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Introduction
This thesis is concerned with certain classes of integers and structures, known as
spectra and generalised spectra, respectively. The problem whether every class
complementary to a member of those also is a spectrum or a generalised spectrum,
respectively, is among the oldest unsolved problems in mathematical logic. It is
of interest that both the class of all spectra and the class of all generalised spectra
may be very easily characterised in terms of computational complexity, thereby
reducing the problem in logic to an other problem in computational complexity
theory. This deep connection has given rise to at least two branches of research
bordering both mathematical logic and theoretical computer science: finite model
theory and descriptive complexity theory. For a detailed overview of this topic
and it’s history, see [MM09]).

Although the most prominent problem of computational complexity, the P vs. NP
problem and the most related problems remain as of now still unresolved, even
in the light of this profound connection, the said connection allows for a more
detailed classification of NP problems. In particular, NP sets are thereby divided
into a hierarchy of NP sets which are nulladic, monadic, dyadic, triadic and so
on for other n ∈N. For every n ∈N, (n+1)-adic NP sets form a superset to n-adic
NP sets and we may for example ask whether the inclusion of the class of all n-
adic sets in the class of all (n+1)-adic sets is strict or not. In general, not much is
known even of basic properties of this hierarchy, but it is known that nulladic NP
sets are closed under complementation, whereas monadic NP sets are not. Even
so, it is unknown whether there exists any monadic NP set, which would not be an
NP set in general, as that would answer not only the complementation problem
for generalised spectra, but would even yield positive answer to the renowned
P ̸= NP problem.

Monadic NP sets nevertheless form an interesting subclass of NP in this regard.
The main goal of this thesis is to prove the aforesaid property of the hierarchy de-
scribed above, that it does not collapse at n = 1; that is, that monadic NP sets do not
form a class closed under complementation. For the sake of self-containedness,
all the needed mathematical apparatus is introduced, with the only prerequisites
being basic knowledge of mathematical logic and a limited exposure to notions
of complexity theory, along with some general fragmentary knowledge of certain
mathematical notions (for which references will be given at respective places).

For mathematical logic, the standard references are [Soc01; Šve02] in Czech and
[Sho67; Kle67; Cur77] in English. As for computational complexity, probably the
most accessible standard reference is [Sip06]. For concepts which presumably
should be known to the reader, but whose notation might not be standardised
enough, a list of notation was compiled, so as to avoid both confusion and intro-
ducing much too elementary concepts in the thesis.

The first chapter introduces background for the problem, first overviewing prop-
erties of spectra, and then the aforesaid connection of spectra and generalised
spectra with computational complexity. The second chapter is then to prove the
non-complementarity of monadic NP sets, after having introduced apparatus of the
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so called Ehrenfeucht-Fraïssé games which is specifically needed for the proof.
The proof will be a reproduction of the one to be found in [Fag75].

We conclude this introduction by specifying some conventions regarding the stated
prerequisites and recalling some of their key notions.

First-order logic will be considered with equality; that is, a formula whose every
atomic subformula is of the form a = b for some terms a and b, is considered a
formula over an empty language. So as to emphasise the difference between =
to be found in formulae and the equality of two formulae, we denote the latter by
⊜ (as it is done, too, in [Mlč22]). The notation ϕP for the relativisation of ϕ to set
P is utilised in order to make this operation easily denotable. The same goes for
other, mostly non-standard, notations.

For a certain connection between logic and complexity theory will be explored,
we recall here some of the basic complexity classes which will be referred to, and
some basic information about them. For more detailed information, [Sip06] may
be consulted.

Definition: Let LM be a decidable language accepted by a Turing machine M in
time equal to or lesser than f (n), for each n the length of the input word. Then
we denote:

1. LM ∈ E if and only if M is deterministic and f has an upper bound which
is a function exponential in some polynomial of n.

2. LM ∈ NE if and only if M is non-deterministic and f has an upper bound
which is a function exponential in some polynomial of n.

3. LM ∈ P if and only if M is deterministic and f has an upper bound which
is a function polynomial in n.

4. LM ∈ NP if and only if M is non-deterministic and f has an upper bound
which is a function polynomial in n.

5. LM ∈ coC for class C if and only if LM ’s complement is in C.

A set A ∈ NP (or the query regarding membership within the set or the property
thereof) is NP-complete if and only if there is for every B ∈ NP a function g (n)
computable in time polynomial with respect to n such that for all b ∈ B holds
g (b) ∈ A ⇔ b ∈ B . ▶
It is known that classes defined in this manner for deterministic machines are
actually closed under complementation, so E = coE and P = coP. Whether the
analogue holds for NP and NE is as of yet unknown, as well as whether E equals
NE or P equals NP. That is the famous P vs. NP problem.

The last compact prerequisite is formed of some rudimentary knowledge regard-
ing non-directed graphs. For directed graphs will not be considered, let us con-
clude to understand the term “graph” to be synonymous with “non-directed graph”.

Definition: Let R be a binary predicate symbol. A structure of signature {R}
is a (non-directed) graph if and only if realisation of R within the structure be
antireflexive and symmetric. R is then called the reachability relation, members
of graph’s universe are called vertices, pairs of vertices a and b such that R relate
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a and b are called edges. A graph is said to be tricolourable if there may be found
three disjoint subsets of it’s universe, called colours, such that every vertex be in
one of the three colours and every edge be between two elements of different
colour. A graph is said to be connected if there be for every two vertices a and b
a sequence s such that a be it’s first member, b it’s final member and the graph
contain edge between every member of s and it’s successor within s. We say a
graph is a cycle, or that it is cyclic, if it be connected, it’s universe be finite and
every two vertices be contained in precisely two edges. ▶
Tricolourability is well-known to be an NP-complete property (it also may be seen
named as such in [Sip06]).
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List of notation
N+ the set of all positive natural numbers

Mod(ϕ,L) the class of all structures of signature L, satisfying the theory {ϕ}

∥A∥ the cardinality of structure A’s universe

A ↾B A is expansion of B in some language

ϵn the formula “there are precisely n different elements” (as in [Mlč22])

ϵ≥n the formula “there are at least n different elements” (as in [Mlč22])

ϵ≤n the formula “there are at most n different elements” (as in [Mlč22])

⊜ the equality of words over a same alphabet, like A ⊜ A, but not ¬¬A ⊜ A

x̄ a finite sequence (or ordered tuple) of members denoted x0, x1 and so on

(∃x̄)ϕ consecutive quantification over all members of x̄

L(ϕ) the set of symbols occuring within ϕ

ϕS formula ϕ modified so that all it’s quantifiers be relativised to S

L(A) the signature of structure A

⌈l(n)⌉ ceiled binary logarithm of n (length of n’s binary expansion)

l (x̄) the length of tuple (or finite sequence) x̄

|A| the universe of structure A

ϕ(x/e) the formula ϕ with all free occurences of x replaced by e

A ⇂ S substructure of A, such that |A ⇂ S| = S

dom( f ) the domain of function f

rng( f ) the range of function f

f ◦ g composition of functions: f ◦ g (x) = f (g (x))

[a,b] an ordered double with a the first element and b the second one

A∼=B structures A and B are isomorphic

a_b the concatenation of sequences a and b
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1. Spectra and generalised spectra
In this chapter, we shall discuss two fundamental notions: that of a spectrum
and that of a generalised spectrum, along with presenting some of the basic
theorems thereof. Only basic knowledge of first-order logic and a limited number
of elementary notions of complexity theory will be assumed throughout.

1.1 Spectra and their basic properties
Definition 1. The spectrum of a given first-order sentence, let us say ϕ, is the
set of all finite cardinalities pertaining to some model of {ϕ}. More formally:

Spec(ϕ) = {n ∈N+; there is M ∈ Mod(ϕ,L) such that ∥M∥ = n}.

The class

GenSpec(ϕ,L) = {A ∈ Mod(⊤,L); there is finite A ∈ Mod(ϕ,L∪L(ϕ)) such that A ↾A}

is called the generalised spectrum of ϕ in language L. ▶

The notion of spectrum was first addressed by Scholz in [Sch52] and a spectrum-
like notion was also considered and investigated by Asser in [Ass55]. Generalised
spectra indeed may be thought of as a generalisation of ordinary spectra, as their
members - positive natural numbers - are in this context effectively rendered as
structures over the empty signature. The notion of generalised spectrum was first
introduced by Tarski in [Tar56].

Spectra are known to have many notable properties. For example, that they are
closed under certain arithmetical operations, as we shall see. [MM09] gives an
overview of many of spectra’s known properties and we ourselves shall now name
some examples of spectra.

Example 1. The trivial subsets of N+ (id est ∅ and N+) are spectra. The former is
the spectrum of an arbitrary contradiction (or of a formula with non-finite models
only), the latter is the spectrum of an arbitrary logically valid formula, for instance
a tautology. ⊠

Example 2. All singletons in P(N+) are spectra. Particularly:

{n} = Spec(ϵn) = Spec

(︃
(∃x̄)(∀y)

(︂ ⋀︂
a,b∈x̄
a ̸=̊b

a ̸= b &
⋁︂
x∈x̄

y = x
)︂)︃

where n is the length of x̄. ⊠

Example 3. Initial segments of N+ are spectra:

〈1;n〉∩N+ = Spec(ϵ≤n) = Spec(ϵ<n+1) = Spec

(︃
(∃x̄)(∀y)

(︂ ⋁︂
x∈x̄

y = x
)︂)︃

where n is the length of x̄ again. ⊠
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Example 4. Unbounded intervals of positive natural numbers are spectra:

〈n;∞)∩N+ = Spec(ϵ≥n) = Spec(ϵ>n−1) = Spec

(︃
(∃x̄)

⋀︂
a,b∈x̄
a ̸=̊b

a ̸= b

)︃

where n is, again, the length of x̄. ⊠

Example 5. Finite unions and intersections of spectra are spectra. We clearly
have Spec(ϕ)∪Spec(ψ) = Spec(ϕ∨ψ) = Spec(¬ϕ→ψ).

Yet it is not true that Spec(ϕ)∩Spec(ψ) = Spec(ϕ&ψ): see for instance the case
ϕ ⊜ ¬ψ; it does indeed hold, however, when L(ϕ)∩ L(ψ) = ∅. Let thus ψ′ be
a formula created from ψ by replacing all signature symbols (outside of equality
sign) by some other ones not present within ϕ, of the same respective arities. Then
we have Spec(ϕ)∩Spec(ψ) = Spec(ϕ&ψ′). General finite unions and intersections
follow trivially by induction.

Also, it is not true that Spec(¬ϕ) =N+\Spec(ϕ). The case with complements turns
out to be much more complicated, as we shall see. ⊠

Example 6. Finite and cofinite subsets of N+ are spectra. Let A ⊂ N+ be finite.
Then {ϵa} is a spectrum for each a ∈ A, ⋁︁

a∈A ϵa is first-order, and, by previous
example, Spec(

⋁︁
a∈A ϵa) = A.

Let A now be cofinite in N+. N+ \ A is then finite, thus rendering A the spectrum
of the then first-order formula ⋀︁

a∈N\A ¬ϵa . Follows trivially that all intervals of
positive natural numbers are spectra. ⊠

Example 7. The set difference of two spectra, A \ B is a spectrum whenever the
complement of B in N+ be a spectrum, as A \ B = (N \ B)∩ A becomes then an
intersection of two spectra; a spectrum by previous example. ⊠

Example 8. Natural powers of 2 form a spectrum. The theory of boolean algebrae
BA in the language {∧,∨,̄ ,0,1} is axiomatised by all the formulae

(∀a)(∀b)(∀c)((a ⋄ (b ⋄ c) = (a ⋄b)⋄ c) &(a ⋄b = b ⋄a) &(a ∨ ā = 1) &(a ∧ ā = 0)),

(∀x)(∀y)(∀z)((x ⋄ (x ⋄′ y) = x) &(x ⋄ (y ⋄′ z) = (x ⋄′ y)⋄ (x ⋄′ z))),

where ⋄ ∈ {∧,∨} and ⋄′ is then the second one of the two binary operations. This
finitely axiomatised theory can be proven (see [Hon16] or [Ně90]) only to have
such finite models whose cardinalities are precisely powers of two with natural
exponents and thus indeed holds that {n ∈N; (∃k ∈N)(2k = n)} = Spec(

⋀︁
BA). ⊠

Example 9. The set of all powers of all prime numbers is a spectrum. The theory
of fields F in the language {+, ·,0,1,−,−1 } is axiomatised precisely by all formulae
of the form:

(∀a)(∀b)(∀c)((a ⋄ (b ⋄ c) = (a ⋄b)⋄ c) &(a · (b + c) = (a ·b)+ (a · c))),

(∀x)((x + (−x) = 0)) &(x +0 = x) &(x ·1 = x) &(x · x−1 = 1),

where ⋄ ∈ {+, ·}. It could be proved (for this, you may see [Ně90] or [BML41]) that
finite models of F have precisely those cardinalities which are natural powers of
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primes, that is: {n; (∃p ∈ P)(∃k ∈N)(pk = n)} = Spec(
⋀︁
F), whereby we may derive

as well that the set of all natural powers of some particular prime p is a spectrum;
in fact, it is the spectrum of the formula ∑︁p

k=1 1 = 0 &
⋀︁
F (that is, it pertains to the

theory of fields of characteristic p); see again [Ně90] or [BML41] for proof. ⊠

Example 10. The set P of all prime numbers is a spectrum. Consider the theory
FOrdered obtained by endowing F (from the previous example) with the axioms of
partial ordering for the symbol ≤ and further with the axioms:

(∀x)(0 ≤ x) &(∀x)(x +1 = 0 → (∀y)(x ≤ y → y = x))

(∀x)(x +1 ̸= 0 → (∀y)((x ≤ y & x ̸= y) → x +1 ≤ y))

which ensure that 0 be the least element, all x such that x +1 = 0 be maximal
elements and that x +1 ≤ y for all x < y for all x such that x +1 ̸= 0 (in particular,
x+1 is for such x it’s successor). Thereby the set comprised of elements ab 0 ad
p −1 form a linearly ordered set with respect to ≤. Thus, in finite fields whose
universe has a non-prime size, as we may note, are besides 1 other elements
which are successors to 0: 0 is the least element, 1 it’s successor, and so on up
to respective p −1 such that the respective field’s order is pk for some k ∈ N+;
this p −1 is a maximal element and if 0 ̸= k ̸= 1, there must be at least one other
successor of zero. Let therefore γ ⊜ (∃!x ̸= 0)(∀y)((x ≤ y & x ̸= y) → x + 1 ≤ y)
(informally, γ says that there be one and only one element a successor to 0, id
est 1 ̸= 0). Then, Spec(γ&

⋀︁
FOrdered) =P.

