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Introduction
Regression analysis is a very popular statistical technique used to explore the asso-
ciation between a dependent variable (response) and some independent variables
(covariates, predictors) and to determine how the independent variables affect the
dependent variable. Depending on the underlying assumptions and specifications,
there are three main types of regression models: parametric, nonparametric, and
semiparametric.

Parametric regression models assume that the dependent variable has a spe-
cific functional form that depends on the covariates and some unknown parame-
ters. An example is the linear regression model, which assumes that the response
can be modelled as a linear function of the predictors. Another example is the
generalized regression model, which extends the linear regression framework to
be able to model various types of dependent variables, such as binary or count
data, by using link functions to capture the relationship between the conditional
expected value of the response and the linear function of the covariates. Al-
though parametric models are popular as they have the advantage of simplicity
and straightforward interpretation, they can be unrealistic in certain applications,
and model misspecification may lead to a considerable bias.

In contrast, nonparametric models do not assume any specific functional form
for the dependent variable. Nonparametric regression models can fit complex
and nonlinear relationships without imposing any restrictive assumptions, how-
ever, their usage is limited as the curse of dimensionality makes them practically
unusable for high number of dimensions.

To overcome these challenges (the often too restrictive assumptions of the
parametric models and the curse of dimensionality of the nonparametric models),
semiparametric models have been proposed. They assume that the response has
a partially specified functional form that depends on some parametric and some
nonparametric components.

One of the most popular semiparametric models is the varying coefficient
model introduced by Hastie and Tibshirani (1993). The varying coefficient model
can be seen as an extension to the generalized linear model by allowing the
coefficients to be smooth functions of some independent variables.

An important issue is the estimation of the coefficient functions. Several es-
timation methods have been proposed over the years, the most popular are the
local polynomial regression and two spline approximation methods: the polyno-
mial spline approach and the smoothing spline approach.

The spline approximation methods use the fact that any smooth function can
be approximated using basis splines. Basis splines are composed of a set of basis
functions, such as polynomial functions, with each one defined over a unique
interval determined by knots. These knots function as points where individual
segments come together smoothly to create a continuous curve. The challenge
lies in selecting the appropriate number and placement of the knots, as well as
in determining the optimal smoothing parameter, which controls the trade-off
between the goodness-of-fit and the smoothness of the estimate function in the
case of the smoothing spline estimator. The polynomial spline estimator does
not take the smoothness of the estimate into account, it is based solely on the
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goodness-of-fit. The interpretability and nice asymptotic properties of the spline
estimation methods make them particularly appealing and they are therefore the
focus of this thesis.

The thesis focuses on the varying coefficent models in the longitudinal setting
and a construction of simultaneous confidence bands for the coefficient function.
In the first chapter, we introduce the varying coefficient models and provide some
examples of such models. In the second chapter, we look closely at the coeffi-
cient function estimation methods based on spline approximation in longitudinal
settings. We introduce different methods for the selection of the smoothing pa-
rameters. The third chapter is the main chapter of this thesis and focuses on
the confidence intervals and bands for the coefficient functions, using pointwise
asymptotic normality as our primary tools. The fourth chapter presents results
of a corresponding simulation study.
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1. Varying coefficient models
In this chapter, we define the varying coefficient models first in standard setting
and in longitudinal setting and provide a range of specific cases of these models.
We also discuss the advantages and disadvantages of such models.

1.1 General framework
We start with a motivating example from the medical field, but varying coefficient
models are commonly used in many other areas, such as finance, environmental
sciences, and social sciences. One of the key goals in medical studies is to dis-
cover how different treatments affect patient outcomes (e.g. blood pressure, or
recovery time). It is not sufficient to compare the outcomes between different
treatment groups alone, because the effect of the treatment differs greatly de-
pending on a number of patient-specific factors. While interactions can be added
to traditional generalized linear models to capture some of the heterogeneity in
treatment effects, the choice of interaction terms may not fully account for the
complexity of the treatment-outcome relationship. That has the consequence of
biased estimates and inaccurate predictions. To address the limitations, varying
coefficient models allow the effect of the treatment variable to vary as a smooth
function of some patient-specific characteristics, that could be for example age,
time since the beginning of the treatment, or white blood cell count.

Formally, let (Ω, A, P) be a probability space, random variable Y :
(Ω, A) → (R, B (R)) be the dependent variable and random variables
R1, . . . , Rp, X1, . . . , Xp : (Ω, A) → (R, B (R)) , for p ∈ N, be the covariates.
Our goal is to model the conditional expected value of Y given the covariates
X1, . . . , Xp, R1, . . . , Rp, denoted as E (Y |X1, . . . , Xp, R1, . . . , Rp) . We assume
that the effects of the variables Xj are not fixed, but instead they depend on
the corresponding covariates Rj, for j = 1, . . . , p. This dependency is not ar-
bitrary, we model it using a set of real-valued smooth functions βj : R → R
such that each predictor’s effect can adjust according to its associated covari-
ate. Furthermore, we assume a linear relationship between the predictors and
the conditional expectation of the dependent variable.

1.2 Standard model formulation
Let us define the varying coefficient models according to Hastie and Tibshirani
(1993).
Definition 1. Let p ∈ N be a constant and Y,X1, . . . , Xp, R1, . . . , Rp be real-
valued random variables. A model is referred to as a varying coefficient model if
it takes the form

Y =
p∑︂

j=1
βj(Rj)Xj + ε, (1.1)

where β1 (·) , . . . , βp (·) are some real-valued smooth functions, ε is
a random error term satisfying E (ε |X1, . . . , Xp, R1, . . . , Rp) = 0 and
var (ε |X1, . . . , Xp, R1, . . . , Rp) = σ2 > 0.
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According to Definition 1, the conditional expectation of the response Y , i.e
E (Y |, X1, . . . , Xp, , R1, . . . , Rp), depends on the covariates X1, . . . , Xp through
some (unspecified) smooth functions β1 (·) , . . . , βp (·) of covariates R1, . . . , Rp.
The covariates R1, . . . , Rp are known as the effect-modifying (random) variables.
The functions βj (·) for j = 1, . . . , p, p ∈ N, imply some special kind of interaction
between Xj and Rj.

Some well-known regression models can be considered as a special case of
Model (1.1).

The first example is the linear regression model (with or without interactions).
By assuming that the functions βj(·) in Definition 1 are constant, i.e., βj(·) ≡ βj,
where βj ∈ R for j = 1, . . . , p, Model (1.1) can be rewritten as

Y =
p∑︂

j=1
βjXj + ε. (1.2)

That is an equation of a linear regression model without interactions. Further,
consider the equation of Model (1.1) and set p = m(m+ 1) for some m ∈ N. The
model can be rewritten by indexing over i and j ranging from 1 to m+ 1 and m,
respectively:

Y =
m+1∑︂
i=1

m∑︂
j=1

βij (Rij)Xij + ε. (1.3)

Here is how to set the terms

1. Set Xij = XiXj for i = 1, . . . ,m+1, j = 1, . . . ,m for some random variables
X1, . . . , Xm+1. Additionally, Xm+1 = 1 almost surely.

2. Set βij(·) ≡ βij ∈ R, i.e., as a constant function. Also, set

(a) βij = 0 when i ≤ j.
(b) βj = β(m+1)j.

Substituting these terms into Equation (1.3) yields

Y =
m∑︂

j=1
βjXj +

m∑︂
i=1

i−1∑︂
j=1

βijXiXj + ε, (1.4)

which is an equation of a linear regression model with interactions.
The generalized additive model is another example of varying coefficient mod-

els. This model assumes that the response variable Y depends nonlinearly on p
covariates R1, . . . , Rp, and their effects are additive and smooth. The model
equation can be expressed as

Y = β1(R1) + · · · + βp(Rp) + ε. (1.5)

This model can be considered as a special case of Model (1.1) by setting Xj = 1
almost surely for j = 1, . . . , p. For more details, see Hastie and Tibshirani (1986).

Definition 1 is the first definition of the varying coefficient model provided
in the literature and is sufficient for the purpose of this thesis. However, it is
important to note that the definition could be extended to allow for multivariate
effect-modifying random vectors.

Another extension is to allow for some correlation structure in the model.
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1.3 Longitudinal model and other additional ex-
tensions

Let us return to the motivating example. Medical studies are often conducted
by collecting data from the same subjects repeatedly over time. This results
in within-subject correlated observations. Several methods are available for
analysing longitudinal data, including generalized estimating equations (GEE)
(see Hardin and Hilbe, 2003) and mixed-effect regression models (see Hardin and
Hilbe, 2003). The varying coefficient models framework can be extended to pro-
vide an alternative approach to longitudinal data modelling.

We define the varying coefficient model according to Huang et al. (2002).
Extension of the definition by using some link function is also possible.

Definition 2. Let {Y (t) , t ∈ R} be a real-valued response stochastic process and
let {X (t) = (X1 (t) , . . . , Xp (t)) , t ∈ R} be an Rp-valued covariate stochastic pro-
cess. We define the longitudinal varying coefficient model as follows:

Y (t) =
p∑︂

j=1
βj(t)Xj (t) + ε (t) , (1.6)

where {ε (t) , t ∈ R} is a zero-mean stochastic process and {ε (t) , t ∈ R} and
{X (t) = (X1 (t) , . . . , Xp (t)) , t ∈ R} are independent.

The functions βj(·) capture the time-varying effects of the covariates on the
response. We primarily concentrate on this longitudinal extension in this thesis.

Since their introduction 30 years ago, varying coefficient models have gained
significant popularity due to their flexibility and ability to capture complex re-
lationships. There are numerous other examples of those models, let us list just
some of them.

1. Survival Analysis: In survival analysis, the varying coefficient model can
be used to analyze the relationship between the hazard function and some
time-varying covariates. In this case, the model is often referred to as
a time-varying Cox proportional hazards model. (see Fisher and Lin, 1999)

2. Spatial Analysis: In spatial analysis, the varying coefficient model can be
used to model the relationship between the response variable and spatially-
varying covariates. An example is the geographically weighted regression
model that allows the relationships between the response variable and the
predictors to vary across space. (see Brunsdon et al., 1996)

3. Dynamic Regression Models: These models capture complex time-
varying relationships in time series data. They are able to handle non-
linear patterns. The threshold autoregressive (TAR) model is one example,
allowing for different autoregressive processes based on a threshold variable.
Such models are widely used in finance. (see Cai et al., 2000b)
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1.4 Pros and Cons
Choosing an appropriate model is a critical step in the statistical analysis. The
choice depends on the structure of the data, and the question at hand. When
considering the use of the varying coefficient model, it is important to weigh the
pros and cons of the approach to determine its suitability for the specific problem.

Pros:

1. Flexibility: Varying coefficient models can capture complex, non-linear
relationships between the response variable and covariates. By allowing
the coefficients to vary as a smooth function of some chosen covariates,
these models can model relationships that may not have been possible with
simpler parametric models.

2. Interpretability: The estimated coefficient functions provide a clear pic-
ture of how the effects of covariates change with the variable of interest.

Cons:

1. Estimation and Inference Complexity: Both the estimation of the
varying coefficient functions and the subsequent statistical inference are
more complex and computationally demanding compared to parametric
models.

2. Overfitting: Due to their flexibility, varying coefficient models can poten-
tially overfit the data, that is fit the data ”too well” by capturing noise
rather than the underlying trends.

3. Potential interpretation challenges: Although varying coefficient mod-
els offer a high level of interpretability, they can be challenging to interpret
when the number of covariates is large or when there are complex interac-
tions between covariates.

4. Research Stage: The varying coefficient models are newer and less studied
compared to parametric models. The methodology is complex and further
research is needed to make the varying coefficient models usable in broad
research.
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2. Estimation methods
Let us consider the longitudinal varying coefficient model in (1.6) discussed in
Chapter 1. In this Chapter, we look closely at two methods of estimating the
coefficient functions: the smoothing spline method and the polynomial spline
method. They are closely related, the polynomial spline method can be considered
a special case of the smoothing spline method.

Consider a longitudinal random sample of size ∑︁n
i=1 ni = N ∈ N

{(Yi (Til) , Xi1 (Til) , . . . , Xip (Til) , Til) , i = 1, . . . , n, l = 1, . . . , ni} , (2.1)

where each (p+2)-tuple (Yi(Til), Xi1(Til), . . . , Xip(Til), Til) is a realization from the
joint distribution F(Y (T ),X1(T ),...,Xp(T ),T ). In the given notation, Til represents the
l-th measurement time of the i− th subject, Xi (Til) = (Xi1 (Til) , . . . , Xip (Til))⊤

and Yi (Til) = Yil are the i-th subject’s observed covariates and outcome measured
at time Til.

The data satisfy the varying coefficient model in (1.6) in the longitudinal
setting, if for each subject i and measurement l we have:

Yi(Til) = Xi1(Til)β1 (Til) + · · · +Xip(Til)βp (Til) + εi (Til) , (2.2)

where (εi (Til) , . . . , εi (Tini
))⊤ are realizations of the mean-zero random process

ε(t). The coefficient functions β (·) = (β1 (·) , . . . , βp (·))⊤ are unspecified. Our
goal is to find functions β̂ (·) =

(︂
β1̂ (·) , . . . , βp̂ (·)

)︂⊤
using the sample data which

provide a reasonable approximation of the true underlying functions β. We de-
note εil = εi (Til) , εi = (εi1, . . . , εini

)⊤ , and ε =
(︂
ε⊤

1 , . . . , ε
⊤
n

)︂⊤
. The times of

the measurements are random, all results in this thesis however hold also for
deterministic times.

