OpenNMT. Unlike KS-16, we try not only the bidirectional encoder but also
the standard one-directional. Since our training dataset is much larger than
the SIGMORPHON’s 2016 dataset used by KS-16, we examine extending
the capacity of the network by increasing the number of hidden layers both
in the encoder and decoder (KS-16 used only one layer) and increasing the
number of the RNN units in each layer (KS-16 used 100 hidden units in each
layer). We also experiment with the size of character and tag embeddings.
Since the input and the output sequence share most of the vocabulary, we
experiment with shared embeddings.

Transformer

Our Transformer model architecture is adapted from Wu et al. [2021]. It is
also an encoder-decoder architecture, yet the layers are Transformer layers.
Unlike the RNN-based model, it does not employ recurrent connections. It
relies on self-attention which captures the dependencies between different
characters in the sequence.A high-level schema of the Transformer model on
the task of morphological inflection is in Figure 4.23.

The most important hyperparameters are the number of layers (in Figure
4.2, there are 6 layers both in the encoder and the decoder), size of the hidden
layers, the number of self-attention heads, the size of the feed-forward layer,
and embedding size, all affecting model’s capacity. To allow regularization,
we make use of dropout and attention dropout.

Unlike Wu et al. [2021], we use standard positional encoding [Vaswani
et al., 2017].

For more thorough description of the Transformer architecture and its
hyperparameters refer to Section 2.1.4.

Training parameters

Unlike Kann and Schütze [2016] (KS-16) we use SGD or Adam as the optimizer
for training instead of Adadelta.

Since our training dataset is extremely large (approximately 5M lemma-
tag-wordform triples), we need to experiment with the training parameters:
the batch size and the number of training steps, which together influence the

3adapted from https://jalammar.github.io/images/t/The_transformer_
encoder_decoder_stack.png
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Figure 4.2 Transformer schema: 6-layer encoder-decoder on the task of morphological
inflection.

number of epochs (see equation (4.1)).

# epochs = (batch size) · (train steps)
train size (4.1)

For example, with batch size 1000 we need approx. 5000 training steps to
perform one epoch of training, and with batch size 20 as used by KS-16, we
would need 250k training steps to complete one epoch.

Consequently, we experiment with larger batch size and still with lower
number of epochs, compared to KS-16 and Wu et al. [2021]. See Section 5.4
for reports of experimenting with training parameters.
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Chapter 5

Experiments and results

In this chapter we describe the experiments we performed and the obtained
results on our datasets.

We start by describing the metrics used for evaluation and briefly re-
minding which data are used for the experiments. Then we evaluate all
the systems on the development data. First we describe the evaluation of
baseline performance. Then we report experiments with our retrograde model
and our seq2seq models and the process of choosing the best paramaters
(configuration). Finally we report and compare results of all the systems
on the test and test-oov datasets. Moreover we evaluate our best system
on SIGMORPHON’s 2022 dataset for several languages and compare the
performance with some other systems.

Computational resources were provided by the e-INFRA CZ project
(ID:90254), supported by the Ministry of Education, Youth and Sports of the
Czech Republic.

5.1 Evaluation setup

5.1.1 Metrics
To evaluate the performance of our models, we use two metrics, both utilized
in SIGMORPHON’s 2017 Shared task [Cotterell et al., 2017]:

1. form accuracy (FA): is the predicted form (paradigm cell) correct? (5.1)

2. full-paradigm accuracy (FPA): is the complete paradigm table correct?
(5.2)

FA = #(correctly predicted forms)
#(all existent gold forms) (5.1)
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FPA = #(correctly predicted full paradigm tables)
#(all lemmata) (5.2)

We always report both the accuracies in percent (but without the % sign).
Unlike Cotterell et al. [2017], we do not use any metric to reflect the

Levenshtein distance of the predicted form from the gold target form. We
consider the exact match accuracy: the predicted form is either correct or
not.

Full-paradigm accuracy is computed per lemma, while the form accuracy
is computed per form. The form accuracy of a system is always higher (or
equal) to the full-paradigm accuracy.

Since all our datasets contain special tokens for non-existent forms, and
the test-oov dataset contains multiple possible forms for some paradigm cells,
we need to deal with it properly.

Therefore we define our evaluation in the following way:

• A predicted form is ignored if it is marked as non-existent in the gold
data.

• A predicted form is considered correct if it is not ignored and it is equal
to the target gold form. If multiple correct answers are possible, we
accept any string from the correct set.

• A predicted form is considered incorrect otherwise (if it is not ignored
and it is not equal to any of the possible target forms).

• A lemma (paradigm table) is considered incorrect if it contains any
incorrect form, otherwise it is considered correct.

• The full-paradigm accuracy is computed over all lemmata and the form
accuracy is computed over the existent forms (forms that are not marked
as non-existent in the gold data).

In simple terms, we do not care what the model produces for the paradigm
cells marked as non-existent (we do not consider the produced form neither
correct nor incorrect).

If our aim were to produce a model that can also recognize whether a
target form exists or not, it would be sensible to evaluate also the predictions
on the non-existent forms.
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lemma tag (case question) predicted form (gold form)

Dunaj
S4 (vidím) Dunaje (Dunaj)
P1 (ti/ty/ta) Dunaji (Dunaje)
P5 (volám) Dunaji (Dunaje)

cín S2 (bez) cína (cínu)

Table 5.1 Inspection of results: example of incorrectly inflected forms.

5.1.2 Logs: inspection of results
To be able to focus on specific errors produced by the model, we log the
evaluated predictions.

For every lemma that contains some incorrectly predicted forms we log
the lemma together with the incorrect predictions. Each form is marked by
the tag and the case question describing the corresponding paradigm cell.
The gold target form is included in parentheses.

In Table 5.1 we can see an example from the log file for two lemmata:
Dunaj (the river Donau) and cín (tin). For lemma Dunaj there are three
incorrect forms (one in singular, two in plural), meaning that the rest 11
forms were correct. For the lemma cín there is only one incorrect form.

5.1.3 Data used
We use the train set (360k lemmata) for training the models (extracting the
paradigms in the retrograde model). For development of the models, adjusting
the hyperparameters and choosing the best configuration (Sections 5.2, 5.3,
5.4) we use the development set (44k lemmata). The test set and test-oov set
are only used for the final evaluation and comparison of all models (Section
5.5 exclusively). For the comparison of our best model on a standard dataset
we use the SIGMORPHON’s 2022 dataset for all development languages that
included large training dataset (18 languages, excluding Czech but including
Slovak).

5.1.4 Upper bound on accuracy
Since we included homonyms in the datasets, there are some lemma-tag pairs
that are equal but have different target form. Therefore it is not possible to
achieve 100% accuracy (at least for any deterministic model that for a given
lemma and tag predicts always the same form).

Accordingly there is an upper bound on accuracy for every dataset. The
upper bound for the full-paradigm accuracy can be computed simply: it is
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the number of unique lemmata divided by the total count of lemmata (if
there are two lemmata with different paradigm tables, only one of them can
be predicted correctly). The upper bound for the form accuracy is always
higher than the upper bound for the full-paradigm accuracy.

To reflect this property of our datasets, we include the upper bound on
the full-paradigm accuracy to the evaluation and comparison (Oracle system).

5.2 Baselines
The baselines are described in Section 4.1. Here we discuss the technical
aspects of running some of the systems on our data, and evaluate all baselines
on development data.

5.2.1 Non-neural SIGMORPHON
We start by running the non-neural baseline on 2022 SIGMORPHON data
[Kodner et al., 2022], evaluating the predictions using their script for evaluation
and checking that result are identical to those reported by the organizers.
Our evaluation method aims beside other at evaluation of the full-paradigm
accuracy, and as such it relies on having whole paradigm tables in the data,
and thus is not suitable for evaluation of predictions on SIGMORPHON data
(which rather consists of individual forms).

After checking that the system has the same results as the system actually
reported, we run it on our data converted to the SIGMORPHON data format.
Although the authors claim that the system was built for speed of application
[Cotterell et al., 2017], we observe exceptionally slow performance on our large
datasets (360k training lemmata, 44k development lemmata): extraction of
the rules from training data took approximately 2 hours, and prediction of all
forms for the development lemmata took almost 5 days when running on one
CPU. We adjusted the code by removing the evaluation parts, which included
counting of accuracies for unseen lemmata and unseen features separately,
leaving there the production of predicted forms only. This modification sped
it up and the prediction of forms for development data took less than 2 days
(the speed is approx. 4 predicted forms per second). That is still quite slow.

5.2.2 Neural SIGMORPHON
As with the non-neural baseline, we replicate the experiments on SIGMOR-
PHON data with the neural one too. Nevertheless, although the default
setting of the baseline seems to be consistent with its description [Pimentel
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transformer batch steps epochs FA FPA
inp-inv 400 20k 2 95.33 87.71
inp-inv 800 20k 4 95.54 88.47
inp-inv 1200 20k 5 95.60 88.22
inp-inv 2000 20k 8 95.71 89.02
inp-inv 400 100k 8 95.72 89.17
inp-inv 400 150k 12 95.82 89.62
inp-inv 800 150k 24 95.93 89.89
vanilla 400 20k 2 95.31 87.75
vanilla 800 20k 4 95.54 88.22
vanilla 1200 20k 5 95.63 88.34
vanilla 2000 20k 8 95.74 88.93
vanilla 400 100k 8 95.73 89.25
vanilla 400 150k 12 95.84 89.46
vanilla 800 150k 24 95.96 89.98

Table 5.2 SIGMORPHON neural baselines - development evaluation. The baselines
trained with different batch size and for different number of maximal training steps.
The number of epochs is equal to the number of checkpoints that are available for
model selection. inp-inv = input-invariant transformer [Wu et al., 2021], vanilla =
standard vanilla transformer [Vaswani et al., 2017]. FA = form accuracy, FPA =
full-paradigm accuracy, both in %.

et al., 2021; Wu et al., 2021], we obtained slightly different results of the
input-invariant transformer on SIGMORPHON’s 2022 data (both in small
and large data conditions). The results are not consistently worse nor better.
In most of the languages the difference in accuracy is up to 1 percentage point
in the large data condition and up to 3 points in the small data condition, yet
in some languages the accuracy of our run of the experiment is improved by
up to 41% over the reported results (in both data conditions). Nonetheless,
since the results are either better than reported or only slightly worse, we
think that we can still use the systems for comparison, yet keeping in mind
that the setting may be to some degree different from the setting of baselines
reported in the shared task.

A more significant issue is the impossibility of using model selection
with their setting of hyperparameters together with our dataset, as already
discussed in Section 4.1.3.