Moreover, note that if we denote δ the formula

(∃x1)(∃x2 ̸= x1)
(︂
x1 ̸= 0 ̸= x2 &(∀y)

⋀︂
i∈{1,2}

(︁
xi ≤ y & xi ̸= y → xi +1 ≤ y

)︁)︂
,

we have it that the set of all non-trivial powers of prime numbers forms a spectrum
as well (δ says that there are at least two members which are successors of 0, as
opposed to γ claiming there be solely and only one such element). Symbolically
written: {n; (∃p ∈P)(∃k ∈N\ {0,1})(pk = n)} = Spec(δ&

⋀︁
FOrdered). ⊠

Example 11. The sets of all odd numbers and all even numbers are both spectra.
Let P and Q be unary predicates and F a unary function. We axiomatise the
theory T of two disjoint sets and a function mapping them one to another:

(∀x)(P (x)⊻Q(x)), (∀x)(P (x) →Q(F (x))), (∀x)(Q(x) → P (F (x)))

(∀x)(∀y ̸= x)(P (x) & P (y) → F (x) ̸= F (y)) (F is an injection from P to Q)
We define now these two axioms:

(∀x)(∀y ̸= x)(Q(x) & Q(y) → F (x) ̸= F (y)) (E)

(∃!x)(Q(x) &(∀y)(F (y) ̸= x)) (O)
(E) forces that F also behave injectively in the direction from Q to P (note it is
only a slight modification of the axiom above), whereas (O) provides existence of
an odd element causing Q not to be injectible to P when the model considered be
finite. Clearly, the set of all even numbers is the spectrum of (E) &

⋀︁
T , whereas

the set of all odd numbers turns out to be the spectrum of (O) &
⋀︁

T . ⊠
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Example 12. The set of all positive natural numbers divisible by n is a spectrum
for every n ∈ N+. To prove this, we generalise the theory from the previous
example. The language will consist of one unary function symbol F and n unary
predicate symbols denumerated P0, P1 et cetera up to Pn−1. Heuristics will again
be that the theory Tn being now constructed describe n disjoint sets (in this case,
of the same cardinality, as was also the case with the set of all even numbers). We
denote now I the index set 〈0;n −1〉∩N, s(x) = (x +1) mod n and add as axioms
to Tn :

(∀x)
⋁︂
a∈I

(︂
Pa(x) &

⋀︂
b∈I
a ̸=b

¬Pb(x)
)︂
, (all sets realised by Pa are mutually disjoint)

(∀x)
⋀︂
a∈I

(︂
Pa(x) → Ps(a)(F (x))

)︂
, (F maps the sets one to another cyclically)

(∀x)(∀y ̸= x)(F (x) ̸= F (y)). (F is an injection)
Again, it is not hard to see that all finite models of Tn as constructed above
are precisely n−folds of positive natural numbers. More formally, we write that
Spec(

⋀︁
Tn) = {a; (∃k ∈N)(a = kn)}. ⊠

Example 13. Modulo congruence classes are spectra. Again, we get this by gene-
ralising the previous example. We create a modification Tn,k of Tn such that it’s
finite models have cardinality congruent to k modulo n. L(Tn,k ) shall consist of
all the symbols already present within L(Tn) and further there will be a new unary
predicate symbol S. There will be two new axioms in Tn,k :

(∀x)
(︂
S(x)⊻

⋁︂
a∈I

Pa(x)
)︂
, (S is disjoint with Pa for all choices of a ∈ I )

(∃x)P0(x) & ϵS
k . (set P0 is non-empty, S has k elements)

and further we add to Tn,k the afore seen axioms (∀x)(∀y ̸= x)(F (x) ̸= F (y)) and
(∀x)

⋀︁
a∈I (Pa(x) → Ps(a)(F (x))) (making non-emptiness of Pn cause non-emptiness

of Ps(n) for all n ∈ I ) and the axiom forcing sets realised by Pa to be disjoint:

(∀x)
⋀︂
i∈I

(︂
Pi (x) → ⋀︂

j∈I
i ̸= j

¬P j (x)
)︂

Informally, models of Tn,k are created by expanding models of Tn by a set (re-
presented by the unary symbol S) of size k . Thus, finite models of Tn,k truly have
sizes congruent with k modulo n and modulo congruence classes are spectra as
was claimed by us. ⊠

Example 14. We may define sum and product of two integer sets as follows: let
A and B be sets of integers; then denote A +B = {n; (∃a ∈ A)(∃b ∈ B)(a +b = n)}
and A ·B = {n; (∃a ∈ A)(∃b ∈ B)(a ·b = n)}. Let A = Spec(ϕ) and B = Spec(ψ). Then
A+B and A ·B are spectra.

First we prove that A+B = Spec(ζ) for some formula ζ. We shall use the language
L(ϕ)∪L(ψ)∪{P A,PB }, where P A and PB are unary predicate symbols not in L(ϕ)∪
∪L(ψ). Let ζ⊜ (∃x)P A(x) &(∃x)PB (x) &(∀x)(P A(x)⊻PB (x)) &ϕP A &ψPB , which is,
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let ζ say it’s models consist of two non-empty mutually disjoint substructures which
be in turn models of ϕ and ψ, respectively. Clearly, Spec(ζ) = Spec(ϕ)+Spec(ψ).

Now let us search for formula ζ such that A ·B = Spec(ζ). L(ζ), we put down as
L(ϕ)∪L(ψ)∪ {P A,PB ,C }, where P A and PB be unary predicate symbols as before
(now, we shall call them the coordinate sets) and C be a ternary predicate symbol,
which we shall call the coordinate relation. These will be taken by us as axioms
of the theory T :

(∃x)(∃y)(P A(x) & PB (y)) &(∀x)(P A(x) →¬PB (x)) &ϕP A &ψPB ,

(∀z)(∃!x)(∃!y)C (x, y, z),

(∀x)(∀y)(∀z)(C (x, y, z) → P A(x) & PB (y)),

(∀x)(∀y)(P A(x) & PB (y) → (∃!z)C (x, y, z)).

Those might be translated as: the coordinate sets are non-empty, they are mutu-
ally disjoint and they are models of ϕ and ψ, respectively; every element z has
it’s coordinates x and y , which are unique; if x and y are coordinates of some
point, they must be members of their corresponding coordinate sets; and if x and
y indeed are members of the coordinate sets, they are coordinates of a uniquely
determined point z. That is, if the coordinate substructures (which are models of
ϕ and ψ) have sizes a and b, respectively, there are a ·b many distinct coordi-
nates which do have exactly one associated element, wherefore we indeed have
Spec(

⋀︁
T ) = A ·B . ⊠

Example 15. The set of all composite numbers forms a spectrum as it is equal
to (N+ \ {1})2 - a spectrum by examples 6 and 14. ⊠

Example 16. If A = Spec(δ) be a spectrum, the set A′ of all n-th powers of mem-
bers of A is a spectrum as well. We will slightly modify the construction used for
proving that product of two spectra is a spectrum: we will consider the coordinate
relation Cn ∉ L(δ) to be (n+1)-ary, but we will only have one coordinate set (unary
predicate) P ∉ L(δ). A′ then equals Spec(

⋀︁
Tn) for Tn made of these axioms:

(∃x)P (x) & δP &(∀z)(∃!x̄)Cn(x̄, z),

(∀x̄)(∀z)
(︂
Cn(x̄, z) → ⋀︂

x∈x̄
P (x)

)︂
,

(∀x̄)
(︂ ⋀︂

x∈x̄
P (x) → (∃!z)Cn(x̄, z)

)︂
,

again forcing that the coordinate set be non-empty, that it form a model of δ,
that every element have it’s unique coordinates and that every n-tuple of elements
in the coordinate set be a coordinate for some distinct element. In contrast to
the case of product of two spectra, we utilise now merely one coordinate set both
for abscissae and ordinates, thus forcing the resulting model to necessarily have
cardinality which then be a power of the size of the coordinate set. Which partic-
ular power, depends then on the arity (dimension) of the axiomatised coordinate
relation.

There, from this construction, we may derive a more general result, that spectra
are closed under well-behaved polynomial mappings - videlicet, that images of
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spectra under polynomial functions of positive natural coefficients again form
spectra. Let f (x) =∑︁d

k=0 ak xk be a non-trivial polynomial of degree d with all the
coefficients ak ∈N. The language L of the formula υ such that f [Spec(δ)] = Spec(υ)
will use, outside of symbols from L(δ), the unary predicates F , P (the coordinate
set as before) and additional ∑︁d

k=1 ak many unary predicates denoted Qk,l (we shall
call those the substructure relations) where l ∈N+ is lesser than or equal to ak

and further we will have a (k+1)-ary coordinate relation Ck for each k ∈N+ lesser
than d +1. Then we write

υ⊜ ϵF
a0

&
d⋀︂

i=1

ai⋀︂
k=1

(︂
(∃x)Qk,i (x) &

(︂⋀︂
Ti

)︂Qk,i
)︂

&(∀x)
⋁︂

P ̸=U∈L
U is unary

(︂
U (x) &

⋀︂
V ∈L\{P,U }
V is unary

¬V (x)
)︂
.

It is the third conjunct in υ which guarantees disjointness (and non-emptiness)
of all unary predicates and the first two conjuncts are what guarantees the size.
Heuristically, for better understanding, we could perhaps write:

Model of υ= (Structure of size a0)+
d∑︂

i=1
ai · (Structure of size xi )

where x ∈ Spec(δ). υ’s models are therefore cardinal sums of an a0-sized structure
and all the cardinal sums of ai many models of Ti for each i such that 0 < i < d+1.
Models of Ti are in turn of size of the i -th power of the cardinality pertaining to
some fixed model of δ. Thus we have it that f [Spec(δ)] = Spec(υ). ⊠

Example 17. As our final non-trivial example, we will show that spectra are as
well closed under exponentiation, namely that the set operation AB = {x; (∃n ∈
∈ A)(∃k ∈ B)(nk = x)} yields a spectrum when A and B are both spectra. As is
well known, nk is the number of mappings of domain sized k to a set sized n.
Let A = Spec(ϕ), B = Spec(ψ), Spec(γ) = AB will be proved for some sentence γ.
We axiomatise a base set, represented by the unary predicate symbol E , and an
exponent set, represented by the unary predicate X . Finally we shall have a ternary
predicate F , such that meaning of the atomic formula F (a,b,c) correspond to the
sentence “a is a function whose value at b is c”; the members of γ’s universes
are therefore to be isomorphically equivalent to mappings from respective B ’s
model’s universe to A’s respective model’s universe. Of course assume without
loss of generality that E , X ,F ∉ L(ϕ)∪L(ψ). We put γ=⋀︁

Z where Z is the theory
of the following axioms:

ϕE &ψX (E forms a model of ϕ, X a model of ψ)

(∀a)(∀x)(∀y)(F (a, x, y) → X (x) & E(y)) (a may only map members of X to E )
(∀a)(∀x)(X (x) → (∃!y)F (a, x, y)) (a are functions of domain a superset of X )

(∀a)(∀b)(a = b ≡ (∀x)(∀y)(F (a, x, y) ≡ F (b, x, y)))

(∀a)(∀x)(∀y)(∃!b)(F (b, x, y) &(∀x ′ ̸= x)(∀y ′)(F (a, x ′, y ′) ≡ F (b, x ′, y ′))

The fourth axiom defines that two elements-functions are equal precisely when
they coincide on all possible function values and the fifth axiom tells us that from
every function a we may construct function b such that it differ from a at most at
one point, denoted x , so that b(x) = y . The second and third axiom combined give
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us that all members of γ’s model indeed correspond to functions of a common
domain, which in turn happens to be the set realised by X . The fifth axiom then
ensures that every possible function from X to E be included in γ’s finite models,
for if we assume a function b not included, we may construct from an arbitrary
function a (by the said axiom) a sequence of functions replacing a’s function
values at respective points one by one, until we get b. That is, every thinkable
function b is included in finite models of γ. As the fourth axiom sets all functions
to be equal precisely when their function values in every point equal, we have it
that indeed, if and only if there be n ∈ A and k ∈ B , is there then a model of γ of
size nk , specifically, every one whose base set’s size was set to n and the exponent
set’s size to k . ⊠

Note. By a modification of the above example, we could obtain the result that
the set of all factorials of Spec(ϕ)’s elements forms a spectrum for every ϕ. We
only would have to put ϕ ⊜ ψ and axiomatise that all members be bijections
(permutations of n elements) and the fifth axiom were then to ensure instead the
possibility of exchange of two different function values at two different points (in
other words, ensure the possibility of applying cycles of length 2 on the elements-
permutations). Another possible modification, involving a unary function symbol,
axiomatised to be a bijection between the base and exponent set, would then yield
that the range of the function nn on N+ be a spectrum.