Denote by Cd the space of all smooth functions of order d ∈ N0. Theoretically,
we could obtain the estimators β̂ as a smooth function of order d minimizing the
(possibly weighted) sum of squared errors, i.e

β̂(·) = argmin
βj(·)∈Cd, j=1,...,p

n∑︂
i=1

ni∑︂
l=1

⎡⎣Yi(Til) −
p∑︂

j=1
Xij(Til)βj(Til)

⎤⎦2

. (2.3)

Estimating the varying coefficient model directly on the space of smooth func-
tions is theoretically possible, but using spline approximation offers practical ad-
vantages. The space of all smooth functions is infinite-dimensional, which makes
the optimization problem challenging to solve and computationally infeasible.
Directly searching through this space can lead to overfitting, the resulting model
can fit the training data well but perform poorly on new data. Additionally, so-
lutions found in the space of smooth functions may lack interpretability, making
it difficult to draw meaningful conclusions from the model. Spline approximation
addresses these issues.

2.1 Polynomial spline approach
The first estimation method we consider is the polynomial spline method intro-
duced by Huang et al. (2002) in the context of longitudinal data.
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To estimate the coefficient functions, we approximate the unknown functions
βj (·) by some basis functions and then the estimate is obtained by minimizing
the sum of squared errors. A common choice is to use B-splines.

2.1.1 B-spline basis
We start with an introduction of B-splines, as they are the key concept of the
spline estimation methods. To be able to define B-splines, it is essential to intro-
duce knot sequences.

Definition 3. A knot sequence ξ ∈ RM+2 of length M + 2, M ∈ N is a non-
decreasing sequence of real numbers, ξ := {ξi}M+2

i=1 = {ξ1, . . . , ξM+2 : −∞ < ξ1 ≤
ξ2 ≤ · · · ≤ ξM+2 < ∞}. The elements of ξ are called knots. The knots are said
to be distinct if ξi ̸= ξj for any i ̸= j. For distinct knots, the set of M knots
{ξ2, ξ3, . . . , ξM+1} can be referred to as internal knots, while ξ1 and ξM+2 are the
end points.

We only consider distinct knots and refer to them simply as knots.
Provided that the number of internal knots ξ, M, satisfies M ≥ d, d ∈ N0, we

can define B-spline basis of degree d over the knots ξ.
According to De Boor (1972), we can define the B-spline basis (one of the

possible basis of the space of the polynomial splines) as

Definition 4. Let M, d ∈ N0 : M ≥ d. A B-spline basis of degree d ∈ N0 with
M + 2 knots ξ = {ξj, j = 1, . . . ,M + 2 : −∞ < ξ < · · · < ξM+2 < ∞} is a set of
non-negative B-spline basis functions

Bd,ξ = {Bj,d,ξ(·), j = 1, . . . ,M + d+ 1} .

Each B-spline basis function Bj,d,ξ(·) is defined recursively as follows

Bj,0,ξ(x) =

⎧⎨⎩1 if ξj ≤ x < ξj+1,

0 otherwise,

and

Bj,k,ξ(x) = x− ξj

ξj+k − ξj

Bj,k−1,ξ(x) +
(︄

1 − x− ξj

ξj+k − ξj

)︄
Bj+1,k−1,ξ(x),

for k = 1, . . . , d and j = 1, . . . ,M + d+ 1.

Roughly speaking, B-spline basis is a set of B-spline basis functions defined
over a sequence of knots. Each B-spline basis function is a piecewise polynomial
function of a given degree, and its value is non-zero only over a limited range
defined by the knots. The sum of all B-spline basis functions at any given point
is one. For more information about the B-splines see De Boor (1978).
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(b) d = 3.

Figure 2.1: B-spline basis functions for d = 1 and d = 3, and knots ξ =
{0, 1, 2, 3, 4, 5, 6}.

Any B-spline B (·) of degree d ∈ N0 with the knots {ξj, j = 1, . . . ,M + 2}
can be written in terms of its B-spline basis as a linear combination of the basis
B-spline functions

B (·) =
M+d+1∑︂

j=1
γjBj (·) ,

for some γj ∈ R, j = 1, . . . ,M + d + 1. The B-spline functions of a given degree
and knots form a linear space, the B-spline basis is the basis of the linear space.

It can be shown that any smooth function f(·) of degree d can be approximated
on a closed interval [a, b] , a ∈ R, b ∈ R, a < b, by some B-spline function b(·) of
degree d and sufficiently large number of knots, as

sup
z∈[a,b]

|f(z) − b(z)| M→∞−−−→ 0.

Let us assume that the observation times for all i = 1, . . . , n, l = 1, . . . , ni

satisfy Til ∈ [a, b] and that the coefficient functions βj (·) are (d − 1)-times con-
tinuously differentiable, usually we take d = 3 (corresponds to cubic splines), or
d = 1 (linear splines). Then we can approximate the coefficient functions using
the B-spline basis functions of degree d, so that

βj (t) ≈
Kj∑︂
k=1

γjkBjk(t), Kj ∈ N, (2.4)

where {Bjk (·) , k = 1, . . . , Kj} is the B-spline basis from Definition 4 with a given
degree and knots. The number Kj ∈ N represents the dimension of the corre-
sponding B-spline linear space Gj (number of B-spline basis functions). As we
know from Definition 4, Kj depends on the number of inner knots Mj and the
B-spline degree d through the relation

Kj = Mj + d+ 1.

To estimate the coefficient functions, we need to choose an appropriate B-
spline basis Bj of a linear space Gj, and estimate the parameters γj1, . . . , γjKj

by
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some γ̂j1, . . . , γ̂jKj
using the polynomial spline approach or the penalized spline

approach (smoothing spline approach). The estimate is then given as

β̂j (r) =
Kj∑︂
k=1

γ̂jkBjk(r). (2.5)

2.1.2 Longitudinal model estimation
Suppose that smooth functions βj (·) for ȷ = 1, . . . , p can be approximated by
some B-spline function

βj (·) ≈
Kj∑︂
k=1

γjkBjk(·).

The approximation of β (·) leads to the approximation of Model (2.2) as

Yi(Til) = Xi1(Til)
K1∑︂
k=1

γ1kB1k(Til) + · · · +Xip(Til)
Kp∑︂
k=1

γpkBpk(Til) + εil

=
p∑︂

j=1

Kj∑︂
k=1

γjkBjk(Til)Xij(Til) + εil.

To estimate the coefficient functions β1(·), . . . , βp(·), we need to estimate the
coefficients γ =

(︂
γ⊤

1 , . . . ,γ
⊤
p

)︂⊤
=
(︂
γ11, . . . , γ1K1 , . . . , γp1, . . . , γpKp

)︂⊤
. That can

be done by minimizing the sum of squared errors, which provides a natural mea-
sure of the goodness of fit.

Huang et al. (2002) suggested using a weighted sum of square errors
to account for the within-subject correlation. Let γ̂ =

(︂
γ̂⊤

1 , . . . , γ̂
⊤
p

)︂⊤
=(︂

γ̂11, . . . , γ̂1K1 , . . . , γ̂p1, . . . , γ̂pKp

)︂⊤
be the estimated vector γ. The estimate γ̂

of the vector γ can be calculated as

γ̂ = argmin
γ∈RK

n∑︂
i=1

wi

ni∑︂
l=1

⎛⎝Yi(Til) −
p∑︂

j=1
Xij(Til)

Kj∑︂
k=1

γjkBjk(Til)
⎞⎠2

, (2.6)

where wi ≥ 0, ∑︁n
i=1 wi = 1 are some chosen weights for subjects i = 1, . . . , n.

The choice of weights wi is important, as it can greatly impact both the theo-
retical and practical properties of the estimators γ̂. An ideal choice of the weights
might depend on the within-subject correlation, which is usually unknown. Two
common choices of weights are:

1. wi = 1
nni
, which assigns equal weight to each subject. This is recommended

when the number of observations ni for each subject i is similar.

2. wi = 1
N
, which assigns equal weight to all observations. This can be used

when the number of observations ni for each subject i differs significantly.

It should be noted that if we relax the constraint ∑︁n
i=1 wi = 1, alternative

weights wi = 1
ni

and wi = 1 can be considered. These alternatives correspond to
the two previously mentioned choices of weights, each scaled by a constant factor
that is the same for all subjects. As a result, both sets of weights lead to the
same solution for the minimization problem (2.6).
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To find the solution to this minimization problem, we can rewrite (2.6) into
a matrix notation. Let

B(t) =

⎛⎜⎜⎝
B11(t) . . . B1K1(t) . . . 0 . . . 0

... . . . ... ... ...
0 . . . 0 . . . Bp1(t) . . . BpKp(t)

⎞⎟⎟⎠
be a (p × K) matrix. Further, let W = diag(wi, . . . , wi), Ui = (Ui1, . . . ,Uini

)⊤,
where U⊤

il = X⊤
i (Til)B(Til), l = 1, . . . , ni, and the vector of observed responses

of i-th subject Yi = (Y (Ti1) , . . . , Y (Tini
))⊤, then

γ̂ = argmin
γ∈RK

n∑︂
i=1

(Yi − Uiγ)⊤ Wi (Yi − Uiγ) . (2.7)

which resembles ordinary least square estimation in the case of linear regression
models, and can be therefore solved analogously by using normal equations. Set

F (γ) =
n∑︂

i=1
(Yi − Uiγ)⊤ Wi (Yi − Uiγ)

=
n∑︂

i=1

[︂
Y ⊤

i WiYi − Y ⊤
i WiUiγ − γ⊤U⊤

i WiYi + γ⊤U⊤
i WiUiγ

]︂
.

Let us calculate the derivative and set it to zero.

∂F (γ)
∂γ

= −2
n∑︂

i=1
U⊤

i WiYi + 2
n∑︂

i=1
U⊤

i WiUiγ = 0

By rearranging the terms we get the following system of linear equations
n∑︂

i=1
U⊤

i WiUiγ̂ =
n∑︂

i=1
U⊤

i WiYi.

The solution can be analytically expressed by taking the inverse of the matrix∑︁n
i=1 U⊤

i WiUi, provided the inverse exists. In Section 3.1 we list mild regularity
conditions that guarantee its existence. The resulting estimate is

γ̂ =
(︄

n∑︂
i=1

U⊤
i WiUi

)︄−1 n∑︂
i=1

U⊤
i WiYi. (2.8)

We focus on this estimator in this thesis, due to the nice asymptotic properties
(consistency and asymptotic normality), shown in section 3.1. For completeness,
let us also introduce the smoothing spline estimator.

2.2 Smoothing spline approach
The smoothing spline method, also known as the penalized spline method, is the
second spline-based method we introduce. Introduced by Hastie and Tibshirani
(1993) and further developed by Hoover et al. (1998), the method estimates the
coefficient functions β by minimizing a criterion that combines the sum of squared
errors and a penalty term that depends on the smoothness of the functions.

12



In fact, the polynomial spline approach, discussed in Section 2.1, is a special
case of the smoothing spline method. In the polynomial spline approach, the
penalty term is effectively set to zero, focusing the minimization solely on the sum
of squared errors in (2.6), thus focusing only on the fit. On the other hand, the
smoothing spline method balances both the fit and the smoothness by including
a penalty term that penalizes the roughness of the coefficient functions.

2.2.1 Longitudinal model estimation
Suppose that the coefficients functions β1 (·) , . . . , βp (·) are twice continuously
differentiable with bounded and square integrable second derivatives. For i.i.d.
data, it is natural to estimate the functions β1(·), . . . , βp(·) by minimization of the
penalized least squares. Hoover et al. (1998) suggested minimizing such criterion
even in the case of repeated measurements, i.e. the estimates are obtained as

γ̂ =argmin
γ∈RK

⎡⎣ n∑︂
i=1

ni∑︂
l=1

⎛⎝Yi(Til) −
p∑︂

j=1
Xij(Til)

Kj∑︂
k=1

γjkBjk(Til)
⎞⎠2

+
p∑︂

j=1
λj

∫︂ b

a

⎛⎝ Kj∑︂
k=1

γjkB
′′

jk(t)
⎞⎠2

dt
⎤⎦, (2.9)

where λj ∈ R+
0 are smoothing (tuning) parameters. That is, the estimation is

conducted assuming a within-subject working independence. The first term of the
penalized least squares measures the goodness of fit of the model to the data, while
the second term penalizes the lack of smoothness of the coefficient functions based
on their second derivatives. The parameters λj control the trade-off between the
fit and the smoothness for each coefficient function. Larger values of λj lead to
smoother functions, but can also increase the bias. If λj is very small, i.e. zero
or close to zero, the penalty term is of no real importance and the minimization
leads to the estimator with the best fit for the data given in Section 2.1.

To solve this optimalization problem, we need to rewrite (2.9) by using a ma-
trix notation as

Y = (Y1(T11), . . . , Y1(T1n1), . . . , Yn(Tn1), . . . , Yn(Tnnn))⊤ ,

Dj = diag (X1j(T11), . . . , X1j(T1n1), . . . , Xnj(Tn1), . . . , Xnj(Tnnn)) ,

Ωj =

⎛⎜⎜⎝
∫︁ b

a B
′′
j1(t)B

′′
j1(t) dt . . .

