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Abstract: Multimedia retrieval is increasingly important with the skyrocketing
multimedia volumes produced every day. Therefore many image and video re-
trieval tools are being developed utilising visual similarity modelling algorithms
for similar image retrieval or various visualisations. As such, the quality of the
similarity modelling is crucial for these tools. This thesis explores diverse simi-
larity models, their agreement with human perception of similarity and possible
improvements of these models. The examined similarity models consisted of
colour-based, SIFT-based, and DNN-based models. For the purpose of model
evaluation, a user study was conducted to create a dataset of relative image sim-
ilarity comprising both generic images as well as two compact domains. In this
study, the participants were asked to state which of the candidate images was
more similar to the query image. The collected data showed the superiority of
DNN-based models compared to other evaluated variants. Nonetheless, all sim-
ilarity models performed significantly better than a random guess. In order to
further enhance the performance of the similarity models, we fine-tuned the best-
performing model (W2VV++) with the collected dataset and achieved significant
improvement in some areas.
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Introduction
We live in a time when everybody with a phone can produce tons of multimedia
content daily. With the spread of the Internet of Things (IoT), the production
of information and multimedia is accelerated. The overall trend is clear – the
size of multimedia created grows every day with astronomical speed, and we need
powerful tools to work with that. The automatic processing and distribution are
already done in publicly and commercially available software such as Youtube and
Vimeo. On top of that, they usually implement some recommendation system
[9] to ease the use of their software and sometimes omit the need to search for
something. However, the need to search in multimedia, especially videos, persists
and is not fully solved. Remember how many times you had searched for a specific
video or photo you wanted to show someone and weren’t able to find it? It could
be a video from some streaming platform, social media platform, or even from
your phone.

The information overload 1, particularly multimedia overload, is apparent, and
there is active research to cope with that. There are regular competitions to com-
pare state-of-the-art tools such as TREC Video Retrieval Evaluation (TRECVID
[4]), Video Browser Showdown (VBS [26]), and Lifelog Search Challenge (LSC
[22]). One of the competitions in multimedia retrieval is TRECVID, which focuses
mainly on ad-hoc video search (AVS), video-to-text, disaster scene description and
indexing over the past years. The AVS task evaluation is done automatically with
predefined queries and ground truth. In contrast, the competition VBS focuses
on multimedia retrieval but with the user aspect. There are three main tasks:
textual known item search (TKIS), visual known item search (VKIS) and AVS.
The goal of the known item search (KIS) tasks is to find a single shot from a video
from the dataset. In contrast to the AVS, only one correct answer exists in the
KIS. Both these competitions for the video search use the V3C1 dataset [6]. The
next competition uses quite a different dataset. It is LSC, and the participants
search for pictures in lifelog image collection. This data is collected using lifelog
device worn by a person and captures a photo every 30 seconds.

The retrieval tools from the interactive competitions commonly utilise more
retrieval methods and try to make the best use of their combinations. The com-
binations of the methods differ among tools but usually share at least some types
of retrieval methods. Most utilised types are based on text-to-image similarities,
image-to-image similarities, additional metadata (e.g. time of a day, optical char-
acter recognition (OCR), successions of frames in a video), and combinations of
them.

One of the most common retrieval methods is using text search. In the past
years, text-to-video retrieval was more successful than the previously used auto-
matic tag annotation. One of the text and image joint embedding models was
W2VV++ [40] employed in SOMHunter [74]. Recently, a new CLIP model was
used with superior performance to the W2VV++, e.g., in VIRET [55] on VBS
2021.

Another retrieval methods use image-to-image similarity models. These sim-
ilarities are computed from embeddings in latent space. These embeddings can

1https://dictionary.cambridge.org/dictionary/english/information-overload
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be handcrafted low-level features as used in HTW [27] on VBS in 2021 or rep-
resent high-level concepts from some deep neural networks (DNNs). High-level
features can be obtained from the last pooling layer of a deep convolution neural
network pre-trained on a classification task. These features were employed in
VERGE [3]. SOMHunter used high-level features from W2VV++, which were
the embedding vectors from the image. Computing similarity among images gives
the system ability to reflect relations beyond pixel-wise comparison. The image
similarity can be used in a simple k nearest neighbours (k-NN) algorithm, where
the user displays the most similar images from the dataset. This querying algo-
rithm is a powerful exploitation technique but lacks exploration. Therefore some
systems employed machine learning algorithms to work with relevance feedback
and tradeoff exploitation vs exploration. For instance, Exquisitor [31] utilises
Linear Support Vector Machines, and the user can provide positive and negative
feedback. SOMHunter uses Bayesian-like relevance feedback where the user only
provides positive feedback; everything seen and unasserted is assumed to be soft
negative feedback.

Image similarity can be used not only for querying but for different explor-
ing visualisations. One of these visualisations was employed in HTW and used
self-organising maps (SOM) for visualising the whole collection or only the top
results in hierarchical SOM. Another system SOMHunter used SOM fitted on
the probability relevance distribution and provided an overview of the top-scored
images.

The efficiency of the above-described image-to-image similarities relies on ef-
ficient similarity models. However, it is often not clear which particular model
to choose in what situation. In this thesis, we will closely investigate the cur-
rent state-of-the-art (SOTA) possibilities for automatic image-to-image similarity
prediction and try to improve these results. To achieve these goals, an image sim-
ilarity dataset will be created. This dataset will consist of triplets representing
a query image and two candidate images. Then the user study’s participants
will be asked to select a more similar candidate to the query image. The col-
lected dataset will provide the base for model comparison and an approximation
of image-to-image similarity prediction upper bound (w.r.t. human-human con-
sistency). Additionally, the impact of motivational elements, i.e. gamification,
will be explored. The dataset will provide not only a benchmark but also training
data for additional fine-tuning and improvement of the state-of-the-art similarity
models.

The key contributions are:

• An easy-to-use feature extraction framework will be created.

• A web application for image similarity annotations will be created.

• A dataset with human judgments will be collected and made available.

• Vast variety of image similarity models will be compared w.r.t. their con-
sistency with human similarity judgments.

• A new SOTA model will be created.

• The impact of gamification principles on participants’ motivation will be
evaluated.
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The remainder of the thesis is organised as follows. In the first chapter, a
brief refresh of the preliminaries for this thesis is described. The preliminaries
contain an introduction to colour science, a brief description of computer vision
techniques used in this thesis, and an introduction to neural networks. The
following chapter summarises related work to this thesis and in which ways this
thesis is novel. The third chapter describes the whole user study, beginning with
the video dataset, continuing with image feature extractors, and finally describing
the triplets selection and annotation. The next chapter analyses the results of
the user study and answers the questions about what image similarity models
agree the most with human annotators. Additionally, it explores the impact
of gamification and connections among demographic groups. The final chapter
describes how the top-performing model can be improved with the help of our
dataset.
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1. Preliminaries
In this thesis, three categories of preliminaries will be revised for ease of under-
standing in the following chapters. These sections will summarise the background
of the image similarity models which were developed over the years. The first
section describes the colour, their modelling and phenomena. The colour simi-
larity models were one of the oldest and the simplest ones. The second section
describes selected feature extraction and matching algorithms. The image match-
ing is not the same as the image similarity modelling. However, their outputs can
be transformed to achieve similarity modelling. The last section describes neural
networks and their applications. Similarity modelling with the neural networks
is another possible option, and thus it will be examined in this thesis.

1.1 Colour
The colour can be defined in many ways [54]. In physics, it is a specific elec-
tromagnetic radiation within a visible spectrum. In more general terms, it is
an attribute of an object. People perceive colour through their eyes. Moreover,
the human brain can process and think about the colour of all visible things.
Therefore colour reproduction is a well-known task in human history.

One of the early colour models in modern history was proposed by Smith and
Guild [67]. These models, CIERGB and CIEXYZ, are additive colour models
consisting of three additive units. The RGB colour model is widely used in
most digital devices (e.g. PC, laptops, smartphones) to store and reproduce
images. This model’s units are red, green, and blue; thus, the colour values
are easily interpretable. However, the downside of both colour models is their
perceived non-uniformity [50]. MacAdam [50] conducted twenty-five thousand
colour-matching trials with their chromaticity discrimination apparatus to show
that the difference of the colours does not linearly correspond to the perception
of an average human observer.

The perceptual non-uniformity had been an issue that CIELAB colour space
tried to cope with [52]. This colour space transformed the previous CIEXYZ
model nonlinearly, scoring the highest correlation between Euclidean distance
and psychological values.

1.2 Image matching
Image matching is a task where a query image is processed, and images of the
same object or scene are retrieved. The image-matching algorithms can usually
cope with some noise, 3D rotation, or linear transformation, e.g. image scal-
ing, brightness and contrast change, and sheer. One of the widely used image-
matching algorithms is Scale Invariant Feature Transform (SIFT) [47].

The SIFT are invariant to scaling and rotation and partially invariant to the
brightness and view changes. The process of feature extraction can be divided
into five steps. The first step is to find significant points in the image. The author
suggests computing multiple magnitudes of the Gaussian blur of the image and
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then computing the differences between each two closest magnitudes (Difference
of Gaussians). Then the same process is done on the different sizes of the images,
i.e. scaling up and down. Lastly, local extrema on the Difference of Gaussians and
including the other sizes are chosen. The author discusses that these points are
adequate candidates for scale and rotation invariant keypoints. The second step is
to filter these keypoints. The first filter approximates the keypoint stability, and
those under a threshold are discarded. The second filter removes keypoints on the
edges because noise heavily affects them. The third step is to assign an orientation
of the keypoint. The region around the keypoint determines the orientation and
magnitude. In the next step, a feature vector is computed for each keypoint. This
feature vector is determined by the region around the keypoint and its subregions’
magnitudes and orientations. The author suggests a setting that results in a 128-
dimensional feature vector. The last step is the matching procedure. The query
image keypoints are extracted and matched with the keypoints from the training
set with the nearest neighbour search. Then the pairings are validated, and those
with a high probability of false positives are discarded. A clustering algorithm is
then applied to find clusters of keypoint matches which are additionally validated
with a geometric verification procedure.

Even though the SIFT can find near duplicates, it has two downsides. The
first downside is more general. It is its computational complexity. As the author
mentions, the usual photo of size 500x500 yields around 2000 keypoints. This
can become quickly computationally infeasible. Secondly, visually similar images
could be rejected by the feature and geometric validations and thus yielding a
negative result. Therefore vector of locally aggregated descriptors (VLAD) was
proposed by Jégou et al. [30]. This representation creates a single feature vector
for each image from a variable length of feature vectors. Thus it can be used
on the SIFT keypoints to produce a single feature vector. At first, it creates a
visual dictionary similar to the bag of features (BOF). Then each feature vector
is mapped to a visual word from the dictionary, and a difference between them
is computed. The differences are summed, resulting in a 128-dimensional vector.
A "power-law normalization" was proposed by Delhumeau et al. [11] to improve
the original feature vector. Finally, the vector is L2 normalized. The resulting
vector is a compact image representation.

1.3 Neural network
Neural networks are a family of algorithms for learning and storing that knowl-
edge from the real world. They have been motivated by higher organisms which
can perceive the world through their sensory systems and process the stimuli.
The processed stimuli can influence their behaviour and be remembered for later
use. One of the first learning algorithms was Perceptron [62]. This algorithm
iteratively finds a hyperplane that separates data points into two groups based
on a target attribute. However, this algorithm will converge only with linearly
separable data. Moreover, this algorithm can only produce predictions without
any additional information about probability.

Another breakthrough was achieved by Rumelhart et al. [64]. They introduced
a backpropagation algorithm that iteratively updates the weights of a neural
network accordingly to decrease a defined loss function on the training data. The

7



training data consists of input values and expected output values. This algorithm
propagates the input data through the network and receives the predicted output.
Then the predictions are compared to the expected outputs, and the error value
is computed. The update process goes backwards through the whole network,
and the weights are updated to minimize the error value. The advantage of this
algorithm is that any feedforward network with semilinear units can be learnt.