Example 18. Example 17 trivially implies that the set of all powers of an arbitrary
(even composite, as opposed to example 10) a ∈N+ is a spectrum. Furthermore,
the set of all non-trivial powers of all composite numbers is a spectrum as well.⊠

As evidenced by these examples, spectra constitute rather an extensive family of
sets. Moreover, instead of simply being an extensive list of particular instances
of the notion, numerous or not, some of the examples cannot but be considered
investigations par excellence of spectra’s general properties: namely that they
are closed under finite unions and intersections (example 5) and under certain
arithmetical set operations (examples 14, 16, 17). Specific examples of generalised
spectra, however, do not turn out to be of any interest for now: the question of a
class of structures being a general spectrum comes down to seeing whether it is
an intersection of the class of all finite structures and some finitely axiomatisable
elementary class of structures, id est, it is reduced to an unrelated, albeit non-trivial
problem.

We conclude this section by showing the following theorem (a slightly gener-
alised version of what is to be found at the beginning of [Fag74]). For simplicity,
understand (only for this theorem’s statement) under the term “set” a subset of N+.

Theorem 1. All spectra are recursively enumerable and primitive recursive.
Complements of spectra are primitive recursive. There is a recursive set which
is not a spectrum. There is a primitive recursive set which is not a spectrum.

Before proving this, we define encoding of finite structures so as to “computation-
alise” them, having them become a subject possible to be worked with in classical
computational models. To do this, we assume all first-order formulae to be finite

12



words over natural numbers, where each symbol (be it a paren, a quantifier, a
variable) have a unique natural number assigned to them - in the very same man-
ner do modern-day computers encode text. This way, we may only have countably
many variables, countably many k-ary predicate symbols for each k , which we
assume monotonely enumerated by (primitive) recursive functions v and pk , re-
spectively. We assume also a less traditional category of symbols: the category of
substituted structure elements monotonely enumerated by some fixed recursive
(or primitive recursive, we may again assume) function e (that is, all structures of
size n have precisely elements ab e(0) ad e(n −1)).

Definition 2. Let A be a finite relational structure such that ∥A∥ = n. Without
loss of generality, assume L(A) to be relational, each function symbol (constant
symbols included) may be simulated by a predicate symbol and one additional
axiom. Let s be the greatest arity pertaining to some symbol of L(A) and let m be
the size of L(A). We define encoding of A in N to be the number c(A) ∈N such
that for it’s shortest binary expansion represented by the finite sequence a hold:

1. ak = 1 for all k ∈N such that 0 ≤ k < ⌈l(n)⌉ (that is, c(A) begins with unary
expansion of ⌈l(n)⌉).

2. a⌈l(n)⌉ = 0 (demarcates the end of the aforesaid unary expansion of ⌈l(n)⌉).
3. ak is equal to the k-th member of n’s shortest binary expansion when

⌈l(n)⌉ < k ≤ 2 · ⌈l(n)⌉ (that is, a continues with n’s binary expansion).

4. ak = 1 for all k ∈ N such that 2 · ⌈l(n)⌉ < k ≤ 2 · ⌈l(n)⌉ + s (this is unary
expansion of s).

5. a2·⌈l(n)⌉+s+1 = 0, again to demarcate the end of said unary expansion.

6. a continues on with a sequence of length |L(A)| ·ns , comprised of |L(A)|
consecutive encodings of all relations from L(A), as defined in the following.

Assume |A| linearly ordered by ≤. Denote by ≤s the lexicographical ordering of
ordered s-tuples of |A|’s elements induced by ≤. The encoding of an s-ary relation
R is a binary sequence of length ns such that it’s m-th member equal 1 if and only
if for the ordered s-tuple ē which be m-th least element with respect to ≤s hold
A R(ē). When in need of encoding relation S of lesser arity, let us say d , we
choose it to be the encoding of the s-ary relation RS uniquely determined by the
definitional axiom (∀x̄)(∀ȳ)(RS(x̄, ȳ) ≡ S(x̄)), where l (x̄) = d , l (ȳ) = s −d . Finally,
we conclude the license that all numbers which are not encodings as defined
above be considered encodings of a formal null structure of empty signature
wherein hold whatsoever no formulae (thus entirely contradicting Tarski’s truth
definition). ▶

For this encoding, though it is not the most effective one possible (we could allow
relations of different arities in encoding of one structure, for example), if we keep
the definition’s notation, we have it that the length of c(A)’s binary expansion is ex
definitionem (⌈l(n)⌉+1)+⌈l(n)⌉+ (s +1)+|L(A)| ·ns , that is: it is polynomial in n
and |L(A)| and exponential in s whereby c(A) itself is exponential in n and |L(A)|
and superexponential in s. Clearly, the set of encodings of all finite structures
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gives us a primitive recursive set and we may primitively recursively compute
size of the encoded structure’s universe.

Proof (of Theorem 1). We know that encoding and decoding of finite sequences
as well as manipulating binary expansion of given numbers are primitive recur-
sive operations. Now we construct a recursive function cgs, getting a first-order
sentence ϕ and a finite structure A (or, to be precise, it’s encoding c(A)) as input
and returning whether A is a model of ϕ or not (represented by output values 1
and 0, respectively). Fixing ϕ then yields recursivity of GenSpec(ϕ). cgs is derived
by a variant of primitive recursion on ϕ as follows:

1. if ϕ⊜ (∀x)ψ for some word ψ and some variable x , we put cgs
(︁
ϕ,c(A)

)︁ =
= cgs

(︁⋀︁|A|−1
k=0 ψ(x/e(k)),c(A)

)︁
.

2. analogically, if ϕ⊜ (∃x)ψ, we put cgs
(︁
ϕ,c(A)

)︁= cgs
(︁⋁︁|A|−1

k=0 ψ(x/e(k)),c(A)
)︁
.

3. if ϕ⊜ (ψ&χ), we put cgs
(︁
ϕ,c(A)

)︁= cgs
(︁
ψ,c(A)

)︁ · cgs
(︁
χ,c(A)

)︁
.

4. if ϕ⊜ (ψ∨χ),weputcgs
(︁
ϕ,c(A)

)︁= cgs
(︁
ψ,c(A)

)︁+cgs
(︁
χ,c(A)

)︁−cgs
(︁
(ψ&χ),c(A)

)︁
.

5. if ϕ⊜¬χ, we put cgs
(︁
ϕ,c(A)

)︁= 1− cgs
(︁
χ,c(A)

)︁
.

and accordingly for all other logical operations if established.

6. if ϕ⊜ a = b for some a and b, then return

(a) cg s
(︁
ϕ,c(A)

)︁= 0 if a and b are two different structure elements (that is,
a = e( j ) and b = e(k) for some natural indices j and k and j ̸= k) or
either a or b is a variable.

(b) cg s
(︁
ϕ,c(A)

)︁= 1 if a and b are both the same structure element (that is,
a = b = e( j ) for some j ∈N).

7. if ϕ⊜ R(x̄) for some k-ary predicate symbol R and ordered k-tuple x̄, then
if the arity of predicates encoded to c(A) (clearly a recursively computable
number) is s:

(a) if k < s and R = pk (a), put cgs
(︁
ϕ,c(A)

)︁ = cgs
(︁
ps(a)(x̄, ȳ),c(A)

)︁
where ȳ

is ordered (s −k)-tuple of structure elements e(0).

(b) if k > s, put cgs
(︁
ϕ,c(A)

)︁= 0.

(c) if k = s, and x̄ contains some variables, put cgs
(︁
ϕ,c(A)

)︁= 0 instantly.

(d) if k = s, and x̄ is a tuple of structure elements (that is, of numbers
within range of the function e), put cg s

(︁
ϕ,c(A)

)︁= ev
(︁
ϕ,c(A)

)︁
, where ev

is a recursive function defined so that

i. if R = ps(n) and A has signature of size lesser than n, return the
value ev

(︁
ϕ,c(A)

)︁= 0.

ii. else if R = ps(n), search for the n-th relation encoded in c(A)
and find out whether x̄ has assigned 0 or 1 within R ’s encoding.
ev

(︁
ϕ,d(A)

)︁
then equals this respective value.

8. or else, return cgs
(︁
ϕ,c(A)

)︁= 0.
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Note that if ϕ has some free variable, cgs returns 0. We have established that every
generalised spectrum is recursive (and primitive recursive, too, as we did not use
minimisation and derived cg s from primitive recursive functions only) and thus
recursively enumerable as well.

Assume now a function cSpec(ϕ,n) which is derived by bounded quantification
from cgs as follows: (∃x ≤ m(n,ϕ))(cgs(ϕ, x) & |x| = n), where m(n,ϕ) is defined to
be the greatest possible encoding pertaining to some structure B of n elements,
whose signature’s size is equal to the greatest number b such that pk (b) ∈ L(ϕ)
for some k and whose signature’s elements are all s-ary, where s is the greatest
arity pertaining to some predicate symbol from ϕ. m(ϕ,n) defined like this then
has binary expansion consisting of ⌈l(n)⌉ consecutive 1s, followed by a 0 and n’s
binary expansion, then s many 1s again followed by a 0 and b ·ns many 1s (that
is, this structure satisfies every evaluated atomic formula, except equalities and
inequalities).

As m(ϕ,n) is primitive recursive, and both cgs(ϕ, x) and |x| = n are primitive
recursive, we obtain that cSpec is also a primitive recursive function. Rephrasing
the formal definition, cSpec is constructed so as to return 1 if and only if there
be a model of ϕ of size n, search for which is bounded by having established
the greatest feasible solution m(ϕ,n) - models with a bigger integer assigned as
their code would either have more than n elements, or would have unnecessarily
vast signature. Thus cSpec(ϕ,n) with fixed ϕ indeed is the characteristic function
of Spec(ϕ). All spectra are thus primitive recursive and as a consequence are
also recursively enumerable and the same goes for their complements, because
1− cSpec

(︁
ϕ,c(A)

)︁
is also a primitive recursive function. If we wanted to talk of

complements in N+ instead of N, the same goes with the primitive recursive
function

(︂
1− cSpec

(︁
ϕ,c(A)

)︁)︂ · sgn(n).

Because we know that not every recursive subset of N+ is primitive recursive, we
may conclude instantly that not every recursive subset of N+ is a spectrum. To be
more explicit, however, we will use the diagonal argument to construct a recursive
set demonstrating this. What’s more, we will even construct it primitive recursive.
Let f (n) be a primitive recursive function enumerating all formulae of language⋃︁∞

n=0{pk (n);k ∈N} (possibly not monotonely) and let t (n) be function defined as(︁
1− cSpec

(︁
f (n),n)

)︁ · sgn(n); this is the characteristic function of set T ⊂N+ which
differs from Spec( f (n)) for all n ∈ N+ so that if n ∈ Spec( f (n)), then n ∉ T and
vice-versa: if n ∉ Spec( f (n)), then n ∈ T . Thus, we have T a primitive recursive
subset of N+ which is not a spectrum. QUOD ERAT DEMONSTRANDUM

This theorem gives us certain information about ease of spectra’s recognition. Al-
though too broad a property to be considered characterising spectra complexity-
wise, primitive recursivity guarantees, that spectra, are, in a sense, feasibly com-
putable. In the next section, spectra will be uniquely characterised in terms of
complexity theory.
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1.2 Second-order logic and the theorem of Fagin
We will now introduce the system of second-order logic. You may notice most
of the introduced terms defined as analogues to those already seen when dealing
with first-order logic.

