
MASTER THESIS

František Mejzlík

Fast hash-based signing protocol for
message stream authentication

Department of Software Engineering

Supervisor of the master thesis: RNDr. Filip Zavoral, Ph.D.

Study programme: Computer Science

Study branch: Software Systems

Prague 2023





I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



ii



Herby, I thank the thesis supervisor RNDr. Filip Zavoral, Ph.D., as well as the
thesis consultant RNDr. Miroslav Kratochvíl, Ph.D., for the invaluable guidance
and critical feedback they have patiently provided me throughout the process.
Moreover, I thank my dear parents and my family for all they have been giving
to me (and taking away from me) throughout my whole life.

iii



iv



Title: Fast hash-based signing protocol for message stream authentication

Author: František Mejzlík

Department: Department of Software Engineering

Supervisor: RNDr. Filip Zavoral, Ph.D., Department of Software Engineering

Abstract: Security of the data streaming over Internet becomes a challenge
if requirements such as post-quantum-capable cryptography and complete
decentralisation must be addressed. This thesis develops a connection-less,
re-broadcastable data streaming protocol that allows a wholly decentralised,
petname-based quantum-robust authentication of streaming sources based solely
on the post-quantum hash-based few-time signature schemes. As the main
contribution, the thesis benchmarks various trade-offs given by the problematic
ephemeral nature of identities based on the few-time signature schemes and by
the desired networking properties of the streaming protocol. The benchmarks
show that the schemes are practically extensible to realistic use cases, with only
minor overhead. The proof-of-concept protocol implementation is provided as a
Rust library, together with the example application for live audio broadcasting.

Keywords: message stream post-quantum authentication protocol hash-based
signatures

v



vi



Contents

Introduction 3

1 Hash-based signatures 7
1.1 The motivation for hash-based cryptography . . . . . . . . . . . 7
1.2 Basic terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Cryptographic hash functions . . . . . . . . . . . . . . . 8
1.2.2 Random number generators . . . . . . . . . . . . . . . . 11

1.3 Constructing signatures from hash functions . . . . . . . . . . . 12
1.3.1 One-time signature schemes . . . . . . . . . . . . . . . . 13
1.3.2 Few-time signature schemes . . . . . . . . . . . . . . . . 17
1.3.3 Current development in hash-based signatures . . . . . 24

2 Authenticated streaming with hash-based signatures 27
2.1 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.3 Main abstractions . . . . . . . . . . . . . . . . . . . . . . 30
2.1.4 Requirements . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.5 The interface of the protocol . . . . . . . . . . . . . . . . 32

2.2 Specification of the protocol . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Network formats . . . . . . . . . . . . . . . . . . . . . . 35
2.2.2 Sender role . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.3 Receiver role . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.4 Distributor role . . . . . . . . . . . . . . . . . . . . . . . 55

2.3 Parameter choice trade-offs . . . . . . . . . . . . . . . . . . . . . 55
2.3.1 Security vs. signature size . . . . . . . . . . . . . . . . . 57
2.3.2 Re-authenticating the prior sender identities . . . . . . . 58

3 Proof-of-concept implementation 61
3.1 HAB: A library for Hash-based Authentication Broadcasting . . 62

3.1.1 Overview of the HAB interface . . . . . . . . . . . . . . 62

1



3.1.2 Internal structure of HAB library . . . . . . . . . . . . . 67
3.2 AudiBro: A real-time audio broadcasting . . . . . . . . . . . . . 74

3.2.1 Interacting with the application . . . . . . . . . . . . . . 75
3.2.2 Design of the AudiBro application . . . . . . . . . . . . 75

4 Results and performance 79
4.1 Finding practical protocol parameters . . . . . . . . . . . . . . . 79
4.2 Parametrising the re-authentication delay . . . . . . . . . . . . . 81

4.2.1 Measuring methodology . . . . . . . . . . . . . . . . . . 84
4.3 Data overhead trade-offs . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Protocol behaviour with practical parameters . . . . . . . . . . . 87

Conclusion 91

Bibliography 93

A Structure of the attached software 97
A.1 hab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 audibro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B Using the HAB library 99
B.1 Sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

C Using the AudiBro application 101

2



Introduction

In the current interconnected world, data streaming, multicasting and broadcast-
ing over networks have become part of everyday life for many people. Conse-
quently, high volumes of data go through the insecure Internet, and often such
data are sensitive and need some verification. Unfortunately, secure data stream-
ing and broadcasting continue to face significant challenges. These challenges
are particularly prominent in ensuring the integrity and authentication of data
sources, especially with real-time data. In other words, to know who sent the
data upon their receiving. With advances in quantum computing and as the
volume of data swarming in networks rapidly increases, the need for robust and
performant security measures is becoming more crucial by the day. A vital aspect
of this endeavour is to develop data authentication and integrity mechanisms
for real-time data streaming and broadcasting that keep up with technological
advancements and can withstand future threats.

Nowadays, some commonly used protocols for data streaming [1, 2] leverage
standardised asymmetric cryptography — for example, Digital Signature Algo-
rithm (DSA) [3], Rivest-Shamir-Adleman (RSA) [4] or Elliptic Curve Cryptography
(ECC) [5]. Some protocols, like TESLA [6], are built upon symmetric cryptogra-
phy — for example, using Message Authenticating Codes (MAC). There is also
the BiBa signature scheme with its streaming protocol [7] based on hash-based
cryptography — more specifically, it employs few-time signature (FTS) schemes.

However, commonly used protocols usually do not provide quantum-resistant
authentication. Additionally, due to their connection-oriented nature, they are
not suitable for distributed data dissemination. Therefore, these solutions are
insufficient for future advances in quantum computing.

Previous work The previously mentioned symmetric cryptography solution,
the TESLA protocol, is based on MACs and can be constructed to be quantum-
resistant. On the other hand, the protocol assumes the loose time synchronisation
of the sender and receiver; this means that if the sender and receiver differ in
time more than some specific value, the authenticity cannot be guaranteed.

The streaming protocol proposed alongside the BiBa signature scheme is

3



post-quantum but suffers some drawbacks. Most importantly, it is bound only to
the specific signature scheme that can be found unsatisfactory in the future. The
protocol cannot be trivially adjusted to use some other scheme. Also, since the
protocol is inspired by the TESLA protocol, it requires loose time synchronisation,
just as the TESLA protocol. Finally, the protocol is not robust enough for huge
packet losses. For example, such losses can be caused by a receiver going offline
for a few days or weeks and then reconnecting again.

Goals of the thesis The primary objective of this thesis is to evaluate the
suitability of hash-based signatures for the authentication of data streams, with
a particular emphasis on real-time applications. Hence, it proposes a protocol,
investigates the overhead, and examines the influence of configuration parameters
that optimise the protocol for specific use cases.

This thesis proposes a general protocol for authenticated data streaming
that uses identities with petnames and relies on hash-based few-time signature
schemes. Designed for real-time or non-real-time applications where reliability is
not required, the protocol offers both post-quantum authentication and integrity
of the data as well as identity management of known senders. With a focus on
practicality, the proposed solution provides tolerance for significant packet losses
— such as when a connection is unavailable for prolonged periods — enabling
subsequent re-authentication of data coming from an already known sender and
the possibility for distributed re-sending of the messages to load balance. This
data re-distribution can be an alternative to routed multicast in IPv6 that is not
yet usable on the Internet; the routed IPv6 multicast could save a lot of bandwidth.
As a weaker alternative, instead of streaming data peer-to-peer to each receiver
from one source, we can send the data to fewer receivers that will re-distribute
the data to topologically closer receivers. A similar concept is used with offline
data in Content Delivery Networks (CDNs) or in Google Global Cache 1, where
the ISPs locally serve the cached data of Google.

The protocol itself is independent of the underlying signature scheme as long
as it is post-quantum; of course, the protocol would work with a scheme that is
not quantum-resistant but only with the security the scheme provides. Moreover,
the proposed protocol is highly adjustable by parameters that make it possible to
fit the configuration for various different usages. With these parameters, one can
balance, for example, the overhead size versus security. This thesis also presents
a highly configurable proof-of-concept implementation library with a HORST
(section 1.3.2) signature scheme and displays recommended configurations for
real-time data streaming with different security requirements. Also, it visualises
the effect of parameters on protocol security and its overhead. On top of that,

1https://support.google.com/interconnect/answer/9058809

4

https://support.google.com/interconnect/answer/9058809


it shows the expected number of messages that can be lost without losing the
ability to re-authenticate known identities. Furthermore, the example usage of
this library is demonstrated on the simple application designed for live audio
broadcasting and secure receiving.

This thesis is structured as follows: The first chapter introduces and describes
the essential building blocks for constructing the proposed protocol. Such building
blocks are cryptographic hash functions, pseudo-random number generators or one-
time and few-time signature schemes. The introduction of fundamental primitives
is followed by the chapter specifying the design criteria and the protocol. With the
protocol knowledge, the thesis then thoroughly describes the proof-of-concept
implementation of the proposed protocol in the form of a library. Moreover,
the library implementation is complemented by an application for live audio
streaming, demonstrating how the library can be used. Then this thesis delves
into practical configurations, examining the protocol performance and anticipated
behaviour in real-world scenarios. Finally, the conclusion and proposals for future
work are presented.

5



6



Chapter 1

Hash-based signatures

The first chapter of this thesis provides the motivation, background, and context.
The chapter starts with discussing what post-quantum means and why it is
vital to work on such alternatives; it continues with introducing the essential
cryptographic primitives — cryptographic hash functions and pseudo-random
generators. This chapter concludes with a description of one-time and few-time
signature schemes, focusing on the HORST scheme used as a foundation for the
proof-of-concept implementation described in the chapter 3.

1.1 The motivation for hash-based cryptography
Before introducing the main used cryptographical primitives, it is crucial to
explainwhy post-quantum cryptographymatters andwhy it is essential to develop
also hash-based cryptographic solutions.

Hash-based cryptography is one of the directions of post-quantum cryptogra-
phy (PQC). PQC refers to algorithms and protocols that are designed to be secure
against attacks leveraging quantum computers. The widely-used asymmetric
cryptography algorithms usually rely on three computationally hard problems
— integer factorisation, discrete logarithm and elliptic-curve logarithm problem.
All these can be solved easily with a powerful enough quantum computer run-
ning Shor’s algorithm [8]. Even though the current quantum computers are
not sufficiently powerful yet, it is important to develop alternatives for when
this will be the case. Post-quantum cryptography has gained a lot of attention
lately, and many people and organisations are working on quantum-resistant
cryptography solutions. Even the National Institute of Standards and Technology
(NIST) has started the Post-quantum Cryptography Standardization project in
2016 1. The project aims to compile, analyse and standardise the algorithms that

1https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

7

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/


can withstand quantum computer attacks.
The domain of hash-based cryptography is mainly about constructing secure

digital signatures as an alternative to standard algorithms; an example of such an
algorithm is DSA [3], which is based on the complexity of the discrete logarithm
problem. Hash-based cryptography algorithms are among those whose security
relies on much weaker assumptions — these were described in section 1.2.1. As
the name suggests, they are based on cryptographic hash functions because there
exist functions that are considered secure in the critical security aspects described
earlier in this section. Other directions of post-quantum cryptography include
lattice-based cryptography [9], multivariate cryptography [10], code-based cryp-
tography [11] or supersingular elliptic curve isogeny cryptography [12].

1.2 Basic terminology
As this thesis focuses on designing a post-quantum protocol for authenticated
broadcasting, it is crucial to understand the underlying cryptographic primitives
upon which the protocol is built. Firstly, an introduction to the critical com-
ponents of the protocol is presented, including cryptographic hash functions,
random number generators, and the concept of post-quantum cryptography. The
subchapter also highlights the significance of developing post-quantum alterna-
tives to traditional cryptography, emphasising the need for secure communication
in the face of future advancements in quantum computing.

1.2.1 Cryptographic hash functions
Before introducing cryptographic hash functions, it is vital to understand the
concept of one-way functions. The notion of one-way function has been used in
constructions since the eighties [13, 14]. They were also called ‘one-way cyphers’
as an analogy to standard reversible cyphers. Intuitively, a one-way function is a
mathematical function with the extra property of ‘one-wayness’. This additional
property requires the function to be easy to compute the output (also referred to
as image) for all possible inputs (also referred to as pre-images), but it should be
computationally infeasible to revert the process; that is, for the given image to
find what was the pre-image that led to this specific image. One-way functions
or their construction, however, still lack a formal proof of existence. Despite that,
many proposed functions appear to behave like one-way functions and are used
at places where the theoretical constructions assume one-way functions.

Definition 1 (One-way function). A function 𝑓 ∶ 𝑋 → 𝑌 is called one-way
function if 𝑓 (𝑥) is easy to compute for all 𝑥 ∈ 𝑋 and is computationally infeasible to
to find any 𝑥 ∈ 𝑋 for a random 𝑦 ∈ 𝑌 such that 𝑓 (𝑥) = 𝑦.

8



This definition is not the most rigorous but sketches the intuition and meaning
behind it. The words ‘easy to compute’ refer to a lower-degree polynomial
algorithm — the lower, the better. Consequently, ‘computationally infeasible’
refers to a time or space complexity of a computation that no computer — nor
cluster of computers — can compute in an economically feasible way — in this
case, the higher the complexity, the better.

Hash functions Generally, a hash function is a mathematical function that
maps the arbitrarily large space of pre-images (a function domain) to a set of
fixed-size images (a function codomain). Usually, hash functions operate on
binary strings — sequences consisting of ones and zeroes. This output is often
called a digest or a fingerprint in the context of hash functions. An example
of such a function is a parity check. It operates on arbitrary input of ones and
zeroes; the space of images of such a function contains only two images — zero
and one. The codomain is a set of two elements of size one bit. Although this
example is rather simple, hash functions are essential in cryptographic use cases
for reducing the size of inputs that the subsequent algorithms need to process;
these are reduced to fixed-size inputs. Also, hash functions are popular because
they are believed to be hard to break. Naturally, there are multiple types of hash
functions; different types are designed to serve different purposes and therefore
are put different requirements on them. Example types are checksum or non-
cryptographic functions; these are not intended for cryptography but for other
purposes, which may include fash hashing for key generation in hash tables, for
example.

The term ‘hash function’ is often used in the sense of a hash function with
some specific properties rather than just a function that only reduces the space
to fixed-size elements. For the rest of this thesis, the term hash function refers to
cryptographic hash functions unless explicitly stated otherwise.

Cryptographic hash functions A cryptographic hash function is a combi-
nation of a one-way and hash function. Is it also often called a one-way hash
function, even though there aren’t any strictly-followed rules in naming. The
important thing here is what is meant by this term. A cryptographic hash func-
tion is a computationally difficult function to invert that maps arbitrarily long
binary string input into fixed-size binary output and has the following properties.
The term ‘invert’ does not refer to a mathematical inversion. Let’s denote the
cryptographic function as ℎ.
Pre-image resistance For the given output — the image, it must be computa-

tionally infeasible to find any function input — the pre-image — that would

9



map to the same image. In other words, for the output 𝑦, find 𝑥 such thatℎ(𝑥) = 𝑦.
Collision resistance Finding two distinct pre-images that map to the same

image must be computationally infeasible. To put it formally, to find 𝑥 and𝑥′, 𝑥 ≠ 𝑥′ such that ℎ(𝑥) = ℎ(𝑥′).
Second pre-image resistance For a given pre-image, it should be computation-

ally infeasible to find a different pre-image that maps to the same image. In
other words, for given 𝑥 to, find 𝑥′ and 𝑥 ≠ 𝑥′ such that ℎ(𝑥) = ℎ(𝑥′).

These properties give a high level of confidence that it is too computationally
demanding for an adversary to modify the function input such that it produces
the same output. Therefore, we can assume that the two inputs with the same
output are — with sufficiently high probability, at least — identical. Also, collision
resistance implies second pre-image resistance because if one has found a second
pre-image for some input, one has just found a collision too.

Bit security interpretation of attack complexities Although, to the author’s
best knowledge, there is no formal proof that the specific cryptographic hash
function has the three beforementioned security properties (which is inherited
from the lack of proof that would imply the existence of one-way functions), these
properties can be proven with a high degree of confidence through extensive anal-
ysis testing and construction of attacks against these functions. Hash functions
are considered unbroken if these specialised attacks against the concrete hash
function construction are at most as effective as generic attacks. Generic attacks
do not know any information about the construction, nor do they exploit any
vulnerabilities or weaknesses; these use the function as a black box and rely only
on general hash function properties. An example of such an attack is a birthday
attack [15] that implies that the collision resistance of any hash function is at
most 2 𝑛2 where 𝑛 is the bit size of the output.

Provided that ℎ is a perfect and unbroken cryptographic hash function with
an output size of 𝑛, we can declare the function security against the attack to
the beforementioned properties. First, let’s take a look at how it looks with the
standard computer [16]. The classical computer would need to do 𝑂(2𝑛) hash
function invocations to break pre-image or second pre-image resistance; thus
bit security of these properties is 𝑛. As for collision resistance, the number is
significantly lower due to the birthday paradox and birthday attack against the
hash function collisions; only 𝑂(2 𝑛2 ) invocations are needed. That means that the
bit security of the hash function with an output size of 𝑛 is 𝑛2 .

10



Regarding quantum computers, the most problematic part is pre-image resis-
tance [17]. Due to Grover algorithm [18], it is possible to find pre-image in only𝑂(2 𝑛2 ) time. Additionally, [19] states that a quantum computer can find a collision
in 𝑂(2 𝑛3 ) time. Bernstein later disputed this statement [17], pointing out that the
algorithm indeed runs in 𝑂(2 𝑛3 ) time but also requires a quantum computer of
size 𝑂(2 𝑛3 ) at which scale even speedup of a classical computer can be higher.
We can see that even with the worst-case scenario, with the potential ability to
find collisions in 𝑂(2 𝑛3 ) time, the security of hash functions is not destroyed. One
can always use a hash function with a larger output size to compensate for the
security lost due to quantum attacks.

Ultimately, the real-world implementations of cryptographic hash functions
try to be as close as possible to this ideal hash function. If one could implement
such a function, there would be no better attack than the generic one against
that function. Then the security of cryptographic algorithms built on that hash
function would boil down to the security of a perfect hash function.

1.2.2 Random number generators
Cryptography would make no sense if there were no way of generating secret
keys unpredictably for an adversary. Thus, random number generators are one of
the most fundamental cryptography primitives. In the context of this thesis, when
speaking about a random bit or random number generator (RNG), it is meant for
an algorithm that produces sequences of statistically independent binary digits
— bits. From the bits, to form a number of a given bit length 𝑛, it is required to
generate, in total, 𝑙𝑜𝑔2𝑛 bits that represent the number.

Definition 2 (Random bit generator). A random bit generator is an algorithm or
device that produces a sequence of statistically independent bits.

Such primitives are also called true random number generators (True RNGs)
because their output is — at least in theory — unpredictable. Additionally, there
are also pseudo-random number generators (PRNGs), which are also of significant
importance in cryptography. Pseudo-randomnumber generators are deterministic
algorithms taking an input called seed and producing much larger random bit
sequences that appear to be random. In fact, the outputs are not random because
whenever one seeds the same PRNG algorithm with the same seed, the same
number sequence is yielded.

Definition 3 (Pseudo-random bit generator). A pseudo-random bit generator is
a deterministic algorithm that produces a bit sequence that appears random based
on the provided seed. The size of the output sequence should be significantly larger
than 𝑠.

11



The importance of PRNGs is that their real-world implementations are purely
software solutions and do not rely on any devices that serve as a source of entropy
for the true number generation (e.g. /dev/random device on Linux systems).
Thus, they can produce pseudo-random numbers much faster. Moreover, it is
often necessary to reproduce the existing results, and therefore one needs a way
to generate the same ‘random’ numbers as in the first original run.

In the previous definition, the term ‘bit sequence that appears random’ was
used. A good PRNG to be used as a foundation for security should provide some
quality of its outputs. The minimum security requirement for a PRNG is that the
bit size of the seed should be sufficiently large, so it is infeasible for an adversary
to iterate over possible seed values.

Moreover, the bit outputs should be statistically indistinguishable from true
random bit sequences. The successful output prediction should be computation-
ally hard. A common property that the PRNGs must satisfy is passing the next-bit
test.

Definition 4 (Next-bit-test). Let 𝑦 be the output pseudo-random sequence. A
pseudo-random bit generator passes the next-bit test if there is no polynomial-time
algorithm which, given the first 𝑘 bits of 𝑦, can predict the 𝑘 + 1-th bit of 𝑦 with a
probability significantly greater than 12 .

The PRNG that passes the next-bit test is said to be a cryptographically secure
pseudo-random number generator (CS PRNG).

1.3 Constructing signatures from hash functions

The idea of constructing a digital signature based on a one-way function was first
mentioned in 1976 inside the journal NewDirections in Cryptography in [20]. This
publication was followed by Rabin [21], who described a working yet impractical
signature scheme where parts of the secret key needed to be present for the
signature verification, thus requiring the cooperation of the signed and verifier.
Finally, Lamport extended the solution to a digital signature algorithm known as
Lamport or Lamport-Diffie one-time signature scheme [22]. Lamport’s signature
is the scheme that this thesis begins with on the route toward constructing the
quantum-resistant broadcast authentication protocol based on cryptographic hash
functions. Although the scheme that Lamport proposed is not the most practical,
it let other authors iteratively build on that idea and develop more practical
schemes; from the eighties through now, where robust signature schemes like
SPHINCS+ [23] have been proposed and are being standardised.

12



1.3.1 One-time signature schemes
One crucial property of the Lamport signature scheme is that one key pair can
securely sign only onemessage; schemes like this fall into the category of one-time
signature schemes (OTS). One-time signatures are often essential inner building
blocks of more complex schemes. Moreover, there are ways to implement a
few-time signature scheme (FTS) from those that are one-time; these schemes
can then securely sign a larger, although not infinite, number of messages.