To allow the usage of development data to choose the best model amongst
several checkpoints, we apply at least some experiments with increased batch
size and number of training steps. We report the results of these experiments
in Table 5.2.
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baseline FA FPA
Copy-base 22.53 1.53
Sklonuj.cz 88.72 74.19
SIG non-neural 94.60 87.95
SIG inp-inv 95.33 87.71
SIG vanilla 95.31 87.75
SIG inp-inv long-train 95.93 89.89
SIG vanilla long-train 95.96 89.98
oracle > 99.18 99.18

Table 5.3 Baselines - development evaluation. SIG non-neural = SIGMORPHON non-
neural baseline, SIG inp-inv = SIGMORPHON 2021 neural baseline - input-invariant
transformer with default setting, SIG vanilla = SIGMORPHON 2021 neural baseline -
vanilla transformer with default setting, long-train = the same with longer training (24
epochs).

The baselines without any change in training parameters perform relatively
well, yet the number of epochs is too low. We can see that both accuracies
improve when increasing the batch size and more significantly when increasing
the number of train steps. They achieve the best results when training for
150k steps with batch size 800, which is the largest training we tried. It seems
that it could be beneficial to try to extend the training more. Nonetheless,
with increasing batch size and training steps increases also the need of
computational resource and training time, and therefore we leave it here for
future research.

For final evaluation we choose the baselines with original setting (batch
size 400, trained for 20k steps) and the best models with longer training(batch
size 800, trained for 150k steps).

5.2.3 Baseline results
We report the results of all the baselines on the development dataset in Table
5.3.

The performance of the copy baseline reflects the properties of the dataset:
in all paradigm tables together, 22.5% of the forms are equal to the lemma,
and 1.5% of lemmata are inflexible (all forms are equal to the base form).

The rule-based system skloňuj.cz performs poorly compared to SIGMOR-
PHON baselines, in both accuracies. SIGMORPHON non-neural baseline
outperforms the neural baselines (with default setting) in the full-paradigm
accuracy, but achieves worse result in the form accuracy. The best performing
baseline is SIGMORPHON vanilla Transformer with long training, achiev-
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Model trainsize combine FA FPA
Copy-baseline - - 22.53 1.53
Retrograde 1 1 22.63 1.61
Retrograde 100 64 83.17 72.95
Retrograde 800 512 90.96 81.35
Retrograde 80k 65536 94.01 87.00
Retrograde 250k 131072 94.52 88.08
Retrograde 360k 131072 94.67 88.43

Table 5.4 Retrograde model - partial development results: combine=max number of
paradigms for combination, trainsize = number of training lemmata.

ing almost 96% in the form accuracy and almost 90% in the full-paradigm
accuracy.

However, we can see that there is still place for improvement, since the
gap between the best achieved result and the best possible result achievable
on the dataset by a deterministic system (reflected by the entry of oracle
system) is almost 10% in the full-paradigm accuracy and more than 3% in
the form accuracy.

5.3 Retrograde model
In our experiments, we used the training dataset as the known lemmata
with full paradigm tables. We built the retrograde model and evaluated the
performance on development data.

In total, we performed 319 experiments, changing the number of training
paradigms used to build the model and changing the maximal number of
paradigms allowed to combine. The latter can be applied when there are
multiple training lemmata that have the same longest common suffix with
the given lemma, and therefore there is no single lemma to be used as the
paradigm for inflection. In such case it is possible to restrict the maximal
number of lemmata to combine.

We investigate performance for 27 several different sizes of training set
(from a single training lemma up to the full training set containing 360k
lemmata). For the maximal number of combinations we try the powers of 2,
not examining numbers of combinations that are larger than the training size.

We observed that for a fixed number of training paradigms, the best
performance was achieved when allowing as much combinations as applicable.
Nevertheless, for some training set sizes there were exceptions, where a higher
number of combinations led to a slight drop in accuracy, which we guess
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Figure 5.1 Retrograde model development evaluation with different sizes of training
dataset. Train size = count of lemmata in the training dataset. The horizontal axis
corresponds to the experiments that we carried out, it is neither linear nor logarithmic.

was caused by the specifics of the development dataset. For each size of
training set we therefore report the results for the largest number of allowed
combinations.

In Table 5.4 we present selected results for some training set sizes. Figure
5.1 plots the relation between the size of training dataset and accuracy on
development dataset. Full results are reported in Appendix A.

Generally, the more training data we have, the better results we get.
It is interesting to note that while the best achieved form accuracy is

94.7% and the best achieved full-paradigm accuracy is 88.4%, even with 800
training paradigms we already surpass both 90% in form accuracy and 80%
in full-paradigm accuracy. Moreover, already with 80k paradigms we achieve
94% form accuracy and 87% full-paradigm accuracy. In addition, even with
train size 1 (that is, when randomly choosing one training example as the
paradigm for all lemmata in development set) we surpassed the accuracy
achieved by the copy baseline (yet this can be caused by having a bit of luck
when choosing the one random example).

From the results we can see that if there are no issues with used disk space
nor with speed of prediction, the best setting is to allow as many training
paradigms as possible and also make no restrictions about the maximal
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number of combinations.
The model we choose for final evaluation is therefore the one trained on the

full training set (360k lemmata) and with maximal number of combinations
217.

5.4 Seq2seq model(s)
In this section we report the workflow of our experiments with RNN-based
encoder-decoder and with the Transformer model. We discuss the important
hyperparameters and their values we found most appropriate. All results we
report here are on the development set.

All experiments were conducted using the OpenNMT library. It uses
token-wise cross-entropy loss as the training loss for seq2seq models.

Both for the RNN architecture and the Transformer we choose the best
trained model for final evaluation.

All the models where trained and evaluated on one GPU. To allow repro-
ducibility of the experiments, we used a single predefined random seed for all
of them.

In general, it seems that overfitting is not an issue with our datasets,
probably because the training set is extremely large.

5.4.1 RNNs
We investigate using stochastic gradient descent (SGD) and Adam optimizers
for training. For both of them we use the learning rate recommended by
OpenNMT: 1.0 for SGD and 0.001 for Adam. We always use the whole
sequences (not individual characters) for batching. Unless we explicitly state,
we use the default setting from OpenNMT1. In all experiments we use LSTM
as the RNN type both in the encoder and the decoder, and we use 1000
warmup steps in training.

We limit the vocabulary size for the embeddings to 50k distinct “words”
(characters and tags in our task), which has no effect since the number of
distinct characters and tags in our dataset is less than 200. We limit the
length of the source and the target sequences to 150 characters. Nor this has
any effect because the sequences in our dataset are short. When using shared
embeddings for the encoder and decoder, we use also shared vocabulary.

Training for high number of epochs with small batch size takes too much
time. Due to limited amount of computational resources we decide to increase
the number of epochs by using larger batch sizes (up to 512).

1OpenNMT-py v3.0.4
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model description steps epochs FA FPA
LSTM-2 emb=32,lay=2,batch=20 20k 0.08 74.40 48.34
LSTM-3 lay=2,emb=500,batch=64 20k 0.25 94.00 80.28
LSTM-13 emb=500 20k 1 95.13 85.62
LSTM-14 emb=500,batch=512 20k 2 94.92 84.98
LSTM-17 40k 2 95.16 86.58
LSTM-18 emb=256 40k 2 95.04 85.32
LSTM-19 emb=64 40k 2 95.26 86.54
LSTM-20 60k 3 95.62 88.71
LSTM-21 SE 60k 3 95.67 88.63
LSTM-22 emb=96,SE 60k 3 95.68 88.70
LSTM-23a SE 120k 6 95.94 89.66
LSTM-23b SE 240k 12 95.95 89.70

Table 5.5 LSTM SGD-trained dev evaluation. All systems: size of hidden layers 500.
Unless stated otherwise, batch size is 256 (batch), number of hidden layers 4 (lay),
word-vec size for embeddings 128 (emb). SE=shared embeddings between the encoder
and the decoder (by default not shared)

It is important to note that we did not perform exhaustive parameter
tuning. Therefore all conclusions about how the hyperparameters affect the
model performance are rather our tentative hypotheses than definite claims.

Training with SGD

We report the results of experiments of training RNN-based encoder-decoder
with SGD in Table 5.5. In the following paragraphs, we refer to the table by
model name.

LSTM-2, 3, 13 With SGD, we verified that training for less than 1 epoch
(omitting a random part of the training set) leads to performance drop in
both accuracies, more significantly in the full-paradigm accuracy.

LSTM-13, 14 It seems that the longer we train the models, the better, at
least up to the extent we were able to test. Yet some experiments indicate
that this should not be led by unlimitedly increasing the batch size, but
rather by increasing the number of training steps. Increasing the batch size
too much can lead to performance drop.

LSTM-22, 23a, 23b Increasing the number of epochs by increasing the
number of steps leads to an improvement.
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LSTM-13 up to 23 In all relevant experiments we run with SGD (those
that were trained for at least one epoch), the capacity of the model remained
almost the same, with minor changes in the setting of embeddings (embedding
size, shared embedding between encoder and decoder). The number of layers
both in the encoder and the decoder is set to 4 and their size is 500. We use
the standard one-directional RNN both in the encoder and in the decoder.
We use Luong attention [Luong et al., 2015] (named “general” in OpenNMT).

LSTM-17, 18, 19 We tried several different embedding sizes (64, 96, 128,
256). It seems that embedding size 256 is too large - a model with embedding
size 256 performed worse than the same model with embedding size 128,
which performed comparably to the same model with embedding size 64.

LSTM-20, 21 Sharing the embeddings between encoder and decoder seems
to have only minor effect on the model’s performance. The experiment we
executed showed a slight improvement in the form accuracy and a slight drop
in the full-paradigm accuracy when using shared embeddings.

LSTM-23b The best performing LSTM model trained with SGD has shared
embeddings of size 128, 4 encoder and 4 decoder layers of size 500 and was
trained for 240k steps with batch size 256 (approx. 12 epochs). On the
development set it achieved form accuracy 95.95% and full-paradigm accuracy
89.7%.

Training with Adam

Next, we try training the models with Adam [Kingma and Ba, 2017] (learning
rate 0.001) instead of SGD. We extensively reduce the capacity to 1 layer
of size 100 and embedding size 64. Except for one experiment performed
to compare different attention types, we use Luong attention [Luong et al.,
2015]. In all experiments we use shared embeddings, bi-directional RNN in
the encoder, and we train with 4k warmup steps. We report the results in
Table 5.6.

LSTM-26, 27 We start by training with batch size 20 (used by Kann and
Schütze [2016]) for 1 epoch and 4 epochs, without any improvement in longer
training.

