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Abstract: In this thesis, we examine two kinds of models of the primary visual

cortex: a deep neural network for system identification and a spiking model

of a cat’s primary visual cortex. Further progress in modelling visual systems

can help us comprehend the brain’s inner workings in greater detail; moreover,

it can help to develop better visual prosthesis or further improve models that

handle visual inputs, such as those used for object classification. We employ

the state-of-the-art deep neural network to predict the responses of the spiking

model when presented with natural stimuli. We demonstrate that by tuning the

hyperparameters, the deep neural network explains approximately 85% of the

explainable variance observed in the responses of the spiking model. That is

significantly more accurate than predictions of real neural responses, suggesting

that real neurons possess certain characteristics not captured in the spiking

model. However, we also argue that the network would not be capable of perfect

predictions even when a large amount of data is provided. We show that the

network encounters notable difficulties in modelling neurons with high noise

and precisely predicting high firing rates. Furthermore, we analyse the network’s

representations by phase, orientation and size tuning. We illustrate that the

modelled receptive fields of most layer IV neurons exhibit orientation and phase

selectivity. Layer II/III neurons demonstrate orientation selectivity and more

varying levels of phase invariance. This observation suggests the predominance

of simple cells in layers IV and the presence of complex cells within layers II/III.

A small number of neurons exhibit observable surround suppression. However,

the neural network has difficulty accurately capturing the precise characteristics

of size tuning.
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Introduction

Despite the constant advances in neuroscience, a significant portion of the brain’s

intricate workings remain not understood. This also applies to the brain’s visual

processing part, which is this thesis’s target. One of the essential milestones

is the ability to accurately predict responses of the relevant neurons based on

given visual stimuli (Carandini et al., 2005). This problem is addressed by system
identification. Further progress in this field might benefit our understanding of

the visual system, help to develop better visual prosthesis, or further improve

models that handle visual inputs, such as those used for object recognition.

Therefore, scientists are trying to develop various models of visual systems

that aim to predict neural responses accurately. There are several ways how

we can approach this task. One of the current prevailing methods is to use a

convolutional neural network (CNN) as a so-called core module to extract features

from visual stimuli (images). And then, these features are processed by a readout

module which predicts the firing rates of individual neurons. These models are

trained using pairs of images and responses of the appropriate neurons. This

data can be obtained by presenting the images to an animal and recording its

neural responses. Such models can achieve prominent results. However, one of

the primary goals is to gain insights into the functioning of real neurons. Given

that the difficulty to interpret the computations of a neural network, it can be

challenging to fulfil this goal with such a model.

There are various other approaches to attaining knowledge about the visual

system apart from system identification. For example, we can imitate the system

based on our knowledge of neuroanatomy and biophysics and then examine

the model’s properties. An implementation of this idea is building a so-called

spiking neural network (SNN). This network is made of spiking models of neurons

designed to mimic an actual neuron’s state. Specifically, they mathematically

describe the changes in the membrane potential of a neuron and predict the time

of spikes of the neurons based on their inputs. The topology and parameters of

this network are decided upon the current knowledge of the brain. Compared

to deep neural networks (DNNs), the computations of SNNs are much more

comparable to the ones of a real brain.
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The core idea of the thesis is to use these two types of models in unison in

order to examine the capabilities and computations of both of them. Specifically,

we are solving the system identification task using the state-of-the-art DNN from

Lurz et al. (2020). The authors demonstrated a prominent performance of this

network when used for the identification of a mouse’s primary visual cortex.

However, we utilise the network to predict the responses generated by a spiking

model of a cat’s primary visual cortex created by Antolík et al. (2018). This model

comprises layer IV and layers II/III neurons of a cat’s primary visual cortex. Our

motivation is to exploit the advantages of using this model compared to a live

animal. For instance, we can generate significantly greater amounts of training

data, and we understand the design of the SNN completely, contrary to a brain.

The goal is to analyse the behaviour of the DNN used for the identification of

the spiking model and to gather insights about the spiking network itself. There

are specific areas that we want to address in the thesis:

1. How well can a neural network predict the responses of the spiking
model? Even the best system identification models are not able to achieve

satisfactory performance when tested with natural visual stimuli. The

state-of-the-art model for prediction of mouse V1 responses explains less

than 50% of explainable variance of the neural responses (Lurz et al., 2020;

Willeke et al., 2022). We want to evaluate this model on our artificial dataset.

If the model achieves perfect accuracy, it hints that something is missing

in the spiking model compared to the actual animal. On the other hand, if

the model can not predict the responses well enough, the neural network

is probably not capable of handling a phenomenon which Antolík et al.

(2018) were able to replicate in their model. Thus, both results might lead

to interesting findings. Furthermore, considering the origin of our data, the

dataset can be significantly larger compared to typical datasets comprising

recordings from live animals. That can help us assess whether the subpar

performance is solely a result of data limitations.

2. Is it possible to transfer the pre-trained CNN core between artificial
and live-animal data? The study conducted by Lurz et al. (2020) demon-

strated that pre-training the CNN core of their model on data from multiple

subjects (mice) resulted in accurate predictions of neural responses from

a distinct subject. We want to examine whether this transfer is possible

between the artificial data from the spiking model and data recorded on

a real animal. However, it is important to acknowledge that the scope of

this experiment is somewhat limited since the spiking model is based on

the primary visual cortex of a cat, while the available real data is obtained

from a mouse.
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3. What mechanics does the deep neural network capture? The spiking

neural network was purposefully designed and subsequently evaluated

under diverse stimulation paradigms to guarantee the manifestation of

multiple properties observed in visual neurons. Knowing these charac-

teristics, we want to determine their presence in the representations of

the deep neural network. In particular, we are interested in exploring the

properties of receptive fields, including orientation selectivity and surround

suppression, which apply to all model neurons. We also aim to investigate

the characteristic of phase invariance, which applies primarily to layer II/III

neurons.

Results and Contributions
Throughout the course of conducting this thesis, we performed numerous ex-

periments intending to gain insights into the system identification deep neural

network (Lurz et al., 2020) and the spiking model of a cat’s primary visual cortex

(Antolík et al., 2018). In this text, we present several interesting findings:

1. We successfully identify approximately 85% of explainable variance
of the artificial neural responses. By extensive tuning of hyperparame-

ters of the model from Lurz et al. (2020), we trained a model that achieves a

fraction of explainable variance explained of roughly 0.85.

2. We analysed several characteristics of neurons and images to assess
what causes the subpar accuracy of some predictions made by the
deep neural network. Particularly, we identified two factors that correlate

with poor predictions of the network: the amount of noise in the neuron’s

responses and the target firing rate of the specific dataset sample. Further-

more, we rule out several characteristics that are currently not influencing

the performance of the model, such as the size and position of the receptive

field, as well as the frequency spectrum of the stimuli.

3. We describe the impact of the number of images and neurons used
to train the system identification network. We determined that higher

counts of both images and neurons positively impact the model’s perfor-

mance. We note that the influence of images is more significant. However,

solely augmenting the dataset would not lead to perfect predictions.

4. We show that using a fixed CNN core pre-trained on mice subjects
performs significantly better than employing a fixed randomly ini-
tialised core when used on the artificial dataset. This result suggests
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that the pre-training captured representations that are general enough to

be beneficial in predictions of the artificial neuron responses. Surprisingly,

when a core pre-trained on the artificial dataset was used for predictions of

mouse responses, the accuracy was comparable to random weights of the

core.

5. We demonstrate that using a goal-driven core module pre-trained
on the ImageNet object classification task leads to reasonably good
predictions. We evaluated EfficientNetV2-S (Tan and Le, 2021) and VGG16

(Simonyan and Zisserman, 2015) as core modules of the system identifica-

tion network on the artificial dataset. These models achieve a fraction of

explainable variance explained of 0.7 and 0.73, respectively.

6. We present that the deep neural network captures several essential
properties of neurons’ receptive fields. To tune the phase, orientation

and size of the receptive fields modelled by the deep neural network, we use

patches of sinusoidal gratings as inputs of the model. Using this approach,

we show that the well-predicted neurons within layer IV exhibit orientation

and phase selectivity. We demonstrate that layers II/III neurons exhibit

orientation preference and varying degrees of phase invariance. Lastly, we

argue that the size tuning properties are not captured accurately in the

DNN.

Organization
This thesis begins by establishing the necessary background knowledge con-

cerning the early visual system in Chapter 1. We describe the path of visual

information from the eyes to the primary visual cortex. Furthermore, we describe

the key characteristics of neurons in the primary visual cortex that are relevant

to this thesis.

In chapter 2, we introduce the field of computational neuroscience, focusing

mainly on system identification and biological models of neurons. We explain the

classical system identification methods and compare them with the utilisation of

deep neural networks, which is the approach employed in this thesis. Addition-

ally, we explain the method called spike-triggered average, a technique used for

characterising linear receptive fields, as we use it to analyse the neurons within

our datasets. We finish the chapter with an introduction to biological models of

neurons. We briefly describe the biophysics of neurons and explain the essentials

of integrate-and-fire models that are the foundation of the spiking network used

in the thesis.
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Moving on to Chapter 3, we delve into the details of the two models we employ

throughout the thesis: the deep neural network for system identification and the

spiking model of a cat’s primary visual cortex. In the last sections of the chapter,

we provide descriptions of the two datasets we use.

Lastly, Chapter 4 is dedicated to all the analyses and experiments we con-

ducted throughout the thesis. Firstly, we provide some insights into the dataset.

Specifically, we analyse the noise in the neural responses and examine the neu-

rons’ linear receptive fields. In the next section, we present a set of experiments

focused on the system identification of the spiking model. Moreover, we analyse

the predictions made by the model, aiming to assess the factors contributing to

subpar predictions. Next, we examine the representations captured by the trained

deep neural network. Specifically, we explore whether the captured receptive

fields possess some typical properties known to be present in the spiking model.

We conclude the chapter with experiments involving transfers of the pre-trained

core module across our two datasets.
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Chapter 1

Early Visual System

Considering that the thesis examines models of a primary visual cortex, let us

first establish the necessary biological background. This chapter serves as an

introduction to the neuroanatomy of a mammalian early visual system. This

area of research is extensive; thus, we only explain the essentials related to the

thesis. For deeper insights and more detailed commentary, please refer to the

introductory books to neuroscience from Bear, Connors, and Paradiso (2016) or

Goebel, Muckli, and Kim (2012).

The simplistic objective of a visual system as a whole is to extract useful

information from the visible light in the environment. The early visual system

stands at the beginning of the process. Refer to Figure 1.1 for an illustration of

its high-level anatomy. The whole system starts with the eyes. In the retina, the

electromagnetic energy is transformed into neural activity. The information then

flows via the optic nerves and through the optic chiasm. Two optic tracts emerge

at the chiasm. The majority of optic tract axons terminate in the lateral geniculate
nucleus (LGN) (Bear, Connors, and Paradiso, 2016, p. 355). The predominant

output of LGN forms optic radiations that finally innervate the primary visual
cortex. Now, we will provide a more detailed description of each part of the early

visual system.

1.1 Eye
One of the key objectives of an eye is to collect electromagnetic radiation from

the environment and project its image on the retina. When the light travels from

the outside world, it first goes through the cornea and the aqueous humour, the

fluid in front of a lens. Then it moves through the lens and the vitreous humour to

eventually reach the retina. All of these elements ensure that the light is refracted

correctly and projected on the retina. See Figure 1.4 for a simplified illustration
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Eye

Optic nerve

Optic chiasm

Optic tract

Lateral geniculate nucleus (LGN)

Optic radiation

Primary visual cortex

Figure 1.1 A diagram of a human’s early visual system. Annotations were added,
and colours were edited in the illustration “Optical pathways” from Servier Medical
Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution
3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).
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Vitreous humor

Retina

Optic nerve

Lens

Aqueous humor

Cornea

Light

Figure 1.2 A diagram of an eye. The illustration is based on “Eye” from Servier
Medical Art. Annotations and the light way were added. Servier Medical Art by
Servier is licensed under a Creative Commons Attribution 3.0 Unported License
(https://creativecommons.org/licenses/by/3.0/).

of an eye.

An eye’s second vital contribution is converting electromagnetic energy into

neural activity. This process is initiated when light reaches the retina’s photore-

ceptors (rods and cones). The photoreceptors influence the membrane potential

of the so-called bipolar and horizontal cells. The bipolar cells then connect to gan-

glia. Both bipolar and ganglia cells posses centre-surround receptive fields (Bear,

Connors, and Paradiso, 2016, p. 321-324). That makes them react to differences of

illumination within a small part of the visual field (see Figure 1.3). The ganglia

axons form the sole neural output from the eyes.

1.2 The Way to Visual Cortex
As the ganglia axons leave the eyes, they form optic nerves. Eventually, the

nerves from both eyes meet and intermingle at the optic chiasm, as illustrated in

Figure 1.1. The information from the retinas’ nasal parts crosses to the brain’s

contralateral part. We call this phenomenon a partial decussation. Two optic

tracts emerge after the decussation. At this point, each tract carries only the

information gathered at the ipsilateral side of the retinas. Hence, the tracts contain

only the information from the contralateral visual hemifields (see Figure 1.4).

The optic tracts terminate mainly in the lateral geniculate nucleus (LGN)
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Neuron's activity:

Stimulus:

ON

OFF

Light

(a) (b) (c)

Figure 1.3 The centre-surround receptive field organisation. This illustration
shows an on-centre variant of a centre-surround receptive field. The inner circle is
an excitatory area, and the surrounding part acts as an inhibitory area. This type of
receptive field is common for LGN or ganglia cells. (a) When we illuminate the ON
region (the centre), the neuron is activated. (b) Symmetrically, when the light hits the
surrounding part, the firing is inhibited. (c) We observe low or no activity when both
areas are illuminated simultaneously.
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in the thalamus. The processing characteristics of LGN neurons are mostly as

straightforward as those of ganglia cells (Piscopo et al., 2013). Accordingly, LGN

serves mainly as a relay of visual information from the retinas to the cortical

areas. However, the majority of LGN input is actually formed by feedback from

V1 and other parts of the brain (Guillery and Sherman, 2002; Bear, Connors, and

Paradiso, 2016). Thanks to this backward pathway, it is possible to modulate the

transfer of information according to the current attentional needs (Guillery and

Sherman, 2002). The predominant receiver of the LGN axons is the primary visual

cortex.

1.3 Primary Visual Cortex

The primary visual cortex corresponds to the Brodmann area 17, often called a

striate cortex or shortened as V1. It is the first stage of a cortical visual pathway.

Therefore, it acts as a gateway to the higher levels of processing that concern

more abstract visual concepts (Ungerleider, 1994; Felleman and Van Essen, 1991).

