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Introduction
This bachelor thesis is motivated by the desire to find an exact solution to Ein-
stein’s equations (involving the cosmological term), where the right side of the
equations describes a perfect fluid which is in combination electromagnetic field.

When Albert Einstein published for the first time his field equations in 1915,
he created the most precise theory of gravity till nowadays. Many revolutionary
and in his time unimaginable predictions have been made since then, based purely
on the elegant formalism and mathematical pillars of his theory and many of those
were experimentally proven only in recent years. Even though solving Einstein’s
equations is not an easy task, due to non-linearity of the equations, there exist
many exact solutions today. We all know Shchwarzschild’s solution from 1916 for
spacetime outside non-rotating spherical mass without electric charge with zero
cosmological constant, or FLRW solution which has deep cosmological meaning.
These two solutions are some of the first solutions ever found and also some of
the most influential ones during the years, giving first predictions for a black hole
and Big Bang.

There, of course, exist many more solutions besides those two already named,
there even exist whole classes of solutions like vacuum solutions, electrovacuum
solutions or fluid solutions. What all these solutions have in common is, that
they usually take into account only one source that is curving the spacetime.
For example if we are looking at electrovacuum solutions, we assume that the
only thing appearing on the right side of Einstein’s equations is stress-energy
tensor given simply by electromagnetic field and nothing else. Same thing for
fluid solutions and others as well. In our work, we are going to try to merge two
sources, namely magnetic field and prefect fluid, into one and try to find such
spacetime, for which this source of curvature would make sense.

Of course, there exist solutions specifically for perfect fluids (FRW radiation
fluids, Wahlquist fluid,...) and for electromagnetic fields (Reissner–Nordström
electrovacuum solution, Kerr–Newman electrovacuum,...). As already stated
above, our work is going to be a bit harder here, due to trying to merge both of
these cases into one. We are going to try to find a solution, starting from a given
spacetime that we deform by introducing new functions into the original metric.
We then solve Maxwell’s equations and make sure that the resulting stress-energy
tensor would satisfy our requirement of perfect fluid plus an electromagnetic field.
The two seed spacetimes we decided to look at are namely the Kantowski-Sachs
metric and the Minkowski metric. The modifications are done by introducing
unknown time-dependent functions. The choice of these spacetimes is based on
two facts: firstly, they are both mathematically simple and, secondly, they admit
cylindrical symmetry, which is of interest since there is a family of static and sta-
tionary cylindrically symmetric spacetimes admitting an electromagnetic field. It
is thus reasonable to hope that by perturbing these solutions—applying a met-
ric deformation—one could find a solution admitting a more general form of the
source, which would consist of both an electromagnetic field and a perfect fluid.
We further assume that the Maxwell field inherits the symmetry of the spacetime
and that the fluid is at rest with respect to the (preferred) coordinate system
we use. This choice of the electromagnetic field enables us to solve the Maxwell
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equations, leaving thus only Einstein equations to deal with. As a novel feature,
we are particularly interested in time-dependent solutions. We assume, that the
resulting stress-energy tensor on the right side of the equations is going to be
a sum of electromagnetic stress-energy tensor and of perfect fluid stress-energy
tensor.

These assumptions are not without prejudice to the generality. There could
possibly exist perfect fluids combined with an electromagnetic field that result in a
completely different metric, but our assumptions are huge simplifications, thanks
to which we can get corresponding tensor to perfect fluid just from knowledge of
metric tensor and Maxwell’s tensor. Additionally, resulting equations respectively
inequalities won’t be that hard to solve, as they could be, if we assumed metric
tensor in a different forms. On the other hand, the price we are to pay is that it
may easily turn out that there are no satisfactory solutions with our assumptions.

As we have mentioned in previous paragraphs, solving Einstein’s equations is
hard due to their non-linearity, even for vacuum. Our task here is all the more
difficult because we only have one non-linear differential equation and several
differential inequalities we need to comply with. Unfortunately, there exists no
comprehensive theory of differential inequalities, so the only thing that is left is
“blindly” trying to find functions, that would satisfy our inequalities.

In this thesis, we are going to use spacelike metric signature convention, mean-
ing that the signature of our metric tensor is (−, +, +, +).
We also set c = G = 1, thus κ = 8π.
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1. Einstein’s equations
As mentioned in the preface, Albert Einstein came up with his field equations in
1915 and to this day it is the unsurpassed theory of gravity.

It is a total of 10 strongly nonlinear differential equations for the metric field.
In other words, as is often stated in popular literature, “Matter tells spacetime
how to curve and spacetime tells matter where to move.”—this is, in fact, a
loosely stated quotation by John Archibald Wheeler, see [Misner et al. [1973]].
Thanks to the elegant formalism of differential geometry, the equations don’t look
particularly complicated at first glance. Many people not interested in general
relativity would hardly notice, that there are several equations involved and not
just one. But the reality is, that despite the power of today’s computing technol-
ogy, even more than a century after the publication of Einstein’s general theory
of relativity, the only known solutions are those that assume many symmetries or
great simplifications. The sad truth remains that solving the equations of general
relativity in general seems like a nearly, if not completely, impossible task.

So let us now look at the shape of the equations we are talking about.

Gµν + Λgµν = 8πTµν . (1.1)

The Gµν tensor is named the Einstein tensor after its discoverer and can be
written in a form

Gµν = Rµν − 1
2Rgµν , (1.2)

where Rµν is Ricci tensor and R = Rµ
µ is Ricci scalar.

Term Λgµν is called the cosmological term. Albert Einstein originally added
it in his equations in 1917 because he liked the idea of a static, spherical universe
[Einstein [1917]]. A move he later called “the biggest blunder” of his life was
proved correct when Edwin Hubble demonstrated from redshift observations that
the universe was expanding.

The last term on the right side of the equations is called stress-energy tensor
and represents the source of spacetime curvature in the equations. In general,
spacetime does not have to be curved only by matter. For example, the curvature
of spacetime can also be caused by electromagnetic fields. It is also generally
assumed that the sources are additive, i.e. the total source of spacetime curvature
(total the stress-energy tensor) for multiple sources simultaneously is the sum
over the individual sources (i.e. is the sum over the corresponding stress-energy
tensors).

So if we now rewrite the Einstein equations for a field of multiple curvature
sources, we get equation

Rµν − 1
2Rgµν + Λgµν = 8π

∑︂
sources

T µν . (1.3)

Depending on the shape of the right side of Einstein’s equations, we speak
of three or four basic classes of solutions respectively. For Tµν = 0 we speak
of vacuum solutions, for Tµν given by a pure electromagnetic field we speak of
electro-vacuum solutions, and for solutions where the source is a perfect fluid we
speak of solutions with a perfect fluid. The fourth case is the pressureless dust,
which is a special case of the ideal fluid.
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In the present thesis, we investigate an interesting option of combining two
different source terms on the right-hand side of Einstein equations. Namely, we
add the electromagnetic field and perfect fluid. In fact, we shall further restrict
the electromagnetic field, specifying it completely, and only look for the remaining
stress-energy contribution due to the perfect fluid.

More about stress-energy tensors is written in the next section, here we now
just derive a useful identity for Ricci scalar for the case where the stress-energy
tensor on the right side of Einstein’s equations is traceless. We start with Ein-
stein’s equations

Rµν − 1
2Rgµν + Λgµν = 8πT mag

µν . (1.4)

Now, we multiply the whole equation system by gµν , which gives us one “trace
equation” and use a fact, that trace of electromagnetic stress-energy tensor is
equal to 0 (as has been shown in chapter 1.2).

gµνRµν − 1
2Rgµνgµν + Λgµνgµν = 8πgµνTµν

R − 2R + 4Λ = 0
R = 4Λ.

(1.5)

This identity states for any traceless stress-energy tenor. Example of an traceless
stress-energy tensor is for example any electro-magnetic stress-energy tensor.
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2. Stress-energy tensor
In Newton’s theory of gravity is generated by mass density, where equation

∆Φ = 4πGρ. (2.1)

When Albert Einstein was discovering his new theory of gravity, he needed source
for his gravitational field (or as we know source of curvature). In his theory, this
place is represented by the stress energy tensor Tµν . This tensor describes, how
does density and flow of energy and momentum in spacetime and is analogue to
mass density in Newtonian theory.

