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Introduction
At energies small enough compared to the masses of particles that mediate nuclear
forces, the nucleus can be looked upon as a self-bound many-body system made up
of nucleons. The nucleus has two types of degrees of freedom - collective, which
describe the state of the nucleus as a whole, and intrinsic, which describe the
state of individual nucleons. An accurate theoretical description of the structure
of atomic nuclei and their properties poses a difficult problem since one needs
to take both their microscopic and collective nature into account. Moreover, the
interactions between nucleons are far from well-understood. Various models have
been developed to describe and capture the complex nature of the nucleus, taking
different approaches to this problem.

We begin this work by describing the nuclear shell model with a core. This
model assumes that nucleons occupy certain levels that are ordered by increasing
energy, analogous to the idea of atomic orbitals. According to this model, only
the protons and neutrons in the valence shell interact through nuclear interactions
and the rest moves in a mean-field potential.

The no-core nuclear shell model makes no apriori assumptions about the nu-
clear structure and tries to solve the corresponding Schrödinger equation ab initio
- from first principles. In this case, that means that all nucleons, not only the ones
in the valence shell, interact with each other through realistic many-body interac-
tions derived from effective field theories. The main disadvantage of this approach
is the immensely large dimensions of the Hamiltonian matrix that needs to be di-
agonalized. Even with the use of powerful modern supercomputers, medium-mass
and heavier nuclei are out of reach.

By exploiting the SU(3) group symmetry, that was first applied in nuclear
physics by Elliott [1], a basis that takes the collective nature of nuclei into account
can be constructed. The symmetry-adapted no-core shell model adapts this basis
with great success allowing us to study the shapes of nuclei from first principles.
Furthermore, the advantageous structure of the SU(3) basis can be used to reduce
the dimensions of no-core shell model calculations.

The focus of our work is to study possible applications of the symmetry-
adapted no-core shell model for electroweak processes in nuclei, i.e., β-decay
transitions. An accurate theoretical treatment of β-decay is especially important
since it can be used to look for physics beyond the standard model. Some of the
ways ab initio calculations can be utilized to probe new physics are outlined in
the second chapter, along with the theory behind β-decay. In the last chapter,
we report the results of our findings for nuclei with mass A ≤ 16.
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1. The Nuclear Shell Model

1.1 The Core Shell Model
The Hamiltonian of the nuclear many-body problem for A nucleons can be for-
mulated as

H =
A∑︂

i=1
Ti + 1

2

A∑︂
i,j=1

Vi,j, (1.1.1)

where Ti is the kinetic energy of the individual nucleon and Vi,j is a two-body
interaction. By adding and subtracting a summed single-particle potential, we
can rewrite the Hamiltonian as

H =
[︄

A∑︂
i=1

T (ri) + U(ri)
]︄

+
⎡⎣1

2

A∑︂
i,j=1

V (ri, rj) −
A∑︂

i=1
U(ri)

⎤⎦ ≡ Hmf +Hres, (1.1.2)

where ri denotes the position and any other degree of freedom of a nucleon. The
first term of (1.1.2) is known as the mean-field Hamiltonian

Hmf =
A∑︂

i=1
T (ri) + U(ri) ≡

A∑︂
i=1

h0(ri) (1.1.3)

which describes the movement of each nucleon in an average, mean-field potential
U(ri) that is generated by all other nucleons. In the mean-field approximation,
it is therefore assumed that the nucleons do not interact with each other. The
second term is known as the residual interaction

Hres = 1
2

A∑︂
i,j=1

V (ri, rj) −
A∑︂

i=1
U(ri) (1.1.4)

and describes the remaining two-body interaction.
We will first solve the non-relativistic Schrödinger equation H|ψ⟩ = E|ψ⟩ with

the mean-field Hamiltonian (1.1.3). Since the nucleons do not interact we can
substitute a wavefunction in the separated form

ψ(r1, r2, ..., rA) = ϕ1(r1)ϕ2(r2)...ϕA(rA), (1.1.5)
where the function ϕi is the eigenfunction of the single-particle Hamiltonian

h0(r)ϕi(r) = ϵiϕi(r). (1.1.6)
By substituing (1.1.6) into the original Schrödinger equation we obtain an ex-
pression for the total energy of a nucleus

E =
A∑︂

i=1
ϵi. (1.1.7)

Since the nucleus is a fermionic system, its wavefunction needs to satisfy the
Pauli exclusion principle, which (1.1.5) does not. We usually construct the A-
nucleon wavefunction in the form of a Slater determinant

ψ(r1, r2, ..., rA) = 1√
A!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

ϕ1(r1) ϕ1(r2) · · · ϕ1(rA)
ϕ2(r1) ϕ2(r2) · · · ϕ2(rA)
ϕ3(r1) ϕ3(r2) · · · ϕ3(rA)

... ... . . . ...
ϕA(r1) ϕA(r2) · · · ϕA(rA)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

(1.1.8)
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which conforms to the Pauli exclusion principle by definition.
The problem that remains is then the choice of an optimal mean-field potential

that describes the nuclear structure as best as possible and minimizes the residual
interaction. This can be treated as a variational problem where one tries to find
single-particle states ϕi that minimize the ground-state energy. However, this
process is often skipped, and a phenomenological potential, such as Woods-Saxon

UWS(r) = − V0

1 + e(r−R)/a
(1.1.9)

or harmonic oscillator (HO)

UHO(r) = 1
2mnω

2r2 (1.1.10)

is chosen instead. These potentials are central, i.e., depend only on r.
It turns out that some experimental results can be reproduced with just the

mean-field Hamiltonian and without taking the residual interaction into consider-
ation. This approach is also known as the independent particle model. We assume
that the mean-field U(r) is described well enough by the HO potential and the
single-particle Hamiltonian in (1.1.3) is then

h0 = − ℏ2

2mn

∆ + 1
2mnω

2r2. (1.1.11)

We further modify this Hamiltonian by adding an additional term proportional
to the product of angular momentum l and spin s and a term proportional to l2

h = h0 + al·s + bl2. (1.1.12)

Solving the Schrödinger equation with the modified Hamiltonian (1.1.12) yields
single-particle wavefunctions that correctly predict the so-called magic numbers
- proton (Z) and neutron (N) numbers of stable configurations that correspond
to filled nuclear shells (Fig. 1.1). The consequences of the inclusion of spin-orbit
interaction term l·s in the single-particle Hamiltonian were first described by M.
G. Mayer in 1949 in her pioneering work [2]. The term l2 does not have an effect
on the magic numbers but needs to be included to reproduce the correct ordering
of energy shells (Fig 1.1).

Exact diagonalization of the nuclear Hamiltonian (1.1.2) is a computationally
intensive task. To make this problem more manageable, the concept of an inert
core, which consists of non-interacting nucleons that occupy single-particle states
of the mean-field potential, is introduced. The idea is then to choose a model
space that is made up of only a few orbits around the Fermi energy, which is
the energy level that divides the empty orbitals and the last occupied shell. The
nucleons that occupy this shell are considered active and interact through the
two- or more-body residual interaction. These nucleons can be excited above
the Fermi level to a higher shell that is included in the valence (or model) space
creating a hole in the valence shell. In this way, we have excluded the lowest
states from our calculations, which became a part of the inert core, as well as the
highly excited states above the Fermi energy, because we are usually interested
only in the low-lying states that are well-described by excitations around the
Fermi level. Naturally, the higher the excitations we want to consider, the larger
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Figure 1.1: Degenerate energy spectrum one obtains by solving the Schrödinger
equation with the Hamiltonian (1.1.12). The nuclear shell states are ordered by
increasing energy and labeled using the radial (nr = (n − l + 2)/2), orbital (l),
and total angular momentum (j = l ± 1

2) oscillator quantum numbers: nrlj =
1s1/2, 1p3/2, 1p1/2, .... The numbers in the boxes on the right side of the figure
represent the magic numbers.

must be our model space. This approach is known as the interacting shell model
or valence configuration interaction [3, 4, 5].

In the recent two decades, ab initio methods that try to solve the Schrödinger
equation with realistic two- and three-body interactions for all nucleons have
gained immense popularity [6]. One of such methods, the no-core shell model
(NCSM) [7] and its extension, the symmetry-adapted no-core shell model (SA-
NCSM) [8], will be described in the following sections.

1.2 The No-Core Shell Model
As we have already alluded to, NCSM seeks to describe the atomic nucleus from
first principles. It assumes that all nucleons are active and the interactions be-
tween them are realistic, described by two-, three- (or more) body potentials that
emerge from effective field theories. The starting Hamiltonian of our A-nucleon
problem is

H = 1
A

A∑︂
i<j

(pi − pj)2

mn

+
A∑︂

i<j

VNN,ij +
A∑︂

i<j<k

VNNN,ijk + ..., (1.2.1)

where VNN is a two nucleon interaction, VNNN a three nucleon one. In general,
interactions between more than three nucleons can be considered. Note that this
Hamiltonian is translationally invariant.
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Similarly to traditional shell model calculations, solving the Schrödinger equa-
tion in the full, infinite-dimensional Hilbert space is not feasible, and therefore we
must limit ourselves to only a finite part of it by choosing a suitable model space.
This is then reflected in the choice of a finite basis. The Schrödinger equation
H|ψ⟩ = E|ψ⟩ is transformed into an eigenvalue problem∑︂

j

Hijcj = Eci, (1.2.2)

where ci are the expansion coefficients of state ψ = ∑︁
i ciψi in the orthonormal

basis {ψi} and Hij = ⟨ψi|H|ψj⟩ are the Hamiltonian matrix elements. The eigen-
values and eigenvectors are then found by diagonalizing the matrix Hij; in shell
model calculations, the Lanczos algorithm [9] is usually employed to solve this
problem.

In the standard shell model, we have limited our model space to only a few
shells around the Fermi energy. In NCSM calculations, a finite HO basis is used,
and the model space is truncated from above by the parameter Ntotmax, which
is the sum of all HO excitations. The highly excited states remain excluded to
make the calculations manageable.