Hubel and Wiesel (1977) describe two main functions of the primary visual

cortex. First, it is known that the inputs of V1 neurons are arranged in a way that

they respond to short, oriented line segments. Second, the striate cortex is the

first area of the visual system where the information from both eyes is united.

1.3.1 Structure

Like other neocortical areas, the primary visual cortex is divided into six layers,

usually labelled with Roman numerals. Layer I is the outermost, while Layer VI

is the innermost layer. Layer IV is commonly further subdivided into four layers -

IVA, IVB, IVCα, and IVCβ.

In this thesis, we will be primarily concerned with layers II/III and IV. Let

us briefly describe their connectivity. The major part of LGN axons innervates

the layer IVC (Lund, 1988). Layer IVC also receives recurrent input from layer

VI Binzegger, Douglas, and Martin, 2004. The information from layer IV is then

passed to layers II/III, either directly from IVCβ or via layer IVB. All layers II/III

and IV contain horizontal connections between nearby neurons (Buzás et al.,

2006). Additionally, layers II/III neurons also receive input from the intra-layer

connections of neurons with similar receptive field properties (Ts’o, Gilbert, and

Wiesel, 1986). Finally, layer IVB and layers II/III project their axons to other

cortical areas, such as V2, V3, V4, and V5.

13



9 28 1

1

54
3

2

9

6

7

8

5

9 1

5

Figure 1.4 Illustration of retinotopy and visual fields. The illustration, in a very
simplified way, shows how information from different parts of the visual field flows
through the visual pathway. This figure is inspired by Neuroscience (Bear, Connors,
and Paradiso, 2016, p. 343). The base illustration is “Optical pathways” from Servier
Medical Art. Only relevant part of the brain was used, and retinotopy was illustrated.
Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0
Unported License (https://creativecommons.org/licenses/by/3.0/).
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1.3.2 Retinotopy
It has been observed that V1 neurons are organised into several cortical maps

(Hubel and Wiesel, 1977). That is, the neurons neighbouring in the horizontal

plane of V1 show similarities in particular properties. One of the most essential

cortical maps is called retinotopy. The retinotopic organisation of V1 neurons

ensures that nearby cortical neurons process information from retinal cells that

are also close to each other. Thus, a mapping exists between locations in the

retina and areas of the primary visual cortex, as depicted in Figure 1.4 in a very

simplified manner. Note that the mapping may be distorted, and the visual field

is not represented uniformly in the cortex (Hubel and Wiesel, 1977). Specifically,

neurons processing the central part of the receptive field occupy more area of the

striate cortex than the ones handling the peripheral portion of the field (Hubel

and Wiesel, 1977).

1.3.3 Receptive Field
As already suggested, the cells in the retina, LGN and V1 do not respond to the

whole visual field but rather to a small portion. Hubel and Wiesel (1962) define

receptive field as the regions (of the retina or visual field) that can modulate the

firing rate of a specific neuron. In more general terms, we describe the receptive

field as a set of conditions that can influence the neuron’s output. For example,

it is not enough to describe a receptive field of a V1 neuron only in the spatial

dimensions as it is known that some neurons respond differently to various

moving stimuli; therefore, a time dimension is needed as well (Hubel and Wiesel,

1977).

Some receptive fields may be straightforward, e.g. the ones of LGN neurons

or ganglion cells in the retina. They both contain separate inhibitory (OFF) and

excitatory (ON) regions in the form of concentric circles, as illustrated in Figure

1.3 (Hubel and Wiesel, 1961). Light concentrated on the ON region causes the

neuron to fire. On the contrary, when the light hits the OFF area, the neuron

responds by inhibiting the firing. Accordingly, when both regions of the receptive

field are illuminated, the firing rate is very low, or there is no activity.

However, the receptive fields of the striate cortex neurons can be more com-

plicated. For that reason, Hubel and Wiesel (1962) introduced a categorisation of

V1 neurons into two categories based on the properties of their receptive field

(Hubel and Wiesel, 1962). Specifically, they classified receptive fields as simple
if they met all the following: “(1) they were subdivided into distinct excitatory

and inhibitory regions; (2) there was summation within the separate excitatory

and inhibitory parts; (3) there was antagonism between excitatory and inhibitory

regions; and (4) it was possible to predict responses to stationary or moving spots

15



of various shapes from a map of the excitatory and inhibitory areas.” (Hubel and

Wiesel, 1962). If the receptive field does not comply with these criteria, we term

it as complex.

Orientation Preference

The receptive fields of the cells preceding the primary visual cortex exhibit circular

symmetry. That is, if a line stimulus is presented at various orientations, the cells

respond similarly. The neurons of the primary visual cortex act differently under

these conditions as it has been observed that V1 neurons show a preference for

orientation (also called orientation specificity) (Hubel and Wiesel, 1977). In order

to produce a strong response of many V1 neurons, it is not sufficient to present

a circular spot of light as a stimulus. They will produce a stronger response

when a line segment of light is presented at a specific orientation (Hubel and

Wiesel, 1977). Hubel and Wiesel (1977) observed that when the line segment is

misoriented from the preferred direction by more than 10◦ − 20◦
the response

of a neuron from macaque V1 significantly decreases. There is no prevailing

preference for a particular orientation in the V1 neurons. Moreover, not all the

primary visual cortex cells show orientation specificity.

Interestingly, the preference of orientation is also organised into a cortical

map (Hubel and Wiesel, 1977). That is, the immediately neighbouring cells in

the horizontal plane of a specific neuron usually show only a slight variation of

the preferred orientation. By measuring the preference of many neurons across

the horizontal plane, we can construct a map similar to the one in Figure 1.5.

Moreover, the neurons of V1 are arranged into thin cortical columns that share the

same orientation preference as depicted in Figure 1.6. To conclude, the preference

stays for the neurons along the vertical axis but gradually changes along the

horizontal one.

Surround Modulation

The responses of visual cortex neurons are not only influenced by the visual

information directly in their receptive field. It has been demonstrated that a

much broader context can impact the neural responses (Hubel and Wiesel, 1965;

Nurminen and Angelucci, 2014; Angelucci et al., 2017). The phenomenon is called

surround modulation.

In the context of the primary visual cortex, this effect mostly exhibits as

a suppression of firing rate, for instance, when a stimulus is enlarged beyond

the central area of the neuron’s receptive field (Angelucci et al., 2017). This

manifestation is referred to as surround suppression. It was shown that the

strongest effect is achieved when the stimulus parameters in the centre of the
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Figure 1.5 An orientation map of a primary visual cortex. This image shows
an orientation-specificity map of neurons in a tree shrew’s primary visual cortex. The
preferred orientation is coded by colour according to the line segments at the bottom
of the figure. (a) A map corresponding approximately to the striate cortex. (b) The
common features of the map magnified. Adapted from “Orientation Selectivity and
the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex”.

receptive field are similar to those in the surrounding area (Angelucci et al., 2017).

For example, when drifting gratings of the same orientation, frequency, direction

and speed are presented in both areas.

Interestingly, neurons throughout the sensory systems, such as auditory or

olfactory, exhibit variants of surround modulation, suggesting a non-negligible

impact on sensory processing (Angelucci et al., 2017). However, the functional role

of surround suppression in the visual system is still a matter of debate (Angelucci

et al., 2017). Some theories suggest that surround modulation might help in several

visual tasks, such as the detection of object boundaries (Nothdurft, Gallant, and

Van Essen, 2000) or segregation of background and the main figure of the visual

field (Lamme, 1995).

Moreover, the is no consensus on the precise mechanism which causes the

surround suppression (Angelucci et al., 2017). Angelucci et al. (2017) propose that

the effect can be attributed to a mixture of influences from the thalamocortical feed-

forward connections, corticocortical lateral connections, and cortical feedback.
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IVc

Figure 1.6 An illustration of orientation columns of macaque primary visual
cortex. The penetration along the vertical axis on the right shows that the neurons in
the same column share the same orientation preference. The preference in layer IVc is
depicted as circles, as those receptive fields are circularly symmetric. Conversely, the
oblique penetration shows a continuous change of preference. Redrawn based on the
original from “Ferrier Lecture - Functional Architecture of Macaque Monkey Visual
Cortex”(Hubel and Wiesel, 1977).
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Simple Cells Receptive Field

It is possible to precisely approximate the spatial receptive field of a simple cell

by a 2D spatial linear filter. A 2D Gabor filter has been demonstrated to be

particularly effective in achieving this approximation (Marĉelja, 1980; Jones and

Palmer, 1987). This filter can be constructed by multiplying a sinusoidal plane

wave by an elliptic Gaussian function as illustrated in Figure 1.7. The advantage

of the filter is that it captures both the spatial location and the spatial frequency of

the receptive field. Note that the same filters are often used in image processing

for features extraction, edge detection, texture segmentation and more (Fogel and

Sagi, 1989; Jain and Farrokhnia, 1990; Zalama et al., 2014).

Complex Cells Receptive Field

In comparison to simple cells, much less is known about the function of complex

cells (Carandini, 2006). The responses of complex cells cannot be accurately

modelled by a linear model (Carandini, 2006). Movshon, Thompson, and Tolhurst

(1978) propose and evaluate an explanation of complex cells by a so-called subunit

model. According to this model, the receptive field of a complex cell is composed

of several subunits that are non-linearly aggregated together, as illustrated in

Figure 1.8. A single subunit might correspond to a receptive field of a simple

cell (Carandini, 2006). This model explains some general characteristics of these

neurons (Movshon, Thompson, and Tolhurst, 1978). Among other properties,

Movshon, Thompson, and Tolhurst (1978) demonstrate that complex cells are

mostly phase-invariant. Specifically, these neurons exhibit similar responses to

stationary sinusoidal gratings, regardless of their phase.
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Figure 1.7 The construction of a 2D Gabor Filter. A 2D Gabor filter can be
obtained by multiplication of a sinusoidal plane wave by a 2D elliptic Gaussian.
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+ ResponseImage

Figure 1.8 The subunit model of a complex cell. The stimulus is first linearly
filtered using several simple receptive fields. Subsequently, the outputs are rectified
and aggregated. Figure from Carandini (2006)
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Chapter 2

Computational neuroscience

Computational neuroscience is a scientific field that employs mathematical theo-

ries and computer science techniques to understand the nervous system (Dayan

and Abbott, 2001). The emergence of this approach was very natural as we need a

reasonable way to analyse and describe the system. Moreover, the advancements

in measuring neural activity allow us to collect more data. That enables us to use

more complex and data-demanding approaches like deep learning.

A common strategy utilised in computational neuroscience is modelling.

Dayan and Abbott (2001) define three categories of models: descriptive, mecha-
nistic and interpretative. Descriptive methods try to summarise the function of

neurons in an accurate and condensed way. An example of such a model might be

a mathematical description of a receptive field of a particular neuron. Mechanistic

models, on the other hand, try to answer how the neuron or group of neurons

operate. An instance of such a model might describe a neural circuit’s anatomical

and physiological properties. Finally, interpretative models are made to help

us understand why the neurons work the way they do. This model could, for

example, demonstrate that LGN neurons possess specific receptive fields because

they efficiently code certain visual features.

In this thesis, we work with representatives of descriptive and mechanistic

models. Specifically, we use a deep neural network to solve the system identifica-

tion problem. This model is descriptive as it only tries to describe the observed

function of the neurons mathematically. However, the inner workings of the

artificial neural network do not resemble the ones of an actual brain. On the other

hand, the spiking neural model that we use was created to mimic the actual visual

cortex (Antolík et al., 2018). Despite the necessary simplifications that were made

to build the network, it fits the definition of a mechanistic model.

In the following sections, we describe computational neuroscience areas

closely related to this thesis. First, we elaborate on system identification, which

focuses on predicting neurons’ activity based on their inputs. Subsequently, we
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introduce the spike-triggered average method, a specific technique for estimating

neurons’ linear receptive field. Ultimately, we describe the foundations of spiking
models of neurons.

2.1 System Identification of the Visual System
As Carandini et al. (2005) state, knowing how neurons respond to arbitrary visual

stimuli is a necessary condition for understanding how the visual system works.

And exactly this is the goal of system identification - prediction of neural activity

based on presented stimuli. This approach does not necessarily strive for an

interpretable nor mechanistically accurate model; however, it might be beneficial

for getting better insights into the modelled system (Butts, 2019). Unsurprisingly,

interpretability and accuracy often constitute a trade-off (Butts, 2019).

2.1.1 The Problem
We will first define the system identification problem in vision more formally.

Specifically, we define y = f(s), where f is the function of a neuron which maps

the stimulus s to a response y. System identification aims to find a mathematical

description of the function f . To find this description, we use experimental data in

the form of stimulus-response pairs. We will provide a more detailed explanation

for each component of the equation.

The Stimulus

Let us first focus on the stimulus. It is usually mathematically described by a

vector, matrix or tensor, depending on the real-life stimulus used during the

experiments. Similarly to describing a receptive field, the visual stimulus might

be defined in time and space. However, it is again common to define the stimulus

only as an image (part of a visual field) at one specific point in time. We can also

model a function of a neuron with a more straightforward (even scalar) description

of a stimulus, such as an orientation of a light bar. Alternatively, it is also possible

to incorporate additional information to enhance the visual stimulus, like the

animal’s behavioural state, such as pupil dilation or eye movement (Willeke et al.,

2022).

Hubel and Wiesel (1962) used highly constrained stimuli in their experiments,

such as light bars or points of light. However, such stimuli are too simple to

unveil the function of more complicated neurons. Another common choice for

stimuli is white-noise (Chichilnisky, 2001; Willmore and Smyth, 2003). That is an

image whose pixels have random values independent of each other. Considering
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uniform white noise, this class of stimuli covers all the possible visual stimuli

uniformly (i.e. every possible image of a predefined size is sampled with the same

probability). However, natural stimuli do not cover this space uniformly; thus, it

is unlikely to spot a natural image in white-noise stimuli (Field, 1994). Therefore,

we might not be able to identify the function of some neurons that are selective to

more sophisticated conditions, as those conditions will probably not appear in the

white-noise dataset. To overcome these problems, we can constrain the stimuli by

having the already suggested assumption about the neurons. We can assume that

the neurons evolved in a way to understand the natural environment (Simoncelli

and Olshausen, 2001; Hyvärinen, 2010). Thus, natural stimuli are another frequent

choice of input (Lurz et al., 2020; Cadena et al., 2019a; Antolík et al., 2016). This

way, the size of the stimuli space is reasonably constrained. Moreover, we also

expect that it contains enough complexity to identify the selectivity of neurons

in higher visual areas. In contrast to white noise, the pixels of natural stimuli can

be highly correlated. Hence, we might need to adapt our techniques to avoid bias

(Willmore and Smyth, 2003).