Definition 3. Let L (whose members shall we call second-order variables) and
Lc be two disjoint signatures. Conclude that all second-order variables are capital
latin letters or variants thereof, in a similar manner are all first-order variables
denoted by some latin minuscule form. A second-order constructing sequence
in L with built-in signature Lc is finite sequence of words such that for it’s every
member ϕ holds at least one of the following:

1. ϕ is a first-order formula in language L∪Lc.

2. ϕ⊜□ψ, where ψ precedes ϕ in the same sequence and □ is either ¬ or is of
the form (

´
A) where

´ ∈ {∃,∀} and A is either a variable (which yields well-
known first-order quantification), or a symbol from L, in which case shall we
speak of second-order quantification or more specifically, of quantification
over relations or predicates, constants and functions.

3. ϕ⊜ψ⋄χ, where ψ and χ precede ϕ in the same sequence and ⋄ is some
first-order binary connective.

Word ϕ is a second-order formula in language L with built-in signature Lc (if
L and Lc be clear from the context, we shall omit them) if and only if there is a
second-order constructing sequence in L with built-in signature Lc such that ϕ be
it’s last member. Clearly, every first-order formula in language L∪Lc is a second-
order formula. A second-order formula is said to be second-order subformula of
another second-order formula when former is a subword to the latter. We further
define that:

1. every occurrence of every symbol from L in a first-order formula is free,
or that in first-order formulae all symbols from L occur freely.

2. if a second-order formula ϕ is of the form ψ ⋄χ, where ⋄ is a first-order
binary connective and either ψ or χ have free or bound occurrences, re-
spectively, of a symbol from L (or that the symbol occurs freely), so is the
case with ϕ,

3. if a second-order formula ϕ is of the form □ψ, where □ is either ¬ or of
the form (

´
x) for some

´ ∈ {∃,∀} and some variable x , and in ψ a symbol
from L occurs freely or bound, respectively, so it does in ϕ,

4. in every second-order formula of the form (
´

X )ψ, where X ∈ L and
´ ∈

∈ {∃,∀} have only bound occurrences of X (or that the symbol only occurs
bound).

Second-order formula is said to be a sentence if every occurrence of every symbol
from L it contains is bound. Second-order formula ϕ is said to be in prenex
normal form, if it has constructing sequence a of length n such that:

1. a0 is first-order, an =ϕ.
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2. for every non-zero k in domain of a holds that ak ⊜ (
´
X)ak−1 for some´ ∈ {∀,∃} and X a symbol from L or a variable.

and it is said to be in strong prenex normal form if a further satisfies:

3. there exists k in domain of a such that all formulae from a0 to ak be
first-order and no formula upwards from ak be first-order.

For formulae in prenex normal form we may consider their matrices - the therein
longest contained quantifier-free subformulae - and prefixes qua complements
thereof in the original formula, in the manner we know it from first-order logic.
For formulae in strong prenex normal form we may further consider first-order
matrices: the therein longest contained quantifier-free first-order subformulae.
L is said to be n-adic if it is relational and all it’s elements are n-ary. Second-order
formula in L with built-in Lc is n-adic if L is n-adic. Let A be a structure in Lc.
A second-order evaluation over A is a function assigning A an expansion A′ in
L ∪Lc. Let eII be a second-order evaluation over A and let eI be a first-order
variable evaluation. First six parts of this inductive definition are found already
as parts of Tarski’s truth definition, only second-order quantification’s validity is
novel there. We define second-order satisfaction of ϕ through eII and eI in A

(symbolically: A
L

II
ϕ[eII,eI]) as follows:

1. for ϕ⊜ψ∨χ, define: A
L

II
ϕ[eII,eI] ⇔

(︂
A

L

II
ψ[eII,eI] vel A

L

II
χ[eII,eI]

)︂
.

2. for ϕ⊜ψ&χ, define: A
L

II
ϕ[eII,eI] ⇔

(︂
A

L

II
ψ[eII,eI] et A

L

II
χ[eII,eI]

)︂
.

3. for ϕ⊜¬ψ, define: A
L

II
ϕ[eII,eI] ⇔ not A

L

II
ψ[eII,eI].

4. accordingly for other first-order connectives.

5. if ϕ⊜ (∃x)ψ, have: A
L

II
ϕ[eII,eI] ⇔

(︂
exists s ∈ |A| so that A

L

II
ϕ(x/s)[eII,eI]

)︂
.

6. if ϕ⊜ (∀x)ψ, have: A
L

II
ϕ[eII,eI] ⇔

(︂
for all s ∈ |A| holds A

L

II
ϕ(x/s)[eII,eI]

)︂
.

7. if ϕ⊜ (∃X )ψ, define that A
L

II
ϕ[eII,eI] if and only if there is an expansion

A ↾A in L(ψ)∪ {X } such that A
L

II
ψ[eII,eI].

8. if ϕ⊜ (∀X )ψ, define that A
L

II
ϕ[eII,eI] if and only if for all expansions A ↾A

in L(ψ)∪ {X } hold A
L

II
ψ[eII,eI].

If the satisfaction of ϕ is in particular independent of chosen evaluations (which
clearly happens precisely when ϕ be a second-order sentence with no first-order
variables occurring freely) , we may as well reduce the full notation to A

L

II
ϕ and

when ϕ’s validity be even independent of A, we shall only write
L

II
ϕ. We call

such formula second-order logically valid.

Second-order formulae ϕ and ψ are equivalent if and only if ϕ is satisfied if and
only if ψ be satisfied (either in general, or in some structure under some evalu-
ation). Second-order formula is said to be existential, or universal, respectively,
when it is equivalent to a formula which contains no subword of the respective
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form (∀X ) or (∃X ), with X ∈ L and none occurrence of ¬ precede any occur-
rence of quantifier. In the following, we no longer need consider L in general, so
conclude that L = ⋃︁∞

n=0{pk (n);k ∈N} in the same manner we have seen it in the
previous section. For L is now chosen fixed, we write only II in place of

L

II . ▶

Second-order logic is almost never introduced in logic textbooks: all of the stan-
dard references [Soc01; Šve02; Kle67; Sho67; Cur77] merely mention it, not even
introducing it formally. Yet it is to be found discussed in some sources, you may
see for example [Mlč22] where many of the results listed in this section are to be
found as well. Second-order logic arguably is quite a natural and simple extension
of first-order logic, yet it’s expressive power is much broader:

Theorem 2. There is second-order formula ϵFin satisfied precisely by finite
structures, and formula ϵ∞ satisfied precisely by infinite structures, we may
even express countable and uncountable infiniteness by respective formulae
ϵℵ0 and ϵ∞ & ¬ϵℵ0 . There is formula CH whose satisfaction in every structure is
equivalent to validity of continuum hypothesis. There are NP-complete proper-
ties expressible in existential second-order logic.

Proof. Let F be a unary function symbol and put

ϵFin ⊜ (∀F )((∀x)(∀y)(∀z)((F (x) = z & F (y) = z → x = y) → (∀y)(∃x)(F (x) = y)),

informally: “every injection is a surjection”, which is one of the possible definitions
of finiteness1. Then we may put, for example, ϵ∞ ⊜¬ϵFin.

As for CH, we have to first find said ϵℵ0 and ϵ2ℵ0 , satisfied precisely in structures of
countably infinite universe and of universe of continuum’s size, respectively. Let
X be a unary predicate and set ϵℵ0 to be

ϵ∞ &(∀X )(ϵX
∞ → (∃F )φF )

where by notation ρX we mean, similarly as in first-order logic, formula ρ with
all first-order quantifier’s relativised to X and where φF is a shorthand notation
for the first-order formula (∀y)(∃x)(P (x) & F (x) = y) (“F restricted to domain P is
onto the whole universe”). Validity of ϵℵ0 in A then translates to “|A| is infinite and
it’s every infinite subset is bijective with it”, so ϵℵ0 truly lives up to it’s expectation.

To construct ϵ2ℵ0 of desired properties, it is needed to employ a little more sophis-
ticated trick: satisfying of ϵ2ℵ0 will be equivalent to the possibility of endowing the
particular model with field structure isomorphic to R. Thereby we designate:

ϵ2ℵ0 ⊜ (∃+)(∃·)(∃−1)(∃−)(∃0)(∃1)(∃<)(
⋀︂

F&Ω&α),

where Ω ⊜
⋀︁
LO&(∀a)(∀b)(∀c)(∀d)((a < b & c < d → a + c < b +d &(0 < a & 0 <

< c → a · c < b ·d)) (linear ordering - LO is the theory of strict linear ordering for
< - and compatibility of < with endowed ring structure), F is the theory of fields
(already seen in example 9) and α represents the property of every non-empty set

1Note that some definitions of finiteness are non-equivalent over ZF; this one in particular
requires the axiom of choice in order to be equivalent with Tarski’s the definition of finiteness
(see [BŠ86])
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having a supremum. As is well known, real numbers form the only ordered field
of such a property (see [BŠ86]), wherefore the only detail remaining to complete
construction of ϵ2ℵ0 of desired property is to explicitly write down α in second
order logic:

(∀X )(((∃x)X (x) &(∃y)(∀x)(X (x) → x < y)) → (∃y)((∀x)(X (x) → x < y ∨ x = y) &

&(∀z)(z < y → (∃x)(z < x & X (x))))).

Now, using another unary predicate Y it is finally possible for us to formulate CH

naturally as “All subsets of every set of continuum’s size either satisfy ϵℵ0 or ϵ2ℵ0 ”:

CH⊜ (∀X )(ϵX
2ℵ0

→ (∀Y ⊆ X )(ϵY
∞ → ϵY

ℵ0
∨ϵY

2ℵ0
)).

Perhaps, for utter precision, it only remains to note that (∀Y ⊆ X )(...) is actually a
shorthand for (∀Y )

(︁
(∀y)(Y (y) → X (y)) → ...

)︁
.

Before moving on to the part about NP-completeness, recall from introduction
that a graph is a structure in the language {R}, where R is axiomatised as an
antireflexive symmetric binary predicate. We call a graph tricolourable if it is
separable into three disjoint substructures such that two of the graphs’s vertices
being reachable by R imply pertinence to two different of the three substructures.

As for the NP-complete properties, we shall name the following two:

1. Let U be unary predicate and consider a binary predicate R built-in. Then
satisfaction of the formula

(∃U )(∀x)(∃!y)(R(x, y) & U (y))

in given structure is an NP-complete query. This formula is brought up
in [Fag75] and the corresponding query was proven to be NP-complete in
[Fag73] and [Fag74]. We shall not prove it here.

2. Tricolourability is well-known to be an NP-complete property (this, too, may
be seen named in [Sip06]). We will show that the question of a graph being
tricolourable may be formulated by an existential second order sentence
which we shall prove now. Note that this example is classical and may be
found in almost every reference, see for example [SV95] and [Imm99].

Assume the binary relation R built-in, as the input structure is supposed to be
a (non-directed) graph. Then it is enough to consider three unary predicates
(colours) C1, C2 and C3 within C̄ and designate

3COL⊜ (∃C̄ )
(︂
(∀x)

3⋁︂
i=1

(︂
Ci (x) &

⋀︂
j∈{1,2,3}

j ̸=i

¬C j (x)
)︂

&(∀x)(∀y)
(︁ 3⋀︂

i=1
(Ci (x) & Ci (y) →¬R(x, y))

)︁)︂
.

Now, the formula 3COL, translating as “there are three colours such that every
vertex has precisely one of these colours and every two vertices of the same colour
go mutually unconnected”, indeed is a paraphrasing of tricolourability. Q.E.D.

However, this expressive power is turning out to have it’s drawbacks, as second-
order logic lacks many of first-order logic’s important properties.
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Theorem 3. Compactness theorem and Löwenheim-Skolem theorem fail to
hold for second-order logic. Second-order logic is essentially incomplete and
essentially undecidable.

Proof. Let E = {ϵ≥n ;n ∈ {Fin}∪N}. For every finite subset of E does exist a struc-
ture satisfying all it’s members, yet every infinite subset of E containing ϵFin is
unsatisfiable as it would have to be infinite, in order to have more than n members
for every index n of some of the infinitely many contained formulae of the form
ϵ≥x . Yet it is not possible then for said structure to satisfy ϵFin. So compactness
theorem indeed fails here.

Every structure satisfying ϵ2ℵ0 has cardinality of continuum, although the single
formula of course contains merely finitely many signature symbols. Thus fails
both downward and upward Löwenheim-Skolem theorem.

CH witnesses incompleteness of second-order logic as continuum hypothesis is
known to be undecidable (see [BŠ86]). What is more, this can not be consistently
dealt with by simply claiming recursively many additional formulae to be true,
as then would it be possible to decide formula of the form (∀ ∈)(

⋀︁
NBG→ ϕ) for

arbitrary ϕ, which is known to be impossible by first Gödel’s theorem. By the
same theorem and same example, the same goes for undecidability. Q.E.D.