Lamport one-time signature scheme

The Lamport signature scheme [22] relies on a one-way function and a secure
seeded pseudo-random number generator. Usually, in descriptions, one-way
functions are substituted with cryptographic hash functions for convenience —
since they are also one-way. The scheme works as sketched in the figure 1.1; it
starts with a randomly generated secret key consisting of two sets of numbers
and hash values of these as a public key. The main idea is that the signature
includes the sequence of numbers from the secret key, either from the first or
second set of the keys, based on the bit value currently being signed. Verifying
the signature starts with hashing the message; the verification is done in the same
way as for signing. Then it processes the individual bits of the digest, hashes the
corresponding number from the signature and checks that it matches the one in
the public key. The signature is considered valid if this holds for all bits in the
message digest; in this scheme, each secret number from the secret key signs one
bit of the digest.

Primitives The scheme uses a seeded cryptographically safe pseudo-random
number generator for secret key generation and a one-way function ℎ𝑘 ∶ {0, 1}𝑛 →{0, 1}𝑛 for public key derivation and verification. Also, it uses a cryptographic
hash function ℎ𝑚 ∶ {0, 1}∗ → {0, 1}𝑛 for producing a digest of a message 𝑚. For
convenience, the same cryptographic hash function ℎ is usually used in real-world
implementation in both roles.

Parameters The security parameter 𝑛 ∈ ℕ. This parameter sets the output
sizes for the function ℎ𝑘, ℎ𝑚 and denotes how many random numbers form a
secret key — and thus also a public key.

Key generation Using the PRNG, generate 2𝑛 random numbers of size 𝑛; this is
the secret key SK = (SK0, ..., SK2𝑛). Compute the public key by hashing the num-
bers that are part of the secret key; do so with ℎ𝑘; i.e. PK = (ℎ𝑘(SK0), .., ℎ𝑘(SK2𝑛)).

13



SK0,0

0 1 1 0

SK1,0

SK0,1

SK1,1

SK0,2

SK1,2

SK0,3

SK1,3

PK0,0

PK1,0

PK0,1

PK1,1

PK0,2

PK1,2

PK0,3

PK1,3

SECRET KEY PUBLIC KEY

Signing
SK0,0

SK1,1 SK1,2

SK0,3

Verification

SIGNATURE

 
 
 

hk(SKi,j)

Key generation

m hm(m) choose by bit value

SIG0 SIG1 SIG2 SIG3

=

0 1 1 0m hm(m)
h(SIG0) ?= PK0,0 h(SIG2) ?= PK1,0 
h(SIG1) ?= PK1,0 h(SIG3) ?= PK0,0 

check

Figure 1.1 An overview of key generation, signing and signature verification algorithms.
For simplicity, the variant with parameter 𝑛 = 4 is presented, meaning that the output
size of the hash functions is four bits. The signer hashes the message and, based on the
bit value at the given input, selects the secret key from the first set or the second; this
forms the Lamport signature. The verifier does a similar thing — the value of the bit
determines if the hashed value from the signature is checked against the first or the
second set of public keys.

Signing To sign the provided message 𝑚, hash the message using the ℎ𝑚 func-
tion to obtain a digest 𝑑 = ℎ𝑚(𝑚) = (𝑑0, ..., 𝑑𝑛). Now for each bit of 𝑑, assemble the
signature 𝜎 based on the 𝑑𝑖 value as follows 𝜎 = (SK𝑑0𝑛+0, SK𝑑1𝑛+1, ..., SK𝑑𝑛𝑛+𝑛).
Verifying To verify the message 𝑚 with the signature 𝜎 = (𝜎0, ..., 𝜎𝑛) and
the public key PK = (ℎ𝑘(SK0), .., ℎ𝑘(SK2𝑛)), first hash the message using the ℎ𝑚
function to obtain a digest 𝑑 = ℎ𝑚(𝑚) = (𝑑0, ..., 𝑑𝑛). Now for each 𝑖 ∈ (0, ..., 𝑛)
compute hash value of ℎ𝑘(𝜎𝑖) = PK’𝑖 and compare it to PK𝑑𝑖𝑛+𝑖. If all these values
match, the signature is valid.

Security The security of the Lamport scheme is based on the security of the one-
way and hash functions used. Provided that cryptographic hash function ℎ is used
for both message ℎ𝑚 ∶ {0, 1}∗ → {0, 1}𝑛 and key function ℎ𝑘 ∶ {0, 1}𝑛 → {0, 1}𝑛, the
security against generic attacks is at least the minimum of securities for the three
mentioned properties. Those are collision resistance, pre-image resistance and
second pre-image resistance. Since collision resistance implies second pre-image

14



resistance, it is sufficient to consider only collision and pre-image resistance.
Importantly, the single key pair can sign only a single message because a single
signature reveals a significant part of the secret key, and the security decreases
dramatically. One signature reveals the whole half of the secret key, and the
probability of an adversary forging a valid signature for some message is high
already.

Winternitz one-time signature scheme

The Winternitz scheme idea was first published by Merkle [24] in 1989. How-
ever, the scheme is not thoroughly described in that publication; in full detail
is described in [25]. Compared to the Lamport one, this scheme can save a lot
of signature size. It can be 4, 8 or, in extreme cases, 16 times smaller due to
the tradeoff between computation time and signature (and also key) size. The
main idea here is that the message with the appended checksum is fragmented
into pieces of specific bit size, and these bits, as unsigned values, determine how
many times the signer and verifier chain hash the values to get the value from
the public key. The checksum here is important because it stops the attacker
from forging a valid signature after seeing the original signature. In this section,
repeated hashing is denoted by the upper index number in parentheses — the
input of 𝑖-th iteration is the input for the 𝑖 + 1-th. This procedure is nothing else
than a mathematical function composition. As an example, consider notationℎ𝑘(3)(𝑥) = ℎ𝑘(ℎ𝑘(ℎ𝑘(𝑥))); this means that we chain-applied the function ℎ𝑘 three
times.

Primitives The scheme uses a cryptographically safe random number generator
for secret key generation and a one-way function ℎ𝑘 ∶ {0, 1}𝑛 → {0, 1}𝑛 for public
key derivation and verification. Also, it uses a cryptographic hash functionℎ𝑚 ∶ {0, 1}∗ → {0, 1}𝑛 for generating a digest of a message 𝑚. Again, the real-
world implementations conveniently use one function ℎ at both roles.

Parameters The scheme uses the security parameter 𝑛 that determines the
size of secret key numbers and the output size of the hash function ℎ𝑚. The𝑤 ≤ 2 parameter sets the tradeoff between computation time and signature
size. It determines how many times the secret keys are hashed initially and how
many bits it signs with one secret key number. For the given 𝑤, one key number
signs 𝑙𝑜𝑔2𝑤 bits. Based on the bit size of the message 𝑚, we compute how many
segments the signature will contain both for the message itself (𝑙1) and for the
checksum (𝑙2):

15



SK0

01 10

SK1 PK0 PK1

SECRET KEY PUBLIC KEY

Signing

Verification

SIGNATURE

 
 
 

h4(SKi)

Key generation

M h(M)++C(M) h4-ni(SKi)

M
for all i in 0..4: 

hni(SIGi) ?= PKi 

n0 n1

SIG0

check

01 10

n3n2

h(M)++C(M)

C(M)h(M)

SIG1 SIG2 SIG3

01 10

n1

01 10

n3n2

C(M)h(M)

n0

Figure 1.2 The Winternitz signature scheme overview with parameters 𝑤 = 4 and𝑛 = 4. With that said, a hash function has an output length of four bits and keys
are made of two random numbers; it corresponds to parameter 𝑤 = 4 and therefore𝑙𝑜𝑔24 = 2. Thus, the signer divides the message digest with the checksum into two-bit
blocks representing an unsigned integer that determines how many times the hash
function should be applied to the signature pieces; this chain-hashed secret key forms
the signature. The verifier also hashes the message and splits the digest just as the
signer; after that, the verifier completes the intermediate chain-hashed secret keys to
the secret keys that were hashed four times. These 𝑤-times hashed values are checked
against the public key for each segment.

𝑘1 = ⌈ 𝑚
log2 𝑤⌉ 𝑘2 = ⌊ log2(𝑘1(𝑤 − 1))

log2 𝑤 ⌋ + 1
Key generation Using the PRNG, generate 𝑘 = 𝑘1 +𝑘2 random numbers of size𝑛; this is the secret key SK = (SK0, ..., SK𝑘). Compute the public key by hashing
the secret key numbers with ℎ𝑘 𝑤-times; i.e. PK = (ℎ𝑘(𝑤)(SK0), .., ℎ𝑘(𝑤)(SK𝑘)).
Signing To sign the provided message 𝑚, hash the message using the ℎ𝑚 func-
tion to obtain a digest 𝑑 = ℎ𝑚(𝑚) = (𝑑0, ..., 𝑑𝑘1). Compute the checksum of the
digest 𝐶 = (𝑐0, ..., 𝑐𝑘2) as 𝐶(𝑑) = 𝑘1−1∑𝑖=0 (𝑤 − 1 − 𝑑𝑖)

16



and also split it into 𝑙 = 𝑙𝑜𝑔2𝑤 bit segments. The concatenation of the digest and
the checksum 𝑑′ = (𝑑0, ..., 𝑑𝑘1 , 𝑐0, ..., 𝑐𝑘2) is now split into 𝑘 unsigned integers of
size 𝑙 bits, i.e. 𝑑′ = (𝑣0, ..., 𝑣𝑘). Then, the signature 𝜎 is produced based on the
values 𝑣𝑖 as 𝑤 − 𝑣𝑖-times chain hashed values. The signature looks like this —𝜎 = (ℎ𝑘(𝑤−𝑣0)(SK0), ..., ℎ𝑘(𝑤−𝑣𝑘)(SK𝑘)).

The checksum guarantees that the attacker cannot forge a valid signature
after seeing the original signature. Without the checksum, the attacker could
sign any message with a smaller value of all segments. The checksum guarantees
that if signing the message with all values less than the message in the original
signature, the checksum will contain at least one segment with greater value and
thus, the attacker cannot compute its chain-hashed value for the forged signature
because only the higher chain-hashed value was revealed.

Verifying To verify the message 𝑚 with the signature 𝜎 = (𝜎0, ..., 𝜎𝑘) and the
public key PK = (PK0, ..., PK𝑘), first hash the message using the ℎ𝑚 function to
obtain a digest 𝑑 = ℎ𝑚(𝑚) = (𝑑0, ..., 𝑑𝑛). Now split the digest into 𝑘 unsigned
integers of size 𝑙 bits, i.e. 𝑑 = (𝑣0, ..., 𝑣𝑘). Then for each signature part, the value
from the public key is produced based on the values 𝑣𝑖 as 𝑣𝑖-times chain hashed
values 𝜎𝑖 from the signature. The signature is valid if the chain-hashed values
match the 𝑖-th element of the public key. In other words ∀𝑖 ∈ (0, ..., 𝑘) ∶ ℎ𝑘(𝑣𝑖)(𝜎𝑖) =
PK𝑖.
Security The scheme’s security is again derived from the security of the used
one-way and hash functions. Just as in the case of the Lamport scheme, it is the
minimum of securities from collision and pre-image resistance. Also, the key pair
can be used only to sign a single message because only one signature reveals a
significant part of the secret key (its partly chain-hashed values), and the security
decreases dramatically. The probability of an adversary forging a valid signature
for some message is high.

1.3.2 Few-time signature schemes
One-time signature schemes were already introduced; their main disadvantage is
that they can securely sign just one message. It was also mentioned that one-time
schemes could be used to construct a few-time signature scheme. This section
introduces one such approach—Merkle Signature Scheme (MSS) [26]; an extended
variant of this scheme (XMSS) [27, 28] is now a recommended option by NIST [29]
in the category of stateful post-quantum cryptography. After that, a stateless few-
time scheme used as a core for the proof-of-concept of this thesis implementation
is explained — Hash to obtain Random Subset with Trees (HORST) scheme [30].

17



T3,0

SK0 PK1 SK2 SK3 SK4 PK5 PK6 PK7

T3,0

h(T3,0||T3,1)

T3,1 T3,2 T3,3 T3,4 T3,5 T3,6 T3,7

h(SK0)h(PK0) h(PK5) h(PK6) h(PK7)

T2,0

||

T2,1

||

T2,2

||

T2,3

||

T1,0

||

T1,1

||

PK=T0,0

||

h(SK1) h(SK2) h(SK3) h(PK4)
PK0 PK2 PK3 PK4

m

SECRET KEY

PUBLIC KEY

Key generation

Signing

Verification

verify(m, SIGSK1,PK1)m

h(T2,0||T2,1)

h(T1,0||T1,1)

h(PK1) h(PK2) h(PK3)

signOTS(m) SIGSK1 T2,1
SIGNATURE

SK0 SK1 SK2 SK3 SK4 SK5 SK6 SK7SK0 SK2 SK3 SK4

PK1

T3,1 = h(PK1) 
T2,0 = h(T3,0 || T3,1 )
T1,0 = h(T2,0 || T2,1 ) 
T0,0 = h(T1,0 || T1,1 ) ?= PK 

T1,1

Figure 1.3 A demonstration of Merkle signature scheme key generation, signature
generation and verification; the used parameters are ℎ = 3, 𝑙 = 23. The signer generates
the signature with the key index 1 because the first index has already been used. The
signature consists of the signature from the underlying one-time scheme used extended
with the corresponding public key and necessary Merkle tree nodes for reconstructing
the whole authentication path to the root. The reconstructed value is then compared to
the public key.

This scheme was introduced as part of the construction of the SPHINCS signature
scheme. An improved version of the HORST scheme — FORS [23] — is used
in the SPHINCS+ scheme, a recommended option in the category of stateless
quantum-resistant schemes.

Merkle Signature Scheme

The Merkle signature scheme was first introduced in a dissertation thesis of Ralph
Merkle in 1979 [26]. The scheme offers small public keys and an adjustable number
of signatures per key. This signature scheme can issue only a limited number
of signs per single public key and is built upon an arbitrary post-quantum one-
time scheme — e.g. Lamport signature or Winternits scheme from the previous

18



sub-section — with at least desired target bit security. The key idea here is that
the number of expected signatures per key is selected as a power of two — for
example, 𝑙 = 2ℎ. Then 𝑙 secret keys of the chosen one-time signature scheme are
generated; the secret keys are hashed using a hash function ℎ ∶ {0, 1}∗ → {0, 1}𝑛
into a basis for a public key. Then complete hash tree is built upon those hashed
secret keys, and the root is published as a public key. Then for each message,
one secret key is used exactly once; the signature is composed of a signature of a
one-time scheme and the authentication path to the root. The authentication path
is the neighbourhood of a path from the signing leaf to the root—the necessary
minimum is to compute the valid root hash. Because the signature scheme must
know what underlying keys have already been used, it belongs to a stateful
signature scheme category. The overview of the scheme principles is shown in
the figure 1.3.

Primitives The scheme needs a cryptographic hash function ℎ ∶ {0, 1}∗ →{0, 1}𝑛 for hashing a Merkle tree and OTS private keys. Additionally, it needs the
primitives required by the underlying one-time scheme.

Parameters The scheme uses the security parameter 𝑛 that determines the
output size of the hash function ℎ and a number of leaf nodes 𝑙 = 2ℎ. Also, it
requires parameters for the underlying one-time signature scheme.

Key generation Generate 𝑙 keypairs using the underlying scheme, i.e.(SK𝑖, PK𝑖)∀𝑖 ∈ (0, … , 𝑙 − 1). For each OTS public key, compute 𝑇ℎ,𝑖 = ℎ(PK𝑖);
these are the leaf nodes in the Merkle tree. The tree root serves as the public key.
The rest of the tree is computed recursively as follows 𝑇𝑗,𝑖 = ℎ(𝑇𝑗−1,2𝑖 ++ 𝑇𝑗−1,2𝑖+1).
To be consistent with our pseudo-codes that follow, the ++ sign denotes string
concatenation as an alternative to the usual || sign. The root of the tree is then
exposed as the public key.

Signing The signing process starts with the OTS scheme signing the message𝑚 yielding signature 𝜎𝑂𝑇𝑆. The next part of the signature is OTS public key
that can be used to verify 𝜎𝑂𝑇𝑆 for the message 𝑚. Additionally, the authen-
tication path and the key index must be included. The authentication path is
the sequence of neighbouring nodes on the path from the key leaf node to the
root; the minimum number of values to correctly hash from the bottom to the
top. In the figure 1.3, it can be seen what the authentication path for the key
index 1 looks like — 𝑇3,0, 𝑇2,1, 𝑇1,1. The final signature for 𝑖-th key looks like this𝜎 = (𝜎𝑂𝑇𝑆, PK𝑖, 𝑇𝑎𝑢𝑡ℎ0 , … , 𝑇𝑎𝑢𝑡ℎ𝑑−1 , 𝑖).

19



Verifying The verifier checks the validity of the OTS signature for the message𝑚 with the attached OTS public key PK𝑖. If it matches, the process can continue —
the OTS public key hash is computed as a leaf node 𝑇ℎ−1 = ℎ(PK𝑖). Then the path
to the root is computed using the attached authentication nodes. To determine if
the authentication node is to be concatenated from left or right, the key index 𝑖
is used; the index in the given layer of the tree determines this — even indices
are those concatenated from the left side. Once the root value is computed, it is
compared with the public key; if it matches, the whole signature is valid.

Security The security of the Merkle signature scheme lies, of course, in the
underlying signature scheme. Besides that, the scheme requires a pre-image and
second pre-image resistance of function ℎ. There is no way to exploit collisions
in the Merkle tree. Assuming the function ℎ is ideal, the security of the Merkle
scheme itself is 2𝑛.

An overview of the situation for parameters ℎ = 3, 𝑙 = 23 is captured in
the figure 1.3. The process of signing and verifying with key index 1 is presented.

HORST scheme

The Hash to Obtain Random Subset with Trees scheme is the next in the family of
few-time signatures. This scheme is used as a signature scheme for the proof-of-
concept implementation in the protocol. It was selected for its reasonable tradeoff
between complexity, practical usability and security. Also, it offers small public
keys that need to be distributed often in the proposed protocol.

HORST was used as one of the building blocks for the original SPHINCS
signature scheme in 2015 [30]; it is just a minor extension of the HORS scheme [31].
The authors of SPHINCS used a Merkle tree to reduce the size of the public key
to just one hash; on the other hand, this increased the size of signatures a bit.
The main idea behind this scheme is that there is a massive amount of 𝑘-element
subsets in 𝑡 = 2𝜏 set, provided that the parameters are well selected.

In the HORST scheme, the private key consists of many secret key elements,
and the public key is derived from the corresponding hash values using a Merkle
tree. When signing a message, a small random subset of the secret key elements
is chosen based on the message hash, and these elements are revealed as part of
the signature. The signature also includes authentication paths for each revealed
secret key element, allowing the signature to be verified using the public key.
The terms Merkle tree and authentication paths are the same as in the Merkle
signature scheme; they were described in the section 1.3.2. The overview of
scheme principles is visualised in the figure 1.4. One possible format of signature,
the format that is used in the PoC implementation, is shown in the figure 1.5.

20



SK0 SK1 SK2 SK3 SK4 SK5 SK6 SK7

T3,0

hk(T3,0||T3,1)

T3,1 T3,2 T3,3 T3,4 T3,5 T3,6 T3,7

F(SK0)hk(SK0) hk(SK5) hk(SK6) hk(SK7)

T2,0

||

T2,1

||

T2,2

||

T2,3

||

T1,0

||

T1,1

||

PK=T0,0

||

hk(SK1) hk(SK2) hk(SK3) hk(SK4)

SK0 SK2 SK3 SK4

110 010hm(m)m

SK5 T3,4 T2,3 T1,0 SK1 T3,0 T2,1 T1,1

SECRET KEY

SIGNATURE

PUBLIC KEY

Key generation

Signing

Verification

110 010hm(m)m

compute path to the root for all  
signature parts and check for PK equality

Figure 1.4 An overview of HORST key generation, signing and verifying displayed for
the parameters 𝑘 = 2, 𝜏 = 3. The signer reveals a few secret keys based on parts of the
message and delivers the necessary Merkle tree nodes so that the verifier may retrace
the whole hashing chain to reconstruct and verify the public key.

21



TƮ, A(Ʈ)SKb_0 TƮ-1, A(Ʈ-1) ... T0, A(0)

Ʈ×
(Ʈ+1)×

n

... TƮ, A(Ʈ)SKb_k TƮ-1, A(Ʈ-1) ... T0, A(0)

k ×(Ʈ+1) ×  n

Figure 1.5 An example of HORST signature format; it uses 𝑘 elements of the 2𝜏 set
to form a signature. Each element is followed by 𝜏 hashes of size 𝑛 bits — i.e. the size
of the hash function output used to build the Merkle tree. These elements form an
authentication path and are necessary to calculate the root node that should be equal to
the public key.

Primitives The scheme uses a cryptographically safe random number generator
for secret key generation and a cryptographic hash function ℎ𝑚 ∶ {0, 1}∗ → {0, 1}𝑛
for hashing messages and ℎ𝑡 ∶ {0, 1}2𝑛 → {0, 1}𝑛 for hashing concatenations while
building a Merkle tree over the hashed secret keys.

Parameters The scheme’s parameters are 𝑛, determining the size of hash func-
tion output, 𝜏 specifying the depth of the Merkle tree and 𝑘, which tells how many
secret key pieces are revealed with each signature.