The Response

Neurons transfer information using action potentials, often called spikes. Thus,

predicting the response of a neuron is equivalent to predicting the spikes generated

by the neuron following the presentation of stimuli. The action potentials may

vary in shape, amplitude or duration (Dayan and Abbott, 2001, p. 8). However, for

the purpose of system identification, we consider all spikes identical and analyse

only their count (Dayan and Abbott, 2001, p. 8). This quantity is usually called

firing rate. Specifically, we will use the term firing rate solely in the meaning of

less ambiguous term spike-count rate, which is the number of recorded spikes

divided by the duration of the measurement (Dayan and Abbott, 2001, p. 9).

The Mapping Function

As we are familiar with the inputs and the outputs, let us examine the function

f itself. Our goal is to derive the function from the observed experimental data.

However, the experimental samples cover all the possible inputs very sparsely.

That is why we usually assume a specific mathematical form of the function and

then tune its parameters utilising the experimental results (Butts, 2019). Butts

(2019) declare three aspects to consider when choosing the mathematical form:

(1) how easy it is to tune the parameters, (2) the performance of the resulting

model, and (3) what insights into the neuron’s computation do we get when using

the specific model. We will see some possible model choices in the following

subsections.
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2.1.2 MAP Framework
As already suggested, the goal of system identification is to find a constrained

mathematical form of a neuron’s function. In other words, the objective is to find

its most probable model. Historically, there were many approaches how to obtain

such models (Chichilnisky, 2001; Antolík et al., 2016; Cadena et al., 2019a; Lurz

et al., 2020). Currently, the majority of those techniques are described using the

maximum a posteriori framework (MAP) (Butts, 2019; Wu, David, and Gallant,

2006). Within this subsection, we outline the fundamentals of this framework.

Due to the possible complexity of neural computations and limited data, we

often need to make additional assumptions about the target function. MAP

estimation allows us to do that by including prior knowledge about the system

in the parameter search. Particularly, we use the MAP framework to find the

best model from a specific model class under the assumption of a particular noise
distribution and a prior which determines the plausibility of a model (Wu, David,

and Gallant, 2006).

In order to use the framework, we need a dataset made of stimulus-response

pairs (si, yi). Let S be the list of N stimuli, and let Y be the list of the corre-

sponding responses. Then, we want to find such parameters θ that are the most

probable given the observed data. That can be written in the following fashion.

θMAP = argmaxθp(θ|Y ∩ S) (1)= argmaxθ

p(θ ∩ Y ∩ S)
p(Y ∩ S)

(2)= argmaxθ

p(Y |θ ∩ S) · p(S ∩ θ)
p(Y ∩ S)

(3)= argmaxθ

p(Y |θ ∩ S) · p(S|θ) · p(θ)
p(Y ∩ S)

(4)= argmaxθ

[︂
p(Y |θ ∩ S) · p(θ)

]︂
(5)= argmaxθ

[︂
log p(Y |θ ∩ S) + log p(θ)

]︂
(6)= argminθ

[︂
−

N∑︂
i=1

log p(yi|si ∩ θ)⏞ ⏟⏟ ⏞
Negative log-likelihood

(Loss function)

− log p(θ)⏞ ⏟⏟ ⏞
Negative log-prior

(Regularizer)

]︂

(2.1)

The first three equalities hold from elemental properties of probability. Note

that the denominator stays the same for all the parameters θ; thus, we can remove

it as we only search for the point of maximal value. Moreover, it holds that
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p(S|θ) = p(S), which also stays the same for all the choices of parameters. By

removing these two elements, we obtain the fourth equality. We retrieve the fifth

line simply by applying the logarithm function on both terms. This operation,

again, does not change the point of maximal value. Finally, we can transform the

maximisation into minimisation and sum the log probabilities for each dataset

sample. Through this modification, we obtain two terms: the loss function in

the form of negative log-likelihood; and the regulariser in the form of negative

log-prior.

The likelihood term p(yi|si ∩θ) describes how well the model with parameters

θ predicts the response to the stimulus si. To estimate the value of this term, we

assume a specific noise distribution of the data. This distribution then determines

the loss function, which controls the penalisation of a specific prediction given

the actual response (Wu, David, and Gallant, 2006). For example, we can assume

that the noise is Gaussian; in that case, we would use a square loss function. For

firing rate prediction, the Poisson noise distribution is often assumed (Wu, David,

and Gallant, 2006; Butts, 2019). The corresponding Poisson loss function is the

following:

L(fθ(si), yi) = − log p(yi|si ∩ θ) = fθ(si) − yi log fθ(si), (2.2)

where fθ is the evaluated model with parameters θ.

The term p(θ) corresponds to the prior. It integrates the plausibility of par-

ticular parameter choices independently of the observed data. The prior further

restricts the model in addition to the experimental data. One of the experimenter’s

challenges is to find the optimal balance (in the form of weights) between the

likelihood and the prior terms. When the dataset is large enough, the benefit of

the prior penalty is negligible as the data sufficiently constrain the model. On

the contrary, it might even harm the model’s performance in this case. Therefore,

cross-validation is often used to determine the suitable weights.

The MAP framework can be used to describe most of the statistical models

utilised for system identification. Notice that when no assumption about the

probability of parameters is made, the MAP estimation is equivalent to maximising

the likelihood of the data. The rest of this section is dedicated to the popular

model classes that are used for system identification.

2.1.3 The Classical Approach
This subsection presents classical approaches to system identification that have

been used throughout history. They are characterised by greater transparency

compared to the currently popular deep neural networks. However, they are often

not powerful enough to accurately predict responses of neurons with complex
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receptive fields (Cadena et al., 2019a).

Linear Models

The most straightforward method for approximating neural responses is using

a linear filter. Given a multi-dimensional stimulus s ∈ Rd
, the corresponding

response can be estimated using a weighted sum as follows:

f̂(s)linear =
d∑︂

i=1
βi · si = β · s. (2.3)

Each weight βi indicates how much the particular dimension affects the neural

response. Evidently, such estimator has very limited predictive power; however,

it has a very clear interpretation. For example, when the stimulus s is an image,

the weight vector β can also be interpreted as an image. Thus, we can plot the

weights and interpret the visualised filter.

Non-linear Methods

Using only the linear filters would be very limiting, as it has been observed

that the neural responses exhibit non-linear behaviour (Hubel and Wiesel, 1977).

Moreover, the output of the linear model is unbounded and may be negative. We

can extend the simple linear model by wrapping the result with one non-linear

one-dimensional function:

f̂(s)LN = F

(︄
d∑︂

i=1
βi · si

)︄
= F (β · s). (2.4)

This model is called the linear-non-linear (LN) model. The LN models retain great

interpretability as the linear filter and the non-linearity can be easily separated.

Observe that solely the output is scaled using a non-linear function F . This

function can be learned or fixed, and it is usually non-negative when predicting

the firing rate. The individual dimensions are still weighted using linear weights.

Therefore, such a model is not capable of capturing non-linear feature selectivity.

LN models were historically very popular for the prediction of visual neuron

responses. They were especially effective for firing rate estimation of neurons in

the retina, LGN and simple cells in the primary visual cortex (Butts, 2019).

Note that even these simple models can take into account other observed mea-

surements in addition to the visual stimuli. We can enhance the stimuli by other

dimensions, such as the neuron’s past firing rate, firing rates of other neurons or

certain behavioural features like pupil diameter (Butts, 2019). These supplemen-

tary dimensions can then be linearly weighted together with the primary visual

features.
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The neural response might depend on a combination of features; thus, we

need a model that can capture these dependencies. One possible approach is to

use a generalised LN model which uses a multi-dimensional non-linear function

and multiple linear filters:

f̂
GLN

(s) = Fk(B1 · s, B2 · s, . . . , Bk · s). (2.5)

Bi corresponds to a singular linear filter and Fk is a k-dimensional non-linear

function. In other words, this model allows capturing multiple linear filters and

weighting them using a non-linear function. This operation can also be viewed as

projecting the stimulus into a subspace of a lower dimension and then applying

the non-linearity.

Another extension of the LN model is the so-called LNLN cascade. This

technique applies a non-linear function on a linear combination of several LN

models (subunits). The following equation describes the model:

f̂
LNLN

(s) = F

(︄
n∑︂

i=1
wi · f̂LNi

(s)
)︄

, (2.6)

where F stands for the final one-dimensional non-linear function, n is the num-

ber of subunits and f̂LNi
stands for a single LN model which is weighted by a

coefficient wi. Again, all the non-linearities can be fitted, but they are usually

fixed as, for example, rectified linear unit, quadratic function or sigmoid. It is

easy to notice that this model can be interpreted as a specific instance of a neural

network. Consequently, it can be shown that the LNLN cascade can accurately

approximate any non-linear function if enough subunits are used (Cybenkot,

1989; Hornik, 1991).

2.1.4 Deep Learning for System Identification
LN models and LNLN cascades have historically been important baseline models

of V1. However, they fail to capture more complex non-linear receptive fields.

This deficiency is especially noticeable when presenting natural stimuli and when

modelling higher stages of the visual hierarchy (Cadena et al., 2019a; Klindt et al.,

2018). The advances in measuring large populations of neurons and the successes

of deep learning in various domains stimulated the use of neural networks in

system identification (Kindel, Christensen, and Zylberberg, 2017; Klindt et al.,

2018). Thanks to that, the models are significantly more accurate and are able to

predict the responses to more complex stimuli (Cadena et al., 2019a; Lurz et al.,

2020). However, the predictive power of neural networks comes with several

disadvantages, particularly their troublesome interpretability and data-demanding

nature (Benjamin et al., 2018; Kriegeskorte, 2015).
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In this subsection, we briefly review currently used methods and describe the

most essential characteristics of utilising deep learning for system identification.

To learn in greater detail about the motivations and techniques of modelling

biological systems using deep learning, we refer the readers to the valuable

review from Kriegeskorte (2015) about the state of the field as of 2015.

Architectures

In the great variety of neural network architectures, convolutional neural net-

works (CNNs) were proven to be an adequate choice for visual system modelling

(Lurz et al., 2020; Cadena et al., 2019a). This is not surprising as CNNs are used

for solving many visual tasks such as object detection or image segmentation,

and they often achieve super-human performance (Russakovsky et al., 2015; Tan

and Le, 2021). Moreover, the representations captured by the layers of CNN,

which was trained for object detection, exhibited similarities to various stages of

the biological visual processing (Khaligh-Razavi and Kriegeskorte, 2014; Lindsay,

2021). Nonetheless, it is important to acknowledge that the majority of networks

used for visual system identification are feed-forward. That is, the computation

of the network is strictly serial, despite the recurrent connectivity of the neurons

in the brain.

As already stated, deep neural networks can be very data-demanding, and the

amount of training data is limited by the measurements on animals. This problem

is addressed by fitting the neural network for many neurons simultaneously

(Antolík et al., 2016; Lurz et al., 2020). Specifically, most of the current models

have a shared component (sometimes referred to as core) that is trained using data

from all the neurons available. This shared core can be implemented, for example,

as a CNN. Then another module of the network is needed for the prediction of

responses for particular neurons. This module is called a readout, and its most

straightforward implementation is a weighted sum of the outputs from the core.

This specific implementation, however, introduces many parameters for each

neuron in the dataset. Smarter readouts with fewer parameters were invented

based on the idea that the majority of neurons perform similar computation only

in different regions of the visual field (Klindt et al., 2018; Lurz et al., 2020). Thanks

to this realisation, a more effective readout layer can be made from two operations:

prediction of the receptive field position and processing only the features that

correspond to this position. The separation of the shared feature space and the

readout leads to richer features learned and less data needed for more accurate

predictions.
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Goal-driven Networks and Transfer Learning

So far, we have considered fitting the models only directly on the stimulus-

response pairs. However, as in other branches of deep learning, we can exploit

pre-training and transfer learning. That is, training the network on a different

but related task and then employing this model (with appropriate modifications)

for our original objective. This technique can be advantageous because obtaining

neural data can be quite demanding. When an appropriate goal is chosen, the

model can be fitted with significantly more training data, which can result in

better inner representations and performance. In computational neuroscience, this

approach is called goal-driven in opposition to the standard data-driven approach.

Currently, the standard method is to use a CNN trained for the task of image

classification as the core module (Cadena et al., 2019a). A readout model that takes

the features of the CNN as its input is then fitted using the standard stimulus-

response dataset. The core can be optionally also fine-tuned. Depending on which

area of the visual cortex is modelled, we can use different levels of the CNN as

the core. For instance, when modelling V1, it would probably be better to use

one of the first layers of the CNN, whereas the higher stages of visual processing

would probably require using deeper layers (Butts, 2019). Refer to Figure 2.1 for a

diagram of a goal-driven model.

One challenge of using goal-driven networks is specifying precise goals and

providing relevant training data. As stated above, the object recognition goal is

often chosen. However, it might not be sufficient to use this goal only as some

neurons might be contributing to a very different objective. And thus, important

features for some neurons might not be present in the pre-trained shared feature

space. For example, Cadena et al. (2019b) show that a specific CNN trained

on object recognition reaches a similar performance as the same network with

random weights when predicting the responses of the mouse’s primary visual

cortex. Therefore, object recognition might not be the principal goal of the mouse

visual system.

Interpretability and Gaining Insights

The use of deep neural networks for system identification is often criticised for

the challenging interpretability (Kriegeskorte, 2015; Benjamin et al., 2018). One

could argue that this approach is replacing one black-box model with another and

therefore providing no relevant insights. Let us present some arguments made in

favour of using DNNs in the context of system identification.

Firstly, the capability of a complex neural network to perfectly predict neural

responses implies that the network captured all the necessary biological com-

putations. In a deep neural network, these computations are captured at a very
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Goal-driven CNN

Selected Layer

Position
Estimator

Coordinates for the
specific neuron

Spike-count rate

Readout

Figure 2.1 An example of a goal-driven network for identification of a visual
system. First, the CNN is trained on a different task, such as object recognition. The
experimenter then selects a specific layer of the pre-trained network to be the layer
of features. This layer is the input to the readout module, which extracts relevant
information from the features, e.g., by predicting the receptive field position for the
specific neuron. Finally, the extracted features are transformed into the firing rate
prediction.
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low level of description. Nonetheless, having this perfect predictor would enable

the scientists to perform better in silico experiments with the goal of extracting

higher-level descriptions (Kriegeskorte, 2015; Lurz et al., 2020).

Kriegeskorte (2015) further argues that using such complex models like deep

neural networks might be necessary to capture the neural inner workings properly.

The classical approach to modelling or other approaches that would give us a

concise description of the systems might not be sufficient when it comes to

complex biological systems.