2.1 Electromagnetic stress-energy tensor
Important form of stress-energy tensor in our work is the one of electromagnetic
field [Misner et al. [1973]]. Electromagnetic field stress energy tensor is defined
by equation

Telmag
µν = 1

µ0

(︃
F µαgαβF νβ − 1

4gµνFδγF δγ
)︃

, (2.2)

where F µν is corresponding Maxwell tensor and gµν is metric tensor. We also set
µ0 = 4π in accordance with the CGS system of units.

What is interesting about electro-magnetic stress-energy tensor in four dimen-
sions is, that it is traceless. Statement can be simply proven from definition by
following steps

Telmag
µν = F µαgαβF νβ − 1

4gµνFδγF δγ

Telmag
µ
µ = gµνTelmag

µν = gµν

(︃
F µ

βF νβ − 1
4gµνFδγF δγ

)︃
Telmag

µ
µ = FνβF νβ − FδγF δγ = 0,

where we have used that gµν is inverse to gµν , so gµνgµν = 4 and a fact, that we
can change our index notation ν → δ and β → γ.

However this identity only holds in four dimensions. In d dimensions, we have
the following equation

Telmag
µ
µ = F µνFµν

(︄
4 − d

4

)︄
. (2.3)

2.2 Perfect fluid stress-energy tensor
Another very important form of stress-energy tensor for us is the one for a perfect
fluid, since we would like to merge these two sources.

Definition of stress energy tensor for a perfect fluid is of a form

T αβ = (ρ + p) uαuβ + pgαβ, (2.4)

where ρ is energy density, p is pressure, uα is four-velocity and gαβ is metric
tensor.
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In its rest frame, the stress-energy tensor of a perfect fluid has the form

T α
β =

⎡⎢⎢⎢⎣
−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎤⎥⎥⎥⎦ , (2.5)

since in its rest frame, we find uα = [1, 0, 0, 0] , uα = [−1, 0, 0, 0] and gα
β = δα

β =
diag (1, 1, 1, 1).

2.3 Energy conditions
If we are talking about perfect fluid solutions of Einstein’s equations, we must not
forget to mention energy conditions [Hawking and Ellis [1975]], which are going
to play a significant role in our subsequent work.

Einstein’s theory of general relativity does not place any requirements on the
stress-energy tensor (apart from symmetry in the first and second index), so it
can quite easily happen that the resulting solutions are for a substance with non-
physical meaning. To avoid such solutions, it is reasonable for the stress-energy
tensor to satisfy the following four conditions

(1) Weak energy condition states, that every (physical) observer has to de-
tect non-negative energy density (Xα is tangent to a future directed, time-
like worldline):

ρ = TαβXαXβ ≥ 0. (2.6)

(2) Null energy condition states, that even in a limiting case of speed of light,
the weak condition should hold

ν = Tαβkαkβ ≥ 0. (2.7)

(3) Dominant energy condition requires that the weak energy condition hold
true and, additionally, that the momentum flux measured by any observer
(the stress-energy tensor projected on their tangent vector field or, as a
limiting case, on the tangent vector field to any null trajectory) −TαβXβ

be future directed. This means that mass-energy can never be observed
moving faster than the speed of light.

(4) Strong energy condition restricts negative pressure(︃
Tαβ − 1

2Tgαβ

)︃
XαXβ ≥ 0, (2.8)

where Tαβ is stress-energy tensor and T = T µ
µ.

Energy conditions can be reformulated in terms of eigenvalues of perfect fluid
stress-energy tensor in its rest-frame into a form

(1) Null energy condition ρ + p ≥ 0

(2) Weak energy condition ρ ≥ 0, ρ + p ≥ 0
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(3) Dominant energy condition ρ ≥ |p|

(4) Strong energy condition ρ + p ≥ 0, ρ + 3p ≥ 0,

As we can see above, trying to find a solution satisfying the energy conditions
in general relativity means solving a system of nonlinear differential inequalities,
which is very difficult, if not completely impossible. There is not even much
literature on the subject of differential inequalities (e.g., [Szarski [1965]]), so we
have no choice but to try to “blindly” search for solutions and try to see if they
satisfy the aforementioned system of differential inequalities.
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3. Kantowski-Sachs seed
As we have written in the introduction, we are going to assume a metric of the
Kantowski-Sachs-like form. Original Kantowski-Sachs metric has been analysed
independently by Kompaneets and Chernov, and Kantowski and Sachs. It is of
a form [Griffiths and Podolský [2009]]

ds2 = −dt2 + X(t)2dχ2 + Y (t)2
(︂
dθ2 + sin(θ)2dϕ2

)︂
. (3.1)

This metric was chosen primarily because it is a cylindrical spacetime and it is
relatively “easy” to exactly solve cylindrical spacetimes. Also, there exist exact
solutions for it containing both an electromagnetic field and an ideal fluid, as well
as solutions containing cosmological constant (e.g., [Lim [2018]], [Astorino [2012]],
[Veselý and Žofka [2019]], [Veselý and Žofka [2021]]). In particular, solutions
with the cosmological constant are of interest to us, since experimental data
consistently confirm its non-zeroity.

The exact form of the deformed metric we will use in our calculations below
is

ds2 = −g(t)dt2 + a(t)dz2 + b(t) dx2 + dy2[︂
1 + Λ

2 r2
]︂2 , (3.2)

where the radial cylindrical coordinate is r2 := x2 + y2.

The Maxwell tensor is further assumed to correspond to a magnetic field
parallel to the z-axis, which reads

Fxy = −Fyx = B(r2, t). (3.3)

A cylindrically symmetric spacetime does not necessarily imply a cylindrically
symmetric source, that is, a magnetic field. This is merely our choice in a hope
that it might lead to a simplification of the resulting equations.

3.1 Right side of Einstein’s equations for mag-
netic field

At first we write down and compute Maxwell equations and find their general
solution with no electric charges and currents. We start with potential equations

Fµν,λ + Fνλ,µ + Fλµ,ν = 0. (3.4)

Due to the vanishing of most of the terms of Maxwell’s tensor, many equations
are going to be trivial. From equations

Ftx,λ + Fxλ,t + Fλt,x = Fxy,t = −Fyx,t = 0, (3.5)

Fxz,λ + Fzλ,x + Fλx,z = Fyx,z = −Fxy,z = 0, (3.6)
we can easily observe, that the function B(r2, t) is actually time independent.
From Maxwell’s field equations

F µν
;µ = 0, (3.7)
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we obtain a system of two partial differential equations for unknown function
B(r2)

2ΛxB(r2) +
(︄

1 + Λ
2 r2

)︄
∂xB(r2) = 0, (3.8)

2ΛyB(r2) +
(︄

1 + Λ
2 r2

)︄
∂yB(r2) = 0. (3.9)

General solution of this system is

B(r2) = c1

(1 + Λ
2 r2)2 , (3.10)

where c1 is integration constant. Its dimension is the same as that of the magnetic
field so in the following we set c1 = B. Now we can easily calculate corresponding
stress-energy tensor T µν

mag according to equation (2.2) and then lower its indices
according to equation

T mag
αβ = gαµgβνT µν

mag. (3.11)
We gain

T mag
tt = g(t)B2

8πb(t)2 , (3.12)

T mag
xx = T mag

yy = B2

8πb(t)(1 + Λ
2 r2)2 , (3.13)

T mag
zz = − a(t)B2

8πb(t)2 . (3.14)

3.2 Left side of Einstein’s equations
Next step is computing left side of Einstein’s equations, namely Einstein tensor
and term Λg.