One of the earliest applications of backpropagation was made on handwrit-
ten digit recognition by LeCun et al. [38] in 1989. The proposed network con-
tained three hidden layers. The first two layers consisted of kernels with learnable
weights called feature maps. These feature maps are similar to the convolutional
filters in the more recent deep convolution neural networks like ResNet [24], and
EfficientNet [70]. These feature maps aimed to learn local patterns and decrease
the number of trainable parameters. The last hidden layer is a fully connected
one. More interestingly, with less than ten thousand trainable parameters, the
researchers achieved a 0.14% error rate on the test set.
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2. Related work
The image-to-image similarity plays one of the prominent roles in content-based
image retrieval (CBIR), and many state-of-the-art systems use representations
from deep neural networks trained on image classification or text-to-image re-
trieval [74, 44, 28, 68]. These image features can be useful; however, they could
perform better as suggested in previous studies [57, 61, 25, 73].

In the first study conducted by Peterson et al. [57], they collected images
from six categories and then asked participants to asses similarity on a scale from
0 to 10. Each pair was annotated by 10 participants. With created dataset,
they improved the quality of the image features in every domain. However, the
improvement did not generalize inter-domain well. Moreover, the absolute scale
can introduce unwanted biases, where the users can unintentionally use different
neutral points or can introduce assimilation and contrast effects [2, 81].

Assimilation, contrast and assimilation-contrast are well-known theories in
psychology [2]. Initially, these theories were observed on consumer satisfaction
with the product based on their prior beliefs and experience. Zhang et al. [81]
showed that the same theories could be applied to the user ratings from the
Internet for product domains such as movies, books, electronics, and clothes. The
assimilation theory states that satisfaction with the next product tends to be more
similar to the previous one. The opposite direction is the contrast theory. If the
quality of the previous product was worse than expected, then the consumer will
more likely be more satisfied with the next product. It also applies the other way
around. If the previous product quality is better than expected, satisfaction with
the next one will be lower. Lastly, the assimilation-contrast theory combines both
of the previous theories. If the difference between the quality of the successive
products is similar, the assimilation theory occurs. However, if the difference
is more extensive than some threshold, then the contrast effect applies. Even
though in the image-to-image similarity studies, the participants did not buy any
products, the users’ satisfaction with the image similarities may influence the
subsequent annotations.

In the following study, Roads and Love [61] used the widely popular dataset
ImageNet [65] and collected human similarity judgments with 8-rank-2 trials. In
the trials, nine images were shown to the user. They were aligned in a grid; the
middle image was the query, and the other eight images were to be assessed by
the user. The user had to choose two images, the most similar and the second
most similar. This technique produced more combinations for triplet creation
and triplet loss [17] calculation. However, the user was challenged to assess the
similarity of nine images and the sessions were designed to complete 50 trials
in 10 minutes. This is a challenging task and thus can induce some noise in
the judgments. Some of the noise can even come from human biases, such as
contextual or positional bias [29]. The used dataset ImageNet is widely used
and contains a lot of diverse images across many classes. However, nearly every
image dataset for image classification tasks (incl. ImageNet) has specific types of
images where a single object dominates the image. Thus assessing the similarity
of images on these datasets is close to one-shot learning [75] and does not have
to generalize well on completely general images and/or frames from videos.
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Křenková et al. [34] in a recent study tried to cope with similarity modelling
with the Distance density model [37]. They collected human judgments with
a triplet schema, where a web application presented a query image in the first
row and two options in the second row. Then the user was asked to express the
similarity score between those two options in the range of 0-100. Profiset dataset
[7] was used as the underlying image dataset. These images are photos from a
stock image bank and provide only some basic metadata, e.g., title and keywords.
The dynamic metric allowed researchers to capture both similarity judgments and
user disagreements. They found that on some triplets, the standard deviation was
low, and such triplets had consistent judgments. On the other hand, some triplets
had high standard deviations, and thus, the users did not agree with each other.
However, the scale system lacks more meaningful interpretability, where only the
middle, far left, and far most points are interpretable, and the rest of the scale
is purely subjective to the user. Besides this dataset being a class-less one, the
stock images usually share similar characteristics with ones from ImageNet, e.g.
single dominant object. Thus it may also not generalize well on more general
images and video frames.

In Rossetto [63] thesis, they designed a user similarity judgment study with an
absolute scale with four options, i.e. not similar, slightly similar, very similar, and
nearly identical. Two images were presented to the user, and the user was asked to
choose from the scale and thus give feedback on the pair similarity. The presented
images were collected from three different public image sources to achieve a more
diverse set of images. The author examined many low-level feature extractors
and (dis)similarity functions. The results showed that the fusion of the image
features achieved significantly better results than the individual features. One of
the two images was so-called a reference image, and the author chose to use only
14 of those. Therefore there is a considerable risk of some overfitting on these
reference images and lack of generalization. Furthermore, the absolute scale has
some drawbacks. One of the drawbacks is that the user is asked to assess similarity
without any context and can suffer from assimilation and contrast effects. The
next drawback is inconsistent image pair generation and the scale labels, where
according to the author, more than half of the similarity judgements were "Not
similar" options. In addition, 91% of the pairs had been assessed with the option
"Not similar" or "Slightly similar", leaving us with only 9% of the pairs with more
significant similarity, e.i. "Very similar" and "Nearly identical".

Preceding this thesis, we conducted a preliminary study Veselý and Peška [73]
in a similar setting to this thesis. The study aimed at a more general similarity
among video frames; thus, we used the V3C1 dataset [6]. The dataset contains
many trivial frames, e.g. single-colour or entirely blurred frames, which have been
manually excluded. A total count of 38 participants annotated 4394 triplets. The
triplet consisted of a query image and two option images from which participants
were asked to choose the more similar image to the query image. These triplets
were generated to cover a wide range of similarity possibilities, i.e. both options
are highly similar, only one option is highly similar, and none of the options is
highly similar. The authors compared a wide range of image features extraction
models, including SOTA deep neural networks and pre-deep learning era colour
and SIFT-based extractors. Quite surprisingly, smaller models of the same ar-
chitectures performed better in general. However, the preliminary study had two
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Figure 2.1: Selected images from ImageNet on the left and V3C1 on the right.

main limitations. The first limitation was the very limited options when the
participants were forced to choose from either of two images, even in the cases
where they were completely unsure. This could lead to noise in the data and
unnecessary pressure on the participants. The second limitation is related to the
first one, that the participants could not distinguish the annotation certainty.

2.1 Image datasets
As it was discussed before, dataset selection is an important part of the whole
process of understanding image similarity as humans do. There is plenty of image
datasets, some with annotation, i.e. classes or object position, and some with only
weak annotation. This weak annotation is usually some metadata, e.g. title of
the image or keywords, and does not have to be accurate.

One of the most popular go-to datasets in computer vision and machine learn-
ing is the ImageNet dataset. ImageNet contains 14,197,122 images annotated
with 21,841 synsets. There is always exactly one label for each image. The popu-
larity of the dataset and wide use is not directly explainable, but there are some
clues which are widely accepted. The first huge advantage is its size. Dataset size
is essential for deep neural networks because the larger the train set size is, the
better performance the models have [49]. The number of classes is enormous com-
pared to other image classification datasets, which is probably why learnt models
on this dataset generalize well [33]. However, this dataset is not suitable for gen-
eral image similarity for more reasons. Generally, image classification datasets
lack images with no clear dominant object. Example images from the ImageNet
are depicted in figure 2.1 on the left. It is understandable that without any dom-
inant object, there cannot be an assigned class, and thus, it is not suitable for
the classification task. Moreover, the dominant object is usually nicely aligned in
the centre, and consequently, these images do not represent well enough frames
from videos and any image in general. The dominant object is not the only issue
with the object classification datasets. Another issue is with the final and limited
number of classes. Some other image classification datasets (e.g. CIFAR-10 [35],
CIFAR-100 [35], CALTECH-101 [39], etc.) contain only tens or small hundreds
of classes. Even ImageNet contains only 21,841 synsets which is a small part
of the whole WordNet [53] with 117,000 synsets. The last and the most crucial
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reason is that the performance in image classification does not generalize well for
image similarity, as shown in Roads and Love [61].

The issue with predefined and fixed classes in image classification datasets
can be overcome with more general class-less datasets such as Flickr30k [80],
Profiset [7], and GPR1200 [66]. The last one is not a true class-less dataset and
contains 1200 classes. However, it is not a traditional image classification dataset
because the number of classes is disproportionately larger than the number of
images per class. Especially there are only 10 examples per class, and the dataset
was created from six different datasets to achieve generalization and uniformity
per class. The Flickr30k dataset contains 30 thousand images from Flickr 1 and
150 thousand descriptive captions. The Profiset dataset was already previously
discussed, and it contains 20 million images from stock image bank Profimedia
2. Each image is annotated by a title and 20 keywords on average. All of these
datasets avoid the class issue with diverse images which were not collected from
predefined classes. Nonetheless, the main objectness of the image remains, and
thus, it does not represent a diverse sample of a frame in a video.

Achieving desired generality and robustness is challenging. Hence, the video
dataset comes into play. A video, in simplification, is just a sequence of images
and an audio track. When we disregard the audio track and focus on the image
set, we get an enormous amount of images. These images in the sequence are
nearly duplicates of their neighbours. Therefore, we can drop many of these du-
plicates, and what we get is an image dataset that represents both nicely aligned
images with a main object and images with no clear main object or meaning.
The second type of image is important because even on these images, the simi-
larity can be assessed by humans, although they are not usually represented in
the classical image datasets.

There are many video datasets to choose from. One of the datasets is called
ActivityNet [16], which is a benchmark for activity recognition. This dataset
contains 648 video hours and annotations for 200 activities. The next dataset is
YouTube-8M [1], which is significantly larger with its 350,000 hours of video and
3862 classes. Both these datasets were collected from YouTube3. The dataset
used in this thesis is the V3C1 [6] dataset, which serves as an evaluation basis
for the VBS and TRECVID video search tasks. It contains about 1000 video
hours and comes with a predefined master shot reference and its representa-
tive keyframes. These videos were collected from Vimeo4. Each video contains
additional information from Vimeo metadata, e.g. title, short description, and
associated tags. This dataset was chosen over the previous two because three
main reasons. The first is similar to an attribute of the class-less image classifica-
tion datasets; hence, the V3C1 dataset lacks a fixed number of predefined classes.
The second one is for the purpose of easy reproducibility. This thesis will use the
master shot reference and its keyframes. Doing so makes the input data easily
obtainable from the official source because this dataset cannot be directly shared.
Thus providing the reference keyframes leads to higher reproducibility without
breaking the dataset terms. See figure 2.1 for a comparison of ImageNet (on the

1https://www.flickr.com/
2https://www.profimedia.com/
3https://www.youtube.com/
4https://vimeo.com/
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left) and V3C1 (on the right).
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3. User study
Image similarity modelling and approximation require a lot of data with multiple
levels of diverse images. We conducted a user study to collect human judgments
and explore the resulting data. In order to minimize potential biases and facilitate
data interpretation, the study employed a judgment paradigm consistent with our
previous research [73]. The original paradigm was based on a query image, and
the user was asked to select from two options the one most similar to the query
image. Forcing the users to choose one of the two images was occasionally a
challenge from their perspective. Sometimes they could not decide and had to
select a random option which could lead to some noise in the data and extra
effort. In this thesis, a modification was made in the response format, allowing
users to select from a range of five options based on two accompanying images.
This approach resulted in more granular data that was easier to interpret.

The next goal of the user study was to gather user judgments on different
diversities of the underlying data. These different levels of diversities reflect dif-
ferent stages of an interactive search. The exploration stage [69] usually requires
assessing similarity on less similar images overall; on the other hand, the exploita-
tion stage requires fine-grained similarity distinction among similar images.

