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Abstract: This thesis studies basic properties of intuitionistic logic and several
elementary theories over it. We choose three theories to explore: the theory of
equality, the theory of linear order, and the theory of apartness. We do not
work with the last theory in classical logic and we will study it in connection
with the other two theories, especially in relation to conservativity. This thesis
draws mainly from the results of Dirk van Dalen, Richard Statman, and Craig
Smorynski.

Keywords: intuitionistic logic, elementary theories, apartness, conservativity

Abstrakt: Tato práce se zabývá základnı́mi vlastnostmi intuicionistické logiky a
některými elementárnı́mi teoriemi v nı́. Ke zkoumánı́ jsme vybrali následujı́cı́
teorie: teorie ekvivalence, teorie lineárnı́ho uspořádánı́ a teorie mimolehlosti.
Poslednı́ teorie nenı́ známá v klasické logice a my ji budeme zkoumat ve spo-
jenı́ se zbylými dvěma teoriemi a to zejména v souvislosti s konzervativitou. Tato
práce čerpá předevšı́m z pracı́ Dirka van Dalena, Richarda Statmana a Craiga
Smorynského.

Klı́čová slova: intuicionistická logika, elementárnı́ teorie, mimolehlost, konzerva-
tivita
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1 Introduction

This thesis aims to study some elementary theories over intuitionistic logic. We
will investigate the theory of equality and the theory of linear order along with
the theory of apartness which is a theory that is not well known in the classical
logic since it blends with inequality there.

The equality relation is not stable in the intuitionistic logic as opposed to the
classical version, therefore the intuitionistic theory is weaker. We will introduce
sequence of inequalities and the stability axioms to prove for every n, the stability
axiom Sn is stronger than the stability axioms for every smaller n. We will then
outline a proof that if we add those axioms to the theory of equality, the theory
of apartness will be conservative over it. That is a result of D. van Dalen and R.
Statman which was redone by C. Smorynski. We will reproduce the later proof.

The theory of linear order has several axiomatization in classical logic that
are equivalent. However, these axiomatization are not equivalent in intuitionistic
logic. We will investigate those formulations and chose one to work with. We
will show the law of trichotomy does not hold in the intuitionistic theory of linear
order. Then we will reproduce a proof of C. Smorynski of implementing a linear
ordering on a model with the apartness relation, only we will do it for a stronger
axiomatization.

This thesis is divided into six chapters. After the introduction, you are now
reading, we will present some basic properties of intuitionistic logic. We will show
how it works and prove that some classically valid schemes do not hold in this
logic. In this chapter, we will also present three elementary theories with which
we will work in the three upcoming chapters. The third chapter is focused on
the differences between the elementary theories based on the underlying logic.
The fourth chapter studies the theory of equality. We will define stability ax-
ioms and show that we can find a theory over which the theory of apartness is
conservative. The fifth chapter investigates the theory of linear order and its
axiomatization. We will also prove two theorems of conservativity concerning the
theory of apartness. After that, we finish with the conclusion.

The main sources that we used are works and results of D. van Dalen, R.
Statman, and C. Smorynski[vDS79], [Smo73b], and [Smo77].
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2 Basics

In this section, we introduce the basics of intuitionistic logic and explain how
it works. To elucidate intuitionistic logic further, we show several proofs and
counterexamples to selected classical schemes. At the end of this chapter, we will
introduce three elementary theories that we will examine later.

2.1 Intuitionistic logic

Intuitionistic logic is a non-classical logic where the law of the excluded middle
and the principle of double negation elimination are not valid. The law of the
excluded middle says that a statement must be true or false (p ∨ ¬p) and the
double negation elimination principle says that if a statement is not false, it has
to be true (¬¬p → p). In this chapter, we will present essential properties of this
logic and show number of basic classically valid schemes and investigate whether
they hold in this logic or not. To those that are not valid, we will construct
models as counterexamples. We will also present three elementary theories. The
purpose of this chapter is to introduce the logic and the theories to the reader so
that we can work with both later.
Intuitionistic logic originated as a response to several paradoxes in set theory that
showed classical logic can contain problems. The founder of this logic is considered
to be L. E. J. Brouwer, a Dutch mathematician and philosopher. If the reader
wants to know more about the history of intuitionistic logic, we recommend him
[Mos22].

2.1.1 Propositional intuitionistic logic

The language of propositional logic consists of four symbols: ¬, → , & , ∨ . As
opposed to classical logic, none of the symbols can be expressed by the others,
therefore we necessarily need all of them. We do not consider equivalence ≡ as a
basic symbol because as well as in classical logic, it can be defined as a conjunction
of two implications. We denote atoms by p or q, formulas by uppercase letters
A,B,C, . . ., and nodes of a model by Greek letters from the beginning of the
alphabet α, β, γ, . . .

We will now establish three terms for Kripke models that we will use in this
thesis.

Accessibility : We say a node β is accessible from α for β ≥ α. We will also use
expression α sees β.
Root : We say α is a root if there is no α0, such that α is accessible from α0.
Leaf : We say α is a leaf if α does not see any other node.

Now let us define the basic terms of propositional intuitionistic logic [Šve02].

Definition 2.1 A Kripke frame is a pair ⟨W,≤⟩ where W is a nonempty set
and the relation ≤ is reflexive, weakly antisymmetric, and transitive between the
nodes of W .

Definition 2.2 The triple K = ⟨W,≤, ∥−⟩ where ∥− is a relation between nodes
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and formulas is a Kripke model if for an arbitrary atom p and arbitrary formu-
las A and B the following holds:

(i) α ∥− p and α ≤ β, then β ∥− p,

(ii) α ∥− A & B iff α ∥− A and α ∥− B,

(iii) α ∥− A ∨ B iff α ∥− A or α ∥− B,

(iv) α ∥− A → B iff for all β ≥ α, if β ∥− A, then β ∥− B,

(v) α ∥− ¬A iff for all β ≥ α, β ∥−/ A.

Condition (i) is called persistence. We understand conjunction and disjunction
the same way we do in classical logic. The difference here is in the implication
and negation for which, if we want to verify their validity in α, we need to look at
all the nodes accessible from α and see whether the conditions for these symbols
are satisfied there.

2.1.2 Predicate intuitionistic logic

Formulas in predicate logic are built up using four symbols: ¬, → , & , ∨ ,
and two quantifiers ∀ and ∃. The nodes of Kripke structures are denoted by
Greek letters from the beginning of the alphabet α, β, γ, . . ., the elements of those
structures are denoted by small Latin letters a, b, c, . . . and for formulas we will
use Greek letters φ and ψ.