LSTM-28 Increasing the capacity by setting the hidden layer size to 150
units, we obtain an improvement in both accuracies.
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model description ep FA FPA
LSTM-26 1 94.82 85.64
LSTM-27 steps=1040k 4 94.82 85.64
LSTM-28 hid=150 1 94.94 86.05
LSTM-29 hid=150,attn=Bahdanau 1 94.93 85.95
LSTM-30 hid=200 1 95.14 86.76
LSTM-31 hid=250 1 95.13 86.73
LSTM-32 hid=250,steps=520k 1 94.98 86.26
LSTM-33 lay=2 1 94.83 85.96
LSTM-34 lay=2,steps=1080k 4 94.83 85.96
LSTM-35 lay=2,hid=150 1 95.12 86.82
LSTM-36 lay=2,batch=128,hid=150 7 95.67 88.41
LSTM-37 lay=2,batch=256,hid=150 13 95.83 89.11
LSTM-38 lay=2,batch=32,hid=150,steps=2M 13 95.31 87.39
LSTM-39 lay=2,batch=400,hid=150 21 95.87 89.04
LSTM-40 lay=2,batch=256,hid=200 13 95.97 89.44
LSTM-41 lay=2,batch=256,hid=250 13 95.94 89.46
LSTM-44 lay=2,batch=256,emb=128,hid=200 13 95.98 89.46
LSTM-45 lay=3,batch=256,emb=128,hid=200 13 95.96 89.26
LSTM-46 lay=3,batch=256 13 95.62 88.19
LSTM-47 lay=2,batch=256,emb=16 13 95.16 86.70

Table 5.6 LSTM Adam-trained dev evaluation. ep=epochs. All systems: learn
rate=0.001, brnn encoder, warmup4k, shared embs. Unless stated otherwise, batch
size is 20 (batch), steps 260k (steps), number of hidden layers 1 (lay), hidden layer
size 100 (hid), word-vec size for embeddings 64 (emb), Luong attention (attn).
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LSTM-28, 29 We compare utilizing Luong attention [Luong et al., 2015]
(“general” in OpenNMT, default in OpenNMT) and Bahdanau attention
[Bahdanau et al., 2016] (“mlp” in OpenNMT, used by Kann and Schütze
[2016]) and we see that a model with Bahdanau attention performs slightly
worse than a model with Luong attention.

LSTM-26, 28, 30, 31 We try four different values for the hidden layer
size (100, 150, 200, 250), obtaining the best results with the value 200.

LSTM-31, 32 With hidden size 250 we compare training the model with
two different (batch size, train steps) pairs, both corresponding to one epoch,
obtaining better results with batch size 20 and 260k train steps than with
batch size 10 and 520k train steps.

LSTM-26, 33 Using two layers of size 100 instead of one layer of the same
size leads to a slight improvement in both accuracies.

LSTM-33, 34 However, even in this case, training for more steps does not
lead to almost any further improvement.

LSTM-35, 31 Nevertheless, increasing the hidden size to 150 leads to
improvement and we surpass the best model with 1 layer in the full paradigm
accuracy.

LSTM-36, 37, 38 We achieve more significant improvement by increasing
the batch size up to 256 (and therefore increasing the number of epochs up
to 13). Moreover we show that a model trained for more steps with smaller
batch size (corresponding to approx. the same number of epochs) performs
significantly worse, particularly in the full-paradigm accuracy. This does not
correspond to the general trend of using smaller batch size for RNN-based
encoder-decoder architectures for morphological inflection [Kann and Schütze,
2016].

LSTM-37, 39 Further increasing the batch size to 400 leads to a slight im-
provement in the form accuracy, yet the full-paradigm accuracy decreases a bit.

We continue performing experiments with batch size 256 and 260k training
steps (approx. 13 epochs).
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model optimizer description epochs FA FPA
LSTM-23b SGD see Table 5.5 12 95.95 89.70
LSTM-44 Adam see Table 5.6 13 95.98 89.46

Table 5.7 LSTM: comparison of best systems trained with SGD (learning rate 1.0)
and with Adam (learning rate 0.001).

LSTM-47 Reducing the embedding size to 16 and the hidden size to 100
leads to a drop in both accuracies, yet not exceptional.

LSTM-41 On the other hand, increasing the hidden layer size to 250 leads
to our best result in full-paradigm accuracy with Adam training, 89.46%.

LSTM-40, 44 With hidden layer size 200 and embedding size 64 we achieve
better result in the form accuracy, and after increasing the embedding size
to 128 we obtain the best performing LSTM model trained with Adam:
it achieves 95.98% in the form accuracy and 89.46% in the full-paradigm
accuracy.

LSTM-45, 46 The models with 3 hidden layers perform slightly worse.

Best LSTM model

We showed that our models perform better when trained with larger batch
size (256) and with less training steps, compared to training the same number
of epochs with smaller batch size and more training steps.

Regarding the form accuracy, we achieved the best results on the devel-
opment set with the Adam-trained model LSTM-44: 2 layers of size 200
both in the encoder and decoder, with shared embeddings of size 128, with
bi-directional LSTM in the encoder and training with batch size 256 for
260k steps (approx. 13 epochs) with 4k warmup steps. With this model
we achieved almost 96% in the form accuracy and almost 89.5% in the full-
paradigm accuracy. The best SGD-trained model (LSTM-23b) achieved
comparable accuracies (slightly lower FA, slightly higher FPA, see Table
5.7 for comparison). Deciding based on the form accuracy, we choose the
Adam-trained model LSTM-44 for final evaluation.

Technical obstacles

During our experimental work, we encountered several issues. We mention
them so that other researchers can learn from our mistakes.
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Initially, we draw conclusions about some hyperparameters without know-
ing that we are not training at the whole dataset. An important reminder:
with the batch size 20 and the size of the train set 5M, we need 250k training
steps to perform one epoch. When training for less steps, we omit a random
part of the train set.

Initially, training took extreme amounts of time because we did not set the
validation batch size parameter, which is by default set to 32 only. With our
large development set it led to the fact that during the training we spent more
time by evaluating the model on the development set than by performing the
training steps themselves.

5.4.2 Transformers
In addition to experiments with LSTM-based encoder-decoder, we conducted
several experiments with Transformers. We investigated three different set-
tings. One is adapted from an OpenNMT tutorial, the other one is adapted
from Wu et al. [2021] and the last one is a Transformer with extremely low
capacity.

Unless explicitely stated, we use the gradient accumulation with count of
4 batch steps, which means that the gradient is accumulated for 4 batches
before performing one training step (weights update). It means that the
effective batch size is 4 times larger than the batch size we set.

Mini-transformer

All experiments with mini-transformer are reported in Table 5.8. Initially it
seemed like a good idea to start with a low capacity model and gradually
increase it. Therefore we tried a Transformer model with extremely low
capacity: only 1 layer of size 64, embedding of size 64, 1 attention head,
feed-forward of size 128. We train it with dropout and attention dropout set
to 0.2 and with batch size 32 (effective batch size 128 due to accumulation of
gradient).

TRM-4, 5, 6 We report results for training the model for 51, 128 and
305 epochs. The model is steadily improving, yet the model trained for the
longest time does not even get 70% in the form accuracy, although being
trained more than 3 days.

TRM-8 Due to the long training time we rather try increasing the batch
size to 512 (effective batch size to 2048), yet it is trained for more epochs
than the previous models, but achieves worse results.
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model description steps epochs FA FPA
TRM-4 2M 51 31.13 0.28
TRM-5 4M 102 50.52 0.70
TRM-6 12M 305 67.94 35.80
TRM-8 eff_batch=2048 2M 813 59.71 19.76
TRM-7a heads=2 2M 51 27.97 0.25
TRM-7b heads=2 4M 102 45.32 0.39

Table 5.8 Transformer mini dev evaluation. All systems: 1 layer of size 64, embed-
ding of size 64, feed-forward layer of size 128, dropout=0.2, attention dropout=0.2.
Unless stated otherwise, batch size=32 (effective batch size 128 (eff_batch)), used 1
attention head (head).

TRM-7a, 7b We also try a model with 2 attention heads, but we achieve
worse results than with 1 head.

Consequently we decide not to perform more experiments with the small-
capacity Transformer. Nonetheless we think that in future research it could
be beneficial to experiment with the small-capacity Transformer, gradually
increasing the capacity and seeing when it starts to achieve acceptable results.

Transformer from Wu et al. [2021]

All corresponding experiments are reported in Table 5.9.
In the next experiments with the Transformer architecture, we adapt the

hyperparameters from Wu et al. [2021]: The model has 4 layers of size 256
both in the encoder and in the decoder, 4 attention heads, the feed-forward
network has size 1024. It is trained with Adam with inverse square root
learning rate decay, starting at learning rate 0.001 with beta parameter 0.98.
We use layer normalization and dropout 0.3, attention dropout 0.1 and label
smoothing 0.1.

TRM-12, 13a We train it with batch size 400 (setting accumulation of
gradient to just one step, effectively having batch size 400) for 20k steps (1.6
epochs). Moreover we train the same model with batch size 800 for 10k steps
and we obtain better results with the smaller batch size.

TRM-13b, 15 After increasing the number of training steps up to 300k
the performance increases.

TRM-9a-c, 10a-c Using larger effective batch size (1600 or 16384) and
training for more steps (up to 500k) together lead to further improvement,
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model description steps epochs FA FPA
TRM-9a accum=4 20k 6 88.96 65.25
TRM-9b accum=4 200k 63 94.10 83.22
TRM-9c accum=4 400k 127 94.53 85.17
TRM-10a accum=4,batch=4096 100k 325 93.48 80.54
TRM-10b accum=4,batch=4096 300k 975 94.33 84.41
TRM-10c accum=4,batch=4096 500k 1625 94.60 85.54
TRM-12 20k 2 87.58 62.88
TRM-13a batch=800 10k 2 86.52 61.81
TRM-13b 200k 16 94.02 82.66
TRM-15 300k 24 94.31 83.73

Table 5.9 Transformer from [Wu et al., 2021] dev evaluation. All: The model has 4
hidden layers of size 256 both in the encoder and in the decoder, 4 attention heads, the
feed-forward network has size 1024. It is trained with Adam with inverse square root
learning rate decay, starting at learning rate 0.001 with beta parameter 0.98. We use
layer normalization and dropout 0.3, attention dropout 0.1 and label smoothing 0.1.
Unless stated otherwise, we use batch size 400 (batch), and accum_count 1 (accum).
Effective batch size can be computed as eff_batch=batch*accum.

yet not surpassing the best performing LSTM model we have.

Transformer from tutorial

Further, we try the Transformer setup from an OpenNMT tutorial2 (focused
on machine translation). All experiments with such Transformer are reported
in Table 5.10.

TRM-2 Training the model as suggested by the OpenNMT tutorial, only
changing the number of training steps from 3k to 100k, the number of warmup
steps from 1k to 4k, and omitting early-stopping, leads to surprisingly good
results.