At first, we compute affine connection components using

Γµ
νκ = gµαΓανκ = 1

2gµα(gαν,κ + gακ,ν − gνκ,α), (3.15)

from where we gain
Γt

tt = g′(t)
2g(t) , (3.16)

Γt
xx = Γt

yy = b′(t)
2g(t)(1 + Λ

2 r2)2 , (3.17)

Γx
tx = Γx

xt = b′(t)
2b(t) , (3.18)

Γy
ty = Γy

yt = b′(t)
2b(t) , (3.19)

Γt
zz = a′(t)

2g(t) , (3.20)

Γz
tz = Γz

zt = a′(t)
2a(t) , (3.21)
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Γx
xx = − Λx

1 + Λ
2 r2 , (3.22)

Γx
xy = Γx

yx = −Γy
xx = − Λy

1 + Λ
2 r2 , (3.23)

Γy
xy = Γy

yx = −Γx
yy = − Λx

1 + Λ
2 r2 , (3.24)

Γy
yy = − Λy

1 + Λ
2 r2 . (3.25)

Any other combination of indices is trivial.
From here we can calculate Ricci tensor and Ricci scalar using the following

identities
Rµν = Rκ

µκν = Γα
µν,α − Γα

αν,µ + Γα
αβΓβ

µν − Γα
µβΓβ

αν , (3.26)
R = gµνRµν = Rµ

µ. (3.27)
There we gain

Rtt = 1
4a(t)2g(t)b(t)2

[︂
−2g(t)b(t)2a′′(t) − 4g(t)b′′(t)b(t)a(t)2

+g(t)b(t)2(a′(t))2 + g′(t)b(t)2a(t)a′(t)
+2a(t)2b′(t)[g′(t)b(t) + g(t)b′(t)]

]︂
, (3.28)

Rxx = Ryy = 2g(t)b′′(t)a(t) + [a′(t)g(t) − g′(t)a(t)]b′(t) + 8Λg(t)2a(t)
4a(t)g(t)2(1 + Λ

2 r2)
, (3.29)

Rzz = 1
4b(t)g(t)2a(t) [2b′(t)a′(t)g(t)a(t) + 2g(t)a(t)b(t)a′′(t)

−g(t)b(t)(a′(t))2 − g′(t)b(t)a(t)a′(t)
]︂

,

(3.30)

and

R = 1
2a(t)2g(t)2b(t)2

[︂
8Λg(t)2b(t)a(t)2 − g(t)(b′(t))2a(t)2

+ 2g(t)b′(t)b(t)a(t)a′(t) + 4g(t)b′′(t)b(t)a(t)2 + 2g(t)b(t)2a(t)a′′(t)
−g(t)b(t)2(a′(t))2 − 2b′(t)g′(t)b(t)a(t)2 − g′(t)b(t)2a(t)a′(t)

]︂
.

(3.31)

Finally we can get Einstein tensor from formula

Gµν = Rµν − 1
2Rgµν . (3.32)

We obtain

Gtt = 8Λg(t)b(t)a(t) + (b′(t))2a(t) + 2b′(t)b(t)a′(t)
4a(t)b(t)2 , (3.33)

Gxx = Gyy = 1
4g(t)2a(t)2b(t)(1 + 1

Λr2)
[︂
−2g(t)b(t)2a(t)a′′(t)−

2g(t)b′′(t)b(t)a(t)2 + g(t)b(t)2(a′(t))2+
b(t)a(t)[g′(t)b(t) − g(t)b′(t)]a′(t)
+a(t)2b′(t)[g′(t)b(t) + g(t)b′(t)]

]︂
,

(3.34)

Gzz = −a(t)[8Λg(t)2b(t) − (b′(t))2g(t) + 4g(t)b′′(t)b(t) − 2b′(t)g′(t)b(t)]
4g(t)2b(t)2 . (3.35)
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3.3 Searching for a perfect fluid
Now, according to (1.3) we add Λgµν term, subtract 8πT mag

µν term from Einstein
tensor and divide everything with 8π, so we obtain T leftover

µν tensor on the left
side of Einstein’s equations.

T leftover
tt = 1

32πa(t)b(t)2

[︂
a(t)(b′(t))2 + 2b(t)b′(t)a′(t)

−4g(t)a(t)[B2 + Λb(t)2 − 2Λb(t)
]︂

,

(3.36)

T leftover
xx = T leftover

yy = 1
32πa(t)2g(t)2b(t)[1 + 1

Λr2]
[︂
−2g(t)b(t)2a(t)a′′(t)

− 2g(t)b′′(t)b(t)a(t)2 + g(t)b(t)2(a′(t))2

− a(t)b(t)[g(t)b′(t) − g′(t)b(t)]a′(t)
+ a(t)2

[︂
(b′(t))2g(t) + b′(t)g′(t)b(t)

−4g(t)2[B2 − Λb(t)2]
]︂]︂

,

(3.37)

T leftover
zz = 1

32πg(t)2b(t)2 a(t)
[︂
4Λg(t)2b(t)2 + 4B2g(t)2

− 8Λg(t)2b(t) + (b′(t))2g(t) − 4g(t)b′′(t)b(t)
+2b′(t)g′(t)b(t)] .

(3.38)

Now we lift the first index and we choose the rest frame to work in, where
Tfluid

α
β = diag(−ρ, p, p, p) which corresponds to a fact, that the perfect fluid

we are looking for is at rest in the coordinate system connected wit our coordi-
nates (generally, the fluid can be moving according to this system, which would
give us different stress-energy tensor). This gives us following equations

Tfluid
t
t = − 1

32πa(t)b(t)2g(t)
[︂
(b′(t))2a(t) + 2b′(t)b(t)a′(t)

−2g(t)a(t)[2B2 + 2Λb(t)2 − 4Λb(t)]
]︂

= −ρ,

(3.39)

Tfluid
x

x = Tfluid
y

y = 1
32πb(t)2a(t)2g(t)2

[︂
−2g(t)b(t)2a(t)a′′(t)

− 2g(t)b′′(t)b(t)a(t)2 + g(t)b(t)2(a′(t))2

+ b(t)a(t)[g′(t)b(t) − g(t)b′(t)]a′(t)
+ a(t)2

[︂
(b′(t))2g(t) + b′(t)g′(t)b(t)

−2g(t)2[2B2 − 2Λb(t)2]
]︂]︂

= p,

(3.40)

Tfluid
z

z = 1
32πb(t)2g(t)2

[︂
−4g(t)b′′(t)b(t) + (b′(t))2g(t)

+ 2b′(t)g′(t)b(t) + 2g(t)2
[︂
2B2 + 2Λb(t)2

−4Λb(t)]] = p.

(3.41)

Now we have one condition on the metric functions a(t), b(t) and g(t), which
comes from the equality of partial pressures (2.5), namely Tfluid

x
x = Tfluid

z
z.

12



We also have energy conditions so that the stress-energy tensor Tfluid has
reasonable physical interpretation. We namely want to choose such functions
a(t), b(t) and g(t) that ρ ≥ 0, ρ ≥ |p| and p ≥ 0.

Solving this set of differential inequalities and one differential equation isn’t
really easy, so we are going to use several assumptions to simplify our problem.

3.3.1 Purely magnetic field (ρ = p = 0)
At first, we assume the limiting case of p = ρ = 0. This solution correspond to
a purely magnetic stress-energy tensor on the right side of Einstein’s equations.
From this assumption we get three homogeneous equations for three functions
a(t), b(t) and g(t)

Tfluid
t
t = 0, (3.42)

Tfluid
x

x = Tfluid
y

y = 0, (3.43)
Tfluid

z
z = 0. (3.44)

For these equations, there exist two different general solutions for functions
a(t), b(t) and g(t).

1st solution

b(t) = 1 ±
√

−ΛB2 + Λ2

4Λ = const., (3.45)

while g(t) is arbitrary (which suits our gauge freedom) and a(t) is a complicated
functional of functions b(t) and g(t). Since we can always rescale the z coordinate,
we can set b(t) = 1 so that these 2 solutions are, in fact, equivalent. To simplify
the solution further, we use the gauge freedom and reparametrize the time so
that g(t) = 1, which leads to a(t) of the form

a(t) = 1
4 (C1t + C2)2 → αt2, (3.46)

where C1 and C2 are integration constants and α = C2
1/4 is obviously posi-

tive number, produced by changing the time parametrization. Nullity of terms
Tfluid

x
x = Tfluid

y
y also gives us condition Λ = B2.

