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Abstract

Using drones and machine or deep learning algorithms (ML or DL) for environmental monitoring
offers several advantages over traditional methods, including gathering high spatial resolution data
quickly and non-invasively, acquiring real-time data, and covering large and remote areas. This
dissertation focuses on snow cover, river granulometry, river sustainability, river bathymetry, and
peatland dynamics based on approaches of drone-based imagery that are critical for understanding
fluvial processes in mid-mountain regions and their implications for streamflow patterns and ecosystem
health. Measuring Snow Depth (SD) and vegetation characteristics like Leaf Area Index (LAI)
accurately is essential for effectively predicting snow cover and snowpack persistence across study sites
(papers I and III). A further aspect of the fluvial process mediator involves the reproducibility of drone
data. This allows for seamless coverage of riverbeds and the determination of ideal parameters for
sediment surface cover detection. This can be done through photo-sieving or DL technique, which can
analyze Particle Size Distributions (PSDs) of an entire river point bar from top-view UAV images (as
described in papers II and V).

Similarly, studying river sustainability with drones provides a unique opportunity to assess the
effectiveness of stream restoration projects and inform management practices to ensure the long-term
health and sustainability of fluvial systems (paper VI). Drone bathymetric data provide critical
information about river channel morphology, sediment transport, and habitat availability (paper VII).
Finally, studying peat bog complexes as an essential side component of fluvial processes makes accurate
drone monitoring crucial for effective management and conservation efforts (paper IV). However,
further research is necessary to apply these methods to other regions and ecosystems, as environmental
conditions and characteristics can vary significantly across different locations.

Keywords: environmental research, UAV, UAS, drones, sensors, snow cover distribution, SD, LAI,
CNN, DL, PSD, peatland dynamics, ML, groundwater level, soil moisture, river restoration, river
bathymetry
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Abstrakt

Bezpilotní systémy (UAV, drony) a algoritmy strojového nebo hlubokého učení (ML nebo DL)
přinášejí do oblasti věd o Zemi kvalitativně nové možnosti pro monitorování životního prostředí a
dynamických procesů v krajině. Jedná se zejména o schopnost rychlého a neinvazivního sběru dat s
vysokým prostorovým rozlišením, kvalitativně širokou škálou senzorů, získávání dat v reálném čase,
budování časových řad přesného monitoringu a pokrytí rozsáhlých a vzdálených oblastí. Tato disertační
práce se zaměřuje na vybrané aspekty hydrologických procesů, kde je možné uplatnit potenciál UAV pro
získávání kvalitativně nových informací o hydrologických procesech, ale i aspektech prostředí,
ovlivňujících dynamiku odtoku a stav říčních ekosystémů v podmínkách změny klimatu a měnícího se
prostředí. Jde konkrétně o monitoring sněhové pokrývky ve vazbě na charakteristiky disturbance lesa,
dynamiku fluviálně-morfologických změn toků a jejich antropogenních změn nebo o dynamiku
hydropedologických charakteristik rašelinišť, kde snímkování pomocí dronů přináší kvalitativně nové
informace, zásadní pro pochopení dynamiky procesů a jejich změn v kontextu prostředí a ekosystémů.

Konkrétně stanovení výšky sněhu ve vazbě na charakteristiky zdravotního stavu lesní vegetace je
významným kvalitativně novým vstupem pro porozumění procesům ukládání a tání sněhové pokrývky,
umožňující jeho přesnější předpovídání v komplexním prostředí (články I a III). Přesný monitoring
rozložení a změn teplotně-vlhkostních charakteristik horských rašelinišť, která významně ovlivňují
variabilitu odtoku horských toků, dává možnost získat podrobné informace o reakci tohoto citlivého
ekosystému na klimatické změny a zároveň přesněji predikovat dynamiku jejich hydrologického režimu
(článek IV). Schopnost získávat bezešvé modely velmi vysokého rozlišení a reprodukovatelnost UAV
monitoringu přinesla zásadní posun v možnostech analýzy fluviálně-morfologických změn říčních koryt.
Práce představuje nové přístupy v několika směrech fluviálně-morfologikcých analýz. Konkrétně
představuje novou metodu distribuce říčních sedimentů za využití vysoce podrobného UAV snímkování,
kombinace optické granulometrie a využití technik hlubokého učení (DL) pro analýzu změn distribuce
velikosti zrn v říční akumulaci ve vazbě na dynamiku říčního systému. Podrobné snímkování říčního
koryta dále umožnilo ověřit možnosti batymetrické rekonstrukce koryt toků. Reprodukovatlenost UAV
monitoringu pak umožnila získat informace o změnách hydromorfologických charakteristik a účinnosti
projektů obnovy toků (příspěvek VI).