The model has extremely high capacity: embeddings of size 512, 6 layers
of size 512, 8 attention heads and feed-forward of size 2048. It is trained with
Adam with “noam” decay, starting at learning rate 2, with beta parameter
0.998. For regularization it uses layer normalization and dropout 0.1, attention
dropout 0.1 and label smoothing 0.1. It is trained with a very large batch size
(4096) and with accumulation count 4, yet the batches are built per tokens
(not per whole sequences) and therefore we cannot directly compare the batch

2https://github.com/ymoslem/OpenNMT-Tutorial/blob/main/2-NMT-Training.
ipynb
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model steps eff batch epochs FA FPA
TRM-2 100k - - 94.80 85.67
TRM-3 100k 256 5 95.55 88.41
TRM-4 200k 128 5 95.39 88.05
TRM-11 40k 4096 32 96.08 90.20

Table 5.10 Transformer from tutorial - dev evaluation. TRM-2 model has dropouts
(dropout and attention dropout) set to 0.1 and hidden layer size and word-vec embedding
size to 512. Other models have dropouts 0.2, hid=256, word-vec=256. Due to batching
per tokens in TRM-2 it is not possible to determine neither the effective batch size
(eff batch), nor number of epochs. TRM-2,3,4 were evaluated on a smaller subset of
development dataset (10k lemmata randomly sampled from the whole 44k).

size here and in other experiments, neither compute the number of epochs
for this experiment.

TRM-3, 4 In the next experiments we build batches by sentences, not by
tokens, increase dropout and attention dropout from 0.1 to 0.2, decrease the
hidden size and word-vec (embedding) size from 512 to 256. We conduct
two different experiments with the same number of epochs but changing the
number of training steps and the batch size. We show that in this setting the
model trained with larger batch for less training steps performs better than
the other one.

TRM-11 Therefore we execute another experiment with even larger batch
size (1024, effective batch size 4096). After training for 40k steps (32.5 epochs)
we outperform all the models we had, surpassing 96% in the form accuracy
and 90% in the full-paradigm accuracy on the development set. It is our
overall best performing model.

Best Transformer model

The best performing Transformer model we trained is the TRM-11 with
architecture adapted from the OpenNMT tutorial, trained with large batch
size (effective batch size 4096). Since the Transformer is the current state-of-
the-art in the task of morphological inflection and since we outperformed the
thoroughly tuned LSTM-based models by conducting just a small number
of experiments, changing the recommended setting just a little, we think
it would be beneficial to execute more experiments to achieve even better
results. Nonetheless, we did not have enough computational resources and
time to do it and we leave it to future research.
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repre src sequence tgt sequence FA FPA
Base j a b l k o # S 7 j a b l k e m 95.97 89.44
TagBeg S 7 # j a b l k o j a b l k e m 95.84 88.79
TagJoin j a b l k o # S7 j a b l k e m 95.97 89.36
NoSep j a b l k o S 7 j a b l k e m 95.90 89.25
Reverse o k l b a j # S 7 m e k l b a j 95.85 89.21
Complex S7 j a b l k o j a b l k e m 95.96 89.21

Table 5.11 Comparison of different data representations. Measured performance of
model LSTM-40 on dev set.

5.4.3 Optimal data representation
As we suggested in Section 4.3.2, we conduct experiments to compare using
different representation of the source sequence and target sequence for seq2seq
models.

We try six different representations for the source sequence (lemma and
tag), while the target sequence remains the same except for the representation
with reversed strings.

We convert our datasets to all formats and train the LSTM-40 setup on 6
versions of the training data and evaluate it on the corresponding versions of
the development dataset. Comparison of the results, together with examples
of the source and target sequence is in Table 5.11.

To our surprise, the usage of the baseline data representation outperforms
all other suggested representation in both accuracies, although the difference
in performance is minor. The data representation with joined tag has almost
the same result as the baseline representation, suggesting that tokenizing the
tag does not make much difference.

The superior performance of the baseline representation (yet with only
minor difference compared to other representations) could be caused by the
fact that the data representation we initially chose was indeed the best
one. However, we think that the reason is rather that we tuned the model
hyperparameters while using the baseline data representation and therefore
the model setting is adapted to that particular representation.

Nevertheless, these experiments show that the representation we chose is
suitable for our task.

5.4.4 Dropping data
As discussed in Section 4.3.2, it is unclear whether it is better to drop the
lemma-tag-form duplicates from the training data or keep them, and the same
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train-data FA FPA
original 95.97 89.44
no lemma-tag-form duplicates 95.99 89.29
no non-existent-form entries 96.01 89.39

Table 5.12 Comparison of training with or without lemma-tag-form duplicates and
non-existent forms. Measured performance of model LSTM-40.

for the entries with non-existent forms.
We conduct experiments to measure the impact of dropping such entries

to the model performance. We use the hyperparameters and training setup
of model LSTM-40. To measure the effect of dropping the lemma-tag-form
duplicates from training data, we first train it with the original training set
and then with a smaller dataset where the duplicates are removed.

The comparison is in Table 5.12. We can see that omitting the duplicates
or non-existent forms from the training set leads to a slight improvement
in the form accuracy, but also to a slight deterioration in the full-paradigm
accuracy. Above all, the gaps are really small and it seems that dropping any
of the suggested entry types make almost no difference. Therefore we decide
to keep both types of entries in the training data.

5.4.5 Negated lemmata
The ability of Retrograde model to inflect negated lemmata when trained on
data without negations is clear, because it inflects the words based on the
ending segment which does not change by adding prefix “ne-” (the prefix that
forms negation in Czech). Nonetheless, the ability of doing so with seq2seq
models is not so clear. If the model has never seen a lemma with prefix “ne-”
during training, it is not sure what it will predict for such lemma.

To evaluate the ability of seq2seq models trained on data with no negations
to inflect negated lemmata, we conduct the following experiment: create a
“negated” version of the development data, evaluate one of the successful mod-
els on it and compare to evaluation on the non-negated (original) development
set.

As we already mentioned, negation is formed by adding prefix “ne-” (means
not) to the word. If we have a non-negated lemma with its whole paradigm
table, we can create the paradigm table for the negated lemma by adding
“ne-” to all the forms. This is how the Czech language works. However, after
inspecting our original data (MorfFlex) we see that not all nouns in Czech
have a negated variant, e.g. the proper nouns (names).

We decide to build the “negated” version of the development dataset by
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evaluation data FA FPA
original (no negated lemmata) 95.94 89.46
artificial negations 95.87 89.31

Table 5.13 Performance on negated lemmata: comparison of a model trained without
negated lemmata on the original development dataset and on the development dataset
with artificial negations. Measured performance of model LSTM-41.

leaving the proper nouns as they are and changing all the other lemmata
together with their forms by adding the prefix. The negated dataset has the
same size as the original dataset. This approach creates artificial negations
for some lemmata that do not have the negated variant, yet surely it creates
the negated variant from the lemmata actually having them. Consequently,
by evaluating a model on this artificial dataset we obtain the upper bound
on the performance drop we could get when evaluating on the real negated
lemmata.

The results are satisfying: the performance drop is very low, approx.
0.07% in the form accuracy and 0.14% in the full-paradigm accuracy when
running on the negated data.

By this experiment we showed that our models are robust to adding the
prefix “ne-” to the lemmata and therefore are capable of inflecting negated
variant of lemmata when trained without them.

5.5 Final evaluation
In this section we compare all our models and baselines.

We evaluate them on two different datasets: test and test-oov. For full
reminder, refer to Section 3.5. The test set has the same origin as the training
set and the development set (extracted from MorfFlex [Hajič et al., 2020]).
The test set has empty lemma overlap with both train and development set
and therefore fulfils the OOV condition. It contains approx. 44k lemmata
with full paradigm tables. The test-oov dataset is OOV in the strict meaning:
it contains the true OOV words (neologisms). It is relatively small (101
lemmata with full paradigm tables).

The evaluated systems are as follows. We start with the copy baseline
that returns the copy of the lemma for every paradigm cell, followed by
the rule-based skloňuj.cz model, which represents the ready-to-use systems
available on web. We do not evaluate MorphoDiTa [Straková et al., 2014] on
our datasets because of the nature of our evaluation conditions and because
it uses MorfFlex as a database for inflection: it would achieve almost 100%
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Model Form acc. (FA) Full-paradigm acc. (FPA)
test test-oov test test-oov

Copy 22.59 13.13 1.48 0
Sklonuj.cz 88.88 86.22 74.43 55
SIG non-neural 94.78 89.49 88.15 71
SIG vanilla 95.47 87.53 87.29 63
SIG vanilla long-train 96.17 86.51 90.15 55
Retro* 94.85 89.34 88.64 71
LSTM-44* 96.16 86.95 89.80 58
TRM-11* 96.18 87.24 90.44 61
Oracle > 99.23 100.00 99.23 100

Table 5.14 Final evaluation. Models marked with * are our models. Models written
in italics are neural. For further specification of the models, refer to the accompanying
text, and to Chapter 4.

accuracy on our test set and 0% accuracy on the test-oov dataset (because it
was extracted in such a way that the words are not contained in MorfFlex).
Three SIGMORPHON baselines follow: the non-neural baseline, vanilla
transformer with default setting, and vanilla transformer with longer training.

From our own models there is the best chosen retrograde model (built
from the full training dataset and with no restrictions on the maximal count
of combinations during prediction), the best LSTM-based encoder-decoder
with attention (LSTM-44, 2 hidden layers of size 200, trained with Adam for
13 epochs with batch size 256), and the best Transformer model (TRM-11,
6 layers of size 256, 8 attention heads, trained for 32.5 epochs with large
effective batch size 4096).

The oracle system reflects to the property of the dataset to be correctly
predicted by a deterministic system (100% is not achievable on the test set
due to presence of homonyms).

We present the results in Table 5.14.

test dataset On the test dataset, the best performing model is our TRM-11
with almost 96.2% in the form accuracy and more than 90.4% in the full-
paradigm accuracy. In the form accuracy, also the SIGMORPHON vanilla
transformer with long training, and our LSTM-44 model perform almost the
same. All neural models surpass the non-neural models by more than 0.5%
in the form accuracy, yet the SIGMORPHON vanilla with default setting
is outperformed by both the SIGMORPHON non-neural baseline and our
retrograde model in the full-paradigm accuracy. The best performing non-
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neural model is our retrograde model with almost 94.9% in the form-accuracy
and more than 88.6% in the full-paradigm accuracy. The SIGMORPHON
non-neural baseline is only slightly worse with almost 94.8% in the form
accuracy and almost 88.2% in the full-paradigm accuracy. The rule-based
model Skloňuj.cz performs significantly worse than all other models (except
the copy baseline) in both accuracies, not surpassing neither 90% in the form
accuracy, nor 75% in the full-paradigm accuracy.

test-oov dataset The real-world OOV dataset seems much more challeng-
ing, especially for the neural models. The largest gap in accuracy between the
test dataset and the test-oov dataset is showed by SIGMORPHON vanilla
with long training, which drops almost 10% in the form accuracy and almost
35% in the full-paradigm accuracy. The best performing model is the SIG-
MORPHON non-neural baseline with approx. 89.5% in the form accuracy
and 71% in the full-paradigm accuracy, closely followed by the retrograde
model, which achieves the same result in the full-paradigm accuracy and only
slightly worse result in the form accuracy. The best performing neural model
is the SIGMORPHON vanilla transformer with default setting with 87.5% in
the form accuracy and 63% in the full-paradigm accuracy, relatively closely
followed by the TRM-11 model.