We borrow the two upcoming definitions and lemma from Logic: Incomplete-
ness, Complexity, and Necessity [Šve23].

Definition 2.3 A triple ⟨W,≤, J⟩ is a Kripke structure for a language L if W
is a nonempty set, ≤ is a reflexive, antisymmetric, and transitive relation on W ,
and J is a function defined on W , satisfying following conditions:

(i) All values J(α) of function J are structures for language L,

(ii) If A and B are domains of structures J(α) and J(β) and α ≤ β, then
A ⊆ B,

(iii) If sJ(α) and sJ(β) are realizations of an arbitrary function or predicate symbol
s in structures J(α) and J(β) and α ≤ β, then sJ(α) ⊆ sJ(β)

Structures mentioned in condition (i) are meant as a structures in the classical
sense.

The condition (ii) states that if we have an element in a node α then it will
be in every node β that is above α. In other words, an element will not disappear
in accessible nodes but an element can be added there.

The condition (iii) states that if an element is in the realization of a function
or predicate symbol, it will remain there. But again, the realization can extend
in accessible nodes.
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Definition 2.4 If ⟨W,≤, J⟩ is a Kripke structure for a language L, the function J
is defined on W as follows:

(i) If φ is an atomic formula of language L then α ∥− φ[e] iff J(α) |= φ[e],

(ii) α ∥− (φ & ψ)[e] iff α ∥− φ[e] and α ∥− ψ[e],

(iii) α ∥− (φ ∨ ψ)[e] iff α ∥− φ[e] or α ∥− ψ[e],

(iv) α ∥− (φ → ψ)[e] iff for all β ≥ α, if β ∥− φ[e], then β ∥− ψ[e],

(v) α ∥− (¬φ)[e] iff ∀β ≥ α, β ∥−/ φ[e]

(vi) α ∥− (∃xφ)[e] iff there exists an element a of a domain of J(α) such that
α ∥− φ[e(x/a)]

(vii) α ∥− (∀xφ)[e] iff for all β ≥ α and all elements a of a domain J(β) we have
β ∥− φ[e(x/a)]

From these conditions it is clear the existential quantifier works the way it
does in classical logic. On the other hand, if we want to verify the validity of the
universal quantifier in α, we need to look not only at all the elements of α but at
all elements of all the nodes that are accessible from α.

Lemma 2.5 Let ⟨W,≤, ∥−⟩ be a Kripke model for language L. Let α be a node
of the structure and let e be a valuation of variables in J(α) and an arbitrary
formula φ then, if α ∥− φ[e], then β ∥− φ[e] for every β accessible from α.

Proof. By induction on the complexity of φ. QED

2.2 Validity of basic schemes

In this section, we look at several essential schemes that hold in classical logic
and we will examine whether they are valid in intuitionistic logic.

First, we will show a counterexample for the two laws we mentioned at the
very beginning.

Lemma 2.6 The law of excluded middle and double negation elimination are not
valid in intuitionistic logic.

Proof. We can picture a simple model with only two nodes that refutes the va-
lidity of the two laws. We only need to consider one atom p.

α0 ∥−/ p
α1 ∥− p

Where α1 ≥ α0

We can see that the statement p is not satisfied in α0. To prove the negation of
this statement is also not satisfied here, we have to look at the accessible node
where the atom p is satisfied which does not meet the condition for the validity
of negation. We get α0 ∥−/ p ∨ ¬p. We have verified that tertium non datur, a
classically valid principle, is not intuitionistically valid.

As counterexample for the double negation elimination, we use the same model.
We know that in α, the statement p is not satisfied. To refute the implication
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we now need to prove that ¬¬p is not satisfied. We want to show that ¬p is not
satisfied in any α ≥ α0. We have already shown that ¬p is not satisfied in α0

and it is obvious that the negation is neither satisfied in α1 since α1 ∥− p. Hence
the conclusion of the implication ¬¬p is not satisfied in α0 and double negation
elimination principle is not valid in intuitionistic logic. QED

Lemma 2.7 The sentence ¬∃xφ(x) is intuitionistically equivalent to ∀x¬φ(x).

Proof. First let us prove the implication from left to right.
We have α ∥− ¬∃xφ(x) and we want to prove α ∥− ∀x¬φ(x). The condition

for the validity of ¬∃xφ(x) is ∀β ≥ α, β ∥−/ ∃xφ(x). To put it in words, in every
node accessible from α, there is no element that would meet the condition φ.
Therefore, ∀β ≥ α, β ∥−/ φ(x) for all elements x. That is equivalent to ∀x¬φ(x).

Now from right to left.
Our assumption is α ∥− ∀x¬φ(x) and we want to get α ∥− ¬∃xφ(x). The

universal quantifier gives us ∀β ≥ α, β ∥− ¬φ(x). The negation gives us for
every γ accessible from β, γ ∥−/ φ(x). There is no node above α in which there
would exist an element complying the condition φ. That is the conclusion we
wanted: α ∥− ¬∃xφ(x). QED

The other situation differs from classical logic.

Lemma 2.8 The sentence ¬∀φ(x) is not intuitionistically equivalent to ∃x¬φ(x).

Proof. We will construct a simple model to refute this equivalence. Let φ(x) be
the formula P (x) for an arbitrary unary predicate symbol P .

Figure 1: Model violating ¬∀xP (x) → ∃x¬P (x)

The predicate has an empty realization in α0. But in α1, the element a is
added to the realization. In both of those nodes, we can find an element that is
not in the realization of P which is the condition for the validity of the premise
of the implication. Therefore α0 ∥− ¬∀xP (x).
On the other hand, in α0 there does not exist an element that would meet the
condition ¬P (x) because the element a is added to the realization in α1 and for
negation, we need to look at all the nodes above. Therefore ¬P (a) is not satisfied
and since α0 has only one element, it is safe to say α0 ∥−/ ∃x¬P (x). QED
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Definition 2.9 DNS scheme: ∀y(∀x¬¬φ(x, y) → ¬¬∀xφ(x, y)). The DNS
stands for double negation shift.

Lemma 2.10 The double negation shift scheme is not valid in intuitionistic logic.

Proof. We reproduce a model from [Šve23] as a counterexample.

Figure 2: Model violating DNS

We have an infinite number of elements a in α0. In every node αn+1, we add
the element an to the realization of the predicate P . We are violating the sentence
∃x¬φ(x) as we did in the proof before but we do it in every node. Hence in α0,
the formula ¬∃x¬P (x) is satisfied. This formula is equivalent to ∀x¬¬P (x). It
is obvious ¬¬∀xP (x) is not satisfied in α0 since α0 ∥− ¬∀xP (x) as is shown in
the previous proof. Therefore the conclusion is not satisfied: α0 ∥−/ ¬¬∀xP (x).