Práce přináší zhodnocení nových přístupů při aplikaci UAV snímkování pro analýzu
fyzickogeografických procesů v měnícím se prostředí. Provedené studie zároveň ukazují na nezbytnost
referenčích instrumentálních měření i dalšího výzkumu, zejména ve vazbě na proměňující se
charakteristiky prostředí v důsledku klimatické změny a antropogenních tlaků na krajinu.

Klíčová slova: změny povrchu půdy, UAV, UAS, drony, hluboké učení, dynamika sedimentů, SD, tání
sněhu, index opuštěných ploch, dynamika rašelinišť, hladina podzemní vody, půdní vlhkost, strojové
učení.
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1. Scope and aim of the thesis

Environmental research necessitates interdisciplinary knowledge, which is critical for environmental
scientists (Elliott et al., 2019) to establish systematic protocols for managing sensitive and incidental
findings (Wolf et al., 2008). Unmanned Aerial Vehicles (UAV), Remotely Piloted Aircraft Systems
(RPAS), and Unmanned Aerial Systems (UAS), which are commonly referred to as drones (e.g.,
multi-rotor, fixed-wing, hybrid), are powerful research instruments, providing a unique earth observation
capacity across a large number of applications allowing researchers to obtain data more quickly,
non-invasively, inexpensively, and safely than before (K. Anderson & Gaston, 2013). Despite
technological advancements, challenges persist in acquiring high-quality data, underscoring the
importance of standardized workflows. By merging on-site data collection (in-situ) with high-resolution
drone observations, researchers can better comprehend and characterize phenomena at different scales in
the landscape (Levin, 1992; Marceau, 1999; Turner et al., 1989).

Thus, this dissertation aims to investigate the potential of using drone sensing to collect diverse types
of data, including commercial Red-Green-Blue (RGB), Multispectral (MS), and Thermal-Infrared (TIR)
cameras, to enable high-quality drone-based data collection for various environmental processes. These
processes include snow hydrology (papers I and III), river fluvial dynamics including granulometry
(papers II and V), peat bog dynamics (paper IV), river restoration and sustainability (paper VI), and
bathymetry extraction (paper VII). The complex and multifaceted interlinkages between these processes
highlight the significance of drones for data collection in understanding and managing environmental
systems.

The distinct unique properties of snow, such as high albedo of the surface, high latent heat of phase
transition, and adiabatic effect, directly impact the intricate energy balance of the Earth's surface,
making it a crucial component in shaping the climatic system and contributing to regional and global
climate changes (Barnett et al., 1989; Kittel et al., 2011; Qin et al., 2021). To study these unique snow
properties and finely estimate snow parameters (Rekioua et al., 2017), our research (papers I and III)
utilizes UAV digital photogrammetry to map snow cover and its characteristics and investigate the
impact of forest canopy metrics on snow accumulation and ablation in open and coniferous areas where
Leaf Area Index (LAI) and canopy coverage significantly modulate snow processes, especially in the
latter one. Accurate estimation of Snow Depth (SD) distribution (a snow metric) and retrieval of LAI (a
forest metric) is crucial in explaining snowpack dynamics and their implications for streamflow patterns.

Fluvial river dynamics (e.g., Chen et al., 2019), including granulometry (i.e., the size distribution of
sediment particles in a river) (papers II and V), are influenced by the water and sediment inputs from
snowmelt and other sources. Changes in sediment transport can alter the river channel morphology and
affect the habitat quality for aquatic biota (e.g., Beltaos & Burrell, 2021; Hauer et al., 2018; Tsyplenkov
et al., 2023). Consequently, the motivation arose to research sediment monitoring using UAVs to map
grain size and distribution along a river point bar floodplain in the upper Vydra basin, which has the
potential to enhance our understanding of sediment transport processes and their impact on the river
ecosystem. By testing new methodologies for coupling optical granulometric surveys with UAV
imagery, we overcame the limitations of existing methods. We improved the reproducibility and
accuracy of sediment surface cover detection. Additionally, using Convolutional Neural Network (CNN)
algorithms for automatic mapping granulometry has provided a fully automatic method for estimating
Particle Size Distribution (PSD) directly from image texture, allowing for detecting multitemporal
changes in PSD over the entire gravel bar floodplain (paper V).

Alternately, peat bog dynamics can be influenced by the hydrological regime of the surrounding
landscape, including the input of water and nutrients from rivers and other sources (Kizuka et al., 2023).
Changes in river fluvial dynamics, such as altered water levels or sediment inputs, can affect the peat
bog vegetation composition, nutrient cycling, and carbon storage (Battin et al., 2023). As a result, peat
bog degradation can affect the water quality and quantity of the surrounding rivers and the habitat
quality of the species that depend on the peatland ecosystem (e.g., Jones, 2023; Serafin et al., 2023).
Therefore, the motivation for paper IV arose from the need to improve the ability to observe and
understand hydrological processes and fluvial dynamics using UAV platforms and advanced techniques.
This can help overcome the limitations of traditional fieldwork methods by investigating the correlation
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between predictors and Groundwater Level (GWL) and the top-layer Soil Moisture (SM) and evaluating
the ML model's performance in predicting reference data points, which contributes to understanding the
processes and dynamics of hydrology and fluvial systems and helping to guide conservation and
restoration efforts.