Key generation To generate a keypair, 𝑡 = 2𝜏 random numbers of size 𝑛must be
generated with the CS PRNG; this is the secret key SK = (SK0, … , SK𝑡). Then every
secret key is hashed with the ℎ𝑡 hash function, and these values (𝑇𝜏 ,0, … 𝑇𝜏 ,𝑡) are
used as leaf nodes of theMerkle tree. The next step is to compute the wholeMerkle
tree; it is the same process as in the Merkle signature scheme — concatenation
of child nodes is hashed with the ℎ𝑡 function and stored as the parent value, i.e.𝑇𝑖,𝑗 = ℎ𝑡(𝑇𝑖−1,𝑗∗2 ++ 𝑇𝑖−1,𝑗∗2+1).
Signing To sign a message, hash it ℎ𝑚(𝑚) and divide the output into 𝜏-bit
blocks ℎ𝑚(𝑚) = (𝑏0, … , 𝑏𝑘). Now represent each 𝑏𝑖 as an index to 𝑡 = 2𝜏 ele-
ments and form 𝑘-sized subset based on the indices 𝑏𝑖. For each of the 𝑘 ele-
ments, add the secret key SK𝑏𝑖 into the signature, followed by the authentication
path for the path from this secret key to the Merkle tree root. The final sig-
nature 𝜎 = (SK𝑏0 , 𝑇𝜏 ,𝐴(𝑏0,𝜏 ), … , 𝑇0,𝐴(𝑏0,0), SK𝑏1 , 𝑇𝜏 ,𝐴(𝑏1,𝜏 ), … , 𝑇0,𝐴(𝑏1,0), … ) looks like
this — figure 1.5. The𝐴(𝑏, 𝑖) denotes the corresponding index of the authentication
node for the secret key at index 𝑏 on the given tree layer.

Verifying First, compute the hash of a message ℎ𝑚(𝑚). To verify the signature𝜎, divide the output into 𝜏-bit blocks as follows ℎ𝑚(𝑚) = (𝑏0, … , 𝑏𝑘). Then rep-
resent each 𝑏𝑖 as an index to 𝑡 = 2𝜏 elements; use this index to determine what

22



authentication path to the root is one reconstructing. Use the ℎ𝑘 function on the
secret key and then use the authentication parts to compute the root hash and
compare it with the public key. If the key matches, the signature is valid.

Security The security of the HORST scheme lies in the hash functions used,
specifically in their pre-image and second pre-image resistance. The size of hash
function output sizes again determines these resistances. Besides that, this scheme
can also be broken by simply being able to sign the given message by forming a
subset from already published secret key pieces. Naturally, the probability that an
adversary can forge a valid signature grows with every signed message; 𝑟 denotes
the number of already signed messages by the current key. That implies that the
security decreases with every signature. As analysed in this publication [32], the
HORST scheme offers a decent bit of security against brute-force attack —𝑘(log2 𝑡 − log2 𝑘 − log2 𝑟).

However, it is vulnerable against adaptive chosen-message attacks where the
security decreases dramatically; bit security against the adaptive attack can be
approximated as 𝑞𝑟+1𝑟 ! (𝑘𝑟𝑡 )𝑘.
This vulnerability can be eliminated with modifications proposed as FORS
scheme [23]. Additionally, the scheme is vulnerable to so-called ‘weak mes-
sages’ attacks; specifically targeted messages that employ only a reduced number
of elements forming the subset. As described in the next paragraph, these can be
eliminated by scheme modification.

There are also many extensions proposed to HORS and HORST. Be it
PORS [33], the scheme that eliminates the vulnerability against weak messages
where the subset is not derived from message hash but rather from a pseudo-
random generator; the seed is provided as a part of a public key. The other
extensions are HORSIC [34] or HORSIC+ [34], that has been proposed in 2021 as
an extension to HORSIC. Also, the Forest of Random Subsets (FORS) [23] scheme
was introduced as a substitution to the HORST scheme for SPHINCS+. It uses
a forest of Merkle trees instead of just one to eliminate vulnerability against
adaptive chosen-message attacks.

Although this scheme may seem vulnerable, it is used as a basis for proof-of-
concept implementation for this thesis. The rationale is this — the underlying
scheme can be replaced with any few-time signature; HORST was chosen as one
with decent security and implementation simplicity ratio. Moreover, the adaptive
or weak message attacks are irrelevant in this setup because no messages can be
signed for the potential attacker. Finally, it is just proof-of-concept of a thesis

23



where the focus is to verify if few-time signatures based on hash functions are
usable for the problem of authenticated streaming and broadcasting.

1.3.3 Current development in hash-based signatures
To provide a sneak peek into state-of-the-art candidates aspiring to become post-
quantum alternatives to currently used digital signatures, we discuss some of
the recommendations of the National Institute of Standards and Technology
(NIST) experts. NIST has been working on standardising post-quantum cryp-
tography through its Post-Quantum Cryptography Standardization project since
2016. Currently, SPHINCS+ is selected as a candidate for standardisation in the
category of hash-based and stateless signature schemes 2. As for candidates for
stateful schemes, NIST recommended two schemes: eXtended Merkle Signature
Scheme (XMSS) and Leighton-Micali Signatures (LSM) [29]. These schemes have
demonstrated robust security properties and practical performance characteristics,
making them strong candidates for protecting digital communications against
potential quantum attacks.

SPHINCS and SPHINCS+
At its core, the SPHINCS [30] scheme relies on a virtual hypertree organised into
layers where each layer contains W-OTS+ trees and where each leaf signs the root
of the underlying tree. In the last layer (layer 0), HORST (FORS in SPHINCS+)
trees are used for the final signature. The issued signature then determines one
path through the hypertree, allowing the verifier to recreate it and check the
match with the public key.

SPHINCS+ [23] is an improved version of SPHINCS that addresses some of
the performance and security limitations of the original scheme. It introduces
several optimisations, such as using FORS instead of HORST and multi-target
attack protection. These improvements result in smaller signatures and keys and
faster signing and verification times. SPHINCS+ also offers various parameter
sets to balance security and performance using different use cases.

The scheme can sign a very high number of messages with one key. Generally,
it is 2ℎ, where ℎ is the total height of a hypertree. The recommended config-
urations imply that at least 264 messages can be signed securely. The authors
proposed various scheme instantiations for multiple security levels, as seen in the
NIST submission paper 3. Although the security properties are very appealing,
the drawback is the signature size and computational complexity of signature

2https://csrc.nist.gov/projects/pqc-dig-sig
3https://sphincs.org/data/sphincs+-specification.pdf

24

https://csrc.nist.gov/projects/pqc-dig-sig
https://sphincs.org/data/sphincs+-specification.pdf


generation. This makes this scheme bit unpractical for the protocol proposed in
this thesis, which prefers more lightweight signature schemes.

eXtended Merkle Signature Scheme

XMSS [27] is an extended version of the previously described MSS scheme [26].
The underlying one-time signature scheme used isW-OTS+ [35]. The construction
is similar to a normal Merkle scheme with a few differences. When computing the
parent node, one first applies a XOR function with randomly generated masks on
the values before concatenating and hashing; this is a so-called XMSS tree. This
masking leads to the fact that the hash function used on trees does not have to
be collision resistant. Also, leaves of the XMSS tree are not hashes of a one-time
signature public key but roots of another not necessarily full binary tree called
L-tree. This modified XMSS tree compresses the OTS public key to a single hash
value; it may be incomplete from the right because the key may not be sized in
powers of two.

It can sign 2ℎ messages, where ℎ is the depth of the main Merkle tree; and
the scheme’s parameter. A second pre-image resistance of the underlying hash
function determines the security of the whole scheme. The disadvantage of this
scheme is that it is stateful, and the next index of a key to use must be part of the
secret key.

25



26



Chapter 2

Authenticated streaming with
hash-based signatures

With knowledge of the necessary context and cryptographic primitives used as
building blocks, this chapter states the purpose and scope along with requirements
for the proposed protocol and the required protocol interface. The detailed
specification of the protocol follows — firstly, network layer formats are presented
then all three roles are specified for the required interface. Also, important
properties and parameters are discussed. The chapter concludes with a discussion
about possible trade-offs accessible through protocol parametrisation.

2.1 Design Criteria
Before delving into the protocol design specification, it must be known what the
primary purpose of the protocol is, what is and what is not the responsibility of
the protocol (scope), what the protocol shall and shall not do (requirements), and
how the users can interact with it (interface). All these aspects are presented in
the following section.

Summary of the main constraints The main goal is to transport a stream of
data from a sender to a receiver and allow the receiver to verify the authenticity
of the data while assuring that an adversary did not mangle the data stream.

First, since we aim for sender offloading, we must avoid any connection-
oriented communication. Tracking of connections would complicate the sender
logic and place unnecessary expectations on the sender-receiver communication
that might make retranslation unnecessarily complex.

Second, since we aim for complete decentralisation, we avoid using any
central or globally available key store; this leaves us with a petname-style identity

27



system [36] that uses the public keys as identities. Moreover, this is complicated
by the ephemeral nature of the few-time signature keys, which forces us to update
public keys and, thus, also identities continually. An important part of the protocol
allows re-authentification of the senders even after substantial updates of their
identities.

Finally, the hash-based signatures present a possibly significant bandwidth
overhead; we therefore have to tune the size of the signed chunks to trade off the
bandwidth overhead, authentication latency, ephemeral key consumption rate,
and several other variables.

2.1.1 Purpose
The proposed protocol shall be used to check the integrity and authenticate data
streams from the sender to receivers that have actively subscribed to receive
the data. The sender shall be able to generate and persistently keep his sender
identity that receivers will trust and accept. The protocol shall allow the sender
to stream the data to multiple actively subscribed receivers.

Receivers shall be able to subscribe to the specified data source. After accept-
ing and trusting the first message from that source, they shall have subsequent
incoming messages authenticated if they were originally sent from the same
identity. The number of missed messages from the given identity shall limit this
guarantee of re-authentication; this should be configurable.

Additionally, the protocol shall support a distributor role; such is meant
to distribute messages sent by a sender who is already known-identity to the
distributor and forward them to receivers that subscribed to that data via the
distributor.

The overall cooperation of the roles is sketched in the figure 2.1. The arrows
show the flow of a message from the original sender to all active receivers.

2.1.2 Scope
The proposed protocol shall serve as a layer between a user application that
leverages it to implement secure data streaming and the abstract building blocks
this protocol uses. These building blocks are the underlying few-time signa-
ture scheme and a network interface for sending packets. It is designed to be
implemented as a user-space application without special permissions.

The underlying signature scheme is not in the scope of the protocol. The
protocol shall operate with an arbitrary selection of the scheme if it is a post-
quantum few-time signature scheme. The network interface is not in the scope
of this protocol either.

28



SENDER

RECEIVER 
DISTRIBUTOR 

DISTRIBUTOR 

RECEIVER 

RECEIVER 

RECEIVER 

RECEIVER 

RECEIVER 

RECEIVER 
RECEIVER RECEIVER 

Figure 2.1 An example flow of pieces from the sender to all receivers while using
the protocol. One original sender is streaming pieces containing the original data
stream. There is the receiver who is also a distributor; this node is re-distributing the
authenticated pieces from the known sender to other receivers that asked this node to do
so. Additionally, there is a node that is just a distributor — the node receives, authenticates
and re-distributes the pieces but does not deliver them. This re-distribution reduces
the load on the sender and, moreover, can reduce the network bandwidth compared to
unicasting the data to all receivers from the sender.

29



2.1.3 Main abstractions
The construction is based on an abstraction of a signature scheme and a network
interface. The following sections specify the required properties and interfaces.

• Post-quantum few-time signature scheme
The scheme to be used in the protocol shall be quantum-resistant and few-
time. The scheme shall, for the given parameters — including minimum
required bit security— yield a maximum number of signatures one key can
generate.

As for the interface to interact with the scheme, three methods are required
— generate_keypair, sign and verify.

• Network interface
Since the main point of the proposed protocol is data streaming over com-
puter networks, it requires a network interface. The interface must support
sending packets between nodes with addresses. Reliability or confidential-
ity is not required. An example of such a protocol can be UDP as described
in RFC 768 [37].

Signature scheme interface

generate_keypair The generate_keypair procedure shall return a new
keypair for subsequent signature generation and verification.

• Input: None.

• Output: A new keypair that has two parts — secret and public. The secret
key shall be usable as an input to sign and the public key as an input to
verify.

sign The sign procedure shall generate a valid signature for provided data
with a provided secret key.

• Input: An array of bytes to sign and a secret key to sign it with.

• Output: The provided array of bytes and a valid signature generated with
the provided secret key.

verify The verify procedure shall verify the validity of a signature for pro-
vided data.

• Input: A signed array of bytes, a signature and a public key.

• Output: The provided array of bytes and a boolean flag indicating if the
signature is valid for the provided bytes.

30



2.1.4 Requirements
In this part, the guarantees provided by and requirements for the protocol are
stated; these set bounds for the subsequent protocol specification. The require-
ments are as general as possible without unnecessary technical details irrelevant
to the functionality of the protocol. First, the general requirements are declared,
followed by requirements relevant to the specific roles.

Protocol guarantees and invariants

The protocol manages identities generated by users, which can uniquely crypto-
graphically sign and authenticate network packets using a fast quantum-resistant
cryptography algorithm based on few-time hash signatures, suitable for use in
high-performance and low-latency network streaming.

The authentication must not rely on any other data transfer than the trans-
ported packets (i.e. theremust not be a central authority to distribute the identities,
etc.). The protocol must accordingly include the authentication information in
the signed packets, and anyone who receives a packet must be able to uniquely
identify the sender, allowing authentication of the same sender in some subse-
quent packets received from the sender. By receiving and decoding a sufficient
amount of messages over time, the receiver must be able to authenticate packets
in the subsequent possibly infinite message stream. For convenience, the protocol
will additionally have to be able to subdivide the messages into fragments of
sizes suitable for being transferred over the network. The protocol does not
guarantee the confidentiality of the messages nor the reliability of the message
transfer. Confidentiality is typically not required for broadcasting applications
and may be optionally implemented in a higher layer, and transfer reliability may
be implemented by utilising a stronger fragment delivery protocol.

Sender implementation

Sender software should provide identity management functionality, mainly the
generation of the few-time signature keys and updates of the key store. All
operations must be implemented to prevent losing the identity information, e.g.,
due to hardware faults and other events.

Receiver implementation

Similarly, as with the sender, the receiver software should prevent losing the
sender-authenticating information due to errors. For user convenience, it must
keep a database of the identities and map the received identities and packets
to a persistent identity useful for the software and authentication status of the

31



message. The receiver implementation must expect packet loss and reception of
spoofed or malicious fragments. Each message to be delivered should be tagged
as one of the following:

• Authenticated by identity X — the identity X signed the message..

• Certified by identity X — the identity X certified the key that signs this
message..

• Unauthenticated — the message is not proven to be signed by nor certified
by the target identity.

Authenticated and certified messages should be delivered with strictly increasing
sequence numbers, but the delivery should not be blocked too long if some se-
quence number is missing; the delivery should continuewith subsequentmessages
after some reasonable time elapses.

The requirements on a distributor role

Receivers also should be capable of distributing unaltered packets from receivers
subscribed to them. The distributor shall work as a transparent proxy between
the original sender and the receiver. Receiving data from a distributor should be
as secure as receiving it directly from the original source.

2.1.5 The interface of the protocol
For a protocol user, it shall be as simple as possible to use it in the applications.
The protocol instance must allow initial parametrization; the underlying signature
scheme also determines a subset of the parameters. Then a way to send the next
message from the data stream must be available. On the other end — at the
receiver, there must be a way to have authenticated messages delivered.

new_sender Constructs and configures the protocol instance of a sender with
the provided parameters.

• Input: Protocol and signature scheme parameters relevant to the sender
role.

• Output: An instance that can broadcast the data to receivers.

new_receiver Constructs and configures the protocol instance of a receiver
with the provided parameters.

• Input: Protocol and signature scheme parameters.

• Output: An instance that can receive and/or distribute authenticated
messages.

32



broadcast Securely broadcast the provided data to all subscribed receivers.

• Input: An array of bytes as data to be broadcasted.

• Output: None.

receive Waits for a message from the subscribed receiver, does the authenti-
cation and integrity check, and returns the message with an appropriate authen-
tication flag and the sender’s identity.

• Input: None.

• Output: It returns an array of bytes as the message, the status of verifica-
tion — verified by identity X, certified by identity X or unauthenticated —
and a sequence number of this message.

2.2 Specification of the protocol
This section provides a detailed specification for the proposed protocol. The
protocol fulfils the requirements in the scope described in the previous subchap-
ter section 2.1 to achieve the stated purpose. The interface is designed to match
the interface specification. The section starts with specifying different networking
layers and their data format. Then a thorough specification of each protocol role
is presented. Towards the end of the section, the reader finds a discussion on the
vital protocol property — time to re-authenticate the stream for an already-known
identity, given that a specific number of messages were missed. The very end of
this section summarises the protocol parameters.

Briefly, the protocol works as follows: The sender implementation splits the
data stream into messages; these are encapsulated into pieces that can be delivered
as separate units to receivers. All pieces are cryptographically signed so that
their authenticity and integrity may be verified. The key for signing the current
piece is sampled from the layer hierarchy. Additionally, pieces contain protocol
metadata, such as announcements of other public keys that the receivers use
to update their key database and to update known identities. To fit the pieces
into the typical network packets, the sender splits them into fragments, which
the receiver has to reassemble before verification. Fragments are transmitted in
datagrams using the underlying network interface.

The critical aspect of the protocol lies in the appropriate layer selection to
sign the next piece. The keys on each layer have a limited number of signatures
they can generate — this results from using few-time signatures —, and then the
key must be replaced by a new one. To guarantee a potentially infinite number of
signatures for the data stream, the sender keeps a hierarchy of key layers where
the probability of signing with the given layer decreases when getting closer to

33



L0
L1
L2

number of pieces signed

k1,0 k1,1 k1,3

k0,0
k1,2

k0,1

k2,0 k2,1 k2,2 k2,3 k2,4 k2,5 k2,6 k2,7

Figure 2.2 The expected key lifetime ratios on different layers with KEY_RATIOS =
[(4,0), (2,0), (1,0)]. One can see that keys from 𝐿0 sign two times less frequently
than 𝐿1 and four times less frequently than layer 𝐿2.
the first layer; this implies that the keys in layers with lower indices live longer
than those with higher indices since they sign less frequently and their number
of secure signatures is not exhausted that fast. The KEY_RATIOS parameter
determines the ratio of the expected key lifetimes for each layer. The example
hierarchy is visualised in the figure 2.2; there, an exponential ratios KEY_RATIOS=
[(4,0), (2,0), (1,0)] are used. The first integer in the tuples in the list
determines the lifetime ratio — 4 ∶ 2 ∶ 1 in this case. Consequently, keys from
the 𝐿0 layer should be active two times longer than those from 𝐿1 and four times
longer than 𝐿2 keys or said in terms of probabilities — the probability of signing
with a key from layer 𝐿2 is two times lower than that of using 𝐿1 and four times
lower than the probability of signing with 𝐿0 key.

This layer hierarchy, combined with the continuous announcements of the
keys that will be used once the active ones are exhausted — i.e. no more secure
signatures can be generated, guarantees that the sender can sign a potentially
infinite number of pieces with keeping his initial identity. The identity is the
whole chain of used keys that have certified each other since the identity was
generated. The important feature is that the stream of pieces certifies itself. Since
the initial trust in the first piece the receiver accepted, the subsequent pieces
can be verified by the keys that the receiver already knows due to announcing
the keys that will be used in the future. Thanks to this, receivers can keep the
database of active keys as well as keys that were announced and will be signing
pieces in the future. This way, the receiver keeps the chain of identity keys
alive even with significant piece losses — these will certainly happen due to the
receiver going offline and reconnecting later. The number of pieces lost that the
receiver withstands without losing the sender’s identity can be configured. The
receivers do not have to remember the whole chain but only the most recent
segments while transitively spreading the existing sender identity. These two
crucial mechanisms are discussed in detail in the section 2.2.2 and section 2.2.3,
respectively.

34



The general notation used in this section This section uses a lot of pseudo-
code to specify the protocol’s behaviour. For brevity, the functions use a few
one-word variables; s for a sender and r for a receiver. Also, some variables are
prefixed with SH.; the SH denotes a set of shared structures that any pseudo-
code can access. The reader also notices the variable named p, which stands for
protocol parameters; the parameters are introduced as needed in the specification
and then summarised at the end of this section. Also, be wary that due to the
protocol generality, the parameters of the underlying scheme are all compressed
inside the parameter FTS; this is because every scheme uses different parameters.
For example, the get_keys function takes the FTS parameter as an argument to
generate keys because the underlying scheme determines the form of the keys.
The specific implementation for every scheme differs; therefore, these details
related to the scheme used are considered implementation details.

2.2.1 Network formats
The protocol’s responsibility starts whenever the user application calls the
broadcast function. The data transmission works in layers — at the sender
side, starting from a data stream to messages, from messages to pieces, from
pieces to fragments and finally, from fragments to datagrams. The receiver uses a
reversed order of layers. The hierarchy of the data encapsulation is visualised in
the figure 2.3.

Pieces and fragments The most important part is the piece; it has a header
and a message. If the data above is small enough, it can fit into a single piece;
this depends on the MAX_PIECE_SIZE parameter, and the actual piece header
size depends on other protocol parameters (most notably, the security of the
underlying signature scheme). The format of a piece can be seen in the figure 2.4.
A piece is an essential part because it represents one signed message in the context
of the protocol. One unique signature must be issued for each piece to depart to
receivers. It contains, among other parts, the message itself, a signature and a
sequence number. Moreover, it holds public keys that serve receivers as a way
to reauthenticate in the future if they miss some pieces. The number of keys
attached to a piece is in the header too. Each public key is prefixed with an
unsigned 8-bit integer, denoting the layer it belongs to — as shown in figure 2.4.
Layers are numbered from 0 to n, and 0 is always the longest-living layer. The
piece is then split into a minimum number of fragments.

A fragment splits pieces into smaller blocks, adds the header, and uses it as a
payload to a set of datagrams. A fragment format can be seen in the figure 2.5. A
datagram is a term for a block of data that is of suitable size for transfer via the
underlying network interface.