QED

The model we constructed is infinite. That can lead us to a question if DNS
is valid in finite models. We will show an even stronger claim.

Lemma 2.11 DNS is valid in all models in which every node α sees a node β,
such that β is a leaf.

Proof. Let us assume that we have such a model and that ∀x¬¬φ(x) is satisfied
in the root α. That means for all β ≥ α, β ∥− ¬¬φ(b) for all elements b ∈ β. We
want to prove that for all β ≥ α there exists γ ≥ β, such that γ ∥− ∀xφ(x).
Let us fix β ≥ α. From our assumption, we know that there is a node (γ)
accessible from β that does not have any nodes above it. In γ the formula ¬¬φ(c)
holds for every c ∈ γ from the sentence we have in our assumption. The double
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negation means that there is a node accessible from γ from which we can go to a
node where φ(c) is met for all c ∈ γ. But since γ is a leaf, we know that φ(c) for
all elements c has to be satisfied in γ which is exactly the conclusion we wanted
because it gives us γ ∥− ∀xφ(x).
Now we need to prove this holds for all nodes accessible from the root α. That
is obvious because from our assumption we know that for all nodes β ≥ α there
exists a node γ ≥ β that is a leaf. In the leafs, we will always get the desired
conclusion ∀xφ(x) we want.
This proof is based on the fact that in the end nodes, all tautologies from classical
logic are satisfied. QED

Corollary 2.12 DNS does hold in all finite models.

Since the double negation shift scheme does not have a finite model as a
counterexample we know that the finite model property that states if we have
a model as a counterexample to a formula then there exist a finite model as a
counterexample, is not valid in the predicate intuitionistic logic.

2.3 Elementary theories

In this section, we introduce three elementary theories in intuitionistic logic which
we will then explore further.

The theory of equality
This theory is denoted by EQ. It has a language {=} and the following axioms
[Šve02]:

E1: ∀x(x = x),

E2: ∀x∀y(x = y → y = x),

E3: ∀x∀y∀z(x = y & y = z → x = z)

and two schemes for functional and predicate symbols:

E4: ∀x∀y(x1 = y1 & . . & xn = yn → F (x1, . . , xn) = F (y1, . . , yn))

for any functional symbol F

E5: ∀x∀y(x1 = y1 & . . & xn = yn → (P (x1, . . , xn) ≡ P (y1, . . , yn)))

for any predicate symbol P
We will not need the axiom E4 in this thesis but it belongs to the axiomati-

zation.

The theory of apartness
This theory is denoted by AP. It has a language {#} and the following axioms
[vDS79]:
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A1: ∀x∀y(¬(x # y) ≡ x = y),

A2: ∀x∀y(x # y → y # x),

A3: ∀x∀y∀z(x # y → z # x ∨ z # y)

This theory is not as well known as the others we are mentioning in this
thesis since it is not well developed in classical logic. It allows us to express if
two elements are not equivalent. As mentioned in the beginning, in intuitionistic
logic the principle of excluded middle is not valid, therefore we can not assume
that if x = y is not satisfied then x ̸= y is.

The theory of linear order
This theory is denoted by LO. It has a language {=, <}, the axioms E1–E3, E5
plus the following axioms [vD86]:

LO1: ∀x∀y∀z(x < y & y < z → x < z)),

LO2: ∀x∀y∀z(x < y → z < y ∨ x < z),

LO3: ∀x∀y∀z(x = y ≡ ¬(x < y) & ¬(y < x))

These axioms are a bit different than in classical logic. Instead of the trichotomy
axiom we would use in classical logic ∀x∀y(x < y ∨ x = y ∨ y < x), we chose a
weaker one (LO2). It is because the stronger one does not hold in the intuitionistic
theory of linear order for example for some real numbers, see [vD86]. We will not
show the proof that for some real numbers the trichotomy is not satisfied but we
will show a model of LO where trichotomy is not valid in the fifth chapter.
We will also show another axiomatization but we will work with the one listed
above.
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3 Differences between the two logics

We will now prove that the two theories that we work with in classical logic
(EQ and LO) do not trivialize intuitionistic logic, i.e. they are not the same in
intuitionistic logic as they are in classical logic since they have different underlying
logic. What we mean by the word trivialize is that the axioms of the theory are
so strong that all of the classically valid formulas are provable. We will show this
does not happen with our theories and therefore we can find formulas (in our
case it will be atomic formulas) that are undecidable in the intuitionistic version
of the theories [Bra10].

3.1 The theory of equality

In classical logic, this theory is incomplete. As an example of an independent
sentence, we have ∀x∀y(x = y) [Mon12]. In intuitionistic logic, we even have an
atomic formula that is undecidable.

Lemma 3.1 The atomic formula x = y is an undecidable formula in the theory
of equality.

Proof. Let us show a model of EQ where x = y ∨ ¬(x = y) is not valid.

Figure 3: Model violating x = y ∨ ¬(x = y) in EQ

It is clear that a and b are not equal in α0, therefore α0 ∥−/ a = b. Since we
have the formula a = b satisfied in α1, the negation is also not satisfied in the
root, hence α0 ∥−/ ¬(a = b). QED

Corollary 3.2 The theory of equality does not trivialize intuitionistic logic.

3.2 The theory of linear order

The theory of linear order is also incomplete in classical logic. As an example of
an independent sentence, we can choose ∀x∃y(x < y). In intuitionistic logic, we
again have atomic formulas that are undecidable.

10



Lemma 3.3 The atomic formula x = y is not decidable in the theory LO.

Proof. Let us again construct a simple model where x = y ∨ ¬(x = y) is violated.

Figure 4: Model violating x = y ∨ ¬(x = y) in LO

The arrow in α1 indicates the order relation.
α0 ∥−/ ¬(a = b)

because α2 ∥− a = b but also
α0 ∥−/ a = b

We have two nodes above the root. In α2 we have a = b to refute the negation as
is explained above and in α1 we have a < b to refute the premise of LO3. If this
node was missing, we would get ¬(a < b) & ¬(b < a) valid and it would give us
the conclusion a = b. QED

We have another atomic formula that is undecidable in the theory of linear
order. Let us prove it.

Lemma 3.4 The atomic formula x < y is not decidable in the theory LO.

Proof. Let us construct another Kripke model.