From here we get a spacetime given by metric

ds2 = −dt2 + t2dz2 + dx2 + dy2[︂
1 + Λ

2 r2
]︂2 , (3.47)

where we got rid of α by rescaling the coordinate z.
We can notice that this solution is very similar to the Plebanski-Hacyan so-

lution [Žofka [2019]].
Now we calculate Kretschmann, Ricci, and Maxwell scalars (to examine the

limiting cases of our solution and its singularities) according to equation (3.27)
respectively according to

K = RαβγδR
αβγδ, (3.48)

and
F 2 = FαβF αβ. (3.49)
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Ricci scalar should come out of calculation to value of 4Λ, as it has been showed
in (1.5). So we have an expected value for Ricci scalar and computation with our
specific metric tensor should prove it. It should also work as a verification of our
previous calculations.

Thus from computations with our metric and Maxwell tensor, solutions are

K = (a′(t))2(b′(t))2

2b(t)2a(t)2g(t)2 + [8Λg(t)b(t) + (b′(t))2]2
4b(t)4g(t)2

+ [−2a(t)g(t)a′′(t) + a′(t)g′(t)a(t) + (a′(t))2g(t)]2
4g(t)4a(t)4

+ [(b′(t))2g(t) + b′(t)g′(t)b(t) − 2b′′(t)g(t)b(t)]2
2g(t)4b(t)4 ,

(3.50)

and
F 2 = 2B2

b(t)2 . (3.51)

Ricci scalar is evaluated in equation (3.31).
Now, if we insert our new metric functions from metric (3.47), we get the

following expressions for the Kretschmann, Ricci and Maxwell scalars

K = 16Λ2, (3.52)

R = 4Λ, (3.53)
F 2 = 2B2. (3.54)

We can see, that all scalars are constant, although metric function a(t) is time
dependent.

This is something we wouldn’t have expected and is certainly worth further
thought and consideration, or even further work to explore the nature of this
spacetime.

2nd solution

Now we want to take a look at the second general solution given by following
equations

g(t) = 12(b′(t))2

16Λb(t)2 − 96Λb(t) − 3B2 + 12C2

√︂
b(t)

, (3.55)

a(t) = C1 exp
(︄∫︂ 16Λg(t)b(t)2 + g(t)B2 − 32Λg(t)b(t) − 4(b′(t))2

8b′(t)b(t) dt

)︄
, (3.56)

and function b(t) is arbitrary.
If we substitute equation (3.55) into equation (3.56), integral in equation

(3.56) changes into form
∫︂ 16Λg(t)b(t)2 + g(t)B2 − 32Λg(t)b(t) − 4(b′(t))2

8b′(t)b(t) dt =

∫︂ ⎛⎜⎝ 48Λb(t)2 − 96Λb(t) + 3B2

4b(t)
[︂
16Λb(t)2 − 96Λb(t) − 3B2 + 12C2

√︂
b(t)

]︂ − 1
2b(t)

⎞⎟⎠ b′(t)dt,

(3.57)
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where C2 is integration constant.
Now we can change integration variable and edit the term in brackets into a

term with common denominator, so that the integral goes into form

∫︂ ⎛⎜⎝ 48Λb(t)2 − 96Λb(t) + 3B2

4b(t)
[︂
16Λb(t)2 − 96Λb(t) − 3B2 + 12C2

√︂
b(t)

]︂ − 1
2b(t)

⎞⎟⎠ b′(t)dt =

∫︂ ⎛⎜⎝ 16Λb(t)2 − 6
√︂

b(t)C2 + 3B2

b(t)
[︂
16Λb(t)2 − 96Λb(t) − 3B2 + 12C2

√︂
b(t)

]︂
⎞⎟⎠ b′(t)dt,

(3.58)

This can also be written in a form∫︂ Ax2 + B
√

x + C

x (Ax2 + Dx − 2B
√

x − C)dx, (3.59)

which is general form of an integral we can not solve. We tried to factorize it,
but without success.

3.3.2 Zero partial pressures (ρ ̸= 0, p = 0)
Now we would like to take a look at solution with nonzero ρ in Tfluid

α
β, but with

zero partial pressures, which can be described by following set of equations

Tfluid
t
t = −ρ, (3.60)

Tfluid
x

x = Tfluid
y

y = 0, (3.61)
Tfluid

z
z = 0. (3.62)

This type of stress-energy tensor physically corresponds to incoherent dust.

To be able to move forward, we are going to need time parametrization again,
so we use g(t) = 1 to simplify equations above. Otherwise equations are too hard
to solve and only solutions we have found were those for zero ρ, which we have
discussed earlier. The equations above after parametrization go into form

Tfluid
t
t = − 1

32πa(t)b(t)2

[︂
(b′(t))2a(t) + 2b′(t)b(t)a′(t)

−4a(t)[B2 + Λb(t)2 − 2Λb(t)
]︂

= −ρ(t),
(3.63)

Tfluid
x

x = Tfluid
y

y = 1
32πb(t)2a(t)2

[︂
−2b(t)2a(t)a′′(t) − 2b′′(t)b(t)a(t)2

+ b(t)2(a′(t))2 − b(t)a(t)b′(t)a′(t)
+a(t)2

[︂
(b′(t))2 − 4[B2 − Λb(t)2]

]︂]︂
= 0,

(3.64)

Tfluid
z

z = 1
32πb(t)2

[︂
−4b′′(t)b(t) + (b′(t))2

+ 4
[︂
B2 + Λb(t)2 −2Λb(t)]

]︂
= 0.

(3.65)

After this simplification, we have two homogeneous nonlinear differential equa-
tions for functions b(t) and a(t) and one non-homogeneous differential equation
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described by equation (3.63). We would like to find metric functions a(t) and
b(t) from equations (3.64) and (3.65) and when we have them, we would like to
insert them into equation (3.63) and find a function ρ(t).

We can see, that equation (3.65) is differential equation only in function b(t).
This means, that the solution of the whole set should be findable through solving
equation (3.65) and finding function b(t), inserting the solution into equation
(3.64) and solving it for function a(t) and then inserting both functions a(t) and
b(t) into equation (3.63) and finding function ρ(t).

Unfortunately, the first step is a problem. Though the equation (3.65) is
solvable, it does not lead to any analytical function. The only thing we came
up with is using another simplification. We assume that b(t) = 1 (any different
analytical function assumptions lead to solutions for only few certain times or
have no solution at all, which is in direct conflict with physical reality). This
leads to a system of one differential equation for function a(t), one equation
restricting values of constants and one equation for ρ(t)

Tfluid
t
t = 1

8π

(︂
B2 − Λ

)︂
= −ρ, (3.66)

Tfluid
x

x = Tfluid
y

y = (a′(t))2 − 4a(t)a′′(t) − 2a(t)2 (B2 − Λ)
32πa(t) = 0, (3.67)

Tfluid
z

z = 1
8π

(︂
B2 − Λ

)︂
= 0. (3.68)

We can easily obtain, that for this solution ρ(t) = 0. This leads to the solution
we discussed in previous subsection.

3.3.3 General case (ρ, p ̸= 0)
Finally we are going to try to solve general case, assuming only equality between
partial pressures. This situation can be described with following set of equation

Tfluid
t
t = −ρ, (3.69)

Tfluid
x

x = Tfluid
y

y = Tfluid
z

z = p. (3.70)
The idea of a solution is to look at equation (3.70) and try to find functions
a(t), b(t) and g(t) that meet the condition given by partial pressure equality at
first. After that, we insert these functions into −Tfluid

t
t and into Tfluid

x
x and find

corresponding mass-energy density ρ and pressure p.
We have found two following solutions for equation (3.70)

1st solution

a(t) = C1, (3.71)

b(t) = B2

Λ , (3.72)

and function g(t) is arbitrary. If we use time parametrization g(t) = 1 and
insert functions a(t), b(t) and g(t) = 1 into equation (3.69) and (3.70), we obtain
following mass-energy density and pressure

ρ = Λ2 − B2Λ
8πB2 , (3.73)
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p = −Λ2 − B2Λ
8πB2 . (3.74)

From the resulting form of ρ and p we can easily see equation of state for our
ideal fluid

ρ = −p. (3.75)
If we compare this solution with our energy conditions (namely ρ ≥ 0, ρ ≥ |p|
and p ≥ 0), it is not hard to see that we need

ρ = p = 0 (3.76)

to satisfy the energy conditions. This means, that if we want to comply with
the energy conditions for our perfect fluid, this solution can not be a one of an
perfect fluid, but (again) only for a strictly magnetic field.