∫︁ b
a B

′′
j1(t)B

′′
jKj

(t) dt
... . . . ...∫︁ b

a B
′′
jKj

(t)B′′
j1(t) dt . . .

∫︁ b
a B

′′
jKj

(t)B′′
jKj

(t) dt

⎞⎟⎟⎠ ,

Bj =

⎛⎜⎜⎝
Bj1(T11) . . . BjKj

(T11)
... . . . ...

Bj1(Tnnn) . . . BjKj
(Tnnn)

⎞⎟⎟⎠ .
To minimize the expression (2.9), we need to solve the set of p equations

∂

∂γj

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦Y −

p∑︂
j=1

DjBjγj

⃦⃦⃦⃦
⃦⃦

2

2

+
p∑︂

j=1
λjγ

⊤
j Ωjγj

⎤⎥⎦ = 0, j = 1, . . . , p. (2.10)
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That corresponds to the set of equations

−2DjB⊤
j

(︄
Y −

p∑︂
k=1

DkBkγk

)︄
+ 2λjΩjγj = 0, j = 1, . . . , p. (2.11)

Equation (2.11) can be reformulated through a series of algebraic manipula-
tions.

DjB⊤
j

(︄
Y −

p∑︂
k=1

DkBkγk

)︄
= λjΩjγj,

B⊤
j D2

jBjγj + λjΩjγj = B⊤
j Dj

⎛⎝Y −
p∑︂

k=1,k ̸=j

DkBkγk

⎞⎠ ,
(︂
B⊤

j D2
jBj + λjΩj

)︂
γj = B⊤

j Dj

⎛⎝Y −
p∑︂

k=1,k ̸=j

DkBkγk

⎞⎠ . (2.12)

The solution can be obtained from (2.12) by solving a system of K = ∑︁p
j=1 Kj

equations. That can be solved using Gaussian elimination with computational
time O(K3).

Hastie and Tibshirani (1993) suggested an alternative calculation requiring
computational time only O(K). For more details, see Hastie and Tibshirani
(1993).

Alternatively, Chiang et al. (2001) proposed a different approach in the case
of time invariant covariates, i.e. Xij(Til) = Xij for all i = 1, . . . , n, l = 1, . . . , ni,
j = 1, . . . , p, minimizing a criterion for each βj(·) separately. The usage of such
models is somewhat limiting, as in practice, covariates often depend on the time
of the collection. However, there are some examples of covariates used in longi-
tudinal studies that are time-invariant, such as treatment, dosage of medication,
or baseline values.

The idea is to consider a general model equation of the form

Y (t) = X⊤β (t) + ε (t) . (2.13)

Assuming the inverse of E XX⊤ exists, we can express β (t) as β (t) =
(E XX)−1(E XY (t)). Denote ej,r the (j, r)-th element of

(︂
E XX⊤

)︂−1
. The

function βj(·) can be expressed as

βj (t) = e⊤
j

(︂
E XX⊤

)︂−1
(E XY (t)) = E

(︄ p∑︂
r=1

ej,rXrY (t)
)︄
.

The element ej,r does not depend on t, it can be estimated by using sample mean
as

êj,r = e⊤
j

(︄
1
n

n∑︂
i=1
XiX

⊤
i

)︄−1

er. (2.14)

It follows that a reasonable estimator γ̂j can be obtained by penalized least
squares as
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γ̂j = argmin
γ∈RKj

n∑︂
i=1

wi

ni∑︂
l=1

⎡⎣ p∑︂
r=1

ej,rXirYi(Til) −
Kj∑︂
k=1

γjkBjk(Til)

⎤⎦2

+ λj

∫︂ b

a

⎡⎣ Kj∑︂
k=1

γjsB′′
jk(t)

⎤⎦2

dt, (2.15)

the weights wi are usually chosen in the same way as in Section 2.1.
In comparison with the minimization in (2.9), the minimization in (2.15)

requires generally less computational time. On the other hand, there is no explicit
solution to (2.15). The solution is a cubic spline that can be approximated by an
equivalent kernel function. The derivation is however beyond the scope of this
thesis, for more details see Chiang et al. (2001).

2.2.2 Selection of the knots and the smoothing parame-
ters

The choice of the number of knots, the knot locations, and the smoothing pa-
rameter can have a large impact on the quality of the spline approximation. In
general, the knots should be placed in regions of high curvature or where the
function changes rapidly.

Selection of the knot locations

There are various methods available for selecting the placement of knots once the
number of knots is chosen.

One simple method for selecting knot locations is to use equidistant knots.
That is, the knots are spread evenly along the range of the time variable. This
approach is easy to implement and can provide quite reasonable approximation
for smooth functions. However, it may not capture well the local behaviour of
the function.

Alternatively, we can choose the knot locations by considering the distribution
of the effect-modifying variable. One approach is to use quantile-based knots,
where the knots are placed at the quantiles of the distribution. This way we can
avoid clustering of knots in regions with sparse data.

Another method is to use cross-validation or generalized cross-validation,
which are techniques that select the knots by minimizing a criterion that bal-
ances the fit and smoothness of the function, see Section 2.2.2. This methods can
provide an optimal trade-off between bias and variance of the spline, but may be
computationally intensive as it requires refitting the model many times.

Selection of the number of knots

Selecting the optimal number of knots is crucial for obtaining an accurate es-
timate, as the number of knots controls the complexity of the spline functions
and consequently also of the coefficient functions β (·) . A larger number of knots
enables capturing more complex patterns in the data, while a smaller number of
knots produce smoother and more stable estimates of the coefficient functions.
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There are several ways how to select the optimal number of knots, e.g., it
could be chosen arbitrary based on some available recommendations. It might be
however more appropriate to choose the number of knots, possibly together with
the locations, based on some data-driven way.

a. Cross-validation

Cross-validation is a resampling technique that can be used to choose the number
of knots out of a given set Kp ⊂ Rp

+. The idea is to split the data into a training
set and a validation set. The model is fit on the training data and evaluated on the
validation data, and this process is repeated multiple times. One common method
is the leave-one-out cross-validation (leave-one-out CV), where each observation
serves as the validation set. The optimal number of knots, which can differ
for each j = 1, . . . , p, is K =

(︂
K1, . . . , Kp)⊤ ∈ Kp that minimizes the average

prediction squared error, or alternatively the sum of squared prediction errors,
for short SSPE.

Huang et al. (2002) defines the sum of squared prediction errors as

KLong
(CV) = argmin

K∈Kp

n∑︂
i=1

ni∑︂
l=1

wi

⎡⎣Yi(Til) −
p∑︂

j=1
Xij(Til)β̂

[−i]
j (Til)

⎤⎦ , (2.16)

where β̂[−i] (·) = (β̂[−i]
1 , . . . , β̂

[−i]
p )⊤ is the polynomial spline estimate of β (·) com-

puted with all measurements of the i-th subject deleted.
The procedure for the leave-one-out CV can be summarized as follows:

1. Choose Kp, the range of possible numbers of knots to test.

2. For each number of knots K in the range Kp

(a) For each subject i = 1, . . . , n
i. Remove the i-th subject from the dataset.
ii. Fit the varying coefficient model using the remaining data with

the current number of knots, resulting in β̂[−i].
iii. Compute the prediction error for the left-out observations:

Yi(Til) −X⊤
i β̂

[−i](Til).

(b) Calculate the sum given in (2.16) by summing the squared prediction
errors.

3. Select the number of knots that minimizes the expression (2.16).

Similarly, the leave-one-out CV can be also used to choose the location of
the knots (by minimizing SSPE over a set of possible locations) or choosing the
location and the number of knots simultaneously. It should be pointed out that
leave-one-out CV can be computationally quite expensive, as it requires fitting
the model n times for each K. A possible alternative is to use generalised cross-
validation, see for example Ruppert (2002).
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b. Information Criteria

Information criteria provide another method for choosing the number of knots.
They balance the fit of the model (as measured by the residual sum of squares)
against the complexity of the model (as measured by the number of parame-
ters K). Two commonly used criteria are the Akaike Information Criterion AIC
(Akaike, 1974) and the Bayesian Information Criterion BIC (Schwarz, 1978).

For the AIC, we select the number of knotsK = (K1, . . . , Kp) that minimizes:

K(AIC) = argmin
K∈Kp

[︃
log
(︃

RSS
N

)︃
+ 2K

N

]︃
(2.17)

= argmin
K∈Kp

⎡⎢⎣log

⎛⎜⎝ 1
N

n∑︂
i=1

wi

ni∑︂
l=1

⎛⎝Yi(Til) −
p∑︂

j=1
Xij(Til)

Kj∑︂
k=1

γ̂jkBjk(Til)

⎞⎠2
⎞⎟⎠+ 2K

N

⎤⎥⎦ .

For the BIC, we select the number of knots that minimizes:

K(BIC) = argmin
K∈Kp

[︄
log

(︄
RSS
N

)︄
+ log(N)K

N

]︄
. (2.18)

For more details see Huang and Shen (2004).

Selection of the smoothing parameter

Chiang et al. (2001) recommends using the cross-validation method introduced in
Section 2.2.2 the context of knot number selection also to choose the smoothing
parameter out of a preselected range.

2.3 Other methods
Polynomial and smoothing spline estimation are global methods, meaning that
these methods construct estimates considering the entire range of the covariate
space. This global perspective often leads to computationally efficient solutions.
However, their global nature may limit their flexibility to capture localized vari-
ations.

An alternative method is the local polynomial approach which uses kernel
function to weigh the data points close to a specific point of interest. It then
uses these weights to create a polynomial fit that effectively describes the local
characteristics of the data (see Hastie and Tibshirani, 1993; Cai et al., 2000a).
Another alternative is the local maximum likelihood approach that maximizes
the likelihood function over local regions (see Cai et al., 2000a).
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3. Statistical inference
In this chapter, we derive the asymptotic properties, especially consistence and
asymptotic normality of the polynomial spline estimator of the coefficient func-
tions in Model (2.2). The asymptotic results are used to construct pointwise
asymptotic confidence intervals and asymptotic confidence bands for the unknown
coefficient functions.

3.1 Asymptotic properties
The asymptotic properties of the polynomial spline estimator from Section 2.1.2
for Model (2.2) were extensively studied by Huang et al. (2004). Here we sum-
marize the findings. Firstly, let us define the necessary terminology.

Let g : [a, b] → R be a function and let G = {gi(·), gi : [a, b] → R, i ∈ I} be
some linear space of real-valued functions defined on the interval [a, b], where I
is an index set. Denote by

dist(f,G) = inf
g∈G

(︄
sup

x∈[a,b]
|f(x) − g(x)|

)︄
(3.1)

the L∞ distance of the real-valued function f (·) from the linear space of real-
valued functions G. Moreover, let ∥·∥L2 be the L2 norm, i.e. for a real-valued
function g(·)

∥g∥L2 =
(︄∫︂ b

a
g2(t) dt

)︄ 1
2

. (3.2)

For a vector function g(·) = (g1 (·) , . . . , gp (·))⊤ , gj : [a, b] → R, j = 1, . . . , p,

∥g∥L2 =
⎛⎝ p∑︂

j=1
∥gj∥2

L2

⎞⎠ 1
2

. (3.3)

Assume that the times of measurements Tjl, j = 1, . . . , n, l = 1, . . . , ni, are
independent observations of a real-valued random variable T with support con-
tained in the interval [a, b], a, b ∈ R. Furthermore, assume that the random vari-
able T is independent of the random processes {Y (t),X(t), t ∈ [a, b]} .

Without loss of generality, assume that the support of the random variable T,
is contained in the interval [0, 1] . The results hold for the general case [a, b] due
to a possible transformation T (b− a) + a.

For real-valued vector functions g(1)(·) = (g(1)
1 (·), . . . , g(1)

p (·))⊤ and g(2)(·) =
(g(2)

1 (·), . . . , g(2)
p (·))⊤ defined on [0, 1]p, we define the theoretical inner product as

⟨g(1), g(2)⟩ = E
⎡⎣⎛⎝ p∑︂

j=1
Xj(T )g(1)

j (T )
⎞⎠⎛⎝ p∑︂

j=1
Xj(T )g(2)

j (T )
⎞⎠⎤⎦ (3.4)

and the empirical inner product as

⟨g(1), g(2)⟩n = 1
n

n∑︂
i=1

1
ni

ni∑︂
l=1

⎛⎝ p∑︂
j=1

Xij(Til)g(1)
j (Til)

⎞⎠⎛⎝ p∑︂
j=1

Xij(Til)g(2)
j (Til)

⎞⎠ . (3.5)
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The expectation in (3.4) is taken with respect to the joint distribution of
(X(T ), T ) .

Denote the corresponding norm for the theoretical inner product as ∥ · ∥, i.e.
∥g(1)∥2 = ⟨g(1), g(1)⟩, and for the empirical inner product as ∥ · ∥n.

The results are proven using the weights wi = 1
ni

. Let us start with regularity
conditions

(C1) The density fT (·) of the random variable T is bounded away from 0 and
infinity uniformly over t ∈ [0, 1], i.e., there exist positive constants c1 and c2
such that

0 < c1 ≤ fT (t) ≤ c2 < ∞ for all t ∈ [0, 1] .