This major failure of all systems on the real-world OOV test dataset
suggests possible suboptimality of our training dataset for learning paradigms
of true OOV words, and indicates that further research should be carried out
to investigate this issue. A possible approach is starting by inspecting the
actual predictions of the individual systems on the test-oov dataset3, trying
to find an explanation of the behaviour and checking to what extent the
systems make similar errors.

Release of the best models We release the LSTM-44 model in a ready-
to-use Python library for inflection (for further details, see Chapter 7). The
LSTM model achieves similar results as the Transformer performing best on
the test dataset, and is computationally less expansive and therefore more
suitable for a light-weight library. We release both the TRM-11 model and the
Retrograde model in developer’s repository, available for further investigation
(see Section 6.2.1 for more details).

3Included in the attachment of the thesis. See Section 6.1.2 for specific location.
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5.6 Evaluation on SIGMORPHON 2022 data
To show the performance of one of our best models (LSTM-40) on some
standard dataset and to compare it to another systems, we evaluate it on
SIGMORPHON 2022 data [Kodner et al., 2022]4. Although it does not
contain Czech, it seems to be a convenient dataset for comparison, because it
is the only shared task that extensively evaluates the performance on unseen
lemmata.

Yet it is important to keep in mind that our task is different from the
shared task, and therefore the performance of a model with hyperparameters
tuned on our task can generally be lower. The main differences are: (i) we
aim specifically at Czech while the shared task does not include it in the
dataset, (ii) we use extremely large training dataset (~5M entries) while
the shared task uses relatively little training dataset even in the large data
condition (2k entries), (iii) we aim explicitly at the performance on the unseen
lemmata while the aim of the shared task system is much broader, including
performance on unseen features and other categories, (iv) unlike the shared
task, we include complete paradigm tables in the datasets, and (v) we train
and evaluate on all parts of speech here, although we aimed specifically at
nouns during development of our setup.

We evaluate the performance on all development languages that included
the large training dataset (18 languages5 including Slovak, which is the most
similar to Czech).

To be able to run our models on the SIGMORPHON data6, we convert
it to our format by tokenizing the lemma and the word form to individual
characters, add the special separator token to the end of the source sequence
and then add the morphological features one by one also there. The occurrence
of verbs in the data leads to discovering an issue of our data representation:
our models are not able to generate multiple words (phrase) as a word form
(e.g. nebol by som vzdelávaval as I would not have educated in Slovak). This
is due to the character-level tokenization we perform on our own by splitting
the individual characters by space. An additional space (representing the
actual space between the words) is then irrelevant for training. Therefore we

4We do not evaluate the best model, because we developed it after performing the
evaluation on SIGMORPHON data.

5ang = Old English, ara = Modern Standard Arabic, asm = Assamese, evn = Evenki,
got = Gothic, heb = Hebrew, hun = Hungarian, kat = Georgian, khk = Khalkha Mongolian,
kor = Korean, krl = Karelian, lud = Ludic, non = Old Norse, pol = Polish, poma =
Pomak, slk = Slovak, tur = Turkish, vep = Veps [Kodner et al., 2022]

6see https://github.com/sigmorphon/2022InflectionST/tree/main/part1/
development_languages for examples
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Submitted systems Baselines
Lang CLUZH Flexica OSU TüM UBC Neural NonNeur OUR
ang 76.6 64.4 73.7 71.9 74.1 73.4 68.7 76.6
ara 81.7 65.5 78.7 78.5 65.5 81.9 50.8 79.9
asm 83.3 75.0 75.0 91.7 83.3 83.3 83.3 83.3
got 92.9 41.4 94.1 91.7 91.7 93.5 87.6 91.7
hun 93.5 62.9 93.1 92.8 91.5 94.4 73.1 94.5
kat 96.7 95.7 96.7 96.7 96.7 97.3 96.7 96.7
khk 94.1 47.1 94.1 94.1 88.2 94.1 88.2 94.1
kor 71.1 55.4 50.6 56.6 60.2 62.7 59.0 39.8
krl 87.5 69.8 85.9 57.8 85.4 57.8 20.8 87.5
lud 87.3 92.0 92.9 93.4 88.2 94.3 93.4 83.5
non 85.2 77.0 85.2 80.3 90.2 88.5 80.3 83.6
pol 96.1 85.9 94.9 74.0 95.7 74.4 86.3 96.7

poma 76.1 54.5 70.1 69.4 73.3 74.1 47.8 74.7
slk 93.5 90.0 92.2 70.4 95.7 71.1 92.4 95.2
tur 93.7 57.9 95.2 80.2 92.9 79.4 66.7 95.2
vep 71.5 58.8 70.0 57.5 68.8 59.2 60.4 69.1

average 86.3 68.3 83.9 78.6 83.8 80.0 72.2 83.9

Table 5.15 SIGMORPHON 2022 comparison – Feature Overlap: A test pair’s feature
set is attested in training, but its lemma is novel (our setting). (The languages heb
and evn are excluded because their datasets did not include any such data). Except for
results of our system (OUR=LSTM-40), the table was extracted from Kodner et al.
[2022, Tables 17, 18 – feature rows]. “TüM” is shortcut for “TüM Main”.

introduce another special token to represent the space between words in a
phrase.

After the model produces the output in our format, we convert it back to
SIGMORPHON data format and evaluate it using their evaluation script7.

The test dataset contains approx. 2k lemma-tag-form entries for each
language. The evaluation script reports not only the overall accuracy, but
also the accuracy on different parts of the test set based on the overlap with
the training set. The one relevant to us is “feature overlap”, which means
that the morphological feature has been seen in the training data while the
lemma is novel (that is our setting).

We train the model for 260k steps with batch size 256 (approx. 9.5k
epochs). We save checkpoint each 2k steps (approx. every 73 epochs),
evaluate the overall accuracy on the whole development set and choose the
best performing checkpoint and evaluate it on the test set.

7https://github.com/sigmorphon/2022InflectionST/tree/main/evaluation
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In Table 5.15 we present results in the feature-overlap condition. We
compare the performance with the neural and non-neural baseline and with
all 5 submitted systems evaluated in the feature overlap condition by the
task organizers, including the UBC system [Yang et al., 2022] which achieved
the highest performance accross all evaluation conditions. For description of
other systems see Kodner et al. [2022].

In the feature-overlap condition, our system performs particularly well and
achieves the best score in 6 out of 16 languages. Averaged over all languages,
our system takes shared second place with accuracy 83.9%. We perform
competitively and surpass the non-neural baseline or achieve the same result
in all languages except Korean (kor) and Ludic (lud). It is also interesting
that in all Slavic languages (Polish (pol), Pomak (poma) and Slovak (slk))
included in evaluation we achieve rather high score. We can see that although
we focused specifically on Czech morphology while tuning our setup, the
model performs particularly well when trained and evaluated on other Slavic
languages.

Besides, in the both-overlap condition (both the lemma and feature set
of a test example are attested in the training set, but not together in the
same lemma-tag-form triple) our system achieves the best score in 8 out of
18 languages that included such condition.

For full results in all evaluation conditions, see Tables A.2, A.3 in the
Appendix.

The results shows that our LSTM model is not particularly language
dependent and performs well also with relatively little training data.
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Chapter 6

Implementation details

The first section of this chapter describes the attachment of this work and
the rest some specific details of the implementation.

6.1 Attachment structure
The attachment of this work contains two repositories. The first one,
cz-inflect1, is a simple library for inflection.

The second one, cz-inflect-dev2, is the developer’s repository. It con-
tains all code presented in this work.

Additionally, there is one text file in the attachment, chatGPT.txt with
the original text generated by chatGPT (which we post-edited and used in
section 2.1). It is included to allow complete comparison of the original text
and the post-edited version.

We describe both repositories in the following two sections.

6.1.1 Inflection library
cz-inflect

build.sh
example_usage.py
inflect.py
models

lstm_v0.44.pt
run.sh
requirements.txt

1https://github.com/tomsouri/cz-inflect/releases/tag/BP_official
2https://github.com/tomsouri/cz-inflect-dev/releases/tag/BP-official
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README.md
LICENSE

The inflection library consists of a very simple repository cz-inflect.
The script build.sh serves for simple creation of python virtual environment
and installation of dependencies (listed in requirements.txt). The script
inflect.py is the inflection script itself and can be run for interactive use by
running run.sh. A simple example usage of the inflection system as a python
library is shown in example_usage.py. The released OpenNMT model is
stored in models.

6.1.2 Development repository
cz-inflect-dev

configs/
data

cleaned/
processed/
log/evaluate_models/onmt/experiments/

docs/
inflection_lib/
LICENSE
Makefile
README.md
requirements.txt
runjob.sh
scripts

data_conversion/
data_repre/

setup.py
src/czech_inflection

config.py
data.py
datastructures/
dev_testing/

build_data/
eval_models/

main.py
models/

baselines/
hardcoded/
retrograde_model/
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morfflex/
The directory cz-inflect-dev included in the attachment contains the

development repository of this work. Here we briefly locate the most important
parts of the repository. For simplicity, instead of src/czech_inflection we
write only src.

Data processing Scripts and tools for data processing are located in several
different places. Scripts for MorfFlex data processing, extracting and filtering,
for providing the train-dev-test split and conversion of the data to the format
for neural networks are in src/morfflex. Scripts for processing data from
Čeština 2.0 are in src/dev_testing/build_data. Scripts for conversion of
the data to several different data representations for neural networks are in
scripts/data_repre. Scripts for conversion between our data format and
SIGMORPHON data format are in scripts/data_conversion. Finally, the
Makefile that provides a simple access to some of the data processing steps
lies in the root directory.

Evaluation Scripts for computing the accuracies and evaluating the models
are located in src/dev_testing/eval_models. Checking, whether a pre-
dicted form is considered correct or not, and the specific accuracies are
defined in accuracies.py. The main evaluation script for evaluating the
copy baseline, skloňuj.cz model and the retrograde model, is main.py. The
predictions in the data format for neural networks (produced by seq2seq
models) are evaluated using the script evaluate_onmt_model.py.