2nd solution

g(t) = b(t)2(a′(t))2 − 2b′(t)b(t)a(t)a′(t) + a(t)2(b′(t))2

a(t)
[︂∫︁

−8(−B2+Λb(t))(b′(t)a(t)−b(t)a′(t))
b(t) dt + C1

]︂ , (3.77)

and functions a(t) and b(t) are arbitrary while C1 is an integration constant. We
now try and insert some simple analytical functions a(t) and b(t) and compute the
remaining function g(t) and then take a look at how our ρ and p are evaluated.
We have tried several combinations for the most basic functions, namely t, t2,
exp(t), sin(t) and cos(t).

Whenever the function b(t) is constant in time, we can lay it equal to one
without loss of generality by a simple reparametrization of x and y coordinates.
We can also always choose gauge g(t) = 1 without any loss of generality. For
such b(t) and g(t) are ρ and p always in the same form

ρ = Λ − B2

8π
, (3.78)

p = −ρ = −Λ − B2

8π
, (3.79)

what can be easily seen from equation (3.63) and (3.65). These solutions (again)
lead to ρ = p = 0 if we want to satisfy energy conditions and are again the same
case of solution for (electro-)magnetic field. In addition, the energy conditions
again give us a condition Λ = B2 and formula for function a(t) is given by
equation (3.46).

Now, if we substitute non-constant b(t), we gain solutions, that satisfy energy
conditions for some non-trivial time intervals (if we choose suitable values for
constants Λ, B and C1). As we have written earlier, we have tried several basic
functions for a(t) and b(t), from where function g(t), ρ(t) and p(t) were computed
and the results are following

(1) a(t) = 1, b(t) = t

g(t) = − 1
−2B2ln(t) + 8tΛ − C1

, (3.80)

ρ(t) = 8B2ln(t) − 4Λt2 − 4B2 + C1

32πt2 , (3.81)
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Figure 3.1: Plotted functions ρ(t) and p(t) for Λ = 2, B = 1 and C1 = 1.

p(t) = 8B2ln(t) + 4Λt2 − 12B2 + C1

32πt2 , (3.82)

(2) a(t) = 1, b(t) = t2

g(t) = − t2

−4B2ln(t) + 2Λt2 − C1
, (3.83)

ρ(t) = −Λt4 + 4B2ln(t) − B2 + C1

8πt4 , (3.84)

p(t) = Λt4 + 4B2ln(t) − 3B2 + C1

8πt4 , (3.85)

Figure 3.2: Plotted functions ρ(t) and p(t) for Λ = 2, B = 1 and C1 = 1.

(3) a(t) = t, b(t) = t2

g(t) = − 3t3

8Λt3 − 24tB2 − 3C1
, (3.86)

ρ(t) = −3Λt5 − 10Λt3 + 45tB2 + 6C1

24πt5 , (3.87)

p(t) = 3Λt5 + 2Λt3 + 27tB2 + 6C1

24πt5 , (3.88)
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Figure 3.3: Plotted functions ρ(t) and p(t) for Λ = 2, B = 1 and C1 = 1.

(4) a(t) = t2, b(t) = t

g(t) = 3t2

−12B2t2 + 8Λt3 + 3C1
, (3.89)

ρ(t) = −12Λt4 − 72B2t2 + 64Λt3 + 15C1

96πt4 , (3.90)

p(t) = 12Λt4 − 32Λt3 + 15C1

96πt4 , (3.91)

Figure 3.4: Plotted functions ρ(t) and p(t) for Λ = 2, B = 1 and C1 = 1.

(5) a(t) = 1, b(t) = et

g(t) = − e2t

−8tB2 + 8Λet − C1
, (3.92)

ρ(t) =
[︂
−4Λe2t + B2 (8t − 4) + C1

]︂ 1
32πe2t

, (3.93)

p(t) =
[︂
4Λe2t + B2 (8t − 12) + C1

]︂ 1
32πe2t

, (3.94)
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Figure 3.5: Plotted functions ρ(t) and p(t) for Λ = 2, B = 1 and C1 = 1.

(6) a(t) = t, b(t) = et

g(t) = − (et)2 (t − 1)2

t (−4B2 t2 + 8tB2 + 8Λett − 16Λet − C1)
, (3.95)

ρ(t) = e−2t

16π (t − 1)2

[︂
−2Λ (t − 1)2 e2t + −4Λ (2t − 5) et

+2B2t3 − 2B2t2 +
(︃

−4B2 + C1

2

)︃
t − 2B2 + C1

]︃
,

(3.96)

p(t) = 2e−2t

8π (t − 1)3

[︂
2Λ (t − 1)3 e2t − 4Λ (t − 5) et + 2B2t4

− 8B2t3 +
(︃

10B2 + C1

2

)︃
t2 +

(︃
−10B2 + C1

2

)︃
t

−2B2 + C1
]︂

,

(3.97)

Figure 3.6: Plotted functions ρ(t) and p(t) for Λ = 2, B = 1 and C1 = 1.

(7) a(t) = t2, b(t) = et

g(t) = − 3 (et)2 (t − 2)2

−8B2t3 + 24B2t2 + 24Λett2 − 96Λett + 96Λet − 3C1
, (3.98)

ρ(t) = e−2t

24πt (t − 2)2

[︂
−3tΛ (t − 2)2 e2t − 24Λ (t − 2)2 et

+2B2t4 − B2t3 − 12B2t2 +
(︃

−12B2 + 3C1

4

)︃
t + 3C1

]︃
,

(3.99)
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p(t) = 4e−2t

24π (t − 2)3

[︂
3Λ (t − 2)3 e2t + 2B2t4 − 11B2t3

+18B2t2 +
(︃

−12B2 + 3C1

4

)︃
t − 24B2 + 3C1

4

]︃
,

(3.100)

Figure 3.7: Plotted functions ρ(t) and p(t) for Λ = 2, B = 1 and C1 = 1.

(8) a(t) = 1, b(t) = sin (t)

g(t) = − cos (t)2

−8B2 ln (sin (t)) + 8Λ sin (t) − C1
, (3.101)

ρ(t) = 8B2 ln (sin (t)) − 4Λ sin (t)2 − 4B2 + C1

32π sin (t)2 , (3.102)

p(t) = 8B2 ln (sin (t)) + 4Λ sin (t)2 − 12B2 + C1

32π sin (t)2 , (3.103)

Figure 3.8: Plotted functions ρ(t) and p(t) for Λ = 2, B = 1 and C1 = 1.

(9) a(t) = 1, b(t) = cos (t)

g(t) = − sin (t)2

−8B2 ln (cos (t)) + 8Λ cos (t) − C1
, (3.104)

ρ(t) = 8B2 ln (cos (t)) − 4Λ cos (t)2 − 4B2 + C1

32π cos (t)2 , (3.105)

p(t) = 8B2 ln (cos (t)) + 4Λ cos (t)2 − 12B2 + C1

32π cos (t)2 , (3.106)
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Figure 3.9: Plotted functions ρ(t) and p(t) for Λ = 2, B = 1 and C1 = 1.

(10) a(t) = cos (t), b(t) = sin (t)

g(t) = − 1
cos(t)

[︂
−8B2 ln

(︂
1

sin(t) − cot(t)
)︂

+ 8Λt − C1
]︂ , (3.107)

ρ(t) = 1
32π sin(t)2

[︄
24B2 cos(t)

(︃
cos(t)2 − 2

3

)︃
ln
(︄

1 − cos(t)
sin(t)

)︄
+ (−24Λt + 3C1) cos(t)3 + 4Λ cos(t)2

+ (16Λt − 2C1) cos(t) − 4B2 + 8Λ sin(t) − 4Λ
]︂

,

(3.108)

p(t) = 1
32π sin(t)2

[︄
−40B2 cos(t)

(︃
cos(t)2 − 6

5

)︃
ln
(︄

1 − cos(t)
sin(t)

)︄
+ (40Λt − 5C1) cos(t)3 + (−48Λt + 6C1) cos(t)
+
(︂
−16B2 + 16Λsin(t) − 4Λ

)︂
cos(t)2 + 4B2

−8Λ sin(t) + 4Λ] ,

(3.109)

Figure 3.10: Plotted functions ρ(t) and p(t) for Λ = 2, B = 1 and C1 = 1.