(C2) The eigenvalues of Σ(t) = E [(X1(t), . . . , Xp(t))(X1(t), . . . , Xp(t))⊤|T = t] =
E [X(t)X⊤(t)|T = t] are bounded away from 0 and infinity uniformly in
t ∈ [0, 1] .

(C3) |Xj(t)| for all j = 1, . . . , p and E [ε(t)2] are bounded on [0, 1].

(C4) lim sup
n−→∞

(︄
max

j=1,...,p
Kj

min
j=1,...,p

Kj

)︄
< ∞.

(C5) The process {ε(t), t ∈ [0, 1]} can be decomposed into a sum of two indepen-
dent stochastic processes, an arbitrary mean zero process ε1(t) and a process
ε2(t) of measurement errors that are independent at different time points
and have mean zero and a constant variance σ2.

From (C2), it follows that there exist positive constants c1, c2 such that for any
vector function g(·) = (g1 (·) , . . . , gp (·))⊤ , gj : [0, 1] → R, j = 1, . . . , p and all
t ∈ [0, 1]

c1g
⊤(t)g(t) ≤ λp(t)g⊤(t)g(t) ≤ g⊤(t)Σ(t)g(t) ≤ λ1(t)g⊤(t)g(t) ≤ c2g

⊤(t)g(t),

where λ1(t) and λp(t) are the highest and lowest eigenvalues of the matrix Σ(t),
respectively.

Under these regularity conditions, the polynomial spline estimator of Model
(2.2) exists and is determined uniquely, as given by the following Lemma.

Lemma 1. Suppose the conditions (C1)–(C4) hold. There are positive constants
C1 and C2 such that all eigenvalues of

(︂
Kn

n

∑︁n
i=1 U⊤

i WiUi

)︂
are bounded almost

surely. Consequently,
(︂∑︁n

i=1 U⊤
i WiUi

)︂
is invertible.

Proof. See lemma A3 in Huang et al. (2004).
Let us now repeat and extend the notation from Section 2.1. Recall that

Uil =
(︁
Xi1(Til)B11(Til), . . . , Xi1(Til)B1K1(Til), . . . , Xip(Til)Bp1(Til), . . . , Xip(Til)BpKp(Til)

)︁
is a row vector of the matrix

Ui =

⎛⎜⎜⎝
Xi1(Ti1)B11(Ti1) . . . Xip(Ti1)BpKp(Ti1)

... . . . ...
Xi1(Tini

)B11(Tini
) . . . Xip(Tini

)BpKp(Tini
)

⎞⎟⎟⎠ .
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Further, denote

U =

⎛⎜⎜⎜⎜⎝
U1
U2
...
Un

⎞⎟⎟⎟⎟⎠ , W =

⎛⎜⎜⎜⎜⎝
W1 0 · · · 0
0 W2 · · · 0
... ... . . . ...
0 0 · · · Wn

⎞⎟⎟⎟⎟⎠ ,

where Wi are diagonal matrices with ni on the diagonal. Then

U⊤WU =
n∑︂

i=1
U⊤

i WiUi

and the polynomial spline estimator is given as

γ̂ =
(︄

n∑︂
i=1

U⊤
i WiUi

)︄−1 n∑︂
i=1

U⊤
i WiYi =

(︂
U⊤WU

)︂−1 n∑︂
i=1

U⊤
i WiYi. (3.6)

Denote

D = {(Xi1(Til), . . . , Xip(Til), Til), i = 1, . . . , n, l = 1, . . . , ni}. (3.7)

The variance-covariance matrix of γ̂ conditioning on D is

Var(γ̂|D) =
(︄

n∑︂
i=1

U⊤
i WiUi

)︄−1 (︄ n∑︂
i=1

U⊤
i WiViWiUi

)︄(︄
n∑︂

i=1
U⊤

i WiUi

)︄−1

, (3.8)

where for all i = 1, . . . , n

Vi = Var(Yi|D) =

⎛⎜⎜⎝
var(εi(Ti1)) · · · cov(εi(Ti1), εi(Tini

))
... . . . ...

cov(εi(Tini
), εi(Ti1)) · · · var(εi(Tini

))

⎞⎟⎟⎠ (3.9)

is the variance-covariance matrix of the error process. It follows that

Var(β̂ (t) |D) = Var(B(t)γ̂|D)

= B(t)
(︄

n∑︂
i=1

U⊤
i WiUi

)︄−1(︄ n∑︂
i=1

U⊤
i WiViWiUi

)︄(︄
n∑︂

i=1
U⊤

i WiUi

)︄−1

B⊤(t).

Let ej ∈ Rp be a vector with j-th element 1 and 0 elsewhere. The conditional
variance of β̂j(t) is

var(β̂j(t)|D) = e⊤
j var(β̂(t)|D)ej, j = 1, . . . , p. (3.10)

The only unknown quantity that needs to be estimated in order to use asymp-
totic properties for inference is the matrix Vi corresponding to the autocovariance
function of the error process ε : Cε(t, s), t ∈ [0, 1] , s ∈ [0, 1] . Huang et al. (2004)
suggested using a tensor product spline on [0, 1] × [0, 1] to approximate Cε(t, s)

Cε(t, s) ≈
L∑︂

k=1

L∑︂
l=1

νklBk(t)Bl(s), t, s ∈ [0, 1] , t ̸= s, L ∈ N, (3.11)
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where νkl = νlk for l = 1, . . . , L, k = 1, . . . , L. The estimate is reasonable just
for t ̸= s. That is because in longitudinal settings, the autocovariance function
Cε(t, s) might not be continuous at t = s, i.e

lim
s→t

Cε(t, s) ̸= Cε(t, t), (3.12)

for details, see Diggle and Verbyla (1998). Therefore, we estimate Cε(t, t) sepa-
rately by using spline approximation

Cε(t, t) ≈
L∑︂

k=1
υkBk(t), t ∈ [0, 1] . (3.13)

The vector of coefficients ν = (ν11, . . . , νlL, ν22, . . . , ν2L, . . . , νLL)⊤ of length
L(L+ 1)/2 can be estimated as

ν̂ = argmin
ν∈RL(L+1)/2

n∑︂
i=1

ni∑︂
l=2

l−1∑︂
l′=1

(︄
ε̂ilε̂il′ −

L∑︂
k=1

L∑︂
r=1

νklBk(Til)Br(Til′)
)︄2

, (3.14)

where ε̂il = Yil −X⊤
i (Til) β̂ (Til) are residuals of the model in (2.2).

Similarly, the vector υ = (υ1, . . . , υL) from the expression (3.13) can be esti-
mated as

υ̂ = argmin
v∈RL

n∑︂
i=1

ni∑︂
l=1

(︄
ε̂2

il −
L∑︂

k=1
νkBk(Til)

)︄2

. (3.15)

The approximation of both Cε(t, s) and Cε(t, t) relies on choosing an appropriate
spline basis. Huang et al. (2004) suggested using 5−10 equidistant knots. Another
option is to use data-driven way, such as Cross-validation, see Section 2.2.2.
That could be however quite computationally intensive. In a numerical study in
Chapter 4 we use 5 equidistant knots.

3.1.1 Consistency
Definition 5 (Asymptotic relations of sequences). Let a = {an}n∈N,
b = {bn}n∈N be sequences of real numbers.

1. The sequences a and b are said to be asymptotically equivalent (denoted as
an ≍ bn), if the limit of the ratio of the corresponding terms an and bn

exists, i.e.
lim

n→∞

an

bn

= c,

where c ̸= 0 is a real constant.

2. The sequence a is said to be asymptotically less than or equal to b (denoted
as an ≲ bn), if there exists a real constant c such that an ≤ c bn for all
sufficiently large n.

3. The sequence a is said to be asymptotically greater than or equal to b (de-
noted as an ≳ bn), if there exists a real constant c such that an ≥ c bn for
all sufficiently large n.
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There is a close relation between the norm ∥ · ∥ of a B-spline function and
the L2 norm of its B-spline coefficients used throughout the proofs given by the
following Lemma. Set Kn = max

j=1,...,p
Kj.

Lemma 2. Suppose the conditions (C1) - (C4) hold. Let gj(·) = ∑︁Kj

k=1 γjkBjk(·)
be a B-spline on [0, 1], γj = (γj1, . . . , γjKj

)⊤ for j = 1, . . . , p, and γ =
(γ⊤

1 , . . . ,γ
⊤
p )⊤. Set g(·) = (g1(·), . . . , gp(·))⊤. Then ∥g∥2 ≍ ∑︁p

j=1 ∥gj∥2
L2 ≍ ∥γ∥2

2
Kn

,
where ∥γ∥2 denotes the Euclidean norm of the coefficients γ.

Proof. From the independence of {X(t), t ∈ [0, 1]} and T

E

⎡⎢⎣
⎛⎝ p∑︂

j=1
Xj(T )gj(T )

⎞⎠2
⎤⎥⎦ =

∫︂ 1

0
E

⎡⎢⎣
⎛⎝ p∑︂

j=1
Xj(t)gj(t)

⎞⎠2
⃓⃓⃓⃓
⃓⃓⃓T = t

⎤⎥⎦ fT (t) dt

=
∫︂ 1

0
g⊤(t) E [X(t)X⊤(t)|T = t]g(t)fT (t) dt

=
∫︂ 1

0
g⊤(t)Σ(t)g(t)fT (t) dt. (3.16)

By using conditions (C1) and (C2), it is easy to show that there are positive
constants c1, c2, such that

c1

∫︂ 1

0
g⊤(t)g(t) dt ≤

∫︂ 1

0
g⊤(t)Σ(t)g(t)fT (t) dt ≤ c2

∫︂ 1

0
g⊤(t)g(t) dt. (3.17)

Hence

∥g∥2 = E

⎡⎢⎣
⎛⎝ p∑︂

j=1
Xj(T )gj(T )

⎞⎠2
⎤⎥⎦ ≍

∫︂ 1

0
g⊤(t)g(t) dt =

p∑︂
j=1

∥gj∥2
L2 . (3.18)

By the properties of B-splines, see De Boor (1978):

∥gj∥2
L2 ≍ ∥γj∥2

2/Kj, j = 1, . . . , p. (3.19)

By condition (C4) then

∥g∥2 ≍
p∑︂

j=1
∥gj∥2

L2 ≍ ∥γ∥2
2

Kn

. (3.20)

Definition 6 (Consistency in L2 norm). An estimator β̂j (·) of βj (·) is said to
be consistent if

∥β̂j − βj∥L2 = oP (1),
where oP (1) denotes convergence in probability to zero.

Theorem 1 (Consistency). Suppose that the conditions (C1)–(C4) are satis-
fied. If lim

n→∞
Kn

log Kn

n
= 0, then ∥β̂j − βj∥2

L2 = OP

(︂
1
n

+ Kn

n2
∑︁n

i=1
1
ni

+ ρ2
n

)︂
, where

ρn = max
j=1,...,p

dist(βj,Gj). If additionally lim
n→∞

ρn = 0, then β̂j, j = 1, . . . , p, are
consistent estimators of βj.
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Proof. Set Ỹ il = Xi(Til)⊤β(Til), Ỹi = (Ỹ i1, . . . , Ỹ ini
)⊤, Ỹ = (Ỹ1, . . . , Ỹn)⊤, and

γ̃ = E (γ̂|D) = ∑︁n
i=1

(︂
U⊤

i WiUi

)︂−1∑︁n
i=1 U⊤

i WiỸi, β̃(t) = B(t)γ̃. Recall β̂(t) =
B(t)γ̂.

By triangle inequality

∥β̂ − β∥2
L2 ≤ ∥β̂ − β̃∥2

L2 + ∥β̃ − g∗∥2
L2 + ∥g∗ − β∥2

L2 , (3.21)

where g∗ (·) =
(︂
g∗

1 (·) , . . . , g∗
p (·)

)︂⊤
is a vector B-spline function that is the best

approximation of β (·) on the space G = G1 × · · · × Gp, i.e.

∥g∗ − β∥2
L2 = ρn. (3.22)

There is a vector γ∗ =
(︂
γ∗

11, . . . , γ
∗
1K1 , . . . , γ

∗
p1, . . . , γ

∗
pKp

)︂⊤
of spline coefficients,

such that g∗ (t) = B (t)γ∗ = ∑︁p
j=1

∑︁Kj

k=1 γ
∗
jkBjk (t) for all t ∈ [0, 1] .