Lastly, the context of the images can take part in the decision process, espe-
cially if the context is the same for all the images. If the context is the same (e.g.
wedding images), then only minor differences play a crucial part in the decision
process. However, they might be ignored by the image similarity models.

This chapter describes all the steps of the user study, beginning with the used
image dataset. The description follows with feature extractors and their employed
variants. Then the triplet generation algorithm is defined with respect to the
previously stated conditions. Lastly, the web application for the participants’
judgment collection is presented. The steps are depicted in figure 3.1.

3.1 Dataset
The underlying image dataset consists of v3c1 keyframes. There are 1 082 659
keyframes, some of which are hardly interpretable or trivial, e.g. single colour
images, entirely blurred. These images were semi-manually filtered in our previ-
ous study [73]. The number of filtered images is small, and the resulting image
set consists of 1 010 398.

Additional distinctions were made in the image selection process to gather
judgments on both general and contextually similar images. Accordingly, three
image sets were created: general, wedding, and scuba. The general set was
composed of all filtered keyframes, while the wedding and scuba subsets were
selected based on videos that had the "wedding" tag or mentioned "wedding" in
the video title or description and similar criteria for scuba videos, respectively.
It should be noted that these subsets represent a relatively small proportion of
the entire dataset. Specifically, the wedding and scuba subsets comprised 69,388
and 3,803 keyframes, respectively.
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Figure 3.1

3.2 Extractors
As described in the previous chapter, current state-of-the-art image similarity
models are mostly vector spaces on top of the deep features from deep neural
networks (DNN). These neural networks are usually trained on different domains,
e.g. image classification or text-to-image retrieval. This thesis studied various
state-of-the-art DNNs and even included simpler colour-based and SIFT-based
models. These methods were widely used before the massive success of the DNNs
in other domains. The extractors comprise an underlying model and return a
feature vector for each input image. The complete list with their embedding
dimension and trainable parameters is shown in table 3.1.

3.2.1 Colour-based extractors
Colour-based extractors compute similarity based only on values of pixels from
images with no additional training data. This approach was successful in some
well-defined domains [48]. Three types of these extractors are covered in this
thesis: RGB histogram, LAB k-means, and LAB positional.

The first method, RGB histogram, is the most simple one. The RGB colour
space is the most used colour space for work with images in computer science.
This method computes the histogram for each channel, i.e. red, green, and blue,
concatenates the histograms and normalizes it with the L2 norm. It is compu-
tationally lightweight and captures a general colour layout. However, the RGB
colour schema is not perceptually uniform [50], and even though the extractor
does not use the RGB colour space directly for computing distances, the resulting
histogram can still be affected. The number of bins for the histogram compu-
tation is an adjustable parameter. The higher number is, the better distinction
between colours can be achieved. However, the lower number of bins can balance
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the imperfection of the colour space and assign a higher similarity score for closer
colours. In this thesis, the studied number of bins is 256 and 64.

The previous method has some drawbacks, some of which were discussed, e.g.
perceptually non-uniformity. Additionally, the user’s perception of the image
does not always have to use all colour pixels and can only focus on the most
dominant colours. In the LAB k-means method, both of these drawbacks were
addressed. This method computes k-means [23] on the set of pixels present in
the image. Then the centroids from the k-means are sorted by their hue from
the HSV colour space. In this order, the centroids’ pixel values are concatenated.
In contrast to the previous method, the pixels are in CIELAB colour space [52]
instead of RGB. Based on psychological experiments, CIELAB colour space was
specifically designed to reflect colour similarities. Thus, the first drawback is
addressed using the said colour space. The second drawback is handled with the
k-means algorithm. The centroids reflect the high-level aggregation of the present
pixel colours. The centroids primarily represent the most significant clusters and
thus represent the dominant colours. The number of centroids is a parameter of
this method, and this thesis investigates settings with four centroids. The higher
number of centroids can be computationally demanding for a large number of
input images.

Another drawback yet to be mentioned is that the previous two methods lack
information about the position of pixels. The position of the colour pixels can
be a decisive element. The last colour-based extractor is LAB positional. It
uses the same colour space as the previous one. However, the difference is in
how the representatives are selected from the image. The input image is divided
into n × n chessboard-like sections. Then, a representative colour is computed
with an arithmetic average for each section. The representative colours are then
concatenated row-wise and create the resulting feature vector. The n is the
parameter of this method, and this thesis works with values two, four, and eight.

3.2.2 SIFT-based extractors
Beyond-colour image analysis was another method widely used for various com-
puter vision and CBIR tasks, e.g. Canny edge detector [14], Histograms of ori-
ented gradients [10], and SIFT [47]. The SIFT features are widely used for image
matching and object recognition. They are designed to be robust for resizing,
cropping, change of illumination, or viewing angles. However, this method cre-
ates a dynamic number of keypoints; thus, complicated and computationally
exhaustive feature matching for every two images would have to be implemented.
In this thesis, an aggregated version of these features will be used. Delhumeau
et al. [11] proposed a bag of features (BOF)-like SIFT feature aggregation called
VLAD. The BOF aggregation requires a dictionary of features. Then for each
feature from the set of features, the method computes the nearest neighbour from
the dictionary and increments the counter for the dictionary feature vector. The
resulting aggregated feature vector is the counted histogram. The aggregation
proposed in Delhumeau et al. [11] does not create a histogram of dictionary fea-
tures but computes deviations between the input feature vector and the nearest
dictionary feature vector. Then it sums all the deviations. The sum is then nor-
malized using "power-law normalization", which is applied component-wise and
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should reduce the influence of the bursts in the natural images. The final step is
L2 normalization. The vocabulary size is a parameter of this method, and in this
thesis, a vocabulary size of 64 will be used.

3.2.3 DNN-based extractors
In recent years, the state-of-the-art in many domains (e.g. image classification,
text-to-image retrieval, image generation) was dominated by DNNs [36, 59, 60].
The architectures of the DNNs have been changing over the years. One of the
simplest is a deep multilayer perceptron, which is just an extended multilayer
perceptron [51] with an enormous amount of hidden layers and parameters. Deep
convolutional neural networks (CNN) surpassed the fully connected models in
image processing [36, 24, 77]. This network architecture is based on small filters
applied to the input as a sliding window. Some pooling layers or normalization
layers usually accompany the convolutional filters. In Vaswani et al. [72], a novel
architecture called Transformers was proposed and has achieved state-of-the-art
in the natural language processing (NLP) domain. This architecture was adapted
for the computer vision domain in Dosovitskiy et al. [15]. This thesis will focus
on various models from the two last-mentioned architectures due to their superior
performance in other computer vision tasks.

The extractors with an underlying DNN are relatively straightforward. The
input image is passed to the neural network, and the features are activation values
from a hidden layer. A last hidden layer will be used in this thesis if not stated
otherwise.

This thesis will use six different types of CNN-based extractors with various
sizes. One of the models is ResNet introduced in He et al. [24]. This architecture
was one of the first which overcome the issue of learning deep neural networks.
Prior studies could not achieve better results with deeper networks. This study
presented skip connections which improved identity mapping throughout multiple
layers and improved backpropagation efficiency. This thesis will use ResNets with
layers 50, 101, and 152.

Tan and Le [70] presented an easily scalable CNN architecture. The re-
searchers proposed width and resolution scaling hand-to-hand with traditional
depth scaling. Additionally, they performed a multi-objective neural network
search to optimize ImageNet accuracy and floating point operations per second
(FLOPS). The FLOPS metric is there to reduce computational complexity. The
found model was used as a base model B0; then, the optimal scaling was employed.
It was shown that it outperformed the state-of-the-art regarding ImageNet top-1
accuracy and image size at that time.

A network for AVS tasks was proposed by Li et al. [40]. It consists of two
encoders which embed videos and text queries into the same feature vector space.
The text encoder embeds the text query using a bag of words, word2vec and
GRU layers. The text encoder will be omitted in this thesis. The video encoder
uses the CNN feature extraction consisting of ResNet and ResNeXt [77]. This
encoder embeds all the sequence frames and then applies a mean pooling layer
on the feature vectors. We can use this video encoder as a simple image encoder.
This network was trained on MSR-VTT [79] and TGIF [41] datasets.

In the natural language processing (NLP) domain, novel architecture Trans-
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formers surpassed previous state-of-the-art [72]. Dosovitskiy et al. [15] succeeded
in using this architecture in the image domain. The use of the Transformer ar-
chitecture was not straightforward and required some modifications. One of the
changes was to create a sequence of tokens from an image. It was achieved by
splitting the input image into patches, which were treated as words. According
to their research, this novel architecture outperformed previous state-of-the-art
CNNs on the ImageNet dataset and even in transfer learning on different datasets.

Another Transformer architecture called CLIP was proposed by Radford et al.
[59]. It consists of image and text encoders, and its purpose is zero-shot classifica-
tion. This architecture was trained on 400 million image-text pairs collected from
the Internet. Then the contrastive learning technique was used to learn weights
for the text and image encoders. The researchers showed that the CLIP model
performed better as a zero-shot classification model than another zero-shot clas-
sification model or linear probes on some state-of-the-art classification models.
The "data-less" approach in zero-shot classification is a huge advantage compared
to the standard image classification approach. However, the authors discussed
that the zero-shot classification would require much more computational power
to achieve the state-of-the-art performance of the supervised networks.

The last Transformer used in this thesis was introduced by Chen et al. [8] and
called ImageGPT. This network was inspired by the success of GPT-2 [58]. It uses
self-supervised methods with autoregressive and BERT objectives. According to
the study, the network produces high-quality image representations and surpasses
some networks in some domains with only linear probing. The pre-trained model
is also performant in fine-tuning.

Despite the success of the Transformers architecture used in computer vision,
heavy criticism of the architecture in this domain appeared [43, 20]. As the au-
thors of the studies describe, this architecture has three main drawbacks. The
first one is the spatial limitation caused by treating the 2D image as a list of
tokens. The next drawback is a quadratic complexity with respect to the input.
It can be discussed that most test benchmarks scale down the images to small
resolutions (e.g. 224x224), so the image size does not play a role in the compu-
tational complexity. However, it is not always the case, and it takes itself out
from possible candidates for a general deep neural network backbone. Lastly, one
of the advantages of the Transformers is their spatial adaptability, but it lacks
channel adaptability. The channels are also important [21] and carry important
information about objects in the image.

In a recent study, Liu et al. [43] tried to fix the addressed issues and intro-
duced a novel architecture, Visual Attention Network (VAN), and a new type
of layer, Large Kernel Attention (LKA). The LKA combines the self-attention
mechanism with convolution filters. At first, it computes attention values using
depth-wise convolution, depth-wise convolution with dilatation, and 1x1 convo-
lution. In contrast to the self-attention mechanism previously used, it does not
apply any activation function, e.g. sigmoid. The input values are then multiplied
by the computed attention values and forwarded to the feed-forward network.
Traditionally, the authors added skip connections and batch normalizations to
the basic VAN stage. It was shown that this novel backbone outperforms most of
the SOTA backbones with similar GFLOPs on different domains, e.g. image clas-
sification on ImageNet and CUB200 [76] datasets, object detection and semantic
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segmentation on COCO [42] dataset.
A more radical approach was employed by Guo et al. [20], where the success

of the Transformers architecture was primarily attributed to their superior ability
to scale at the expense of the inductive bias of CNNs. The authors revisited the
scaling capabilities of ResNet architecture. They performed many modification
trials where different macro and micro changes, kernel sizes, inverted bottlenecks,
and more groups (as introduced in ResNeXt [78]) were applied to different sizes
of ResNet. As a result, a novel architecture ConvNet was introduced. This
architecture outperformed SOTA Transformers architectures on the ImageNet
classification benchmark with the same or fewer GFLOPs.