Models The retrograde model, and the baselines (skloňuj.cz, SIGMOR-
PHON non-neural and copy baseline) are in src/models. The development
configuration files of the OpenNMT models are in configs, and the scripts
for running the jobs on cluster to train and evaluate the OpenNMT models
lie in scripts. Configuration files of specific models can be found in the log
directory.

Data We omit most of the data because it can be built automatically.
The only data we include are the following: parts of files from the process of
building the test-oov dataset – automatically inflected and manually corrected
version, both in data/processed – and the training, development, test and
test-oov datasets, all in data/cleaned. The training, development and test
set are publicly available and licensed under Creative Commons - Attribution-
NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). They
were automatically extracted from [Hajič et al., 2020]. The test-oov dataset
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was created manually from data from the project čeština2.03 and they are
licensed under the same license.

Logs In the log directory data/log/evaluate_models/onmt/experiments
there are logs from experiments run by the OpenNMT library. To save space,
we omit logs from most of the experiments. However, logs from the final ex-
periments with our 2 final models (one Transformer and one LSTM-based) are
there as an example of log directories. The original config file that was used for
the experiment is always saved in config.yaml. The *predictions.txt files
(if present) contain raw predictions of the models for different datasets. The
*.pred (if present) files contain nicely formatted predictions, and the *.res
files (if present) contain the evaluated predictions together with corrected
errors, as described in Section 5.1.2. The files training_accs.* contain logs
about accuracies during training: both on the training and the development
data (evaluated only on a subset of the large datasets containing 1k lemmata).

Predictions on test-oov We especially mention the location of pre-
diction files on the test-oov datasets. The files are in the log directory
data/log/evaluate_models/onmt/experiments, in the subfolders corre-
sponding to the models included in the final evaluation (see Section 5.5).

Other The scripts for the inflection library are in inflection_lib (notes
on how to install and use it are in Chapter 7.

In data/inner/sklonuj_cz.php lies the original script for skloňuj.cz. It
was provided to us 30th of January, 2022 by the maintainers of the web, under
the license GNU Lesser General Public License 2.1. The version on web4 has
probably been updated since that date and therefore can provide different
inflection than the system we use.

An example of nouns from MorfFlex with unusual tag sets (as described
in data filtering section 3.3.2) as in data/log/strange_tagsets.log.

6.2 Technical details
The project was developed on Linux Mint system. Most of the scripts are
written in python3 or in bash (simple processing scripts and running cluster
jobs). The main python library used in the project is OpenNMT-py.

3https://cestina20.cz/
4https://sklonuj.cz/
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To prepare the whole development directory on a Linux system, you should
perform the following steps:

1. Create a python3 virtual environment in the root directory of the
development repository (cz-inflect-dev/.venv) , e.g. by running
mkdir -p .venv && python3 -m venv .venv.

2. Run make .venv to install the project and the requirements.

3. Run make build_data, if you want to build the data from scratch (not
needed to run the retrograde model).

The Makefile, present in the root directory, controls the installation of
dependencies (to be able to do it automatically it is needed that the name of
the virtual environment folder is specifically .venv) and data downloading
and processing.

After running make build_data it first installs all the dependencies.
Then it downloads MorfFlex, extracts nouns only, shuffles the data, performs
filtering and other processing of the data, removes duplicates, builds the
datasets and converts them to the format for neural network models. The
individual scripts providing the processing lie in src/morfflex.

To be able to run the skloňuj.cz baseline, you need to have installed PHP
7.3 and additionally package php7.3-mbstring.

6.2.1 Run the models
In this section we briefly describe how to run the retrograde model and the
Transformer model TRM-11.

Retrograde model To run the retrograde model, you also need to have
installed the requirements and the project. Then you can simply run the inter-
active script retrograde_model.py, which lies in src/czech_inflection/
/models/retrograde_model/. It will take some time to load the model, but
then it performs inflection relatively quickly. The script itself shows how to
use the retrograde model as a library.

TRM-11 The Transformer model lies in the development directory of the
inflection library: inflection_lib/cz-inflect/. To run the library script
with the TRM-11 instead of LSTM-44, you need to change the path to
the model in the script inflect.py (self-descriptive). If you have already
installed the requirements and the project by running make .venv, then you
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can run it from the root development directory (cz-inflect-dev) by running
.venv/bin/python3 inflection_lib/cz-inflect/inflect.py.

Run on GPU To run the inflection model from the inflection library on
GPU instead of CPU, you need to modify the script inflect.py, specifically
the definition of variable opt in method _inflect_file() (parameter gpu).

6.3 Data format
In our work, we use 2 different data formats: the standard one and the one
for neural networks models.

6.3.1 Standard
In the standard format, there is one entry (row) for each paradigm table,
and it is semicolon-separated list of lemma and its 14 forms (the row has 15
items: the lemma, the singular forms and the plural forms). The following is
a shortened example for lemma dítě (child):

dítě;dítě;dítěte;dítěti;dítě;dítě;dítěti;dítětem;...;dětmi

Non-existent forms are marked by a special token “?” (an example for
lemma nůžky (scissors)):

nůžky;?;?;?;?;?;?;?;nůžky;nůžek;nůžkám;...;nůžkami

In the test-oov dataset, multiple forms in one paradigm cells are allowed.
The character “/” serves to separate multiple forms (an example for lemma
muž (man), which is not in the test-oov dataset):

muž;muž;muže;muži/mužovi;muže;muži;muži/mužové;mužích;...

6.3.2 Data for seq2seq models
In the data format for the seq2seq models there is a separate entry for every
form. Morphological information about the form is encoded to a simple
2-positional tag (first position is number, S=singular, P=plural), second
position is the case (1 up to 7). The source sequence is sharp-separated
lemma and tag, the target sequence is the form itself. Both source and target
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lemma with tag form
m a t k a # S 1 m a t k a
m a t k a # S 2 m a t k y
m a t k a # S 3 m a t c e
m a t k a # S 4 m a t k u
m a t k a # S 5 m a t k o
m a t k a # S 6 m a t c e
m a t k a # S 7 m a t k o u
m a t k a # P 1 m a t k y
m a t k a # P 2 m a t e k
m a t k a # P 3 m a t k á m
m a t k a # P 4 m a t k y
m a t k a # P 5 m a t k y
m a t k a # P 6 m a t k á c h
m a t k a # P 7 m a t k a m i

Table 6.1 Data format for seq2seq models: example of all 14 entries corresponding
to lemma matka (mother).

sequences are tokenized into individual characters. An example is in Table
6.1.

6.4 Evaluation
src/dev_testing/eval_models/ The computing of accuracies is imple-
mented in accuracies.py.

6.5 Retrograde model
In the following paragraphs, we describe more profoundly how the Retrograde
model works and how it is implemented. (For information of how to run it,
refer to 6.2.1.)

6.5.1 Retrograde trie
To search effectively in the whole morphological dictionary, we use a datas-
tructure that we call retrograde trie. It is based on a multi-value trie, which
is a standard character-based trie with the modification that we can store
multiple values for one key. It supports the following operations:
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Figure 6.1 Retrograde trie: example. The trie currently contains five lemmata (hrad,
hrad, frmol, mol and kilomol). The dot inside the node represents the lemma, which is
saved there as a key together with its paradigm table (showed only for lemma hrad).

• add a new value to a node corresponding to a key
• for a given node, return all values that are stored in the corresponding

sub-tree (the subtree is traversed by depth first search, the value from
a node is returned before traversing its subtree)

• for a new key, search for the longest common prefix contained in the
trie and return all values stored in the prefix sub-tree

Retrograde trie works the same, only it stores the keys as reversed strings.
Therefore it allows finding the longest common suffix (ending segment) instead
of the prefix.

Lemmata from the morphological dictionary are used as keys, and whole
corresponding paradigms are used as values. For some lemmata, there can be
several different paradigms (homonyma that are equal in the base form but
differ in the inflected forms). That is the reason for using multi-value trie.

We build the retrograde trie at the time of model initialization by simply
adding the lemma-paradigm tuples one by one. During prediction we retrieve
paradigms of the lemmata that have longest common suffix and use them as
paradigms.

6.5.2 Method for inflection according to a paradigm
To inflect lemma X according to the paradigm of lemma A (with a known
paradigm), we perform the following. First, split both lemmata into two parts:
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stem and suffix. These stems and suffixes are technical only and generally
can be distinct from the morphological stem and suffix of the lemmata. We
perform the split such that the suffix is the same for both lemmata (and the
longest possible one), and stem is the rest of the word. Then we take the
whole paradigm for lemma A and in each form we replace the A-stem with
the X-stem, obtaining inflected forms of the lemma X.

Sometimes it can happen that the inflected form of lemma A does not
contain the whole A-stem. If the suffix is not long enough, there could be some
changes inside the stem when creating the inflected form from the lemma.

To make the approach work also in this case, in each form of the A-
paradigm we remove the prefix that has the same length as the A-stem,
replacing it with the X-stem. If the A-form is the same length as A-stem or
shorter (it is not possible to remove prefix of that length), we just replace the
whole A-form with the X-stem.

If there were any non-existent forms in the original paradigm table, we
preserve them as non-existent in the predicted paradigm table.

If the length of the longest common suffix is zero, we do not perform any
inflection according to a paradigm. In such case we consider the lemma as
inflexible and produce corresponding number of forms that are equal to the
lemma itself.

6.5.3 Prediction combination
To retrieve the paradigms from the retrograde trie, we traverse the subtree of
the node corresponding to the longest common suffix, yielding all paradigms
present in the subtree. If the maximal number of lemmata allowed to combine
is given, we traverse the subtree until the maximal count is reached. Since
the traversing is done by DFS, lemmata with the same character at specific
position are returned consecutively. The children of a node corresponding
to individual characters are visited in the order they appeared in the datas-
tructure, which is random (because the trie was built by adding randomly
shuffled data one by one).

Once we have a set of predicted paradigm tables according to all the
paradigms, we combine the predictions to obtain a single paradigm table.

For each paradigm cell, we take the most common form from the suggested
corresponding cells in all the paradigms. In case of a tie, the answer is chosen
randomly among the most frequent predictions. If it is the non-existent form,
we take the second most common form. If there are only non-existent forms
amongst the suggested forms, we replace the form with the lemma itself. By
that we prevent the model from predicting the non-existent form, following
the trend that some suggestion is better than no suggestion.
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6.5.4 Possible improvements
There are several things that could be improved in the retrograde model.

• Inflection according to a paradigm: when the stem is not the same for
all the forms of the paradigm A, try to modify the X-stem in a way in
which the A-stem is modified.

• If there is an non-existent form in the final predicted paradigm table,
try to take shorter longest common suffix and inflect according to words
sharing the new common suffix. - This would make it work relatively
reliable also in the setting where we would have a lot of gaps in the
training paradigm tables.