35



message

Piece

piece_fragment 

Fragment
fragment_header 

Datagram
dgram_header piece_fragment 

data

Data

fragment_header piece_header

fragment_header 

MAX_DGRAM_SIZE

MAX_PIECE_SIZE

Data

Figure 2.3 Data encapsulation is shown from top to bottom. The datagram refers to
a block of data that is suitable for transfer via the underlying network interface. The
formats of pieces and fragments are displayed in figure 2.4 and figure 2.5, respectively.

payload 
{payload_size} B

Piece format

sig 
SIG_SIZE B

seq 
8B

signed

pl_sz 
4B

num_PKs 
4B

scheme_id 
8B

PK_conts 

{n_PKs} * (1+PK_SIZE) B

layer 
1B

PKs 
PK_SIZE B

PK cont format

Figure 2.4 The diagram shows the format of a piece that is subsequently fragmented
into fragments (see figure 2.5).

piece_fragment 
<={DATAGRAM_SIZE - 12}B

Fragment format

piece_ID 
8B

offset 
31b

more 
1b

Figure 2.5 The format of a fragment that is then passed to the network interface for
the transfer.

36



K0,-2 K0,-1 K0,0 K0,1 K0,2

K1,-2 K1,-1 K1,0 K1,1 K1,2

Kj,-2 Kj,-1 Kj,0 Kj,1 Kj,2

...

L0

L1

Lj

active futuredepleted

Figure 2.6 The state of key layers after the initialisation and population with the keys;
the situation is shown for 𝑃𝑅𝐸_𝐶𝐸𝑅𝑇 = 2 and for 𝑗 layers. The keys with the negative
second index are never actually used but are attached to the pieces as if they were; this
keeps the sizes of pieces consistent even when the stream session has just started.

2.2.2 Sender role

To initialise an identity, the sender first tries to load it from a file; if that fails, the
CS PRNG is initialised with the provided seed parameter, and the sender uses the
CS PRNG to generate the keys required to form the first layers of the algorithm.

To broadcast data, the sender splits the data into pieces, signs all pieces with
selected keys while updating the key store with key use information, appending
selected public keys for certification, and generating new keys as needed. The
pieces are then split into fragments and passed down to the network stack.

The complete process is summarised in algorithm 1. This section walks
through each beforementioned point and thoroughly specifies it.

Constructing a new sender

The constructor of the sender role contains some simple functions that are to be
explained here without unnecessary technical details.

load_sender The load_sender function loads the previously stored state of
a sender instance from the file located at the location specified in ID_FILE. The
returned instance should resemble precisely the same state as when it was stored
by calling the function store_sender, including the state of PRNG and key state
information.

seed_csprng This function correctly initialises and seeds the cryptographi-
cally safe pseudo-random number generator of a type defined by the underlying
signature scheme; this type is a part of the parameters for the given signature
scheme denoted by the FTS parameter that groups all these.

37



Algorithm 1 The specification for the two interface functions for the sender role.
The function names correspond to those used in the section 2.1.5. The variable
params denotes a structure that groups a subset of protocol parameters; these are
summarised in the 2.3. The shared structures are prefixed with SH. Here, the func-
tion active_subscribers reads the structure shared between this thread and the one
processing the active receivers — details about keeping the active receiver is in the sec-
tion 2.2.2.

function new_sender(p) → s
s ← load_sender(p.ID_FILE)
if s == ∅ then

rng ← seed_csprng(p.FTS, p.SEED)
key_layers ← init_layers(p.FTS, p.KEY_DIST)
key_layers ← gen_keys(key_layers, p.FTS, rng, p.PRE_CERT)
next_seq ← 0
s ← (p, rng, key_layers, next_seq)

end if
spawn subscribers_task(p, p.SENDER_ADDR) ▷ Background task.
return s

end function
function broadcast(s, data) → s

messages ← to_messages(data, s.p.MAX_PIECE_SZ)
result ← []
for each m in messages do

scheme_id ← scheme_id(s)
seq ← next_seq(s)
key ← select_key(s)
pks ← select_pks(s, key)
num_pks ← length(pks)
payload_size ← size(m)
piece ← seq ++num_pks ++payload_size ++pks ++m
signature ← sign(piece, key.secret)
store_sender(s)
piece ← scheme_id ++signature ++piece
frags ← to_fragments(piece, s.p.MAX_DGRAM_SZ)
subs ← active_subscribers(SH.subs) ▷ Shared structure
send_fragments(subs, frags)

end for
return s

end function

38



init_layers and gen_keys The init_layers function prepares the struc-
ture that holds the active key layers and necessary metadata. The layers hold the
keys generated by the underlying scheme FTS; the layers to sign the next piece
are then sampled from the distribution defined by the KEY_DIST parameter. The
gen_keys method populates the prepared layers with the corresponding number
of keys based on the PRE_CERT parameter. This parameter says how many keys
are to be certified in advance. In other words, when signing with the 𝑖-th key on
the given layer, how many subsequent keys from this layer are attached to the
signed pieces. Based on this parameter, this many keys needs to be generated in
addition to the one to be used initially. Also, the same number of keys must be
generated as those already used even though these were never used; this keeps the
sizes consistent even when starting the stream session. In total, each layer needs
to be populated with 2PRE_CERT + 1 keys; the example state for PRE_CERT =
2 with j layers is visualised in the figure 2.6.

Before returning either the loaded or newly constructed instance, the back-
ground task is spawned — spawn_subscribers_task; its specification can be
found in the section 2.2.2.

Splitting the data into messages

The function to_messages takes the whole data and splits it to the messages
so that the message with all the piece metadata is at most of the MAX_PIECE_SZ
byte size. These messages of appropriate size are returned.

Getting the scheme ID and the next sequence number

The function scheme_id represents the unique identification of the currently
used scheme and its parameters. The idea is that each piece carries this ID. Based
on some agreed-on database of configurations, the receivers would not need to
know the parameters or scheme configuration of the sender identity. They would
be able to work with pieces independently. For example, the HORST scheme
with 𝑛 = 256, 𝑘 = 32, 𝜏 = 16 using ChaCha20 as PRNG and the Sha3-256 hash
function would have an ID 1.

The next_seq returns the sequence number for the next piece to be signed
and broadcasted and updates the number in the instance state.

Selecting a key to sign a piece

This subsection describes the semantics of a function called select_key that is
used in the algorithm 1. Rather than in pseudo-code, it is described in general
terms giving freedom to implement it as anyone might find appropriate. This
function returns the key used to sign the next piece and updates the information

39



0.00

0.25

0.50

0.75

1.00

0 1 2

Key layer

P
ro

b
. 
to

 s
ig

n
Probability distribution

0.25

0.50

0.75

1.00

0 1 2

Key layer

P
ro

b
. 
to

 s
ig

n

Cumulative distribution

2
1
0

0 1 2 3 4 5 6 7

Inverse key sign rate

K
e
y
 l
a
y
e

r

Inverse key sign rate for layers

Figure 2.7 The example layer selection model for KEY_RATIOS = [(4,0), (2,0),
(1,0)]. The probability of selecting the specific layers for signing the piece and cumu-
lative distribution is shown. The bottom figure shows the inverse layer sign rate — i.e.
how many pieces, on average, are signed before the given layer is chosen for signing.

about the key usage in the instance’s state; most importantly, the maximum
number of key usages cannot be exceeded. If a key is exhausted, the underlying
few-time signature scheme must generate the new one.

With every piece to sign, the sender must determine what layer should be
used for signing. This selection must adhere to the configured layer lifetime
ratios defined by the KEY_RATIOS parameter. This list dictates the expected key
lifetime ratios between the layers; the key lifetime is the number of signed pieces
for which the given key on a given layer remains active, i.e. the key can still
generate at least one secure signature. In this context, the time is measured in the
number of signatures the sender generates, i.e. the number of signed pieces. So
if one says, ‘The key lifetime ratio between layer 𝑖 and 𝑗 is 𝐾.’, it means that the
layer 𝑗 has to be chosen for piece signing 𝐾-time more often than the layer 𝑖. It
is important to note that the number of signatures one key from the underlying
few-time signature scheme can securely issue does not affect nor is affected by
this lifetime ratio; it remains constant for every layer. This lifetime ratio just
determines how often the specific layer is selected to generate the signature.

This behaviour is achieved by constructing a discrete probability distribution

40



based on these lifetime ratios and then sampling what layer to use. To be specific,
the example parameter KEY_RATIOS = [(4,0), (2,0), (1,0)] is used; the
example is visualised in the figure 2.7. The syntax contains a list of tuples; the
first element in the tuple specifies the expected lifetime ratios. The second element
in the tuples is a key pause — this will be discussed later in section 2.2.2. If
the list does not contain tuples in a non-increasing sequence, it is sorted first;
the first element should define the longest-living key layer. To get from the
lifetime ratios to probabilities of signing with each layer, one inverts the ratios
and normalises them by their sum; this way, they sum up to one and can form a
discrete probability distribution. To formalise this, for the sequence of lifetime
ratios 𝑇 = (𝑡0, … , 𝑡𝑛) one computes 𝑇−1 = (𝑡−10 , … , 𝑡−1𝑛 ) = ( 1𝑡0 , … , 1𝑡𝑛 ) and the sum𝑆 = ∑𝑛−1𝑖=0 𝑡𝑖 and finally

𝑃 = (𝑝0, … , 𝑝𝑛) = ( 𝑡−10𝑆 , … , 𝑡−1𝑛𝑆 ).
In this thesis, the expected number of signed pieces until signing with the key

from the specific layer is called the inverse layer rate; since it is an inverse value of
the probability that the layer is selected. In other words, the inverse layer rate 𝑅𝑖
says that the 𝑖-th layer will, on average, sign every 𝑅𝑖-th piece. It also corresponds
to geometric distribution — the likelihood of choosing the key on the layer 𝑖 is𝑝𝑖. Therefore the expected number of tries to sign the piece with this layer for
the first time is 1𝑝𝑖 . To compute the inverse layer sign rates, one computes the
expected values for geometric distribution with parameter 𝑝𝑖 as follows:𝑅 = (𝑟0, … , 𝑟𝑛) = ( 1𝑝0 , … , 1𝑝𝑛 ).

With this in hand, one can compute the expected absolute number of signed
pieces the given layer key can stay alive. Let’s assume the underlying scheme
allows securely signing up to 20 messages with one key pair. One does multiply
the inverse layer rate by this number and gets the average lifetime of a layer key
in the absolute number of signed pieces. With our example setting, visualised in
the figure 2.7, we see that the 𝐿0 key will, on average, live through 140 signed
pieces.

The KEY_RATIOS along with the PRE_CERT parameters are used to configure
the protocol to allow receivers to miss a certain number of pieces while keeping
the ability to re-authenticate the original identity within some reasonable time.
Generally, the data overhead increases if more significant piecemisses are required
with a lower time to re-authenticate for the receiver. This time to re-authenticate
after a piece miss is discussed in more detail in the section 2.3.2.

41



Key scheduling The presented key selection procedure works fine when con-
sidering the average case. Since keys are sampled from probability, the key
lifetimes may deviate from the average case. Consider a situation where the
sender wants to give receivers a strong guarantee that if they miss at most the
specified number of pieces, they will be able to re-authenticate. With the key
selection described above, this cannot be guaranteed, but it only relies on the
expected values of the geometric distribution. In extreme cases, the keys meant
to live for a very long time can be exhausted very soon, and the receivers cannot
re-authenticate after the expected number of missed pieces.

One can specify key pauses on each layer in the KEY_RATIOS parameter to
avoid this situation. In the example in the figure 2.7, the second number in the
tuples was zero; this is the key pause. The zero value denotes that no key pause
is applied on the given layer. But consider KEY_RATIOS = [(4,100), (2,50),
(1,0)]; the 𝐿0 layer now has a pause equal to 100% of its inverse sign rate
required. The 𝐿1 is required to have a 50% pause. The pause specifies that the
given layer cannot be used to sign a piece more often than the percentage of their
inverse sign rate. To give a concrete example of pausing keys — looking at the
mentioned example, the 𝐿0 layer has inverse sign rate 7, and the pause should
be 100% of this, that is 7 as well; this means that there must be at least 6 pieces
signed with the different layer between every two pieces signed with 𝐿0. With 𝐿1,
which has an inverse sign rate of 3.5 and 50% pause applied, it requires that there
must be at least one signature with a different layer between every two pieces
signed with this layer; because 3.5/2 = 1.75 and the value is ceiled to a natural
number.

Certification of public keys

The second critical principle that the protocol relies on is that each piece carries
public keys to be certified for the receivers. This way, receivers know in advance
what keys will be used in the future by the given sender identity. This pre-
certification gives receivers enough room to miss a certain number of pieces
without losing the ability to re-authenticate that the pieces are coming from
the same identity when they start to receive them again. This functionality of
choosing the public keys to be certified with the next piece is abstracted behind a
function named select_pks. For the selected key to sign this piece, it returns
an ordered list of public keys to be announced (i.e. certified) with the next piece.
The public keys are prefixed with a byte that encodes the layer this key is from,
as specified in the figure 2.4. The first public key must always correspond to
the secret key that signs this piece. The rest of the public keys can be chosen
in a way that allows for consecutive receive of pieces without losing the ability
to authenticate some of them. It is important to note that also keys that were

42



already exhausted must be certified. The receivers need proof that the sender has
the secret part for certified public keys. The sender proves this by certifying the
key by the key that is already part of the identity and then by sending a piece
signed by this key that certifies some node from the identity — i.e. this key is part
of a strongly connected component of an oriented graph showing the relation
‘key X certifies key Y’. This is thoroughly described in the section 2.2.3.

This thesis recommends two strategies where one provides the most robust
solution while sacrificing a bit of data overhead and the second with less overhead
but with a higher probability of failing to authenticate some pieces due to missing
public key that was not announced in advance.

Rectangle certification strategy This strategy sends all public keys currently
present in the hierarchy of the sender’s layers. It is called rectangle certi-
fication because we certify the whole rectangle of keys that are currently
present in the sender’s layers. The keys present in the current layers are
visualised in the figure 2.6; the keys from all three coloured sections —
depleted, active, future — are certified with every piece. The size of pre-
certification windows is determined by the parameter PRE_CERT; when
combined with the number of layers used 𝐿, the number of public keys that
will be attached to each piece is PRE_CERT ⋅ 𝐿. Multiplying this with public
key size from the underlying scheme yields the data overhead related to
pre-certification.

Cross certification strategy This strategy includes all public keys that are cur-
rently active on every layer. Provided that there are 𝐿 layers, it is 𝐿 keys.
Also, a random key from every future and depleted column are selected to
prepare receivers to receive pieces signed by the subsequent keys. Looking
at the figure 2.6 with PRE_CERT = 2, for example, certified keys for this
strategy could be (𝐾0,0, 𝐾1,0, … , 𝐾𝑗,0, 𝐾1,−2, 𝐾0,−1, 𝐾0,1, 𝐾0,2). The number of
attached keys with this strategy is 𝐿 + 2 ⋅ PRE_CERT. This strategy can lead
to occasional authentication misses for receivers if some key is not certified
often enough and can lead to longer re-authentication time because for
the receiver to get all public keys from the current rectangle of keys in the
layers can take longer time than in the previous strategy. On the other
hand, this strategy saves data overhead.

Storing the sender state persistently

The state of the sender instance must be stored persistently each time some key
generates a signature. The function store_sender has to write it to the provided
file ID_FILE so that the function load_sender can load it correctly. This allows
the sender to stop the stream and continue later. Moreover, the device the sender

43



is using may crash anytime; the instance must always be kept in a consistent state.
The important note is that it is not acceptable to send the signed piece before the
state is stored; if the device crashed after the piece was sent and before the state
was stored, the old state would be loaded the next time, and the same signature
would sign a piece with the same sequence number but with different data. This
is a problem since some receivers may have already received the piece sent before
the crash. The state must be stored before sending the piece over a network.

Generating a signature and assembling a piece

The function length returns the number of public key wrappers — public key
prepended with its layer number — that is to be attached to this piece. As expected,
the size function returns a byte size of the provided structure.

To generate a signature for a piece, the piece without scheme ID and the
signature itself must be assembled into a contiguous block of bytes as specified in
the figure 2.4. This block of bytes is then signed with the underlying signature
scheme. The secret key selected by the select_key function is used for signature
generation. The scheme ID and the signature are then prepended to the signed
block. The piece is complete and is prepared to be fragmented and sent via the
network interface.

Sending a piece via a network

Before sending a piece over a network, it must be split into fragments; the fragment
format is defined in the figure 2.5. The function to_fragments splits the piece
into fragments of such size that when the datagram header is appended to it, the
total size is atmost MAX_DGRAM_SZ bytes. Each fragment has a header consisting of
a piece ID; it is a unique identifier that allows the receiver to group the fragments
by it. Then the index states the start of the interval where the payload from
this fragment belongs in the whole piece. The payload size of the fragment
determines the end index. The most significant bit, named more, of this index
indicates whether this fragment is the last. Therefore the starting index inside
fragments can be at most 231.

To know to which receivers the datagrams should be sent, the function
active_subscriber reads the addresses of active subscribers from the shared
structure maintained by subscribers_task. The final step is to send it via the
network interface — that is what the function send_fragments does.

Keeping a registry of live subscribers

The sender must keep a database of receivers that want to receive the data from
it. The sender expects the interested receiver to deliver a periodic heartbeat —

44



a message containing the magic word 0xBEAD. The sender listens for heartbeat
messageson the IP address and port specified by the parameter SENDER_ADDR.
Upon receiving such a heartbeat, the sender will consider this receiver alive for the
time defined by the parameter RECEIVER_LIFETIME. If no subsequent heartbeat
arrives, the receiver is considered dead and deleted from the active subscribers;
this is what the prune_dead_receivers function does. The corresponding
pseudo-code is displayed in the algorithm 2.

Algorithm 2 The semantics of the task of keeping the database of active receivers up
to date. The datagrams with the predefined magic word are periodically received from
the UDP socket. The source senders are considered active for a limited time, and pieces
are sent to them.

function subscribers_task(s, addr)
SH.sender_socket ← listen(addr)
while s.running do

if (heartbeat, peer) ← try_recv(SH.sender_socket) then
if heartbeat == 0xBEAD then

alive_until ← get_time() + s.p.RECEIVER_LIFETIME
insert_update_receiver(SH.subs, peer, alive_until)

end if
end if
prune_dead_receivers(SH.subs)

end while
end function

2.2.3 Receiver role
A receiver role starts with generating or loading the existing sender identities
from the identity file; a new receiver identity database is created if this fails. Then
the receiver is bound to receive data from the provided sender.

Upon receiving datagrams with valid fragments, the receiver assembles them
to complete pieces and verifies their authenticity by checking the signature and the
signing identity. The attached public keys are inserted into the identity database,
and the identities are updated accordingly; also, obsolete keys are pruned. The
pieces are sent to active receivers if a distributor role is enabled. Suppose the
receiver is set not to deliver the messages — this can be the case if one wants this
node to serve only the distributor role. In that case, the messages are discarded.
Otherwise, these are delivered to the user application, complemented by their
degree of authentication and the sender’s identity. The detailed procedure is
described in the algorithm 3.

45



Algorithm 3 The algorithms show the two interface functions of a receiver role. The
comment numbers correspond to those in the brief algorithm description at the beginning
of this sub-section.

function new_receiver(p) -> r
r ← load_receiver(p.ID_FILE)
if r == ∅ then

pks_graph ← init_pks_graphs()
r ← (p, pks_graph)

end if
spawn fragments_task(r) ▷ Background task.
spawn pieces_task(r) ▷ Background task.
spawn heartbeat_task(r, r.p.SENDER_ADDR) ▷ Background task.
if r.p.DISTRIBUTE != ∅ then

spawn subscribers_task(p, r.p.DISTRIBUTE) ▷ Background task.
end if
return r

end function
function receive(r) -> (r, message)

while true do
message ← dequeue_auth(SH.delivery_queues)
if message != ∅ then

return (r, message)
end if
message ← dequeue_unauth(SH.delivery_queues)
if message != ∅ then

return (r, message)
end if

end while
end function

46



The presented pseudo-code separates the receiver role into the main invoca-
tion of the receive function and three independent tasks running concurrently.
It is important to note that it is unnecessary to implement it this way as long as
the semantics are kept; this thesis chose this approach for the sake of readability
and understandability. The fragments_task receives datagrams with fragments
and is responsible for assembling correct pieces and passing them to the shared
queue — SH.pieces_queue; the pieces from this queue are consumed by the
pieces_task; it is responsible for authentication of the piece, update of the
identity graph, sender state store, potential re-distribution (if configured with the
distributor role as well) and for passing the message into the delivery queues with
corresponding sender identity — SH.delivery_queues, if configured to deliver
messages. The final delivery is described in the algorithm 3.

Delivering from the delivery queues

The algorithm 3 contains the functions dequeue_auth and dequeue_unauth to
try dequeuing some messages to be delivered. There are two queues — one for
messages certified or authenticated by the target identity and a lower-priority
queue for unauthenticated messages.

The certified and authenticated messages must be delivered in a strictly grow-
ing order of sequence numbers. If there is a missing message with a sequence
number next to be delivered, but the messages with higher sequence numbers
are already in the queue, the DELIVERY_DELAY timeout is applied, and once it
elapses, the next-in-line sequence number message is delivered. This in-order
delivery and delivery timeout is hidden inside the dequeue_auth function.

Unauthenticated messages should be delivered in arbitrary order and with
lower priority than those authenticated or certified. The dequeue_unauth func-
tion handles the low-priority delivery in an arbitrary order.

Receiving and assembling of fragments

Based on a periodic heartbeat to the target sender, the receiver starts getting
datagrams that should contain valid fragments; these must be grouped by their
fragment_ID, and the final piece must be assembled based on the offset and
more bit. When the complete piece is assembled, it can be pushed to the shared
queue of complete pieces for further processing. The incomplete pieces should
be discarded after FRAG_TIMEOUT elapses. This functionality is hidden inside
the background fragment_task job. The pseudo-code for this is available in
the algorithm 4.