3.3 Triplet selection
In this thesis, the similarity will be assessed relatively in triplets rather than ab-
solutely in pairs, which were employed in some mentioned studies in the previous
chapter. This way, some problems will be avoided, e.g. lack of interpretability or
different neutral points per user.

This thesis aims to explore the image similarity for CBIR. In this field, the
demands on similarity modelling can differ because the CBIR tools usually start
with exploration, and in the later stages, exploitation comes to play. The tools
handle it differently, and it is referred to as the exploration-exploitation trade-off
[32]. Therefore it is required to assess similarity credibly both on highly dissimilar
and highly similar images. The similarity of highly dissimilar images is usually
computed in the exploration part of the process. In this part, the user starts
providing some input to the system, e.g. text query or image relevance feedback.
The system tries to utilise the inputs the user provides and provide the most
relevant results. This part is referred to as exploitation. During this stage, the
results are usually highly similar; thus, similarity modelling must handle these
images.

The process of triplet generation has to cover both of these stages. If we
ignore a single stage, we could end up with a similarity model, neglecting a part
of the search process. Simple random triplet generation would not suffice because
the V3C1 dataset is large, and the number of highly similar frames for a random
frame is significantly lower than the dataset size due to the high diversity of the
dataset [6]. Thus we need to create triplets based on their similarities. However,
the chicken and egg problem applies here. To model image similarities, we need
to gather similarity data to find how to model the similarities the best. Therefore
in this thesis, every extractor discussed in the previous section will be used to
create some triplets. This method was already used by Veselý and Peška [73]. But
first, some assumptions need to be taken into count. The first assumption is that
some extractors model similarity better than others. This assumption is trivial
and expected due to the different nature of the extractors. The next assumption
is that at least some extractors model the similarities credibly enough. This has
been proven to some extent in the previously mentioned competitions [26, 22].
Therefore with this in mind, we will be able to create triplets with some baseline
similarities taken into count.

The second assumption might lead us to a quick question, why don’t we just
use one of the similarity models from the CBIR tools? We could do it; however,
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True similarities:

Model 1:

Model 2:

1 2 3 4 5
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Figure 3.2: A depiction of presentation bias. The squares represent an image
from a dataset; green ones depict highly similar images to a query image, and
red depict dissimilar images. Images 1 and 4 are selected by model 1 and will be
chosen as a triplet.

the results could be influenced by the presentation bias [5]. The presentation bias
in information retrieval and recommendation systems is a kind of bias which is
induced by the combination of items that are presented to the user. If the items
presented to the user are generated by an algorithm and not at random, then the
resulting item interactions or annotations will be on a specific subset. This can
lead to misleading results where the performance of other algorithms is inferior to
the prior one. A small example is depicted in figure 3.2. Let’s say we will be going
to model the similarities with Model 1. We select a random query image, and we
want to select one highly similar and one dissimilar image for the triplet. The
Model gives us three images as highly similar and two dissimilar images. From
both classes, we sample randomly and get images 1 and 4. When we evaluate
the performance of these models on this triplet, we get a 100% success rate for
Model 1 and 0% for Model 2. That indicates that Model 1 is superior to Model
2; however, the opposite is true. Model 1 has a 40% true success rate, and Model
2 has a 80% success rate. Using more image similarity models does not prevent
presentation bias from occurring entirely but greatly minimizes it.

Sometimes the CBIR systems can be used only on a specific domain. The
closeness in the similarity model does not have to mean the same domain; thus,
this thesis will examine two subdomains of the V3C1 dataset separately, i.e. wed-
ding and scuba videos. These subdomains were selected for their specificness and
their size. Both domains are relatively small. The wedding domain is larger than
the scuba with 66373 keyframes, which is about 6.6% of all V3C1 keyframes. The
scuba domain comprises 3530 keyframes, about 0.3% of all V3C1 keyframes. The
keyframes were selected according to the video metadata provided by the V3C1
dataset. The video title, description, or tag had to contain the word wedding
(scuba) to be included in the wedding (scuba) domain. From now on, the whole
V3C1 dataset will be referred to as the general domain.

From these three domains, triplets will be generated with respect to the explo-
ration/exploitation stages and their transition. For this purpose, the triplet gen-
eration algorithm is described in algorithm 1. Firstly, for each domain, we need
to compute an image features matrix and select an appropriate (dis)similarity
function. The (dis)similarity functions widely used are cosine similarity or L2
distance. Both of these functions will be used for triplet generation, each for half
of the triplets. The next step is to define what kind of similarity between triplets
is needed and how to achieve that. The absolute criteria on the (dis)similarity
functions are somewhat unreliable and complicated. It would require an analysis
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of each feature matrix and its similarities among the rows. A different approach
was chosen to cope with this issue. The whole domain will be sorted based on
the similarity to a query. The query image is selected randomly from the entire
domain. Then this sorted list is then divided into bins of fixed sizes. The bins are
[24, 28, 212, 216, 220] for the general domain. For the wedding domain, the bins
[24, 28, 212, 217] were used. The smallest bins [24, 28, 210, 212] were used for the
scuba domain. The bins should always reflect multiple levels of similarity, e.g.
near duplicate, similar, somewhat similar, or completely irrelevant. Then more
similar and at least the same or less similar bins are selected. One image is then
randomly chosen from both bins. Then each image from the option pair is as-
signed either side, i. e. left or right. Therefore this algorithm does not implicitly
favourite either side, and the triplet is presented in the same layout. The process
repeats until the algorithm satisfies the number of images per bin.

The last step of the triplet generation was to add additional metadata for
each triplet. It consisted of similarities based on all similarity models and their
relative ranks. Three similarity models (W2VV++, RGB histogram with 64 bins,
and VLAD) were chosen for a special role in gamification, described in the next
section. For the three chosen models, an additional simplified binarized similarity
decision was stored.

The feature extraction and cleaning framework is attached to this thesis. The
user documentation is in appendix A.1, and the programmatic documentation is
present in the project directory in the docs/html/index.html.

3.4 Web application
The user interface for the study participants was created as a web application.
The web application, rather than a desktop or mobile application, was chosen for
its easy distribution and overall familiarity of the users with the web applications.
The study distribution was as easy as sending a single Uniform Resource Locator
(URL). The goal of this study was to make it as accessible as possible. Thus
two language mutations were implemented; Czech and English. Moreover, the
intermediate results were immediately available.

The first thing the user saw on the landing page (see figure 3.3) was the
user information form. This form was optional to be filled out by the users.
They could insert their email to receive the study results, their nickname for
gamification purposes, an age group, highest achieved education, and familiarity
with machine learning. Following the form, a Google reCaptcha1 validation was
applied to avoid some automatic abuse of the input form and prevent bots from
getting the credentials and to the annotation screen. Lastly, informed consent
was shown to the participants.

After filling out the user information form, an information screen was shown;
see figure 3.4. Credentials were displayed to the user. They could return anytime
with these credentials and continue with the study where they left off. Then
a brief guide through the study was presented. Also, the participants were in-
troduced to the gamification element of the study. The users continued on the
annotation screen by clicking the "Continue" button.

1https://www.google.com/recaptcha
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Algorithm 1 A triplet generation algorithm.
Require:

Domain D
Image features matrix F
Bins B
Similarity function sim : F × F → R
Number of query images per bin pair N

1: triplets← []
2: for i ∈ {1, ..., N} do
3: for b1 ∈ B do
4: for b2 ∈ B do
5: if b1 <= b2 then
6: q ← rand(size(D)) ▷ rand(L) returns random number from

{1, ..., L}
7: similarities← []
8: for j ∈ {1, ..., numOfRows(F )} do
9: similarities.add(sim(F [q], F [j])) ▷ adds a similarity value

to the similarities list
10: end for
11: sortedIndeces← argSort(similarities) ▷ argSort(list)

returns a descending list of sorted indices; e.g. [2,3,1] yields [2,1,3]; the first
element of the list is the index of the biggest number, the second element is
the index of the second biggest number and so on...

12: offset1 ← rand(b1.end− b1.start)
13: offset2 ← rand(b2.end− b2.start)
14: query ← D[q]
15: choice1 ← D[sortedIndeces[b1.end + offset1 − 1]]
16: choice2 ← D[sortedIndeces[b2.end + offset2 − 1]]
17: triplets.add((query, choice1, choice2)) ▷ add the created triplet

to the result
18: end if
19: end for
20: end for
21: end for
22: return triplets
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The annotation user interface originates from the preliminary study [73]. The
goal was to make the study as accessible as possible and motivate the participants
to annotate more than the asked minimum. See the figure 3.5 for an example.
Three images were dominant on the annotation screen. The top image was the
query image, and the two bottom ones were the choice one and choice two images.
The text at the top of the screen said: "Which image is more similar to the one
on the top?". At the bottom, there were five options for the users to choose from:
Left, Maybe left, I don’t know, Maybe right, and Right. Under the choices, a
submit button is present to send the annotation. At the top right corner, there
was a Help button to show a Help modal window. The last UI element on the
screen is in the top left corner, and it is level progress, which is part of the
gamification element.

The triplets, created by the previously introduced algorithm, were imported
into a database. Then, a random category was selected for each trial, and from
the chosen category, a random triplet was presented to a participant. The par-
ticipants’ agreement on a single triplet would be hard to estimate with random
triplet sampling. Therefore an additional meta-category was introduced. Random
500 triplets from the general category were selected and marked as a repeating
category. In this category, an exception from random sampling was made. The
triplets were not chosen randomly but sequentially to get the maximal number of
annotations for as many triplets as possible. The maximal number of annotations
per triplet was twenty.

The main differences between the preliminary study and the study in this
thesis are three. The first difference is the different choice possibilities. In the
preliminary study, the user was forced to choose either the left or right images.
There was no possibility of expressing uncertainty. Secondly, the user incentive
was purely their will to continue. This study added an external motivation to
encourage the user to annotate more triplets. Lastly, the preliminary study con-
tained only the general set compared to this study, which distinguished among
general, scuba, weeding, and repeating subsets.

3.4.1 Gamification
The participants of this study, as for the preliminary study, were recruited by
the author and his supervisor. The participants were recruited primarily from
friends, colleagues, acquaintances, or transitively through social groups. There
were no money or price incentives applied. Therefore the primary motivation of
the participants was doing a favour to whom they were invited. An additional
external stimulus was implemented to gather more annotations.

A gamification was chosen as an external stimulus, which has been used in
software design for more than a decade [13]. As defined by Deterding et al. [13],
gamification is the use of game design elements in a non-game context. This
method is often embedded in software designs to encourage users to use the
software more or in a more enjoyable way.

The game elements in this study were inspired by role-playing games2 (RPG).
Every player of an RPG controls their own character, which they try to improve.
The improvement is made by doing quests and other tasks. The better the

2https://encyclopedia.pub/entry/1583
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character, the more likely the player will win some tournaments, gain better
rewards, or be higher in the leaderboards.

One of the game elements adopted in this study is levels. These were not
just simple numbers, but they were inspired by a fantasy medieval society. A
participant’s character started as a beggar, and for each 20 annotated triplets,
the character would level up. The level-up meant that the character became a
higher member of the fantasy society. The current level was displayed as a moving
picture with a name in the top left corner of the screen. The moving images of
levels were provided under CC-4.0 by chierit3. The highest distinct level was
king with guards. From this level, only the number of guards was increasing to
motivate the participants to continue beyond this highest level.

The next game element was the leaderboard (see figure 3.6). In serious games,
the leaderboards or scoreboards add a competitive part. This way, the players
can compete among themselves and try to achieve the top of the leaderboard.
The leaderboard in this study was sorted by the number of annotated images.
The participants could see the leaderboard with the top five participants and
their rank at every level-up. At the start, they could choose a nickname under
which they were presented on this leaderboard.