• Pre-compute the suffix tables for every node of the trie and during
prediction just find the node with longest common suffix and inflect the
lemma according to the suffix table saved in the node. The motivation
is clear: if we build the model and then repetitively use it to inflect the
same word, it is not efficient: once we are in a specific node of a trie
corresponding to the longest common suffix, the inflection table we get
is independent of the word we are trying to inflect. This would save
space for saving the model and time for prediction.

6.6 Building the test-oov dataset
src/dev_testing/build_data

In cestina20reader.py we extract the relevant parts of the database
(lemma and explanations) of neologism provided to us, and in build_data.py
we process the data more.

The first part of the script (called by python3 build_data.py --inflect)
removes word phrases and selects OOV words only.

We use processed MorfFlex (extracted raw lemmata only) to determine
whether a given noun is OOV or not (src/morfflex/lexicon.py).

The script build_data.py –inflect then shuffles the lemmata randomly
and then uses the rule-based baseline model (skloňuj.cz) to automatically in-
flect the lemmata. The inflected lemmata with explanations are pretty-printed
to a file to be checked manually (data/processed/6-inflected.txt).

Then we are expected to perform the manual check: fix the incorrectly
inflected forms, add multiple options of correctly inflected forms if there are
more than a single one, mark the faulty lemmata and mark the end of the
checked part of the file.

After the manual check, the second part of the script (build_data.py
--load_checked) loads the data from the manually edited text file, removes
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the lemmata marked as faulty and removes the explanations to obtain the
final test-oov data (data/cleaned/test_oov_data.txt).
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Chapter 7

User guide

This is a user guide that briefly explains how to use the inflection library
provided in the attachment, in directory cz-inflect1.

The library provides a morphological guesser for inflection of Czech nouns.
It focuses on inflection of out-of-vocabulary words. (For other words we
recommend MorphoDiTa2 tool.)

The guesser is a LSTM-based encoder-decoder architecture with attention,
trained with OpenNMT-py library on a training dataset consisting of approx.
360k Czech noun lemmata (data source: MorfFlex2.0 [Hajič et al., 2020]).

7.1 Build
To run the inflection script, you need Python33 and a python environment
with OpenNMT4 library installed.

Linux On Linux systems (tested on Mint), you can create the python virtual
environment and install the dependencies using the provided script build.sh:

unzip cz-inflect.zip
cd cz-inflect
bash build.sh

Otherwise Otherwise you have to install the python dependencies listed in
the file requirements.txt manually.

1https://github.com/tomsouri/cz-inflect/releases/tag/BP_official
2https://lindat.mff.cuni.cz/services/morphodita/
3tested with Python 3.8.10
4OpenNMT-py==3.0.4
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7.2 Run
After building the environment by the previous step, you can use the pro-
vided script run.sh or simply run .venv/bin/python3 inflect.py (if you
installed the dependencies manually, provide proper path to the python binary
file). This runs the inflection script.

The script reads lemmata from the standard input (one lemma per line)
and prints the tab-separated inflected forms to standard output (14 forms
per line).

7.3 Examples
The following is an example of an interactive call with lemma dub (oak):

> bash run.sh
Enter a lemma to be inflected:
dub
dub dubu dubu dub dube dubu dubem duby dubů dubům duby duby
dubech duby
...

An example of a non-interactive call (lemma buk (beech)):

> echo "buk" | bash run.sh
buk buku buku buk buku buku bukem buky buků bukům buky buky
bucích buky

7.4 Python library
Additionally, the program can be used as a Python library. It provides the
method inflect that receives a single lemma (or a list of lemmata) and
returns corresponding inflected forms. The simplest use is demonstrated in
listing 1 (the content of the script example_usage.py).

7.5 Notes on performance
The inflection model focuses on inflection of out-of-vocabulary words and it is
a guesser. It is not designed to substitute dictionary-based systems but rather
to complement them. The inflection it provides is not perfect, especially for

90



Listing 1 Example program using the inflection library.
Inflection of words lingebra (short for linear algebra), programko (short for programming)
and matfyz (short for the Faculty of Mathematics and Physics)

#!/ usr/bin/env python3
from inflect import inflect

# Inflecting a single lemma

lemma = " lingebra "
inflected_forms = inflect ( lemma )

print (f" Inflected forms of lemma {lemma }:")
print (", ".join( inflected_forms ))

# Inflecting a list of lemmata

lemmata = [" programko ", " matfyz "]
infl_lemmata = inflect ( lemmata )

for (lemma , inflected_forms ) in zip(lemmata , infl_lemmata ):
print (f" Inflected forms of lemma {lemma }:")
print (", ".join( inflected_forms ))

words that inflect unusually (e.g. for lemma pes (dog) the script outputs pes,
pesu, psi, pes, pese, psi, . . .

The model was trained on data containing entries with non-existent forms
as targets (marked as “?” in the data). Therefore it can sometimes produce
the token “?” instead of a predicted form, suggesting that the specific form
probably does not exist.

Due to long time spent by loading the model, the inflection of the first
word takes relatively long time (~10s).

The inflection model is case-sensitive.
The model is not able to correctly inflect neither phrases (automatically

deletes spaces from the input), nor words containing special characters (e.g. “-”,
“=” etc.) – it substitutes them by some alphanumeric characters.

The model prints some messages to standard error during prediction. It
looks like [<DATE> INFO] PRED SCORE: -0.0014, ... NB SENTENCES: 14
and it is not part of the predictions.
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Conclusion

This thesis focused on the task of automatic morphological inflection in Czech,
specifically on inflection of nouns in out-of-vocabulary (OOV) conditions.

We achieved the following:

• We automatically extracted a large train-dev-test dataset of Czech
inflected nouns from the MorfFlex dataset [Hajič et al., 2020], aimed at
evaluation in the OOV conditions.

• We manually built small real-world OOV test dataset of neologisms
(test-oov).

• We developed three different inflection systems: a retrograde model,
simple to implement and understand, and two seq2seq models, one
LSTM- and one Transformer-based.

• We compared our systems to one publicly available ready-to-use rule-
based inflection system and three standard baselines from SIGMOR-
PHON shared tasks

• Our seq2seq models achieved particularly good results on the standard
test dataset, the Transformer beating all other models.

• The retrorade model showed significant ability to inflect real-world OOV
words, outperforming all neural models on the test-oov dataset.

• We trained and evaluated one of our best setups on SIGMORPHON 2022
shared task data (18 development languages, Czech was not included,
large training data condition), and achieved state-of-the-art results in
the OOV evaluation condition (feature overlap) on 6 languages.

• We achieved state-of-the-art results on the same dataset in the both
overlap condition (test pair’s feature set and lemma are both attested
in training, but not together in one entry) on 8 languages.
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• We released a Python library5 with ready-to-use inflection model for
Czech nouns, which could (especially once extended to another parts-of-
speech) work as as complementary system to MorphoDiTa [Straková et
al., 2014] - as a back-off for OOV words. The released system performs
significantly better than the tested system skloňuj.cz, which (together
with other similar rule-based systems) represents the only option for
OOV inflection in Czech publicly available on web.

There is still room for improvement. The hyperparameters of the best
model we tested (TRM-11) was tuned only a little and we suppose to be able
to achieve better results when tuning more.

All neural models performed really poorly on the real-world test-oov
dataset, compared to the non-neural models. Nevertheless, also the non-
neural systems showed relatively weak performance on that dataset. This
indicates that the real-world OOV words may morphologically differ from
the words randomly sampled from the MorfFlex dictionary, and thus the
used training dataset (unweighted dictionary words) may be suboptimal for
learning paradigms of neologisms. It would be beneficial to investigate this
issue more.

The released library could be improved too. The system was trained on
data containing entries for non-existent forms and therefore it can sometimes
generate the special token representing such forms. Moreover, it is not able
to deal with non-alphanumeric characters correctly (which could appear in
OOV words, e.g. e-book etc.).

We summarize the possible future development and research direction in
the following section.

Future work
We divide the possible future direction based on the topic they are connected
to, into three sections: data, task broadening and further investigation of
current approach.

Data

• Investigate more the nature of OOV words: what are the common OOV
words? Build a corresponding dataset.

• Neologisms: investigate more whether it is sensible to use all non-OOV
words to train a system for inflection of OOV words. Do neologisms

5https://github.com/tomsouri/cz-inflect/releases/tag/BP_official
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behave morphologically the same (or similarly) as all the other words
in Czech? Are they rather morphologically similar to newer words
(neologisms that are already in the morphological dictionaries)? Or to
the less frequent words? Or to some other class of words?

• Investigate more the limitations of the approach to data filtering.

• Is a plentiful dataset needed for training our models? Are all training
entries needed? Some research could be conducted to explore how the
performance drops when randomly sampling only a smaller part of the
dataset for training. Smaller (yet representative enough) dataset would
lead to the possibility of training for more epochs easily.

Broadening of the task

• Inflect not only nouns, but all flexible parts-of-speech: define new prin-
ciples of how should the inflection task work, make design decisions for
dataset building, build appropriate datasets. Develop and evaluate new
models, and finally release a ready-to-use system capable of inflecting
all parts-of-speech: the true complementary system (back-off for OOV
words) to MorphoDiTa [Straková et al., 2014].

• Train the models on data from other languages, with the goal of not only
evaluating the performance, but also building a reliable model. E.g. for
Slovak, it should be possible to build datasets similarly to our approach
(there is a Slovak version of MorfFlex morphological dictionary [Hajič
and Hric, 2017]). Release a ready-to-use model for inflection in Slovak.

• Deal with ambiguous lemmata (homonyms): find a way to be able to
deal correctly with homonyms.

• Build and train a model for inflection of words with removed diacritics.

Further investigation of current approaches

• Perform further hyperparameter tuning with our seq2seq models, espe-
cially with the Transformer architecture (model TRM-11, which was
tuned very little).

• Try model ensembling with our seq2seq models, to see whether it leads
to further improvement.
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• Add more morphological information to the tag (in data for seq2seq
models), such as gender. During prediction of whole paradigm table for
a given lemma, first use a morphological analyser to get the possible
morphological categories of the lemma, and for the most probable ones
perform the actual prediction of inflected forms (adding the additional
morphological information to the input of the inflection generator). This
could theoretically lead to a solution of dealing homonyms, at least in
the case that they differ in some morphological category.

• Investigate more the fact that OpenNMT uses a per-token loss and we
aim at per-sequence accuracy. Is using the OpenNMT library the best
approach?

• Improve the released model to work better in real-world use cases (ability
of correctly dealing non-alphanumeric characters in the input lemma,
not predicting the non-existent-form token for any lemma).