Moreover, interpretability might be wrongly interchanged with the trans-

parency of a model. Lipton (2018) presents two areas of interpretability: trans-

parency and post hoc interpretability. Transparency denotes how easy it is to

understand how a model works. For example, how complicated it would be to

manually predict a response step-by-step given the model parameters and the

inputs. It can also describe how intuitive each part of the computations is or how

complex the fitting algorithm is. On the other hand, post hoc interpretability is a

specific approach to exploiting the fitted model for gathering insights. This can

be done, for instance, by inspecting the inner representations or visualisations

of examples. Lipton (2018) actually suggests that “linear models are not strictly

more interpretable than deep neural networks”.

Finally, Benjamin et al. (2018) assert that the generalised linear models can

be, in fact, difficult to interpret when used for modelling higher areas of visual

systems. Moreover, he suggests that many scientific questions about a neural

system can be answered solely by exploiting post hoc interpretability. For example,

we can use this approach to examine the relevance of a specific input just by

comparing the relative performance of the model.

To conclude, using deep learning techniques for system identification can

undoubtedly be beneficial despite the deficient transparency of the models.

2.1.5 Performance Evaluation

There is currently no consensus on what measure should be used for determining

goodness of fit of neural system identification models (Pospisil and Bair, 2021;

Carandini et al., 2005). In this subsection, we introduce several metrics and

describe their attributes. In order to understand why it is challenging to select a

suitable metric, we first describe the correlation coefficient and the coefficient

of determination. Subsequently, we define specialised metrics created with the

intention of overcoming some disadvantages of the two basic metrics.
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Correlation

Correlation, in our case more precisely called sample Pearson’s correlation coef-

ficient, expresses the extent of linear correlation between two sets of data. We

define corrŷy (often also referred to as r) for one neuron as a correlation between

the model outputs ŷ and the true responses y as follows:

corrŷy =
∑︁m

i=1(ŷi − µŷ)(yi − µy)√︂∑︁m
i=1(ŷi − µŷ)2

√︂∑︁m
i=1(yi − µy)2

, (2.7)

where m is the number of stimuli in the dataset, ŷi is the model’s output for i-th
image and µŷ is the sample mean of ŷ. Analogously, yi denotes the neuron’s true

response to i-th stimulus, and µy is the mean of all the neuron’s responses.

Recall that the value of corr lies in the interval [−1, 1]. The value 0 indicates

no linear correlation; conversely, 1 and −1 indicate perfect linear correlation.

However, there is no simple intuition on the scale of the correlation coefficient

(Puth, Neuhäuser, and Ruxton, 2014). Thus, it might be confusing to compare two

models using this measure. Another disadvantage is the lack of consideration

for trial-to-trial variance, i.e. the changes in neuron responses when repeating

an experiment with the same stimulus. Nonetheless, correlation can be a useful

metric to report during the training of a model because it does not require repeated

trials (those are usually present only in the test dataset).

Coefficient of Determination

Related to the correlation coefficient is the so-called coefficient of determination,

also known as R2
or R-squared. The coefficient of determination aims to solve the

interpretability problem of the correlation coefficient (Puth, Neuhäuser, and Rux-

ton, 2014). R-squared indicates the portion of the variance in the data explained

by the model. For the purpose of defining R-squared, let us first define the total

sum of squares (TSS) and the sum of squares of residuals (RSS):

TSS =
m∑︂

i=1
(yi − µy)2

RSS =
m∑︂

i=1
(ŷi − yi)2

using the same notation as in the definition of correlation 2.7. Subtracting the

ratio of RSS and TSS from 1, we obtain the R-squared:

R2 = 1 − RSS

TSS

. (2.8)

34



Interestingly, R-squared in some occasions, such as linear regression, equals

to the correlation coefficient squared (hence the name) (Devore, 2012, p. 510).

Be aware that this equality does not hold in general. For instance, when the

prediction is worse than predicting the mean (in terms of squared error), the

R-squared is negative.

A coefficient of determination might be more intuitive when comparing several

models because the interpretation is more explicit compared to the correlation

coefficient. Nonetheless, the issue of not accounting for the trial-to-trial variability

remains. Thus, the metric might often underestimate the actual performance of a

model when there is a high variability of the responses.

Metrics Accounting for Trial-to-Trial Variance

To overcome the issue of trial-to-trial variance, several authors proposed new

metrics (Pospisil and Bair, 2021; Cadena et al., 2019a; Walker et al., 2019). Let us

introduce the fraction of explainable variance explained (introduced by Cadena

et al. (2019a)) and the fraction of oracle correlation (proposed by Walker et al.

(2019)).

Cadena et al. (2019a) estimate each neuron’s amount of explainable variance

(EV). This value is obtained by withdrawing a specific noise portion of the overall

variance:

EV = Var[Y ] − σ2
noise

. (2.9)

Here Y stands for the matrix of actual responses with shape m × t, where m
again denotes the number of stimuli and t stands for the number of repetitions.

Accordingly, Var[Y ] is defined as a variance of all the elements of the matrix.

Finally, they refer to σ2
noise

as the "observation noise", and it is computed as follows:

σ2
noise

= Ei[Varj[Yi,j]] . (2.10)

That is, we first compute the variances across repetitions (receiving m values),

and then we average the variances. To make the explainable variance comparable

across neurons, we will often use a fraction of explainable variance (FEV):

EV = EV

Var[Y ] (2.11)

We can now compute the actual performance metric called fraction of explainable
variance explained (FEVE) using the following formula:

FEVE = 1 − MSE(ŷ, Y ) − σ2
noise

Var[Y ] − σ2
noise

. (2.12)
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The mean square error (MSE) is computed between the predictions ŷ and the true

responses from all the trials:

MSE(ŷ, Y ) = 1
m · t

∑︂
1≤i≤m
1≤j≤t

(ŷ − Yi,j)2 .

Note that the value of FEVE might be negative when the mean square error

is greater than the variance of the responses. Moreover, FEVE can also reach

values greater than 1. This can happen when the mean square error is lower than

the observation noise (remember that the observation noise is only an estimate).

Apart from the corner cases, the intention of FEVE is to compare our model with

the best model possible in the form of a fraction.

Walker et al. (2019) proposed a metric called fraction of oracle correlation with

a similar intention but different approach. The first step is again estimating the

maximal possible performance. In this case, it is called oracle correlation. As

the name suggests, it is an estimate of the maximum reachable correlation. It is

estimated by computing the correlation of a jackknife estimator on a dataset with

repetitions.

Let us explain how to compute the oracle correlation for one neuron. For each

stimulus and repetition, the jackknife estimator computes a mean from the rest of

the trials to estimate the response of the selected repetition. Using this technique,

we create m · t pairs in a form of (ỹi,j, Yi,j), where ỹi,j is the jackknife estimate for

i-th stimulus and j-th repetition. The oracle correlation of a neuron is then simply

a correlation of the pairs. To compute the fraction of the oracle correlation, we

pair the per-neuron oracle correlations with the per-neuron correlations of our

model. Then, we fit a line without an offset to the pairs using the least-squares

approach. Finally, the fraction of oracle correlation is the coefficient received

from the least-squares solution, i.e. the slope of the line. Notice again that this

measure is also not theoretically bounded by the interval [0, 1]. It might reach

values lower than zero when some of the correlations are negative. Furthermore,

the fraction can be greater than one when the correlations of the model are higher

than the estimated oracle correlations.

2.2 Spike-Triggered Average
Spike-triggered average (STA) is a method for analysing neuron computations. It

can also be thought of as a specific example of a linear model, as defined in the

previous section. Under specific conditions, it allows us to characterise a linear

part of a neuron’s receptive field (Chichilnisky, 2001). This approach is often used

due to its simplicity and straightforward interpretation.
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2.2.1 STA and White Noise Analysis
STA is often employed in the context of a method called white noise analysis.
White noise analysis is performed by presenting white noise stimuli and then

analysing the neurons’ responses. In this subsection, we present the basic idea

behind this technique.

Firstly, the stimuli used for white-noise analysis are required to be drawn

from a radially symmetric distribution (Chichilnisky, 2001). That is, when stimuli

s and s∗
are vectors of equal lengths from k-dimensional stimuli space S, the

probability of being drawn must be the same for both vectors. To put it differently,

the following implication must hold:

|s| = |s∗| ⇒ p(s) = p(s∗). (2.13)

Note that the Gaussian distribution satisfies this condition; thus, the Gaussian

white noise is a usual choice of stimuli. Each stimulus generated by this distribu-

tion is a k-dimensional vector where each element is independently drawn from

a Gaussian distribution.

This approach assumes a model of a neuron where the stimulus is first linearly

weighted with weights w and then goes through a static, possibly non-linear

function F :

f(s) = F (w · s). (2.14)

Observe that this model matches the description of an LN model from Section

2.1. Recall that the weights have the same shape as the stimulus and can be

interpreted as the neuron’s selectivity.

The spike-triggered average a is a vector of the same size as the stimulus. It

can be obtained by summing all the stimuli that triggered a spike and dividing

this sum by the total count of spikes. We can express it in a more concise form as

follows:

a =
∑︁T

i=1 si · yi∑︁T
i=1 yi

. (2.15)

The number T denotes the total count of stimuli, si is the i-th stimuli and yi

stands for the number of spikes triggered when the i-th stimulus was presented.

The formula can be rewritten as a matrix multiplication:

a = ST · y∑︁T
i=1 yi

∝ ST · y,

(2.16)
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where S is the matrix of stimuli and y is the vector of corresponding responses.

Chichilnisky (2001) proves that under the above-stated assumptions, the vector

a obtained by computing the STA is proportional to the weights w. As already

suggested in Section 2.1, obtaining these weights can be very useful as they

indicate the linear selectivity of a specific neuron.

Willmore and Smyth (2003) arrive at the same result by the assumption that a

response to a stimulus can be approximated by weighting the stimulus by linear

weights as in:

S · f = y, (2.17)

where f is the vector of weights. When we multiply the equation by S−1
, we

obtain the following:

f = S−1 · y. (2.18)

However, this operation is naturally possible only if the inverse of S exists.

Furthermore, when the stimuli matrix S is orthogonal, it holds that S−1 = ST
.

From Equation 2.16, it follows that, under these conditions, the weights f are

proportional to the spike-triggered average a.

2.2.2 STA for Natural Stimuli
Natural stimuli, unfortunately, do not satisfy the conditions of white noise analysis.

Thus, extracting the linear receptive field just by transposing the stimuli matrix

is not possible. However, we can approximate the solution by finding a pseudo-

inverse of S (Willmore and Smyth, 2003). Specifically, we can search for Sp

in:

f̂ = SP · y, (2.19)

where f̂ stands for the approximation of linear weights f defined in Equation

2.17.

We can find this pseudo-inverse by standard least-square solution, which

results in the following equation:

f̂ = SP · y = (ST S)−1ST y. (2.20)

Observe that this corresponds to finding weights of linear regression. Even

though this method minimises the mean-square error, the variability of neural

responses substantially corrupts the solutions with noise (Willmore and Smyth,

2003). Theoretically, this would not be a problem when a great amount of data is

presented. However, in practice, it shows that additional constraints are necessary

to find a satisfactory solution. This problem naturally leads to the introduction of
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prior as explained in Section 2.1 in the context of the MAP framework. In this

specific case, we can use a prior in a form of L2 regularisation, which minimises

the square of weights. Thanks to that, the high-frequency portion of the linear

filter is penalised, which is desirable for many neurons (Willmore and Smyth,

2003). The final regularised form is equivalent to the so-called ridge regression:

f̂ = SP · y = (ST S + δIk)−1ST y, (2.21)

where δ ∈ R+
is the regularization parameter and Ik stands for an identity matrix

of size k × k with k being the size of a stimulus. The parameter δ balances

the strength of the regularisation and the constraints from the stimuli. Lower δ
results in weaker regularisation and vice-versa. An appropriate value of δ can be

determined via cross-validation. That is, fitting the ridge regression on a training

portion of data with various choices of δ and then evaluating the models on the

responses from the validation set.

2.3 Spiking Neural Models
The system identification methods predict how a neuron would respond when a

specific stimulus is presented. However, they do not attempt to do so by modelling

the biological neural network but rather by estimating a mathematical description

of the neuron’s operation. Spiking neural networks, on the other hand, try to

mimic real neural systems by modelling each neuron and connecting these models

together. There is a wide range of biological neuron models available. Some aim

to replicate the intricate biophysical processes of neurons, while others employ

various simplifications to facilitate computational simulations.

In this section, we first present a condensed introduction to the biophysics of

neurons. Subsequently, we present a series of models, starting with the perfect

integrate-and-fire model and progressing towards the widely utilised exponential

integrate-and-fire model. This section aims to build a foundation of spiking

neural models, enabling the reader to better comprehend the particular network

we are analysing. For more details about the biological aspects of neurons, we

recommend Neuroscience (Bear, Connors, and Paradiso, 2016). For better grasp of

neural systems modelling, we suggest reading Theoretical Neuroscience (Dayan

and Abbott, 2001) and Spiking Neuron Models (Gerstner and Kistler, 2002).

2.3.1 Neural Physiology and Neuroelectronics
As illustrated in Figure 2.2, a neuron consists of three main parts: dendrites, soma
and axon. Simply put, dendrites provide inputs to the neuron, a soma aggregates

the inputs, and an axon acts as the neuron’s output. Most neurons transmit
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Dendrites

Soma Axon

Figure 2.2 Illustration of a neuron. Annotations were added to the
“Neuron” illustration from Servier Medical Art. Servier Medical Art by
Servier is licensed under a Creative Commons Attribution 3.0 Unported License
(https://creativecommons.org/licenses/by/3.0/).

information using electrical signals that flow along the neural body. We call these

signals spikes or action potential. Spikes are usually considered identical; the

information is encoded in their count and distribution (Gerstner and Kistler, 2002).

Neurons are interconnected through synapses, facilitating the transmission of

information between them.

Excitable Membrane

The electricity in neurons is induced by the flow of ions (electrically charged

atoms). Specifically, a neuron is enclosed in a special excitable membrane, which

controls the flow of these ions. The membrane itself isolates the cytosol of the

neuron and extracellular fluid as it is not permeable to most charged atoms.

However, it contains pores and special channels that allow a selective flow of

specific ions. Moreover, the channels can react to changes in the surrounding

environment, such as changes in electrical potential or the presence of specific

molecules (neurotransmitters). Apart from the channels, the membrane also

contains so-called ion pumps that move particular ions from and into the neuron

resulting in a rising concentration of the respective ion on one of the sides.

The movement of ions across the pores and channels in the membrane is

caused by two main factors: the concentration gradient and the difference of

electrical potential across the membrane (Bear, Connors, and Paradiso, 2016). The

particles move from the areas of high concentration to the ones with a lower
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concentration; this movement is called diffusion. On the other hand, the difference

of potentials pushes the ions according to their charge and the charges inside and

outside of the neuron: positive particles move to the side with a negative charge

and vice-versa. Note that, for each ion, there is a specific value of membrane

potential which perfectly balances the electrical and diffusion forces.