Usually, a different parameter Nmax, which has the following meaning, is intro-
duced. Let us suppose that the nucleons do not interact. In that case, they fill the
nuclear shells in accordance with the Pauli exclusion principle and form an unper-
turbed ground state (GS) in which none of the nucleons are excited. The number
of HO quanta that represent such a state is equal to ∑︁A

i=1 ni = N0 ≤ Ntotmax.
The parameter Nmax then represents the amount of HO excitation energy quanta
that are available to nucleons above the GS, Nmax = Ntotmax − N0. A model
space truncated by Nmax contains configurations that carry all posible excitation
quanta lower or equal to Nmax. A space containing configurations that carry equal
amount of excitation quanta will be denoted by NℏΩ, i.e., a configuration space
characterized by 2ℏΩ contains all configuration that carry two excitation quanta.
Since the parity of the wavefunction must be conserved, for every value Nmax we
consider only even or odd NℏΩ subspaces, i.e., the only possible subspaces are
NmaxℏΩ, (Nmax − 2)ℏΩ, (Nmax − 4)ℏΩ, ..., 1ℏΩ or 0ℏΩ.

For nuclei with A ≤ 4, Nmax = Ntotmax since the nucleons fill only one shell,
the s-shell. For p-shell and higher nuclei, these parameters differ. As an example,
let us take the nucleus 12C, which has the s-shell completely filled with 2 protons
and 2 neutrons, and its p-shell is occupied by the remaining 8 nucleons (Fig. 1.2).
Therefore, there needs to be atleast N0 = 8 HO quanta to describe the 12C GS
and Nmax = Ntotmax − 8. Let us now suppose we have a model space defined by
Nmax = 2, i.e., there is a maximum of two excitation energy quanta available.
They can either excite the p-shell nucleons, moving one of them from the p-shell
to the pf-shell or two of them to the sd-shell or excite the s-shell nucleons, moving
one of them sd-shell or two of them to the p-shell.

1.2.1 The Basis of NCSM
In this section, we discuss the HO basis and different coupling schemes that are
employed in NCSM calculations. One of the problems one faces when trying
to expand the many-body wavefunction into a HO basis is the choice of the

6



0ℏΩ

n = 0

n = 1

n = 2

2ℏΩ

n = 0

n = 1

n = 2

Figure 1.2: Left: The ground state of 12C. Right: One of the possible 2ℏΩ
configurations of 12C.

correct coordinates. One can either work with the Jacobi coordinates, which are
defined relative to the center of mass, or with single-particle coordinates, which
are defined relative to a single point in space. The former does not contain center
of mass motion, but antisymmetrization is difficult. Single-particle states are
easy to antisymmetrize but contain unwanted center of mass motion [7]. In the
following text, we use single-particle states and deal with the factorization of the
center of mass motion in section 1.2.2.

Single-Particle Harmonic Oscillator States

In the HO basis, the wavefunction of a single particle with spin σ and isospin τ
can be expressed in the form

ϕnljmjmt(r,σ, τ , b) = Rnl(r, b)
[︃
Yl

(︃
r

r

)︃
× χ(σ)s

]︃j

mj

χ(τ )tmt , (1.2.3)

where Rnl describes the radial part of the wavefunction and Ylm is a spherical har-
monic that describes the angular dependence. These two functions are obtained
by solving the Schrödinger equation with an isotropic HO potential (1.1.10). The
remaining terms χ(τ )tmt and χ(σ)sms are two-dimensional state vectors that de-
scribe the spin and isospin degrees of freedom. The labels s and t are superfluous
since they are always equal to 1/2 for nucleons and consequently ms,mt = ±1

2 .
Sometimes, protons and neutrons are treated as separate particles, and the isospin
degree of freedom is not needed. Furthermore, in (1.2.3) we have coupled the an-
gular momentum l and spin s into the total momentum j, where [Yl × χs]jmj

is
the tensor product[︃

Yl

(︃
r

r

)︃
× χ(σ)s

]︃j

mj

=
∑︂

m ms

⟨l 1
2 mms|jmj⟩Ylmχ1/2ms (1.2.4)

The parameter b is the oscillator length and its relationship to HO frequency is
given by

b =
√︄

ℏ
mnΩ . (1.2.5)

For the value typically used in NCSM calculations, ℏΩ = 20 MeV, the oscillator
length is equal to b = 1.44 fm.
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The M-scheme

From the single-particle states (1.2.3) antisymmetrized wavefunctions in the form
of Slater determinants (1.1.8) can be constructed. A basis made up of Slater
determinants is known as the Glasgow M -scheme basis [10]. The values of the
total momentum and total isospin projection quantum numbers MJ = ∑︁

i mj,i

and MT = 1
2(Z − N) are good quantum numbers in this basis. One of the

advantages of this basis is that we do not have to deal with complicated couplings
of momenta, which is unavoidable when constructing a basis with J as a good
quantum number.

For a nucleus with J = 0, the model space is comprised of Slater determinants
with MJ = 0, since that is the only possible projection value. When we wish to
describe a nucleus with a higher value of J , we can choose to construct a basis
from determinants with any of the 2J+1 possible MJ values. For example, when
describing a nucleus with J = 2 the optimal choice would be MJ = 2, since this
choice excludes states with J = 0 and J = 1 and leads to the smallest dimension
of the basis.

The construction of an M -scheme basis can be easily understood using a
simple example. Let us suppose that we want to create an M -scheme basis for
6
3Li and our model space is defined by Nmax = 0. The s-shell is filled completely
by 2 protons and 2 neutrons. One neutron and one proton are left over and must
occupy a state in the p3/2 or p1/2 shell, there are therefore 6 available states for
each. Next, let us choose MJ to be equal to 0. Constrained by this condition
and taking the Pauli exclusion principle into account there 10 possible ways to
arrange the nucleons left - the dimension of our basis is 10.

Another major advantage of the M -scheme is that occupation number repre-
sentation can be utilized with great efficiency. A Slater determinant in second-
quantized form can be expressed as

a†
n1l1j1mj1 mt1

...a†
nAlAjAmjA

mtA
|0⟩, (1.2.6)

where a†
nljmjmt

is a particle creation operator that creates a nucleon in state
specified by the n, l, j,mj,mt quantum numbers and |0⟩ is the particle vacuum.
We can then assign a single bit to represent an occupied or an empty state (1 or
0). Using this approach, even an M -scheme basis of considerable dimension can
be stored efficiently in computer memory.

In modern NCSM calculations, the M -schceme basis is largely preferred due to
its computational advantages. The dimension of the M -scheme basis is typically
large, but the Hamiltonian matrix is sparse and its matrix elements can be quickly
evaluated using bit operations.

The J-scheme

Another option is to construct a basis by coupling momenta of individual single-
particle states to a total angular momentum number J , the so-called J−scheme.
For example, a two-particle state in the J-scheme is constructed as(︂

a†
nljmt

× a†
n′l′j′m′

t

)︂
JMJ |0⟩ =

∑︂
mjm′

j

⟨jj′mjm
′
j|JMJ⟩a†

nljmjmt
a†

n′l′j′m′
jm′

t
|0⟩. (1.2.7)
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The two-particle state (1.2.7) can be generalized for A nucleons by coupling ad-
ditional momenta. Sometimes, when the isospin symmetry-breaking due to the
Coulomb force is ignored, the isospins are also coupled into total isospin T and
its projection MT . The Hamiltonian in J-scheme basis is block-diagonal in J
(or in J, T ) and calculations for concrete values of J can be performed within a
single block. The dimensions of the Hamiltonian matrix are therefore smaller in
the J-coupled basis. However, the matrixes are denser, and evaluation is slower.
Another advantage of the J-scheme compared to the M -schceme is the fact that
since J is not a good quantum number in the latter, it can lead to complications
when evaluating matrix elements of operators.

1.2.2 Spurious States and the Center of Mass
Constructing a basis from single particle states violates the translational invari-
ance of the Hamiltonian since by using single particle coordinates ri we have
defined a unique point in space, from which all positions and momenta originate.
This leads to creation of states which are excited with respect to the center of
mass [11]. However, in a HO basis with the Nmax truncation, this problem can
be treated since this basis allows for exact factorization of motion of the center
of mass.

The center-of-mass motion can be described by the Hamiltionan

Hcm = P 2

2mnA
+ 1

2mnAΩ2R2. (1.2.8)

Here, R = 1
A

∑︁A
i=1 ri and P is the center-of-mass momentum. The center-of-mass

states are then classified by the major oscillator quantum number Ncm, and they
form a spectrum with energies Ecm = ℏΩ(Ncm +3/2). The complete Hamiltonian
can be written as

H = Hint +Hcm, (1.2.9)

where Hint is the transliationally invariant Hamiltonian (1.2.1). The many-body
wavefunctions expanded in the Slater determinant basis can then be decomposed
into two parts

ψ(r1, r2, ..., rA) = ψint(ξ1, ξ2, ..., ξA−1) ⊗ ϕcm(R), (1.2.10)

a part that describes the center of mass ϕcm, which is the eigenfunction of Hcm,
and an intrinsic part ψint, the eigenfunction of Hint, that describes the many-body
wavefunction in coordinates relative to the center of mass, the Jacobi coordinates.
This decomposition is possible only in the HO basis [7]. For an A-particle system,
these coordinates are defined as

ξ0 =
√︄

1
A

[r1 + r2 + ...+ rA] (1.2.11)

ξ1 =
√︄

1
2 [r1 − r2] (1.2.12)

ξ2 =
√︄

2
3

[︃1
2(r1 + r2) − r3

]︃
(1.2.13)
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...

ξA−1 =
√︄
A− 1
A

[︃ 1
A− 1(r1 + r2 + ...+ rA−1) − rA

]︃
, (1.2.14)

where the zeroth Jacobi coordinate is proportional to the position of the center
of mass, since ξ0 =

√
AR.

The states with Ncm > 0 are referred to as spurious and it needs to be assured
that they do not mix with ’good’ states that haveNcm = 0. This issue is treated by
utilizing the Gloeckner-Lawson projection method [12], which solves this problem
without the need for a change of basis. The basic procedure is as follows.

The Schrödinger equation is solved with the modified Hamiltonian

H = Hint + β
(︃
Hcm − 3

2ℏΩ
)︃
, (1.2.15)

where depending on the value of β1, the spurious states are shifted upwards in the
spectrum, and the energies of good states are unchanged, as

(︂
Hcm − 3

2ℏΩ
)︂
ϕcm = 0

for Ncm = 0.

1.2.3 Nuclear Interactions
The recent success of ab initio methods can in part be attributed to the progress
made in the construction of realistic nuclear potentials in recent decades. The
fundamental interactions between quarks and gluons are described by the theory
of quantum chromodynanmics (QCD). However, in the low energy spectrum,
which is the main interest of nuclear physics, QCD is non-perturbative. This fact
makes the description of even light nuclei at the QCD level very difficult.