• Optimize the retrograde model with regard to disk space usage and
prediction speed: pre-extract the abstract paradigm tables, do not hold
the full paradigm tables for the lemmata in the nodes of the trie, and
during prediction simply inflect according to the one abstract paradigm
table.

• Investigate more the poor results on the real-world OOV dataset (test-
oov). Inspect the actual predictions of the individual systems and try to
find an explanation of the behaviour. Check to what extent the systems
make similar errors. Look for consistent error patterns. Analyze how
the test-oov words differ from words in MorfFlex. Check whether and
how frequently the inflectional paradigms of the test-oov words are
present in MorfFlex. Check to what extent the frequency of inflectional
paradigms differs between MorfFlex and test-oov.

Final remark We hope to be able to follow some of the directions in our
future research, especially building a model for inflection of all parts of speech,
and developing a model for Slovak.
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Appendix A

Full tables

Here we present full result of development experiments with the Retrograde
model, and evaluation on SIGMORPHON 2022 shared task dataset in all
evaluation conditions.
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Model Trainsize Combine FA FPA
Copy-baseline 22.53 1.53
Retrograde 1 1 22.63 1.61
Retrograde 2 2 29.74 9.83
Retrograde 4 4 30.26 10.37
Retrograde 5 4 34.08 23.58
Retrograde 10 8 42.33 28.79
Retrograde 50 32 78.25 67.29
Retrograde 100 64 83.17 72.95
Retrograde 200 128 86.54 76.26
Retrograde 400 256 89.76 78.89
Retrograde 500 256 90.41 79.33
Retrograde 800 512 90.96 81.35
Retrograde 1k 512 91.12 81.66
Retrograde 2k 1024 91.92 83.16
Retrograde 5k 4096 92.31 83.95
Retrograde 10k 8192 92.91 84.83
Retrograde 20k 16384 93.21 85.40
Retrograde 40k 32768 93.65 86.28
Retrograde 80k 65536 94.01 87.00
Retrograde 120k 65536 94.26 87.54
Retrograde 150k 131072 94.37 87.70
Retrograde 175k 131072 94.40 87.78
Retrograde 200k 131072 94.45 87.90
Retrograde 225k 131072 94.49 87.95
Retrograde 250k 131072 94.52 88.08
Retrograde 280k 131072 94.55 88.14
Retrograde 320k 131072 94.63 88.32
Retrograde 360k 131072 94.67 88.43

Table A.1 Retro eval: combine=max number of paradigms for combination, FA=form
accuracy, FPA=full paradigm accuracy, whole evaluation is on development data. We
compare the performance with the copy-baseline.
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Submitted systems Baselines
Lang Partition CLUZH Flexica OSU TüM Main UBC Neural NonNeur OUR

ang

overall 64.9 41.1 44.5 60.9 60.0 61.1 43.1 60.3
both 82.5 73.2 80.5 82.1 80.9 83.1 78.5 81.9

lemma 48.4 11.7 10.8 42.5 41.8 41.0 10.8 39.6
features 76.6 64.4 73.7 71.9 74.1 73.4 68.7 76.6
neither 53.2 14.5 12.7 45.7 39.3 48.0 12.7 45.1

ara

overall 75.9 37.5 40.9 75.3 67.2 78.5 26.9 74.3
both 80.0 66.3 80.9 81.6 74.3 81.2 52.8 81.8

lemma 73.9 10.4 1.3 71.8 71.1 77.3 1.3 68.4
features 81.7 65.5 78.7 78.5 65.5 81.9 50.8 79.9
neither 67.9 7.9 2.8 68.9 56.2 73.6 2.8 66.8

asm

overall 70.7 34.3 43.5 63.1 75.6 76.8 31.9 66.8
both 90.8 68.7 86.3 77.2 85.4 83.9 62.6 86.5

lemma 50.9 0 1.1 49.1 65.8 69.7 1.1 46.9
features 83.3 75.0 75.0 91.7 83.3 83.3 83.3 83.3
neither 33.3 0 0 22.2 88.9 77.8 0 88.9

evn

overall 48.9 3.8 25.0 52.0 57.5 57.7 25.1 47.7
both 66.7 66.7 0 66.7 66.7 66.7 66.7 66.7

lemma 40.4 1.9 12.6 45.6 52.4 53.4 12.6 41.4
features - - - - - - - -
neither 62.4 6.7 44.6 62.1 65.5 64.4 44.6 57.5

got

overall 65.7 21.3 51.3 65.3 73.4 72.2 46.0 66.8
both 95.5 38.2 95.9 93.3 95.8 95.8 84.6 94.9

lemma 35.7 3.5 4.7 38.2 52.2 49.6 4.7 39.6
features 92.9 41.4 94.1 91.7 91.7 93.5 87.6 91.7
neither 40.0 5.4 17.1 36.1 50.2 47.3 17.1 38.5

heb

overall 51.8 28.0 50.0 47.9 44.0 48.5 20.4 47.9
both 94.1 55.9 94.4 94.4 86.5 96.6 35.1 95.1

lemma 9.4 0.1 5.6 1.4 1.4 0.3 5.6 0.7
features - - - - - - - -
neither - - - - - - - -

hun

overall 72.3 33.0 47.1 68.2 74.9 77.2 37.2 67.5
both 94.8 64.3 94.2 94.5 93.8 94.8 75.0 95.1

lemma 54.6 2.5 1.3 45.4 60.0 61.9 1.3 46.0
features 93.5 62.9 93.1 92.8 91.5 94.4 73.1 94.5
neither 49.1 2.6 0.6 41.9 56.5 59.0 0.6 37.5

kat

overall 74.3 45.1 52.4 78.8 83.2 87.2 45.5 80.2
both 95.1 79.3 94.6 96.0 98.3 97.4 77.7 96.0

lemma 53.0 7.6 9.3 61.8 69.0 77.2 9.3 63.7
features 96.7 95.7 96.7 96.7 96.7 97.3 96.7 96.7
neither 54.8 9.5 12.5 60.7 65.5 76.8 12.5 66.7

khk

overall 47.9 23.4 49.2 47.7 46.3 49.1 38.0 48.9
both 95.5 46.6 97.7 95.2 92.3 98.1 75.1 97.6

lemma 0 0 0.5 0 0 0 0.5 0
features 94.1 47.1 94.1 94.1 88.2 94.1 88.2 94.1
neither 0 0 0 0 0 0 0 0

Table A.2 SIGMORPHON 2022 comparison – full results A: Partitioned results on
large training (ang-khk). No feature overlap evn items and no feature overlap or
both overlap heb items were included in the test set. Except for results of our system
(OUR=LSTM-40), the table was taken from Kodner et al. [2022, Tables 17, 18].
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Submitted systems Baselines
Lang Partition CLUZH Flexica OSU TüM Main UBC Neural NonNeur OUR

kor

overall 51.8 33.2 30.0 47.6 54.7 56.2 32.3 47.4
both 79.0 67.5 61.7 69.3 76.2 78.7 66.1 72.8

lemma 25.9 0.9 0 28.0 35.4 36.9 0 26.4
features 71.1 55.4 50.6 56.6 60.2 62.7 59.0 39.8
neither 27.1 0 0 20.0 31.4 18.6 0 12.9

krl

overall 58.4 37.9 45.2 24.1 64.4 27.1 5.4 61.0
both 88.6 72.3 87.8 30.0 88.1 31.5 4.5 89.3

lemma 27.3 2.1 0.9 8.6 39.8 13.7 0.9 31.1
features 87.5 69.8 85.9 57.8 85.4 57.8 20.8 87.5
neither 33.7 13.0 13.0 32.1 48.4 35.3 13.0 42.4

lud

overall 73.1 89.2 89.7 50.5 72.4 53.0 89.4 83.8
both 94.8 95.9 96.8 96.0 94.7 96.5 95.9 94.5

lemma 21.2 51.5 51.5 11.1 39.1 20.2 51.5 49.5
features 87.3 92.0 92.9 93.4 88.2 94.3 93.4 83.5
neither 66.6 97.1 97.1 3.3 56.9 5.6 97.1 86.7

non

overall 76.9 47.2 48.0 79.8 87.2 85.0 37.3 77.1
both 90.8 68.7 90.5 89.8 93.3 92.4 68.0 91.4

lemma 63.9 25.2 5.7 70.9 82.1 78.8 5.7 64.3
features 85.2 77.0 85.2 80.3 90.2 88.5 80.3 83.6
neither 51.4 25.7 17.1 57.1 62.9 51.4 17.1 37.1

pol

overall 86.5 52.9 47.8 67.7 91.0 69.5 43.6 87.2
both 91.8 78.7 90.2 77.0 95.1 78.7 85.2 95.1

lemma 84.3 15.7 0 71.4 87.1 68.6 0 88.6
features 96.1 85.9 94.9 74.0 95.7 74.4 86.3 96.7
neither 76.7 20.5 1.1 60.4 86.1 63.9 1.1 77.1

poma

overall 60.4 33.9 36.6 58.8 61.5 63.9 24.5 64.7
both 73.4 48.5 74.6 69.2 69.8 75.1 40.8 73.4

lemma 46.5 12.8 1.7 47.7 50.6 59.9 1.7 55.2
features 76.1 54.5 70.1 69.4 73.3 74.1 47.8 74.7
neither 44.9 14.6 2.4 48.4 50.2 52.2 2.4 55.0

slk

overall 85.5 58.2 47.4 65.8 94.0 70.1 47.5 86.0
both 87.5 87.5 89.3 57.1 89.3 57.1 87.5 92.9

lemma 89.4 44.7 2.1 51.1 95.7 57.4 2.1 87.2
features 93.5 90.0 92.2 70.4 95.7 71.1 92.4 95.2
neither 77.3 25.7 2.8 62.3 92.4 70.5 2.8 76.5

tur

overall 87.2 35.6 48.5 33.6 94.2 39.6 36.4 92.6
both 97.9 72.7 96.2 36.0 98.4 37.4 72.7 99.0

lemma 80.7 0.3 0.2 23.4 93.3 31.4 0.2 91.1
features 93.7 57.9 95.2 80.2 92.9 79.4 66.7 95.2
neither 52.7 0.8 5.3 40.5 72.5 71.0 5.3 57.3

vep

overall 57.5 30.5 36.9 44.1 62.3 48.8 32.4 58.6
both 75.5 58.0 72.3 55.8 70.1 57.0 64.1 75.5

lemma 42.8 1.4 1.4 25.9 54.9 33.9 1.4 44.4
features 71.5 58.8 70.0 57.5 68.8 59.2 60.4 69.1
neither 41.1 3.3 4.2 35.6 55.4 43.5 4.2 46.1

Table A.3 SIGMORPHON 2022 comparison – full results B: Partitioned results on
large training (kor-vep). Except for results of our system (OUR=LSTM-40), the table
was taken from Kodner et al. [2022, Table 18].
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