Given all of these properties, when no input is received, the membrane po-

tential remains steady at the value of approximately -65 mV (Bear, Connors, and

Paradiso, 2016). We call this value a resting potential.

Action Potential

As stated above, the membrane potential at rest is negatively polarised. When a

neuron is depolarised enough, the potential may rapidly turn positive - generating

an action potential. As illustrated in Figure 2.3, the action potential follows a

sequence of specific stages. First, we observe a rising phase, i.e. a slight depolari-

sation of a neuron. It can be induced in various ways, for example, by the entry

of Na
+

ions through channels that are sensitive to neurotransmitters released by

another neuron at a synapse. When the membrane potential reaches a threshold

value of approximately −55 to −50 mV, the membrane generates a rapid spike,

and the membrane potential briefly turns positive (Dayan and Abbott, 2001).

We call this phase overshoot, and it is caused by the opening of voltage-gated

channels that allow a further influx of Na
+

ions into the neuron. Quickly after, the

voltage-gated sodium channels close and the potassium voltage-gated channels

open, which allows a flow of K
+

ions out of the neuron. These two events bring

the neuron into a falling phase when it swiftly re-polarises. The re-polarisation

actually reaches a potential lower than its original resting value because the

voltage-gated potassium channels do not close that quickly. Therefore, we call

this phase a hyper-polarisation. In the final stage, the membrane potential slowly

reaches the resting value.

Even when the electrical current flowing into the neuron is constant, the

neurons cannot generate one action potential right after another. There is an

absolute refractory period of approximately 1 ms after each spike when creating

another one is impossible. Moreover, there is also a relative refractory period

during which a greater amount of input current is needed in order to generate

spikes.

Synapses

When an action potential is generated, it propagates along the axon. However,

the signal also needs to spread to other neurons. This transfer happens at a

synapse, a place where the axon of a pre-synaptic neuron meets a dendrite of a
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Figure 2.3 An action potential. (a) An action potential recorded by an oscilloscope.
(b) Stages of action potential. A figure from Neuroscience (Bear, Connors, and
Paradiso, 2016, p. 84).

post-synaptic neuron. Based on the signal transfer mechanism, we distinguish

two types of synapses: electrical and chemical (Bear, Connors, and Paradiso,

2016). They both ultimately result in depolarisation, or hyperpolarisation of the

post-synaptic neuron, which either excites or inhibits the creation of a spike in

the post-synaptic neuron.

2.3.2 Integrate-and-Fire Models
Scientists try to invent various models that would mimic the spike-generating

mechanism of a neuron (Abbott, 1999; Hodgkin and Huxley, 1952). This subsection

presents the essential spiking models from the integrate-and-fire family. These

models do not attempt to imitate low-level biological and physical mechanics.

They primarily focus on changes in the membrane potential of a neuron caused

by the incoming current (Dayan and Abbott, 2001). Specifically, the changes in

the membrane potential are described using differential equations. When the

membrane potential reaches a particular threshold, a spike is generated, and the

membrane potential is restored.

Perfect Integrate-and-Fire

The key to integrate-and-fire approaches is modelling the neural membrane as

a capacitor (Dayan and Abbott, 2001). It acts as a capacitor because it separates

the charges of the intracellular and extracellular environments. With membrane
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capacitance Cm, the relation between the excess charge Q and the voltage across

the membrane V follows the capacitance formula:

Q = CmV. (2.22)

Using a time-derivative of this formula, we obtain an equation corresponding

to the so-called perfect integrate-and-fire model:

Cm
dV

dt
= dQ

dt

Cm
dV

dt
= IC

(2.23)

This formula describes how much current IC = dQ
dt

is needed to change the

potential of a membrane with capacitance Cm at a rate of
dV
dt

. Apart from this

relation, we only need to set a threshold Vth when a spike should be fired. After

reaching this threshold, a spike is triggered, and the membrane potential is set to

Vreset. Optionally, we can extend the model by introducing refractory periods. By

using all of this together, we obtain a very simple model of a neuron.

Leaky Integrate-and-Fire

In order to maintain the membrane potential at a non-resting value, an additional

current is required (Dayan and Abbott, 2001, p. 157). However, the perfect

integrate-and-fire model does not incorporate this factor. When a current flows

into the perfect integrate-and-fire model, the membrane potential is increased and

stays the same even after the flow is stopped. To address this issue, we present a

leaky integrate-and-fire model.

Specifically, we introduce “leakage” into the model in the form of a resistor

which is connected in parallel to the capacitor. Consider a membrane resistance

Rm, a small current IR entering the neuron and a difference of potential from

the resting value ∆V = V − Vrest. The relationship between these values can be

described using Ohm’s law as follows: IR = ∆V
Rm

.

By the law of current conservation, we can now combine the current IR with

IC from Equation 2.23 as I = IC + IR (Gerstner and Kistler, 2002). In other

words, we split the total incoming current I into IC portion, which goes through

a capacitor and IR, which goes through a resistor. By substitutions, we obtain the

following:

I = V − Vrest

Rm

+ Cm
dV

dt
. (2.24)
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We multiply the equation by Rm and rearrange it into the following form:

CmRm
dV

dt
= −(V − Vrest) + RmI

τm
dV

dt
= Vrest − V + RmI

(2.25)

where τm is the product of membrane resistance and capacitance. It is called a

membrane time constant, and it scales the changes in the membrane potential

(Dayan and Abbott, 2001). Observe that when the input current I is zero, the

membrane potential converges to Vrest exponentially with the membrane time

constant τm (Dayan and Abbott, 2001).

Again, the leaky integrate-and-fire model is fully defined by Equation 2.25,

the threshold Vth and the reset value Vreset.

Exponential Integrate-and-Fire

The leaky integrate-and-fire model can be further refined by the introduction of

a non-linearity into the equation. Particularly, an exponential function is used as

its behaviour was shown to fit the measured data very well (Badel et al., 2008).

The change of membrane potential follows this equation:

τm
dV

dt
= Vrest − V + ∆T exp

(︃
V − Vrh

∆T

)︃
+ RmI, (2.26)

where ∆T denotes the sharpness of spike initiation and Vrh is a so-called rheobase

threshold (Gerstner and Kistler, 2002). Observe that the equation differs from the

one of the leaky integrate-and-fire solely by the exponential term.

Similarly, as for the previous models, when the potential reaches a threshold

Vth, a spike is generated, and the potential is reset. Then the integration restarts

after the absolute refractory period that we choose. Note that after the spike is

initiated in this model, the membrane potential reaches infinity quickly (in finite

time) (Gerstner and Kistler, 2002). Thus, the threshold Vth is introduced rather

for numerical convenience.
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Chapter 3

Related Work and Data

In this chapter, we introduce the models used for our analysis: the neural network

for system identification and the spiking model of a cat’s primary visual cortex.

Then, we describe the two datasets used in this thesis.

3.1 State-of-the-art SI Model
In this thesis, we use the state-of-the-art model for the prediction of V1 neural

responses. Lurz et al. (2020) designed this model with the usual architecture of

shared CNN core and a readout module. However, they invented a novel Gaussian

readout with the intention of lowering the number of neuron-specific parameters.

They evaluated the model on a dataset recorded from a mouse’s primary visual

cortex. Let us present their approach in greater detail.

3.1.1 Architecture
As stated above, the model is divided into two modules: a core and a readout. The

goal of the core module is to capture non-linear representations that can be shared

across all the neurons. It is implemented as a sequence of four convolutional layers.

The first layer is a standard 2D convolution, whereas the rest uses the depth-

separable variation. Each convolutional layer is followed by a batch normalization

layer and an ELU activation function. The output of a shape width × height ×
channels (w×h×c) from the last block is used as a feature tensor for the readout.

The readout module assigns a position of the receptive field for each neuron.

That is, it assigns coordinates (x, y) in the feature tensor. To generate the esti-

mated response, the feature vector at the predicted position is linearly weighted.

Each neuron has its own learned weight vector of length c for this purpose. Note

that the coordinates may be continuous. To address this, the model bi-linearly
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interpolates the four vectors neighbouring that exact position.

As it would be challenging to train this module as is, the authors introduce

a special training mechanism in order to help the gradient flow. Concretely,

the model assigns a bi-variate Gaussian distribution to each neuron. Thus, for

i-th neuron, the network learns the coordinates µi, a covariance matrix Σi and

a scaling factor s. During the training, for each neuron, image and batch, the

readout position is drawn from the Gaussian distribution. This mechanism enables

the gradient flow and thus allows the network to effectively learn the receptive

field positions. When evaluating the model, the centre of the distribution is used

to prevent non-determinism.

Moreover, their model can optionally exploit the retinotopic organization of V1

neurons - the preservation of visual field topology as explained in Section 1.3. The

position of each neuron is recorded when measuring the neural responses. The

readout module then transforms the actual neuron’s position into the location in

the feature tensor. This transformation is done by a linear fully connected neural

network. That is, the network linearly projects the positions on the cortical surface

into the receptive field location. Thanks to that, the number of neuron-specific

parameters is further lowered. Specifically, the model with this enhancement

needs to learn c + 5 parameters per neuron: c parameter for the linear weights of

features, 4 parameters for the covariance matrix of 2D Gaussian distribution, and

1 parameter represents the scaling factor of the distribution.

3.1.2 Training

The network is trained by the Adam optimizer (Kingma and Ba, 2014) using

the Poisson loss function (as described in Subsection 2.1.2). The learning rate is

gradually lowered by a multiplicative factor when the correlation on the validation

set do not improve for 5 consecutive epochs. When the validation performance

reaches a plateau for the third time, the training is stopped and the model with

the highest validation correlation is restored.

3.1.3 Results

Apart from introducing a new model, the authors examined the generalization

power of the core. Particularly, they evaluated the transferability of the core to

recordings of different neurons of the same subject (mouse) but also neurons of

different mice. For all the core transfer experiments, the authors first train the

core and a readout on a core set of neurons, then freeze the weights of the core

and learn the parameters for a new readout that corresponds to the new unseen

neurons.
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CNN Core

Feature Layer

Position
Estimator

Parameters of a 2D
Gaussian per neuron

Spike-count rate

Gaussian Readout

Input Image

2D Conv + BatchNorm + ELU

Depth Separable 2D Conv
+ BatchNorm + ELU

Neuron's
actual location

Figure 3.1 The architecture of the DNN model from Lurz et al. (2020). First,
features are extracted from the image using a convolutional neural network. The
position estimator then projects the neuron’s actual location into the particular position
in the tensor of features. Finally, the model outputs a linear combination from the
selected features vector.
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When training the whole model using neurons from a single individual and

then evaluating the model on the same neurons (but different images), the model

reaches the performance of approximately 0.886 of fraction oracle. In this case,

the dataset was made of 17,596 images and 4,597 neurons.

Using the best training configuration of transferring the core to new neurons

within the same animal, the model reaches a fraction oracle of 0.834. In this setup,

the core was trained using data from 3,597 neurons and all 17,596 images, while

the readout was trained on 4,000 images and the rest 1,000 neurons.

In their last experiment, the authors showed that using many neural recordings

from different subjects leads to faster convergence when transferring the core to a

new set of neurons from a different animal. Moreover, the final performance was

even better than training the core directly on the set of target neurons. In other

words, the representations learned during the pre-training on a greater amount

of different neurons were general enough to provide better overall results.

3.2 Spiking Model of Cat Primary Visual Cortex
The focus of this thesis is an analysis of the spiking model of a cat’s primary visual

cortex introduced by Antolík et al. (2018). It spans the thalamocortical pathway

and layers IV and II/III of the primary visual cortex. The network was designed

using the current knowledge about the cat neural system from a great amount

of experimental data and previous research. While the model displays inherent

spontaneous activity, it can also receive visual inputs to elicit stimulus-driven

activity. To assess the validity of the model, the network was tested under several

stimulation paradigms, such as drifting gratings or natural stimuli. Let us provide

a more comprehensive overview of the model.

3.2.1 V1 and Thalamo-Cortical Pathway

The cortical part of the model comprises a 4 × 4 mm patch of layers IV and II/III.

That corresponds roughly to 4 × 4 degrees of visual field around the area centralis.

Constructed from 60,000 neurons and approximately 60 million synapses, the

network’s scale corresponds to roughly 10% of the real neuron density. The

total number of neurons is evenly distributed between layers IV and II/III, which

follows the empirical evidence. Both layers contain excitatory and inhibitory

neurons in a ratio of 4:1.

The neurons are modelled using an exponential integrate-and-fire approach;

thus, it mostly matches the description presented in Subsection 2.3.2. The only

deviation lies in the input current. Particularly, the synapses are modelled as
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changes of conductances rather than an input current. The change of membrane

potential can be fully described by the following equation:

τm
dV

dt
=EL − V + ∆T exp

(︃
V − Vrh

∆T

)︃
+ Rmgexc(Eexc − V )
+ Rmginh(Einh − V ),

(3.1)

where EL, Eexc and Einh are respectively leakage, excitatory and inhibitory

reverse potentials. gexc and ginh denote the incoming excitatory and inhibitory

synaptic conductances. The specific parameter values were once again determined

based on the latest experimental knowledge. For precise values and the rationale

behind their selection, please refer to the original paper.

The model contains both feed-forward and recurrent connections. Layer

IV’s excitatory neurons form connections with both types of neurons in layer

II/III. Both layer IV and II/III incorporate short-range intra-layer connections.

These connections are sampled randomly from a distribution following two

principles: the probability is higher for closer neurons, and there is a preference

for connection with functionally similar neurons. Additionally, the model also

accounts for long-range functionally specific connections within layers II/III.

Ultimately, there is also direct feedback from layers II/III to layer IV. Even though

these connections are not common in reality, this feedback exists transitively via

layers V and VI (Binzegger, Douglas, and Martin, 2004).

Apart from the cortical part, the network also contains a model of LGN. All

the neurons in layer IV receive inputs from this model. In order to induce the

typical properties of layer IV neurons, the connectivity from LGN is sampled

from a Gabor distribution. The neurons’ orientation selectivity was determined

by the orientation parameter of the distribution. Specifically, the parameter for

each neuron was chosen based on the location of the neuron and a pre-computed

orientation map. The phase of the distribution was set randomly, and the rest of

the parameters (size, frequency and aspect ratio) were fixed to constant values

matching the averages from experimental findings.