The last gamification implemented in the study was statistics. The statistics
in serious games often show some interesting facts about the gameplay. In this
study, agreement statistics were primarily displayed to the participants. First was
an agreement with W2VV++, RGB histogram, and VLAD models. These values
were precomputed in the triplet selection described in the section 3.3. Moreover,
agreements with the other users were computed, and the nickname of the most
agreeing user was shown.

3.4.2 Implementation
The annotation application was implemented in Javascript with Node.JS4 as a
runtime environment on the server. Express5 was used as a web application frame-
work for its flexibility, robustness, and ease to use. PostgreSQL6 database was
used for storing information about triplets and their annotations. PostgreSQL
is a relational database with many years of active development, active commu-
nity, performant and easy to set up. The front end was written in Embedded
Javascript templating7 (EJB) and styled with Bootstrap8.

The whole framework stack was chosen based on ease of use, effectiveness,
and our previous experiences. Other back-end framework stacks were also taken
into account, e.g. C# + ASP.NET core9, Java + Spring10 ecosystem, or PHP +
Laravel11. The main requirements for the web application were:

• Easy deployable on Debian
3https://chierit.itch.io/lively-npcs
4https://nodejs.org/en
5https://expressjs.com/
6https://www.postgresql.org/
7https://ejs.co/
8https://getbootstrap.com/
9https://dotnet.microsoft.com/en-us/apps/aspnet

10https://spring.io
11https://laravel.com/
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• Straightforward data persistence

• Support for internationalization

• Ability to secure communication with Transport Layer Security (TLS)

• Manage access of the users

• Ability to handle at least a few (less than a hundred per second) concurrent
annotations

These requirements would be satisfied by all of the previously mentioned
framework stacks, and therefore the ease of use, preference and previous ex-
perience came to play. The application deployment was as easy as installing
Node.JS from the standard package manager, then pulling the repository, in-
stalling dependencies with a single command using the Node Package Manager12

(npm) and then starting the web server with a single command. The database
read and write operations were handled using node-postgres13 module, which al-
lows quickly inserting SQL queries and executing them with sanitized arguments.
Module i18n-express14 provides internationalization support with a single config-
uration line. The Node.JS HTTP server supports adding the TLS layer by just
adding a configuration line with the path to the server key and public certificate.
The user authorization is managed with an HTTP authorization [19], and the
credentials are validated against those stored in the database. Users can’t change
their credentials to avoid obtaining some sensitive information because they tend
to use the same login for more online services. The users weren’t expected to
return very often, so the automatically generated passwords were a tiny inconve-
nience. The selected frameworks and database should easily handle more than a
hundred HTTP requests per second. Additionally, Peška et al. [56] already used
a similar framework stack and was proven satisfactory. More detailed user docu-
mentation can be found in appendix A.2 and the programmatic documentation
in the project directory in docs/index.html.

12https://www.npmjs.com/
13https://node-postgres.com/
14https://www.npmjs.com/package/i18n-express
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Feature extractor Feature dimension Trainable parameters
RGB Histogram 256 768 -
RGB Histogram 64 192 -
LAB Clustered 4 12 -

LAB Positional 2× 2 12 -
LAB Positional 4× 4 48 -
LAB Positional 8× 8 192 -

VLAD 8192 -
ConvNeXt Tiny 768 28M
ConvNeXt Small 768 49M
ConvNeXt Base 1024 88M
ConvNeXt Large 1536 196M
EfficientNetB0 1280 5.3M
EfficientNetB2 1408 9.2M
EfficientNetB4 1792 19M
EfficientNetB6 2304 43M
EfficientNetB7 2560 66M
ResNetV2 50 2048 26M
ResNetV2 101 2048 45M
ResNetV2 152 2048 60M

VAN Tiny 256 3.8M
VAN Small 512 13M
VAN Base 512 26M
VAN Large 512 44M
W2VV++ 2048 152M

CLIP patch16 768 86M
CLIP patch32 768 87M

ImageGPT small 512 76M
ImageGPT medium 1024 455M

ViT Base 768 86M
ViT Large 1024 307M

Table 3.1: Full list of feature extractors with their embedding dimension and
trainable parameters.
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Figure 3.3: UI. Top: A screenshot of the web application with a user form in
Czech. Bottom: A screenshot of the web application with a user form in English.
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Figure 3.4: UI. Top: A screenshot of the web application with credentials and a
short study briefing in Czech. Bottom: A screenshot of the web application with
credentials and a short study briefing in English.
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Figure 3.5: UI. Top: Legacy UI from the preliminary study[73] Middle: A screen-
shot of the web application in Czech. Bottom: A screenshot of the web application
in English.
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Figure 3.6: UI. Top: A screenshot of the web application with a level-up screen
in Czech. Bottom: A screenshot of the web application with a level-up screen in
English.
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4. Dataset analysis
The user study results were stored in the database in the table triplets_annotation.
The values stored for each annotated triplet are the user’s choice, decision time,
window size, and the browser User-Agent[18]. In the postprocessing, some ad-
ditional fields were computed. One of the fields was a handheld flag. This flag
was set when the User-Agent contained a substring "iPhone" or "Android". The
following fields were similarities among the query, options one and two.

This section will analyse the image similarity assessment capabilities modelled
by the previously explained algorithms and limitations that can be observed by
agreement among the participants. But at first, the overall dataset features
will be investigated. Overall 17365 unique annotations were received from 84
participants.

4.1 Device types
The participants were not instructed to use any particular device, e.g. PC, tablet,
or smartphone. Therefore, they could participate in the study on a device based
on their preference. A brief device specification is stored in the columns window
width, height, user agent, and a derived column handheld. Most users did not
use any handheld device and probably used a laptop or PC; see left figure 4.1.
The number of annotations on a handheld device was lower by 24.4% on aver-
age in comparison to other devices. However, the median annotation count for
handheld devices was 89.5, which was slightly higher than the median of 80 on
other devices. Only two participants used a handheld and non-handheld device;
the others probably stuck with a single device.

The screen’s resolution can also impact the annotation quality; thus, it was
logged by the web application’s front end. The logged resolution was the size of
the inner browser window consisting of width and height in pixels. The sizes vary
a lot, and hence the screen size was precomputed to the diagonal size in pixels.
From these values, three major screen sizes come as a result. Small resolution
screen with less than 1468.6 pixels in diagonal, corresponding to 720p (1280×720).

Figure 4.1: Left: Number of users that used a handheld or another device at least
once. Right: Average volume of per-user annotations for the device type.
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Figure 4.2: Distribution of the count of annotations with respect to the screen
resolution.

Figure 4.3: Distribution of the count of annotations with respect to the screen
resolution.

The medium-resolution screens were classified as those with at least 1468.6 pixels
in diagonal but less than 2202.9. The upper bound corresponds to the 1080p
(1920 × 1080) resolution. The distribution of annotations count can be seen in
figure 4.2. Most of the annotations (45.3%) were collected on a high-resolution
screen. The second most used resolution was medium, representing 33.9% of all
annotations. The last and least used resolution was the smallest one. This one
was used in 20.8% cases.

An additional observation was made that annotations from small resolutions
were primarily done on a handheld device. In figure 4.3, it can be seen the
distribution of the annotation counts with respect to the handheld type and
resolution type. The large and medium screen sizes were from non-handheld
devices. This difference can be caused by the HW capabilities of the respondents
or their browser usage (fullscreen or windowed mode).
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Figure 4.4: Left: The distribution of users with a given age group. Right: Average
volume of per-user annotations for the age group.

4.2 Demographic attributes
The age group is one way to observe generational differences and, at the same
time, not breach privacy. We created the groups artificially, and the participants
chose them by themselves. These groups were split by the years: 0-15, 16-19, 20-
26, 27-37, 37-50, 51-65, and 65+. The group intervals are closed intervals. They
should reflect some development and stands of the individuals. Image similarity
can be subjective, and it might change during human maturation.

This study covered nearly all age groups except the 65+ group. For age group
distribution, see figure 4.4, left. The dominating age groups were 20-26, 27-36,
and 37-50, with a total user share of 78.6%.

In figure 4.4 on the right, it can be observed that the groups 0-15 and 51-
65 have the highest average annotation counts. However, the large error bars
and the low number of participants shown on the left graph indicate that some
outliers skew these averages. Interestingly the differences in average annotation
count among the dominant groups are evident. The group 20-26 has, on average,
116.1 annotated triplets. The two following groups combined, 27-36 and 37-50,
have higher average annotated triplet counts of 200.6 (one-sided Student’s t-test
p-value = 0.0459). Their individual means are 175.5 and 237.0, respectively.

The following demographic attribute collected from the participants was their
highest achieved education level. All the groups and their distribution can be
seen in figure 4.5, except the group with no previously finished formal education,
which did not include any participants. The group with primary school seems to
be underrepresented. The large error bars indicate that most groups’ annotation
counts are highly diverse. There is a vast overlap between this education group
and the age group 0-15; thus, the means and error bars are similar.

Familiarity with machine learning algorithms is a specific attribute. However,
the experience gained by knowing and using machine learning algorithms might
induce some unintentional bias favouring them over other users. The distribution
of the machine learning expertise is shown in figure 4.6. The dominant groups
are those with no or small machine learning experience. This is expected given
that it is a specific field of computer science. Similarly to the education level, the
error bars of an average annotation count are relatively large, and thus there is a
difference among participants in each group (see figure 4.6 on the right).
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Figure 4.5: Left: The distribution of users with a given highest achieved educa-
tion. Right: Average annotation count per group with a given highest achieved
education.

Figure 4.6: Left: The distribution of users with given machine learning expertise.
Right: Average volume of per-user annotations for the machine learning expertise.

4.3 Gamification
The gamification elements in this study were employed to motivate participants
to make more annotations. This change is one of the significant differences to the
preliminary study [73]. Moreover, the annotators were given more choices which
can lead to making the task harder.

The difference between this study and the preliminary is depicted in figure
4.7. The mean number of annotations per user was nearly twice as much. The
mean annotation count in the preliminary study was 111.6, and in this study, it
was 206.7 triplets. The median has also increased, even though the increase is not
as significant as with the mean. The maximum increased excessively by nearly
four times from 570 annotations in the preliminary study to 2021. This indicates
that the gamification elements increase participants’ motivation and keep them
continuing even in a possibly more challenging task. This claim is supported by
the Student’s t-test between the preliminary and this study and yields p = 0.0296,
and thus the gamification impact is statistically significant. However, the results
show that some participants were motivated more than others. In 85.7% cases,
the participants stopped right after a level-up screen. This may indicate that
they were motivated to finish at least their current level after deciding to end the
study.
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Figure 4.7: Difference of the annotation counts between this study and our pre-
liminary study [73].

4.4 Annotations
As described before in section 3.4, the participants had five options to assess the
triplet similarity. The options were: Left, Maybe left, I don’t know, Maybe right,
and Right. Moreover, in section 3.3, the triplet selection was described with the
goal of creating different levels of similarity. Given that, the number of responses
for each judgment type should be somewhat uniform.

Figure 4.8 depicts the distribution of user choices. The figure is divided into
subfigures, each depicting distribution in a different subset. The General and
Repeating subsets are nearly identical and close to a uniform distribution. The
participants tended to be more unsure about their Wedding subset responses.
The most frequent responses were the Maybe left and Maybe right answers. This
may indicate that the participants were more likely to favour one option over the
second, even though they were not that sure. The middle option and the edge
options were balanced. The Scuba subset seems to be a somewhat more decisive
one. The participants used the I don’t know option the least from all three
subsets. However, the other four choices are balanced. Overall all the subsets
have mostly balanced answers and do not have any options entirely neglected.

The users can introduce some biases to the dataset during annotation. They
were described in chapter 2. This study can be affected by the positional [29],
assimilation, and contrast [81] biases. The presence of these biases can affect
results if not appropriately addressed.