The gap between the fundamental level of quarks, gluons, and nucleons is
bridged by the effective field theory (EFT). In the framework of EFT, one can
construct interactions that are consistent with the symmetries of QCD and that
are expanded in terms of (Q/Λ), where Q is the typical value of momenta of
the system we want to capture and Λ ≈ 1 GeV represents values of momenta at
which the theory breaks down. Nuclear interactions cannot be derived completely
from theoretical models. They are parametrized by low energy constants that are
determined by fits to experimental data [6].

In the third chapter, we use the potential NNLOopt [13], which optimizes
the nuclear force at the next-to-next-to-leading order of EFT at which three-
body forces emerge (Fig. 1.3). The nucleon force of NNLOopt is adjusted to the
binding energies of A = 3 and 4 nuclei.

We also employ the JISP16 [14] potential. The JISP family of potentials is
based on the J-matrix inverse scattering approach, which is used to derive the
inter-nucleon forces. The two-nucleon JISP16 interaction was fitted to reproduce
the binding energies of nucleons with masses A ≤ 16.

To perform ab initio studies of heavier nuclei, the basis size has to be ex-
panded correspondingly, which unavoidably means that highly excited HO states
are included, and the spatial resolution of our wavefunctions is greater. This leads
to the fact that the inter-nucleon interaction is probed at shorter distances where

1We use the value β = 20 in our calculations. Generally, any ’large-enough’ value is sufficient
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Figure 1.3: Pertubation orders of the chiral (i.e. pionful) EFT. Dashed lines
represent exchanges of pions, solid dots represents low-energy constants. Figure
adapted from [6].

it has a strongly repulsive core, and we have to deal with higher momenta, which
are not treated well by our low-energy approach. This problem is especially rele-
vant for potentials that emerge from EFT (’hard-core potentials’), and different
renormalization techniques that supress or decouple high momentum terms [7, 5]
have to be employed. The JISP16 is a soft-core potential, and it has been shown
that it provides good predictions even without renormalization [14].

1.3 Convergence and Extrapolations
In the NCSM we limit our calculations to only a part of the full Hilbert space.
The size of our basis is limited by the Nmax cut-off, as was discussed earlier.
Moreover, our basis depends on the HO frequency ℏΩ. It follows that energies or
operator matrix elements calculated within the NCSM framework will also depend
on these parameters. However, as we expand the size of our model space, it is
reasonable to expect that the calculated values of operator matrix elements will
converge to the ’true’ values one would obtain by solving the Schrödinger equation
in infinite-dimensional space. In practice, we are limited by computing resources
and reasonably good convergence can be achieved only for light nuclei. In order
to obtain meaningful values from the NCSM framework, various techniques that
extrapolate results from limited model spaces and give reasonable estimates of
their errors have to be employed. Some of these techniques will be described in
this section.

A typical dependence of ground state energy on (Nmax, ℏΩ) is shown on figure
1.4. The extrapolation techniques described in [15] exploit the fact that the
convergence appears to be monotonous and one can identify a minimum with
respect to ℏΩ at each and every value of Nmax. The general procedure is to first
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Figure 1.4: Convergence of the binding energy of the ground state of 6Li, Jπ = 1+

and the extrapolated value, calculated with the NNLOopt potential

Figure 1.5: Fits of the binding energies of the ground state of 6Li, Jπ = 1+ at
different values of ℏΩ and the extrapolated value, calculated with the NNLOopt
potential

identify ℏΩ of the minimum for the highest Nmax used. One then selects energies
at one value of ℏΩ below and at three higher, which gives us five data points,
including the minimum. Next, for each of the energies selected in the previous
step, we fit an exponential plus constant to that energy and to three energy values
at the same ℏΩ but at lower values of Nmax. In other words, to the four successive
energy values at constant ℏΩ we fit the exponential

Egs(Nmax) = a exp(−bNmax) + Egs(∞), (1.3.1)

where a, b are free constants and Egs(∞) represents the converged value of energy.
The successive data points are weighed according to

σNmax = Egs(Nmax) − Egs(Nmax − 2) (1.3.2)

and the weight for the data point corresponding to the lowest Nmax is estimated as
three times the weight of the second point. The fitted exponentials for constant
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ℏΩ values should have the same asymptote because Egs at Nmax → ∞ should
be independent of ℏΩ. In practice, however, the asymptotes for different ℏΩ are
spread around a certain value. We take half of this spread as the extrapolation
error. Figure 1.5 shows the exponential dependence of the binding energy of 6Li
ground state on Nmax.

The extrapolation method described above is known as the ’global extrapo-
lation method’ [15] (or ’Extrapolation A’), since by choosing the 5 ℏΩ values we
cover a large range of the calculated data. Another way to find the extrapolated
energy is to fit (1.3.1) to only the three highest Nmax values at a constant ℏΩ.
This extrapolation is referred to as ’Extrapolation B’. We usually choose the ℏΩ at
which the extrapolation is the most stable - the difference between extrapolated
value and the calculated minimum is the lowest.

The procedure described above may seem rather arbitrary, but it was shown
that it reproduces experimental values quite well [15]. Other procedures that
are motivated by EFT exist [16], but the fitted functions have 5 parameters and
therefore require calculations for at least 5 different values Nmax.

1.4 The Symmetry-Adapted NCSM
So far, we have studied the atomic nucleus as a problem of many interacting
particles while largely ignoring the collective degrees of freedom. In the following
sections, we first take a step back to explain some relevant concepts from group
theory on the example of the SO(3) group. We then expand upon it by introducing
the Elliott model, which explains nuclear deformations and rotations in terms
of the SU(3) group. Our goal in this chapter is then the introduction of the
framework of SA-NCSM which utilizes the SU(3) symmetry of nuclei and bridges
the gap between collective descriptions of nuclei and the NCSM.

1.4.1 The SO(3) Group
The SO(3) group is a group of all proper orthogonal rotations (i.e., we exclude
reflections) in three-dimensional space. The operator that rotates a vector by an
angle ϕ can be expressed as

U = exp
(︃

− i

ℏ
ϕn·L

)︃
, (1.4.1)

where n is a unit vector in the direction of the axis of rotation and L =
(Lx, Ly, Lz) is the angular momentum operator. The operators L are therefore
generators of rotations and hence they are generators of the group SO(3). Equiv-
alently, the operators L1±1 = Lx ± iLy together with operator Lz form another
set of generators. The generators satisfy the commutation relations

[Lx, Ly] = iLz,

[Lz, Lx] = iLy, (1.4.2)
[Ly, Lz] = iLx

and they therefore form a Lie algebra.
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The natural basis for the generators od SO(3) group L is labelled as |lm⟩. A
representation of a group can be constructed in the basis of its generators. In the
case of l = 1 the representation would be given by three three-dimensional ma-
trixes comprised of matrix elements ⟨1m|Lx|1m′⟩, ⟨1m|Ly|1m′⟩ and ⟨1m|Lz|1m′⟩.
Here, we have constructed a group representation for a fixed value of l. In gen-
eral, matrix elements ⟨lm|Li|l′m′⟩ do not connect states with different values of
l. Such representation is called an irreducible representation or an irrep. In the
case of SO(3), a single irrep has a dimension of 2l + 1.

It can be easily shown that the quadratic operator L2 commutes with every
generator of the SO(3) group. Such an operator is called a Casimir operator.
The eigenvalue l(l + 1) of the Casimir operator L2 completely labels a single
representation of the SO(3) group. The quantum number m of the generator Lz

then labels the basis states within that representation, which are representations
of the SO(2) group. We have thus constructed the group reduction chain

SO(3) ⊃ SO(2), (1.4.3)
l m

where the SO(2) group describes rotations in a plane and is isomorphic to the
group U(1), the group of the unit circle.

1.4.2 The SU(3) Group
The SU(3) group is a group that describes the symmetry of a three-dimensional
harmonic oscillator [17]. The generators of this group can be written in the form
of spherical tensors as

L10 = −i(C12 − C21), (1.4.4)

L1±1 = 1√
2

((C13 − C31) ± i(C23 − C32)), (1.4.5)

Qa
20 = 2C33 − C11 − C22 (1.4.6)

Qa
2±1 = ∓

√︄
3
2 [(C13 + C31) ± i(C23 + C32)] (1.4.7)

Qa
2±2 =

√︄
3
2 [(C11 + C22) ± i(C21 + C12)] , (1.4.8)

where we define
Ckl = 1

2

A∑︂
i=1

b†
ikbil + bilb

†
ik, (1.4.9)

where k, l = 1, 2, 3 = x, y, z and b
(†)
ik are the harmonic oscillator ladder operators

of the i-th particle, which have the coordinate representation

bik =
√︄
mΩ
2ℏ

(︃
rik − i

mΩpik

)︃
, (1.4.10)

b†
ik =

√︄
mΩ
2ℏ

(︃
rik + i

mΩpik

)︃
. (1.4.11)
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Three of the SU(3) generators are the standard angular momentum operators
and the SO(3) is therefore a subgroup of SU(3). The remaining 5 generators are
known as algebraic quadrupole moments and we will speak of them in more detail
in the following section. The quadratic SU(3) Casimir operator can be written
as [18]

CSU(3) = 4
3Qa·Qa + 1

2L·L. (1.4.12)

This operator indeed commutes with all the above-listed generators, which can be
verified by expressing it in terms of the operators Ckl and using the commutation
relations

[bik, b
†
jl] = δijδkl,

[bik, bjl] = 0, (1.4.13)
[b†

ik, b
†
jl] = 0.