Let us start with ∥β̂ − β̃∥2
L2 . It follows from the spline properties, that

∥β̂ − β̃∥2
L2 = ∥B(t) (γ̂ − γ̃) ∥2

L2 ≍ ∥γ̂ − γ̃∥2
2

Kn

. (3.23)

We can rewrite ∥γ̂ − γ̃∥2
2 by a series of algebraic operations and from Lemma 1

∥γ̂ − γ̃∥2
2 =

⃦⃦⃦⃦
⃦⃦
(︄

n∑︂
i=1

U⊤
i WiUi

)︄−1 n∑︂
i=1

U⊤
i Wi(Ŷi − Ỹi)

⃦⃦⃦⃦
⃦⃦

2

2

=

⃦⃦⃦⃦
⃦⃦
(︄

n∑︂
i=1

U⊤
i WiUi

)︄−1 n∑︂
i=1

U⊤
i Wiεi

⃦⃦⃦⃦
⃦⃦

2

2

=
⃦⃦⃦⃦(︂
U⊤WU

)︂−1
U⊤Wε

⃦⃦⃦⃦2

2

= K2
n

n2 ε
⊤W⊤U

(︃
Kn

n
U⊤WU

)︃−1 (︃Kn

n
U⊤WU

)︃−1
U⊤Wε

≍ K2
n

n2 ε
⊤W⊤UU⊤Wε = K2

n

n2

⃦⃦⃦
U⊤Wε

⃦⃦⃦2

2
, (3.24)

By utilizing the linearity of the expected value and taking the conditional
expectation of (3.24), the expression can be simplified because of independence
for different subjects i = 1, . . . , n through elementwise representation as

K2
n

n2

⃦⃦⃦
U⊤Wε

⃦⃦⃦2

2
= K2

n

n2

n∑︂
i=1

1
n2

i

p∑︂
j=1

Kj∑︂
k=1

E
⎡⎣(︄ ni∑︂

l=1
Xij(Til)Bjk(Til)εil

)︄2
⃓⃓⃓⃓
⃓⃓D
⎤⎦ . (3.25)

For all l = 1, . . . , ni, l
′ = 1, . . . , ni, l

′ ̸= l, by the properties of B-splines in
Lemma 2 and condition (C3)

E
[︂
(Xij(Til)Bjk(Til)εil)2 | D

]︂
≤ C

Kn

,

E [(Xij(Til)Bjk(Til)εil) (Xij(Til′)Bjk(Til′)εil′) | D] ≤ C

K2
n

,

where C is a real constant. Therefore, E
[︂
(∑︁ni

l=1 Xij(Til)Bjk(Til)εil)2 | D
]︂

can be
expressed as a sum of ni terms bounded by C

Kn
and n2

i −ni terms bounded by C
K2

n
.
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We have

∥β̂ − β̃∥2
L2 ≍ ∥γ̂ − γ̃∥2

2
Kn

≍ Kn

n2

n∑︂
i=1

1
n2

i

p∑︂
j=1

Kj∑︂
k=1

E

⎡⎣(︄ ni∑︂
l=1

Xij(Til)Bjk(Til)εil

)︄2

| D

⎤⎦
≲

Kn

n2

n∑︂
i=1

1
n2

i

Kn

(︄
ni

Kn
+
(︁
n2

i − ni
)︁

K2
n

)︄
= OP

(︄
Kn

n2

n∑︂
i=1

[︃ 1
ni

+ 1
Kn

(︃
1 − 1

ni

)︃]︃)︄
.

Let us now consider the second term from the inequality (3.21) ∥β̃ − g∗∥2
L2 .

Similarly, as for the first term ∥β̂− β̃∥2
L2 , by a series of algebraic operations it is

easy to show that

∥β̃ − γ∗∥2
L2 = ∥B(t) (γ̃ − γ∗) ∥2

L2 ≍ ∥γ̃ − γ∗∥2
2

Kn

, (3.26)

∥γ̃ − γ∗∥2
2 =

⃦⃦⃦⃦
⃦⃦
(︄

n∑︂
i=1

U⊤
i WiUi

)︄−1 n∑︂
i=1

U⊤
i Wi(Ỹi − Uiγ

∗)

⃦⃦⃦⃦
⃦⃦

2

2

≍ K2
n

n2

⃦⃦⃦⃦
⃦

n∑︂
i=1

U⊤
i Wi

(︂
Ỹi − Uiγ

∗
)︂⃦⃦⃦⃦⃦

2

2

= K2
n

n2

p∑︂
j=1

Kj∑︂
k=1

(︄
n∑︂

i=1

1
ni

ni∑︂
l=1

Xij(Til)Bjk(Til)
(︂
Ỹi − Uiγ

∗
)︂

l

)︄2

(3.27)

where
(︂
Ỹi − Uiγ

∗
)︂

l
= X⊤

i (Til)β(Til) − X⊤
i (Til)B(Til)γ∗ = X⊤

i (Til)(β(Til) −
B(Til)γ∗) denotes the l-th term of

(︂
Ỹi − Uiγ

∗
)︂
. From the condition (C3)

|
(︂
Ỹi − Uiγ

∗
)︂

l
| = |X⊤

i (Til)(β(Til) − B(Til)γ∗)| ≲ ρn, (3.28)

hence

∥γ̃ − γ∗∥2
2 ≲

K2
nρ

2
n

n2

p∑︂
j=1

Kj∑︂
k=1

(︄
n∑︂

i=1

1
ni

ni∑︂
l=1

Xij(Til)Bjk(Til)
)︄2

≤ K2
nρ

2
n

p∑︂
j=1

Kj∑︂
k=1

(︄
1
n

n∑︂
i=1

1
ni

ni∑︂
l=1

X2
ij(Til)Bjk(Til)

)︄(︄
1
n

n∑︂
i=1

1
ni

ni∑︂
l=1

Bjk(Til)
)︄

(3.29)

≲ K3
nρ

2
n

(︄
1
n

n∑︂
i=1

1
ni

ni∑︂
l=1

Bjk(Til)
)︄2

, (3.30)

≲ Knρ
2
n (3.31)

where the inequality (3.29) follows from the Cauchy-Schwartz inequality and the
inequality (3.30) holds because of (C3). The inequality (3.31) holds because

sup
j,k

1
n

n∑︂
i=1

1
ni

ni∑︂
l=1

Bjk (Til) ≲
1
Kn

, (3.32)

for details, see Lemma A6 in Huang et al. (2004). The result follows.

We have shown the consistence of the estimates β̂. Similarly, the proposed
estimator of Vi is consistent (Huang et al., 2004).
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3.1.2 Asymptotic normality
Theorem 2 (Asymptotic Normality). Let the conditions (C1) – (C5) hold and
set t ∈ [0, 1]. If lim

n→∞
Kn

log Kn

n
= 0 and lim

n→∞
Kn

maxi ni

n
= 0, then

{var(β̂(t)| D)}− 1
2 (β̂(t) − β̃(t)) d−→ N (0, Ip),

where β̃(t) = E (β̂(t)|D) =
(︂
β̃1(t), . . . , β̃p(t)

)︂⊤
. In particular,

{var(β̂j(t)| D)}− 1
2 (β̂j(t) − β̃j(t))

d−→ N (0, 1) for j = 1, . . . , p.

Proof. Recall Ỹ il = Xi(Til)⊤β(Til), Ỹi = (Ỹ i1, . . . , Ỹ ini
)⊤, Ỹ = (Ỹ1, . . . , Ỹn)⊤,

γ̃ = E (γ̂|D) = ∑︁n
i=1

(︂
U⊤

i WiUi

)︂−1∑︁n
i=1 U⊤

i WiỸi, β̃(t) = B(t)γ̃, and β̂(t) =
B(t)γ̂.

It holds
β̂(t) − β̃(t) = B(t) (γ̂ − γ̃) ,

so β̂(t)−β̃(t) can be considered a linear transformation of γ̂−γ̃ and it is sufficient
to show

{var(γ̂ − γ̃| D)}− 1
2 (γ̂ − γ̃) d−→ N (0, IK). (3.33)

By the Cramér-Wold device, it is sufficient to show that for any vector c ∈ RK ,
c ̸= (0, . . . , 0)⊤

c⊤(γ̂ − γ̃)√︂
var (c⊤(γ̂ − γ̃)| D)

d−→ N (0, 1).

The expressions can be rewritten as

c⊤(γ̂ − γ̃) =
n∑︂

i=1
c⊤
(︄

n∑︂
i=1

U⊤
i WiUi

)︄−1

U⊤
i Wiεi

=
n∑︂

i=1
c⊤
(︄

n∑︂
i=1

U⊤
i WiUi

)︄−1

U⊤
i WiV1/2

i V−1/2
i εi

=
n∑︂

i=1
b⊤

i V
−1/2
i εi =

n∑︂
i=1

√︂
b⊤

i bi
1√︂
b⊤

i bi

b⊤
i V

−1/2
i εi =

n∑︂
i=1

aiξi, (3.34)

var
(︂
c⊤(γ̂ − γ̃)

⃓⃓⃓
D) = c⊤

(︄
n∑︂

i=1
U⊤

i WiUi

)︄−1 n∑︂
i=1

U⊤
i WiViWiUi

(︄
n∑︂

i=1
U⊤

i WiUi

)︄−1

c,

(3.35)

where

ai =
√︂
b⊤

i bi =

⌜⃓⃓⎷c⊤

(︄
n∑︂

i=1
U⊤

i WiUi

)︄−1

U⊤
i WiViWiUi

(︄
n∑︂

i=1
U⊤

i WiUi

)︄−1

c,

b⊤
i = c⊤

(︄
n∑︂

i=1
U⊤

i WiUi

)︄−1

U⊤
i WiV1/2

i , ξi = 1√︂
b⊤

i bi

b⊤
i V

−1/2
i εi.
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It holds that a2
i = c⊤

(︂∑︁n
i=1 U⊤

i WiUi

)︂−1
U⊤

i WiViWiUi

(︂∑︁n
i=1 U⊤

i WiUi

)︂−1
c

and, conditioning on D, ξi are independent random variables with

E [ξi|D] = 0, var [ξi|D] = 1,

hence the random variables aiξi have, conditionally on D, mean zero and vari-
ance a2

i = c⊤
(︂∑︁n

i=1 U⊤
i WiUi

)︂−1
U⊤

i WiViWiUi

(︂∑︁n
i=1 U⊤

i WiUi

)︂−1
c. It follows

that E [aiξi|D] = 0, var [aiξi|D] = a2
i . They are independent, but heteroscedas-

tic. We use the Feller-Lindenberg central limit theorem to show the asymptotic
normality.

If the Lindenberg’s condition is satisfied, then by the central limit theorem
n∑︂

i=1

aiξi√︂∑︁n
i=1 a

2
i

d−−−−→
n→∞

N (0, 1). (3.36)

Assume that
max

i=1,...,n
a2

i∑︁n
i=1 a

2
i

−−−→
n→∞

0. (3.37)

Define s2
n = ∑︁n

i=1 a
2
i , mn = max a2

i .
The Lindeberg’s condition states, that for every ε > 0

lim
n→∞

1
s2

n

n∑︂
i=1

E
[︂
a2

i ξ
2
i 1{|aiξi|>εsn}|D

]︂
= 0. (3.38)

It holds, that

lim
n→∞

1
s2

n

n∑︂
i=1

E
[︂
a2

i ξ
2
i 1{|aiξi|≥εsn}|D

]︂
= lim

n→∞

1
s2

n

n∑︂
i=1

E

⎡⎢⎣a2
i ξ

2
i 1
{︃

|ξ2
i |≥ ε2s2

n
a2

i

}︃⃓⃓⃓⃓⃓D
⎤⎥⎦

= lim
n→∞

1
s2

n

n∑︂
i=1

E

⎡⎢⎣a2
i ξ

2
i 1
{︃

|ξ2
i |≥ ε2s2

n
a2

i

}︃⃓⃓⃓⃓⃓D
⎤⎥⎦

≤ lim
n→∞

1
s2

n

n∑︂
i=1

E
⎡⎣a2

i ξ
2
11
{︂

|ξ2
1 |≥ ε2s2

n
mn

}︂⃓⃓⃓⃓⃓D
⎤⎦

= lim
n→∞

1
s2

n

E
⎡⎣s2

nξ
2
11
{︂

|ξ2
1 |≥ ε2s2

n
mn

}︂⃓⃓⃓⃓⃓D
⎤⎦

= lim
n→∞

E
⎡⎣ξ2

11
{︂

|ξ2
1 |≥ ε2s2

n
mn

}︂⃓⃓⃓⃓⃓D
⎤⎦ . (3.39)

Thus the condition (3.37) implies the Lindenberg’s condition. From there (3.39)
holds. It remains to show the condition (3.37).

Denote a vector λ =
(︂∑︁n

i=1 U⊤
i WiUi

)︂−1
c =

(︂
λ⊤

1 , . . . ,λ
⊤
p

)︂⊤
, where λ⊤

j =(︂
λj1, . . . , λjKj

)︂
for j = 1, . . . , p. Then

a2
i = λ⊤U⊤

i WiViWiUiλ. (3.40)
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Let us start with the expression in the numerator of the Lindenberg’s condi-
tion (3.37)

λ⊤U⊤
i WiViWiUiλ.