(11) a(t) = sin (t), b(t) = cos (t)

g(t) = 1
sin(t)

[︂
−8B2 ln

(︂
1

cos(t) + tan(t)
)︂

+ 8Λt + C1
]︂ , (3.110)

ρ(t) = 1
32π cos(t)2

[︄
24B2 sin(t)

(︃
cos(t)2 − 1

3

)︃
ln
(︄

1 + sin(t)
cos(t)

)︄
+ ((−24Λt − 3C1) sin(t) − 4Λ) cos(t)2 + 8Λ cos(t)
(8Λt + C1) sin(t) − 4B2

]︂
,

(3.111)
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p(t) = 1
32π cos(t)2

[︄
−40B2 sin(t)

(︃
cos(t)2 + 1

5

)︃
ln
(︄

1 + sin(t)
cos(t)

)︄
− 16Λ cos(t)3 +

(︂
(40Λt + 5C1) sin(t) + 16B2 + 4Λ

)︂
cos(t)2

+8Λ cos(t) + (8Λt + C1) sin(t) − 12B2
]︂

,

(3.112)

Figure 3.11: Plotted functions ρ(t) and p(t) for Λ = 2, B = 1 and C1 = 1.

where C1 is integration constant.

Unfortunately, it was not possible to find a solution that would satisfy all
of the energy conditions on the whole interval t ∈ (−∞; ∞) (or in the domain
of functions ρ(t) and p(t)). This insight can be gained from the asymptotic be-
haviour of functions ρ(t) and p(t) for each solution and also from graphs plotted
for concrete values of constants.

It is important to say, that the functions appearing in our metric are not
squared. This could lead to change of signature of our metric tensor. Solutions,
which would satisfy energy conditions but assumed negative metric function on
the interval where they satisfied the conditions, would be perfect fluids, but the
spacetime they would be in wouldn’t be one from our universe. Thus they would
not have any physical meaning.

Because there have not been found any solution which would satisfy energy
conditions, we feel no need to plot or study metric functions, that were inserted
into functions ρ(t) and p(t) in points (1)-(11), but they will play significant role
in the next chapter.
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4. Minkowski seed
Instead, we now assume the metric to be of the form

ds2 = −g(t)dt2 + dz2

b(t)2 + b(t)2
(︂
dx2 + dy2

)︂
, (4.1)

where the radial cylindrical coordinate is r2 := x2 + y2. We keep g(t) in the
metric although it is merely a gauge—choosing a suitable function here can be
advantageous in subsequent calculations.

Again, choosing Minkowski-type of a metric has its reason due to that there
are solutions involving electromagnetic field and cosmological term, as was written
in introduction, see, e.g., [Thorne [1967]].

The Maxwell tensor corresponding to a (static) magnetic field parallel to the
z-axis again reads

Fxy = −Fyx = B(r2, t). (4.2)

Now we are going to proceed as per the previous section.

4.1 Right side of Einstein’s equations for mag-
netic field

Maxwell’s potential equations are going to look exactly the same way as the have
in previous chapter. From them we gain (again), that function B(r2, t) is actually
time independent. Equations that change beacuase of difference in metric are field
ones. From equation (3.7) we obtain system of two partial differential equations
for unknown function B(r2).

∂xB(r2) = 0, (4.3)

∂yB(r2) = 0. (4.4)

Solution of this system is quite simple and it is

B(r2) = const. (4.5)

Again, we set this constant equal to the magnetic field B. According to equation
(2.2), we can now calculate corresponding stress-energy tensor T µν

mag and lower its
indices according to equation (3.11). We gain

T mag
tt = g(t)B2

8πb(t)4 , (4.6)

T mag
xx = T mag

yy = B2

8πb(t)2 , (4.7)

T mag
zz = − B2

8πb(t)6 . (4.8)
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4.2 Left side of Einstein’s equations
Now we compute Einstein tensor and Λg term, so we gain left side of Einstein’s
equations.
We start with computing components of affine connection again, using equation
(3.15), from where we gain

Γt
tt = g′(t)

2g(t) , (4.9)

Γt
xx = Γt

yy = b(t)b′(t)
g(t) , (4.10)

Γx
tx = Γx

xt = b′(t)
b(t) , (4.11)

Γy
ty = Γy

yt = b′(t)
b(t) , (4.12)

Γt
zz = − b′(t)

g(t)b(t)3 , (4.13)

Γz
tz = Γz

zt = −b′(t)
b(t) . (4.14)

Any other combinations of indices is trivial.
From here, we calculate Ricci tensor and Ricci scalar using identities given by

equations (3.26) respectively (3.27). We gain

Rtt = −2b′′(t)g(t)b(t) + b′(t)g′(t)b(t) − 4(b′(t))2g(t)
2g(t)b(t)2 , (4.15)

Rxx = Ryy = b(t) (2b′′(t)g(t) − b′(t)g′(t))
2g(t)2 , (4.16)

Rzz = −2b′′(t)g(t) + b′(t)g′(t)
2b(t)3g(t)2 , (4.17)

and
R = 2b′′(t)g(t)b(t) − b′(t)g′(t)b(t) + 2(b′(t))2g(t)

g(t)2b(t)2 . (4.18)

At last we get Einstein tensor from equation (3.32)

Gtt = −(b′(t))2

b(t)2 , (4.19)

Gxx = Gyy = −(b′(t))2

g(t) , (4.20)

Gzz = −2b′′(t)g(t)b(t) + b′(t)g′(t)b(t) − (b′(t))2g(t)
b(t)4g(t)2 . (4.21)
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4.3 Searching for a perfect fluid
As we have done it in previous chapter, now we add Λg term to the left side of
Einstein’s equations and subtract 8πT mag

µν term from it and than divide everything
with 8π. We obtain T leftover

µν on the left side of Einstein’s equations, this time
for Minkowski-like spacetime.

T leftover
tt = − 1

8π

(︄
g(t)B2

b(t)4 + (b′(t))2

b(t)2 + Λg(t)
)︄

, (4.22)

T leftover
xx = T leftover

yy = − 1
8π

(︄
B2

b(t)2 + (b′(t))2

g(t) − Λb(t)2
)︄

, (4.23)

T leftover
zz = 1

8π

(︄
B2

b(t)6 + −2b′′(t)g(t)b(t) + b′(t)g′(t)b(t) − (b′(t))2g(t)
b(t)4g(t)2 + Λ

b(t)2

)︄
.

(4.24)
Now we lift the first index and choose a rest frame to work in again, so we get
Tfluid

α
β = diag(−ρ, p, p, p). This gives us following equations

Tfluid
t
t = 1

8π

(︄
B2

b(t)4 + (b′(t))2

g(t)b(t)2 + Λ
)︄

= −ρ, (4.25)

Tfluid
x

x = Tfluid
y

y = − 1
8π

(︄
B2

b(t)4 + (b′(t))2

g(t)b(t)2 − Λ
)︄

= p, (4.26)

Tfluid
z

z = 1
8π

(︄
B2

b(t)4 + −2b′′(t)g(t)b(t) + b′(t)g′(t)b(t) − (b′(t))2g(t)
b(t)2g(t)2 + Λ

)︄
= p.

(4.27)
Now we have again one condition coming out of equality of partial pressures
(Tfluid

x
x = Tfluid

z
z), for metric functions g(t).and b(t).

We also have energy conditions such that ρ ≥ 0, ρ ≥ |p| and p ≥ 0.
We are going to try to find such functions g(t) and b(t), that everything writ-

ten above states true.

We have tried all assumptions we have tried in chapter 3 for Kantowski-Sachs
metric, but unlike in chapter 3, we have found only solutions for general case,
where our only assumption was partial pressures equality. Even though we were
not able to find a solution for these assumptions, they do exist for a vanishing
cosmological constant [Thorne [1967]].