Figure 5: Model violating x < y ∨ ¬(x < y) in LO
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It is easy to see that the formula a < b ∨ ¬(a < b) is violated in this
model. QED

Corollary 3.5 The theory of linear order does not trivialize intuitionistic logic.

This claim is not surprising since this theory even has different axioms than
the classical version.
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4 Equality and apartness

4.1 Stability

In this section, we introduce stability axioms for every n and we will show they
grow in strength for every additional grade. Before we prove this claim, we
examine a sequence of inequalities and show that they also grow in strength for
every other grade. We prove two implications concerning the inequalities and
refute the converse of them. We will use both later in the proof of the stability
axioms.
First, let us define the inequalities and the stability axioms [vDS79].

Definition 4.1 The sequence of inequalities is defined as follows:
x ̸=0 y := ¬(x = y)
x ̸=n+1 y := ∀z(z ̸=n x ∨ z ̸=n y)

Definition 4.2 The sequence of stability axioms is defined as follows:
Sn := ∀x∀y(¬(x ̸=n y → x = y))

We will now show that every inequality on grade n+ 1 implies the inequality
on the lower grade n.

Lemma 4.3 EQ ∥− ∀x∀y(x ̸=n+1 y → x ̸=n y)

Proof. Let us assume that x ̸=n+1 y holds. We can rewrite the inequality x ̸=n+1 y
as ∀z(x ̸=n z ∨ y ̸= z). Since it holds for all elements z, we can choose z to be
the element x. That gives us x ̸=n x ∨ x ̸=n y. We know that x ̸=n x is not
true (we could break it down the same way we used here and always choose x
to be the z and in the end, we would get x ̸=0 x ∨ x ̸=0 x which we know is
not true). It leaves us with x ̸=n y which is the conclusion of the implication we
wanted. QED

Lemma 4.4 EQ ∥− ∀x∀y(¬(x ̸=n y) → ¬(x ̸=n+1 y))

Proof. Contraposition from the previous Lemma. QED

Corollary 4.5 EQ ∥− Sn+1 → Sn for all n

Proof. Our assumptions are ∀x∀y(¬(x ̸=n+1 y) → x = y) and the premise from
the axiom Sn which is ¬(x ̸=n y). We want to prove the conclusion of Sn which
is x = y. Let x and y be given. From Lemma 4.4 and the premise from Sn we
know that ¬(x ̸=n+1 y) holds. Since ¬(x ̸=n+1 y) is the premise from Sn+1 and
this stability axiom is our assumption, we get the conclusion x = y. QED

Now we will prove that the inequality on a lower grade n does not imply
the stronger inequality on grade n + 1. It will then help us prove that the con-
traposition from this implication, which is a weaker claim, also does not hold
there.

Lemma 4.6 EQ ∥−/ ∀x∀y(x ̸=n y → x ̸=n+1 y)

Proof. Let us start with the case when n = 0. For this proof, we will use a Kripke
model:
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Figure 6: Model violating x ̸=0 y → x ̸=1 y

In the node α0, the elements a and b are not equal so a ̸=0 b is satisfied in the
root. But we can find an element (the element c) that is sometimes equal to a
(in α1) and sometimes to b (in α2). Let us call it the middle element. Therefore
the inequality on grade one is violated since it states ∀z(z ̸=0 x ∨ z ̸=0 y). We
then get α0 ∥− a ̸=0 b and α0 ∥−/ a ̸=1 b. We have a finite model with a constant
domain consisting of a finite number of elements.

For n = 1, we again have a finite counterexample:

Figure 7: Model violating x ̸=1 y → x ̸=2 y

This time we needed to use two more elements. There is no element that
would be equal to a as well as to b so the inequality on grade 1 is valid. We
can rewrite the inequality on grade 2 as ∀c(a ̸=1 c ∨ b ̸=2 c). To refute it we
need a middle element (the element d) that is equal to a as well as to c and a
middle element (the element e) that equals b as well as it equals to c. It is easy to
confirm those elements exist in the model and that they comply this condition.
Therefore we have α0 ∥− a ̸=1 b and α0 ∥−/ a ̸=2 b.
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Now for n = 2:

Figure 8: Model violating x ̸=2 y → x ̸=3 y

We need four more elements than in the previous model. What is happening
here is we looked at what elements are equal in Figure 7 and we put another
element between them in such a way that in α1 the new element will be equal to
one of the previously equal elements and in α2 it would become equal to the other.
That way we assured the validity of the inequality on grade 2 and violated the
validity of the inequality on grade 3. We have α0 ∥− a ̸=2 b and α0 ∥−/ a ̸=3 b.

We will not construct any more models for higher n but the principle is still the
same. For n + 1 we look at what elements become equal in α1 and α2 of the
previous model for n and we put one more element between them the same way
we described above. The number of elements will grow exponentially for each
additional model. That way we can have a model with only three nodes and with
a finite number of elements for every n ∈ ω.

For every n we have a model that complies the condition of a constant domain.
It also complies the double negation shift scheme (DNS) since every model we
have is finite.

If we would want only one model as counterexample for all n, we would need a
model with an infinite number of elements. The model would look like follows.
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Figure 9: Model violating x ̸=n y → x ̸=n+1 y

We have infinite number of the elements a. For each n, we have to choose
different elements. For the first step when n = 0 we will choose the elements a0
and a2 (or any other elements that have one other element between them). Then
we get α0 ∥− a0 ̸=0 a2 and α0 ∥−/ a0 ̸=1 a2. We can see there exist a middle
element a1 that is equal to a0 in α1 and is equal to a2 in α2.

If we wanted to refute it for n = 1, we would have to choose the elements that
have two other elements between them, for example, a0 and a3. The number of
elements between the ones we choose grows exponentially. For n = 0, we need
one element between. For n = 1, we need two of them. For n = 3, we would
choose elements that have four elements between and so on. For n we need 2n
elements between. In this sense, the relation of inequality on grade n + 1 is a
composition of the relation of inequality on grade n with itself.

Since every element an where n is an even number is equal to an element with
an index number n+1 in the left node and every element an+1 where n+1 is an
odd number is equal to an element with an index number n+2 in the right node
we know, the inequality on the lower grade will always be satisfied if we choose
the right elements as is explained above.

This way we constructed a model with a finite number of nodes but with an
infinite number of elements. We need an infinite number of elements because we
have an infinite number of the inequality grades. It is clear that this model has
a constant domain and, because it has only three nodes, it complies the double
negation shift scheme. QED

One may ask, why have we shown all the other models if the general model
is sufficient? It is because for every n we can have a model with a finite number
of nodes and elements. Also, all the models above will help us prove the fol-
lowing Lemma which is a weaker version of the implication we have just proven.
Therefore we will have more complex models.