Following theorem is not necessary, but it strengthens insignificantly the epony-
mous theorem which is about to follow.

Theorem 4 (second-order prenex normal form theorem). Every formula of
second-order logic is equivalent to some formula in prenex normal form. Every
formula of second-order logic is equivalent to some formula in strong prenex
normal form.

Proof. The proof goes the same way as for first-order version. We first notice
it true for atomic formulae and then prove it inductively for ¬, & and ∨. Not
even quantifications over second-order variables pose any difficulty undealt with
in first-order version hereof.

¬: For X ∈ L clearly ¬(∀X )ϕ≡ (∃X )¬ϕ and ¬(∃X )ϕ≡ (∀X )¬ϕ as well as already
is the case with first-order quantification.

& : Without loss of generality, we may assume the considered formula to be of
the form(︃ˆ

x

)︃
ψ&

(︃ 
y

)︃
χ clearly equivalent to

(︃ˆ
x′

)︃(︃ 
y

)︃
(ψ′ &χ),

where ψ and χ are quantifier-free formulae, x and y are tuples of variables
(first- or second-order) being quantified over, (

´
x) and (

ffl
y) are prefixes to

ψ and χ (in the usual sense), ψ′ is created of ψ by replacing every symbol
from L(ψ) and every bound variable in ψ with one of the same kind so
that L(ψ′)∩L(χ) =∅ and no bound variables in ψ are present within χ, and
finally, (

´
x′) is created of (

´
x) by replacing all members of x by respectively

assigned members of L(ψ′).
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3. precisely the same way for disjunction and accordingly for other first-order
binary connectives.

4. The induction step goes ex definitionem for all types of quantification.

It remains to prove that every formula in prenex normal form has an equivalent
formula in strong prenex normal form. That goes simply by showing that every
“subprefix” of the form (

´
x)(

¸
X ) where

´
,
¸ ∈ {∀,∃}, where P ∈ L (let us say it be a

predicate symbol, without loss of generality) and x is a first-order variable, can be
rewritten so that second-order quantifications precede the first-order one therein,
along perhaps with some modification of the matrix of considered formula. This
leaves us four cases to be considered.

1. (∃x)(∃P ) may clearly be rewritten as (∃P )(∃x).

2. The same: (∀x)(∀P ), we rewrite as (∀P )(∀x).

3. This case will require some modification of the formula as a whole as op-
posed to simply permuting parts of the prefix. Every formula of the form
(∀x)(∃P )ϕ may equivalently be written (∃P+)(∀x)ϕ′, where P+ is of arity by
one bigger than arity of P and ϕ′ is obtained from ϕ by replacing every
subformula of the form P (ȳ) by P+(x, ȳ). In other words, we reformulate
the fact of there being a relation P of certain property for each x as a
requirement of there being a broader relation P+ wherefrom we may de-
termine the respective P for given x by fixing x as the first variable: atomic
subformulae of ϕ′ are then of the form P+(x, ȳ).

4. The last case, (∃x)(∀P ), goes by reducing to the previous case. For every
formula φ we have (∃x)(∀P )φ⇔¬(∀x)(∃P )¬φ which, by the previous case,
may be written ¬(∃P+)(∀x)¬φ′ ⇔ (∀P+)(∃x)φ′.

Thus, every second-order formula truly may be equivalently expressed by a for-
mula in strong prenex normal form. What’s more, both universal and existential
second-order formulae in strong prenex normal form are closed under all first-
order quantifications and under respective second-order quantification. Q.E.D.

The following theorem is the oldest result of descriptive complexity theory, a
branch concerned, put simply, by characterising complexity classes based on logics
they are describable by. Before moving on to the theorem, note that structure A
satisfying an existential second-order formula ϕ is equivalent to A being a member
of the generalised spectrum of ϕ’s first order matrix in language L(A).

Theorem 5 (Fagin’s theorem). Every isomorphism-closed class of finite first-
order structures over a non-empty finite signature, which is a generalised spec-
trum, id est is definable by an existential second-order formula, is in com-
plexity class NP. Every isomorphism-closed class of finite first-order structures
over a non-empty finite signature, which is in complexity class NP, definable
by an existential second-order formula, ergo a generalised spectrum.

Proof (sketch). We only describe the overall principle behind the proof, omitting
some necessary technicalities. The second direction, that is, that validity of a fixed
existential second-order formula (in strong prenex normal form, without loss of
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generality, as we know from the previous theorem) can be recognised by a non-
deterministic Turing machine in polynomial time, is the easier one and may be
derived by letting the machine non-deterministically expand the input structure
(or, more precisely, the encoding thereof) by realisations of second-order variables
quantified over and then subjecting this expansion to model checking algorithm
described already in terms of recursive functions in theorem 1. By analysis of
the algorithm, we could find it running in time proportionate to |ϕ|+qr(ϕ) ·l∥K ∥,
where K is the expanded structure, qr(ϕ) is the quantification rank of ϕ and |ϕ|
is the length of ϕ. Therefore the algorithm is polynomial in input.

The second direction is more technical: we have granted the existence of a non-
deterministic Turing machine (assume over binary input alphabet) accepting in
polynomial time the language consisting precisely of the encodings of members
of said class of structures; now we are to finitely axiomatise it’s behaviour in
existential second-order logic. We may assume, without loss of generality, the
machine to accept it’s language in time under nk −1, where n is the length of the
word on input and k ∈N+. The formula will have built-in linear ordering on input
structure’s elements and thereby induced lexicographical ordering of k-tuples, thus
allowing us to have the k-tuples of structure’s elements denote positions on tape
and in the input word, as well as time within the computation. Finally, we assume
built-in the k-ary relation β0, meaning that the member of the input binary word,
on position represented by the k-tuple argument to β0, is 0. ¬β0(s̄) for some
k-tuple s̄ will then mean that on the position s̄ within the input word is instead 1.

The formula axiomatising the machine will begin by consecutive existential quan-
tifications over the following relations:

1. The k-ary relation Xq for each state the machine can reach. These relations
are supposed to model the property of the machine being in state q at time
t represented by a k-tuple of input structure’s elements.

2. The (2k)-ary relation Yσ for every σ in machine’s alphabet. Formula Yσ(t̄ , b̄)
is then to mean that at time t̄ (a k-tuple of given structure’s elements again),
the symbol σ is on the position b̄ (again, a k-tuple).

3. The (2k)-ary relation Z , to model by formula Z (t̄ , ā) the statement: “at time
t̄ , the machine’s head is on the cell ā, in the same manner as we have seen
it with the relations Yσ.

Then, the following statements can be rewritten in now specified language:

1. “Let 0 be the least element with respect to <. Then, at the time 0k (0k is a
k-tuple of zeroes, of course), is the machine in the initial state q0, the head
is on position 0k , and if 0 or 1 are on a position x̄ in the input word, it is
the case at time 0k as well.”

2. “In the preceding configuration, the machine was in state q , the head was
on cel x̄ and the time was predecessor of current time.”

3. “In the following configuration, the machine will be in state q , the symbol
σ will be on current cell and the head will move left or right.”

4. “Content of the cell, over which the head is at given time not situated, is not
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changed during the transition to the next configuration.”

5. “Every configuration transcedes to another, if there is time left.” (recall the
machine running in nk −1 steps, we have to use up nk many time positions)

6. “The machine does not halt in any of rejecting states.”

These are then enough for construction of said formula which fully axiomatises
the machine. Thus, every isomorphism-closed class of finite structures over non-
empty signature present within NP truly is definable by an existential second-order
formula and therefore a generalised spectrum. QUOD ERAT DEMONSTRANDUM

Fagin’s theorem provides a very strong bond between logic and complexity theory,
as it lets us identify certain classes of structures as equivalent to members of an
important complexity class. It was first proved by Fagin in his dissertation [Fag73]
and then it was published in [Fag74]. Probably the most detailed proof is to be
found in [Imm99]. The manner of proof sketch above is in accordance with the
proof as it is found in [Grä07].

1.3 Applications and open problems
Fagin’s theorem allows us to reformulate the question of a class of structures
of certain kind being in NP to the question of it being finitely axiomatisable in
existential second-order logic. As it may easily be seen, negations of existential
second-order formulae are equivalent to universal second-order fomulae. Thus, if
we assume that a class of structures K ∈ NP be defined by an existential second-
order formula ϕ, we may conclude immediately that K ’s complement K̄ in class
of all finite structures over the same signature, defined by ¬ϕ, belongs to the
class coNP. Thus, Fagin’s theorem as well might be equivalently stated relating
universal second-order logic, complements of generalised spectra (with respect to
the same class as before, of course) and the complexity class coNP. This brings
us to notice an interesting reduction of the famous NP vs. coNP problem to the
two following problems in logic:

1. Do complements of generalised spectra (classes of finite structures in coNP)
happen to be generalised spectra (classes of finite structures in NP) as well?

2. Are existential second-order formulae (defining NP classes of structures -
generalised spectra) equivalently expressible by universal second-order for-
mulae (defining coNP classes of structures - complements of generalised
spectra)? In other words, does existential second-order logic have the same
expressive power as universal second-order logic?

Fagin’s theorem also (though more indirectly) relates to the following, even sim-
plierly stated problem, which, too, remains unresolved:

Asser’s problem: Is complement of every spectrum (in N+) a spectrum as well?

This was originally asked by Asser in [Ass55], although he considered spectra
only of sentences over the empty signature. As was the case with the problem
of generalised spectra’s complements, Asser’s problem relates to another open
problem in complexity theory:
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Theorem 6 (Jones-Selman theorem). Spectra are precisely those subsets of
N+ which are in the complexity class NE. Thus, complements of spectra (within
N+) are precisely those subsets of N+ present within the complexity class coNE.
Asser’s problem thus reduces to the NE vs. coNE problem.

Proof. If we already have constructed proof of Fagin’s theorem, we may there-
from easily deduce a proof to this theorem. Fagin’s theorem speaks merely of
finite structures over non-empty signatures. Right from our definition of struc-
ture’s encoding follows that encoding of a structure of size n over the empty
signature yields a number whose binary expansion consists of ⌈l(n)⌉ many 1s
followed by a 0, n’s binary expansion (of length ⌈l(n)⌉) and another 0, which
altogether makes a binary string of length logarithmically proportional to n, as
opposed to merely polynomial bound yielded by using non-empty signatures. We
may repeat the proof of Fagin’s theorem for both directions of the equivalence
with the empty signature as well, with the difference of only discussing structures
over the empty signature instead:

1. To verify satisfaction of an existential second-order formula (say ψ, assume
in strong prenex normal form), we again let the non-deterministic Turing
machine expand the encoded structure of size n and then verify (in poly-
nomial time) satisfaction of ψ’s first-order matrix in structure as expanded,
being thus no longer over the empty signature. As the length of the word
on input now was not polynomial but logarithmic in n, the initial non-
deterministic expansion (polynomial in n, not in input) takes instead time
exponential in terms of input’s length (that is, in terms of ⌈l(n)⌉). This in
particular thus gives recognition of n’s membership in the spectrum of ψ’s
first-order matrix in non-deterministically exponential time.

2. The construction of the formula axiomatising the respective non-determini-
stic Turing machine can be, too, left unchanged as it is constructed so as
to run in nk −1 steps for some k , whereby is the construction dependent
on n, not on the input word whose length only is now not polynomial
but logarithmic in n. As the machine considered in this case works in
time polynomial with respect to n, the input encoded structure being of
length 2⌈l(n)⌉+2 causes it to run in time exponentially, not polynomially
proportional to input’s length. QUOD ERAT DEMONSTRANDUM

This proof, too, is due to Fagin, again to be seen in [Fag73] and [Fag74]. It was,
however, proved independently by Jones and Selman in [JS74], whence the name.

Because of above outlined connections to the most infamous problems of complex-
ity theory, Asser’s problem does not give much hope for itself to be resolved easily.
If indeed every spectrum’s complement formed a spectrum, then NE = coNE. If
the same went for generalised spectra, we would have NP = coNP. If the opposite
answer were to hold for any of these, it would impose even stronger consequences:
as is well-known, NE ̸= coNE and NP ̸= coNP imply E ̸= NE and P ̸= NP, respec-
tively; further, if spectra are not closed under complementation, id est NE ̸= coNE
and so as well E ̸= NE by said consequence, we further have P ̸= NP in one shot,
as E ̸= NE is, too, known to imply P ̸= NP.
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There at least used to be (see introduction in [SV95]) hopes to prove P ̸= NP using
this precise argumentation chain, that is, by showing non-closedness of spectra or
generalised spectra under their respective complementations. Although this has
not hitherto yielded fruits exactly as desired, there is an interesting result obtained
this way. In general case, the problem of closedness of generalised spectra (NP
sets) under complementation may be reformulated as the problem of existential
second-order formulae (assume, without loss of generality, in strong prenex nor-
mal form) having their negations (universal second-order formulae) expressible
equivalently using existential second-order quantification only; in other words the
problem of second-order existential formulae being closed under negation. As-
sume now a restriction imposed on said existential second-order formula: that it
only be nulladic, monadic, dyadic or n-adic for some other n ∈N. We may then
ask a question perhaps simplier to resolve: do thereby restricted formulae form
a fragment of second-order logic closed under negation?