If we look for example on the assumption where ρ = p = 0, we can with simple
observation see, that in equations (4.25) and (4.26) term (b′(t))2

g(t)b(t)2 once equals
−Λ − B2

b(t)4 and once Λ − B2

b(t)4 , which necessarily means a vanishing cosmological
constant.

As we have written a little bit earlier, we have found one general solution
for general case, where ρ, p ̸= 0 and we assume only partial pressures equality,
described by equations (3.69) and (3.70). The solution is in a following form

g(t) = − b(t)2(b′(t))2

B2 − b(t)2C1
, (4.28)

where C1 is integration constant and function b(t) is arbitrary.
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4.3.1 Solving for b(t) in various analytical gauges
From here, we are going to proceed as per the previous section. We are going to
try to substitute different combinations of basic analytical functions for b(t) and
look for a possible perfect fluid, that would satisfy our energy conditions (ρ ≥ 0,
ρ ≥ |p| and p ≥ 0).

Unlike for function g(t) in Kantowski-Sachcs general solution given by equa-
tion (3.77), for function g(t) states quite “easy” differential equation (4.28) here,
which is solvable. That means, that we can now insert analytical functions for
g(t) and get dependent functions b(t) and vice versa.

Namely, we have tried to insert for b(t) and g(t) combinations of functions
t, t2, exp(t), sin(t) and cos(t) again. We approach the problem in this manner
since, with a suitable choice of gauge, the resulting expressions might be easier
to analyze. The results follow below.

(1) g(t) = 1 (time parametrization)

b(t) = −

√︃[︂
(t − C2)2 C2

1 + B2
]︂

C1

C1
, (4.29)

ρ(t) = (−1 − (t − C2)2Λ) C2
1 − B2Λ

8π
[︂
(t − C2)2 C2

1 + B2
]︂ , (4.30)

p(t) = (−1 + (t − C2)2Λ) C2
1 + B2Λ

8π
[︂
(t − C2)2 C2

1 + B2
]︂ , (4.31)

Figure 4.1: Plotted functions ρ(t) and p(t) from (1) for Λ = 2, B = 1, C1 = 1
and C2 = 1.

(2) g(t) = t

b(t) = −

√︂
−12

√
−tC3

1C2t + (4t3 − 9C2
2) C3

1 + 9B2C1

3C1
, (4.32)
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ρ(t) = − 81
8π

√
−t
(︂
12(−t) 3

2 C2
1C2 + 4C2

1 t3 − 9C2
1C2

2 + 9B2
)︂2

⎡⎢⎣−
8
(︂(︂

−3ΛC2
2 + 1

2

)︂
C2

1 + B2Λ
)︂

C2
1 (−t)

7
2

9 + 16Λ(−t) 13
2 C4

1
81

+
(︂(︂

−ΛC2
2 + 1

)︂
C2

1 + B2Λ
)︂ (︂

−C2
1C2

2 + B2
)︂√

−t

+
8C2

(︂(︂
4
9Λt3 − ΛC2

2 + 1
2

)︂
C2

1 + B2Λ
)︂

C2
1 t2

3

⎤⎦ ,

(4.33)

p(t) = − 81
8π

√
−t
(︂
12(−t) 3

2 C2
1C2 + 4C2

1 t3 − 9C2
1C2

2 + 9B2
)︂2

⎡⎢⎣−
8
(︂(︂

−3ΛC2
2 − 1

2

)︂
C2

1 + B2Λ
)︂

C2
1 (−t)

7
2

9 + 16Λ(−t) 13
2 C4

1
81

+
(︂(︂

−ΛC2
2 − 1

)︂
C2

1 + B2Λ
)︂ (︂

−C2
1C2

2 + B2
)︂√

−t

+
8C2

(︂(︂
4
9Λt3 − ΛC2

2 − 1
2

)︂
C2

1 + B2Λ
)︂

C2
1 t2

3

⎤⎦ ,

(4.34)

Figure 4.2: Plotted functions ρ(t) and p(t) from (2) for Λ = 2, B = 1, C1 = 1
and C2 = 1.

(3) g(t) = t2

b(t) = −

√︂
C3

1 t4 − 4C4
1 t2 + 4C5

1 + 4B2C1

2C1
, (4.35)

ρ(t) = −4ΛC4
1 + 4ΛC3

1 t2 + (−Λt4 − 4) C2
1 − 4B2Λ

8π (C2
1 t4 − 4C3

1 t2 + 4C4
1 + 4B2) , (4.36)

p(t) = 4ΛC4
1 − 4ΛC3

1 t2 + (Λt4 − 4) C2
1 + 4B2Λ

8π (C2
1 t4 − 4C3

1 t2 + 4C4
1 + 4B2) , (4.37)
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Figure 4.3: Plotted functions ρ(t) and p(t) from (3) for Λ = 2, B = 1 and C1 = 1.

(4) g(t) = exp(t)

b(t) =

√︃
C1
(︂
−4

√
−etC2

1C2 − C2
1C2

2 + B2 + 4C2
1et
)︂

C1
, (4.38)

ρ(t) = 1
8π

√
−et

(︂
−4

√
−etC2

1C2 − C2
1C2

2 + B2 + 4C2
1et
)︂2

[︂(︂
16Λe2tC4

1 +
(︂(︂

−24ΛC2
2 + 4

)︂
C4

1 + 8B2ΛC2
1

)︂
et

+
(︂(︂

−ΛC2
2 + 1

)︂
C2

1 + B2Λ
)︂ (︂

−C2
1C2

2 + B2
)︂)︂√

−et

+8C2C
2
1

(︃
4C2

1Λe2t + et
(︃(︃

−ΛC2
2 + 1

2

)︃
C2

1 + B2Λ
)︃)︃]︃

,

(4.39)

p(t) = 1
8π

√
−et

(︂
−4

√
−etC2

1C2 − C2
1C2

2 + B2 + 4C2
1et
)︂2

[︂(︂
16Λe2tC4

1 +
(︂(︂

−24ΛC2
2 − 4

)︂
C4

1 + 8B2ΛC2
1

)︂
et

+
(︂(︂

−ΛC2
2 − 1

)︂
C2

1 + B2Λ
)︂ (︂

−C2
1C2

2 + B2
)︂)︂√

−et

+8C2C
2
1

(︃
4C2

1Λe2t + et
(︃(︃

−ΛC2
2 − 1

2

)︃
C2

1 + B2Λ
)︃)︃]︃

,

(4.40)

Figure 4.4: Plotted functions ρ(t) and p(t) from (4) for Λ = 2, B = 1, C1 = 1
and C2 = 1.
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(5) b(t) = t

g(t) = − t2

B2 − t2C1
, (4.41)

ρ(t) = −Λt2 + C1

8πt2 , (4.42)

p(t) = Λt2 − C1

8πt2 , (4.43)

Figure 4.5: Plotted functions ρ(t) and p(t) from (5) for Λ = 2, B = 1 and C1 = 1.

(6) b(t) = t2

g(t) = − 4t6

−t4C1 + B2 , (4.44)

ρ(t) = −Λt4 + C1

8πt4 , (4.45)

p(t) = Λt4 − C1

8πt4 , (4.46)

Figure 4.6: Plotted functions ρ(t) and p(t) from (6) for Λ = 2, B = 1 and C1 = 1.
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(7) b(t) = et

g(t) = − e4t

B2 − e2tC1
, (4.47)

ρ(t) = −(Λe2t + C1) e−2t

8π
, (4.48)

p(t) = −e−2tC1 + Λ
8π

, (4.49)

Figure 4.7: Plotted functions ρ(t) and p(t) from (7) for Λ = 2, B = 1 and C1 = 1.