In section 1.4.1, we have been able to construct a natural basis by identifying
irreps of the SO(3) group. The same can be done for the SU(3) group, but in
this case, two labels are needed, usually denoted as λ and µ [17, 19]. We can
construct a chain of group reductions

SU(3) ⊃ SO(3)
⊗ ⊃ SUJ(2) ⊃ U(1)

SUS(2)
(λµ) κ (LS) J MJ

where we have coupled the quantum numbers of total angular momentum L and
total spin S into J by considering the product SU(3)⊗SUS(2). We are already
familiar with the SU(3) and SO(3) groups of this chain but have not yet mentioned
the SU(2) group. This group can be used to describe the rotations of spinors and
total angular momentum vectors. There exists a homomorphism between the
SU(2) and SO(3) groups, each two elements of SU(2) correspond to one element
of SO(3) [3]. A single SU(3)⊗SUS(2) state |ψ⟩ is then labeled as

|ψ⟩ = |(λµ)κ(LS)JMJ⟩, (1.4.14)

where the number κ describes the multiplicity of L within a single SU(3) irrep.
To deal with the fact that the nucleus contain two types of fermions, protons
and neutrons, we can indroduce another degree of freedom into the state 1.4.14,
isospin T and its projection MT . Just like spin, isospin is described by the SU(2)
group. A single SU(3)⊗SUS(2)⊗SUT(2) state |ψ⟩ is therefore described by the
quantum numbers

|ψ⟩ = |(λµ)κ(LS)JMJ ;TMT ⟩. (1.4.15)
Alternatively, one can construct antisymmetric SU(3) irreps separately for pro-
tons and neutrons and then couple them into a total wavefunction

|ψ⟩ = |(λπ µπ)Sπ × (λν µν)Sν ; (λµ)κ(LS)JMJ⟩, (1.4.16)

which is antisymmetric only under the exchange of protons and neutrons. The
above introduced labeling scheme is known as the SU(3) scheme.
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1.4.3 Elliott SU(3) Model
The Elliott model assumes that the shell model residual interaction introduced
in (1.1.2) has a quadrupole character and the Hamiltonian can be written as [18]

H = H0 − χQa · Qa, (1.4.17)

where H0 is the harmonic oscillator Hamiltonian

H0 =
A∑︂

i=1

p2
i

2mn

+ 1
2mnω

2r2
i (1.4.18)

and χ describes the coupling strength. The quadrupole interaction is given by
the product Qa · Qa = ∑︁

q(Qa
2q)†Qa

2q of algebraic quadrupole operators Qa
2q that

are defined in coordinate representation as

Qa
2q =

√︄
4π
5

1
b2

A∑︂
i=1

[︂
r2

i Y2q(r̂i) + b4p2
iY2q(p̂i)

]︂
, (1.4.19)

where the index q is equal to 0,±1,±2 and Y are the usual spherical harmonics
that depend on a unit vector in the direction of momentum or position of the
i-th particle, p̂i or r̂i. It is important to note that this operator differs from the
mass quadrupole operator

Qc
2q =

√︄
16π
5

1
b2

A∑︂
i=1

[︂
r2

i Y2q(r̂i)
]︂

(1.4.20)

by the inclusion of the momentum dependant term. The matrix elements of the
algebraic operator Qa

2q equals to zero for different major oscillator shells n ̸= n′.
This can be easily proved by considering the equations (1.4.6), (1.4.7) and (1.4.8).

The harmonic oscillator Hamiltonian (1.4.18) can be rewritten in terms of Ckl

as
H0 = C11 + C22 + C33 (1.4.21)

and it can be easily verified by using the commutation relations (1.4.13) that for
every k, l

[H0, Ckl] = 0. (1.4.22)

This means that the HO Hamiltonian commutes with each and every generator
of SU(3) and we can label its eigenstates with the SU(3) irrep labels, i.e., the
SU(3) scheme. The labels λ and µ can then be interpreted [17, 19] as

λ = Nz −Nx, (1.4.23)
µ = Nx −Ny, (1.4.24)

where Ni is the total number of oscillator quanta in the i-th cartesian direction.
The quadrupole interaction of the Elliott Hamiltonian can be expressed using

the quadratic Casimir operator of the SU(3) group as

Qa · Qa = 3
4CSU(3) − 3

8L · L (1.4.25)
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and the expectation value of CSU(3) is given by [18]

⟨λµ|CSU(3)|λµ⟩ = 2
3(λ2 + λµ+ µ2 + 3λ+ 3µ). (1.4.26)

For the energies E(λµ)L = ⟨(λµ)L|H|(λµ)L⟩ of the Elliott Hamiltonian we then
obtain

E(λµ)L = N0ℏΩ − 1
2χ(λ2 + λµ+ µ2 + 3(λ+ µ)) + 3

8χL(L+ 1), (1.4.27)

where N0ℏΩ are energies of the HO Hamiltonian. We see that energies within a
single SU(3) irrep are proportional to L(L+ 1). Also, the states with the lowest
energies are states with the maximal value of ⟨CSU(3)⟩.

The SU(3) states of the Elliott model can be interpreted geometrically in
terms of the quadrupole nuclear shape variables β, γ, which were introduced by
A. Bohr and B.R. Mottelson [20]. The parameter β describes the scale of the
deformation and γ the degree of nonaxiality. Their meaning is illustrated in the
figure 1.6. The relationship of the shape variables and SU(3) labels can be derived

Figure 1.6: The nuclear shape variables and related shapes. The parameter β
can be thought of as a radius and γ as the angle of a polar plot. Figure adapted
from [21].

from the relationships of Lie algebras of the Elliott model and the quantum rigid
rotor [22]. The formulae one obtains are

kβ cos γ = 2λ+ µ+ 3
3 , (1.4.28)

kβ sin γ = µ+ 1√
3
, (1.4.29)

where k2 = (5/9π)(A⟨r2⟩) and ⟨r2⟩ is the nuclear mean square radius. The
equations (1.4.28) and (1.4.29) define a map (λ, µ) → (β, γ). It is important to
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note that since λ and µ are representation labels, they must be non-negative and
can be equal to only certain discrete values. This points to a discrepancy between
microscopic and collective nuclear models and places constraints on the shapes a
nucleus is allowed to have.

From (1.4.28) and (1.4.29) we can also deduce the fact that irreps with µ = 0
correspond to prolate shapes and irreps with λ = 0 to oblate shapes. Irreps,
where both labels are zero, describe a spherical nucleus (Fig 1.7).

Figure 1.7: Various collective modes of nuclei and their relationship to the SU(3)
quantum labels λ and µ. Figure adapted from [23].

1.4.4 The Basis of the SA-NCSM
As we have found out earlier, the wavefunctions of the Elliott model can be
constructed only in a single major oscillator shell. The SA-NCSM generalizes the
Elliott model and utilizes the SU(3) scheme in the ab initio framework of the
NCSM. Each of the many-particle basis states is labeled as

|γN(λµ)κL; (SpSn)S; JM⟩, (1.4.30)

where N is total number of HO excitation quanta, Sp (Sn) is the spin of protons
(neutrons) and S is the total spin. The symbol γ represents any additional
quantum numbers, which are needed to distinguish between configurations with
the same N(λµ) and (Sp Sn)S. The center of mass motion can be factored using
the same technique, which we have discussed for the NCSM [8].

The use of the SU(3) basis is very advantageous since it allows to study
collective properties of nuclei in the framework of a microscopic model. We can
select a model space that contains only a few physically relevant states, and
therefore we are able to reach higher values of Nmax than in the standard NCSM
and obtain better-converged results. Furthermore, the dominant states in NℏΩ
shells seem to follow a pattern given by

N + λ0 + 2µ0 = λ+ 2µ, (1.4.31)

where (λ0 µ0) label the dominant state of the 0ℏΩ shell [24]. In practice, we
select a full space for certain N⊥

max, where our choice depends on the mass of the
studied nucleus and available computing power, and then with the help of the
above formula, we try to select a few physically relevant states from spaces higher
than N⊥

max up until N⊤
max. We can therefore characterize our model space by two

numbers ⟨N⊥
max⟩N⊤

max. This kind of model space truncation will be discussed more
in the third chapter, where we will present our results for concrete nuclei.
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2. Beta Decay

2.1 General Description
Nuclear β− decay is a process mediated by the weak interaction, in which the
initial nucleus is transformed into a nucleus with the same mass number A while
the number of protons Z is increased by one

A
Z X → A

Z+1 Y + e− + ν̄e, (2.1.1)

and an electron e− with an electron anti-neutrino ν̄e are emitted. In the β+ decay

A
Z X → A

Z−1 Y + e+ + νe, (2.1.2)
the proton number is decreased by one while a positron e+ and an electron neu-
trino νe are emitted. Beta decay can thus be thought of as the decay of a neutron
or a proton in the nuclear medium. Note that the decay of a free neutron is
possible, but the decay of a free proton is not allowed due to the conservation of
mass.

2.1.1 Fermi and Gammow-Teller Operators
Beta decay is induced by the Fermi and Gammow-Teller operators, which are
the simplest operators that can be constructed so the selection rules of β decay
transitions are reproduced. They are defined as

F± =
A∑︂

k=1
τ±,k (2.1.3)

and
(GT)(±) =

A∑︂
k=1

σkτ±,k, (2.1.4)

respectively [4, 5].
The operator τ− is the isospin lowering operator and is responsible for the

transformation of a neutron into a proton, while τ+ is the isospin raising operator
and is responsible for the opposite transformation p → n. The σk in 2.1.3 is
the Pauli spin operator. It follows that the Fermi operator cannot change the
total isospin of the nucleus but causes it to transition to a nucleus with a different
total isospin projection MT (the proton number Z is changed, while A remains the
same). The Gamow-Teller operator changes not only the isospin projection but
can also change the spin projection of the nucleus. Since σ is a vector operator
(i.e., spherical tensor of rank J0 = 1), it has three spherical components 0,±1
that correspond to a change of total spin ∆S = 0,±1, respectively. Note that
since the Fermi operator consists only of the isospin lowering/raising operator, the
summation can be done explicitly and we get the total isospin lowering/raising
operator

A∑︂
k=1

τ±,k = T±, (2.1.5)

which raises or lowers the isospin projection of the whole nucleus.
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2.1.2 Classifaction of β-decays
Each of the leptons in decays 2.1.1 and 2.1.2 has spin s = 1/2. The difference
between the initial and the final total angular momentum of the nuclear state can
be either ∆J = 0 or ∆J = 1, assuming the emitted leptons are in an s state with
l = 0 and therefore do not carry any angular momentum but spin. Transitions
of this type are called allowed. For ∆J = 0, the transition can be induced by
both Fermi and GT operators. On the other hand, ∆J = 1 transitions can be
induced only by the GT operator. The selection rules of Fermi and Gamow-Teller
transitions are summarized in table 2.1.

Table 2.1: Allowed β-decay selection rules

Transition ∆J πiπf

Fermi 0 +1
GT 1 (Ji = 0 or Jf = 0) +1
GT 0,1 (Ji > 0 and Jf > 0) +1

The half-life of a nucleus is given by the equation

t1/2 = ln 2
Tfi

, (2.1.6)

where Tfi is the decay transition probability. Using Fermi’s golden rule [4], one
can obtain the following expression

t1/2 = K

f0(BF +BGT ) , (2.1.7)

where f0 is the phase-space integral that describes lepton kinematics and the
constant K is given by

K = 2π3ℏ7

m5
ec

4G2
F

, (2.1.8)

where GF is the fundamental coupling constant of the weak interaction. The
reduced Fermi and Gamow-Teller transition probabilities BF and BGT are equal
to

BF = gV

2Ji + 1 |MF |2 , BGT = gA

2Ji + 1 |MGT |2 , (2.1.9)

where gV and gA are constants related to the fundamental coupling constant of
the weak interaction, as will be discussed later in section 2.2.3 and MF (MGT )
are the reduced matrix elements of the Fermi (Gamow-Teller) operator.