For simplicity of statements, assume from now on the term n-adicity applied only
to those formulae in strong prenex normal form and n-adic second-order logics
to include precisely formulae n-adic in this sense.

Theorem 7 (Fagin-Hájek theorem, [Fag75; Háj75]). The property of a graph
being non-connected is expressible in monadic second-order logic, even with
only the binary reachability relation built-in, whereas it’s negation, although
expressible in existential second-order logic in general, is not expressible in
monadic existential second-order logic over the same built-in language. Thus,
monadic existential second-order logic is not closed under negation and mon-
adic existential second-order definable sets (or, as they are for now obvious
reasons called for short, monadic generalised spectra, or monadic NP sets)
are not closed under complementation.

This theorem (or proof thereof), being the noteworthiest result on the eponymous
monadic NP sets, is main focus of this work and will be proved in the next
chapter. Note that nulladic NP sets, on the other hand, are easily proved to be
closed under complementation.
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2. The Fagin-Hájek theorem
As we wrote by the end of the previous chapter, the goal pursued in this thesis is
to prove Fagin-Hájek theorem. The first section is still going to be more general
in nature, introducing the Ehrenfeucht-Fraïssé games, which form the apparatus
needed for the proof. Second section shall pursue the original proof as found in
[Fag75], heavily relying on the first.

2.1 The games of Ehrenfeucht and Fraïssé
The games of Ehrenfeucht and Fraïssé (with origin in [Fra53; Fra54; Ehr61] and
intermediary development in some other papers) should perhaps first be intro-
duced informally, so as to elude the threat of obscurantism. Two given first-order
relational structures A and B of a same signature may be thought of as game’s
setting and we assume two players to play (referred to differently at different
places, among the most used are labels player I and player II, or Spoiler and
Duplicator) and they play r rounds.

A round beginsby Spoiler choosing an element either in |A| or in |B| (this cho-
sen structure may differ in each round) and Duplicator responds by choosing an
element in the other structure, assigning the two elements to each other, creating
in k rounds a function fk of cardinality k . Duplicator wins in r rounds if fr is
an isomorphism between A ⇂ dom( fr ) and B ⇂ rng( fr ) (that is, he duplicates the
pattern induced by Spoiler’s choices of elements). Spoiler then, living up to his
name, tries to spoil this for the Duplicator, winning in r -th round when there is no
way to extend fr−1 to some fr such that it have the aforesaid property. This will
be formalised in following definition; the treatment is a slightly modified version
of the formalisation found in [Mlč22].

Definition 4. Let A and B be structures over a same relational signature. Assume
r ∈N+ and let H be a sequence of sets of finite injective mappings with domains
subsets of |A| and ranges subsets of |B|. We say that H is an r -round ZZ system
(ZZ is shorthand for “zig, zag”) over A and B, if the following criteria are met:

1. if f ∈ Hn for some n ∈ N, f is an isomorphism between structures A ⇂
⇂ dom( f ) and B ⇂ rng( f ).

2. for every n ∈N+ and a ∈ |A| outside of dom( f ), if f ∈Hn , there is g ∈Hn−1

such that f ⊂ g and dom(g ) = dom( f )∪ {a} (so called property of zig).

3. for every n ∈N+ and b ∈ |B| outside of rng( f ), if f ∈Hn , there is g ∈Hn−1

such that f ⊂ g and rng(g ) = rng( f )∪ {b} (so called property of zag).

4. if f ∈Hn for some n ∈N+, then f ∈Hn−1. That is, Hn ⊆Hn−1.

5. ∅∈Hn for each n ≤ r .

We write A⇋rB if there exists a ZZ system over A and B with r rounds. If
Hn is non-empty for every n ∈N, we write A⇋ωB. If for all n,k ∈N holds the
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implication Hn ̸= ∅ ̸= Hk ⇒ Hn = Hk , we call H a simple ZZ system and we
denote it’s existence by A⇋sB. ▶

The symbol ⇋r is therefore to formalise the case when the game in r rounds
over given structures may always be won by Duplicator. Being an element to
some ZZ system’s member Hk means that the existing partial isomorphism may
be extended k-times by k more elements which is due to properties of zig and zag;
zig property is there to formalise the case when Spoiler chooses an element in A so
as to be answered by respective element in B, chosen by Duplicator; analogically
zag property formalises Spoiler choosing an element in B and being responded to
by Duplicator chosen element in A. Note that ⇋s and ⇋r for each r ∈N+∪{ω} are
equivalences. It may also be noted that A⇋rB implies that for every substructure
Ar of A such that ∥Ar ∥ ≤ r exists an isomorphic substructure Br of B (but not
vice-versa, as one may easily verify). The existence of a ZZ system over two
structures, although much weaker than, say, existence of an isomorphism, allows
us to prove strong facts about the two structure’s relationships. Before naming
them, we formulate and prove a simple lemma:

Theorem 8. For every s and n in N and an evaluation e of n variables within v̄
in a structure M of finite signature, there is a (non-unique) set Φn:s of formulae
in L(M) such that every formula of free variables within v̄ and quantification
rank s is equivalent under the evaluation e to some formula within Φn:s .

Proof. This is proven by induction on s. For L(M) is finite, we only have finitely
many atomic formulae using at most n different variables within v̄ . Of these
atomic formulae, we may form only finitely many non-equivalent primitive con-
junctions, wherefrom are constructible only finitely many formulae in conjunc-
tive normal form non-equivalent under e; denote the set thereof as F0. Every
quantifier-free formula (that is, formula of quantification rank 0) of variables v̄
is equivalent under e to some conjunctive normal formula in variables v̄ . That
is, we may put Φn:0 = F0. Every formula of quantification rank s is a boolean
combination of formulae created from formulae of lesser quantification rank by
quantification over a fixed variable within v̄ . As there are only finitely many for-
mulae of lesser quantification rank non-equivalent under e , the formulae created
therefrom by quantifying over a variable are as well at most finitely many non-
equivalent under e . Every boolean combination of these may equivalently under
e be rewritten as a conjunctive normal combination, of which, too, may be found
at most finitely many non-equivalent under e; choose some such finite set as Φn:s .
The lemma is thereby proven.

Theorem 9. Let A⇋rB. Then, if ϕ is a first-order sentence of quantification
rank r , then A ϕ⇔ B ϕ; if furthermore L(A) = L(B) be finite, the converse
statement does hold: if A and B satisfy the same sentences of quantification
rank r , there is an r -round ZZ system over A and B; in particular, A⇋ωB is
equivalent to A and B being elementarily equivalent. If A and B are countably
infinite, A⇋sB is equivalent to A and B being isomorphic.

Proof. We shall prove this somewhat more generally. Assume A⇋rB via H and
assume ϕ a formula of n free variables and quantification rank below r +1, with
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all bound variables only once quantified over (without loss of generality), assume e

an evaluation of all variables within ϕ and A ϕ[e]; we are to prove that for some
evaluation e1 of variables in ϕ that B ϕ[e1]. This goes by (finite) induction on ϕ’s
complexity; all formulae of quantification rank r are created by quantification over
a formula of lesser quantification rank, or is a boolean combination of formulae
of the same or lesser quantification rank:

1. Let ϕ be atomic. For A⇋rB, rng(e) is domain to some f ∈Hk for respective
k ≤ r , which is an isomorphism between A ⇂ rng(e) and B ⇂ rng( f ◦e) (in other
words, there is a substructure of B isomorphic to A ⇂ rng(e), as consequence
of A⇋rB). We may therefore put e1 = f ◦e; if B instead satisfied ¬ϕ via e1,
f would defy properties of isomorphisms.

2. Let ϕ⊜¬ψ. Then again exists f such that A ⇂ rng(e) ∼= B ⇂ rng( f ◦ e) via f .
Thus B ¬ϕ[e1] for e1 = f ◦e as expected from f being an isomorphism.

3. Let ϕ⊜ψ∨χ. Without loss of generality, assume A ψ[e]. Then, for some
evaluation e2, B ψ[e2] by induction assumption and we may choose e1 to
be any extension of e2 evaluating all variables within ϕ.

4. Let ϕ⊜ψ&χ. If we again choose f in H ’s respective member so that it be
isomorphism between A ⇂ rng(e) and B ⇂ rng( f ◦ e), B ϕ[ f ◦ e1] follows by
basic properties of isomorphisms as well and we again put e1 = f ◦e .

5. Accordingly for other binary connectives.

6. Let ϕ⊜ (∃x)ψ for some variable x. Then there exists an evaluation e2 ⊇ e

such that A ψ[e2]. By induction assumption exists e3 such that B ψ[e3]

and thus B (∃x)ψ[e3 \ {[x,e3(x)]}] ⇔ B ϕ[e3 \ {[x,e3(x)]}] and so we may
choose e1 equal to e3 \ {[x,e3(x)]}.

7. Let ϕ ⊜ (∀x)ψ for some variable x. Then every evaluation e2 such that
dom(e2) = dom(e)∪ {x} satisfies ψ in A. If there now were an evaluation
e3 of domain dom(e)∪ {x} such that B ¬ψ[e3], B would also satisfy (∃x)ψ

under e3 \ {[x,e(x)]}. By previous case, there is e4 such that A (∃x)¬ψ[e4],
thus contradicting the assumption A (∀x)ψ[e].

If ϕ is a sentence, it’s satisfaction is independent of evaluation, so we proved
that existence of an r -round ZZ system indeed implies satisfaction of the same
sentences of quantification rank up to r . If there is an r -round ZZ system for
every r , we obtain satisfaction of all sentences of every quantification rank, id est
we obtain elementary equivalence of the two structures.

Now we prove the converse by constructing an r -round ZZ system H over A and
B, assuming them to be of finite signature and to satisfy the same sentences of
quantification rank r . Put ∅ ∈Hk for k ≤ r and Hn =∅ for n > r (if r ̸=ω). We
are to ensure satisfaction of properties of zig and zag and the inclusion of Hn in
Hn−1 for all n ∈N+.

Now we may choose for every evaluation e of variables v̄ in structure M ∈ {A,B}

unique Θn:s
e ⊂⋃︁r

s=0Φ
n:s (where Φn:s is as in the previous theorem) such that M
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θ[e] for every formula θ ∈ Θn:s
e and M ¬υ[e] for every υ ∈ Φn:s \Θn:s

e . Now
we will recursively add to H ’s members elements so as to uphold property of
zig: ∅ ∈ Hn for all n ≤ r , and ∅ satisfies all formulae within Θ0:r

e for they are
sentences. Assume now f ∈Hn for some n ∈N+ and a ∈ |A|. For every evaluation
e0 with range equal to dom( f ) ex definitionem holds A θ[e0 ∪ {vn+1, a}] for
every θ ∈Θn+1:s−1

e0∪{vn+1,a} and A ¬υ[e0 ∪ {vn+1, a}] for every υ ∈Φn+1:s−1 \Θn+1:s−1
e0∪{vn+1,a}.

We may therefore write that

A (∃vn+1)
⋀︂

θ∈Θn+1:s−1
e0∪{vn+1,a}

θ & (∀vn+1)
⋀︂

υ∈Φn+1:s−1

υ∉Θn+1:s−1
e0∪{vn+1,a}

¬υ[︁e0
]︁

for Φn:s is finite. As f is an isomorphism between A ↾ rng(e0) and B ↾ rng( f ◦ e0),
we have as well

B (∃vn+1)
⋀︂

θ∈Θn+1:s−1
e0∪{vn+1,a}

θ & (∀vn+1)
⋀︂

υ∈Φn+1:s−1

υ∉Θn+1:s−1
e0∪{vn+1,a}

¬υ[︁ f ◦e0
]︁
.

We may therefore choose some b ∈ |B| such that

B
⋀︂

θ∈Θn+1:s−1
e0∪{vn+1,a}

θ
[︁

f ◦e0 ∪ {[vn ,b]}
]︁
.

Now we put f ∪{[a,b]}, having upheld property of zig. The very same method goes
for upholding property of zag. So for two structures of finite signatures satisfying
the same sentences of quantification rank r indeed exists an r -round ZZ system.
In particular, if A and B satisfy the same sentences of an arbitrary quantification
rank (that is, are elementarily equivalent), we obtain the existence of an arbitrarily
long ZZ system.