(8) b(t) = sin (t)

g(t) = − sin (t)2 cos (t)2

B2 + C1 cos (t)2 − C1
, (4.50)

ρ(t) = Λ cos (t)2 − Λ − C1

8π sin (t)2 , (4.51)

p(t) = −Λ cos (t)2 + Λ − C1

8π sin (t)2 , (4.52)

Figure 4.8: Plotted functions ρ(t) and p(t) from (8) for Λ = 2, B = 1 and C1 = 1.
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(9) b(t) = cos (t)

g(t) = − cos (t)2 sin (t)2

B2 − C1 cos (t)2 , (4.53)

ρ(t) = −Λ cos (t)2 − C1

8π cos (t)2 , (4.54)

p(t) = Λ cos (t)2 − C1

8π cos (t)2 , (4.55)

Figure 4.9: Plotted functions ρ(t) and p(t) from (9) for Λ = 2, B = 1, κ = 8π
and C1 = 1.

where C1 and C2 are integration constants.

For ρ(t) and p(t) in solutions (8) and (9), there was possible to find solutions
simply by altering the constants values. These solutions have its singularities, but
the singularities correspond to singularities in Kretschmann, Ricci and Maxwell
scalar (equations (3.49), (3.27) and (3.48)). Unfortunately, the solutions were
physical in the sense of ideal fluid and energy conditions imposed on it, but the
universe they were found in was not ours due to the sign of metric function g(t)
described by equation (4.50), respectively (4.53), which is negative. This gives
us metric tensor with signature (+, +, +, +).

Plotted functions ρ(t) and p(t) from solutions (8) and (9) that satisfy energy
conditions (but in a different universe than the one we live in) and corresponding
tensor functions g(t) are following
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(8)

(a) (b)

Figure 4.10: (a) Plotted functions ρ(t) and p(t) from for Λ = −2, B = 1 and
C1 = −2 (b) Plotted function g(t) for Λ = −2, B = 1 and C1 = −2

(9)

(a) (b)

Figure 4.11: (a) Plotted functions ρ(t) and p(t) from for Λ = −2, B = 1 and
C1 = −2 (b) Plotted function g(t) for Λ = −2, B = 1 and C1 = −2

For the functions b(t) = cos(t) and g(t) given by equation (4.53), we tried the
Wick’s rotation, which led to a perfect fluid satisfying the energy conditions, but
unfortunately the metric function g was still negative.

No other solution for t ∈ (−∞, ∞) (or in the domain of functions ρ(t) and
p(t)) was found, even for different values of constants. This insight can be gained
again from asymptotic behaviour of functions ρ(t) and p(t) for solutions above
and also from graphs plotted for concrete values of constants.

4.3.2 General solution for b(t)
Now we are going to take a more systematic look at equation (4.28). Solving this
differential equation for the metric function b(t), we get the following integral
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equation

−

√︂
B2 − b(t)2C1

C1
±
∫︂ t

0

√︂
− (B2 − b(t)2C1) g(x)√︂

B2 − b(t)2C1
dx + C2 = 0, (4.56)

where C1 and C2 are integration constants.
Integral on the left side of the equation can be simplified into a form

∫︂ t

0

√︂
− (B2 − b(t)2C1) g(x)√︂

B2 − b(t)2C1
dx = i

∫︂ t

0

√︂
g(x) dx, (4.57)

which is solvable depending on g(x).
If we define function f(t) by equation

f(t) =
∫︂ t

0

√︂
g(x) dx, (4.58)

equation (4.56) goes into a form

−

√︂
B2 − b(t)2C1

C1
± if(t) + C2 = 0. (4.59)

There exist two solutions of this equation for function b(t)

b(t) = ±

√︂
C1 (f(t)2C2

1 + 2if(t)C2
1C2 − C2

1C2
2 + B2)

C1
. (4.60)

We can clearly see, that constant C2 must be equal to zero, because we only want
real solutions, thus

b(t) = ±

√︂
C1 (f(t)2C2

1 + B2)
C1

. (4.61)

Here, we should notice, that if we do not want to violate metric signature, constant
C1 has to be positive and nonzero, due to that b(t)2 ≤ 0 for C1 < 0 and diverges
for C1 = 0.
If we now insert function g(t) given by equation (4.28) into equations (4.25) for
ρ(t) and (4.26) for p(t), we get

ρ(t) = −Λb(t)2 − C1

8πb(t)2 , (4.62)

p(t) = Λb(t)2 − C1

8πb(t)2 . (4.63)

From here, we can easily see, that function b(t) is squared in both equations,
thus the sign on the right side of the equation (4.61) has no further meaning in
following calculations and we are going to use the plus sign without prejudice to
the generality.
If we now insert equation (4.61) into equations (4.62) and (4.63), we obtain that

ρ(t) = − C2
1

8π (f(t)2C2
1 + B2) − Λ

8π
, (4.64)
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p(t) = − C2
1

8π (f(t)2C2
1 + B2) + Λ

8π
. (4.65)

Now, at first sight, we can see, that for Λ = C1 = 0, we get strictly (elec-
tro)magnetic solution without perfect fluid, but as we have already said, C1 must
not be equal to 0, so there exists no strictly electromagnetic field for the function
b(t) of the form (4.61).

We can also quite easily see the equation of state, which is

p(t) = ρ(t) + Λ
4π

. (4.66)

We can also see, that the term

C2
1

8π (f(t)2C2
1 + B2) > 0 (4.67)

for C1 ̸= 0, which we ruled out above.
This means, that at least one of the functions ρ(t) or p(t) has to be negative,

depending on sign of Λ, for t ∈ R. Thus energy conditions can never be met.
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Conclusion
In an effort to find solutions to the equations of general relativity for multiple
sources at once, we have summarized in the first two chapters both the general
and the necessary knowledge for the calculations that take place primarily in
Chapters 3 and 4.

In the first chapter, we summarized Einstein’s gravitational field equations
directly and derived the identity, which we further used in the calculations in
Chapter 3.

In the second chapter, we dealt mainly with the right side of Einstein’s equa-
tions, the stress-energy tensor, and in particular with the two variants of it, that
we were interested in in this thesis: the electromagnetic tensor and the tensor
corresponding to the perfect fluid. We have also presented the energy conditions
on such a tensor, which played a crucial role in our work.

In Chapter 3 we have already dealt directly with the calculations in the space-
time given by the Kantowski-Sachs-like metric with cylindrical symmetry.

We first considered the curvature field generated purely by the electromagnetic
stress-energy tensor.

We managed to find one exact solutions of Einstein’s equations just for the case
of the electromagnetic field, which gave us the expressions for metric functions,
namely

g(t) = 1,

b(t) = 1,

a(t) = t2,

This is a spacetime which is very interesting and which we would like to study
in the future, if only because it has constant scalar curvatures but non-constant
metric functions.

Subsequently, we were also able to show, that if the metric function b(t) is
an arbitrary constant we can lay it equal to one without loss of generality by
a simple reparametrization of x and y coordinates. we can also without any
loss of generality choose gauge g(t) = 1. For such b(t) and g(t) tensor Tfluid

µ
ν

will always eventually vanish and thus will only be a curvature generated by the
electromagnetic field and not by a perfect fluid. Energy conditions then also place
a condition on the value of the cosmological constant, namely

Λ = B2,

and function a(t) = t2.
Next, we tried to find a solution for zero partial pressures in Tfluid

µ
ν , which

corresponds to incoherent dust, and also for the general case where we assumed
only the equality between partial pressures for the tensor Tfluid

µ
ν . Unfortunately,

no solution satisfied the energy conditions on the whole time interval (or in the
domain of functions ρ(t) and p(t)). The only solutions that satisfied them were
those for Tfluid

µ
ν = 0, which again leads to a field generated by a purely electro-

magnetic field.
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In Section 4 we tried to use for the same electromagnetic field a different
metric describing the curvature of spacetime, namely the Minkowski-like form of
metric.

In this chapter, unlike in the chapter 3, we have not been able to find such
metric functions g(t) and b(t) corresponding to the field generated by purely
electromagnetic field neither by incoherent dust or fluid.

Of course, the work could be continued. It is always possible to choose dif-
ferent metric tensors with different symmetries, and a similar statement holds
for the Maxwell tensor, its symmetries and the field it produces. There is an
immeasurable number of combinations that could be tried for different metrics
and different Maxwell tensors with different symmetries.

It might also be worth considering a field generated by a fluid that is not static
in our coordinate system, but is moving. There are indeed many possibilities.

It is also worth noting that a large number of perfect fluids were found in this
thesis, unfortunately they just did not meet the conditions we set for them.
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