Experimental values of beta transitions are usually given in the so-called ’log
ft’ values defined as

log ft = log10(f0t1/2), (2.1.10)
f0 is dimensionless and the half-life is expressed in seconds.

The table 2.2 shows the classification of β-decays according to different values
of log ft. The superallowed β-decays conform to the selection rules discussed
above and occur in light nuclei, where the wavefunction of the nucleus before and
after decay is left almost unchanged. The Fermi and GT transition probabilities
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are highest for this type of decay. Superallowed decays are especially important
as they can be used to look for physics beyond the standard model, as will be
discussed in section 2.2.

The l-forbidden transitions break the ∆l = 0 selection rule but conform to the
other rules. Unfavoured allowed transitions belong to neither of the mentioned
groups. The selection rules are upheld, but the transition is hindered by the
nuclear structure effects.

Table 2.2: Classifaction of β-decays [4].

Transition log ft
superallowed 2.9-3.7

unfavoured allowed 3.8-6.0
l-forbidden allowed ≥5.0

2.1.3 Decay Matrix Elements in Terms of SU(2) Tensors
To calculate probabilities of Fermi and Gamow-Teller transitions, we need to first
derive the formulae for the reduced matrix elements of the respective operators.
We will use the formula

⟨Jf ||T J0||Ji⟩ = 1√
2J0 + 1

∑︂
ab

⟨a||T J0||b⟩⟨Jf ||[a†
a × ãb]J0 ||Ji⟩, (2.1.11)

which holds true for any spherical (SU(2)) one-body tensor operator of rank J0 [4].
Here, |Ji⟩ (|Jf⟩) is the initial (final) wavefunction and a† (ã) is the particle creation
(annihilation) spherical tensor operator. The matrix element ⟨Jf ||[a†

a × ãb]J0||Ji⟩
is usually referred to as the reduced one-body transition density. The index a (b)
is a shorthand for nalajata (nblbjbtb). Applying this expression to (2.1.3) we get

⟨Jf ||
A∑︂

i=1
τ±,a||Ji⟩ = δJi,Jf

∑︂
ab

√︂
tb(tb + 1) −mt,b(mt,b ± 1) ×

× ⟨nalaja||1||nblbjb⟩⟨Jf ||[a†
nalaja

× ãnblbjb
]J0=0||Ji⟩, (2.1.12)

where 1 is the unit operator, t and mt are the isospin and its third component,
and the indexes a, b are the proton, neutron index when β− decay is considered
or the opposite for β+ decay. The square root at the end of the first of line comes
from the matrix element ⟨tamt,a|τ±|tamt,a⟩ and is always equal to one since for
nucleons t = 1

2 and mt = 1
2 (mt = −1

2) for neutrons (protons). The reduced
matrix elements of the unit operator are simply

⟨nalaja||1||nblbjb⟩ = δna,nb
δla,lbδja,jb

√︂
2ja + 1. (2.1.13)

To calculate GT matrix elements, we shall use the formula (96) provided in
[25]

⟨lfsfjf ||σ||lisiji⟩ = (−1)li+si+jf +1δli,lf δsi,sf
×

× 2
√︂
si(si + 1)(2si + 1)(2jf + 1)(2ji + 1)

{︄
si l ji

jf 1 si

}︄
. (2.1.14)
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In our case sf = si = 1
2 , jf = ja and ji = jb. Plugging in these values and using

the fact that the Wigner 6j symbol is invariant under the interchange of the upper
and lower arguments in any of the two columns [25], we get

⟨nalaja||σ||nblbjb⟩ =
√

6(−1)la+ja+ 3
2 δna,nb

δla,lb ×

×
√︂

(2ja + 1)(2jb + 1)
{︄

1
2

1
2 1

ja jb la

}︄
. (2.1.15)

We have obtained the following expressions for the reduced matrix elements
MF of the Fermi operator and for the reduced matrix elements MGT of the
Gammow-Teller operator

MF ≡ δJi,Jf

∑︂
ab

δna,nb
δla,lbδja,jb

√︂
2ja + 1⟨Jf ||[a†

nalaja
× ãnblbjb

]J0=0||Ji⟩,

(2.1.16)

MGT ≡
√

2
∑︂
ab

(−1)la+ja+ 3
2 δna,nb

δla,lb

√︂
(2ja + 1)(2jb + 1) ×

×
{︄

1
2

1
2 1

ja jb la

}︄
⟨Jf ||[a†

nalaja
× ãnblbjb

]J0=1||Ji⟩.

(2.1.17)

2.1.4 Decay Matrix Elements in Terms of SU(3) Tensors
In the previous section, we have derived the Fermi and Gammow-Teller reduced
matrix elements in terms of spherical tensors. However, for them to be compatible
with the SA-NCSM, we need to find their representation in terms of SU(3) tensors.
The reduced transition density matrix element of 2.1.11 can be transformed into
the SU(3) tensor representation using the relation [26]

⟨Jf ||[a†
nalaja

× ãnblbjb
]||Ji⟩ = (−)nb

∑︂
(λ0,µ0)S0κ0L0

ΠjajbL0S0 ×

× ⟨(na 0)la; (0nb)lb||(λ0 µ0)κ0 L0⟩

⎧⎪⎨⎪⎩
la lb L0

1/2 1/2 S0
ja jb J0

⎫⎪⎬⎪⎭ × (2.1.18)

×⟨Jf ||
[︂
a†(na 0) × ã(0 nb)

]︂(λ0 µ0)S0

κ0 L0 J0
||Ji⟩,

where ⟨; ||⟩ is the reduced SU(3) Clebsch-Gordan coefficient that couples different
(λµ) irreps and Πk is the notation for

√
2k + 1. The operators a†

nalaja
and ãnblbjb

are the creation and annihilation spherical tensors, the operators a†(na 0) and ã(0 nb)

are the particle creation and annihilation SU(3) tensors, which create a particle
with spin one-half in the na shell and annihilate a particle with spin one-half in
the nb shell.

To obtain the reduced matrix element MF in terms of SU(3) tensors, we need
to substitute (2.1.4) into (2.1.16). Since the Fermi operator (2.1.3) does not act
on any of the SU(3)⊗SUS(2) quantum numbers the sum in (2.1.4) reduces to a
single term with (λ0 µ0) = (0 0), S0 = 0, L0 = 0 and κ0 = 0. The Wigner 9j
symbol then simplifies into the form⎧⎪⎨⎪⎩

la lb 0
1/2 1/2 0
ja jb 0

⎫⎪⎬⎪⎭ = δjajb
δlalb√︂

2(2la + 1)(2ja + 1)
(2.1.19)
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and for the reduced SU(3) Clebsch-Gordan coefficients we obtain [27]

⟨(n 0)l; (0n)l||(0 0)0 0⟩ =
√

2(−)n

√︄
2l + 1

(n+ 1)(n+ 2) . (2.1.20)

Substituting into (2.1.16), we get

MF = (−)n
∑︂
nlj

2j + 1√︂
(n+ 1)(n+ 2)

⟨Jf ||[a†(n 0) × ã(0 n)](λ0=0 µ0=0)S0=0
κ0=0 L0=0 J0=0 ||Ji⟩. (2.1.21)

The last equation can be further simplified. Since only the numerator 2j + 1
depends explicitly on j, l we can single out the sum ∑︁

lj 2j+ 1, which is equal to

∑︂
lj

2j + 1 =
n∑︂
l

(2l − 1 + 1) + (2l + 1 + 1) =
n∑︂
l

4l + 2, (2.1.22)

where we used the fact that j = l ± 1/2 for nucleons. The sum goes over all
possible values of l, which are odd or even since l = n, n− 2, n− 4, ..., 1 or 0. For
both even or odd values of l, the sum is equal to

n∑︂
l

4l + 2 = (n+ 1)(n+ 2). (2.1.23)

The reduced matrix element of the Fermi operator represented in the SU(3) ten-
sorial form then becomes

MF =
∑︂

n

√︂
(n+ 1)(n+ 2) ⟨Jf ||[a†(n 0) × ã(0 n)](λ0=0 µ0=0)S0=0

κ0=0 L0=0 J0=0 ||Ji⟩. (2.1.24)

We now turn our attention to the GT transition matrix elements. Analogously
to Fermi transitions, the λ0, µ0, L0 and κ0 quantum numbers are equal to 0, but
S0 and J0 are equal to 1. We can thus write the 9j symbol in (2.1.4) as [25]⎧⎪⎨⎪⎩

la lb 0
1/2 1/2 1
ja jb 1

⎫⎪⎬⎪⎭ = (−1)3/2+ja+l√︂
3(2l + 1)

{︄
1/2 1/2 1
ja jb l

}︄
, (2.1.25)

where we have used the fact that angular momentum in a GT transition is con-
served and thus la = lb. Using (2.1.20) and (2.1.17) we can then write

MGT =
∑︂

nljajb

(−)n 2(2ja + 1)(2jb + 1)√︂
(n+ 1)(n+ 2)

{︄
1/2 1/2 1
jb ja l

}︄ {︄
1/2 1/2 1
jb ja l

}︄
×

×⟨Jf ||[a†(n 0) × ã†(0 n)](λ0 µ0)S0
κ0 L0 J0 ||Ji⟩ (2.1.26)

This formula can be further simplified. We first single out the part that does not
depend explicitly on n

n∑︂
ljajb

(2ja + 1)(2jb + 1)
{︄

1/2 1/2 1
jb ja l

}︄ {︄
1/2 1/2 1
jb ja l

}︄
, (2.1.27)
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where ja = l± 1/2, jb = l± 1/2 and we have to account for all possibilities since
for a GT transition ∆J = 0, 1. Writing out the sum explicitly, we get

n∑︂
l

(2l + 2)2
{︄

1/2 1/2 1
l + 1/2 l + 1/2 l

}︄ {︄
1/2 1/2 1

l + 1/2 l + 1/2 l

}︄
+

+ 4l(2l + 2)
{︄

1/2 1/2 1
l − 1/2 l + 1/2 l

}︄ {︄
1/2 1/2 1

l − 1/2 l + 1/2 l

}︄
+ (2.1.28)