It remains to prove that, for countably infinite A and B, existence of a simple ∥A∥-
round ZZ system is equivalent to their isomorphness. First assume the structures
A and B countably infinite with a ZZ system H over them. By definition, ∅∈H0.
For generic ZZ systems, Hn ⊆ Hn−1, being a simple ZZ system means also to
satisfy Hn = Hn−1, and thus even Hn = Hn−1 as a consequence, if Hn ̸= ∅. Let
a and b be sequences enumerating |A| and |B|, respectively. We now construct
the isomorphism f recursively: let f = ⋃︁

n∈N fn , where f0 = ∅ and construct for
natural n < r −1 the function fn+1 as follows: fn is contained in H0. As A and
B are not of an empty universe, fn ∈H1 and by property of zig, there is g ∈H0

extending (possibly trivially) fn so that dom(g ) = dom( fn)∪ {an}. By simplicity of
H , g ∈ H1. By property of zag, there is h ∈ H0 extending (again, it is possible
that the inclusion be not strict) g so that rng(h) = rng(g )∪ {b}; put now fn+1 = h.

Now assume existence of an isomorphism f between at most countably infinite
structures A and B. Then H with

Hn = {︁
f0 ⊂ f ; f0 is finite

}︁
for each n ∈N truly is a simple ZZ system over A and B. Q.E.D.

Theorem 10. There is a simple ZZ system over every two countable models of
the theory DNO of dense linear ordering without endpoints. The same goes for
the theory RG of random graphs. DNO and RG are therefore countably categorical.
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Proof. This is a simple corollary of the previous theorem. For a more detailed
discussion of these specific cases, one may consult [BŠ86] and [Mar06]. Q.E.D.

The proof of Fagin-Hájek theorem relies upon a certain kind of generalised
Ehrefeucht-Fraïssé game. Let us again describe it informally. There are two
structures A and B as a setting, the same way it is with normal Ehrenfeucht-
Fraïssé game, and furthermore a finite set D of predicate symbols outside of
L(A) = L(B). The first player (again labelable as Spoiler) chooses a structure A ↾A
in L(A)∪D . The second player (Duplicator), chooses then a structure B ↾ B in
L(A)∪D . The two players now play the original Ehrenfeucht-Fraïssé game over
A and B, whose winner is as well declared the winner of the now described
generalised game. Formally:
Definition 5. Let A and B of the same signature. We say that B wins against
A over D in r rounds (symbolically, A⇉D

r B)if and solely if for every expansion
A ↾A in L(A)∪D exists expansion B ↾B in L(A)∪D such that A⇋rB. ▶

The following theorem will be used in the following section as the main instru-
ment in proving Fagin-Hájek theorem, albeit only in the specific case when D be
monadic; in this case, the first step in the generalised game (expanding structures)
is sometimes referred to as colouring of the structures (for example, in [SV95]).
Theorem 11 (Theorem 1 from [Fag75]). Let A be a class of finite relational
structures of finite signatures. Then, A is an n-adic generalised spectrum if
and solely if for some r ∈N+, some n-adic language S and for all finite structures
A and B of the same finite signature holds:

(︁
A ∈ A et A⇉S

r B
)︁ ⇒ B ∈ A . In

particular, if it be possible to find for every n-adic language S and every r ∈N+

some A ∈A and some B such that A ∈A , A⇉S
r B and B ∉A , then A is not an

n-adic generalised spectrum.
Proof. First assume A to be an n-adic generalised spectrum and thus to be
defined by an n-adic existential second-order sentence ϕ in strong prenex normal
form. Then for every A ∈A holds A II

ϕ. Let r be the quantification rank of ϕ’s
first-order matrix. Further assume random B a finite structure of finite signature
winning against A over the set of ϕ’s second-order variables in r rounds; that is,
such B that for every A ↾A there is a B ↾B such that A⇋rB. By theorem 9 and
our choice of r , B satisfies ϕ’s first-order matrix. That is, B II

ϕ and thus B ∈A .

Now we are to prove the converse. Fix some n-adic language S and r ∈N+ so that(︁
A ∈A et A⇉S

r B
)︁⇒ B ∈A hold for every A and B; from this we want to prove

that A is an n-adic generalised spectrum. Instead, we show the contraposition,
that if A is not a generalised spectrum, then

(︁
A ∈A et A⇉S

r B
)︁

et B ∉A for some
A and B. Indeed, as A is non-empty (∅ would be a generalised spectrum), A⇉S

r B

forces, by theorem 10, B to satisfy n-adic existential second-order sentences with
second-order variables within S and first-order matrices of quantification rank up
to r which A itself satisfies. For there are only finitely many such existential
second-order sentences mutually non-equivalent (this may be easily derived from
theorem 9), we may take their conjunction, which is itself equivalent to an n-adic
existential second-order sentence ψ (albeit with more second-order variables). If
B then were in A , ψ would define A , rendering it a generalised spectrum, which
we assumed untrue. QUOD ERAT DEMONSTRANDUM
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2.2 Fagin’s original proof
All preliminary notions are as of now introduced and we are ready to prove Fagin-
Hájek theorem. That is, we prove that encodings of finite connected graphs do not
form a monadic NP set, although encodings of non-connected finite graphs are
easily verified to form a monadic NP set. To do this, we will utilise theorem 11:
for every monadic second-order existential sentence ϕ in strong prenex normal
form with second-order variables within D and for every r ∈N+, we are to find a
connected graph A

II
ϕ and non-connected graph B such that A⇉r B. If A⇉D

r B,
then B

II
ϕ as well and thus ϕ does not define connectedness of graphs, for B was

assumed non-connected. If such A and B be found for every said ϕ and r , then
the class of connected graphs indeed is not defined by any monadic existential
second-order formula, id est, it is not a monadic generalised spectrum.

A natural choice for A is a cycle and for B a cardinal sum of two cycles (that is,
a graph consisting of two disjoint mutually non-connected subgraphs which are
both cycles). Clearly, A is then connected and B non-connected. As it turns out,
such considerations are sufficient.

Definition 6. Let A expand a graph A to L(A)∪D where D be a finite monadic
language. The weak marking of a point a ∈ |A| is the set denoted M(a) of all
members P of D such that A P (x)

[︁
{[x, a]}

]︁
.

Let ā denote a finite sequence of elements from |A| such that for natural n satis-
fying 0 ≤ n < l (ā) holds R(an , an+1) (that is, they form a path in A, we shall call
it a connected sequence). We define weak marking of a connected sequence ā
to be the sequence denoted M(ā) of length l (ā) such that for every member n
satisfying 0 ≤ n < l (ā) hold M(ā)n =M(an). We say that weak marking M(ā) of
a connected sequence ā occurs n times in A, if there are n different connected
sequences b̄ of elements within |A| such that M(b̄) =M(ā). In particular M(ā)
occurs once in A if and only if the only sequence of the same weak marking as
that of ā is ā.

Let there be ZZ system H between A and a structure B. Let f be a finite sequence
of H ’s members’ elements such that for all natural k such that 0 ≤ k < l ( f ) hold
fk ⊂ fk+1, fk ∈H l ( f )−1−k and | fk \ fk−1| = 1 if k ̸= 0. f may be thought to formalise
a particular instance of Ehrenfeucht-Fraïssé game of l ( f ) rounds, as an element
of f extends it’s predecessor by one ordered double. The strong marking of an
element a ∈ |A| ∪ |B| with respect to f is the set S f (a) =M(a)∪ {i } where i is
the least integer such that dom( fi−1) or rng( fi−1) contain a. In case such i does
not exist, define S f (a) =M(a). S f (a) is therefore to formalise the notion of a
being chosen within either A or B in the course of Ehrenfeucht-Fraïssé game
formalised by f .

Analogically to the notion of weak markings of connected sequences, define the
strong marking S f (ā) of a connected sequence ā with respect to f by S f (ā)k =
=S f (ak ) for all natural k such that 0 ≤ k < l (ā). We call strong marking of a
connected sequence with respect to f clean if it be equal to the same sequence’s
weak marking, thereby formalising the notion of none element of a being chosen
by either player in the particular instance of Ehrenfeucht-Fraïssé game being for-
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malised by f . Finally, define the neighbourhood of a point a ∈ |A| with radius r ,
symbolically written Or (a), to be the universe of the substructure of A containing
every point which is a member of some connected sequence of length at most
r + 1 and whose first member is a. If there be a connected sequence (then of
length 2r +1) enumerating all the members of Or (a), injectively, we shall also
refer to it as to the neighbourhood of a with radius r and denote it Or (a), too.▶

Note: the said connected sequence denoted Or (a) is not unique for most graphs.
Even so, for the sake of simplicity, we shall use the symbol to denote the one
of such sequences to best satisfy our purpose. In particular, the notation A ⊂
⊂Or (a) is to be understood as: “A is a subsequence to some sequence injectively
denumerating the neighbourhood of a with radius r ”.

Theorem 12 (Lemma 2 from [Fag75]). Let D be a finite monadic language,
let A and C be cycles and let B be the cardinal sum of cycles A and C . Let
A ↾ A, C ↾ C and B ↾ B so that L(A) = L(B) = L(C) = D ∪ {R}, B ⇂ |A| = A and
B ⇂ |C| = C. If ∥A∥ ≥ 2r+2 − 1 ≤ ∥C∥ and if weak marking of every connected
sequence of length at most 2r+1 −1 within C occurs at least r · (2r+1 −1) many
times in A, then A⇋rB.

Proof. Let F be a monomorphism of domain |A| and range subset of |B|. As A is
a cycle, it’s image F (A) under F is a cycle isomorphic to it. For B is created from
A by a cardinal sum, such F always does exist. In order to prove the theorem, we
are to construct under stated assumptions a ZZ system H between A and B of
length r . Set Hr = {∅}, put ∅ in every H ’s member as well. We are to recursively
extend for each s satisfying 0 < s ≤ r the element f ∈ H s to g ∈ H s−1 so that it
satisfy the property of zig and the property of zag.

First we uphold the property of zig. Assume for all natural p ≥ s:

1. A ⇂ dom( f ) ∼=B ⇂ rng( f ) via f .

2. S f ◦O2p+1−1(x) =S f ◦O2p+1−1 ◦ f (x) for each x ∈ dom( f ). Informally, short
enough neighborhoods of x ∈ dom( f ) (that is, of length 2p+2 −1; in other
words, of radius 2p+1 −1) are isomorphic via f .

3. M ◦O2p+1−1 ◦ f (x) occurs at least r · (2r+1 − 1) times for every x ∈ dom( f )
such that f (x) ̸= F (x). If f (x) ∈ |B| \ |F (A)|, this is already guaranteed by
theorem’s assumptions.

Let a ∈ |A| \ dom( f ). All of the stated conditions are trivially satisfied for f = ∅
and p = r . We want to construct injective g to be put in H s−1, such that dom(g ) =
dom( f )∪ {a}, f ⊂ g and the three conditions above hold for g in place of f for
p = s − 1. When extending f to g , we have the following three cases of a to
consider:

1. Assume a be chosen such that S f ◦O2s−1(a) is not clean. Informally, there
is at least one point in the neighbourhood already chosen in some of the
preceding r − s rounds. Then there is a connected sequence c ⊂O2s−1(a)
whose first member is a and whose final member is some ax ∈ dom( f ). In
either case, there is a connected sequence d ⊂O2s−1 ◦ f (ax) such that it’s
final member is f (ax) and, by the third condition, A ⇂ rng(c) ∼=B ⇂ rng(d).
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Extend then f to g so that g (a) = d0. The four conditions may be then easily
verified to hold for g in place of f and p = s −1.

2. Assume S f ◦O2s−1(a) =S f ◦O2s−1◦F (a) to be clean. Informally, there is no
point in O2s−1(a) chosen in previous rounds. We may extend f to g so that
g (a) = F (a). All of the above stated conditions hold for f = g and p = s −1,
as may again be routinely verified.

3. Assume S f ◦O2s−1(a) clean and S f ◦O2s−1 ◦ F (a) not clean; informally
said, Duplicator cannot choose g (a) equal to F (a) for some point in F (a)’s
surroundings was already chosen in some of the preceding rounds. For-
mally, there is a connected sequence c ⊂O2s−1 ◦F (a) whose first member
is F (a) and whose final member is some bx ∈ rng( f ). As S f ◦O2s−1(a) is
clean, f −1(bx) ̸= F−1(bx) and thus by condition 3, M◦O2s+1−1(bx), equal to
M◦O2s+1−1 ◦ f −1(bx) by condition 2, occurs at least r · (2r+1 −1) times in A
and F (A).

Now define
M = ⋃︂

x∈dom( f )
O2s−1 ◦ f (x)

which is, as | f | ≤ r − s, of cardinality at most m for

m = (r − s) · (2s+1 −1) = r · (2s+1 −1)− s · (2s+1 −1) ≤
≤ r · (2s+1 −1)− (2s+1 −1) = (r −1)(2s+1 −1) ≤ (r −1)(2r+1 −1) <

< r · (2r+1 −1).

For short, m < r ·(2r+1−1); that is, less than 2r+1−1 sequences of weak mark-
ing equal to M ◦O2s−1(a) have been used up. We may therefore find d ∈
∈ |A| outside of rng( f ) such that M◦O2s−1(d) =M◦O2s−1(a) =S f ◦O2s−1(a)
and the choice such that g (a) = d again satisfies all four of the stated condi-
tions for p = s −1.