Lemma 4.7 EQ ∥−/ ∀x∀y(¬(x ̸=n+1 y) → ¬(x ̸=n y))

Proof. Again we will start with n = 0. Let us construct a Kripke model to show
that the implication is not valid. The beginning of the model is the model in
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Figure 6 in proof of Lemma 4.6 so we will start from α2 and continue to the right
side:

Figure 10: Model violating ¬(x ̸=1 y) → ¬(x ̸=0 y)

This model has to be infinite because from the validity of ¬(a ̸=1 b) in the
root we know that a ̸=1 b has to be violated in every node. Therefore every node
needs to see two more nodes to satisfy this condition. We also need an infinite
number of elements so that we can ensure the validity of a ̸=0 b. If we only used
the element c0 as the middle element, from transitivity, we would get a = b. The
left side from α1 looks the same, only a = c0 and not b = c0.

In this model, double negation shift scheme does not hold. We can choose φ to
be the formula x = a ∨ x = b and it is easy to verify that the whole implica-
tion ∀x¬¬(x = a ∨ x = b) → ¬¬∀x(x = a ∨ x = b) is violated. Let us explain
it.

In the root α0, we want α0 ∥− ∀x¬¬(x = a ∨ x = b). Therefore, for all nodes α1

accessible from α0 and all elements x, we can go from all β accessible from α1 to
a node γ ≥ β, such that γ ∥− x = a ∨ x = b. We know that for all elements c
we can go to a node where they will be equal to a or to b. To verify it for c0, we
can go to α2 (or anywhere higher) where c0 = b. For c1, we can go to a node, for
example, α5 where c1 = a. Every element will become equal to a or to b at some
point, therefore for all x we can go to a node (from any α) where φ is satisfied.

To satisfy the conclusion ¬¬∀x(x = a ∨ x = b) in the root, we would have to be
able to, from every β accessible from α0, go to a node γ ≥ β, such that in γ the
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sentence ∀x(x = a ∨ x = b) is satisfied. But since we have an infinite model with
an infinite number of elements, we know that in every node, there are elements
that are not equal to anything (except themselves) yet. Hence ∀x(x = a ∨ x = b)
is not satisfied anywhere in this model and the conclusion is refuted.

For n = 1 the model will look like follows:

Figure 11: Model violating ¬(x ̸=2 y) → ¬(x ̸=1 y)

We also have an infinite model because, above every node, there are two more
nodes to refute the inequality on grade 2. In every node (except for the root α0)
we need to use two more elements than in the one below him. That will leave us
with an infinite number of middle elements (d) between a and c and an infinite
number of middle elements (e) between c and b. We know ¬(a ̸=1 b) is violated
since there is no element that would be equal to a as well as to b. This model is
similar to the one we had in Figure 7 in Lemma 4.6, the first tree nodes are even
the same. The only difference there is, from the negation we get α ∥−/ a ̸=2 b for
every node α.

As in the previous model in Figure 10, the left side of this model would look the
same, only instead of d0 = c and e0 = b, we have d0 = a and e0 = c.

Here the double negation shift scheme is also not valid. If we chose φ to be the
formula x = a ∨ x = b ∨ x = c, it is clear that ∀x¬¬φ(x) → ¬¬∀xφ(x) is
violated. The proof would proceed the same way it did in the previous model,
only we had to add the element c in the formula because otherwise it would not
meet the premise.

The construction for every other n would proceed the same way. All of the
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models would have an infinite number of nodes and elements which is caused by
the negation in the formula we want to satisfy. The first tree nodes would look
like the model for the same n in Lemma 4.6 and then we would only make use of
more elements that would act in the same manner as in the two nodes below.

The double negation shift scheme would not be valid in any of those models. The
formula to violate it would be the same, only we would be adding more elements
that would not meet it if they were not in the formula (the same way we did it in
the last model for element c). We always have a finite number of those elements
so the formula would also be finite.

We will now construct a model to refute the general implication for all n. The
first three nodes look like the model for all n in Figure 12 in the proof of the
previous Lemma so we will start from α2.

Figure 12: Model violating ¬(x ̸=n+1 y) → ¬(x ̸=n y)

As opposed to the model in Figure 9, we are dealing with negation here.
Therefore this model will have an infinite number of nodes.

Since in α0, we have the formula ¬(a ̸=n+1 b) satisfied, we need to violate the for-
mula a ̸=n+1 b in every node accessible from α0. Therefore the elements a0, . . . , an
are not enough and we need to use another sequence b0, . . . , bn in the nodes ac-
cessible from α1 and α2, such that every bn would be equal to the corresponding
element an in the left node and every bn would be equal to an+2 in the right node.
In the nodes that α5 and α6 see, we need another sequence that would behave
the same way the the sequence b0, . . . , bn did. In the accessible nodes, we would
need more sequences, hence we will end up with an infinite number of sequences
that have an infinite number of elements.

To refute the implication, we need to choose different elements for different n
same as we did in Figure 9. Therefore to refute the implication for n = 0, we
choose, for example, the elements a0 and a2. First, we use a1 as the middle ele-
ment that should be equal to both of the elements. In the nodes we see in this
model, we have b0 as the middle element. In the accessible nodes it would always
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be the element with the index number 0.

For n = 1, we use a0 and a3 (or any other elements distant two other elements
from each other). In this situation, we need a middle element for a0 and a2 and
another middle element for a3 and a1. We always choose the one in the middle:
a1, b0, c0, . . . for the first case and a2, b1, c1, . . . for the other.

For higher n it works the same way.
QED

We could now prove the stability axiom Sn does not imply the axiom Sn+1.
Instead we will prove the stronger stability axiom is equivalent to the formula we
proved in the previous lemma if we have Sn in our assumption.

Lemma 4.8 Assuming Sn, the stronger stability axiom Sn+1 is equivalent with
the sentence (φ): ∀x∀y(¬(x ̸=n+1 y) → ¬(x ̸=n y))

Proof. First Sn+1 → φ
Let Sn+1 and ¬(x ̸=n+1 y) be our assumptions. Because the premise from φ

is valid and the axiom Sn+1 has the same premise, we get the conclusion x = y.
We know x = y → ¬(x ̸= y). From x ̸=n y → x ̸= y, which we have proven in
Lemma 4.3, we get ¬(x ̸= y) → ¬(x ̸=n y)

Now φ → Sn+1

Let φ and ¬(x ̸=n+1 y) be our assumptions. Again because Sn+1 and φ have
the same premises, we have the conclusion ¬(x ̸=n y) from φ. Then from Sn, we
get the conclusion x = y. QED

Now that we now those two sentences are equivalent, we can prove the stability
axiom Sn does not imply the formula φ. From that it will be clear the axiom Sn

does not imply Sn+1 and therefore those axioms grow in strength for every other
grade.