+ 4l2
{︄

1/2 1/2 1
l − 1/2 l − 1/2 l

}︄ {︄
1/2 1/2 1

l − 1/2 l − 1/2 l

}︄
,

where we have made use of the symmetries of 6j symbols in the middle row. Using
the algebraic expression for 6j symbols from the table 9.1. in [25], we obtain

{︄
1/2 1/2 1

l + 1/2 l + 1/2 l

}︄
= 1

2

[︄
2(2l + 3)

3(2l + 1)(2l + 2)

]︄ 1
2

, (2.1.29){︄
1/2 1/2 1

l − 1/2 l + 1/2 l

}︄
= (−)2l+1 1√

3
√

2l + 1
, (2.1.30)

{︄
1/2 1/2 1

l − 1/2 l − 1/2 l

}︄
= 1

2

[︄
2(2l − 1)

3(2l)(2l + 1)

]︄ 1
2

. (2.1.31)

Now we can simplify the sum (2.1.27). By plugging (2.1.29) into (2.1.28) we get
n∑︂
l

1
6(2l + 1) ((2l + 2)(2l + 3) + 8l(2l + 2) + 2l(2l − 1)) = (2.1.32)

=
n∑︂
l

1
6(2l + 1)

(︂
6(2l + 1)2

)︂
=

n∑︂
l

2l + 1 = 1
2(n+ 1)(n+ 2), (2.1.33)

where we have recognized that the final sum is just half of the sum we have
already calculated earlier. Hence, for the GT matrix element in the SU(3) tensor
representation, we obtain

MGT =
∑︂

n

√︂
(n+ 1)(n+ 2)⟨Jf ||[a†(n 0) × ã(0 n)](λ0=0 µ0=0)S0=1

κ0=0 L0=0 J0=1 ||Ji⟩. (2.1.34)

Note that the reduced matrix elements (2.1.24) and (2.1.34) have to be multiplied
by the factor

√︂
2Jf + 1 when calculated with the SA-NCSM since its implemen-

tation LSU3Shell [28] uses a convention, where the reduced matrix element in
the Wigner-Eckart theorem is not divided by this factor.

2.2 Physics Beyond The Standard Model
The recent progress in ab initio calculation of atomic nuclei has made it possible
to calculate matrix elements of various operators and observables with very high
accuracy. Due to this fact, ab initio models can be used to test physical theories
in conjunction with nuclear and particle physics experiments. In this section, we
will outline some examples where nuclear ab initio calculations can be used to
look for physics beyond the standard model.
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2.2.1 Search for Tensor and Scalar Currents
Up until the 1950’s all interactions in nature were thought to be parity-conserving,
i.e., invariant to spatial inversion. However, around that time, it was experimen-
tally proven [29] by studying the β decay of 60Co that the weak interaction breaks
this symmetry. It was shown that the leptons emitted during β+ decay are left-
handed, which means that their spin and momentum vectors point in exactly
opposite directions. On the other hand, the anti-leptons emitted in β− decay
are right-handed. This would then imply that the weak interaction Lagrangian
must contain only vector and axial-vector terms with asymmetric contributions
since contributions of other types (scalar, pseudoscalar, or tensor) would produce
leptons that are not strictly left-handed in β+ decays and strictly right-handed
in β− decays. This is known as the vector minus axial-vector (V-A) structure of
the weak force and the Fermi operator and Gamow-Teller operators representing
vector and axial-vector parts of the weak interaction are a direct consequence of
this theory [30].

The Fermi and Gamow-Teller operators that were discussed in the previous
sections are, in reality, only the zeroth order approximation. When one takes the
so-called recoil effects into account, terms proportional to q/mn, where q is the
momentum transfer, must be included in the formulae for MF and MGT . Their
contributions are very small, usually in the order of 1%. Modern experiments can
determine the value of β-decay matrix elements with precision as high as 0.1%.
Therefore even the small recoil effects are significant [31].

Allowed β-decays such as the decay of 8Li into 8Be [32] provide great testing
grounds for these measurements since the impact of the nuclear medium is min-
imized. Precise calculations of Fermi and Gammow-Teller matrix elements and
their recoil corrections in conjunction with modern experiments can offer insight
into the V-A theory of electroweak force and validate the existence of tensor or
scalar interactions proposed by extensions of the standard model [31].

2.2.2 Neutrinoless Double β-decay
The existence of left-handed and right-handed neutrinos described in the previous
section violates both the charge (C) and spatial (P ) symmetry separately, but
the combined CP symmetry would still be conserved, provided the neutrino is a
massless particle. However, currently, it is understood that neutrino has, albeit
extremely small, mass. If the neutrino is not massless, then it has a rest frame
and the projection of spin onto the direction of momentum, its helicity, can not
be used to distinguish between the particle and the anti-particle.

The energy of a massless particle is given by the well-known equation from
special relativity

|E| = cp (2.2.1)

and helicity is given by
h = σ · p

p
. (2.2.2)

Combining these two equations, one obtains only four possibilities: the anti-
neutrino with E < 0 can have positive or negative helicity depending on its spin
projection and the same for a neutrino with E > 0. For a particle with mass,
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different frames of reference exist and the equation (2.2.1) would no longer hold
- the helicity would then depend on the frame of reference.

If the neutrino and its anti-particle do not have different intrinsic helicities,
they could be the same particle. Particles that are their own anti-particles are
known as Majorana particles. In contrast with the standard Dirac particles that
are anti-symmetric under CP inversion (CP = −PC), Majorana particles are
symmetric (CP = PC).

One way to resolve the nature of the neutrino is to observe the neutrinoless
double-β decay. Such decays could occur when the single decay is energetically
impossible, but the double decay into a nucleus with two fewer neutrons is pos-
sible. The scheme of this decay would then be

A
ZX → A

Z+2Y + e−e− + ν̄eν̄e. (2.2.3)
In this process, the anti-neutrino from the first decay could act, if we suppose
it is of the Majorana type, as the starter for the second decay, during which it
would be converted into an electron. We then observe a double β-decay at the
end of which no neutrinos can be detected. There are 35 candidates among the
nuclei for which the double decay is probable [5].

The matrix elements of such a process can be derived and calculated in the
framework of SA-NCSM and insights into the probabilities of neutrinoless double
β-decays can be obtained [23].

2.2.3 The Cabibbo–Kobayashi–Maskawa Matrix
The CKM matrix describes the mixing of quark flavors in processes involving the
electroweak interaction. The matrix can be expressed in the form [33]

V =

⎛⎜⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎟⎠ , (2.2.4)

where for example the Vus term mixes the up and strange quark states, the
Vub term mixes up and bottom quarks and so on. The matrix element Vud is
especially important for us since it is directly related to the constant gV that
was introduced in (2.1.9). The conserved vector current (CVC) hypothesis of the
standard model predicts that the ft-values of superallowed transitions are related
to the fundamental vector coupling constant GV , the value of which is the same
for every transition of this type. The relationship is given by [33]

GV = GFgV Vud = GFVud. (2.2.5)
where GF is the Fermi coupling constant and gV = 1 according to CVC. The
value of the Vud matrix element is usually determined using superallowed β decay
since we want to limit the effects of nuclear structure and the axial-vector current
as much as possible.

The CKM matrix is currently thought to be unitary, although experiments
have not been conclusive yet. Currently, the most precise values for the matrix
elements are [34]

V =

⎛⎜⎝0.97370(14) 0.2245(8) 0.00382(24)
0.221(4) 0.987(11) 0.0410(14)
0.0080(3) 0.0388(11) 1.013(30)

⎞⎟⎠ , (2.2.6)
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The tests of the unitarity of the CKM matrix do not yield any new physics by
themselves, but if the unitary were proved, it could put constraints on new physics
beyond the standard model.
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3. Results
In this chapter, we present results for concrete nuclei. We first discuss the binding
energies of light nuclei from A = 3 to A = 16 calculated with SA-NCSM and their
extrapolations. Next, we discuss the low-lying spectrum of 16N, which is a nucleus
with very closely spaced ground and excited states and can thus serve as a good
benchmark for the accuracy of the ab initio NCSM and the potentials used. The
main focus of this chapter is the calculation of the GT operator matrix elements
within the SA-NCSM framework for selected nuclei.

3.1 Binding Energies
For the very light nuclei, 3H and 3He binding energies for both potentials are in
similar agreement with the experimental value. The dependence of the ground
state binding energies on Nmax and ℏΩ for these nuclei are shown on figures 3.1,
3.2 and 3.3, 3.4. The NNLOopt interaction underbinds 3H and 3He by about 240
and 260 keV, respectively. The JISP16 case is similar, although it underbinds
3H by only 100 keV and 3He by about 50 keV. Since the dimension of the basis
for A = 3 is rather small, we were able to reach Nmax=12, where the energies
are already quite well converged. The variational minima for 3H are −8.161
MeV (NNLOopt), −8.340 MeV (JISP16) and for 3He are −7.400 MeV (NNLOopt),
−7.631 MeV (JISP16).

We used the ’Extrapolation A’ described in the first chapter. The extrapo-
lation technique is the same for every nucleus except 16O and 16N. For the in-
teraction NNLOopt, the selected ℏΩ values are spaced by 2 MeV. For the JISP16
potential, the values were spaced by 2.5 MeV.

For the A = 6 nuclei, 6He and 6Li, the situation is similar. The relevant
dependences are shown on figures 3.5, 1.4 and 3.6, 3.7. The extrapolated values
of binding energies are within 3% of the experimental value and both potentials
underbind the nucleus, NNLOopt, again, more so. In [16] the values for the binding
energy of 6Li were calculated using NCSM with Nmax = 16 and extrapolated
using EFT-based extrapolation techniques. The value the authors obtained is
Egs = 30.55(9) MeV for NNLOopt and Egs = 31.53(2) MeV for JISP16. We see
that although our calculations were performed in a much smaller space, the final
extrapolated agree with each other rather well.