3.2.2 Input Model
The LGN model corresponds to 5 × 5 degrees of visual angle in order to fully

cover the receptive fields of V1 neurons. Similarly, the overall input visual field

corresponds to 11 × 11 degrees. The LGN neurons directly process the visual

stimuli (retinal circuitry is omitted). Based on the findings of Allen and Freeman,

2006, these neurons are modelled using a spatiotemporal field. The spatial part is
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implemented as a difference-of-Gaussians while the temporal profile corresponds

to a difference-of-gamma-functions. The visual field is uniformly covered by the

LGN neurons with a density of 100 neurons per square degree. The output of

LGN is then injected into the cortical neurons in the form of an electrical current.

3.2.3 Results
Thanks to the fact that the model was designed in line with the current experi-

mental evidence, it exhibits a great range of phenomena observed in an actual

visual cortex. Here, we highlight several findings that are important for our exper-

iments. Firstly, most neurons in both layers demonstrate orientation selectivity

with realistic orientation tuning curves. Additionally, by size tuning of drifting

sine gratings, Antolík et al. (2018) illustrate that the neurons express surround

suppression. The suppression is again observed in both layers, but the effect is

stronger for layers II/III. And lastly, the majority of neurons of layer IV were

classified as simple cells, whereas most neurons from layers II/III were classified

as complex.

3.3 Data
The datasets used for the analysis in the thesis come from two sources. First, we

use the dataset published by Lurz et al. (2020), which contains recordings of the

mouse’s primary visual cortex. The second dataset is an artificial dataset generated

by the spiking model of a cat’s primary visual cortex, which was designed by

Antolík et al., 2018. The rest of the section is dedicated to the description of these

datasets.

3.3.1 Mouse Dataset
The mouse dataset from Lurz et al. (2020) consists of greyscaled images from

ImageNet (Russakovsky et al., 2015) and neural responses (firing rates). The

images are cropped and isotropically downsampled to the size of 64 × 36 px with

a resolution of 0.53 pixels per degree of visual angle. The responses come from

layers II/III of the primary visual cortex of a mouse. See Figure 3.2 for examples

of the stimulus-response pairs from this dataset.

The dataset consists of recordings of 5,335 neurons. The training partition

contains responses to approximately 4,500 different stimuli, while the validation

part contains about 500 stimuli. The test set was created by presenting 100

different images ten times. Thus, there are 1,000 responses for each neuron in the

test set.
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The stimulation protocol, the recording itself and the necessary processing of

the data follow the description from Walker et al. (2019). The images are presented

to one eye of the mouse on a 25-inch monitor with a resolution of 2,560 × 1,440

px. The monitor is placed 15 cm away from the eye. Each image was presented

for 500 ms. A blank screen was shown as a gap between stimuli for a time interval

uniformly sampled from 300 to 500 ms. The spike-count rate was then computed

from a 500 ms long interval starting 50 ms after a stimulus was presented.

3.3.2 Artificial Dataset
The artificial dataset was generated using the cat primary visual cortex model from

Antolík et al. (2018). The dataset shares the same composition as the mouse data,

encompassing stimuli from ImageNet (Russakovsky et al., 2015) and corresponding

neural responses as visible in Figure 3.3. The images were presented to the LGN

model at a resolution of 220 × 220 px. The input comprises 11 × 11 degrees of

the visual field resulting in a resolution of 20 pixels per degree of visual angle.

The spike-count rate of neurons was calculated from the time interval of 25 to

350 ms following the stimulus presentation.

Responses from 10,000 neuron models from layers IV and II/III were recorded

to create this dataset. The portion for training and validation contains 40,000

different stimuli and the corresponding responses. Similarly to the mouse data,

the test set was generated by repeating the same stimuli ten times. Specifically,

500 images were used to create the test set, which results in a total of 5,000

stimulus-response pairs for each neuron.
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Figure 3.2 Samples from the mouse dataset published by Lurz et al. (2020).
The left column contains the visual stimuli that were presented to the mouse. The
plots in the right column show the responses of V1 neurons.
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Figure 3.3 Samples from the artificial dataset. The left column contains the
visual stimuli that were presented to the spiking neural network. The plots in the right
column show the responses of V1 neurons.
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Chapter 4

Results and Discussion

This chapter presents several analyses and experiments that we conducted in

this thesis. We begin by presentation of two exploratory analyses. The first one

illustrates the level of noise in the datasets, while the second one estimates and

compares the sizes of receptive fields of the mouse and cat neurons. In the next

section, our focus shifts towards system identification of the spiking model by

means of deep neural networks. First, we tune the hyperparameters of the neural

network by Lurz et al. (2020). Then, we assess the performance of goal-driven

neural networks when employed for predictions on the artificial dataset. We

continue with an analysis that determines the effect of the number of neurons and

the number of images used for training. And we finish the section by examining

the predictions made by the trained neural network to find the cause for subpar

predictions. The subsequent section is dedicated to examining the representations

captured by the DNN. We finish this chapter with attempts to transfer the core

module of the DNN across the two datasets.

4.1 Insights into the Datasets

In this section, we present the results of two analyses conducted on the available

datasets. Firstly, we evaluate the amount of noise in the datasets by computing

the fraction of explainable variance of the neurons. And secondly, we analyse

the datasets through spike-triggered averages. Thanks to that, we obtain linear

approximations of the receptive fields. We use these approximations to estimate

the sizes of the receptive fields and compare the sizes between the two datasets.
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4.1.1 Noise Estimation

Before commencing the system identification process, we wanted to determine

the amount of noise in the data. Or, more specifically, how big portion of the

neural responses is directly caused by the presented stimuli. To estimate this

value, we choose to compute the fraction of explainable variance as defined in

Subsection 2.1.5. It is necessary to use a dataset with multiple trials in order

to calculate the FEVs. Therefore, we use the test sets from both the mouse and

artificial datasets for this purpose.

As indicated in Table 4.1, the median FEV of the artificial neurons is noticeably

higher than that of the neurons in the mouse dataset, with values of 0.28 and

0.2, respectively. We also exploit the extra metadata of the artificial dataset to

analyse each group of neurons individually. Specifically, we create four groups

based on the cortical layer and the type of neuron. Apart from Table 4.1, you can

view the FEVs as a plot of densities in Figure 4.1. We observe that the inhibitory

neurons from both layers exhibit less noise than their excitatory counterparts.

The difference is significantly more noticeable in layer IV, where the median FEV

of the excitatory neurons is 0.24, while the inhibitory neurons have a median FEV

of 0.56. For layers II/III excitatory and inhibitory neurons, the median FEVEs are

0.27 and 0.31, respectively.

Furthermore, we analysed the influence of neurons’ firing rate on their FEV.

First, we computed the mean firing rate from the training data for each neuron.

Then we grouped the neurons into 50 bins according to their firing rate and

computed the mean FEV of the neurons in the bins. Inspect Figure 4.2 for the

resulting plot. Observe that the neurons with higher mean firing rates tend to

have higher FEVs. To put differently, a greater portion of their responses can be

attributed to the presented stimuli.

Discussion

Even though the artificial neurons exhibit noticeably less noise, the disparity is

not particularly significant. For both datasets, it remains the case that less than

50% of the observed variance in the responses can be attributed solely to the

presented stimuli.

Interestingly, the median FEV of layer IV excitatory neurons is slightly lower

than the ones from layer II/III. This finding is somewhat counter-intuitive as layer

IV neurons receive the input directly from the model of LGN. Moreover, layers II/III

neurons of the model do not receive direct input from layer IV inhibitory neurons

(which exhibit a relatively low level of noise) but solely from the excitatory ones.

Therefore, we would expect layer IV excitatory neurons to have higher FEV than

layer II/III neurons.
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Figure 4.1 A comparison of fractions of explainable variance. The plot shows
the estimated densities of neurons’ FEV. The artificial (cat) neurons are divided into
four different groups based on their layer and type.

Neuron Group Mean FEV Median FEV

Mouse (L2/3) 0.22 0.20

Cat (whole) 0.32 0.28

Cat L4 Excitatory 0.3 0.24

Cat L4 Inhibitory 0.54 0.56

Cat L2/3 Excitatory 0.29 0.27

Cat L2/3 Inhibitory 0.33 0.31

Table 4.1 Results of FEV analysis. The table shows the mean and median values
of FEV for both datasets. Furthermore, we present the FEVs for individual groups of
neurons from the artificial dataset. Recall that the excitatory and inhibitory neurons
are represented in a ratio of 4:1.
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Figure 4.2 The influence of neurons’ firing rate on their FEV. We binned the
neurons by their mean firing rate and computed the FEVs of these bins. The dots
correspond to the mean FEV of each bin, while the filled area bounds the lower and
upper quartile values. The colours of the dots indicate the number of neurons in the
particular bin.
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4.1.2 Receptive Field Size Estimation by STA
One of our goals is to transfer the CNN core of the model by Lurz et al. (2020).

If there is a substantial disparity in the sizes of receptive fields between the two

datasets, the fixed size of the CNN kernels could potentially have a negative

impact on the model’s performance. Therefore, we want to estimate and compare

the sizes of receptive fields between the mouse neurons and the spiking neurons.

For this purpose, we utilised the STA analysis as described in Section 2.2.2. Besides

the estimates of receptive field size, we can also examine the obtained filters for

certain expected properties, such as the Gabor-like shape of simple cells.

Method

We used the regularised STA as defined by Equation 2.21 on our training sets. That

way, we obtained a linear filter for each of the neurons. To estimate the size of the

receptive field, we first computed the absolute value of the filter and then fitted a

two-dimensional symmetrical Gaussian function on the result. We approximated

the size of the receptive field as a radius of the Gaussian’s central part containing

50% of its volume. To make the sizes comparable, we normalised them by the

image dimensions. That is, we divided the obtained radii by (width + height)/2.

Note that we compute the receptive field sizes mainly for comparison; thus, a

rough estimate is sufficient as long as the same approach is used for both datasets.

Results and Discussion

Inspect Figure 4.3 and Figure 4.4 for the samples of the STAs of the mouse neurons

and the artificial neurons, respectively. We observe that the positions and sizes

of receptive fields were especially well estimated for the spiking neurons. The

STAs computed for the mouse neurons are significantly more noisy. However,

recall that we use roughly eight times more images for the estimate of the spiking

neurons. Notice that, for some neurons, this technique was able to extract a filter

that greatly resembles the Gabor function.

The mouse neurons’ median relative receptive field size is 0.098, and 0.092 is

the relative median size for the spiking neurons. That is 4.9 px and 4.6 px when

an image of size 50 × 50 px is used. See the box plots in Figure 4.5 for a better

idea about the relative size distribution. Notice that the receptive field size of

mouse neurons exhibits broader distribution, which might be partly caused by

the noisy STAs.

Note that these receptive fields correspond roughly to 8.7 degrees of visual

angle for the mouse and 1 degree of visual angle for the cat. However, the relative

receptive field size in pixels is the important value to analyse. That is because the

neural network will process images scaled to the same size. Thus, the disparity
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Figure 4.3 Sample STAs of neurons from the mouse dataset. The red circles
indicate the estimated receptive field size as described in Subsection 4.1.2. The
semitransparent circles illustrate the contours of the fitted Gaussian function.

in degrees of visual angle should not have a substantial impact. Based on the

obtained results, the sizes of the CNN kernels are unlikely to be a major concern,

as the receptive fields are similarly big in both datasets.

4.2 Identification of the Spiking Model
In this section, we present the results of our efforts to system identification of the

spiking model of a cat’s primary visual cortex from Antolík et al. (2018). First,

we describe the performance of the original model from Lurz et al. (2020). Then,

we perform a hyperparameter tuning in order to obtain the best model possible.

We also present the performance of goal-driven networks used on the artificial

dataset. Subsequently, we analyse the influence of the number of images and the
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Figure 4.4 Sample STAs of neurons from the artificial cat dataset. The red
circles indicate the estimated receptive field size as described in Subsection 4.1.2. The
semitransparent circles illustrate the contours of the fitted Gaussian function.
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Figure 4.5 The distribution of relative receptive field sizes in the datasets. The
y-axis in this plot corresponds to receptive field sizes normalised by the image size.
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Hyperparameter Values

Number of channels in the hidden CNNs 16, 24, 32, 64*

Hidden CNNs kernel size 11, 13*, 15, 17

Input CNN kernel size 13, 15*, 17, 19

Number of layers 3, 4*, 5

Table 4.2 The space of architecture hyperparameters that was explored. The
original values of the hyperparameters are marked with asterisks.

number of neurons used for training. We finish the section with an analysis of

the predictions made by our best model.

For the purpose of this section, we performed over 4,500 training runs which

resulted in more than 300 hours of computational time invested throughout the

course of this project. Here we present some of the interesting insights that we

acquired.

Note that for better time performance, we downscaled the images from the

artificial dataset to dimensions of 50 × 50 px for all the experiments in this section.

4.2.1 Hyperparameter Tuning
We begin the system identification with the model from Lurz et al. (2020) using

the same set of hyperparameters as presented in their paper. Using this model

directly leads to decent results. The network reaches a FEVE of 0.79 when trained

on the whole dataset. Furthermore, we divided the neurons based on their cortical

layers. As written in Table 4.5, the model achieves a slightly better FEVE of 0.82

on the layer II/III neurons compared to 0.78 on the layer IV neurons. This minor

difference might be caused by the slightly higher FEV of the neurons in layer

II/III, as will be discussed in Section 4.2.4.

We performed an extensive hyperparameter search to obtain the model that

fits the artificial dataset as well as possible. After a series of experiments across

various sets of hyperparameters, we decided to tune the hyperparameters in two

stages. First, our focus was solely on assessing the architecture hyperparameters.

Therefore, we performed a grid search on the hyperparameters described in Table

4.2, utilising a set of only 20,000 images for both training and validation purposes.

Other hyperparameters were used with their original values as presented by Lurz

et al. (2020). To compare the models, we utilised the correlation between the

predictions and target firing rates on the validation set. We selected the five

best performing models, and compared their performances with five different

initializations to limit the non-determinism of the process. See the results of this

stage in table 4.3.
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# Channels Hidden Kernel Input Kernel # Layers Val. Corr.

24 17 17 5 0.4963

24 13 19 5 0.4936

32 17 19 4 0.4928

24 15 17 4 0.4904

24 13 13 5 0.4859

Table 4.3 The best performing models of the architecture hyperparameter
search. Each row shows the model’s hyperparameters: number of channels in the
hidden CNN layers, size of the hidden CNN kernels, size of the input CNN kernel, and
number of layers. Each configuration is evaluated using mean validation correlation
computed from five runs with varying initializations.

Hyperparameter Values

Batch size 32, 64*, 128, 256, 512, 768, 1024

Initial learning rate 0.003, 0.005*, 0.007

Number of decays steps 3*, 5, 8, 10

Decay factor 0.3*, 0.4, 0.5

Minimal learning rate 0.00001, 0.0001*

Table 4.4 The space of training hyperparameters that was explored. The
original values of the hyperparameters are marked with asterisks.