Lemma 4.9 EQ ∥−/ Sn → φ

Proof. Let us picture a model where φ is violated. In the root, we have:
α0 ∥− ¬(x ̸=n+1 y)
α0 ∥−/ ¬(x ̸=n y)

The invalidity of ¬(x ̸=n y) tells us we can go to a node α accessible from α0,
such that α ∥− (x ̸=n y). Let us choose α as our new root of the model. We
have the formula ¬(x ̸=n+1 y) satisfied in α from persistence and it is obvious
α ∥−/ ¬(x ̸=n y) since the formula behind the negation holds in α. We can then
be sure φ is violated in this new model.

Now we need to show the stability axiom Sn is valid in this model. Since the
formula x ̸=n y is satisfied in α, we get from persistence For every β accessible
from α, β ∥− x ̸=n y. Therefore, ¬(x ̸=n y) is not satisfied in any node accessible
from α. Since this formula is the premise of Sn we know the whole implication
meets the condition for validity in this model and α ∥− Sn. QED

Corollary 4.10 EQ ∥−/ Sn → Sn+1 for all n

Proof. Immediate QED

We have shown that the stability axioms are increasing in strength for every
additional grade.

20



4.2 Equality with apartness

We will now prove several small lemmas concerning the stability of equivalence
in the theory of apartness that we will need for the proof of conservativity.

Lemma 4.11 The stability of equality is valid in the theory of apartness [vD04].
AP ∥− ∀x∀y¬¬(x = y) → x = y

Proof. ¬¬(x = y) ⇔ ¬¬¬(x # y) ⇔ ¬(x # y) ⇔ x = y QED

Corollary 4.12 The theory of apartness is not conservative over the theory of
equality because the relation of equality is not stable in EQ.

We want to find a theory containing the theory of equality that AP is conser-
vative over. First, let us prove a small Lemma.

Lemma 4.13 AP ∥− Sn for all n.

Proof. We will prove ∀x∀y(x # y → x ̸=n y) by induction on n.
∀x∀y(x # y → x ̸=0 y) holds from the first axiom of the theory of apartness.
Our induction assumption is ∀x∀y(x # y → x ̸=n y). From that, we want to
prove ∀x∀y(x # y → x ̸=n+1 y):

∀x∀y(x # y → x ̸=n y) → ∀x∀y(x # y → x ̸=n+1 y)
∀x∀y(x # y → x ̸=n y) → ∀x∀y(∀z(z # x ∨ z # y) → (x ̸=n+1 y)) From the
third axiom of apartness.
∀x∀y(x # y → x ̸=n y) → ∀x∀y(∀z(z ̸=n x ∨ z ̸=n y) → x ̸=n+1 y) Using the
induction assumption.
∀x∀y(x#y → x ̸=n y) → ∀x∀y(∀z(z ̸=n x ∨ z ̸=n y) → ∀z(z ̸=n x ∨ z ̸=n y))
From the definition of inequalities. QED

4.2.1 Conservativity

In this section, we outline the prove that the theory of apartness is conservative
over the ω-stable theory of equality EQ + {Sn|n ∈ ω}. Before we can start with
the proof itself, we need to show a few essential definitions and lemmas that we
will borrow from an article On Axiomatizing Fragments [Smo77]. We will not use
all of them but if the reader wants to dig deeper in the proof in the mentioned
article then they are necessary. We will only show the main idea of it. We will
denote theory as a pair (Γ,∆) where Γ is the set of derivable sentences and ∆
the set of underivable sentences.

Definition 4.14 A theory (Γ,∆) is consistent iff there does not exist a sentence⋀︁
Γ0 →

⋁︁
∆0 derivable in the predicate calculus for intuitionistic logic where Γ0

is a finite subset of Γ and ∆0 is a finite subset of ∆.

Definition 4.15 A theory (Γ,∆) is complete iff for any sentence φ, φ ∈ Γ or
φ ∈ ∆.

Definition 4.16 (Γ
′
,∆

′
) extends the theory (Γ,∆) if Γ is a subset of Γ

′
.

Definition 4.17 (Γ
′
,∆

′
) strongly extends the theory (Γ,∆) if Γ is a subset of

Γ
′
and ∆ is a subset of ∆

′
.
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Definition 4.18 A theory (Γ,∆) is a C-saturated theory iff

(i) (Γ,∆) is consistent,

(ii) (Γ,∆) is complete,

(iii) If the sentence ∃xφ(x) ∈ Γ, then φ(c) ∈ Γ for some c ∈ C where C is a set
of constants.

Lemma 4.19 (Henkin lemma) Let (Γ,∆) be a consistent theory. Let C be an
infinite but countable set of constants c that are not in the language of Γ. Then
there exists a strong C-saturated extension (Γ

′
,∆′) of (Γ,∆).

Theorem 4.20 (Completeness theorem) Γ ⊢ φ iff Γ |= φ [Smo73a].

Now we will show the idea of the proof of conservativity itself.

Theorem 4.21 (van Dalen and Statman) The theory of apartness is conservative
over the ω-stable theory of equality SEQω (EQ + {Sn|n ∈ ω}).

Proof. We will outline the proof from On axiomatizing fragments [Smo77].
We want to prove that if a sentence φ in the language of SEQω is valid in the
theory of apartness then it is already valid in SEQω.
Let (Γ,∆) be a consistent extension of SEQω. Let K be the model of SEQω,
such that every underivable φ is not satisfied in some node of the model. For our
purposes, we can call K an universal model. For all α ∈ K and all elements a, b
of the domain of the structure of α, we define α ∥− a # b⇔ ∀n(α ∥− a ̸=n b).
Now let us show that α0 ∥− ∀x∀y(x = y ⇔ ¬(x # y)).

The left-to-right implication is easy but we will show it anyways.
We have defined α ∥− x # y → x ̸=n y for all elements. If we use contraposition,
we get α ∥− x = y → ¬(x # y).

For the right-to-left implication we need to prove a small lemma.