Moving onto the A = 8 nuclei, we have studied the Jπ = 2+ ground state of
8Li and the first excited Jπ = 2+ state of 8Be. The maximum model space size
we were able to achieve in this case is Nmax = 6, which means that to use the
’Extrapolation A’ technique, we had to use the value calculated in the very small
Nmax = 0 space, whose dimension is 17 for 8Be, Jπ = 2+ and 9 for 8Li, Jπ = 2+.
This led to rather large extrapolation errors, which are one order higher than the
errors calculated for A = 6 nuclei. Nevertheless, for the selected A = 8 systems,
the SA-NCSM with both NNLOopt and JISP16 seems to overbind 8Li, which is a
rather loosely bound nucleus made of up 3 protons and 5 neutrons. On the other
hand, it seems to predict the correct binding energies for the even-even nucleus
8Be. The dependences of these nuclei on (Nmax, ℏΩ) are shown on figures 3.8, 3.9
and 3.10, 3.11.
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Lastly, we have studied the ground state of 16N and the 16O first excited
states, Jπ = 3− and Jπ = 1−. The relevant (Nmax, ℏΩ) dependences are shown
on figures 3.12, 3.13, 3.14,3.15, 3.16 and 3.17. All of these states have negative
parity. We have therefore, unlike in the previous positive parity calculations,
used a model space defined by the sequence Nmax = 1, 3, 5, 7..., which describes
negative parity states. Generally, we refer to a model space that coincides with
the parity of the studied nucleus as ’natural’ and as ’unnatural’ when it does not.
All of the calculations in this work were carried out in natural basis spaces. The
maximum Nmax value reached for these nuclei was Nmax = 7. Compared to the
Nmax = 6 case of 8Be, the basis space of 16O, Jπ = 1− is about 41 times larger
(the dimensions are 4 × 105 and 1.6 × 107, respectively). The computations for
Nmax = 6, 7 were carried out on the Frontera supercomputer [35].

In this case, we had to exclude the Nmax = 0 calculations from our extrapola-
tions because the fits were too unstable and could not converge otherwise. The
ℏΩ values used for the extrapolation process also had to be spaced by 1 MeV in
the case of the NNLOopt interaction, since the calculations for Nmax = 6, 7 were
performed in a smaller range. Apart from these differences, the extrapolation
process was the same as for the other nuclei.

We have seen that for nuclei smaller than A = 8, both studied interactions
predict very similar binding energies and the extrapolation errors are also quite
similar. However, for both 16N and 16O, we observe large discrepancies between
the two potentials. For the Jπ = 3− excited state of 16O, NNLOopt overbinds the
real value by about 27±5 MeV. The JISP16 overbinds the same state by about
7±2 MeV but offers much faster convergence and much smaller extrapolation
errors. The situation is the same for the state Jπ = 1−, both potentials overbind
the nucleus. Moreover, the NNLOopt potential predicts wrong ordering of the
states. While it is not apparent from the extrapolated values due to errors,
the variational minimum of 16O, Jπ = 3− and 16O, Jπ = 1− are calculated
as −117.833 MeV and −114.282 MeV, respectively, with the JISP16 potential,
which therefore seems to predict the correct order of the states. It is worth
noting, however, that we are still working within a rather small model space and
it is not unthinkable that for larger values of Nmax, the energies would converge
to the correct order even with the NNLOopt potential.

The binding energies were extrapolated using only three successive values and,
in the case of the NNLOopt interaction, a smaller range of ℏΩ values was used.
Due to these facts, the extrapolation errors for this interaction especially are quite
large. It is therefore very diffucult to draw any concrete conclusions about the
NNLOopt interaction and, ideally, calculations in larger model spaces would be
needed to obtain better results.

Our calculations are summed up in table 3.1.
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Table 3.1: Extrapolated binding energies obtained with the SA-NCSM and ’Ex-
trapolation A’ method compared to experimental values. All values in MeV. The
source of experimental values is [36],[37].

Nucleus, Jπ E (JISP16) E (NNLOopt) E (exp.) Nmax
3He, 1/2+ 7.66(1) 7.44(2) 7.716 12
3H, 1/2+ 8.37(1) 8.19(5) 8.481 12

6Li, 1+ 30.7(3) 30.3(3) 31.993 8
6He, 0+ 28.0(5) 27.2(4) 29.271 8
8Li, 2+ 43(3) 45(6) 41.277 8
8Be, 2+ 55(4) 53.0(2.5) 53.469 6
16N, 2− 129(4) 150(12) 117.97 6
16O, 1− 132(4) 168(14) 120.502 7
16O, 3− 132(3) 152(11) 121.489 7

Figure 3.1: Convergence of the ground state binding energy of 3He and the ex-
trapolated value, calculated with the NNLOopt potential

Figure 3.2: Convergence of the ground state binding energy of 3He and the ex-
trapolated value, calculated with the JISP16 potential
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Figure 3.3: Convergence of the ground state binding energy of 3H and the ex-
trapolated value, calculated with the NNLOopt potential

Figure 3.4: Convergence of the ground state binding energy of 3H and the ex-
trapolated value, calculated with the JISP16 potential

Figure 3.5: Convergence of the ground state binding energy of 6Li and the ex-
trapolated value, calculated with the JISP16 potential
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Figure 3.6: Convergence of the ground state binding energy of 6He and the ex-
trapolated value, calculated with the NNLOopt potential

Figure 3.7: Convergence of the ground state binding energy of 6He and the ex-
trapolated value, calculated with the JISP16 potential

Figure 3.8: Convergence of the ground state binding energy of 8Li and the ex-
trapolated value, calculated with the NNLOopt potential
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Figure 3.9: Convergence of the ground state binding energy of 8Li and the ex-
trapolated value, calculated with the JISP16 potential

Figure 3.10: Convergence of the binding energy of 8Be, Jπ = 2+ and the extrap-
olated value, calculated with the NNLOopt potential

Figure 3.11: Convergence of the binding energy of 8Be, Jπ = 2+ and the extrap-
olated value, calculated with the JISP16 potential
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Figure 3.12: Convergence of the binding energy of 16N, Jπ = 2− and the extrap-
olated value, calculated with the NNLOopt potential

Figure 3.13: Convergence of the binding energy of 16N, Jπ = 2− and the extrap-
olated value, calculated with the JISP16 potential

Figure 3.14: Convergence of the binding energy of 16O, Jπ = 3− and the extrap-
olated value, calculated with the JISP16 potential
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Figure 3.15: Convergence of the binding energy of 16O, Jπ = 3− and the extrap-
olated value, calculated with the NNLOopt potential

Figure 3.16: Convergence of the binding energy of 16O, Jπ = 1− and the extrap-
olated value, calculated with the JISP16 potential

Figure 3.17: Convergence of the binding energy of 16O, Jπ = 1− and the extrap-
olated value, calculated with the NNLOopt potential
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3.2 Low-lying spectrum of 16N
According to experimental data, the nucleus 16N has three low-lying excited states
that are separated by energies of only a little over 100 keV. We carried out an SA-
NCSM calculation of these states with model space defined by Nmax = 4. While
it cannot be expected that the excitation energies would converge close to the
experimental value, we are interested if the interactions predict correct ordering
of the states. The figure 3.18 shows the dependence of the spectrum calculated
with the NNLOopt on ℏΩ. The ordering of the states is dependant on ℏΩ, but at
none of the values does it agree with the experimental data. Just as we stated for
the case of 16O, the order of levels can change with increased model space size.
The case of the spectrum calculated with the JISP16 interaction is similar, Fig.
3.19.

Figure 3.18: Dependence of the low-lying spectrum of 16N on ℏΩ calculated with
the SA-NCSM and the NNLOopt interaction. Source of experimental data is [37].

Figure 3.19: Dependence of the low-lying spectrum of 16N on ℏΩ calculated with
the SA-NCSM and the JISP16 interaction. Source of experimental data is [37].
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3.3 Beta Decay Matrix Elements
One of the problems of nuclear physics is the origin of the so-called ’quenching’ of
the coupling constant gA. Compared to free neutron decay, its value usually needs
to be quenched by a factor of about 0.75 to reproduce the correct experimental
data of nuclear β-decay. In other words - the value of the matrix element MGT is,
in reality, smaller than theory predicts. Currently, the most advanced ab initio
calculations studying GT transitions in nuclei were performed in [38], where the
quenching is attributed to corrections of the GT operator that arise due to two-
body currents and to missing correlations in the wavefunctions. In this section,
we will present our results of the MGT matrix elements calculated with the SA-
NCSM and the NNLOopt, JISP16 interactions and compare them to experimental
data [39].

3.3.1 Convergence of the Gamow-Teller Operator
We have obtained an excellent agreement with experiment for the case of 3H β-
decay with the NNLOopt interaction. The calculation performed in the Nmax= 12
model space seems to be almost fully converged. We have therefore estimated
the final value as 2.318(12), where the spread due to the small dependence on
ℏΩ was taken as the error. We estimate the final value for the JISP16 potential
as 2.339(14). Both values are slightly above the experimental value of 2.317(4).
The dependences of the GT operator on (Nmax,ℏΩ) for tritium decay are shown
on figures 3.20 and 3.21.

The GT transition operator between the heavier, A = 6 nuclei is not well
converged in the Nmax= 8 model space, as can be seen on figures 3.22 and 3.23.
However, notice the scale on the left. The GT operator converges very fast and the
values obtained even in the small Nmax= 2 model space are numerically very close
to the much larger Nmax= 8 and the experimental value. We again estimate the
final value as the minimum obtained with the largest model space and the error
as the spread due to the dependence on ℏΩ. We obtain 2.26(7) for NNLOopt and
2.23(6) for JISP16. The experimental value is 2.174(3). We see that even without
considering any quenching, the SA-NCSM predicts values that are very close to
the experimental ones. The dependences of the GT operator on (Nmax,ℏΩ) are
generally complicated and cannot by extrapolated like the binding energies since
they do not converge exponentially.

Next, we studied the transition from the ground state of 8Li to the Jπ = 2+

first excited state of 8Be. The relevant dependences are shown on figures 3.24 and
3.25. In this case, the results are not converged and calculations within larger
model spaces would have to be made to obtain better results. Nevertheless, we
observe that the curves in (Nmax, ℏΩ) seem to converge for the few smallest ℏΩ
values. This is usually a good indicator of the final value, as can be seen from,
e.g., the decay of 6He calculated with the JISP16 potential, where the values at
ℏΩ =40 to 45 MeV seem to be constant with the increasing Nmax. From this, it
can be estimated that for the NNLOopt interactions, the MGT of the 8Be decay is
around 0.2 and is below the experiment. For JISP16, the converged value seems
to be above the experimental value, but it cannot be estimated.