Now we again assume the same three conditions as above to holds for all natural
p ≥ s, in order to uphold the property of zag. Let b ∈ |B \ rng( f )|. We already
know the three conditions to trivially hold for ∅ and p = r . We again construct
extension g of f to be put in H s−1 so as to satisfy conditions 1 to 3. There are
now even more cases to be considered, first for b ∈ |F (A)|:

1. S f ◦O2s−1(b) is not clean. This case is analogical to case 1 dealt with
when having upheld the property of zig. There is a connected sequence
c ⊂ O2s−1(b) whose first member is b and whose final member is some
bx ∈ dom( f ). In either case, there is a connected sequence d ⊂ O2s−1 ◦
◦ f −1(bx) such that it’s final member is f −1(bx) and, by the third condition,
A ⇂ rng(c) ∼=B ⇂ rng(d). Extend then f to g so that b = g (d0).

2. S f ◦O2s−1 ◦F−1(b) =S f ◦O2s−1(b) is clean. This is analogical to case 2 of
upholding the property of zig. Set b = g ◦F−1(b).

3. Analogically now to case 3 of upholding the property of zig, S f ◦O2s−1(b)
is clean and S f ◦O2s−1 ◦F−1(b) is not, so there is a connected sequence c ⊂
⊂ O2s−1 ◦ F−1(b) whose first member is F−1(b) and whose final member
is some ax ∈ dom( f ). As S f ◦O2s−1(b) is clean, f (ax) ̸= F (ax) and thus
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by condition 3, M◦O2s+1−1(ax), equal to M◦O2s+1−1 ◦ f (ax) by condition 2,
occurs at least r · (2r+1 −1) times in F (A) and A.

If we define, in manner already seen

M = ⋃︂
x∈rng( f )∩|F (A)|

O2s−1 ◦ f −1(x),

then for m = |M | again holds m < r ·(2r+1−1); less than 2r+1−1 sequences of
weak marking equal to M◦O2s−1◦F−1(b) have been used up. We may there-
fore find d ∈ |A| outside of dom( f ) such that M◦O2s−1(d) =M◦O2s−1(b) =
=S f ◦O2s−1(b) and we may choose g so that b = g (d).

Now for b ∉ F (A) (that is, b is in the subgraph of B isomorphic to C):

1. S f ◦O2s−1(b) is not clean. This case is analogical to both of the previous
cases labeled as 1. Choose a connected sequence c ⊂O2s−1(b) whose first
member is b and whose final member is some bx ∈ dom( f ). Choose then a
connected sequence d ⊂O2s−1◦ f −1(bx) such that it’s final member be f −1(bx)
and, by the third condition, A ⇂ rng(c) ∼=B ⇂ rng(d). Put then b = g (d0).

2. S f ◦O2s−1(b) is clean. By theorem’s assumption, M◦S f ◦O2s−1(b) occurs
in A and F (A) at least r · (2r+1−1) many times, but analogically to the afore
investigated cases labeled as 3, only m many such sequences have been used
up if m = |M | where

M = ⋃︂
x∈rng( f )\|F (A)|

O2s−1 ◦ f −1(x).

M ’s cardinality is lesser than r · (2r+1 − 1) and we may therefore choose
d ∈ |A|, outside of dom( f ) so that M◦O2s−1(d) =M◦O2s−1(b) =S f ◦O2s−1(b)
and put b = g (d).

Starting at p = r and continuing recursively with one by one lesser p down to
p = 0, we have now endowed H ’s member with such elements that it truly is a
ZZ system and the proof is now complete. QUOD ERAT DEMONSTRANDUM

Theorem 13. Let D be a finite monadic language and A a cycle of length at
least

w = r · (2r+1 −1) ·2|D|·(2|D|·(2r+1−1)+2r+1−1).

Then, there is for every A expanding A to signature D∪{R} a connected sequence
s(A) of A’s elements such that it is of length at least 2r+1−1 and if s of length at
most 2r+1 −1 is a connected subsequence of the concatenation s(A)_s(A), then
M(s(A)) occurs at least r · (2r+1 −1) many times in A.

Proof. By elementary combinatorics, there are at most 2|D| different subsets of
S ⊆ D such that S be the weak marking to some element in the given graph.
For each d ∈ N, there are (2|D|)d = 2|D|·d many different sequences of length d
of members S ⊆ D , therefore there may for given graph be at most 2|D|·d many
such sequences which are at the same time weak markings to some connected
sequences of the given graph’s elements.

In the particular case of the given graph being A, which is of length w , and d
set as 2r+1 −1, we then get that there must be a connected sequence t within A

34



of length 2r+1 −1, whose weak marking occurs in A at least

v = w ÷2|D|·(2r+1−1) = r · (2r+1 −1) ·2|D|·(2|D|·(2r+1−1))

many times (the divisor is obtained from 2|D|·d by substituting 2r+1−1 for d ). We
will now construct a sequence u of length (2r+1 −1)+ (2|D|·(2r+1−1)) ≥ 2r+1 −1. Let
un = tn for n ∈N such that 0 ≤ n < 2r+1 −1 = l (t )−1. Define then inductively the
sequences q(k) and q ′(k) for k such that l (u) > k > 2r+1 −2:

1. q(2r+1−2) = t , whose weak marking we know to occur at least v many times.
v is equal to r · (2r+1 −1) ·2|D|·(2|D|·(2r+1−1))−k for k = 0 and is clearly greater
than r · (2r+1 −1).

2. q ′(k) is created from q(k) by deleting the first element. For example, if
qn(k) were equal to n for all n ∈ N, q ′

n(k) would equal n +1 for all n ∈ N.
Weak marking of q ′(k) then occurs at least r · (2r+1 −1) many times as so
does q(k). More specifically, it occurs at least r · (2r+1 −1) ·2|D|·(2|D|·(2r+1−1))−k

many times as does weak marking of q(k).

3. q(k +1) = q ′(k)_{[2r+1 −2,e]}, where e is chosen so that M(q(k +1)) occur
at least r · (2r+1 −1) many times in A. Such e can be found because weak
marking of q ′(k) occurs at least r ·(2r+1−1) ·2|D|·(2|D|·(2r+1−1))−k many times in
A and there are only 2|D| many potential weak markings of e occurrable; e
can thus be chosen even so that M(q(k +1)) occur

r · (2r+1 −1) ·2|D|·(2|D|·(2r+1−1))−k ÷2|D| = r · (2r+1 −1) ·2|D|·(2|D|·(2r+1−1))−(k+1)

many times.

Clearly, for k = (2|D|·(2r+1−1)) we then get the least number of occurrences of
M(q(k)), equal to r · (2r+1−r ). For indices n ∈N such that l (u) > k > 2r+1−2 then
define un equal to the final member of the sequence q(n). u then has the property
that it’s every connected subsequence of length at most 2r+1−1 then occurs at least
r · (2r+1 −1) many times in A.

Denote now by v(k) for 0 ≤ k < 2|D|·(2r+1−1) connected subsequences of u of length
2r+1−1 such that v0(k) = uk and v2r+1−2(k) = uk+2r+1−2. For some i and j (without
loss of generality, i < j ), there must be then M(v(i )) =M(v( j )), as in A, there
are at most 2|D|·(2r+1−1) different weak markings of sequences of length at most
2r+1 −1.

1. Assume i + (2r+1 −1) < j . Denote s(A) ⊂ u the connected subsequence with
the first element being ui and the last element being u j−1. Then s(A) indeed
upholds the property desired by theorem’s statement, that every connected
subsequence of c ⊂ s(A)_s(A) such that l (c) ≤ 2r+1 −1 occurs in A at least
r · (2r+1 −1) many times.

2. Assume i + (2r+1 −1) ≥ j . Denote z ⊂ u the connected subsequence with the
first element being ui and the last element being u j−1. Let s(A) be created
by that many concatenation of z with itself so that it be of length at least
2r+1 −1. Again, theorem’s statement holds for s(A).
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Weak marking of every connected subsequence c of s(A)_s(A) such that l (s(A)) ≤
2r+1 −1 then truly does occur in either case at least r · (2r+1 −1) many times in A
and the proof is thus complete. QUOD ERAT DEMONSTRANDUM
Theorem 14 (Theorem 3 from [Fag75]). Let D be a finite monadic language,
r ∈N+ and A a cycle of length at least

w = r · (2r+1 −1) ·2|D|·(2|D|·(2r+1−1)+2r+1−1).

Then, if B be created from structures A and C by cardinal sum, there is a ∈N+

such that if C is a cycle of size divisible by a, then A⇉D
r B.

Proof. Let M be the set of all lengths of all sequences s(A) (as established in
theorem 13) pertaining to some structure A expanding A to signature D∪{R}. Set
a to be the least common multiple of all elements within M .

Let c be a sequence of length a such that |rng(c)| = a. Consider now C of length
ka and a connected sequence d denumerating |C | injectively, in such a manner
that the successor of an element in d be also one of it’s adjacent vertices. For
each expansion A ↾A, we will find an expansion C ↾C into D∪{R} such that there
be a r -round ZZ system between A and the cardinal sum of A and C, thus proving
the theorem. Choose a function f periodic in a, assigning vertices d0 to dka−1

subsets of D . Expand then C to C so that for every p ∈ |C | be p ’s weak marking
equal to f (p). By theorem 12, A⇋rB and thus A⇉D

r B. Q.E.D.
Theorem 15. Non-connectedness of a graph is expressible in monadic exis-
tential second-order logic. Connectedness of a graph is expressible in dyadic
existential second-order logic.
Proof. Assume built-in only the binary reachability relation R . Then, if we have
P a unary predicate, we may express non-connectedness as:

(∃P )((∃x)P (x) &(∃x)¬P (x) &(∀x)(∀y)(R(x, y) → (P (x) ≡ P (y)))).

Connectedness may be then expressed using a binary relation < as:

(∃<)
(︁⋀︂

SPOMax &(∀x)(∀y)(x < y &(∀z)¬(x < z < y) → R(x, y))
)︁
,

where SPOMax is the theory of strict partial ordering < with a greatest element.
The second member of the outer conjunction says that y being a successor to x
implies mutual reachability of these two points. QUOD ERAT DEMONSTRANDUM
Theorem 16. Acyclicity of a graph is expressible in monadic existential second-
order logic and cyclicity of a graph is expressible in dyadic existential second-
order logic.
Proof. Follows easily from the definition of cyclicity and theorem 16. Q.E.D.

Fagin-Hájek theorem can now be easily stated as a simple corollary of what has
up to now been proven. All it requires is to find at least one class of structures
expressible in monadic existential second-order logic, whose complementary class
has not the same property. In [Fag75], non-connectedness is found to be of such
a property and although not explicitly mentioned there, acyclicity follows by the-
orem 16. In [Háj75], outside of non-connectedness and acyclicity, non-planarity is
also named to be of this property.
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Theorem 17 (Fagin-Hájek theorem). Non-connectedness of a graph is defin-
able by a monadic existential second-order sentence in strong prenex normal
form and thus is in monadic NP, whereas connectedness of a graph, although
in dyadic NP, is not in monadic NP. Therefore, monadic NP sets are not closed
under complementation.

Proof. By theorem 14, there is a connected graph A and a non-connected graph
B such that A⇉D

r for arbitrarily large monadic D and r ∈ N+. Therefore, by
theorem 11, if a monadic existential second-order sentence be satisfied by all
connected graphs, it is also satisfied in some non-connected graph. The set of
encodings of all cycles and the set of encodings of all connected graphs do not
form monadic NP sets. QUOD ERAT DEMONSTRANDUM

37



Résumé
At the end of the second chapter, we proved Fagin-Hájek theorem in the way
it was originally done by Fagin. However self-contained as this method may
be, it is notably difficult, utilising elementary yet very complicated combinatorial
techniques and procedures. There are at least two other proofs of Fagin-Hájek
theorem which evade the difficulties posed by Fagin’s original method: first there
is the proof by Fagin, Stockmeyer and Vardi published in [SV95] where the original
theorem is also significantly generalised, having it’s statement extended even to
built-in languages richer than the one consisting simply of the binary reachability
relation. The proof of the original theorem described therein, however, although
simpler, is not that much self-contained, as it relies on a non-trivial equivalence
between two kinds of generalised Ehrenfeucht-Fraïssé games, published in the
article [AF90].

The second proof is due to Hájek in [Háj75], published in the same year as [Fag75].
Unlike both of the afore discussed proofs, it is not based on finitistic methods;
instead it is non-standard, therefore reducing the finitary problem to a more easily
resolvable task concerning infinite sets, elluding the technicalities of the problem’s
finitary version. Hájek’s proof uses the theory of semisets, nowadays abandoned
area, most broadly and completely treated in the book [VH72]. However, as Há-
jek himself notes in [Háj75], the same result can be achieved using techniques
involving ultraproduct construction and thus the semisets are not necessary for
the result’s replication. The then following note that in order to achieve the same
result, one can... (likely) use the notion of partial isomorphisms... further in-
dicates that unlike the proof published in [SV95], this one was devised completely
independently of the original result.
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