Lemma 4.22 Let a, b such that Γ ∥−/ ¬(a ̸=n b) for any n. That means the
set {¬(a ̸=0 b),¬(a ̸=1 b), . . .} is a subset of ∆. Then Γ united with the set
{a ̸=0 b, a ̸=1 b, . . .} is consistent.

Proof. Let us assume for contradiction that Γ+a ̸=0 b+ . . .+a ̸=n b ∥− φ & ¬φ
for an arbitrary n and φ. But since SEQω ∥− a ̸=i b → a ̸=j b for any i > j,
we can reduce the set to Γ + a ̸=n b. Then we get Γ ∥− ¬(a ̸=n b). That is a
contradiction of our assumption. QED

Now let us prove the implication ¬(x # y) → x = y itself. Let (Γ,∆) and
some elements a, b such that (Γ,∆) ∥− ¬(a # b). And let (Γ,∆) ∥−/ a = b for
contradiction. Since K is a model of SEQω, we know from the stability axioms
that if a = b is not valid, the formula ¬(a ̸=n b) also can not be valid for any n.
From the previous lemma we now know there exists an extension (Γ′,∆′) such
that Γ′ ∥− a ̸=n b for all n. But we defined α ∥− a # b ⇔ ∀n(α ∥− a ̸=n b).
Therefore, we would get (Γ′,∆′) ∥− a # b which is a contradiction.

We can now see that we can choose (Γ,∆) = (SEQω, {φ}) for any sentence φ
that is underivable in SEQω and see that we constructed a model of (AP, {φ}).

QED
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To summarize this chapter, we have defined the sequence of inequalities and
proved that every other grade is stronger than the previous one. Using this
knowledge we then showed the stability axioms also grow in strength. Then we
proved several small lemmas about stability in the theory of apartness so that we
could proceed with the outline of the proof of conservativity over SEQω.
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5 Linear order and apartness

In this chapter, we consider the theory of linear order in the presence of apartness.
First, we will show there exist more axiomatization of LO and then we will show
that LO + AP is conservative over the theory of linear order as well as over the
theory of apartness.

5.1 Axiomatization

There exist two axiomatization of the theory of linear order.
The first axiomatization looks as follows [vD86]:

LO1: ∀x∀y∀z(x < y & y < z → x < z),

LO2: ∀x∀y∀z(x < y → z < y ∨ x < z),

LO3: ∀x∀y∀z(x = y ≡ ¬(x < y) & ¬(y < x))

We can replace the equivalence in LO3 with implication only from right to left but
then we would need to add another axiom stating antireflexivity of the ordering.

The second formulation of axioms looks like follows [Smo77]:

LO1: ∀x∀y∀z(x < y & y < z → x < z),

LO2: ∀x∀y∀z(x < y → z < y ∨ x < z),

LO3: ∀x¬(x < x)

We do not have the antisymmetry axiom in any of those formulations but it is
easy to show it holds. Since the first axiom is valid for all z, we choose x to be z
in LO1 and we get x < y & y < x → x < x and from antireflexivity we know
this can not happen.

What differs in these formulations is the third axiom. It is clear that from
∀x∀y∀z(x = y ⇔ ¬(x < y) & ¬(y < x)) we get the antireflexivity since for
every x we have x = x. The question is if we can prove the axiom in the first for-
mulation ∀x∀y∀z(x = y ⇔ ¬(x < y) & ¬(y < x)) from the second formulation.
The left-to-right implication is provable since we have the antireflexivity axiom in
the second formulation. Now, let us construct a model where all axioms from the
second axiomatization are valid but the formula ¬(x < y) & ¬(y < x) → x = y
is not.

Figure 13: Model showing the second formulation is weaker
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We need only one node where a < b and b < a is violated but a is not equal to
the element b. Antireflexivity is satisfied here and since a < b nor b < a are not
valid, the premises from LO1 and LO2 are violated. Therefore all axioms from
the second axiomatization are valid here.

It is possible the axiom ∀x∀y∀z(¬(x < y) & ¬(y < x) → x = y) is only
missing in the second formulation. Then the two axiomatization would be equiv-
alent. Either way we will work with the first axiomatization and refer to it as
LO.

Lemma 5.1 Trichotomy is not provable in LO.

Proof. We will construct a simple model where all the axioms are valid but tri-
chotomy is not.

Figure 14: Model of LO where trichotomy does not hold

The arrow in α1 denotes a < b. We can see a and b are not equal in the root.
We also have a < b and b < a violated in α0.
We need to have another node above α0 where a < b or b < a. otherwise we would
get a = b using LO3. It is clear all the axioms of LO are valid in this model.
Transitivity is valid since the premise is not satisfied, LO2 is valid because we only
have two elements, and the third axiom also does not satisfy the premises. QED

Trichotomy is stronger than the axiom LO2. It states that every two elements
have to be either equal or have an arrow between, whereas the axiom we have
states that if at least two elements have an arrow between themselves then every
two elements have a relation (equality or the arrow) among themselves. But the
premise does not always have to be valid so the whole implication is.
Since we do not have trichotomy, the third axiom does not induce the other pos-
sible case if y < x and x = y are not satisfied anywhere, we do not automatically
get x < y. Let us prove it.

Lemma 5.2 The sentence ∀x∀y¬(y < x) & ¬(x = y) → x < y is not valid in
LO.

Proof. We can have the model from Figure 14 as a counterexample. We can see
the formulas ¬(b < a) and ¬(a = b) are satisfied in α0 since the formulas after the
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negations are not satisfied anywhere in this model. But we also have α0 ∥−/ a < b.
The node α1 again serves the purpose to maintain the validity of LO3. QED

5.2 Conservativity

In this section, we investigate conservativity theorems concerning the theory of
apartness and the theory of linear order. First, we create a model with two nodes
where α0 ∥−/ x # y but α1 ∥− x # y. It will help visualize a part of the proof of an
upcoming lemma.

Figure 15: A model where α0 ∥−/ x # y but α1 ∥− x # y

The rectangles symbolize equivalence classes with which we will work in the
next lemma. The curved line between a and b in α1 symbolizes a # b.

Lemma 5.3 Linear ordering is applicable on any model that has the apartness
relation.

Proof. This proof is a result from C. Smorynski [Smo77] who did it for the second
axiomatization. We will do it for the stronger axiomatization we are working with.
Let K be a model for the theory of apartness. Then for all nodes α, we have
α ∥−/ x # y as an equivalence relation. Let us prove it.

(i) Reflexivity: α ∥− x = x ⇔ ¬x # x from the first apartness axiom. Because
we know α ∥− x = x then α ∥− ¬x # x, hence α ∥−/ x # x.