47



Algorithm 4 The fragments background task periodically reads datagrams from the
receiver socket and assembles the received fragments into whole pieces based on their
piece IDs. Whole pieces are passed to the shared queue containing the pieces.

function fragments_task(r)
merger ← init_merger() ▷ Merges fragments to pieces
while frag ← try_recv(SH.receiver_socket) do

piece ← insert_frag(merger, frag) ▷ Returns complete pieces
if piece != ∅ then ▷ If some piece was assembled with this fragment

enqueue_piece(SH.pieces_queue, piece)
end if

end while
end function

Piece authentication and identity management

Whenever there is some piece in the shared piece queue, the task responsible
for piece processing dequeues the piece and starts the authentication process
— this is written in pseudo-code in the algorithm 5. The piece is then parsed,
and it is checked that the key for signature verification is at least certified by the
target identity; if it is not, the message is delivered with an Unauthenticated
flag. If the key is certified by the target identity, the identity is updated with the
newly received public key — the process is described in detail in the section 2.2.3.
Then the receiver’s state is stored permanently to allow continuation in case of
going offline or unexpected device fault. After that, the receiver checks if the
signing key is part of the identity; if yes, the authentication state is elevated
to Authenticated with the target identity. The next block is related to the
distributor role. The semantics of the functions in the if block conditioned by
the DISTRIBUTE parameter is the same as in the case of the sender; it is used in
the algorithm 1 and described in the section 2.2.2 and the part about keeping
the registry of active subscribers is discussed in the section 2.2.2. Finally, the
message, sequence number, and authentication state are enqueued into shared
delivery queues, from where they are dequeued according to the rules described
in the section 2.2.3.

In the code, some functions should be specified as well. Starting with
target_sender_id — this function returns the identity of the target sender
based on the parameter SENDER_ADDR. Moving on to parse_head, this function
splits the headed piece (hpiece) into scheme ID, signature and headless piece
(piece). Then the parse_piece parses the sequence number, attached public
keys and the message from the headless piece. The next if block is described in
the section 2.2.3 — it handles the first ever piece received from this sender identity.

48



The functions is_certified_by and is_auth_by are self-explanatory — they
check if the provided public key is certified or if it is part of the provided identity.
The validity of the signature for the given message and given public key is checked
by the underlying signature scheme with the function verify_signature. Then
the most important part of the receiver role — updating the identity graph with
the provided certified public keys; abstracted by the function update_identity,
it is described in great detail in the section 2.2.3.

Algorithm 5
function pieces_task(r)

while hpiece ← dequeue(SH.pieces_queue) do
sender_id ← target_sender_id(r)
(scheme_id, sig, piece) ← parse_head(hpiece)
(seq, pks, message) ← parse_piece(piece)
pk ← pks[0]
if is_id_empty(sender_id) then

insert_id(r, sender_id, pk)
end if
auth_state ← Unauthenticated
if is_certified_by(r, sender_id, pk) then

if verify_signature(r.FTS, piece, sig, pk) then
auth_state ← Certified(sender_id)
update_identity(r, sender_id, pks)
store_receiver(r)
if is_auth_by(r, sender_id, pk) then ▷ If this key is identity

auth_state ← Authenticated(sender_id)
end if
if r.p.DISTRIBUTE != ∅ then

frags ← to_fragments(hpiece, s.p.MAX_DGRAM_SZ)
subs ← active_subscribers(SH.subs)
send_fragments(subs, frags)

end if
end if

end if
if r.p.DELIVER then

enqueue(SH.delivery_queues, message, seq, auth_state)
end if

end while
end function

49



Trust on first use The protocol needs one important assumption to prove that
the data received are from the authenticated senders. We need to trust some
identity at some point and mark it as trustworthy. The usual centralised approach
is to use some authority to verify the identity behind a key and certify it. In this
case, the receiver trusts the first message from the target sender that comes —
in the pseudo-code, it is the ‘is_id_empty‘ function; this is the main principle
used in TOFU scheme [38]. Thus we need to assume that the sender of the first
message is the sender from whom we want to receive data. After that, we can
prove that the subsequent messages were sent by the identity we trusted initially
(or sent by a group of trusted senders).

Updating the identity graph Keeping the identity graph is crucial for the
receiver’s role; the function update_identity does this in the pseudo-code.
This graph makes it possible to authenticate the data stream from already-known
identities, even with significant message losses. The key principle is that after
trusting the first message, the rest of the messages should be authenticated thanks
to a constant flow of certified public keys from piece metadata. These attached
keys will be used in the future, and those already depleted will never sign new
pieces. Certification of exhausted keys is very important because, thanks to
that, the receiver can prove that the sender also has the secret part of the key.
Accepting a piece with some public keys does not prove that the sender owns
these keys. In fact, an adversary can try to certify someone else’s keys to trick
the receiver into trusting it.

To prove that the sender owns the key, it must be not only certified by it, but
also this key must sign some piece, and that piece must certify some of the keys
from the currently held identity. In terms of a directed graph and the relation:
’The key X certified the key Y.‘, this condition states that the public key in question
must be in the same strongly connected component as the identity. The figure 2.8a
further illustrates this on an intermediate state of the receiver’s identity graph.
Nodes are public keys that were certified by some identities that the receiver
was receiving from. We can see that the receiver knows two distinct identities —
denoted by red and green nodes. The key 𝑘4 is not yet part of any identity, but
both red and green identities have certified it. The are three possible reasons why
this happens:

1. The green identity is an attacker and falsely certified 𝑘4 even if it does not
own the key. The resolution is visualised in the figure 2.8b.

2. Possibly the red identity has falsely certified 𝑘4. The following situation
for the receiver looks like this figure 2.8c.

50



3. Finally, the receiver might have received the data from the same identity but
using a different name or distributor. In this case, green and red identities
are the same; The result is shown in the figure 2.8d. The final colour is a
mixture of those two colours.

Pruning of obsolete public keys To avoid an infinite accumulation of public
keys in receivers, the keys that are proven to be obsolete already can be deleted.
An obsolete key will not be certified by the sender anymore. Based on the pre-
certification size the sender uses, one can compute when it is safe to delete keys
on any layer and which one to delete. The pre-certification size (PC) is determined
by the number of public keys attached in pieces. Also, the receiver must mark
each public key it certified by the sequence number it was first certified; this
will be used to determine what keys to delete. This behaviour is part of the
update_identity function.

Based on pre-certification window size, for a given layer, if there are more than2PC − 1 keys, delete the keys with the lowest sequence numbers of pieces they
were certified. The situation is illustrated in the figure 2.9 as follows: Let’s focus
on the key 𝑘𝑖. How many keys with higher sequence numbers on the given layer
must the receiver have to know that the sender will not certify this 𝑘𝑖 anymore?
Because the order or processing pieces can be arbitrary — due to the underlying
network interface —, one must account for the worst-case scenario — let’s assume
that the 𝑘𝑖 was received as the first one while the key 𝑘𝑖−PC was active — i.e. was
signing the pieces. This is the first time the 𝑘𝑖 key could have been certified for
this receiver. Now, this key will be useful through all the red and green keys are
active. But it is guaranteed that the keys with a green border are first certified
with a higher sequence number; because the earliest the 𝑘𝑖+1 key is certified is
while 𝑘𝑖−PC+1 is signing pieces. This ordering of sequence numbers for keys also
holds for all subsequent green keys. Consequently, the maximum number of
keys on any given layer, where it is possible that even the one with the lowest
sequence number can be useful, is 2PC − 1. If there are more keys, order them by
their sequence number and delete the lowest ones.

Losing the trusted identity After a receiver starts receiving messages from a
sender, it begins collecting the certified public keys that the sender sends along
with the messages. Based on the protocol configuration, these keys will grant a re-
authentication if the receiver misses less than some number of messages; in other
words, the receiver can go offline and come back, and the sender’s authenticity
will be renewed without the need to trust the first message blindly. However,
suppose it misses a certain number of messages. In that case, the protocol won’t
be able to verify that the messages are coming from the same identity, even if that

51



𝑘1
𝑘2

𝑘3

𝑘4
𝑘5
𝑘6

(a) The two possibly distinct identities have
certified 𝑘4.

𝑘1
𝑘2

𝑘3

𝑘4
𝑘5
𝑘6

(b) The piece signed with 𝑘4 and certifying𝑘1 has been received.𝑘1
𝑘2

𝑘3

𝑘4
𝑘5
𝑘6

(c) The piece signed with 𝑘4 and certifying𝑘5 has been received.

𝑘1
𝑘2

𝑘3

𝑘4
𝑘5
𝑘6

(d) The piece signed with 𝑘4 and certifying
both 𝑘1 and 𝑘5 has been received.

Figure 2.8 A visualisation of different situations as they may evolve depending on a
different piece received. The identity nodes are emphasised with coloured nodes — red
is one identity, green is the other, and the mixture of those colours — the khaki one — is
the merged identity of red and green. Any given node can belong at most to one identity;
this assumes that the sender’s secret keys were not compromised. The (a) subfigure
sketches the situation after receiving from the two differently named sender identities.
In (b): If a piece signed with 𝑘4 is received and it certifies some of the keys from the
identity, it becomes part of that identity. In this case, 𝑘4 certified 𝑘2 and became part of
the red identity. The situation (c) is similar to (b), only the green identity has proved
it owns the secret key to 𝑘4. The situation (d) shows the state after two so far distinct
identities were proved to be the same; this happened because a piece signed by 𝑘4 arrived
and certified both 𝑘1 and 𝑘5.

52



ki-PC ki+PC-1 ki+PCki-1 ki+1ki... ...

PC

PC

Figure 2.9 A key layer showing when the key 𝑘𝑖 may have been first certified —
when the key 𝑘𝑖−PC was active; and when this key is proved obsolete — when the key𝑘𝑖+PC is active. Thus, one can delete keys with the lowest sequence number of the first
certification if there are more than 2PC − 1 keys on any layer. ‘PC’ is a shorthand for
the PRE_CERT parameter, which stands for pre-certification size.

was the case. This behaviour is the implication of the protocol design because
the receiver has missed too many messages that there are only obsolete keys in
the receiver’s identity graph. In other words, the public keys it has in its identity
graph are no longer used for signing new messages.

However, two solutions that mitigate this problem can be used:

1. The sender can set up the public key hierarchy so that if the receiver
receives the longest-living key, it is impossible to miss that many messages
(because no computer could potentially broadcast that many messages in a
reasonable time). This long-living layer, however, does not guarantee that
the re-authentication time will be short in all cases; this must be achieved by
finding the right PRE_CERT parameter in combinationwith the KEY_RATIOS
parameter; this is discussed in the section 2.3.2.

2. The second solution is a system where the sender declares that it will not
send more than some number of messages per unit of time. Combined with
key pauses described in the section 2.2.2, one can compute the minimum
guaranteed time that will conclude in re-authenticating the sender’s identity.
Again, this does not guarantee that the time to re-authenticate will be short;
this is discussed in the section 2.3.2.

False certification and identitymerge The protocol design relies on distribut-
ing the public keys used for signing data in the future. With this pre-certification
mechanism, senders can verify the signatures of incoming messages if they have
already accepted some of the certified keys for the given identity of the sender.
The problem is that another identity may have certified the same public key; this
can be seen in the figure 2.8a. This ‘another identity’ can be an attacker who
sends a message to the receiver signed by the attacker’s secret key but certifies

53



the original sender’s public keys. Such false certification may be an attempt to
merge with someone else’s identity so the attacker can send the receiver messages
appearing to be from the original legit sender.

This false identitymerge is not possible due to the protocol design section 2.2.3;
the exiting identity is extended by the new node if and only if it belongs to the
same strongly connected component in a graph describing the relation ‘Key X
has certified key Y’. An attacker may be able to certify the original sender’s key,
but is not able to send a piece signed by the secret key of this falsely certified key
that would certify the attackers public key. Only the original sender wields the
secret key and will never sign the attacker’s public keys; unless the sender wants
to.

Sending heartbeats to the sender

To receive any data from the sender, periodical heartbeats containing the magic
bytes 0xBEAD must be delivered to it. The SENDER_ADDR parameter determines
the address of the target sender; the format is an IP address with a port in the
standard format followed by the petname for this sender. The petname serves the
end-user to distinguish the already-known identities by a familiar and readable
name. As mentioned earlier, if the receiver receives messages from the same
identity under different names, the identity will merge and have both of the
provided petnames.

The background task named heartbeat_task does that; the pseudo-code
is to be seen in the algorithm 6. The sender parametrisation determines the
required frequency of heartbeats — by its parameter RECEIVER_LIFETIME, but
the frequency should be higher due to possible datagram losses. The time between
each heartbeat sent is configured by the parameter HEARTBEAT_PERIOD. If the
heartbeats get to the sender with lower frequency, there will be some message
losses because the sender will consider this receiver dead for some time intervals.

Algorithm 6 The receiver must periodically send the heartbeat containing the magic
byte sequence so the sender sends him signed pieces.

function heartbeat_task(r, addr)
while r.running do

magic ← 0xBEAD
send(SH.receiver_socket, addr, magic)
sleep(r.p.HEARTBEAT_PERIOD)

end while
end function

54



2.2.4 Distributor role
Even though the distributor role is mentioned as stand-alone, it is, in fact, a role
that is implemented inside the receiver role. The distributor role is enabled for
the receiver if the parameter DISTRIBUTE is set. It contains the IP address and
port where this receiver will be listening for heartbeats from receivers. Suppose
the receiver should distribute the certified and authenticated pieces from the
identity that is known to it. In that case, sending the pieces to active receivers
after these have been authenticated is enough. The distributor shall not modify
the pieces. One can see that included in the receiver task in the algorithm 5
and also in the algorithm 4, where the task for keeping the active receivers (see
the algorithm 2) is spawned — in this case, the address where it is listening is
taken from the DISTRIBUTE parameter rather than SENDER_PARAM.

It is also worth mentioning that the receiver can be run in a mode where it
does not deliver any messages; this is achieved by setting the parameter DELIVER.
Combined with the DISTRIBUTOR parameter, one can run just the distributor
node.

2.3 Parameter choice trade-offs
Throughout the protocol specification, multiple parameters were introduced. In
this section, these are summarised, and their significance is assessed, especially
concerning security and overhead trade-offs. Firstly, the overview and importance
are stated for every parameter (each parameter is marked with labels ‘S’ and ‘R’
depending on what roles use it); this is followed by the categorisation based on
the roles of the protocol. Then the relationship between protocol security and
data overhead is discussed. The section is wrapped with a discussion about the
re-authentication time based on the parameters.

FTS (S, R) The most important parameter of all is named FTS, which stands
for a few-time signature scheme used as the underlying scheme. Based
on the scheme used, the parameters differ. For the HORST scheme, it is𝑛, 𝑘, 𝜏 and HashFunction, CS PRNG, for example. The scheme used, and
the parameters determine the bit security, size of a signature and sizes of
both secret and public keys. Choosing the fitting few-time signature is
critical for the well-tuned protocol configuration — the example few-time
signatures are described in the section 1.3.2. The used signature and its
bit security usually have the biggest impact on data overhead since the
signatures are of significant size.

KEY_RATIOS (S) The list of tuples specifies the number of layers and the ratio
of their lifetimes and additionally specifies the key pauses on keys on

55



layers. This parameter is described in the section 2.2.2 and the key pauses
in the section 2.2.2. Key ratios impact the maximum number of missed
messages, the time it takes the receiver to re-authenticate, and the data
overhead; along with the PRE_CERT parameter, it determines how many
keys are certified with each piece.

PRE_CERT (S) This parameter determines how many keys will be announced
in advance before they become active. The same number of keys is also
announced in the opposite direction — to allow receivers to build the
identities with their strongly connected components. Increasing the pre-
certification size increases the number of public keys that are attached to
each piece. Since the public keys are usually pretty small, one can be liberal
with PRE_CERT and KEY_RATIOS parameters. This parameter is discussed
in the section 2.2.2, and the practical examples are in the section 4.1.

MAX_PIECE_SZ (S) The maximum piece size sets the upper limit on how large
pieces can be. If a user tries to broadcast data that would not fit into
one piece, including the piece overhead, it is split into more pieces. One
must consider that splitting piece in many datagrams generates additional
overhead due to the fragment header — that is, 12 bytes per fragment.

MAX_DGRAM_SZ (S, R) Maximum datagram size provides the ability to adjust
the size of datagrams to fit the needs of a network where the protocol
will be operated. For example, with the UDP protocol, the huge size of
datagrams can cause problems in some network nodes where MTU is low,
and the node refuses to fragment the datagram. Datagrams of size 1500
bytes should be generally fine with today’s Internet infrastructure.

SEED (S) The seed used to seed the sender’s pseudo-random number generator.
This happens only when initialising the new sender instance; after that, the
state is persistently stored. Due to security, the seed should be of sufficient
bit size and generated with enough entropy.

SENDER_ADDR (R) The address of the sender — for the sender, it is where it
listens for heartbeats; for the receiver, it is the address of the target sender.
It is an IP address with a port number.

ID_FILE (S, R) The file path to a file where the state of either sender or
receiver instance is persistently stored after the inner state changes.

RECEIVER_LIFETIME (S, R) The time interval when a receiver is considered
alive after receiving a heartbeat. During this time, the sender sends the
active receiver messages.

56



DELIVER (R) If set to false, the messages will not be delivered to the user appli-
cation; this is useful if one wants to run the node only as the distributor
role.

DISTRIBUTE (R) This is the optional parameter that may be left unset. If it
is set, it expects the IP address with a port number specifying at what
address this receiver will listen for heartbeats. It does a similar thing
as SENDER_ADDR for the sender instance. But, for the receiver role, the
SENDER_ADDR parameter holds the address of the target sender.

DELIVERY_DELAY (R) The delay that the receiver waits for the next message in
sequence before delivering messages with the higher sequence number; this
is a safeguard not getting stuck on an undelivered message for receivers.

FRAG_TIMEOUT (R) Time after which the incomplete pieces are discarded; this
happens whenever some datagrams get lost.

HEARTBEAT_PERIOD (R) The period in which the receiver sends heartbeats
to the target sender; this should be significantly smaller than the target
sender’s RECEIVER_LIFETIME parameter.

2.3.1 Security vs. signature size
The primary goal of this protocol is to be secure, even against quantum attacks.
Thus the most important trade-off one must decide when using the proposed
protocol is between data overhead and security. The underlying signature scheme
determines the security of the protocol. It is not surprising that usually, it is the
signature size that contributes to the overhead the most. Unfortunately, quantum
robust signature schemes tend to have larger signatures than traditional ones like
DSA or ECDSA. The usual size of signatures from hash-based few-time signature
schemes lies between 2kB and 40kB, based on the required bit security.

The attached public keys are the second important contribution to overhead;
therefore, the size of public keys for the used scheme is critical. Using a scheme
with small public keys greatly reduces the overhead because, based on the public
key selection strategy, the piece contains either NUM_OF_LAYERS⋅(2PRE_CERT+1) or NUM_OF_LAYERS + 2PRE_CERT keys. Fortunately, various schemes have
small public keys; usually, the size of a public key is equal to the hash function
digest size.

The recommended procedure to find proper parameters for one’s use case is
to set the target bit security and select the signature scheme with its parameters
that satisfy the security requirement. Selecting the scheme yields the signature
size (SIG_SIZE) and public key size (PK_SIZE). The next step is to design the key

57



layers for the sender with pre-certification size (PRE_CERT) for the corresponding
number of key layers (NUM_OF_LAYERS); these two determine how large message
losses can be while keeping the ability to re-authenticate with the existing identity.
These two parameters also impact how long it will take receivers to re-authenticate
after a certain number of missed messages.

With these parameters, one can compute the overhead for one piece using
the piece format specified in the figure 2.4. The public key selection strategies
are described in the section 2.2.2. For the rectangle strategy, it is:

OHrect = 24 + SIG_SIZE + PK_SIZE ⋅ (NUM_OF_LAYERS ⋅ (2PRE_CERT + 1))
For the cross strategy, it is:

OHcross = 24 + SIG_SIZE + PK_SIZE ⋅ (NUM_OF_LAYERS + 2PRE_CERT)
It is important to note that some overhead is generated by fragmenting the

pieces so they can fit into datagrams. The fragment format is described in the fig-
ure 2.5. The smaller the MAX_DGRAM_SIZE, the larger the overhead generated by
the fragmentation. The total size of the overhead depends on the size of the actual
message. The overhead, in general, is 12 bytes per fragment.

The concrete parameters and the results using the HORST signature scheme
and the attached proof-of-concept implementation are shown in the section 4.1

2.3.2 Re-authenticating the prior sender identities
The important property of the proposed protocol is that once the sender misses
some messages, it may take some time to re-authenticate that the messages come
from the same identity. This time to re-authenticate is due to the limited number
of signatures one key of the underlying scheme can generate. While the receiver
is missing the messages sent by the sender — for example, while offline, the
sender may exhaust some keys on certain layers and generate new ones, which
this receiver does not know about. Consequently, when the receiver starts getting
pieces from the same sender, it depends on when the sender signs with some key
that this receiver knows about. There may be some messages that the receiver is
not able to authenticate. Once the sender signs with a key that the receiver has in
the identity graph, re-authentication happens. From that point, the subsequent
messages will be authenticated again if using the rectangle public key selection
strategy.

It is an important drawback in comparison to the signature schemes with
ephemeral key pairs, but the reward for this is a quantum-resistant protocol for

58



distributed data broadcasting. As this is an important aspect of the protocol and
the parameters determine how significant this drawback will be for the specific
use case, the practical measurements and theoretical approximations are also
presented. The reader can find them in the section 4.2.

59



60



Chapter 3

Proof-of-concept implementation

This whole chapter is dedicated to a thorough description of software that is part
of this thesis — a library implementing a variant of the proposed protocol; it is
delivered as a library for the programming language Rust (a Rust crate in the
language’s terminology). The following section will describe the second part of
the software delivered with the thesis — an end-user application for live audio
broadcasting. This application demonstrates how the library can be used for real-
time data streaming and showcases the usage of the protocol in a use case that
is well known to us all — radio broadcasting. Both the library and the broadcast
application are implemented using Rust.