It follows from condition (C3) that for any vector ψ = (ψ1, . . . , ψni
)⊤ of

length ni

ψ⊤Viψ = E
⎡⎣(︄ ni∑︂

l=1
ψlεi(Til)

)︄2
⎤⎦ ≤ ∥ψ∥2

2

ni∑︂
l=1

E
(︂
ε2

i (Til)
)︂
≲ ni∥ψ∥2

2, (3.41)

hence by the Cauchy-Schwartz inequality, (C3), (C4), and the properties of the
B-splines

λ⊤U⊤
i WiViWiUiλ ≲ niλ

⊤U⊤
i WiWiUiλ

= 1
ni

λ⊤U⊤
i Uiλ = 1

ni

ni∑︂
l=1
λ⊤U⊤

il Uilλ

= 1
ni

ni∑︂
l=1

⎛⎝ p∑︂
j=1

Xij(Til)
Kj∑︂
k=1

λjkBjk(Til)
⎞⎠2

≤ 1
ni

ni∑︂
l=1

⎡⎢⎣ p∑︂
j=1

X2
ij(Til)

p∑︂
j=1

⎛⎝ Kj∑︂
k=1

λjkBjk(Til)
⎞⎠2
⎤⎥⎦ (3.42)

≲
p∑︂

j=1

⃦⃦⃦⃦
⃦⃦ Kj∑︂

k=1
λjkBjk

⃦⃦⃦⃦
⃦⃦

2

∞

≲ Kn

p∑︂
j=1

⃦⃦⃦⃦
⃦⃦ Kj∑︂

k=1
λjkBjk

⃦⃦⃦⃦
⃦⃦

2

≲ ∥λ∥2
2. (3.43)

Let us now consider the denominator of (3.37). It follows from (C6) that
Vi = σ2Ini

+ Ṽi, where Ṽi is a positive semidefinite matrix. From there

λ⊤
(︄

n∑︂
i=1

U⊤
i WiViWiUi

)︄
λ ≥ σ2λ⊤

(︄
n∑︂

i=1
U⊤

i WiWiUi

)︄
λ

= nσ2

⎡⎢⎣ 1
n

n∑︂
i=1

1
n2

i

ni∑︂
l=1

⎛⎝ p∑︂
j=1

Xij(Til)
Kj∑︂
k=1

λjkBjk(Til)

⎞⎠2
⎤⎥⎦

≥ σ2 min
i=1,...,n

n

ni

⃦⃦⃦⃦
⃦⃦ Kj∑︂

k=1
λjkBjk

⃦⃦⃦⃦
⃦⃦

2

n

≳
n

min
i=1,...,n

ni

⃦⃦⃦⃦
⃦⃦ Kj∑︂

k=1
λjkBjk

⃦⃦⃦⃦
⃦⃦

2

n

(3.44)

It holds ∥∑︁Kj

k=1 λjkBjk∥2
n ≍ ∥∑︁Kj

k=1 λjkBjk∥2 almost surely, for details, see
Lemma A2 in Huang et al. (2004). By Lemma 2 we have ∥∑︁Kj

k=1 λjkBjk∥2 ≍ ∥λ∥2
2

Kn
,

thus
λ⊤

(︄
n∑︂

i=1
U⊤

i WiViWiUi

)︄
λ ≳

n

min
i=1,...,n

ni

1
Kn

∥λ∥2
2. (3.45)

From (3.43) and (3.45)

max
i=1,...,n

a2
i∑︁n

i=1 a
2
i

=
max

i=1,...,n
λ⊤U⊤

i WiViWiUiλ

λ⊤
(︂∑︁n

i=1 U⊤
i WiViWiUi

)︂
λ

≲ max
i=1,...,n

ni
Kn

n
(3.46)
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almost surely. The expression (3.37) follows from the assumption
lim

n→∞
Kn

maxi ni

n
= 0.

Corollary 2.1. Suppose t1, . . . , tm ∈ [0, 1] ,m ∈ N and let the assumptions of
Theorem 2 be satisfied. Then for all j = 1, . . . , p

V− 1
2
(︂
β̂j (t1) − β̃j (t1) , . . . , β̂j (tm) − β̃j (tm)

)︂⊤ d−→ Nm(0, Im),

where V is a m × m matrix with (q, r)−th element equal to
e⊤

j B (tq) Var(γ̂|D)B⊤ (tr) ej.

Proof. Recall β̂j (t) = e⊤
j B (t) γ̂, β̃j (t) = e⊤

j B (t) γ̃. From the proof of the Theo-
rem 2,

{Var(γ̂ − γ̃| D)}− 1
2 (γ̂ − γ̃) d−→ N (0, IK).

Consequently, ⎛⎜⎜⎝
β̂j (t1) − β̃j (t1)

...
β̂j (tm) − β̃j (tm)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
e⊤

j B (t1)
...

e⊤
j B (tm)

⎞⎟⎟⎠ (γ̂ − γ̃) (3.47)

as a linear transformation of (γ̂ − γ̃) satisfies

V− 1
2

⎛⎜⎜⎝
β̂j (t1) − β̃j (t1)

...
β̂j (tm) − β̃j (tm)

⎞⎟⎟⎠ d−→ N (0, Im), (3.48)

where V is a m×m matrix⎛⎜⎜⎝
e⊤

j B (t1)
...

e⊤
j B (tm)

⎞⎟⎟⎠Var(γ̂ − γ̃| D)

⎛⎜⎜⎝
e⊤

j B (t1)
...

e⊤
j B (tm)

⎞⎟⎟⎠
⊤

. (3.49)

We would like to replace β̃ (·) by β (·) in theorem 2 and Corollary 2.1 to be able
to make inference about β (·) , rather than β̃ (·) (we could however consider β̃ (·)
the estimable part of β (·)). This replacement can be justified by the following
theorems.

Theorem 3 (Bias). Suppose conditions (C1) – (C4) hold, and lim
n→∞

Kn
log Kn

n
= 0.

Then sup
t∈[0,1]

|β̃j(t) − βj(t)| = OP (ρn), j = 1, . . . , p.

Proof. See Lemmas A9, A10, A11 in Huang et al. (2004).

Under an additional assumption that βj have bounded second derivatives, we
have ρn ≍ 1

K2
n

(Schumaker, 2007).
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Corollary 3.1. Suppose conditions (C1) – (C5) hold, lim
n→∞

Kn
log Kn

n
= 0,

lim
n→∞

K5
n

n max
i=1,...,n

ni
= 0, and βj (·) , j = 1, . . . , p, have bounded second derivatives.

Set m ∈ N, and c ∈ Rm, c ̸= 0, then

sup
t1,...tm∈[0,1]

⃓⃓⃓⃓(︂
c⊤Vc

)︂−1/2 (︂
c⊤
(︂
(β̃j(t1), . . . , β̃j(tm))⊤ − (βj(t1), . . . , βj(tm))⊤

)︂)︂⃓⃓⃓⃓
= op(1),

where V is a variance-covariance matrix of ((β̂j(t1), . . . , β̂j(tm))⊤ condition-
ing on D. In particular sup

t∈[0,1]
|
(︂
var

(︂
β̂j (t) |D

)︂)︂−1/2 (︂
β̃j(t) − βj(t)

)︂
| = op(1).

Proof.

c⊤Vc = c⊤J
(︄

n∑︂
i=1

U⊤
i WiUi

)︄−1 (︄ n∑︂
i=1

U⊤
i WiViWiUi

)︄(︄
n∑︂

i=1
U⊤

i WiUi

)︄−1

J⊤c

= λ⊤
(︄

n∑︂
i=1

U⊤
i WiViWiUi

)︄
λ,

for λ =
(︂∑︁n

i=1 U⊤
i WiUi

)︂−1
J⊤c, where

J =

⎛⎜⎜⎝
e⊤

j B (t1)
...

e⊤
j B (tm)

⎞⎟⎟⎠ .
From Inequality (3.45),

c⊤Vc ≳
n

max
i=1,...,n

ni

1
Kn

∥λ∥2
2.

It holds

∥λ∥2
2 =

⃦⃦⃦⃦
⃦⃦
(︄

n∑︂
i=1

U⊤
i WiUi

)︄−1

J⊤c

⃦⃦⃦⃦
⃦⃦

2

2

=

⃦⃦⃦⃦
⃦⃦Kn

n

n

Kn

(︄
n∑︂

i=1
U⊤

i WiUi

)︄−1

J⊤c

⃦⃦⃦⃦
⃦⃦

2

2

.

According to Lemma 1, the matrix n
Kn

(︂∑︁n
i=1 U⊤

i WiUi

)︂−1
has bounded eigenval-

ues, hence it is easy to see, e.g. by the spectral decomposition, that

∥λ∥2
2 ≳

⃦⃦⃦⃦
Kn

n
J⊤c

⃦⃦⃦⃦2

2
≳
K2

n

n2 .

The asymptotic upper bound for c⊤Vc is then
Kn

n max
i=1,...,n

ni

.

Because βj (·) , j = 1, . . . , p, have bounded second derivatives, ρn ≍ 1/K2
n, and

from Theorem 3

sup
t1,...,tm∈[0,1]

⃓⃓⃓
c⊤
(︂
(β̃j(t1), . . . , β̃j(tm))⊤ − (βj(t1), . . . , βj(tm))⊤

)︂⃓⃓⃓
= OP (1/K2

n).

From there the statement of the theorem follows.
The special case follows by setting c = e1.
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Corollary 3.2. Let t1, . . . , tm ∈ [0, 1] ,m ∈ N and let the assumptions of Corol-
lary 3.1 be satisfied. Then for all j = 1, . . . , p

V− 1
2
(︂
β̂j (t1) − βj (t1) , . . . , β̂j (tm) − βj (tm)

)︂⊤ d−→ Nm(0, Im),

where V is a m × m matrix with (q, r)−th element equal to
e⊤

j B (tq) Var(γ̂|D)B⊤ (tr) ej.

Proof.

V− 1
2

⎛⎜⎜⎝
β̂j (t1) − βj (t1)

...
β̂j (tm) − βj (tm)

⎞⎟⎟⎠ = V− 1
2

⎛⎜⎜⎝
β̂j (t1) − β̃j (t1)

...
β̂j (tm) − β̃j (tm)

⎞⎟⎟⎠+ V− 1
2

⎛⎜⎜⎝
β̃j (t1) − βj (t1)

...
β̃j (tm) − βj (tm)

⎞⎟⎟⎠ ,

the result follows from Corollary 2.1 and from Corollary 3.1.

As a result, Theorems 3.1 and 3.2 can be used to construct asymptotic
confidence intervals and asymptotic confidence bands for the coefficient func-
tions βj (·) .

3.2 Confidence intervals and bands

3.2.1 Confidence intervals
From Theorem 2 for j = 1, . . . , p, and t ∈ [0, 1]

var(β̂j(t)|D)− 1
2
(︂
β̂j(t) − E (β̂j(t)|D)

)︂
P−−−−→

n→∞
N (0, 1), (3.50)

where E (β̂j(t)|D) and var(β̂j(t)|D) are the mean and variance of β̂j(t) condition-
ing on D. For simplicity, we write just E (β̂j(t)) and var(β̂j(t)).

Suppose that there is an estimate ˆ︃var(β̂j(t)) of var(β̂j(t)) such that

ˆ︃var(β̂j(t))
var(β̂j(t))

P−−−−→
n→∞

1. (3.51)

It follows from the Cramer-Slutsky theorem, that{︂ˆ︃var(β̂j(t))
}︂− 1

2 (β̂j(t) − E (β̂j(t)))
d−−−−→

n→∞
N (0, 1), (3.52)

which gives us an approximate (1 − α)% asymptotic confidence interval for
E (β̂j(t)) with end points

β̂j(t) ± z1−α/2

√︃ˆ︃var(β̂j(t)), (3.53)

where z1−α/2 is the (1 − α/2) quantile of the standard normal distribution.
If the conditions of Corollary 3.1 are satisfied, then by the Cramer-Slutsky

theorem{︂ˆ︃var(β̂j(t))
}︂− 1

2 (β̂j(t) − E (β̂j(t)) + E (β̂j(t)) − βj(t)) d−−−−→
n→∞

N (0, 1) (3.54)
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and (3.53) is also a (1 − α)% asymptotic confidence interval for βj(t).
For completeness, let us also include simultaneous confidence intervals for all

linear combinations of βj at multiple time points. For t1, . . . , tm ∈ [0, 1] , m ∈ N,
denote βm

j = (βj (t1) , . . . , βj (tm))⊤ and β̂
m

j =
(︂
β̂j (t1) , . . . , β̂j (tm)

)︂⊤
. From

Corollary 3.2 we know(︂
β̂

m

j − βm
j

)︂⊤
V−1

(︂
β̂

m

j − βm
j

)︂
d−→ χ2

m forn → ∞.