(ii) Symmetry: x # y ⇔ y # x, from the second apartness axiom. From this, it
is obvious that α ∥−/ x # y ⇔ α ∥−/ y # x.

(iii) Transitivity: Let α ∥−/ x # y and α ∥−/ y # z and let us assume α ∥− x # z
for contradiction. We get α ∥− x # y ∨ α ∥− y # z from the third apartness
axiom which contradicts our assumption. Hence α ∥−/ x # z.

In every node, we have the domain split into equivalence classes, such that
if α0 ∥−/ x # y, those elements belong to the same equivalence class. We can
arbitrarily linearly order those equivalence classes. But in the accessible nodes,
we can have new elements and therefore possibly new equivalence classes. And
even if we had a constant domain if α0 < α1 and α0 ∥−/ x#y it does not necessarily
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mean α1 ∥−/ x # y as shown in Figure 15. We linearly order the domain of the
root and then continue to the accessible nodes. If the domain and the classes
remain the same in all the nodes, we are done. Let us explore three possibilities
that could be a bit problematic.

(i) If we get a new element a in the accessible node α1, such that for any previ-
ously existing element b, α1 ∥−/ a # b, we will put a in the same equivalence
class b is in.

(ii) If we get a new element that will create his new equivalence class, we will
put his class above all the existing classes. If there are more new elements
and more new equivalent classes, we will again arbitrarily linearly order
them between themselves and then put them all above the others previously
existing equivalence classes.

(iii) The third possibility is probably the most difficult one because we have to
be careful to preserve persistence. Let us assume for some elements a, b, we
have α0 ∥−/ a # b, therefore a, b ∈ [a]. But let us assume α1 ∥− a # b. That
means that one of the element (let us choose the element b) have to ”leave”
the equivalence class [a] and create his own [b]. This is the case we have
shown in Figure 15. To preserve persistence, we need to check that if b < c
in the root for any element c then [b] < [c] in all α ≥ α0. This will put the
new equivalence class [b] right next to the former one [a]. We can arbitrarily
choose if [a] < [b] or [b] < [a]. We know that if an element b ”leaves” his
equivalence class, it will create a new one. If b would join an existing class,
it would not preserve persistence between b and all the elements belonging
to the already existing class.

We will show later that the sentence ∀x∀y(x # y ⇔ x < y ∨ y < x) holds in
this model.
Now we need to check we created a linear ordering.

(i) Transitivity. Let us assume α ∥− a < b and α ∥− b < c. We then know from
the way we constructed the ordering that [a] < [b] and [b] < [c]. But since
this ordering is a linear ordering, we get [a] < [c]. Therefore α ∥− a < c

(ii) Weak linearity. Let α ∥− a < b, hence [a] < [b]. Let us consider an arbitrary
equivalence class [c]. Since the ordering on the equivalence classes is linear
we get [c] < [b] ∨ [a] < [c] from LO2. Therefore α ∥− c < b ∨ a < c.

(iii) Antisymmetry. Let us assume α ∥− a = b then [a] = [b]. From linearity of
the ordering we get from the third axiom that ¬([a] < [b]) & ¬([b] < [a]).
Hence α ∥− ¬(a < b) & ¬(b < a).

QED

Now that we know we can implement linear ordering on any model having
the apartness relation, we can prove the two theorems about conservativity of
AP + LO. Let us start with conservativity over AP.

Theorem 5.4 (van Dalen-Statman) The theory AP + LO is conservative over
the theory of apartness [vD04].
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Proof. Let us assume that AP ∥−/ φ for a formula φ of the language of apartness
and we want to show that there exists a model of AP+LO that is a counterexample
for φ. From AP ∥−/ φ we know that there exists a model K of AP, such that
K is a counterexample of φ, hence in the root of this model we have k0 ∥−/ φ.
We can implement linear order in this model. We get a model K∗ of the theory
AP+LO. And because the formula φ was in the language of apartness we know,
it can not contain the symbol >, hence the root of the new model k∗0 ∥−/ φ. We
now have AP + LO ∥− φ → AP ∥− φ for any formula φ in the language of
apartness. QED

Now the conservativity of AP + LO over LO. For that we need to prove the
following lemma.

Lemma 5.5 AP + LO ∥− x < y ∨ y < x⇔ x # y [Smo77].

Proof. Immediate from Lemma 5.1. If x# y, we know they are in different equiv-
alence classes. As we order all of the equivalence classes between themselves, we
have [x] < [y] ∨ [y] < [x]. Therefore x < y ∨ y < x. The direction from left to
right is the same. QED

Theorem 5.6 The theory AP + LO is conservative over the theory of linear
order.

Proof. Immediate from the previous Lemma. QED

To sum this chapter up, we have shown two different axiomatization of the
theory of linear order and we proved that one is stronger than the other. We
then reproduced the proof of implementing a linear ordering on a model with the
apartness relation from Smorynski [Smo77] but with the stronger axiomatization
from van Dalen [vD86]. Using this claim, we then proved the theory AP+ LO is
conservative over the theory of apartness but also over the theory of linear order.
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6 Conclusion

The main aim of this thesis was to explore three theories in intuitionistic logic.
We chose two theories we have in classical logic: the theory of equality and the
theory of linear order and one theory that is not well known in classical logic: the
theory of apartness. We constructed new models to prove the stability axioms
are increasing in strength. We then showed the theorem of the conservativity
of the theory of apartness over the ω-stable theory of equality and proved the
conservativity of AP + LO over the theory of apartness and the theory of linear
order.

First we have proven several lemmas to show to the reader the system of this
logic. We also proved neither of the two theories trivializes intuitionistic logic,
hence they are weaker than their classical versions.

We explored the theory of equality where the relation is not stable. We intro-
duced the sequence of inequalities and stability axioms and constructed several
models as counterexamples to show the implications x ̸=n y → x ̸=n+1 y and
the contraposition ¬(x ̸=n+1 y) → ¬(x ̸=n y) are not valid in the theory. Then
we proved the stability axioms hold in the theory of apartness so that we could
show the conservativity theorem.

We then continued to the theory of linear order where we have shown two
possible axiomatizations. In neither of this axiomatizations the law of trichotomy
holds. We have proven we can implement linear ordering on any model of the
theory apartness. This lemma helped us prove the conservativity theorems.
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[Smo73a] Craig Smoryński. Applications of Kripke models. In A. S. Troelstra,
editor, Metamathematical Investigations of Intuitionistic Arithmetic and
Analysis, number 344 in LNM, pages 324–391. Springer, 1973.
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