Rust essentials Because the attached software is implemented in Rust, a lan-
guage not yet known by the community, this section will discuss a few important
terminology terms and concepts that will help the reader comprehend the fol-
lowing chapter. It is also important to note that for brevity, some terms in
widely-known contexts will be mapped to Rust terms even though they are not
exactly the same; as an example, the reader will read that Rust traits are alterna-
tive to interfaces in C-like languages like C#. This mapping does not necessarily
mean that these concepts are the same; in fact, Rust traits are more general than
interfaces. Take these mappings with a pinch of salt and not as semantic equality.

Crate A crate is a Rust term for library — an encapsulated piece of code that
explicitly exports constants, types, functions, structures and traits.

Trait Traits are fundamental concepts used in Rust. For the sake of this thesis,
one can imagine them as interfaces in C-like languages like C# and concepts
in C++20. A trait defines a set ofmethods a typemust provide, and compilers
ensure that all the trait bounds required by the generic types are satisfied.

61



3.1 HAB:A library forHash-basedAuthentication
Broadcasting

The HAB library — a crate in Rust terminology — offers a very simplistic interface.
It is almost identical to the interface described in the section 2.1.5. It exports
two structures — Sender and Receiver; both expect generic type parameters
specifying the few-time signature scheme. Additionally, their constructors expect
protocol parameters. These generic parameters and arguments to constructors
are how to configure the protocol — for example, the size of pre-certification or
distribution of the key selection for signing. After instantiating the sender or the
receiver structure, one can start to broadcast via the method broadcast, or one
can start receiving the data with a method called receive.

This section is structured as follows: First, the thesis looks at the library
interface; all the methods are described with their parameters and outputs. The
next step contains a high-level overview of the library’s internal parts, roles,
and responsibilities. This overview gives the reader a solid understanding of the
library structure. Thus, the next subchapters closely look at these internal parts;
these are implemented as Rust structures and functionally, these are alternatives
to classes with static (in Rust called associated) and member functions. This
thesis refers to these internal parts under a general term component. The section
concludes with some limitations and drawbacks of the implementation and also
discusses the future work to be done to point the library towards a production-
ready library.

3.1.1 Overview of the HAB interface
The protocol has three roles in its design; the library exports only two role
structures — Sender and Receiver. The distributor role is an optional part of
the receiver role. The usage of the library starts in instantiating the correctly
configured Sender of Receiver and then calling the one function they offer. One
can refer to the file lib.rs in the source codes to see what identifiers are publicly
exported; each statement starting with the keyword pub is publicly visible to
the code using the library. The declarations of these types look like those in
the listing 1.

The library is implemented generally; the exported Sender and Receiver
types expect one generic type parameter — the type named SignatureScheme
implementing the trait FtsSchemeTrait. In other words, a type that is used for
key generation, signature generation and verification. One can include the trait
FtsSchemeTrait from the library, implement it for his signature scheme, and
use it with the library.

62



Listing 1 Type declarations of the main structures of the library.

// sender.rs
struct Sender<SignatureScheme: FtsSchemeTrait > { ... }
// receiver.rs
struct Receiver <SignatureScheme: FtsSchemeTrait > { ... }

Listing 2 A type declaration for the bundled-in HORST signature scheme.

// horst.rs
pub struct Horst<

const N: usize,
const K: usize,
const TAU: usize,
const TAUPLUS: usize,
const T: usize,
CsPrng: CryptoRng + SeedableRng + RngCore + /* ... */,
HashFn: Digest + /* ... */,

> { ... }

For convenience, the HAB crate offers a HORST scheme out of the box. It is
exported as the Horst type; naturally, it implements the FtsSchemeTrait trait
and can be used as a type parameter for Sencder and Receiver. As expected, the
signature scheme is Parametrising the re-authentication delayed as well; therefore,
the struct Horst expects multiple type and non-type generic parameters; these
correspond to the parameters described in the section 1.3.2. To take a closer look,
the declaration of the type looks like in the listing 2.

The non-type parameters start with the keyword const and are followed
by their name, and the type is declared after the colon. The usize type in Rust
corresponds to C++ size_t type. The generic parameters named N, K and TAU
are just as defined in the scheme in the section 1.3.2. TAUPLUS is just TAU + 1, T
is just 2TAU. Regarding the type parameters, CsPrng is a cryptographically safe
pseudo-random number generator as discussed in the section 1.2.2 and HashFn
is a type that is to be used for hashing the message and inner Merkle tree — an
implementation of cryptographic hash functions is discussed in the section 1.2.1.
In the syntax, identifiers after a colon in case of generic type parameters are
traits required for the type to implement. In this case, the type for CSPRNG is
required to implement three traits. In simple terms, they require the type to be
cryptographically safe, be seedable and provide the usual RNG interface. The
hash function is required to implement the trait Digest; it means that the hash
function must be the one with fixed-size output and implements the standardised
hash function interface.

63



The reason for having two generic parameters that are easily derived from
the others is that the current version of stable Rust does not allow arithmetic on
generic parameters in places where compile-time constants are expected. This
feature is already in the nightly build; it will be possible in the future, but this
thesis includes code compatible with stable Rust at the time of submission.

Using the instances

At this point, the reader can correctly fill in the generic parameters into the
Sender and Receiver types. The next step is constructing their instances; this
is where the protocol parametrisation comes in. The library exports two struc-
ture types that are just containers for the parameters — SenderParams and
ReceiverParams.One imports them, fills them with the desired parameters, and
uses them as parameters for the Sender and Receiver constructors. To be
concrete, the listing 3 and the listing 4 are roughly how the declarations look like.

Most of the parameters have already been described in the section 2.3; only
in the code are in the snake case. Considering the previously mentioned section
and code comments, their meaning should be clear. The remaining parameters
are just technical ones that are not important to know about.

As for the distributor role, one can set the is_distributor field in the
ReceiverParams to true; with this on, other receivers can subscribe to this
receiver as if it was the original sender of the data. The distributed data sending
takes some load off the original sender.

Now, the sender and receiver instances can be created by calling their con-
structors with the corresponding parameters we have just described. Rust has no
special behaviour regarding constructors; they are just associated (alternative to
static) functions for the given type. By convention, they are usually called new.
The function signatures are displayed in the listing 5.

The semantics should be pretty straightforward, but to be on the safe side
— on structure Sender, an associated function called new is defined that takes
an owning parameter params of type SenderParams and returns an instance of
type Sender. For the Receiver, the semantics are analogous.

Finally, the instances are correctly instantiated and are ready to be used. Their
interface is rather simple — each of them offers one method. The sender instance
allows the user to repeatedly broadcast the data for active receivers by calling
the method broadcast. Symmetrically, on the receiver side, the instance allows
calling receive and blocking until a valid message is delivered. The interface is
shown in the listing 5.

The Sender structure has a method named broadcast defined. Methods
have the first special parameter containing the keyword self or some variant of
it — &self and &mut self; this distinguishes associated functions from member

64



Listing 3 A declaration of the structure for sender parameters.

// sender.rs
struct SenderParams {

/// A filename where the identity will be serialised.
pub id_filename: String,
/// A seed for the pseudo-random number generator.
pub seed: u64,
/// A distribution for key selection algorithm.
pub key_dist: Vec<Vec<usize>>,
/// Number of keys to certificate in advance.
pub pre_cert: usize,
/// Number of signatures one key can sign.
pub key_lifetime: usize,
/// A maximum byte size of one piece.
pub max_piece_size: usize,
/// A maximum byte size of one datagram.
pub datagram_size: usize,
/// A maximum time between two heartbeats from
/// the given receiver.
pub receiver_lifetime: Duration ,
/// An address and port where the sender will be
/// listening for heartbeats.
pub sender_addr: String,
/// A flag that indicates if the application should
//// run or terminate.
pub running: Arc<AtomicBool >,
/// An alternative output destination instead
/// of a network (useful for testing).
pub alt_output: Option<mpsc::Sender<Vec<u8>>>,

}

65



Listing 4 A declaration of the structure for receiver parameters.

// receiver.rs
struct ReceiverParams {

/// A filename where the identity will be serialised.
pub id_filename: String,
/// Maximum time to delay the delivery of a piece
/// if subsequent pieces are already received.
pub delivery_delay: Duration ,
/// If this receiver should also re-send
/// the received pieces.
pub is_distributor: bool,
/// The IP address of the target sender.
pub target_addr: String,
/// The name of the target sender (the petname).
pub target_name: String,
/// A flag that indicates if the application should
/// run or terminate.
pub running: Arc<AtomicBool >,
/// An alternative output destination instead
/// of a network (useful for testing).
pub alt_input: Option<mpsc::Receiver <Vec<u8>>>,

}

Listing 5 The sender and receiver API.

// sender.rs
Sender::new(params: SenderParams) -> Sender
Sender::broadcast(&mut self, msg: &[u8]) -> Result <(), Error>

// receiver.rs
Receiver::new(params: ReceiverParams) -> Receiver
Receiver::receive() -> Result<ReceivedMessage , Error>

// common.rs
pub enum MessageAuthentication {

/// The message was not sent by the target
/// identity nor by identity certified by it.
Unverified ,
/// The message was sent by the identity certified by the
/// target identity (not proved to be the identity itself).
Certified(SenderIdentity),
/// It is proved that the target identity sent the message.
Authenticated(SenderIdentity),

}

66



methods in Rust. This broadcast function accepts a mutable reference to the
Sender instance to act on. This mutability implies that the call of this method
likely mutates the inner state of the instance, just like a C++ method that is not
decorated with the const keyword. The second parameter refers to the data to
be broadcasted, a reference to an array of unsigned 8-bit integers — bytes. This
method returns a Result type — this type is a wrapper for either of the two types
provided as generic parameters. In our case, if the broadcast succeeds, nothing is
returned; the () notation is an alternative to void in C++. On the other hand, if
something goes wrong, the Error type is returned. This error contains a message
with the reason; it implements the standardised trait std::Error1, so it has the
usual interface methods.

The receive function blocks the thread until some message from the tar-
get sender is delivered. Then it returns the Result type that contains the
ReceivedMessage type or an Error. The received message is just a structure
containing the message bytes, authentication state with the sender identity, if
some, and a sequence number for this message.

The field message is just a vector of bytes, and seq is just an unsigned num-
ber stating this message’s sequence number in the overall data stream. The
authentication field is an enumeration type with three possible states; these
states for each message are also shown in the listing 5.

3.1.2 Internal structure of HAB library
The library is structured into two important components already introduced in the
previous part — Sender and Receiver structures with their generic parameter
specifying the underlying signature scheme and protocol parameters provided
as constructor parameters. These two are composed of sub-components; some
are concrete structures, and some are abstracted out for potential substitution
and rely only on specific interfaces. Also, some helper and general utilities are
included and can be used by outside applications. The high-level overview of
components and sub-components is displayed in the figure 3.1.

Sender structure

The Sender structure was already discussed a lot in the interface section because
it is the publicly exported type that users of the library import; there is not much
more to say about this sub-component. It uses MessageSigner and NetSender
as its subcomponents.

The Sender fragments the whole data provided into the broadcast method
into messages, so the total size of pieces is less than or equal to MAX_PIECE_SIZE

1https://doc.rust-lang.org/std/error/trait.Error.html

67

https://doc.rust-lang.org/std/error/trait.Error.html


crate hab

struct Sender

struct NetSender

trait MessageSigner

trait FtsScheme

struct Subscribers

struct Receiver

struct NetSender

trait MessageVerifier

trait FtsScheme

struct Subscribers

struct NetReceiver

struct FragmentedBlocks

mod utils

mod common

trait FtsScheme

struct Subscribers

trait FtsScheme

struct FragmentedPieces

Figure 3.1 The schematic structure of the HAB crate, showing its main modules,
structures and traits.

if needed; this means that if the provided data is too large to fit within one
piece, it produces a sequence of pieces that are sent one after another. Besides
that, it generates a new sequence number for the piece, asks the MessageSigner
component to generate a piece for the provided message and then passes the
result to the NetSender component that sends the piece to the actively subscribed
receivers. The networking component also hides the logic behind keeping the
database of active receivers; it is described in the corresponding section.

Receiver structure

Just as the Sender component, this was discussed as a part of the interface. The
Receiver component uses NetReceiver and MessageVerifier as subcompo-
nents. The constructor spawns a new thread; this thread is blocked until some
piece is delivered by NetReceiver. The MessageVerifier component then per-
forms the authentication check and passes the piece for delivery to the end user.
Pieces are not delivered immediately because authenticated and certified pieces
are delivered in order. If some piece is missing and the subsequent pieces are
already ready for delivery, at most, DELIVERY_DELAY is waited before skipping
the missing message. Pieces that are unauthenticated are delivered as they come.
This behaviour is achieved by having one min heap for authenticated and certified
pieces that keeps the next-to-be-delivered piece at the top. For other messages,

68



Listing 6 The trait declaration for stateful message signer.

// traits.rs
pub trait MessageSignerTrait {

fn new(params: BlockSignerParams) -> Self;
fn sign(&mut self, message: Vec<u8>, seq: SeqType)
-> Result<Self::SignedMessage , Self::Error>;
fn next_seq(&mut self) -> SeqType;

}

only a queue structure is used. Simply put, this thread is a producer of checked
pieces that stores them in the shared queues.

The consumer for these authenticated pieces is the active loop inside the
receive method. Whenever the user calls the receive method, it enters an
active loop that periodically tries to dequeue some pieces for delivery. It is
done so that the authenticated and certified messages have priority above those
unauthenticated. There is no passive waiting here because the receive function
must react whenever the DELIVERY_DELAY passes and subsequent pieces are
ready.

When the parameter IS_DISTRIBUTOR is set to true, the receiver also for-
wards the verified pieces to receivers that ask this one to re-send them. The
NetSender component is reused here; it works just as in the case of the Sender
component. The difference is that this time, it is the Receiver component which
asks the NetSender to broadcast the piece.

MessageSigner trait

A component implementing the MessageSignerTrait trait transforms a mes-
sage into a piece; i.e. it chooses the key to sign it with, signs it, and determines
public keys to be certified. It returns a type implementing IntoFromBytes;
this trait implies that the type has methods into_network_bytes and
from_network_bytes. Using these, one serialises the type into the array of
bytes of the specified format (see the figure 2.4); this can be passed to NetSender.

Internally, the MessageSignerTrait type holds the state of CS PRNG and
key layers and is responsible for key management. It then uses the underlying
type with FtsSchemeTrait for issuing the signatures with the selected keys. A
state of the BlockSigner must be persistently stored so the sender’s identity is not
lost on application termination. The trait is declared as displayed in the listing 6.

Altogether, the interface provides a constructor, a function for signing the
message that returns the structured SignedMessage and can yield the next se-
quence number. The trait interfaces are briefly described because anyone can

69



K0,i-2 K0,i-1 K0,i K0,i+1 K0,i+2

K1,i-2 K1,i-1 K1,i K1,i+1 K1,i+2

Kj,i-2 Kj,i-1 Kj,i Kj,i+1 Kj,i+2

...

L0

L1

Lj

active futuredepleted

Figure 3.2 A structure that manages the key layers for signature generation and
certification. This example shows the case with PRE_CERT= 2.
implement the traits for custom types and use them as drop-in replacements.

Key layers, key selection and certification The important part of the
MessageSignerTrait implementation is managing the configured layers of keys.
Our type BlockSigner implementing MessageSignerTrait takes a simplistic
approach. A vector of double-ended queues is used; each queue is for the con-
figured layer of keys. Each layer has the configured number of keys — in total,
2 * PRE_CERT + 1 keys are present on each layer. We have PRE_CERT depleted
keys, one active and a PRE_CERT number of keys that are to be used in the future.
The structure is visualised in the figure 3.2.

The discrete probability structure with weights corresponding to the config-
ured key distribution is used to select what layer will be used for the signature.
The key pauses are implemented as a sequence number of the previously signed
messages attached to each layer. Whenever the layer is sampled, if it is too early,
a new sample is taken until a different layer is selected. The sequence number is
updated each time the layer is selected.

To select what keys will be certified in advance and what depleted keys will
be attached, the strategy to attach all the keys from all the layers is used — in
the protocol design, it is referred to as the ”rectangle strategy”. As the protocol
requires, the public key that should be used for signature verification is attached
as the first one.

MessageVerifier trait

MessageVerifierTrait is the counterpart to the trait MessageSignerTrait.
In the HAB library, the incarnation of this trait is also the BlockSigner type;
it implements both traits to share some pieces of code. This component is re-
sponsible for persistently holding the state of already-known identities with their
petnames, for authenticity checks on received pieces and for inserting the newly
received public keys into the identities. The trait interface looks like it is shown

70



Listing 7 The trait declaration for stateful message verifier.

// traits.rs
pub trait MessageVerifierTrait {

fn new(params: BlockSignerParams) -> Self;
fn verify(&mut self, piece: Vec<u8>)

-> Result<VerifyResult , Self::Error>;
}

in the listing 6.
Expectably, it requires a constructor and a method that takes in a piece as an

array of bytes and verifies it. The type returned by it — VerifyResult can be
mapped to the ReceivedMessage that the external library API returns.

Managing the sender identities The public keys are kept as an oriented
graph; nodes are public keys, and edges indicate relation ”the key X certified the
key Y”. The keys that are part of a strongly connected component are considered
the same identity; the Tarjan’s algorithm for strongly connected components is
employed [39].

Identity with the given petname is created upon receiving the first piece
from it. The key used to verify this first message that the receiver must trust
is the initial node with this new petnamed identity. Afterwards, this identity
spreads as the strongly connected component grows and shifts. The strongly
connected components are updated after public keys from each piece are inserted
into the graph. It is important to note that as the protocol requires, only public
keys from pieces that are at least certified are inserted. Unverified pieces do not
mutate the receiver’s state; they are just passed to the delivery queues with the
Unauthenticated tag.

Thanks to the protocol design, the keys can be safely deleted after certain
conditions are met. For the given layer, if there is more than 4 * PRE_CERT +
1. This property is described in the section 2.2.3.

FtsScheme trait

This type must implement the trait FtsSchemeTrait, which is the incarnation
of the few-time signature scheme used. The scheme must generate a new keypair,
sign an array of bytes with the provided secret key, and verify the signature for the
given array of bytes, the public key and the signature. The signature scheme trait
must be stateless; therefore, the interface is designed as a set of static functions
(in Rust, they are called associated functions). The trait interface is declared as
shown in the listing 8.

71



Listing 8 The trait declaration of a signature scheme usable with the HAB library.

// traits.rs
pub trait FtsSchemeTrait {

fn verify(msg: &[u8], signature: &Self::Signature ,
pub_key: &Self::PublicKey) -> bool;
fn sign(msg: &[u8], secret_key: &Self::SecretKey)
-> Self::Signature;
fn gen_key_pair(rng: &mut Self::CsPrng)
-> KeyPair<Self::SecretKey , Self::PublicKey >;

}

The type that implements the HORST scheme (see the section 1.3.2) inside
the HAB library is HorstSigScheme. The implementation can be found in the
horst.rs file. It is important to note that the provided implementation uses pre-
generated secret keys, which means that all the random numbers are generated
in advance and stored. As an optimisation, because these numbers are pseudo-
randomly generated, they can be computed from the seed on demand, but this
implementation decided to take the precomputed path.

Functionality of NetSender

The NetSender component is responsible for sending the pieces to active re-
ceivers. To know to whom it shall send the pieces, it also listens for heartbeats
from interested receivers and keeps the registry. Each receiver has the maxi-
mum lifetime RECEIVER_LIFETIME. If no heartbeat is received for this time, it is
deleted and is no longer considered alive.

Because pieces can be relatively large, the NetSender component has to
fragment it into fragments of themaximum size appropriate for themaximumUDP
datagram size MAX_DGRAM_SIZE. The format of pieces is described in the figure 2.5.
Then the datagrams can be sent to the active receivers.

The important thing to note here is that the send datagrams should be uni-
formly spread into acceptable time slots to reduce the possibility of queue overflow
on intermediate devices. This datagram throttling is especially important when
used via the Internet.

The second important note concerns receivers with IP addresses hidden behind
the Network Address Translator [40]. In fact, these addresses are still quite
common these days. For implementation to work with these types of addresses,
the socket that receives the heartbeats must be the same as the one sending the
data back. Without this, the backwards NAT mapping does not work.

72



Functionality of NetReceiver

The NetReceiver component is, as expected, the receiver counterpart to
NetSender. It receives the datagrams from the network via socket, reads the
fragments from the datagram, deserialises the fragment header and passes them
to the helper structure called FragmentedPieces. Once some piece is complete,
i.e. all the byte intervals have been received successfully, it is passed via a mes-
sage queue to the Receiver component. There, a thread is blocked on a receive
function on this queue to continue with the authentication process. In other
words, in the context of this receiver pieces queue, NetReceiver is the producer,
and the Receiver structure is the consumer.

ActiveReceivers structure

The ActiveReceivers component is implemented as a thread-safe binary tree
map (alternative to C++ std::map) that can be shared safely between the threads.
The key is a socket address of the receiver that requested the data by sending a
heartbeat, and the value is a UNIX timestamp denoting the time until this receiver
is considered alive. Whenever a new heartbeat comes, the UNIX timestamp
is updated, or a new record is inserted. This ActiveReceivers structure is a
wrapper class around atomically reference-counted reference holding a mutex
that protects the binary tree map; this allows one to safely create references with
shared ownership and pass them wherever needed.

In this case, one reference is used by the separate thread that processes the
incoming heartbeats and updates the map of active receivers. The second is
used for reading the active subscribers while sending the datagrams. The dead
subscribers are also pruned when reading all the receivers to send the datagrams;
if the given receiver has a timestamp past the current time, it is deleted.

FragmentedPieces structure

The FragmentedPieces structure is an intermediate storage for pieces not yet
fully received. Pieces are fragmented into fragments, and datagrams carry these
via a network; they may arrive in arbitrary order or not arrive at all due to the
unreliability of the UDP protocol. Therefore this is a crucial part of the whole
picture. Only complete pieces leave the FragmentedPieces structure. The inner
state of the structure can be seen in the figure 3.3.