Let V̂ be a consistent estimator of V. Then from the Cramer-Slutsky theorem(︂
β̂

m

j − βm
j

)︂⊤
V̂

−1 (︂
β̂

m

j − βm
j

)︂
d−→ χ2

m. (3.55)

It follows that the (1 − α) confidence region for βm
j is{︃

βm
j ∈ Rm :

(︂
β̂

m

j − βm
j

)︂⊤
V̂

−1 (︂
β̂

m

j − βm
j

)︂
≤ χ2

m (1 − α)
}︃
. (3.56)

Additionally, for any vector c ∈ Rm, the confidence interval for the linear combi-
nation c⊤βm

j is

t(c) =

⎧⎪⎨⎪⎩c⊤βm
j : βm

j ∈ Rm,

(︂
c⊤
(︂
β̂

m

j − βm
j

)︂)︂2

c⊤V̂c
≤ χ2

1 (1 − α)

⎫⎪⎬⎪⎭ , (3.57)

where χ2
1 (1 − α) denotes (1 − α)−quantile of χ2

1 distribution. We can construct
simultaneous confidence intervals for all c⊤βm

j by calculating max
c∈Rm

t(c).

max
c∈Rm

t(c) = max
c∈Rm

(︂
c⊤
(︂
β̂

m

j − βm
j

)︂)︂ (︂
c⊤
(︂
β̂

m

j − βm
j

)︂)︂⊤

c⊤V̂c
= Tr

(︃
V̂

−1 (︂
β̂

m

j − βm
j

)︂ (︂
β̂

m

j − βm
j

)︂⊤
)︃

(3.58)

= Tr
(︃(︂
β̂

m

j − βm
j

)︂⊤
V̂

−1 (︂
β̂

m

j − βm
j

)︂)︃
=
(︂
β̂

m

j − βm
j

)︂⊤
V̂

−1 (︂
β̂

m

j − βm
j

)︂
, (3.59)

which has asymptotically χ2
m distribution. The equality (3.58) holds as a max-

imum of quadratic form (Theorem 2.5 Härdle and Simar, 2019), and because
V̂

−1 (︂
β̂

m

j − βm
j

)︂ (︂
β̂

m

j − βm
j

)︂⊤
is a matrix of rank 1, the trace is equal to its only

eigenvalue. It follows that the simultaneous confidence intervals for all c⊤βm
j

(with simultaneous coverage level of 1 − α) are(︃
c⊤β̂

m

j −
√︂
χ2

m (1 − α) c⊤V̂c, c⊤β̂
m

j +
√︂
χ2

m (1 − α) c⊤V̂c
)︃
. (3.60)

As an example we can construct the confidence intervals for each β(tk), k =
1, . . . ,m, by setting c = ek(︄

β̂j(tk) −
√︃
χ2

m (1 − α)ˆ︃var(β̂j(t)), β̂j(tk) +
√︃
χ2

m (1 − α)ˆ︃var(β̂j(t))
)︄
. (3.61)
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As we can see, the distinguishing factor between the interval in question and the
previously proposed interval in (3.53) lies in the choice of the quantile. In general,
the coverage of (3.61) is quite conservative, and this method will provide wider
confidence intervals then the Bonferroni adjustment for each individual confidence
interval for βj(tk), see Section 3.2.2. However, suppose we want to analyze the
differing impact of a covariate (such as a dosage of a medication) on a particular
outcome (like blood pressure) at varying time points, e.g. differing by a particular
time unit. In this case, we could express the pairwise difference in these effects
by a linear combination of the coefficient functions at those times. (3.60) gives
an easy way to construct many of such intervals that hold simultaneously.

Pointwise confidence intervals are not always sufficient in application. This is
because a (1−α)% pointwise confidence interval (Lα/2(t), Uα/2(t)) only guarantees
that

P
(︂
Lα/2(t) ≤ βj(t) ≤ Uα/2(t)

)︂
= 1 (3.62)

for some given t ∈ [0, 1], which does not imply

P
(︂
Lα/2(t) ≤ βj(t) ≤ Uα/2(t) for any t ∈ [0, 1]

)︂
= 1 − α. (3.63)

More interesting are simultaneous confidence bands.

3.2.2 Confidence bands
We might use the pointwise confidence intervals to construct simultaneous con-
fidence bands by adjusting the level of significance in a Bonferroni-like way as
proposed by Knafl et al. (1985). The idea is to construct pointwise confidence in-
tervals on a fine grid of [0, 1] while adjusting the confidence level (for example by
the Bonferroni method) to obtain simultaneous confidence band and bridge the
gaps between the points by imposing some smoothness conditions on the coeffi-
cient function. Huang et al. (2004) suggested calculating the confidence bands in
the following manner. Partition the interval [0, 1] using M + 1, M ∈ N, equidis-
tant points 0 = ζ1 < · · · < ζM+1 = 1 and consider the set of asymptotic confi-
dence intervals

(︂
Lα/(2(M+1)) (ζr) , Uα/(2(M+1)) (ζr)

)︂
for r = 1, . . . ,M+1 as given by

(3.53). Let LI
α/(2(M+1)) (t) , U I

α/(2(M+1)) (t) , and E I(β̂j(t)), ζr ≤ t ≤ ζr+1, be the
linear interpolation of Lα/(2(M+1)) (ζr) and Lα/(2(M+1)) (ζr+1) , Uα/(2(M+1)) (ζr) and
Uα/(2(M+1)) (ζr+1) , and E (β̂j(ζr)) and E (β̂j(ζr+1)), respectively. For example,

E I β̂j(t) = M(ζr+1 − t) E β̂j(ζr) +M(t− ζr) E β̂j(ζr+1). (3.64)

Let us first look at the confidence bands for E (β̂j(t)). Assume that either

sup
t∈[0, 1]

|{E (β̂j(t))}
′ | ≤ c1 for some known positive constant c1 (3.65)

or

sup
t∈[0, 1]

|{E (β̂j(t))}
′′ | ≤ c2 for some known positive constant c2. (3.66)

Now by assuming condition (3.66) by using the Taylor theorem it is easy to show⃓⃓⃓
E β̂j(t) − E I β̂j(t)

⃓⃓⃓
≤ c2

2 (ζr+1 − t) (t− ζr) . (3.67)
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Similarly, in the case of (3.65), it can be shown that⃓⃓⃓
E β̂j(t) − E I β̂j(t)

⃓⃓⃓
≤ 2c1M (ζr+1 − t) (t− ζr) . (3.68)(︂

LI
α/(2(M+1)) (t) , U I

α/(2(M+1)) (t)
)︂

is an approximate (1 − α) confidence band for
E I β̂j(t). By adjusting the width we get an approximate (1 − α) confidence band
for E β̂j(t)(︂

LI
α/(2(M+1)) (t) − 2Mc1 (ζr+1 − t) (t − ζr) , U I

α/(2(M+1)) (t) + 2Mc1 (ζr+1 − t) (t − ζr)
)︂

(3.69)
in the case of (3.65), or(︃
LI

α/(2(M+1)) (t) − c2

2 (ζr+1 − t) (t− ζr) , U I
α/(2(M+1)) (t) + c2

2 (ζr+1 − t) (t− ζr)
)︃

(3.70)
in the case of (3.66). The confidence bands are confidence bands also for βj (·) ,
if the assumptions of Corollary 3.1 hold and if the conditions (3.65), resp. (3.66)
hold for βj (·) , i.e

sup
t∈[0, 1]

|{βj(t)}
′ | ≤ c1 for some known positive constant c1 (3.71)

or
sup

t∈[0, 1]
|{βj(t)}

′′ | ≤ c2 for some known positive constant c2. (3.72)

The issue is how to choose the number of intervals M, as there are no avail-
able guidelines, and the constants c1, resp. c2. The values c1 and c2 should be
chosen carefully based on an expert’s opinion. Another issue is the choice of the
significance level of each interval. The suggested Bonferroni adjustment has an
advantage of being simple to implement as it does not require any information
about the correlation. However, it could lead to too conservative bands, especially
for large M.

We investigate the usage of another confidence level adjustment, based on the
inclusion-exclusion principle, taking the correlation structure into account. This
way we should get narrower confidence intervals and consequently also confidence
bands. On the other hand, the following procedure relies heavily on a consistent
estimator of the covariance structure, therefore the confidence bad might be too
narrow for data with insufficient n.

The inclusion-exclusion principle is a fundamental concept in combinatorics
and probability theory. It provides a way to calculate the probability of the union
of multiple events.

For each ζr, where r = 1, 2, ...,M + 1, let Ar denote the event that the
confidence interval at ζr does not cover the true coefficient function, i.e., ei-
ther the upper limit of the confidence interval is below the true coefficient func-
tion, or the lower limit is above the true coefficient function at ζr. Formally, let
(Lα/2(ζr), Uα/2(ζr)) be the confidence interval at ζr given in (3.53), then

Ar(α) = {ω : βr(ζr) < Lα/2(ζr;ω) or βr(ζr) > Uα/2(ζr;ω)} (3.73)

where ω belongs to the underlying probability space Ω. For simplicity, we write
just Ar instead of Ar(α).
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By the principle of inclusion and exclusion

P(
M+1⋃︂
r=1

Ar) =
M+1∑︂
r=1

P(Ar) −
∑︂

1≤i<j≤M+1
P(Ai ∩ Aj) +

∑︂
1≤i<j<k≤M+1

P(Ai ∩ Aj ∩ Ak)

− · · · + (−1)M+1 P(A1 ∩ A2 ∩ · · · ∩ AM+1). (3.74)

By considering the intersections just up to order R ∈ N, R ≤ M, we either over-
estimate or underestimate the probability of union. For odd R from Bonferroni
(1936)

P
(︄

M+1⋃︂
r=1

Ar

)︄
≤

M+1∑︂
r=1

P(Ar) −
∑︂

1≤i,j≤M+1 i ̸=j

P(Ai ∩ Aj) (3.75)

+ . . .+ (−1)k
∑︂

1≤i1<i2<...<ik≤M+1
P(Ai1 ∩ Ai2 ∩ . . . ∩ Aik

). (3.76)

For R = 1 it is the well-known Bonferroni inequality (also known as Boole’s in-
equality) which justifies the Bonferroni multiple-testing adjustment. Problematic
is that the number of items (in our case integrals) one has to calculate in order
to use these inequalities is ∑︁R

r=1

(︂
M+1

r

)︂
, which is even for R = 3 at least for po-

tentially reasonable choices of M quite large. Alternative formula was developed
for R = 2 by Hunter (1976)

P(
M+1⋃︂
r=1

Ar) ≤
M+1∑︂
r=1

P(Ar) −
∑︂

eij∈T

P(Ai ∩ Aj), (3.77)

where T is any spanning tree with vertices A1, . . . , AM+1 and eij ∈ T means that
the vertex Ai is connected with the vertex Aj by an edge eij in T . Hoover (1990)
expanded on the idea and provided extension for R > 2

P(
M+1⋃︂
r=1

Ar) ≤ P(
R⋃︂

r=1
Ar) +

M+1∑︂
r=R+1

P
⎛⎝Ar

⋂︂
i1<···<ik−1

(︂
Ai1 ∪ · · · ∪ Aik−1

)︂C

⎞⎠ , (3.78)

where i1, . . . , iR−1 ∈ Sr for Sr set with R − 1 elements from {1, 2, . . . , r − 1} .
It is easy to show that for R = 1 it is again the standard Bonferroni inequality,

and for R = 2 it corresponds to (3.77). Inequality (3.78) is particularly appealing
as it consists of calculating only M−R probabilities, each based on just R events.
Inequality (3.78) holds for any sets Sr, and the optimal choice vary depending on
the situation. We suggest to use Sr = {r − 1, r − 2, . . . , r −R + 1} .

Let us now demonstrate how to use (3.78) for R = 3 in our context. Recall,
that from Corollary 3.2 are

(︂
β̂j (ξ1) , . . . , β̂j (ξ1)

)︂⊤
asymptotically normally dis-

tributed with the mean (βj (ξ1) , . . . , βj (ξM+1))⊤ and variance matrix V. Suppose
we have a consistent estimator of the variance matrix V̂. The goal is to find a
confidence level α̃, such that

P(
M+1⋃︂
r=1

Ar) = α (3.79)

for Ar = Ar(α̃). Further, set V̂ijk the submatrix of V̂ corresponding to the terms
β̂j (ξi), β̂j (ξj), and β̂j (ξk), additionally σ̂i = e⊤

i V̂ei is the variance of β̂j (ξi).
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Set u = z1−α̃/2. Inequality (3.78) is then

P(
M+1⋃︂
r=1

Ar) ≤ P(A1 ∪ A2 ∪ A3) +
M+1∑︂
r=4

P
(︂
Ar ∩ (Ar−1 ∪ Ar−2)C

)︂
, (3.80)

where

P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3) − P(A1 ∩ A2) − P(A2 ∩ A3)
− P(A1 ∩ A3) + P(A1 ∩ A2 ∩ A3),

and we approximate

P
(︂
Ar ∩ (Ar−1 ∪ Ar−2)C

)︂
= 2

∫︂ ∞

σ̂ru

∫︂ σ̂r−1u

−σ̂r−1u

∫︂ σ̂r−2u

−σ̂r−2u

1√︂
(2π)3|V̂ r(r−1)(r−2)|

exp
(︃−1

2 x
⊤V̂

−1
r(r−1)(r−2)x

)︃
dx3dx2dx1.

P(A1 ∩ A2),P(A2 ∩ A3),P(A1 ∩ A3),P(A1 ∩ A2 ∩ A3) can be rewritten similarly
as sums of integrals with bounds depending on the standard deviations and the
quantile u (in all of the cases we integrate over region, in which all the intervals
do not cover the true coefficient function). It should be pointed out that the
correlation structure is unknown, and in smaller samples, the actual coverage
probability can deviate from the nominal level due to its estimation.

We propose the following procedure: choose u such that (3.79) holds, and α̃ so
that the confidence level α̃ satisfies u = z1−α̃/2 and consequently α̃ = 2 − 2Φ(u),
where Φ denotes the cumulative distribution function of the standard normal
distribution.

The confidence band is then constructed analogously as when using the Bon-
ferroni correction. The only difference is that the confidence level for each of
the M + 1 confidence intervals is taken as α̃ instead of α/(M + 1). It holds
α̃ ≥ α/(M + 1) resulting in narrower confidence bands. However, the construc-
tion is more complex and relies on a good estimate of the covariance matrix. In
Chapter 4 we compare both procedures for various choices of βj (·) and M to
see whether the adjusted procedure is indeed considerably less conservative, or
not, and if it could be an alternative to Bonferroni adjustment at least for large
datasets.