The positional bias does not seem to affect the results overall in the subsets
based on figure 4.8. The Fisher’s exact test [71] was performed on a contingency
table, where the first row represents the sum of Left and Maybe left option
annotation counts and the Right and Maybe right annotation counts. The second-
row values are both an average from the first row. The null hypothesis is that
the user selections (left options vs right options only) correspond to a uniform
distribution. The test yielded a p-value equal to 0.079, which is greater than 0.05;
thus, the null hypothesis cannot be rejected with statistical significance.

The positional bias does not have to be observable directly in the overall
statistics but can be present in the per-user distribution. For per-user statistics,
we will omit the users with less than 30 annotations to avoid outliers caused by
randomness. In figure 4.9, the users are depicted as dots, and their position is
determined by how they respond. The y-axis represents part of the left options,
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Figure 4.8: Distribution of annotations per subset.

and the x-axis represents the part of the right options from all of the annotations
from the user. The size of the data point means their total annotation count. It
can be observed that most of the data points are around the dashed red linear
functions y = x and thus have mostly balanced left/right options. The Fisher’s
exact test, computed analogously as previously, showed that for any participant,
the null hypothesis could not be rejected, and even for 9 out of 69 participants,
the p-value was greater than 0.95. Moreover, 32 of the participants had more
left options selected, the next 36 participants had more right options, and the
last remaining had the same left and right options. Therefore, there is likely no
systematically significant positional bias in terms of left and right options.

However, another bias can be observed from figure 4.9. The willingness to
select the neutral I don’t know option differs highly among the users. Even
though the users differed in what they wanted to decide and what they wanted
to leave with the neutral option, this tendency is an attribute of the subjective
study and should be kept.

The decisiveness of each participant varied. In figure 4.10, the differences
among participants are depicted. The decisiveness is represented by the ratio of
certain answers (Left or Right) and less certain answers (Maybe left or Maybe
right). The participants depicted in the top left corner were more likely sure of
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Figure 4.9: Distribution of annotation biases. The data points are participants;
the x and y axis is part of the answers from them with Left/Maybe left and
Right/Maybe right options, respectively. The size of the data point depicts the
annotation count. Only participants with at least 30 annotations are shown.

their choices than the participants in the bottom right corner. The participants
closer to the bottom left corner used the I don’t know option more frequently.
About half (34 out of 69) of the participants used the decisive options relatively
same frequently as the less decisive options, meaning that the difference between
the decisive part and the less decisive part of the annotations was less than
0.2. This indicates that some participants were less sure in general, and their
annotations might be less accurate. This bias will be addressed simply by giving
certain answers (Left and Right) more weight.

To detect the assimilation and contrast [81] bias, some preprocessing needs
to be done. Simply comparing the previous and next annotations would not
suffice. The reason is the last bias decisiveness of the users. There would be a
high number of successive same decisive annotations (Left then Left, Maybe right
then Maybe right, etc.) even though this does not have to mean the assimilation
bias but rather the participants’ decisiveness. After filtering participants with
a low number of annotations, the lift score was computed for each successive
annotation per user

lift(i, j) = P (i|j)
P (i)

. The P (i|j) denotes the probability of the participant selecting the i-th option
when the last option was j-th, and P (i) denotes the probability of the participant
selecting the i-th option without knowing the previous answer. The lift scores
higher than two and lower than 0.5 were picked, and their counts are depicted
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Figure 4.10: The participants’ decisiveness distribution. The data points are
participants; the x and y axis is part of the answers with less decisive (Maybe left
+ Maybe right) and more decisive (Left + Right) options, respectively. The size
of the data point depicts the annotation count. Only participants with at least
30 annotations are shown.

in 4.11. In this statistic, 31 participants were studied, and 26 of them did not
have any lift scores out of the selected bounds. One participant had some values
higher than the upper bound. Three participants had some values lower than
the lower bound. Lastly, one participant had some values higher than the upper
bound and some values lower than the lower bounds. The lift scores of the last
participant are depicted in figure 4.12.

From the summarization counts in figure 4.11 and from the lift score of the
most extreme participant in terms of lift scores in figure 4.12, it is evident that a
few participants might be influenced by the assimilation and contrast bias. How-
ever, the number of participants affected is relatively small and more importantly,
the bias affects solely the sureness of the annotation and not the actual direction
(left vs right options). Therefore the impact is insignificant for the similarity
models evaluation.

4.5 Triplet decisivness
Image similarity is presumably subjective, and therefore it is desired to know the
limitations of image similarity modelling. The repeating subset was designed to
answer that and obtain multiple annotations from distinct participants for each
triplet. These annotations give us some insight into the triplet similarities and
hardness to asses the similarity.

The agreement on what is similar in the triplet varied. The triplets with at
least four annotations were taken in count. The participants agreed on 71.5%
of the triplets, meaning the part of votes for the left or right options was higher
than 0.5. The rest of the triplets did not have enough votes for any of the two
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Figure 4.11: Left: Number of successive annotations with the lift score higher
than 2. Right: Number of successive annotations with the lift score less than 0.5.

Figure 4.12: Lift scores for the participant with the highest number out of bound
lift scores.

options, and thus the participants could settle on neither. However, it did not
always mean that the participants were going for the I don’t know or the unsure
options. Therefore the rest were also additionally divided into two categories. The
first one was an uncertain category. These triplets had more than 25% I don’t
know annotations and made 21.7% of these repeating annotations. The last part
of 6.8% triplets did not get enough votes on either side and simultaneously did
have less than 0.25 part of I don’t know annotations. These triplets had rather
polarizing opinions on what is actually similar. The distribution is depicted in
4.13.

To better understand how the similarity works and gain some intuition, some
samples will be examined closely. The first examined triplet is shown in figure
4.14. This triplet is an example of images that usually do not appear in the
standard image dataset (described in 2.1) because they capture some moment
or action. Even though the objects in the images can be uncertain and the
captioning may be challenging, the participants did agree convincingly. The
participants might decide on the similarity of the "bubbly" part of the images.
However, few participants voted for the Maybe right option. The presence of a
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Figure 4.13: Distribution of different decisiveness classes

Figure 4.14: Top: An example of a decisive triplet. Bottom: Distribution of
annotations.

similar dark part of the images might explain this.
On the other hand, the left option and target image in figure 4.15 are more

easily describable and could even be present in the standard image datasets com-
pared to the previous triplet and the right option of this triplet. However, in this
case, the participants could not decide if a sports car was more similar to a raised
view of a beach or a blurry moving hand over a paper. Slightly more participants
voted for the Maybe left than the Maybe right option. The slight shift could
mean that some participants may use low-level visual features such as blurriness
as a minor deciding criterion. Even though these images may seem too random
to determine a similarity between them, they may represent an initial part of the
exploration process.

The last triplet displayed in figure 4.16 is polarizing. The participants could
settle on neither option and moreover, they did not go for the neutral option in
most of the cases. These three images were presumably from the same motocross
racing video and thus semantically genuinely close. This triplet is a fine example
of pictures from the exploitation part. Therefore the similarity uncertainty can
sometimes be hidden even from human users who are sure of their choice. More-
over, this is an example of the subjectivity of image similarity and affirms the
potential limitations of the image similarity approximation.
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Figure 4.15: Top: An example of an uncertain triplet. Bottom: Distribution of
annotations.

Figure 4.16: Top: An example of a polarized triplet. Bottom: Distribution of
annotations.

4.6 User agreement
As explored in the previous section 4.5, the participants did not always agree with
each other on every triplet. This is understandable, given the subjective aspect
of the image similarity. However, the previous section examined agreement from
a triplet perspective. This agreement can also be examined from the perspective
of the participants.

The agreement depicted in figure 4.17 shows soft agreement for each partic-
ipant. The y-axis represents a soft agreement with the other users on triplets
that both users annotated. The users’ agreement refers to choosing the same
option on the same triplet. However, this "hard" agreement says that two users,
one selecting the Left option and the second selecting the Maybe left options,
do not agree with each other. Intuitively, this does not seem right, and those
participants would agree with each other in reality. Therefore this thesis works
with a soft agreement, which treats the more and less certain options as equals
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Figure 4.17: Soft agreement among users on the same triplets. The less and more
certain options were merged (Left == Maybe left; Right == Maybe right) for
the soft agreement computation.

(Left == Maybe left; Right == Maybe right). The mean agreement is 0.626, and
the median is 0.633. There are four visible outliers, two with relatively high and
two with a relatively low soft agreement with the other participants. The two
outliers with high soft agreements are those with only 20 annotations. Therefore
the value was computed on a relatively small number of triplets. The responses
from the participants with the lowest agreement were validated manually to de-
tect possibly unreliable annotations. The outlier with the lowest agreement was
probably not paying attention to the study after a few annotations and started
randomly selecting Maybe left and Maybe right options only. After a thorough
inspection of the annotations and finding at least three triplets where the tar-
get image and one of the options were near-duplicates, and the other option was
utterly different, it was concluded that this participant’s annotations were unre-
liable and would not be taken into count while evaluating similarity models. The
second outlier from the bottom seems to be reliable because the responses did
not show any objectively unreliable annotations. However, this participant did
submit quite a lot I don’t know options (36.7%), together with a relatively low
number of annotations (60). Therefore their soft agreement was low.

The overall participants’ soft agreement being far from the 100% and the
presence of some polarizing triplets discussed in section 4.5 may lead us to a
question, what are the most common disagreements? A disagreement matrix is
depicted in figure 4.18, inspired by a confusion matrix in machine learning. On
the left side, a disagreement matrix is depicted, and on the right side is a variant
with soft disagreement. It is evident that the participants mostly agreed on the
more certain options, which might be due to the existence of decisive triplets.
The most common disagreement is between more and less certain options. This
disagreement rate is likely to be caused by the different decisiveness among the
participants. Interestingly the annotations with the neutral or less certain options
have disagreed the most. The soft disagreement matrix shows that only about in
14% annotation pairs the participants disagreed with opposite options.

The agreement among participants differs to some extent. The differences
might be explained by task difficulty or differences among the participants. The
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Figure 4.18: Left: Disagreement matrix of participants. Right: Soft disagreement
matrix of participants.

Figure 4.19: Soft agreement among different device types.
papers with code speech to text

differences might be explained by different demographic attributes or different
device types.

The agreements among different demographic groups are depicted in figure
4.20. Missing values are caused by the lack of the same annotated triplets by
participants from both groups. In the first heatmap, the participants are grouped
by their education. The highest agreement is between participants with primary
school and PhD. This observation may be caused by a low number of participants
in the primary school education group. The second highest agreement is in the
group with a PhD. Other agreements are generally close to the overall mean
agreement of 0.62.

The second demographic attribute is age group. The highest agreement is
among participants in the group 37-50. The lowest agreements are with groups
51-65 and any other. Again the low number of participants in this group probably
caused the slight shift. However, the other agreements are still close to the overall
mean.

The last demographic attribute is machine learning expertise. The largest
extreme is in this demographic group, with those participants with a big machine
learning expertise. This agreement is about 12% points higher than the average.
This might indicate a bias among these participants that was induced by their
specialization.

The different device types and their impact is depicted in figure 4.19. The
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device type does not seem to have any significant effect on the agreement among
the participants. The most extreme one is the soft agreement among those who
used a handheld device. However, this extreme is rather insignificant in compari-
son to the differences among demographic attributes. Moreover, this leads to the
conclusion that the screen size and device type do not significantly impact the
soft agreement.

4.7 Model agreement
In this thesis, 30 similarity models were challenged to model image similarity as
accurately as possible to the human annotations. The models were presented in
the section 3.2. This thesis included low-level extractors based on colour models
or SIFT features, which were popular in the pre-deep learning era, and state-of-
the-art deep learning models trained on various domains.

Two minor distinctions to the soft agreement will be made in this section. The
first one is because the preprocessing, which will be described in the following
chapter 5, will merge annotations of the identical triplet to a single data with their
annotation averaged with the following weights: Left = −1, Maybe left = −0.5,
I don’t know = 0, Maybe right = 0.5, and Right = 1. Secondly, all those data
points with average annotation = 0 will be omitted because the image similarity
models, by default, can’t predict the I don’t know option. This metric will be
called binary agreement (BA).