The format of fragments can be seen in the figure 2.5. It contains the ID of
the piece and offset where the first payload byte fits in the whole piece buffer.
Also, one bit indicates if this is the last fragment. The inner implementation is a
HashMapwhere the key is the fragment ID, and the value is one fragmented block;
the type is called FragmentedBlock. Each block keeps a preallocated vector of

73



ID2
HID6
HID1
HID0

END

END

Figure 3.3 An intermediate state of a structure responsible for assembling all the
fragments for a piece with the given ID. The END markers are fragments with the more
bit set to false. Blue byte intervals are present, and the white intervals are still missing.
The format of fragments is described in the figure 2.5..

bytes and iteratively fills in the blank gaps as they come. It is important to note
that the total size of a piece is now known until the fragment with the more bit set
to false arrives; thus, the vector is resized on demand. To know what intervals
are already filled and what are missing, the structure called BufferTracker is
employed.

Tracking missing byte intervals The BufferTracker is implemented as a
vector of already present intervals. If the new interval comes, it is inserted into
the tracking vector; if the interval is adjacent to some existing intervals, they are
merged into one interval by simply connecting their byte boundaries. The buffer
is complete. There is only one interval starting from 0 and containing the end
flag; byte intervals that come in with the more bit to false is marked, and this
mark is also propagated through merging.

Exported modules utils and common

The exported modules work so the source code that imports them can use all
public identified inside that module — types, traits, functions and constants. The
utils module offers a variety of generally practical functions that are not bound
to specific types. To give some examples — functions to compute hashes of byte
arrays or to return current UNIX timestamps are offered. The common module
contains several type definitions that may be useful when experimenting with
the library — e.g. SenderIdentity or MessageAuthentication.

3.2 AudiBro: A real-time audio broadcasting
To demonstrate that the proposed protocol and the delivered HAB library are
not just a nice thing unusable in actual use cases, the second part of the software

74



in this thesis is an example application that showcases the usage of the library
for a simple real-time broadcasting software; both for sending and receiving.
It is a minimalistic application for radio broadcasting over computer networks
employing post-quantum authentication with large packet loss tolerance — the
HAB implementing the proposed protocol leveraging the HORST scheme.

The section will introduce the usage of the application and will continue with
the design description.

3.2.1 Interacting with the application

The application uses a terminal UI with two modes — broadcaster and a receiver.
More about the application and how to use it is in the user documentation found
in the appendix C.

Broadcasting with AudiBro

The application is launched with the flag --sender and the full address (the IP
address and the port) from which the data will be broadcasted. As a broadcaster,
there are a few options for audio files we can start broadcasting in real time. Or
we can choose to broadcast the audio from the default audio input. With arrows,
we can select the input source and hitting enter button starts to broadcast from
the desired input.

Receiving with AudiBro

In this role, we start the application with the --receiver flag and provide the
target sender to listen to (again, the IP address with the application port); in this
case, it also includes the name of the sender, the so-called petname, to use the
existing identities for authentication. As a receiver, we are presented a simple
player where we can see the target name and address along with the current
authentication state of the data we are being played — green as authenticated
from the target identity, orange for only certified by the target identity and red
for unauthenticated.

3.2.2 Design of the AudiBro application

This section discusses the important design aspects of the demonstrating ap-
plication. It is designed as a terminal application with a simple terminal user
interface.

75



hab

Tui
UI 

THREAD

AudiBroSender

AudioSource
play_source

broadcast(data)

SOURCE 
THREAD

read_file / 
read_device

FS
MpscChannel

MAIN 
THREAD

Decoder

Encoder

Figure 3.4 Overview of the AudiBro application running in sender mode. The interac-
tion with the HAB library is also visualised.

Sender mode functionality

The sender component uses three main components — Tui, AudioSource and
AudiBroSender. The application is built upon the hab crate; in the end, it is
meant to demonstrate it in a real-world application. The design overview of the
sender part is visualised in the figure 3.4.

The high-level flow of the sender role goes roughly like this: The user interface
runs in a separate thread and periodically clears and writes the current state of
the UI to the user. It reacts to keypresses of arrows that navigate through the
input options, and the enter key is used to start broadcasting from the selected
input. This input is passed to the AudioSource component, where the source
thread runs. Based on the chosen input, it either loads the MP3 file from the
disk or starts reading the default input device; an audio encoder and decoder are
used. After playing a few seconds of the input audio and buffering it, the data is
passed via MpscChannel to the main thread blocked on the channel until some
data arrive. The main thread then calls the HAB library function broadcast, and
the audio block in the form of a piece is on its way to active receivers.

Tui The interactive terminal UI is implemented using the crossterm crate that
allows a simple way to implement interactive UI and capture the basic input while
acting on it. The interface shows the statically defined set of available audio files
and an option to stream from the microphone. When some input is selected, it is
passed to the AudioSource component. The currently selected input method is
marked in the UI with the colour.

76



hab

Tui
UI 

THREAD

AudiBroReceiver

AudioPlayer
read_state

receive()

PLAYBACK 
THREAD

SlidingBuffer

MAIN 
THREAD

Decoder

write_device

FS

Figure 3.5 Overview of the AudiBro application running in receiver mode. The inter-
action with the HAB library is also visualised.

AudioSource A thread is running inside the component, waiting for some
commands from the UI to come. Whenever a request to stream from an audio
file comes, the file is loaded from the disk, and while using the decoder, we read
MP3 frames. The crate minimp3 is used as the encoder and decoder. Based on
the sample rate, it is computed how many frames correspond to the configured
number of seconds it should buffer before broadcasting it. The longer the buffer
time, the bigger pieces can be; however, it generates a delay. If a request is to
broadcast from the microphone, the samples are gathered and encoded with the
encoder. In either case, the data block containing the MP3 frames is sent via
MpscChannel to the AudiBroSender component.

AudiBroSender The role of this component is rather simple; its role is accom-
plished in the main thread. The thread is blocked on the MpscChannel until some
stream of MP3 frames comes. It then forwards the data into the HAB library via
the broadcast function.

Receiver mode functionality

The receiver comprises three main components — Tui, AudioPlayer and
AudiBroReceiver. The receiver is, just as the sender, built upon the hab crate.
The receiver design overview is visualised in the figure 3.5.

The overall cooperation of the components in the receiver is the following: On
the receiver side, it starts with the function receive returning authenticated data;

77



this is where the HAB library comes in. The data is received by the main thread
and is written into SlidingBuffer; this is a special buffer described below. The
AudioPlayer component processes the data while employing the audio decoder
and playing the audio to the default playback device. The user interface again
runs in a separate thread, and the primary responsibility is to read the state of the
audio source. Based on the state, it displays the target address and name; most
importantly, it shows the current authentication state of the data that is played
back to the end user.

AudiBroReceiver The AudiBroReceiver receives the pieces from the target
sender with their authentication state and then pushes the data into a special
buffer structure called SlidingBuffer. This buffer is a readable structure that
allows a thread-safe push of the data on the one side — the receiver and at the same
time, it is used as a buffer for the audio decoder on the other side of AudioPlayer.
SlidingBuffer is a buffer where the buffered audio is kept; after it is played, the
frames can be deleted. At the same time, new data is coming simultaneously.

AudioPlayer The AudioPlayer component consumes the data currently
present in the SlidingBuffer. It plays the MP3 frames from the buffer em-
ploying the decoder, plays it via the default playback device and then deletes
them. To play the compressed audio, the crate rodio is utilised.

Tui For the receiver mode, the UI is implemented the same as in the case of the
sender. Only there are notmany options that the user can do. The primary purpose
is to display the authentication state of the played audio — if it is authenticated to
be sent by the target identity, is it just certified by it, or is the data unauthenticated?
This authentication state visualisation is achieved by periodically reading the
state of the AudioPlayer component and then changing the printed output.

78



Chapter 4

Results and performance

The following chapter showcases the practical results of the proof-of-concept
implementation with the HORST signature scheme and general recommendations
based on theoretical approximations. Although the measurements were done
using this specific instantiation of the protocol, the general algorithm to design
parametrisation tailored for the particular use case and with an arbitrary signature
scheme is presented; it is based on theoretical approximations supported by actual
measurements with the PoC implementation.

This chapter is structured as follows: Firstly, the chapter presents the sug-
gested HORST signature scheme parametrisations and a general approach for
designing the protocol parameters for specific use cases. Additionally, the trade-
off between security and overhead is described. The practical parametrisations
are followed by the section that shows the theoretical estimations and empirical
measurements of time to re-authenticate for the given numbers of missed mes-
sages. These measurements give the reader a clear understanding of using the
protocol with any fitting scheme and for different use cases. Finally, the chap-
ter concludes by presenting the trade-offs between security and data overhead;
moreover, lessons learnt and future work are discussed.

4.1 Finding practical protocol parameters
To find a fitting set of parameters for the protocol, one must first know the specific
use case where the protocol is to be used. Here, the general approach is presented
using the HORST scheme and giving recommendations.

The most important aspect is security; at the very heart of the protocol, there
is a few-time signature scheme. One should start with selecting a fitting quantum-
robust signature scheme — such a scheme should focus on a small signature and
public key size and runtime efficiency to fit also real-time applications. Since the

79



Instance name Hash function N K 𝜏 Comment

HORST-RIPEMD-128 RIPEMD-128 16 16 8 low security
HORST-RIPEMD-128 RIPEMD-128 16 8 16
HORST-RIPEMD-160 RIPEMD-160 20 10 16
HORST-RIPEMD-160 RIPEMD-160 20 16 10 unvafourable signature size
HORST-SHA3-224 SHA3-224 28 16 14 unvafourable signature size
HORST-SHA3-224 SHA3-224 28 14 16
HORST-SHA3-256 SHA3-256 32 16 16
HORST-SHA3-384 SHA3-384 48 24 16
HORST-SHA3-384 SHA3-384 48 16 24 unvafourable secret key size
HORST-SHA3-512 SHA3-512 64 32 16

Table 4.1 The candidate signature scheme instances that were considered. The red
candidates were found inappropriate due to insufficient security, unfavourable signature,
or secret key size.

essence of the protocol lies in piggybacking additional public keys with every
message, small signatures and public keys play a significant role in reducing data
overhead. The chosen signature scheme must meet the target security. With a
signature scheme, the maximum number of signatures one key can generate (i.e.
key charges) is derived. Our example considers the candidate instantiations of
the HORST scheme in the table 4.1. The specific parameters that are described in
the section 1.3.2 are listed in the table. However, some of these are written in red,
along with why they are unsuitable.

The candidate instances that are further considered are displayed in the ta-
ble 4.2 with a public key, secret key and signature sizes. It is important to note that
the HORST secret key size can be reduced significantly and traded for runtime
speed by not precomputing it in advance but evaluating it on demand with PRNG
and the seed. Since disk space is not an issue in this case, the runtime speed is
preferred. Also, a classical bit security and the number of signatures that one key
pair can generate without falling under the stated security are listed in the table.

Unfortunately, post-quantum signature schemes tend to have larger signa-
tures, especially for higher securities. Thus, the signature size is usually the
primary source of overhead while using the proposed protocol. Regarding the
public key sizes, plenty of schemes have the size at its minimum — the size of the
hash function output. These two sizes are determined by the signature scheme se-
lection and its parametrisation. However, the final overhead regarding the public
key size is determined by the two important protocol parameters — KEY_RATIOS
and PRE_CERT. These two parameters are described in the section 2.2.2 and sec-
tion 2.2.2, respectively.

80



Instance name PK size SK size Sig. size Bit sec. Key charges

HORST-RIPEMD-128 16 1048576 2176 64 32
HORST-RIPEMD-160 20 1310720 3400 80 25
HORST-SHA3-224 28 1835008 6664 112 18
HORST-SHA3-256 32 2097152 8704 128 16
HORST-SHA3-384 48 3145728 19584 192 10
HORST-SHA3-512 64 4194304 34816 256 8

Table 4.2 Byte sizes of a public key, a secret key, and a signature. Also, it displays the
classical bit security (post-quantum security is half of the classical one) for recommended
HORST signature scheme parametrisations (i.e. scheme instances) and the maximum
number of signatures before the security drops below the target security. The provided
values ignore the scheme vulnerability against ‘weak message’ attacks and against
adaptive chosen message attacks. The reasons for this are discussed in the section 1.3.2.

4.2 Parametrising the re-authentication delay
Whenever a receiver misses some messages, be it due to network issues or due
to intentional disconnect from the data stream, the protocol must be able to
re-authenticate already-known identities within some reasonable time. The
number of messages the receiver needs to receive from the sender with an already-
known identity before labelling the messages as authenticated again is called
‘re-authentication time’. The time to re-authenticate also depends on what public
keys the receiver has; the key concept is that the receiver will have some of
the longer-living keys cached. Once the sender signs with one of these keys,
the receiver can re-authenticate it again; this means the receiver must receive a
certain number of messages to acquire keys from certain layers. Since the key for
signing a message is sampled from the probability distribution, each layer has
a probability 𝑝 to be selected. Given that, to compute, for example, how many
messages one has to receive to have received the key from the given layer with
the probability at least 𝑞 is:

log 𝑞
log(1 − 𝑝)

In an ideal world, re-authentication time would always be possible after
receiving just a single message. Even though this is possible, the data overhead
would be huge, and, generally, this is not a practical direction to take. In order
to keep overhead in moderation, one would need to sacrifice some of this re-
authentication time. Generally, the bigger the message loss, the longer the re-
authentication time, but one can select the KEY_RATIOS parameter to fit the
distribution of message misses in the given use case.

81



These include exponential, which is suitable for small message losses, linear
uniformly distributes the possible misses throughout the re-authentication inter-
val, and logarithmic is designed for greater message misses. The specific ratio
definitions can be seen in the figure 4.1.

# Exponential
[1024, 256, 64, 16, 4, 1];
# Linear
[1354, 1083, 812, 542, 271, 1]
# Logarithmic
[1360, 1357, 1344, 1286, 1040, 1]

Figure 4.1 The suggested key ratios demonstrating the three different potential use
cases. These are named exponential (exp), linear (lin), and logarithmic rates (log).

It is important to note that all these three ratio parameters yield the configu-
ration with the same expected inverse sign ratio of the longest-living key layers.
The inverse signing ratio 𝑥 states that the key on the given layer will sign, on
average, every 𝑥-th message; this determines for how long the key on each layer
will be alive. The expected inverse signing ratios for the three parameters are
shown in the figure 4.2a. We see that the longest-living key will sign roughly once
per 1300 messages, or in other words, that the epoch of the layer 0 key is 1300.
The figure 4.2b, the theoretical approximations of medians of re-authentication
times are presented. This canonical variant represents the situation where each
key can sign only a single message, and we are not sending any public keys in
advance.

Although this may not seem practical, this can be used to calculate the approx-
imation for the real parameters. One just multiplies the missed messages by the(PC+1) ⋅KEY_CHARGES and approximation on how the specific parametrisation
of the protocol will behave in terms of re-authentication time. To verify this
statement, the practical measurements for PC = 1,KEY_CHARGES = 1 were
conducted; the results are presented in the figure 4.3. Importantly, the x-axis
values are doubled since the real-world implementation cannot work without
pre-certification of public keys; thus, this is the minimal, practically measurable
configuration. The visualisations show the median along with quartiles for both
the theoretical approximation and the practically measured result. We see that the
approximation is not very tight, but that is due to the fact that the pre-certification
window is just one key, and every key can sign just once; as it will be later shown,
once these parameters are raised to some reasonable number, the approximation
work quite well.

82



0

1

2

3

4

5

0 500 1000

Inverse signing rate

K
e
y
 l
a
y
e

r

exp

lin

log

(a) Expected inverse key signing rates of each layer for exponential, linear and logarithmic key
ratios. The inverse signing rate 𝑥 tells that the key from the given layer will, on average, sign
every 𝑥-th message.

0

250

500

750

1000

0 500 1000 1500

Missed messages

M
e

s
s
a

g
e

s
 t

o
 r

e
−

a
u

th
e

n
ti
c
a

te

exp

lin

log

(b) Median approximation of the number of messages needed to re-authenticate after the given
number of messages have been missed. This shows the base re-authentication interval — it
means that this corresponds to the situation with only one key signature per key and without
announcing the future keys. Increasing the PC and KEY_CHARGES parameters scales the x-axis
values by a factor of (PC+1) ∗KEY_CHARGES. The results for realistic parameters are displayed
in the figure 4.5

Figure 4.2

83



4.2.1 Measuring methodology

The practical measurements use the proof-of-concept implementation introduced
in the chapter 3. To reduce the runtime, the simulated versions of the Sender
and Receiver structures are used — SenderSim and ReceiverSim. The logic
behind it is the same, but all the overhead irrelevant to the re-authentication is
removed; such as signatures — they are replaced by just integers signalling what
key signed the message and what keys are attached. The code to generate the
re-authentication results presented is in the structure Benchmarker inside the
directory benchmark in the HAB crate; it is a sub-project with its own README
file. One should head there to reproduce the results, given that the seed is
unchanged.

The re-authentication time was measured like this: The new sender and re-
ceiver are created with the required parameters. The receiver receives a sufficient
number of messages to exceed the probability of 0.99 for having the layer 0 key.
Then the given number of messages are not received by the receiver. And finally,
the receiver starts to get the signed message once again. From that moment, the
messages are counted; once the message is tagged as authenticated, the number
is written to the results. Because it also can happen that the receiver may be
unable to re-authenticate because it has lost too many messages, we do not iterate
indefinitely. The limit is again the number of messages that contain a message
signed by the longest-living key with the probability of 0.99. The measurement
was done in thousand repetitions; in each, the new sender and receiver instances
are instantiated.

4.3 Data overhead trade-offs
When designing the parameters for the proposed protocol, one has to accept
certain trade-offs. The most important one is the trade-off between the security
of the authentication and the size of data that is transferred in addition to the
actual payload — data overhead. The used signature scheme and its parameters
determine the size of the signature as well as the size of the public key. The
signature size is a significant portion of the overhead. The second part is attached
public keys. Their number determines how large message misses can be and how
fast the receivers are able to re-authenticate known identities.

In the figure 4.4, the growing overhead of pieces is visualised for the previously
presented HORST signature scheme instances (see the table 4.2). The colours
correspond to the selected instances, and on the x-axis, we see the growing
number of public keys attached to each message. The overhead grows faster for
the instances with higher security due to bigger public keys, and it also starts

84



0

500

1000

1500

2000

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Missed messages

M
e

s
s
a

g
e

s
 t

o
 r

e
−

a
u

th
e

n
ti
c
a

te P
ro

b
. o

f re
−

a
u

th
e

n
tic

a
tio

n
Approx. median

Approx. quartile

Median

Prob. to re−authenticate

Quartile

(a) Exponential key durations (exp)

0

500

1000

1500

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Missed messages

M
e

s
s
a

g
e

s
 t

o
 r

e
−

a
u

th
e

n
ti
c
a

te P
ro

b
. o

f re
−

a
u

th
e

n
tic

a
tio

n

Approx. median

Approx. quartile

Median

Prob. to re−authenticate

Quartile

(b) Linear key durations (lin)

0

500

1000

1500

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Missed messages

M
e

s
s
a

g
e

s
 t

o
 r

e
−

a
u

th
e

n
ti
c
a

te P
ro

b
. o

f re
−

a
u

th
e

n
tic

a
tio

n

Approx. median

Approx. quartile

Median

Prob. to re−authenticate

Quartile

(c) Logaritmic key durations (log)

Figure 4.3 Re-authentication times for the three suggested key ratios with minimal
pre-certification parameter and single key charge (PC = 1, KEY_CHARGES = 1). Both
the approximation and empirical results are shown; this sketches the basic behaviour
of these key ratios. Increasing the PC and KEY_CHARGES parameters scales the x values
by a factor of (PC + 1) ⋅ KEY_CHARGES. The presented results are for PC = 1, and thus
the base x values are scaled by a factor of PC + 1 = 2. The unscaled re-authentication
intervals are displayed in the figure 4.2

85





4.4 Protocol behaviour with practical parameters
We did empirical measurements to validate that the protocol works with prac-
tical parameters, where it can withstand significant message losses. Also, to
check that the approximation based on geometric distribution can be used for
choosing the parameters and that is corresponds to the real implementation.
The three key distribution parameters defined in the figure 4.1 were used with
KEY_CHARGES = 20 and PRE_CERT = 8. That means that each key can gen-
erate twenty signatures, and the sender pre-certifies eight keys before using
them for signing. The results are presented in the figure 4.5. This measured
configuration is well usable in real-world scenarios but offers relatively small
allowed packet losses; this parametrisation was selected for measurements to take
reasonable time with enough repetitions. The configuration can be, of course,
arbitrarily scaled by adding new layers and increasing the PRE_CERT parameter.

This configuration offers a decent message loss — up to two hundred thousand
messages can be missed without losing the ability to re-authenticate. The time to
re-authenticate depends on the missed number and the key distribution strategy
used. One can see that in the case of practical protocols, the empirical results
alternate around the theoretic approximations, which hints that the theoretical
approximation can be used for the parameter design. Using this configuration,
if the sender is broadcasting non-stop, sending one message each second, the
receivers could miss still go offline for more than two days and will be able to
re-authenticate. The are, of course, use cases where much greater message misses
are usual; in cases like these, one can just add a few more layers to fit the desired
re-authentication interval.

The detail of the behaviour of these configurations is shown in the figure 4.6;
this is to see how the different configurations behave with smaller numbers of
missed messages. We see that all the configurations can safely cover message
misses caused by usual network losses. Also, it is visible that the exponential
key selection guarantees fast re-authentications for shorter misses compared to
the linear or logarithmic selection. In contrast, the logarithmic selection can
re-authenticate much sooner if the number of misses grows significantly. The
linear selection is a compromise between the two.