Subsequently, we used the three best models from the grid search and itera-

tively evaluated the training hyperparameters outlined in Table 4.4. This time,

we used the whole dataset of 40,000 stimuli. The best model that we discovered

has 32 channels in the hidden layers, hidden CNNs kernels of size 17, input CNN

kernel of size 19, and 4 layers in total. It was trained using batches of size 256,

initial learning rate of 0.005, minimal learning rate of 0.00001, and 8 decays steps

with a decay factor 0.4. This model achieves a FEVE of 0.85, while the model

with original hyperparameters reached a FEVE of 0.79. See the comparison with

additional metrics in Table 4.6.

Observe that all the metrics order the models in the same way. However, the

tuned model achieved an oracle fraction higher than 1, indicating that the oracle

correlation might be underestimated in the dataset.

Discussion

Our main takeaway from the previous experiments is the fact that the model

achieves significantly better performance on our artificial dataset when compared
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Model FEVE Oracle Fraction Corr. Training Time

Original 0.79 0.99 0.47 40m

Original (L2/3 only) 0.82 1.00 0.47 34m

Original (L4 only) 0.78 0.98 0.48 34m

Table 4.5 The performance of the original model by Lurz et al. (2020) on
the artificial dataset. The table shows the performance of the model from Lurz et al.
(2020) when used with its original hyperparameters. We also present the differences
when the model is trained and evaluated only on a single cortical layer. For each model,
we computed the fraction of explainable variance explained (FEVE), the oracle fraction,
and the correlations between the predictions and responses on the test set. Moreover,
we include an approximate training time when using NVIDIA V100.

Model FEVE Oracle Fraction Corr. Training Time

Original 0.79 0.99 0.47 40m

Tuned 0.85 1.03 0.50 35m

VGG16 0.73 0.96 0.47 43m

EfficientNetV2-S 0.70 0.95 0.46 13m

Table 4.6 A comparison of different models trained on the artificial dataset.
The table shows performances of the model from Lurz et al. (2020) with its original
hyperparameters, the model obtained from the hyperparameter tuning, and the models
with goal-driven cores. For each model, we computed the fraction of explainable variance
explained (FEVE), the oracle fraction, and the correlations between the predictions and
responses on the test set. Moreover, we include an approximate training time when
using NVIDIA V100.
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to the system identification of real neurons. To illustrate, the top-performing

model from Lurz et al. (2020) achieves an FEVE of approximately 0.42 on the

mouse dataset, and Cadena et al., 2019a explains around 0.52% of FEV observed

in responses from neurons in a macaque’s primary visual cortex. In subsection

4.2.3, we show that the superior performance is not solely an impact of using

a bigger dataset. These findings collectively suggest that real neurons possess

certain characteristics that are currently not captured by the spiking model.

4.2.2 Goal-Driven Networks

In addition to the original design of the system identification network from Lurz

et al. (2020), we also experimented with goal-driven networks as the core modules.

Particularly, we used EfficientNetV2-S (Tan and Le, 2021) and VGG16 (Simonyan

and Zisserman, 2015) as shared cores together with the Gaussian readout module.

Both the CNN networks were pre-trained on the ImageNet object classification

task (Russakovsky et al., 2015). We allowed fine-tuning of the core simultaneously

with the training of the readout on the artificial dataset. To determine the best

number of layers to be used as the core, we tested several options in three training

runs with different random seeds.

Both networks, perform reasonably well, as can be seen in Table 4.7. The best

model utilizing VGG16 reached an FEVE of 0.74. Employing EfficientNetV2-S as

a core resulted in an FEVE of 0.7 for the model that achieved the best validation

correlation. Both networks performed the best when only four first layers are

used. Despite the subpar performance of EfficientNetV2-S, note that the training

took only 13 minutes compared to 43 minutes of VGG16. Inspect table 4.6 for a

comparison with the model from Lurz et al., 2020.

4.2.3 Neuron and Image Count Influence

Deep neural networks often require substantial amounts of data, while simulta-

neously acquiring neural recordings can be fairly challenging. In this section,

we analyse the influence of the number of images and the number of neurons

used for training the neural network. Specifically, we aim to answer the follow-

ing questions. Firstly, we want to investigate whether extending the dataset in

both dimensions can result in further improvement of our predictions. Then,

we aim to determine whether augmenting the number of neurons contributes

to improved performance, which would indicate that the network is effectively

learning more robust representations. Finally, we want to assess whether the

superior performance of the model on the artificial dataset is solely attributed to

its larger size.
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Model Number of Layers Mean Val. Corr. Mean FEVE

VGG 16 4 0.4778 0.7332
3 0.4712 0.7217

5 0.4527 0.6654

2 0.4421 0.6191

1 0.4397 0.6137

EfficientNetV2-S 4 0.4697 0.6881

5 0.4694 0.6767

2 0.4683 0.7060

3 0.4518 0.6622

1 0.3693 0.4635

Table 4.7 A comparison of different goal-driven cores with varying number of
layers. The table compares the performances of EfficientNetV2-S and VGG16 used as
a core module in the system identification network. For each configuration, we report
mean validation correlation and mean FEVE, both computed from three runs with
different seeds.

Method

For the purpose of this experiment, we use the best model from our hyperpa-

rameter search, and we exploit the large amount of data that we have generated

from the model of a cat’s primary visual cortex. We trained the model using

datasets with the number of images ranging from 2,500 to 40,000 and the number

of neurons starting at 1,000 and going up to 10,000. For all the runs, 10% of the

stimuli are used as a validation set. This results in 45 different configurations that

we evaluated and averaged across five random initialisations,

Results and Discussion

We illustrate the results in the heatmap shown in Figure 4.6. As expected, the

best performance was achieved by the model, which was trained on the biggest

dataset. We observe that adding more images to the dataset significantly improves

the performance. Similarly, increasing the number of neurons also contributes to

better FEVE. The effect of the high number of neurons is mainly noticeable when

not enough images are provided. However, increasing the number of neurons

does not improve the model’s performance when the dataset consists of a very

low number of images (2,500).

To better illustrate the influence, we plotted and extrapolated the first row

and the last column of the heatmap from Figure 4.6. In other words, we examined
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the effect of augmenting the dataset in one dimension with the other dimension

at its maximum value. See Figure 4.7 for the results of this analysis. It is apparent

that adding more neurons to the dataset has negligible effect, while providing

more images would still improve the performance. According to the local linear

extrapolation from the last three data points, adding 12.5% more images would

result in an increase of FEVE by approximately 0.002 in contrast to the addition

of 25% more neurons which would improve the FEVE by less than 0.001.

To conclude, augmenting the dataset in both dimensions leads to better per-

formance. Even though further expansion of the dataset would induce slightly

better results, there would still remain a significant margin to perfect predictions.

Moreover, as little as 2,500 neurons and 15,000 images are sufficient to surpass

the FEVE of 0.8, suggesting that the model’s superior performance is not caused

only by the size of the dataset.

4.2.4 Predictions Analysis
With the neural network predicting the responses of artificial neurons reasonably

well, we wanted to comprehend whether there are some specific characteristics

of the neurons or images where the model underperformed. With this objective

in mind, we conducted several analyses to assess the impact of various properties

of both the images and neurons on the quality of predictions. In this section, we

present two factors that influence the predictive errors: the noise of the neuron

in terms of FEV and the target firing rate within a single stimulus-response pair.

We finalise this part by describing other properties of neurons and images that

did not demonstrate a significant impact on the quality of predictions.

Effect of Noise on Prediction Quality: FEV vs FEVE

First, we analyse the effect of noise in the neural responses. For this purpose, we

compute the fraction of explainable variance (as explained in Section 2.1.5) for

each neuron and pair it with the fraction of explainable variance explained of

that neuron as modelled by our best network.

See Figure 4.8, where we plotted the relation of these two values for a randomly

sampled subset of neurons. Notice the evident decrease of FEVE for neurons

with lower FEV. Recall our findings about the noise of neurons from specific

groups that we presented in Subsection 4.1.1. Figure 4.8 clearly shows that the

responses of inhibitory neurons from layer IV are the most accurately predicted.

On the contrary, the network struggles to predict the responses of the excitatory

neurons from layer IV as they exhibit a significantly higher noise-to-signal ratio.

Furthermore, we used the same approach using the mouse dataset and obtained

similar results as shown in Figure 4.9. Again, the plot shows that the model
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Figure 4.6 The influence of neurons and images counts on the model’s perfor-
mance. Each heatmap cell corresponds to the mean FEVE obtained from five runs of
our best model. These runs were conducted on a dataset with the number of neurons
and images determined by the horizontal and vertical axes.
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Figure 4.7 Extrapolations of the model’s performance when augmenting the
dataset in a single dimension. The upper plot corresponds to a dataset with all
10,000 neurons, while the number of images is based on the x-axis. Conversely, the
lower plot describes a dataset with 40,000 images and a variable number of neurons.
Both plots contain extrapolated values that were derived through linear interpolation
of the last three data points.
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Figure 4.8 The impact of noise in the responses of neuron models on the
quality of predictions. The plot illustrates the relation between the fraction of
explainable variance and the fraction of explainable variance explained for a subset of
neurons from the artificial dataset. The neurons are divided into groups based on their
type and cortical layer.

achieves higher FEVEs for neurons with greater FEVs. In conclusion, these

findings suggest that the model encounters difficulties in learning the neuron-

specific weights for neurons that exhibit higher noise levels.

Firing Rate Impact on Prediction Accuracy

The following analysis unravels the influence of firing rate on the accuracy of

predictions. Particularly, we found out that the model’s performance gets worse

for samples with higher target firing rates. See Figure 4.10, where we plotted

the relationship between the target firing rate and predictions of the model. The

network slightly overshoots the firing rates for the samples with low target
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Figure 4.9 The impact of noise in the responses of mouse neurons on the
quality of predictions. The plot illustrates the relationship between the fraction of
explainable variance and the fraction of explainable variance explained for a subset of
neurons from the mouse dataset.
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firing rates. However, when the target firing rate is higher, the model starts to

significantly underestimate the responses.

This finding might be a consequence of the "bi-modality" of the dataset, as

roughly 50% of the target responses are equal to zero. One potential way to

address this issue and improve the model could be first predicting whether the

neuron should fire or not and naturally penalising the model for incorrect guesses.

Then, only if the neurons fire, the firing rate prediction error would be used for

learning the network parameters. By these extensions of the network and the loss

function, the firing rate predicting part of the network might not be that biased

towards predicting low numbers. Furthermore, the network may predict the zero

responses more precisely as well.

Factors with Insignificant Influence on Predictions

Besides the two presented analyses, we inspected several other properties of

neurons and images, which showed an insignificant impact on the quality of

predictions. Namely, we analysed the receptive field size and position. To assess

the relationship between these features and the model’s performance, we con-

ducted a correlation analysis between these values and the FEVEs of the specific

neurons. However, none of these properties significantly impacted the model’s

performance.

Furthermore, we wanted to assess whether the frequency spectrum of the

images influenced the accuracy of the predictions. That is, for example, if the

images with sharp changes of intensity cause better or worse performance. For

this purpose, we computed the frequency spectrum for each image using a two-

dimensional fast Fourier transform and then calculated the average frequency of

the image. We correlated these values with the Poisson losses obtained on the

corresponding dataset samples. These values demonstrated only a low correlation.

Apart from the frequencies, we also examined the effect of the image’s mean

pixel value by correlating it with the Poisson losses. Once again, we found no

significant correlation between these two values.

4.3 Characteristics Captured by the DNN
To further understand the predictions of the deep neural network utilised for

system identification, we want to explore what mechanics the network captures

for individual neurons. Specifically, we chose to examine whether the neural

network models some typical properties of receptive fields, such as orientation

selectivity or surround suppression. We also investigate the presence of phase

invariance. We perform this experiment on our artificial dataset as the spiking
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the predictions.
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network was purposefully designed to guarantee the manifestation of these

properties.

4.3.1 Orientation, Phase and Size Tuning Methodology
To conduct this experiment, we utilise our best model from the hyperparameters

tuning. Therefore, we use stimuli of size 50 × 50 px throughout this examination.

The core idea of this analysis is to use circular patches of sinusoidal gratings as

inputs to the neural network and observe the predicted responses. More specifi-

cally, for a single neuron, we first tune its phase and orientation by generating

sinusoidal gratings of various orientations and phases. For this part, we used fixed

radii of 4.4 degrees of visual angle (20 px) and fixed sinus frequency of 0.8 cycles

per visual degree, as these values worked reasonably well in our experiments. The

patches are placed at the centre of the neuron’s receptive field (this information

is part of the artificial dataset). We let the neural network process these stimuli

and predict the corresponding responses. We mark the phase and orientation that

resulted in the highest firing rate and plot all the responses as displayed in the

top-left plot of Figure 4.11.

With the neuron’s phase and orientation selectivity determined, we tune the

size of the stimulus. That is, we again present circular patches of sinusoidal

gratings, in this case, with varying sizes. We illustrate the relationship between

the stimulus size and neural response as shown in the upper-right plot of Figure

4.11. We finish the examination by plotting the grating that generated the highest

response and the spike-triggered average of the neuron as in the bottom plots of

Figure 4.11. Thanks to that, we can compare whether the orientation of the most

exciting grating matches the STA filter.

We repeated these analyses employing models with varying initialisations.

Thanks to that, we can better understand the origin of the results that we ob-

serve. Similar results across different seeds suggest that the neural network truly

captures the properties of the spiking network. Conversely, if the results differ

significantly, it implies that the properties of receptive fields captured by the DNN

do not correspond to the ones of the spiking neurons.

4.3.2 Results
Using these steps, we analysed several hand-picked neurons from the artificial

dataset. Particularly, we first examined the neurons based on the quality of

predictions of their responses in terms of FEVE. We discovered that the neurons

that are poorly predicted exhibit vague phase and orientation tuning as depicted

in Figure 4.12. Compare the result with the plot of the well-predicted neuron in

Figure 4.11. Observe that the phase-orientation tuning is much more pronounced
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for the well-predicted neuron. Furthermore, notice that the orientation of the

most exciting grating matches the corresponding spike-triggered average for

the well-predicted neuron. However, for many poorly predicted neurons, the

orientations do not match. Finally, observe that the neuron with high FEVE

exhibits surround suppression which is visible from the top-right plot of Figure

4.11. However, most representations of the receptive fields demonstrate low or

no surround modulation. See Appendix A for more receptive fields captured by

the neural network.