The second metric used for the model comparison is a weighted version of the
binary agreement. The weighted binary agreement (WBA) uses the same form as
the BA, except each data point is weighted by the absolute value of the average
annotation. This metric prioritizes the triplets that were more agreed on.

Both metrics are depicted in equation 4.1. The S ↦→ [−1, 1] denote the
similarity function, which returns the similarity score. The cosine similarity on
the feature vectors was used. The D represents the set of annotated triplets.
Each element in the D is represented by four values: q is the query image, o1 is
the left option, o2 is the right option, and a is the averaged annotation value.

BA(S, D) =
∑︁

(q,o1,o2,a)∈D 1 + sign(S(q, o2)− S(q, o1)) · sign(a)
2 · |D|

WBA(S, D) =
∑︁

(q,o1,o2,a)∈D |a| · (1 + sign(S(q, o2)− S(q, o1)) · sign(a))
2 ·∑︁(q,o1,o2,a)∈D |a|

(4.1)

The BA and WBA matrics are depicted in figures 4.21 and 4.22, respectively.
The figures show the metric value in a heatmap, with rows representing mod-
els and columns representing a specific subset. The first column is triplets from
the general category, the second from the repeating category, the next two are
from subsets scuba and wedding, and the last one shows the metric on the whole
dataset. The W2VV++ feature extraction model dominates both metrics. This
model even achieved the highest metric values in all subcategories. The metric
differences between the W2VV++ and the EfficientNetB0 are significant in com-
parison to most of the differences among the other top models. Different training
data might explain the difference.
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The deep-learning models performed significantly better than the low-level
models. However, none of the tested models was worse than a random guess. The
best-performing low-level model was LABPostional 4×4. In scuba subset achieved
even a higher WBA than both variants of ImageGPT. The low-level models were
generally much more successful in the scuba dataset. The higher agreement level
may indicate that the participants relied on simple visual attributes in this subset
more often than in the others.

ImageGPT performed significantly worse than other deep-learning models.
Moreover, this model achieved similar or even worse agreement in the scuba
subset than some low-level models. This network’s authors claimed that the
model produces high-quality vector representations of images, and thus this result
was quite surprising. The Transformers architecture is often more successful
than deep CNNs in many domains, as discussed in section 3.2. However, the
highest agreement models were mostly CNN-based, even when trained on the
same datasets.

The second phenomenon is that the deeper models of the same architecture
are usually more precise. However, in image similarity, the opposite is more likely.
The largest EfficientNet achieves one of the worst deep-learning BA and WBA
results. Yet, every smaller version of this architecture achieves better results
than any larger one. Furthermore, the smallest version of this network is the
second-best performant model on the whole dataset. A similar pattern can be
observed in the ResNet architecture, where the largest ResNet 152 performs the
worst results of these three. The Transformers follow the same arrangement, with
the smaller version of ImageGPT being slightly more performant than the larger
version and the ViT base model being superior to the large one.

The previous section 4.6 shows us that there is an upper bound in terms of
the maximal agreements. However, the soft agreement is not directly comparable
to the binary and weighted binary agreements. Therefore the upper bound for
the models will need to be computed based on the user annotations. Neverthe-
less, every subset except the repeating does not have enough annotations on the
identical triplets for the evaluation. Therefore similarly to the previous section,
only annotations from the repeating subset will be considered. Those filtered an-
notations evaluate the participants’ choices as they were the models’ similarities.
The participants’ binary agreement is 0.881, and the weighted binary agreement
is 0.946.

The approximated upper bound shows a possibility of improving both agree-
ments. The best-performing model lags behind the participants by 6.6 per cent
points on the binary agreement and 6.5 per cent points on the weighted binary
agreement.
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Figure 4.20: Soft agreement among demographic groups.
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Figure 4.21: Similarity models compared by binary agreement with the human
annotations. The agreements are divided into five groups on the x-axis. The
models are sorted by agreement in the All column.
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Figure 4.22: Similarity models compared by weighted binary agreement with the
human annotations. The agreements are divided into five groups on the x-axis.
The models are sorted by agreement in the All column.
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5. Similarity model improvment
The previous chapter 4 explored the relations among the participants’ choices
by their device types, demographic attributes and impact of the gamification
elements. The primary outcome built on in this chapter is the performance of
the deep learning models. Even though they provide plausible similarity fea-
ture vectors for the images, they still fall behind the performance of the human
annotators.

5.1 Preprocessing
The annotation paradigm used in the user study allowed, and even in the repeat-
ing subset encouraged, multiple annotations by different participants on a single
triplet. Thus straightforward usage of these annotated triplets would create an
imbalance, and some triplets would be trained for more time than others. More-
over, the same triplet could appear in the training set with different annotations,
and this could cause an issue with the training convergence. Therefore the anno-
tations for each triplet were average with assigned values: Left = −1, Maybe left
= −0.5, I don’t know = 0, Maybe right = 0.5, and Right = 1. This preprocessing
provides additional information on how similar the favoured option is.

Using this preprocessing, a different metric was proposed in section 4.7. The
binary agreement and weighted binary agreement were created, and their formula
is in equation 4.1. The models do not provide the ability to assess the I don’t
know option, and thus the triplets with an average of zero rating would always be
incorrect. Therefore, these metrics are evaluated on the triplets with an average
rating different from zero.

5.2 Setup
With the prepared dataset, the loss function needs to be defined prior to the
training. The fine-tuned network will be used to feed forward all three images
from each triplet and then compute the cosine similarity of the query feature
vector and each option feature vector. One of the widespread loss functions is,
for example, mean square error or mean absolute error. This may provide some
results because the differences between the cosine similarities could be the output,
and therefore it could be interpreted as a regression task. However, the goal is
not to model the user’s exact selection but rather estimate what is more similar.
For example, the mean square error for a triplet with an average rating of 0.25
and the two guesses −0.2 and 1.0 would be lower for the first guess, even though
the first one is incorrect. Therefore a better-suiting loss function needs to be
selected.

Triplet ranking loss [17, 40] was proven to achieve state-of-the-art in the image
domain. In contrast to the mean square error, this loss tries to move positive
examples closer to the target and the negative examples further. Nonetheless,
this dataset’s annotations are rather fuzzy and thus, some triplets need to be
adjusted with greater weight. Even some triplets may need to move both options
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to a closer relative distance to adequately reflect the similarities. Therefore some
adjustments were made to address these points. The triplet fuzzy ranking loss is
depicted in equation 5.1. The y is an absolute average participants’ choice, and
the sc and sf are cosine similarities of query image and image which should be
closer and further, respectively. The m is a margin that should divide the two
similarities, and it was set to 0.2.

L = max(0, (m + sf − sc) ∗ y) + max(0, (|sf − sc| −m) ∗ (1− y)) (5.1)
The collected dataset is rather small compared to the other datasets, e.g.

ImageNet [12]. Therefore 5-fold cross-validation was employed on the training
set to get more reliable results. Moreover, four different training sets were used
for 5-fold cross-validation to observe a possible generalization. The first training
set included only the general subset (denoted as G in the results), and the rest
was used only for testing. The second and third training sets included the general
subset with the wedding (G + W) and scuba (G + S) subset, respectively. Again
the rest was used for testing. The last training included general, wedding, and
scuba subsets (G + S + W).

The overfitting can poorly influence the training results, and thus some reg-
ularization techniques were employed. Random zoom with maximal ±20% pos-
sible change, random horizontal flip, and random rotation with maximal ±20%
change were employed. These augmentations were modest because more aggres-
sive changes could influence the overall image similarity. Therefore, randomizing
brightness, contrast, saturation, and hue leads to poor results.

The fine-tuned model was the best performing one, i.e. W2VV++. This
model consists of ResNet-152 and ResNeXt-101, a concatenation layer of their
results, and a dense layer with tanh activation resulting in a 2048 dim. vector.
Most of the part of the W2VV++ was frozen during the training, and only the last
layer was updated. Some tests with unfrozen deeper layers were made; however,
they overfitted quickly and performed poorly. The test was made on a single
fold with a solely general subset as the training set, and the model with unfrozen
deeper layers achieved 0.4% lower binary agreement and 0.2% lower weighted
agreement.

The finetuning was done in Tensorflow 2 framework1. The used optimizer
was AdamW [46] with parameters β1 = 0.9, β1 = 0.999, weight decay equals
to 0.0001. The cosine decay [45] scheduling function was used as the learning
rate with the starting learning rate equal to 0.0001 and parameter α = 0. The
training was run for a maximum of 200 epochs, and the model with the highest
validation WBA was selected. The number of needed epochs for the best model
varied between a few epochs (less than 10) and, at most, 166 epochs.

The whole evaluation and fine-tuning pipeline is attached to the electronic
version, and the user manual is in appendix A.3.

5.3 Results
The training results on the left folds from the cross-validation increased signifi-
cantly. They are depicted in table 5.1. The four train sets were employed. The

1https://www.tensorflow.org/
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Fine-tuned W2VV++ Baseline W2VV++
Train set BA BA p-value

G 0.788 0.771 0.054
G + S 0.799 0.785 0.007
G + W 0.789 0.769 0.007

G + S + W 0.797 0.781 0.019
Train set WBA WBA p-value

G 0.816 0.798 0.034
G + S 0.83 0.816 0.02
G + W 0.82 0.802 0.003

G + S + W 0.832 0.817 0.015

Table 5.1: Mean binary agreement (BA) and weighted binary agreement (WBA)
on the left one fold out from the cross-validation.

Fine-tuned W2VV++ Baseline W2VV++
Training set BA BA p-value

G 0.81 0.814 0.209
G + S 0.817 0.814 0.497
G + W 0.814 0.814 0.921

G + S + W 0.817 0.814 0.433
Train set WBA WBA p-value

G 0.875 0.88 0.197
G + S 0.881 0.88 0.869
G + W 0.877 0.88 0.403

G + S + W 0.882 0.88 0.428

Table 5.2: Mean binary agreement (BA) and weighted binary agreement (WBA)
on the repeating set.

most significant improvement can be observed in the general and wedding sets,
where the binary agreement increased by 0.02 and the weighted binary agreement
by 0.018 with statistical significance. The Student’s t-test was used as a statisti-
cal test, and all the cross-validation results except one (binary agreement on the
general set) had a p-value lower than 0.05.

The Fine-tuned network on the repeating set did not achieve any major im-
provement. See table 5.2. A slight improvement was achieved on the general +
scuba and general + scuba + wedding training sets. However, this improvement
is not statistically significant. The results were the same or slightly lower in the
other training sets. Again without statistical significance.

The binary and weighted binary agreements were significantly improved on
the wedding set, shown in the table 5.3. The binary agreement increased by 0.022
and 0.023 with the training set general and general + scuba, respectively. Similar
increases, 0.017 and 0.018, can be observed in the weighted binary agreement. All
the increases have a p-value lower than 0.05. Interestingly, even though the scuba
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Fine-tuned W2VV++ Baseline W2VV++
Training set BA BA p-value

G 0.787 0.765 0.012
G + S 0.788 0.765 0.003

Train set WBA WBA p-value
G 0.838 0.821 0.015

G + S 0.839 0.821 0.006

Table 5.3: Mean binary agreement (BA) and weighted binary agreement (WBA)
on the wedding set.

Fine-tuned W2VV++ Baseline W2VV++
Training set BA BA p-value

G 0.829 0.827 0.463
G + W 0.829 0.827 0.405

Train set WBA WBA p-value
G 0.885 0.882 0.223

G + W 0.885 0.882 0.234

Table 5.4: Mean binary agreement (BA) and weighted binary agreement (WBA)
on the scuba set.

set is unrelated to the wedding set, including it in the training data resulted in
slightly better improvement.