87



0

400

800

1200

1600

0.00

0.25

0.50

0.75

1.00

0 50000 100000 150000 200000 250000

Missed messages

M
e

s
s
a

g
e

s
 t

o
 r

e
−

a
u

th
e

n
ti
c
a

te P
ro

b
. o

f re
−

a
u

th
e

n
tic

a
tio

n

Approx. median

Approx. quartile

Median

Prob. to re−authenticate

Quartile

(a) Exponential key durations (exp)

0

400

800

1200

1600

0.00

0.25

0.50

0.75

1.00

0 50000 100000 150000 200000 250000

Missed messages

M
e

s
s
a

g
e

s
 t

o
 r

e
−

a
u

th
e

n
ti
c
a

te P
ro

b
. o

f re
−

a
u

th
e

n
tic

a
tio

n

Approx. median

Approx. quartile

Median

Prob. to re−authenticate

Quartile

(b) Linear key durations (lin)

0

500

1000

0.00

0.25

0.50

0.75

1.00

0 50000 100000 150000 200000 250000

Missed messages

M
e

s
s
a

g
e

s
 t

o
 r

e
−

a
u

th
e

n
ti
c
a

te P
ro

b
. o

f re
−

a
u

th
e

n
tic

a
tio

n

Approx. median

Approx. quartile

Median

Prob. to re−authenticate

Quartile

(c) Logaritmic key durations (log)

Figure 4.5 A measured time to re-authenticate after a specific number of messages
is missed for practical parameters (KEY_CHARGES = 20, PRE_CERT = 8); this corre-
sponds with the theoretical approximation figure 4.5. The three suggested key selection
distributions are visualised.

88



0

100

200

300

400

500

0 250 500 750 1000

Missed messages

M
e

s
s
a

g
e

s
 t

o
 r

e
−

a
u

th
e

n
ti
c
a

te

Approx. median

Approx. quartile

Median

Quartile

(a) Exponential key durations (exp)

0

100

200

300

400

500

0 250 500 750 1000

Missed messages

M
e

s
s
a

g
e

s
 t

o
 r

e
−

a
u

th
e

n
ti
c
a

te

Approx. median

Approx. quartile

Median

Quartile

(b) Linear key durations (lin)

0

100

200

300

400

500

0 250 500 750 1000

Missed messages

M
e

s
s
a

g
e

s
 t

o
 r

e
−

a
u

th
e

n
ti
c
a

te

Approx. median

Approx. quartile

Median

Quartile

(c) Logaritmic key durations (log)

Figure 4.6 A measured time to re-authenticate after a specific number of messages is
missed for practical parameters but showing only the small number of missed messages;
this is the detail of the figure 4.5.

89



90



Conclusion

In conclusion, the thesis has presented a protocol for authenticated data stream-
ing based on hash-based few-time signature schemes using petname identities
(described in the chapter 2). The primary objective of this thesis was to evaluate
the suitability of hash-based signatures for the authentication of data streams,
with a particular emphasis on real-time applications (section 4.1). The proposed
protocol is well-suited for use on the Internet, providing post-quantum security,
simple implementation, and adaptability to a wide range of applications. It can
serve as a quantum-robust alternative to current digital signatures and other
techniques for data stream authentication. Notably, the protocol is compatible
with any quantum-robust few-time signature scheme, offering data authentication
and efficient identity management of known senders.

Moreover, the protocol design considers the usage of different network inter-
faces for sendingmessages. Therefore additional properties like (partial) reliability
or confidentiality can be used without altering the protocol design (section 2.1.3).
This protocol addresses the growing need for secure data streaming and broad-
casting protocols that can withstand future threats, including those posed by
advances in quantum computing.

While the protocol is highly adjustable and offers significant benefits, a poten-
tial drawback is the larger data overhead, particularly when there is insufficient
data to be sent along with the signature (section 2.3, section 4.3). As such, ad-
ditional parameter space examination is needed to reduce further the overhead
caused by public keys attached to each piece. This thesis provides an initial
exploration of practical configurations and demonstrates the impact of various
parameters on protocol security, overhead, and the expected number of messages
that can be lost without losing the ability to re-authenticate known identities
(section 4.4). Despite measuring the specific parametrisation, the protocol can be
scaled to withstand packet loss of arbitrary size. Additionally, developing alterna-
tive signature schemes with satisfactory runtime performance, small signature
sizes, and further optimising the protocol’s configuration will enable the protocol
to be fine-tuned for specific use cases and requirements.

In summary, this thesis has enriched the field of authenticated data streaming

91



by proposing a post-quantum protocol that meets the proposed design criteria
and is highly configurable. The proof-of-concept implementation of the protocol
library with practical configurations and the real-world application for live audio
streaming have demonstrated the viability of the proposed solution (section 3.1,
section 3.2). As the demand for secure data streaming and broadcasting continues
to grow, the work presented in this thesis provides a solid foundation for future
advancements in the field.

Future work Specific directions on what can be done are stated to improve the
protocol further.

• The security level of keys on each layer can vary — the longer-living keys
need to have higher security, but the keys that are used more frequently
can potentially use lower-security signatures; this can reduce the overall
overhead since the signatures contribute significantly to it.

• Focus on reducing the number of public keys in each message to the min-
imum so receivers can still authenticate the stream of data without any
authentication misses. The two strategies may not be optimal.

• A way the receivers could find the best data source for them would improve
the overall usefulness of the protocol; for example, a distributed hash table
with potential sources.

• Multiple senders can share an identity without sharing their secret keys; this
can be used to form ‘streaming communities’. The protocol can be extended
to explicitly support this without the need for external synchronisation of
senders.

92



Bibliography

[1] Roger Pantos and William May. HTTP Live Streaming. RFC 8216. Aug. 2017.
doi: 10.17487/RFC8216. url: https://www.rfc-editor.org/info/
rfc8216.

[2] Eric Rescorla, Hannes Tschofenig, and Nagendra Modadugu. The Datagram
Transport Layer Security (DTLS) Protocol Version 1.3. RFC 9147. Apr. 2022.
doi: 10.17487/RFC9147. url: https://www.rfc-editor.org/info/
rfc9147.

[3] Corporate Nist. “The digital signature standard”. In: Communications of the
ACM 35.7 (1992), pp. 36–40.

[4] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for obtain-
ing digital signatures and public-key cryptosystems”. In: Communications
of the ACM 21.2 (1978), pp. 120–126.

[5] Don Johnson, Alfred Menezes, and Scott Vanstone. “The elliptic curve digi-
tal signature algorithm (ECDSA)”. In: International journal of information
security 1 (2001), pp. 36–63.

[6] Adrian Perrig et al. Timed Efficient Stream Loss-Tolerant Authentication
(TESLA): Multicast Source Authentication Transform Introduction. RFC 4082.
June 2005. doi: 10.17487/RFC4082. url: https://www.rfc-editor.
org/info/rfc4082.

[7] Adrian Perrig. “The BiBa one-time signature and broadcast authentication
protocol”. In: Proceedings of the 8th ACM Conference on Computer and
Communications Security. 2001, pp. 28–37.

[8] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer”. In: SIAM Journal on Com-
puting 26.5 (1997), pp. 1484–1509. doi: 10.1137/s0097539795293172.
url: https://doi.org/10.1137%2Fs0097539795293172.

93

https://doi.org/10.17487/RFC8216
https://www.rfc-editor.org/info/rfc8216
https://www.rfc-editor.org/info/rfc8216
https://doi.org/10.17487/RFC9147
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9147
https://doi.org/10.17487/RFC4082
https://www.rfc-editor.org/info/rfc4082
https://www.rfc-editor.org/info/rfc4082
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1137%2Fs0097539795293172


[9] M. Ajtai. “Generating Hard Instances of Lattice Problems (Extended Ab-
stract)”. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on
Theory of Computing. STOC ’96. Philadelphia, Pennsylvania, USA: Associa-
tion for Computing Machinery, 1996, pp. 99–108. isbn: 0897917855. doi:
10.1145/237814.237838. url: https://doi.org/10.1145/237814.
237838.

[10] Jintai Ding and Albrecht Petzoldt. “Current state of multivariate cryptogra-
phy”. In: IEEE Security & Privacy 15.4 (2017), pp. 28–36.

[11] Raphael Overbeck and Nicolas Sendrier. “Code-based cryptography”. In:
Post-quantum cryptography (2009), pp. 95–145.

[12] Luca De Feo, David Jao, and Jérôme Plût. “Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies”. In: Journal of
Mathematical Cryptology 8.3 (2014), pp. 209–247. doi: doi:10.1515/jmc-
2012-0015. url: https://doi.org/10.1515/jmc-2012-0015.

[13] Arthur Evans, William Kantrowitz, and Edwin Weiss. “A User Authentica-
tion Scheme Not Requiring Secrecy in the Computer”. In: Commun. ACM
17.8 (1974), pp. 437–442. issn: 0001-0782. doi: 10.1145/361082.361087.
url: https://doi.org/10.1145/361082.361087.

[14] W. Diffie and M. Hellman. “New directions in cryptography”. In: IEEE
Transactions on Information Theory 22.6 (1976), pp. 644–654. doi: 10.1109/
TIT.1976.1055638.

[15] Bruce Schneier. “Key Length”. In: Applied Cryptography, Second Edition.
John Wiley & Sons, Ltd, 2015. Chap. 7, pp. 151–168. isbn: 9781119183471.
doi: https://doi.org/10.1002/9781119183471.ch7. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/9781119183471.
ch7. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781119183471.ch7.

[16] Ilya Mironov et al. “Hash functions: Theory, attacks, and applications”. In:
Microsoft Research, Silicon Valley Campus (2005), pp. 1–22.

[17] Daniel J Bernstein. “Cost analysis of hash collisions: Will quantum com-
puters make SHARCS obsolete”. In: SHARCS 9 (2009), p. 105.

[18] Lov K Grover. “A fast quantum mechanical algorithm for database search”.
In: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing. 1996, pp. 212–219.

[19] Gilles Brassard, Peter Høyer, and Alain Tapp. “Quantum cryptanalysis of
hash and claw-free functions”. In: LATIN’98: Theoretical Informatics: Third
Latin American Symposium Campinas, Brazil, April 20–24, 1998 Proceedings
3. Springer. 1998, pp. 163–169.

94

https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/doi:10.1515/jmc-2012-0015
https://doi.org/doi:10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1145/361082.361087
https://doi.org/10.1145/361082.361087
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/https://doi.org/10.1002/9781119183471.ch7
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119183471.ch7
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119183471.ch7
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119183471.ch7
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119183471.ch7
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119183471.ch7


[20] W. Diffie and M. Hellman. “New directions in cryptography”. In: IEEE
Transactions on Information Theory 22.6 (1976), pp. 644–654. doi: 10.1109/
TIT.1976.1055638.

[21] Michael O. Rabin. “DIGITALIZED SIGNATURES AND PUBLIC-KEY FUNC-
TIONS AS INTRACTABLE AS FACTORIZATION”. In: 1979.

[22] Leslie Lamport. Constructing Digital Signatures from a One Way Function.
Tech. rep. CSL-98. This paper was published by IEEE in the Proceedings of
HICSS-43 in January, 2010. 1979. url: https://www.microsoft.com/en-
us/research/publication/constructing-digital-signatures-
one-way-function/.

[23] Daniel J Bernstein et al. “The SPHINCS+ signature framework”. In: Proceed-
ings of the 2019 ACM SIGSAC conference on computer and communications
security. 2019, pp. 2129–2146.

[24] Ralph C. Merkle. “A Certified Digital Signature”. In: Annual International
Cryptology Conference. 1989.

[25] Chris Dods, Nigel P Smart, and Martijn Stam. “Hash based digital signature
schemes”. In: Cryptography and Coding: 10th IMA International Conference,
Cirencester, UK, December 19-21, 2005. Proceedings 10. Springer. 2005, pp. 96–
115.

[26] Ralph Charles Merkle. Secrecy, authentication, and public key systems. Stan-
ford university, 1979.

[27] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. “XMSS-a prac-
tical forward secure signature scheme based on minimal security as-
sumptions”. In: Post-Quantum Cryptography: 4th International Workshop,
PQCrypto 2011, Taipei, Taiwan, November 29–December 2, 2011. Proceedings
4. Springer. 2011, pp. 117–129.

[28] Andreas Huelsing et al. XMSS: eXtended Merkle Signature Scheme. RFC
8391. May 2018. doi: 10.17487/RFC8391. url: https://www.rfc-
editor.org/info/rfc8391.

[29] David A Cooper et al. “Recommendation for stateful hash-based signature
schemes”. In: NIST Special Publication 800 (2020), p. 208.

[30] Daniel J Bernstein et al. “SPHINCS: practical stateless hash-based signa-
tures”. In: Advances in Cryptology–EUROCRYPT 2015: 34th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I 34. Springer.
2015, pp. 368–397.

95

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://doi.org/10.17487/RFC8391
https://www.rfc-editor.org/info/rfc8391
https://www.rfc-editor.org/info/rfc8391


[31] Leonid Reyzin and Natan Reyzin. “Better than BiBa: Short one-time signa-
tures with fast signing and verifying”. In: Information Security and Privacy:
7th Australasian Conference, ACISP 2002 Melbourne, Australia, July 3–5, 2002
Proceedings 7. Springer. 2002, pp. 144–153.

[32] Jean-Philippe Aumasson and Guillaume Endignoux. “Clarifying the subset-
resilience problem”. In: Cryptology ePrint Archive (2017).

[33] Jean-Philippe Aumasson and Guillaume Endignoux. “Improving stateless
hash-based signatures”. In: Topics in Cryptology–CT-RSA 2018: The Cryp-
tographers’ Track at the RSA Conference 2018, San Francisco, CA, USA, April
16-20, 2018, Proceedings. Springer. 2018, pp. 219–242.

[34] Jaeheung Lee et al. “HORSIC: An efficient one-time signature scheme for
wireless sensor networks”. In: Information Processing Letters 112.20 (2012),
pp. 783–787.

[35] Andreas Hülsing. “W-OTS+–shorter signatures for hash-based signature
schemes”. In: Progress in Cryptology–AFRICACRYPT 2013: 6th International
Conference on Cryptology in Africa, Cairo, Egypt, June 22-24, 2013. Proceed-
ings 6. Springer. 2013, pp. 173–188.

[36] Marc Stiegler. “Petname systems”. In: HP Laboratories, Mobile and Media
Systems Laboratory, Palo Alto, Tech. Rep. HPL-2005-148 (2005).

[37] User Datagram Protocol. RFC 768. Aug. 1980. doi: 10.17487/RFC0768. url:
https://www.rfc-editor.org/info/rfc768.

[38] Neal H Walfield and Werner Koch. “TOFU for OpenPGP”. In: Proceedings
of the 9th European Workshop on System Security. 2016, pp. 1–6.

[39] Robert Tarjan. “Depth-First Search and Linear Graph Algorithms”. In: SIAM
Journal on Computing 1.2 (1972), pp. 146–160. doi: 10.1137/0201010.
eprint: https://doi.org/10.1137/0201010. url: https://doi.org/
10.1137/0201010.

[40] Kjeld Borch Egevang and Paul Francis. The IP Network Address Translator
(NAT). RFC 1631. May 1994. doi: 10.17487/RFC1631. url: https://www.
rfc-editor.org/info/rfc1631.

96

https://doi.org/10.17487/RFC0768
https://www.rfc-editor.org/info/rfc768
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.17487/RFC1631
https://www.rfc-editor.org/info/rfc1631
https://www.rfc-editor.org/info/rfc1631


Appendix A

Structure of the attached software

The thesis attachment is an archive that contains the provided proof-of-concept
library implementation and the example application for live audio broadcasting
that uses the library. The structure of the attachment is displayed in the figure A.1.
The hab directory contains the repository 1 of the HAB library, and the audibro
directory is the repository 2 of the example application.

A.1 hab
benchmark The application which is using the library that was used for bench-

marking the library.

src Rust source files for the library.

Cargo.yml A standard config file for Rust projects specifying the package meta-
data and used dependencies.

README.md A file with the basic information on how to use the library.

LICENSE.txt A file with the license of the project.

.gitlab-ci.yml A script file defining the behaviour in the GitLab pipeline.

A.2 audibro
data A directory with bundled-in audio files that can be streamed with the

application.

docs A directory with documentation source files. Also, the generated documen-
tation is outputted here.

1https://gitlab.mff.cuni.cz/mejzlikf/hab
2https://gitlab.mff.cuni.cz/mejzlikf/audibro

97

https://gitlab.mff.cuni.cz/mejzlikf/hab
https://gitlab.mff.cuni.cz/mejzlikf/audibro


/
audibro/

data/
docs/
env/
scripts/
src/
tests/
Cargo.yml
Cargo.lock
README.md
LICENSE.txt
.gitlab-ci.yml
…

hab/
benchmark/
src/
Cargo.yml
README.md
LICENSE.txt
.gitlab-ci.yml
…

Figure A.1 The structure of the attached software archive displaying the important
directories and files.

env A directory where the temporary files for senders and receivers are stored.
For example, their identity files and identity graphs.

scripts A directory with convenience scripts that can be used to configure and
launch the application.

src Rust source files for the library.

Cargo.yml A standard config file for Rust projects specifying the package meta-
data and used dependencies.

Cargo.lock A standard file for Rust projects locking in the specific dependency
versions.

README.md A file with the basic information on how to use the library.

LICENSE.txt A file the license of the project.

.gitlab-ci.yml A script file defining the behaviour in the GitLab pipeline.

98



Appendix B

Using the HAB library

To use the library, one needs to include the hab library as a GIT dependency 1

in the Cargo.toml file in the target project. The source code is located in the
public repository 2. The library compilation will be handled by the cargo build
tool for you. Naturally, you need a Rust compiler; the minimal supported version
is 1.58 3. There are no additional direct dependencies required, but the library
uses other Rust crates that may, on some platforms or in the future, require some
libraries installed in the system. These are typically easy to resolve by using a
system package manager.

With that, Sender and Receiver structs can be included in the source file. To
configure those, the SenderParams and ReceiverParams need to be included;
these will be used to configure the protocol. The configuration parameters are
described in the section 2.3 and also in respective source files — sender.rs and
receiver.rs. Both sender and receiver instances require some instance of a few-
time signature scheme to be used. The library comes with the HORST signature
scheme bundled in; it can be imported as HorstSigScheme. The scheme itself
must be configured with corresponding parameters. To use different signature
schemes, one can implement arbitrary schemes by implementing the FtsScheme
trait. It can be used as the generic argument for the sender and receiver instances.
The attached example of a live audio broadcast application is described in the
next appendix C; it shows how the library can be integrated within a real-world
application.

The source code itself and the developer documentation can be used to under-
stand the internals in case of doing some extensions to the library. The developer
documentation can be generated and viewed by running:

1https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
2https://gitlab.mff.cuni.cz/mejzlikf/hab
3https://www.rust-lang.org/tools/install

99

https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
https://gitlab.mff.cuni.cz/mejzlikf/hab
https://www.rust-lang.org/tools/install


cargo doc --open

B.1 Sender
Once the sender is instantiated and configured, it is rather simple to start broadcast-
ing. The struct offers one method called broadcast that accepts one parameter; it
is a reference to the byte buffer to be broadcasted to currently subscribed receivers.
The function call is a blocking one and returns when data for all receivers have
been dispatched via the network interface. The returned type is a result indicating
an error if some occur.

B.2 Receiver
With the receiver instance configured and instantiated, the receive method
is available to use. It takes no parameters and returns a result type of ei-
ther ReceivedMessage or an error instance with the reason for failure. The
ReceivedMessage structure consists of three fields — a message that was broad-
casted, a verification status of the message and a sequence number of this message.
The verification status is used to determine if the data are proven to be sent by
the target identity, if someone certified by the target identity signed the message,
or if the message is not verified at all.

100



Appendix C

Using the AudiBro application

The example application showcases the usage of the hab library in a simplified
real-world scenario of live audio broadcasting software. The source code is located
in the public repository 1. To compile and run AudiBro, a Rust compiler is required
with a version of at least 1.58 2, and on Linux distributions, the ALSA library 3

is needed. Usually, it can be installed using the system’s package manager; for
example, for Debian, one can run the following:

sudo apt update
sudo apt install libasound2-dev

With all the dependencies in place, one can compile the program using the
following command:

cargo build --release

Once the program is compiled, it can be run. The easiest way to try the
example is to use prepared bash scripts to send correct arguments to the applica-
tion. The pre-configured setup showcases three entities - one sender called Alice.
Alice is the original sender that broadcasts the audio. The next actor is Bob, who
receives data from Alice and at the same time works as a distributor. The third
one is called Carol, who receives data from Bob. This simple setup showcases
all three roles implemented by the protocol. It is recommended to have three
terminal windows prepared and run each actor in one of them; it can be done
with the following commands:

1https://gitlab.mff.cuni.cz/mejzlikf/audibro
2https://www.rust-lang.org/tools/install
3https://wiki.debian.org/ALSA

101

https://gitlab.mff.cuni.cz/mejzlikf/audibro
https://www.rust-lang.org/tools/install
https://wiki.debian.org/ALSA



	Introduction
	Hash-based signatures
	The motivation for hash-based cryptography
	Basic terminology
	Cryptographic hash functions
	Random number generators

	Constructing signatures from hash functions
	One-time signature schemes
	Few-time signature schemes
	Current development in hash-based signatures


	Authenticated streaming with hash-based signatures
	Design Criteria
	Purpose
	Scope
	Main abstractions
	Requirements
	The interface of the protocol

	Specification of the protocol
	Network formats
	Sender role
	Receiver role
	Distributor role

	Parameter choice trade-offs
	Security vs. signature size
	Re-authenticating the prior sender identities


	Proof-of-concept implementation
	HAB: A library for Hash-based Authentication Broadcasting
	Overview of the HAB interface
	Internal structure of HAB library

	AudiBro: A real-time audio broadcasting
	Interacting with the application
	Design of the AudiBro application


	Results and performance
	Finding practical protocol parameters
	Parametrising the re-authentication delay
	Measuring methodology

	Data overhead trade-offs
	Protocol behaviour with practical parameters

	Conclusion
	Bibliography
	Structure of the attached software
	hab
	audibro

	Using the HAB library
	Sender
	Receiver

	Using the AudiBro application