3.2.3 Usage for hypothesis testing
Once the covariate functions are estimated, we would like to know: (1) if the
estimated unknown coefficient functions are statistically significant in the fitted
model, (2) if the coefficient functions are really varying, and (3) if the estimated
unknown coefficient functions could be expressed in a certain parametric form.
That corresponds to the following hypotheses:

H0j : ∀ t ∈ [0, 1] : βj(t) = βj,0(t,ω⊤
j ) vs. H1j : ∃t ∈ [0, 1] : βj(t) ̸= βj,0(t,ω⊤

j ),

where βj,0(·,ω⊤
j ) represents the parametric function of interest depending on

a vector of parameters ωj. As a special case to test (2), set βj,0(·,ω⊤
j ) ≡ βj,0,

where βj,0 is an unknown real constant. To test (1), set βj,0(·,ω⊤
j ) ≡ 0.
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We can test the hypotheses (3.2.3) by using confidence bands. If all necessary
assumptions are satisfied, see Theorem 3, we have pointwise normality, and can
construct asymptotic confidence intervals for βj (t) , t ∈ [0, 1]. Then we can con-
struct simultaneous confidence band for the coefficient function βj () by methods
discussed in Section 3.2.2.

If the entire function from βj,0(t,ω⊤
j ) falls within the 100(1 − α)% confidence

band, we cannot reject the null hypothesis H0j. On the other hand, if any part
of the parametric function lies outside of this confidence band, we reject the null
hypothesis. It should be however again pointed out that such confidence bands
tend could be conservative by using the Bonferroni correction (have a low power),
or be too narrow when considering the Hoover’s inequality correction, especially
for small datasets.
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4. Simulation study
In the last Chapter, we compare the performance of the different types of approxi-
mate confidence bands based on the asymptotic normality approach from Section
3.2.2 by conducting a small numerical study. All computations were performed
using the R software (R Core Team, 2022).

4.1 General framework
Let us consider the longitudinal varying-coefficient model with a single covariate
and coefficient function, i.e the case

Y (t) = β(t)X(t) + ε(t), (4.1)

where ε(t) is a zero-mean error process.
We will investigate the coverage of the confidence bands using the Monte

Carlo simulation in various scenarios.
Data satisfying the model (4.1) are generated using the following mechanism.

We consider n = 100, 200, 300, or 500 subjects, indexed as i = 1, . . . , n. For
each subject, we choose unequal number of observations ni ∼ Po (8) . If for some
i : ni < 5, we set ni = 5, and if ni > 11, we set ni = 11 so that each sub-
ject has 5 − 11 observations. All time points are generated as independent re-
alisations of T ∼ Unif ([0, 1]) and ordered for each subject. The errors εi for
each subject are independent samples from a zero-mean process ε, such that
εi(Til) = Zi(Til) + ζi(Til), where Zi is a realization of a stationary Gaussian pro-
cess with an autovocariance function Cε(s, t) = 2 exp(|s − t|2/2) representing
within-subject correlation and ζi is an independent realizations of N (0, 1) rep-
resenting a measurement error. The covariates are chosen to be time invariant,
generated Xi ∼ N (5, 2) and Xi(Til) = Xi for all l = 1, . . . , ni.

We consider three different options for the coefficient function β(t)

1. βA(t) = 1 + 2t,

2. βB(t) = 1 − sin(2πt),

3. βC(t) = e3(t−0.5)2+ t−0.5
2 .

As we can see from Figure 4.1, βA represents a linear trend, βB is a sinusoid
often encountered in natural sciences, and βC represents a steep initial decline
that slows down and reaches its minimum at t = 0.5, after which it increases,
however at a slower pace then it decreased.

The coefficient functions are estimated using the polynomial spline estimator
introduced in Section 2.1 with weights 1

ni
. We use cubic splines (d = 3) and

equidistant knots. The number of knots is chosen by the AIC criterion (2.17) due
to the computational complexity of the leave-one-out CV (2.16), the number of
inner knots for the estimation of the covariance function, and separately variance
function of ε(t) is chosen as 5, based on the recommendation of 5 − 10 knots by
Huang et al. (2004).
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Figure 4.1: Graphs of the considered coefficient functions βA, βB, βC.
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(a) βA, n = 100, 3 knots
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Figure 4.2: Polynomial spline estimates for n = 100, 200, 500, number of inner
knots chosen through leave-one-out CV considering 3 − 8 inner knots.
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For all of these scenarios, we will calculate the empirical coverage probabilities
of two types of confidence bands based on 1000 replications at the significance
level 0.95 with M = 50, 100, 250 grid points used for the construction of the
confidence intervals.

Let us construct the asymptotic confidence bands in (3.68). We consider two
methods for choosing the confidence level of the M + 1 confidence intervals, the
first one is based on the classical Bonferroni adjustment, we will refer to such
confidence band as Bonferroni-adjusted band. The second one is based on the
inclusion-exclusion principle, specifically on Inequality (3.78), we will refer to this
confidence band as PIE-adjusted band. Recall, that the formula for the asymp-
totic confidence band for a coefficient function with bounded first derivatives
(under some regularity conditions) is(︂
LI

α/(2(M+1)) (t) − 2Mc1 (ζr+1 − t) (t − ζr) , U I
α/(2(M+1)) (t) + 2Mc1 (ζr+1 − t) (t − ζr)

)︂
.

The formula depends on the choice of M and c1, where c1 is given in (3.71).
The ideal choice of M is unknown, we consider 3 cases to compare the results. It
should be pointed out that too small M (possibly M = 50) might not be the best
choice, as the confidence band is constructed by fitting a parabola between two
consecutive ends of confidence intervals and rather small M can provide quite
high parabolas. The value c1 is a constant. It should be evaluated based on
an expert’s opinion or past experience in the prospective field. We chose quite
conservative values of c1 : 8 for βA, 12 for βB, and 7 for βC , in alignment with
the available literature. The coverage was checked for 1001 grid points on [0 ; 1].

4.2 Results
Let us first asses the performance of the estimators. For that we define the square
root of average squared error of an estimator β̂ (·) (RASE)

RASE =
[︄

1
N

n∑︂
i=1

ni∑︂
l=1

(︂
β̂(Til) − β(Til)

)︂2
]︄1/2

. (4.2)

Table 4.1 contains RASE estimators for all 12 cases.

Leave-one-out CV
100 200 300 500

βA 0.036 (0.012) 0.025 (0.07) 0.020 (0.007) 0.015 (0.005)
βB 0.037 (0.012) 0.027 (0.09) 0.021 (0.006) 0.018 (0.006)
βC 0.038 (0.012) 0.025 (0.08) 0.021 (0.007) 0.016 (0.006)

AIC criterion
100 200 300 500

βA 0.036 (0.013) 0.025 (0.008) 0.021 (0.007) 0.016 (0.006)
βB 0.039 (0.012) 0.026 (0.009) 0.022 (0.008) 0.018 (0.006)
βC 0.038 (0.014) 0.026 (0.008) 0.022 (0.006) 0.016 (0.005)

Table 4.1: Comparison of RASE mean(sd) for the leave-one-out cross validation
and the Akaike criterion for subjects n = 100, n = 200, n = 300, n = 500, and
the coefficient functions βA, βB, βC , based 100 replications.
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The two modifications of constructing the confidence bands, Bonferroni-
adjustment and PIE-adjustment, differ only in the choice of the confidence levels
of the confidence intervals α. The confidence levels α and the corresponding quan-
tiles u1− α

2
depending on the number of intervals M are plotted on Figure 4.3. The

Bonferroni-adjusted level of confidence is lower then the PIE-adjusted level of con-
fidence. Additionally, with increasing number of points, the Bonferroni-adjusted
level of significance continues to decrease much faster then the PIE-adjusted con-
fidence level.

(a) Confidence levels. (b) Quantiles.

Figure 4.3: An example of dependency of the confidence levels and quantiles on
the number of confidence intervals M for n = 100, and βA.

Bonferroni correction PIE Adjustment
M=50 M=100 M=250 M=50 M=100 M=250

βA

n=100 0.979 0.981 0.984 0.943 0.924 0.907
n=200 0.981 0.979 0.993 0.950 0.946 0.941
n=300 0.984 0.989 0.992 0.951 0.95 0.945
n=500 0.991 0.992 0.997 0.968 0.959 0.950
βB

n=100 0.977 0.982 0.992 0.931 0.933 0.924
n=200 0.988 0.988 0.992 0.960 0.955 0.939
n=300 0.990 0.991 0.992 0.962 0.959 0.950
n=500 0.987 0.993 0.993 0.967 0.964 0.953
βC

n=100 0.972 0.980 0.988 0.922 0.917 0.923
n=200 0.991 0.983 0.994 0.951 0.931 0.932
n=300 0.950 0.980 0.994 0.972 0.954 0.943
n=500 0.979 0.991 0.996 0.956 0.958 0.949

Table 4.2: An empirical coverage of asymptotic confidence bands based on
the Bonferroni adjustment and PIE adjustment for M = 50, 100, 250, n =
100, 200, 300, 500 for coefficient functions βA, βB, βC .
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4.3 Discussion
From Table 4.1, the estimates get closer to the true value, as the sample size
increases, which is in line with the consistence result from Section 3.1.1. We can
see that the leave-one-out CV slightly outperforms the Akaike criterion, though
it should be again noted that the leave-one-out CV is very computationally ex-
pensive. It seems that Akaike criterion in comparison performs rather well in our
case with much less computational demands.

The results of the simulation study can be found in Table 4.2. We see that
the Bonferroni-adjusted confidence bands are indeed very conservative. The PIE-
adjusted confidence bands are much narrower. For insufficient sample size (n =
100, sometimes n = 200, n = 300) the PIE-adjusted bands do not maintain the
confidence level 0.05. That is because the construction relies heavily on asymptotic
results (consistency of both the estimate and the covariance structure).

The PIE-adjusted bands appear to be a quite reliable alternative to the
Bonferroni-adjusted bands for larger datasets. The usage of PIE-adjusted bands
for hypothesis testing as discussed in Section 3.2.3 would lead to higher power.
One should be however careful and for small datasets use the Bonferroni-adjusted
bands.

We considered three choices of M as the ideal choice is unknown. For the
Bonferroni-adjusted bands the coverage probabilities tend to increase as M in-
creases. That is because the bands gets wider (at least at the grid points where
the confidence intervals were estimated) as the quantiles get larger, see Figure
4.3b. On the other hand, for the PIE-adjusted bands the coverage seems to de-
crease with increasing number of M. That is due to the fact that the quantiles
increase at a much lower rate. The PIE-adjusted confidence bands were cho-
sen such that the asymptotic simultaneous coverage of the confidence intervals is
as close as possible to the threshold 0.05. It could be reasonable to slightly de-
crease the threshold and consider a more conservative construction, though still
producing narrower confidence bands then the Bonferroni-adjusted bands.

It should be pointed out that the results of our simulation study are influenced
by the choice of c1, which is in practice an unknown value that needs to be care-
fully chosen. By taking a lower value of c1, the confidence bands (the adjustments
between the confidence intervals) will be slightly narrower and thus the empirical
coverages in Table 4.2 will be slightly smaller. The Bonferroni-adjusted bands
will presumably still be conservative, however, we might need greater sample size
to maintain the level of significance in the case of PIE-adjusted confidence bands.

The estimation of c1 is an important issue that has not been addressed prop-
erly, based on this small simulation study it seems reasonable to consider a slightly
conservative estimate of c1 together with the PIE-adjusted confidence bands for
reasonably sized datasets. The Bonferroni-adjusted bands should be used in case
of a small to moderate datasets, the choice of c1 should be sensible.
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(b) M = 100

0.00 0.01 0.02 0.03

0.
9

1.
0

1.
1

1.
2

t

Estimate of the function
PIE−adjusted band
Bonferroni−adjusted band
True value of the function

(c) M = 250

Figure 4.4: Bonferroni-adjusted confidence bands, PIE-adjusted confidence
bands, true value and estimated value of βA based on a sample of size n = 100,
M = 50, 100, 250, drawn by the values of 41 grid points on interval [0 ; 0.04].
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Conclusion
In this thesis we introduced longitudinal varying coefficient models and two closely
related spline estimation methods. In the third chapter, we derived asymptotic
normality and consistence for the polynomial spline estimator under some mild
regularity conditions. We showed how the asymptotic properties can be used to
construct asymptotic confidence bands by taking pointwise confidence intervals
on some grid, interpolating between the end points and slightly widening the
band at the interpolated points to account for the interpolation.

An important question is how to choose the confidence level of the point-
wise intervals. An appealing choice is to adjust the confidence levels using the
Bonferroni correction. However, especially for high number of grid points, such
bands might be very conservative. We described a possible modification based on
Holder’s inequalities which leads to a lower confidence level than the Bonferroni
correction, but relies heavily on the precision of approximation.

In the fourth chapter, we investigated the performance of the confidence bands
under various scenarios. We saw that the Bonferroni-adjusted band was indeed
very conservative in all situations. We also saw that the adjustment of the confi-
dence level based on Holder’s inequalities showed some promising results. How-
ever, the usage requires a careful consideration, taking into account the compli-
catedness of the covariance structure, the sample size, and the prior information
about the first or second derivative.
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