The scuba set was more challenging for the fine-tuned network. The results
can be seen in the table 5.4. The improvements are minor and thus not statis-
tically significant. In this set, adding the wedding set to the training did not
increase performance as in the previous results.

Overall the fine-tuned network had 11 statistically significant improvements,
nine minor improvements, one same result, and three minor deteriorations.
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Conclusion
Similarity modelling is an essential part of many state-of-the-art image and video
retrieval tools. There is a plethora of research in this domain, including compe-
titions, e. g. VBS, LSC, and TRECVID. These retrieval tools are focused on
retrieving a known scene or satisfying a user’s need to find any scene fulfilling
their criteria. The search stages and usage of the tools’ features may differ. The
early stage is called exploration, and the users often use some kind of text search
or overview visualisations exploiting image similarity information. In the later
stage, called exploitation, the system presents more focused visualisations, ex-
ploiting the gained knowledge about the task, and users usually use some kind of
relevance feedback or nearest neighbour search. Therefore both these stages rely
on trustworthy image similarity approximation techniques.

This thesis explored the possibilities of automatic similarity modelling and
their possible improvements. To accomplish this goal, a comprehensive user study
was conducted. The base data for the study were generated by a complex and
yet simple-to-use pipeline. The data consisted of triplets with different expected
levels of similarity. These different levels mirrored the various stages of the search
process, i.e. exploration vs. exploitation. On top of that, two subsets of the
whole dataset were examined separately. These were wedding and scuba videos.
Additionally, some triplets from the general category were intentionally sampled
more often than others to get more detailed similarity information on some of the
triplets. These triplets were referred to as the repeating subset.

A total number of 84 participants took part in this study and resulting in
17365 unique annotations. The participants in each trial were asked to select the
most similar candidate to the query image. Most participants used a laptop or
PC, yet more than twenty operated a handheld device. The participants came
from various age groups, education levels, and machine learning expertise. Em-
ployment of the gamification elements in this study proved to help receive more
annotations with statistical significance. Moreover, the study did not indicate any
major biases that would change the relative outcome of each annotation. How-
ever, this thesis shows strong evidence that some triplets were hard to predict,
even for human annotators. The hardness can be perceived by the participants
most of the time, but in some cases, the participants were unaware of the hard-
ness and thus, some triplets were polarising. The disagreement among the users
was relatively small, and they mostly agreed on one option.

The agreement between similarity models and the participants differed in
many ways. One of the primary outcomes confirms the overall superiority of the
deep learning models against the low-level models. However, the low-level models
performed better than a random guess by a substantial margin. Also, the differ-
ence among the deep learning models was substantial in some cases. Moreover,
smaller models of the same architecture often performed better than the larger
ones. The subset categories, i.e. general, repeating, scuba, and wedding, intro-
duced a second type of difference. This difference was observed in agreements for
each model. Moreover, it even caused an incomparability of some model pairs,
where one achieves better results in one category and the second one in another
category. However, the results of W2VV++ were superior in every category.
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Despite the W2VV++ performance being better than the others, there seems
to be a space for improvement, given the results of the inter-user agreement.
Therefore, we fine-tuned the W2VV++ using cross-validation, and we managed
to improve the results in some areas significantly. For instance, in the general
category, the improvement was 1.7% points in the mean binary agreement and
1.8% points in the mean weighted binary agreement.

However, some limitations were observed in this thesis. The first one is the
number of annotated triplets. Despite the improvements shown, a humongous
amount of data is needed for a more thorough fine-tuning of deep neural networks
(e.g. incorporating more layers). This was out of our possibilities even with
motivational techniques, e.g. gamification. The second limitation is the number
of participants and their composition. Some social groups were partially neglected
in the study. Therefore conducting a large-scale user study in this form is one of
the main future work directions.

Another possible enhancement of the similarity modelling and future work
may be done via the employment of a model ensemble. This may increase the
agreement with the human annotations. Moreover, the multi-valued annotations
could be used in finer detail and train the models to predict both similarity and
the hardness of the task.

The created dataset may serve additional purposes that do not enhance the
image similarity models directly. One of the common postprocessing of the fea-
ture vectors is some dimensionality reduction. This dataset may be employed as
a dimensionality reduction benchmark or be directly included in the dimension-
ality reduction algorithm. Furthermore, it might serve as a benchmarking and
validation for relevance feedback algorithms or visualisations.

This thesis’s outcomes can be directly applied to the image and video retrieval
tools. They can help researchers choose from evaluated feature extractors, add
more similarity models for evaluation, or utilise the fine-tuned W2VV++ with
improved performance. Note that due to licencing of W2VV++, the fine-tuned
weights will be available upon request.
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A. Attachments
A.1 Feature extractor - User documentation
Feature extractors project is a project for easy feature extraction and dataset
cleaning. This project was created for user study [73] and this thesis.

This project handles:

• Image feature extraction

• Dataset cleaning

• Triplet generation

• Converting triplets to SQL insert statements

There are two ways of running the project. First is manually installing de-
pendencies and running the individual programs. The second way is running
the whole processing pipeline in Docker1. The second approach is much easier;
however, it will not be accelerated by a GPU and lacks dataset cleaning step.

A.1.1 Manual
There are prerequisites that need to be prepared prior to the installation. Pre-
requisites:

• Python >=3.8 && <3.10

• Python-venv

• Pip >=21

Installation - Linux

python3 -m venv ./venv
source venv/bin/activate
pip install -r ./requirements.txt

Installation - Windows

py -m venv venv
.\venv\Scripts\activate
pip install -r /path/to/requirements.txt

Extraction

Feature extraction can be done in two ways. The first way is by using the classes
directly through API. The second method uses a CLI tool that takes a list of
images and saves Numpy matrices into the output directory.

1https://www.docker.com/
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Extraction - Python

Direct usage can be used in cases that require some additional postprocessing,
generating an image list dynamically, or in a real-time application.

An example of the usage can be found in extract_images.py or here:
from extractors import ResNetExtractor # Import any extractor

images_paths = []
with open("imagelist.txt") as file: # Load list of files

images_paths = file.readlines()

extractor = ResNetExtractor("50") # Create extractor instance

image_features = extractor(images_paths) # Extract image features
# image_features = (M,N)
# M - number of images
# N - features dimension

Extraction - CLI

The CLI usage is suitable for easy one-time feature extraction.
python3 extract_images.py -e ’CIELABKMeansExctractor(k=8)’ \

’CLIPExtractor(size="small")’ \
-i ./imagelist.txt -o ./output --batch_size 16 -ev

Dataset cleaning

The dataset cleaning can be done using the Dataset class in the manipulators
package. This class provides a plethora of techniques to visualize and delete
images from the dataset and save the result.

An example of dataset cleaning can be seen in the dataset-cleaning.ipynb.

Triplet generation

The main method of the triplet generation reads the configuration file. Then the
triplets are created accordingly. The attributes of the configuration file:

• input_dir - The directory with the txt and npy outputs from the feature
extraction implemented in extract_images.

• output_file - Name of the output CSV file

• targets - Number of distinct target images. The targets will be the same
for all the extractors.

• distance_measures - List of distance measures for the triplet generation.

• distance_classes - Distance classes for the triplets. Each distance class is
defined with its end index. The start index is computed as the previous
end index + 1.

• videos_filter - (Optional) Path to a file with identifications of videos.
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A.1.2 Docker pipeline
The docker pipeline provides a quick way of running defined feature extractors,
creating triplets and transforming triplets into the SQL insert statements. It
takes a directory with images and an image list as input, and it outputs the
feature matrices, triplets, and SQL insert statements into that directory. Sample
images generated from Stable diffusion2 with the image list are provided in the
directory samples.

Prerequisites

• Docker3 >= 20.10.17

Run

Simply build the container:

docker build -t feature-extractor .

Then run the container:

docker run -v ‘realpath ./samples‘:/data feature-extractor

The resulting image features, triplets and SQL statements will be saved in
the ./samples/features directory.

A.2 Image similarity app - User documentation
This application provides a simple web interface for image similarity study. There
are two ways of running the project. First is manually installing dependencies
and running the Node server and PostgreSQL database alone or running the
whole application at once using the docker-compose4. The second way is more
convenient for running the application unchanged.

Live application is running here: https://otrok.ms.mff.cuni.cz:8031/
user.

A.2.1 Manual
The manual installation is more convenient for developing new features and bug
fixing.

Prerequisites

• NodeJS >= 18.15.0

• npm >= 9.5.0

• PostgreSQL5 >= 14.3
2https://huggingface.co/spaces/stabilityai/stable-diffusion
3https://www.docker.com/
4https://docs.docker.com/compose/
5https://www.postgresql.org/
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Install

Install dependencies using npm.

npm install

Execute database/full_init.sql in the PostgreSQL database.
Import triplets from the feature extractor project.

Run

Run command:

npm run start

A.2.2 Docker
The docker installation is an easy way of getting the application up and running
on the sample data or with your own data preprocessed by Feature extractors in
appendix A.1.

Prerequisites

• Docker6 >= 20.10.17

• Docker Compose7 >= 1.29.2

Run

A simple preview of the application can be run using docker-compose.
The sample data and their triplets are the same as the feature extractor

project.

docker-compose up

The application will be ready on URL: https://localhost:3000/user.

A.3 Dataset evaluation and fine-tuning - User
documentation

This contains a pipeline for fine-tuning and evaluation. The whole pipeline is pre-
sented in four Python scripts. Three scripts (evaluate_dataset.py, prepare_dataset.py,
and train_model.py) are executable and provide a help option (e.g. train_model.py
–help).

6https://www.docker.com/
7https://docs.docker.com/compose/
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A.3.1 Requirements
This project expects these dependencies to be installed prior to running:

• Python >=3.8 && <3.10

• Tensorflow >= 2.9

• TensorFlow Addons >= 0.19.0

• Numpy

• Pandas

• Pillow

A.3.2 Preprocessing
Firstly, the raw dataset has to be prepared for training. For this purpose, the
prepare_dataset.py was created. It takes three arguments:

• --triplets - Triplets CSV file

• --judgements - Triplet judgements CSV file

• --output - Output directory

The resulting CSV files will be placed in the output directory.

A.3.3 Evaluation
The second Python script evaluates the user agreement on the dataset for refer-
ence. In default settings, it evaluates the binary agreement on ResNet-50. You
need to modify the feature_extraction(img_path) function on line 25 for dif-
ferent models. It takes three inputs. These are:

• --dataset - Dataset CSV file (output from prepare_dataset.py)

• --images - Root directory for V3C1 images

• --output - Name of the output CSV file with results

The human agreements will be present in the output directory.

70



A.3.4 Fine-tuning
The last executable Python script starts fine-tuning. There are many arguments
described in train_model.py –help. It takes the preprocessed dataset and V3C1
keyframes and starts model fitting with the given dataset part, optimizer, learn-
ing, fold size, fold index, number of epochs, etc. The Tensorflow logs and the best-
performing model will be saved in {base_path}/logs/fit/{generate_name_of_run}.

For fine-tuning the W2VV++ model, you need to obtain the network weights
first from https://github.com/xuchaoxi/video-cnn-feat. The obtained model
needs to be converted into the Tensorflow 2 Model. The TF2 Model has to be
returned from function create_w2vv_model in finetuning_lib.py on line 413.
Then the training script needs to be run with these parameters:

train_model.py -p /path/to/dataset \
--epochs 200 \
--seed 42 \
--folds 5 \
--fold_n N \
--batch 32 \
--yes-general_train \
--no-scuba_train \
--no-wedding_train \
--learning_rate_class 3 \
--optimizer adamw \
--model w2vv \
--loss TripletFuzzyLoss \
--loss_margin 0.2 \
--dropout_rate 0.5 \
--weight_decay 0.0001 \
--no-train_whole \

For each cross-validation step, the parameter N needs to be changed accord-
ingly.
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