Next, we examined the differences between neurons from layer IV and layers

II/III. We observed that most layer IV neurons show phase and orientation selec-

tivity as illustrated in Figure 4.11. Many well-predicted neurons from layers II/III

demonstrate similar phase and orientation tuning patterns as those from layer

IV. However, some layers II/III neurons exhibit signs of phase invariance. Figure

4.13 shows an example of such a neuron. This phase-invariance plot implies that

the neuron prefers a specific orientation while being mostly agnostic to phase.

Nonetheless, the phase invariance is imperfect, as the spiking diminishes for

specific phases. From our observations, the quality of predictions of these phase

invariant neurons is lower on average in comparison to the phase selective ones;

however, we did not quantitatively evaluate this result.

Finally, the influence of differently initialised models on these analyses can

be seen in Figure 4.14. The phase-orientation plots reveal mostly consistent

preferences for orientation and phase. However, observe that the functions

acquired through size tuning exhibit varying shapes, despite reaching the plateaus

at similar sizes.

4.3.3 Discussion
This experiment brought several insights that we find interesting:

• The neural network clearly learns the orientation selectivity of the well-

predicted neurons as the most exciting gratings match the STA filters.

Furthermore, the captured preferences are mostly similar across different

initialisations of the network, indicating that the network captures the

actual properties of the spiking neurons. However, the neural network is

evidently unable to capture the orientation and phase selectivity of poorly

predicted neurons.

• Only a few well-predicted neurons exhibit observable surround suppression

effects. Moreover, the neural network appears to have difficulty accurately

capturing the precise characteristics of size tuning. This is evident from the

fact that differently initialised networks capture different shapes in the size

tuning plots.
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Figure 4.11 The results of orientation, phase and size tuning of a well-predicted
neuron from layer IV. (a) The plot shows predicted firing rates for gratings of varying
orientations and phases. (b) The size tuning chart obtained depicts the relationship
between the size of stimuli and predicted responses. (c) The patch of sinusoidal grating
that resulted in the highest firing rate prediction during the tuning experiments. (d)
The spike-triggered average filter computed for the specific neuron.
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Figure 4.12 The results of orientation, phase and size tuning of a poorly
predicted neuron from layers II/III. (a) The plot shows predicted firing rates for
gratings of varying orientations and phases. (b) The size tuning chart obtained depicts
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78



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orientation (rad)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e 
(ra

d)

(a) Phase and Orientation Tuning

1.00

2.00

3.00

4.00

5.00

Fi
rin

g 
ra

te
 (#

sp
ik

es
/s

)

0 10 20 30 40 50
Grating radius (px)

1.00

2.00

3.00

4.00

5.00

Fi
rin

g 
ra

te
 (#

sp
ik

es
/s

)

(b) Size Tuning

0 10 20 30 40

0

10

20

30

40

(c) Most Exciting Grating

0 10 20 30 40

0

10

20

30

40

(d) Spike-triggered Average

8

6

4

2

0

2

4
1e 5

L2/3 Excitatory neuron with FEVE: 0.77

Figure 4.13 The results of orientation, phase and size tuning of a well-predicted
neuron from layers II/III. (a) The plot shows predicted firing rates for gratings of
varying orientations and phases. (b) The size tuning chart obtained depicts the
relationship between the size of stimuli and predicted responses. (c) The patch of
sinusoidal grating that resulted in the highest firing rate prediction during the tuning
experiments. (d) The spike-triggered average filter computed for the specific neuron.
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Figure 4.14 Phase, orientation and size tunings on models with varying initial-
isations. Each row represents a model trained with a different initialisation. The left
column shows the phase-orientation selectivity plots, while the right column illustrates
the size tunings.
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• Most layer IV neurons captured by the network exhibit phase and orienta-

tion selectivity, suggesting simple receptive fields of these cells. This finding

aligns with the analysis conducted by Antolík et al. (2018), indicating simple

cell prevalence in layer IV.

• The captured representations of neurons from layers II/III demonstrate a

broader range of receptive fields. Many phase-orientation tunings exhibit

some level of phase invariance. However, we also observed a significant

number of neurons within this layer that display similar characteristics

to those in layer IV. As described in Subsection 1.3.3, phase invariance

is typical for complex cells, which is again in line with the results from

Antolík et al. (2018) regarding the higher occurrence of complex cells in

layers II/III. Furthermore, it would be interesting to quantitatively evaluate

the relationship between phase-invariance and FEVEs of the neurons. This

analysis might reveal whether it is more challenging to predict responses

of complex cells.

4.4 Core Transfers
Lurz et al. (2020) demonstrated successful transfers of their model’s core module

to a dataset with a different set of neurons, even from another subject. In this

section, we explore the possibility of core transfers between the artificial and

mouse datasets. Recall that the artificial dataset is generated by a model of a cat’s

primary visual cortex (Antolík et al., 2018). Hence, the transfers are performed

across species in our case, while the transfers done by Lurz et al. (2020) were all

conducted on mice.

4.4.1 Cat to Mouse
First, we explored the possibility of transferring the core pre-trained on the

artificial dataset for use on the mouse data. The generated dataset contains

significantly more images and neurons; thus, we expected that the core might

capture some features useful for the prediction of mouse neurons’ responses.

To conduct this experiment, we used the original network from Lurz et al.

(2020). We downscaled the images from the artificial dataset to match the dimen-

sions of the ones from the mouse dataset. We trained the network on the whole

artificial dataset and saved the weights of the core module. Subsequently, we

used this pre-trained core for learning the readout weights on the mouse dataset.

Throughout this training, we froze the weights of the core. As the mouse dataset

contains only neurons from layer II/III, we repeated the experiment with a core
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pre-trained solely using the neurons from a single cortical layer. We compared

these training runs with a fixed randomly initialised core, fine-tuned randomly

initialised core, and the fixed pre-trained core from Lurz et al. (2020).

As illustrated in Figure 4.15, all the cores pre-trained on the artificial dataset

demonstrate comparable performance as the fixed core with random weights.

The performance is notably lower than both the network trained from scratch

and the network using the pre-trained core from Lurz et al. (2020).

As already mentioned, the findings from Cadena et al. (2019b) suggest that

the principal goal of a mouse’s primary visual cortex is not object recognition.

However, we demonstrated in Section 4.2.2 that goal-driven networks trained

on object recognition predict the responses from the artificial dataset fairly well.

These results hint that the visual systems of the two species solve rather different

tasks. However, it is still surprising that the representations captured during

the training on the artificial dataset did not capture features general enough to

facilitate the model’s predictions compared to a core with random weights.

4.4.2 Mouse to Cat
We also transferred the core the other way. Specifically, we used the pre-trained

core from Lurz et al. (2020) that was published alongside their paper. Similarly,

as before, we froze the weights of this core and trained the Gaussian readout on

the artificial dataset. Again, to determine the effect of different cortical layers,

we trained the readouts also on datasets consisting of a single cortical layer. We

compared the performances of the networks with the baselines represented by

a model with a fixed randomly initialised core and a whole model trained from

scratch.

See Figure 4.16 for the results of this experiment. Observe that all the training

runs with the pre-trained core significantly outperform the models with fixed

randomly initialised core. Nonetheless, their performance is still significantly

lower than the of the network trained from scratch. The best model with a pre-

trained core achieves mean FEVE of 0.44, while the model trained from scratch

reaches 0.79. The division into cortical layers does not seem to make a noteworthy

difference.

To our surprise, the outcomes from this experiment differ considerably com-

pared to the previous one. These findings suggest that the network pre-trained

on the mouse dataset learns fairly general representations, which results in quite

accurate predictions of the artificial neurons. Nonetheless, as anticipated, the

performance of the pre-trained model does not exceed the model trained on the

artificial dataset from scratch.
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Figure 4.15 The results of transferring the core module pre-trained on the
artificial dataset for use on the mouse data. The upper plot displays the progress
of individual training runs, while the bottom plot shows the resulting FEVE obtained.
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Figure 4.16 The results of transferring the core module pre-trained on the
mouse dataset for use on the artificial cat data. The upper plot displays the
progress of individual training runs, while the bottom plot shows the resulting FEVE
obtained.
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Conclusion

The thesis aimed to explore the mechanics of two different kinds of models of the

visual system: a deep neural network used for system identification (Lurz et al.,

2020) and a spiking model of a cat’s primary visual cortex (Antolík et al., 2018). We

discovered several interesting findings by using these networks simultaneously

in a series of experiments and analyses.

First, we used the deep neural network from Lurz et al. (2020) for system iden-

tification of the spiking model. By tuning the hyperparameters, we successfully

predicted approximately 85% of the explainable variance of the responses gener-

ated by the spiking models of neurons. Moreover, we analysed the impact of the

number of neurons and the number of images used for training the network. Based

on these two experiments, we conclude that the neural network, as presented by

Lurz et al. (2020), would not be capable of predicting the responses perfectly even

when a reasonably large amount of data is provided. We also provide an analysis

of possible causes of subpar predictions on some data samples. We showed that

the noise in neural responses obstructs learning adequate weights. Furthermore,

we show that the network encounters difficulties in precisely predicting higher

firing rates. Nonetheless, the network’s performance on this dataset is signifi-

cantly higher when compared to datasets made from recordings of live animals.

These findings suggest that real neurons possess certain characteristics that the

spiking model does not capture. We finished the system identification of the

spiking model by evaluating pre-trained goal-driven networks. Specifically, we

used EfficientNetV2-S (Tan and Le, 2021) and VGG16 (Simonyan and Zisserman,

2015) as core modules in combination with the Gaussian readout. These networks

achieved a satisfactory fraction of explainable variance explained of 0.7 and 0.73,

respectively. Nonetheless, the networks did not outperform the model from Lurz

et al. (2020).

In the next set of experiments, we further analysed the representations of

the system identification neural network trained on the artificial dataset. By

presentation of sinusoidal gratings, we examined whether the network captures

several properties of receptive fields. We found out that for well-predicted neurons

from layer IV, the receptive fields captured by the network exhibit orientation

85



and phase selectivity, indicating a prevalence of simple cells within the layer. On

the other hand, the learned representations of layers II/III neurons demonstrate

varying degrees of phase invariance, suggesting a higher concentration of complex

cells. Furthermore, only a few receptive fields exhibit surround suppression, and

the size tuning properties of the spiking neurons seem to be captured quite poorly.

We finalised the experiments by exploring the possibilities of transferring the

core module of the neural network from Lurz et al. (2020). Specifically, we wanted

to assess the effect of a core pre-trained on the mouse dataset and subsequently

used for training on the artificial dataset and vice versa. We show that a model

with a fixed core pre-trained on the mouse dataset performs significantly better

than a model with a fixed, randomly initialised core. This result implies that the

core captures some general features that are also usable for system identification

of the spiking model of a cat’s primary visual cortex. However, we demonstrate

that conducting the transfer the other way leads to performance similar to using

a randomly initialised core.

We believe that many of our experiments and results encourage additional

research. To further improve the system identification neural network, one might

investigate ways how to directly handle the great number of zero target responses

in the datasets, as this seems to be one of the factors that negatively skews the

network’s predictions.

Another area of research might aim to assess what part of the spiking model

prevents the neural network from predicting the responses perfectly. One poten-

tial approach is to systematically eliminate certain mechanisms (such as recurrent

connections) from the spiking model and use the neural network for the sys-

tem identification of these limited models. Then, by comparison of the neural

network’s performances, we might get additional insights into which specific

mechanic of the spiking model makes the predictions challenging.

Furthermore, to determine the validity of the phase, orientation and size tuning

patterns obtained in our experiments, it would be useful to conduct analogous

analyses directly on the spiking model. That way, we would know for sure

whether the learned representations correspond to the properties of the actual

spiking neurons.

And finally, it would be intriguing to use the core module of the system

identification network pre-trained on the spiking model of a cat’s primary visual

cortex for predictions of responses from a live cat. This would clarify whether the

underwhelming performance of using such a pre-trained core was caused solely

by the interspecies transfer. Moreover, given the ability to generate large datasets

using the spiking model, this approach could improve the quality of predictions

for neural responses of an actual cat’s primary visual cortex.
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Appendix A

Orientation, Phase and Size Tuning
of the DNN

In this appendix, we provide more plots that we obtained through our tuning

experiments in Section 4.3. Specifically, we show the phase-orientation tuning

plots from random neurons selected from layer IV and layers II/III in Figures A.1

and A.2, respectively. Next, we present size tuning plots of the same neurons

in Figures A.3 and A.4. Lastly, we demonstrate the impact of different model

initializations on the representations in Figure A.5 for a neuron from layer IV,

and in Figure A.6 for a layers II/III neuron.
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Figure A.1 Phase and orientation tunings of layer IV neurons. Each plot
illustrates the phase and orientation selectivity of a single neuron. The titles specify
the types of neurons and the goodness of prediction in terms of FEVE.
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Figure A.2 Phase and orientation tunings of layer II/III neurons. Each plot
illustrates the phase and orientation selectivity of a single neuron. The titles specify
the types of neurons and the goodness of prediction in terms of FEVE.
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Figure A.3 Size tunings of layer IV neurons. Each plot illustrates the relationship
between the stimulus size and the response of a single neuron. The titles specify the
types of neurons and the goodness of prediction in terms of FEVE.
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Figure A.4 Size tunings of layer II/III neurons. Each plot illustrates the relationship
between the stimulus size and the response of a single neuron. The titles specify the
types of neurons and the goodness of prediction in terms of FEVE.

101



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orientation (rad)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e 
(ra

d)

Phase and Orientation Tuning

M
od

el
 0

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Fi
rin

g 
ra

te
 (#

sp
ik

es
/s

)

0 10 20 30 40 50
Grating radius (px)

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Fi
rin

g 
ra

te
 (#

sp
ik

es
/s

)

Size Tuning

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orientation (rad)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e 
(ra

d)
M

od
el

 1

1.00

2.00

3.00

4.00

5.00

6.00

Fi
rin

g 
ra

te
 (#

sp
ik

es
/s

)

0 10 20 30 40 50
Grating radius (px)

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00
Fi

rin
g 

ra
te

 (#
sp

ik
es

/s
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orientation (rad)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e 
(ra

d)
M

od
el

 2

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Fi
rin

g 
ra

te
 (#

sp
ik

es
/s

)

0 10 20 30 40 50
Grating radius (px)

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Fi
rin

g 
ra

te
 (#

sp
ik

es
/s

)

Neuron #5337, L4 Excitatory

Figure A.5 Phase, orientation and size tunings on models with varying initial-
izations. Each row represents a model trained with a different initialization. The left
column show the phase-orientation selectivity plots while the right column illustrates
the size tunings.
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Figure A.6 Phase, orientation and size tunings on models with varying initial-
izations. Each row represents a model trained with a different initialization. The left
column show the phase-orientation selectivity plots while the right column illustrates
the size tunings.
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