Lastly, we have attempted to calculate the beta decay of the ground state
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of 16N into the negative parity states of 16O, Jπ = 1− and Jπ = 3− (scheme of
the 16N β-decay is shown on Fig. 3.31). The relevant dependences are shown
on figures 3.26, 3.27 and 3.28 3.29. The matrix elements are not well converged
within the Nmax=7 model space and are impossible to extrapolate due to the
complicated dependences on ℏΩ. The GT matrix element of 16N→16O, Jπ = 1−

calculated with the NNLOopt seems to converge to the value of around 0.32, which
is slightly below the experimental value. The same transition, but calculated with
the JISP16 interaction does not seem to be converged at all.

Figure 3.20: GT transition between the ground states of 3H and 3He calculated
with the SA-NCSM and the NNLOopt interaction. The shaded area represents
the experimental value and its error.

Figure 3.21: GT transition between the ground states of 3H and 3He calculated
with the SA-NCSM and the JISP16 interaction. The shaded area represents the
experimental value and its error.
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Figure 3.22: GT transition between the ground states of 6He and 6Li calculated
with the SA-NCSM and the NNLOopt interaction. The shaded area represents
the experimental value and its error.

Figure 3.23: GT transition between the ground states of 6He and 6Li calculated
with the SA-NCSM and the JISP16 interaction. The shaded area represents the
experimental value and its error.

39



Figure 3.24: GT transition between the ground state of 8Li and the Jπ = 2+ state
of 8Be calculated with the SA-NCSM and the NNLOopt interaction. The shaded
area represents the experimental value and its error.

Figure 3.25: GT transition between the ground state of 8Li and the Jπ = 2+ state
of 8Be calculated with the SA-NCSM and the JISP16 interaction. The shaded
area represents the experimental value and its error.
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Figure 3.26: GT transition between the ground state of 16N and the Jπ = 3−

excited state of 16O calculated with the SA-NCSM and the NNLOopt interaction.
The shaded area represents the experimental value and its error.

Figure 3.27: GT transition between between the ground state of 16N and the
Jπ = 3− excited state of 16O calculated with the SA-NCSM and the JISP16
interaction. The shaded area represents the experimental value and its error.
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Figure 3.28: GT transition between between the ground state of 16N and the
Jπ = 1− excited state of 16Ocalculated with the SA-NCSM and the NNLOopt
interaction. The shaded area represents the experimental value and its error.

Figure 3.29: GT transition between between the ground state of 16N and the
Jπ = 1− excited state of 16O calculated with the SA-NCSM and the JISP16
interaction. The shaded area represents the experimental value and its error.
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3.3.2 Beta Decay in the SA-NCSM
As was already stated in section 2.1.4, neither the Gamow-Teller operator nor the
Fermi operator can change the λ and µ labels of an SU(3) basis state. We would
then expect that the dominant SU(3) irreps describing the state of the parent
nucleus will be dominant also in the model space of the daughter nucleus, except
their total spin should differ by one for a ∆S = 1 transition.

The β− decay of 6He, Jπ = 0+ is rather simple, with only one possible final
state - 6Li, Jπ = 0+ [40]. Figure 3.30 compares the dominant SU(3)⊗SU(2)
irreps (Sp, Sn, S)λµ of these nuclei in the subspaces NℏΩ = 0, 2, 4ℏΩ and 6. We
see that in each subspace, the SU(3) labels λ, µ of the parent nucleus correspond
perfectly to those of the daughter nucleus. Also, notice that the leading irrep in
each successive subspace is given by the formula 1.4.31.

Figure 3.31 shows the decay scheme of 16N, which has many final states of
which we have studied only the allowed transitions into Jπ = 1− and 2− levels of
16O. Their wavefunctions are compared in Figure 3.32. In this case, we do not
find one-to-one correspondence of the most dominant basis states. For example,
the SU(3) irrep (λµ) = (1 0) is with 15.8% the second most dominant basis state
of 16N2– but the highest probable irrep with the same labels has an amplitude
around 10−6 in the wavefunctions of both of the daughter nuclei. The situation is
similar for the decay of 8Li (Fig. 3.33). This decay has only one final state, 8Be,
Jπ = 2+ [41]. We again observe only partial correspondence of the basis spaces.

Figure 3.30: Comparison of the dominant irreps in wavefunctions of the ground
states of 6He and 6Li calculated with the NNLOopt interaction and ℏΩ = 20 MeV,
Nmax=8. Only irreps with amplitude larger than ∼1% are shown.

43



Figure 3.31: Scheme of the 16N2– β decay. Source of the data is [37].

Figure 3.32: Comparison of the dominant irreps in wavefunctions of the ground
state of 16N and its decay products 16O, Jπ = 1−, 3− calculated with the NNLOopt
interaction and ℏΩ = 20 MeV, Nmax=6,7. Only irreps with amplitude larger than
∼1% are shown.
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Figure 3.33: Comparison of the dominant irreps in wavefunctions of 8Be, Jπ = 2+

and its daughter nucleus, the ground state of 8Li, calculated with the NNLOopt
interaction and ℏΩ = 20 MeV, Nmax=6. Only irreps with amplitude larger than
∼1% are shown.

3.3.3 Beta Decay Matrix Elements in Truncated Model
Spaces

One of the biggest advantages of the SA-NCSM is the fact that we can include
only a few irreps with large probability amplitudes in our model space but still
obtain convergence close to the full model space while drastically reducing the
dimension of the basis. In [8], it is shown that this approach is applicable when
calculating quadrupole momenta, B(E2) transition probabilities, nuclear radii,
etc. We are interested in the behavior of the GT operator in truncated model
spaces.

For convenience, we will first work with the small Nmax=2 model spaces of
6He and 6Li. We define a parameter ε as the fraction of the model space used
(i.e., ε=0 is equivalent to the full Nmax=0 and ε = 1 to the full Nmax=2 space).
We have to truncate both the model space of the parent and daughter nucleus;
hence ε will be defined as the sum of dimensions of the truncated model spaces
of both nuclei. Figure 3.34 shows the values of MGT (left) and binding energy E
(right) as functions of ε. The model spaces were truncated by selecting the most
dominant spin triplets first and then adding the rest in accordance with their
decreasing probability amplitude. The binding energy converges as expected -
including the least probable states has only a very small impact on the resulting
value. Unlike the binding energy, the value of the Gammow-Teller reduced ma-
trix element is highly dependent even on states with low probability amplitudes
and its convergence is not monotonous. This would then suggest that the usual
truncation schemes of the SA-NCSM cannot be used in this case.

We have also performed similar calculations for the transition 16N→16O, Jπ =
3− which are shown in Figure 3.35. This time, the model spaces were truncated by
first selecting individual SU(3)⊗SU(2) irreps and later by including whole spin
triplets. The individual irreps were selected in such a way, that they conform
to the selection rules of the GT operator, i.e., only irreps with the same SU(3)
labels and ∆S = 1 were selected. For any other selection, the matrix elements are
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trivially zero. The consequence of this is that the binding energy of 16N on the
left side of the figure 3.35 converges slower than it could, because the irreps were
not necessarily chosen by their decreasing probability amplitude. Again, unlike
the binding energy, the Gamow-Teller operator changes its value significantly by
including even one irrep and there does not seem to be any meaningful way in
which the value calculated in a truncated model space can be related to that
of a full model space. We have also carried out similar calculations with the
JISP16 interaction and different values ℏΩ. This had, however, no impact on the
convergence of the GT operator and obtained dependences on ε were practically
the same as the ones showed in figures 3.34 and 3.35.

Figure 3.34: Left: Convergence of the GT operator between 6He, Jπ = 0+ and
6Li, Jπ = 1+ in the ⟨N⊥

max⟩N⊤
max = ⟨0⟩2 space. Right: Convergence of the binding

energies of 6He, Jπ = 0+ and 6Li, Jπ = 0+ in the ⟨N⊥
max⟩N⊤

max = ⟨0⟩2 subspace.
Both: Calculated with the NNLOopt potential and ℏΩ=20 MeV

Figure 3.35: Left: Convergence of the GT operator between 16N, Jπ = 2− and
16O, Jπ = 3− in the ⟨N⊥

max⟩N⊤
max = ⟨3⟩5 space. Right: Convergence of the

binding energies of 16N, Jπ = 2− and 16O, Jπ = 3− in the ⟨N⊥
max⟩N⊤

max = ⟨3⟩5
space. Both: Calculated with the NNLOopt potential and ℏΩ=20 MeV
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Conclusion
We have studied the binding energies and Gamow-Teller transition matrix ele-
ments of various nuclei with masses A ≤ 16 within the framework of the symmetry
adapted no-core shell model. Except for the lightest A = 3 nuclei, the binding
energies were not well converged in the model spaces used and extrapolation
techniques had to be employed. The extrapolated binding energies of A = 8
and lighter nuclei are in good agreement with the experiment and both employed
interactions, NNLOopt and JISP16, predict very similar values. Based on the
extrapolated values, both potentials seem to overbind the heavier nuclei, 16O and
16N. The JISP16 interaction by about 8 MeV and NNLOopt by about 30 to 40
MeV. However, due to the larger extrapolation errors, especially in the case of
NNLOopt, it is impossible to draw any conclusions.

The Gamow-Teller operator matrix elements of the transitions 3H → 3He and
6He → 6Li converge very quickly and even values calculated in smaller model
spaces, e.g., Nmax=4 or 6, give a very good estimate of the values calculated
in larger model spaces. The values calculated with the SA-NCSM are in very
good agreement with the experiment for both interactions. The convergence of
the Gamow-Teller matrix elements of studied transitions between A = 8 and
A = 16 nuclei is in comparison much slower. Unlike the case of binding energies,
extrapolation techniques could not be used due to the irregular dependence on
model space parameters. We were not able to obtain a final value for these
transitions, calculations in larger model spaces would be needed. Especially, the
behaviour of the transition matrix elements between negative parity 16N and 16O
states has proven to be very problematic. We have observed that the Gamow-
Teller operator is rather sensitive to different interactions, as can be seen in the
case of the 16N → 16O, Jπ = 1− transition, where we have obtained very different
dependences on the model space parameters for the two potentials, NNLOopt and
JISP16.

We have tried to apply the SA-NCSM truncation process to the calculations
of the Gamow-Teller operator. We have observed that this operator is highly
dependent even on irreps that have very low probability amplitudes in the respec-
tive wavefunctions. No reliable way to calculate this operator in model spaces
truncated by selecting SU(3)⊗SU(2) irreps has been found. This would suggest
that for the calculation of the Gamow-Teller matrix elements, we cannot use the
main advantage of the SA-NCSM and we have to consider only complete Nmax
model spaces. That greatly limits the number of nuclei we are able to reach with
reasonable demands on computational resources.
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