River restoration projects often aim to improve the natural fluvial dynamics and sediment regimes
and involve interventions such as bank stabilization, channel realignment, or dam removal (e.g.,
Copeland et al., 2001; Grabowski et al., 2022; Mondal & Patel, 2022; Wyrick & Klingeman, 2011). The
success and sustainability of such projects depend on the accurate assessment of the initial river
morphology and sediment budget and the long-term monitoring of the restored system. Thus, the
motivation for paper VI arose from the need to define hydromorphological indicators suitable for the
reliable determination of quantitative and qualitative aspects of hydromorphological quality from optical
UAV monitoring and to test the practical applicability of the proposed approach to other restoration
projects. Using UAV monitoring with optical RGB sensors can be an effective and affordable way to
gather spatial information to help assess the critical geometric and qualitative aspects of stream
restorations. By merging this information with established hydromorphological assessment methods, it is
possible to obtain more reliable, feature-rich, and consistent information on the effectiveness and
sustainability of stream restoration projects. This approach can lead to better-informed decision-making
regarding stream restoration projects and their ecological impacts.

Bathymetry extraction of shallow rivers can provide valuable information on the riverbed
morphology, which is essential for understanding sediment transport and fluvial dynamics (Bandini et
al., 2017; Carrivick & Smith, 2018; Szafarczyk & Toś, 2023). Accurate bathymetry data can also help
design and assess river restoration projects' effectiveness. The method of bathymetry extraction can
involve various techniques, including Structure-from-Motion (SfM) algorithms (Mishra et al., 2023).
Therefore, the motivation for paper VII arose from the need to explore the effectiveness of different
drone platforms in reconstructing river bathymetry under the same conditions. The repeatability and
reproducibility of the UAV-SfM approach were also tested, and its robustness for bathymetry extraction
was assessed. UAVs are prone to collect high-resolution data, whereas traditional survey methods may
be difficult or expensive to implement.

In conclusion, this thesis presents promising proof-of-concept methods on UAV data-collection
techniques, where future research is needed to develop these techniques further and apply them to
multiple environments within different regions by improving model calibration and better estimates of
future monitoring change detection in mid-mountain regions.

2. Interconnections of the cryosphere, fluvial geomorphology, and hydrological processes

The cryosphere, fluvial geomorphology, and hydrological processes are interconnected through
various mechanisms and feedback loops. For instance:

1. Cryosphere-Fluvial Geomorphology Interconnection: The cryosphere, which includes frozen
components of the Earth's surface such as glaciers, snow cover, and permafrost, can have a
significant impact on fluvial geomorphology, which involves the study of river channels,
floodplains, and other landforms shaped by water (Knight & Harrison, o. J.). For example,
melting glaciers and snow cover can increase river runoff and sediment supply, influencing river
channel morphology, sediment transport, and floodplain formation (e.g., Stigter et al., 2021;
Suter & Hoelzle, 2002). Changes in cryospheric features can also affect water availability, the
timing of runoff, and streamflow dynamics, which in turn can impact fluvial geomorphological
processes such as erosion, deposition, and channel evolution (e.g., Bugmann et al., 2007;
Knight, 2022; Leng et al., 2022).

2. Cryosphere-Hydrological Process Interconnection: The cryosphere plays a critical role in the
hydrological cycle, which involves water movement in various forms, such as precipitation,
runoff, evaporation, and condensation (Pagano & Sorooshian, 2002). Cryospheric components,
such as snow and ice, act as reservoirs that store water and release it gradually during melting,
affecting the timing and magnitude of runoff (Wever et al., 2014). Changes in cryospheric
features, such as shrinking glaciers or reduced snow cover, can alter the hydrological processes
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by affecting water availability, streamflow dynamics, and water quality. Additionally,
cryospheric changes can impact regional and global climate patterns, influencing hydrological
processes at larger scales (e.g., Fountain et al., 2012; Milner et al., 2017; Rasul & Molden,
2019).

3. Fluvial Geomorphology-Hydrological Process Interconnection: Fluvial geomorphology and
hydrological processes are closely linked, as rivers and their associated landforms are shaped
and influenced by water flow and sediment transport (e.g., Balasubramanian, 2010; Ferguson et
al., 2022). River channels, floodplains, and other fluvial landforms are formed and shaped by the
erosive and depositional processes driven by water flow, sediment supply, and vegetation
dynamics (Ferguson et al., 2022). Changes in river flow regime, sediment transport, and channel
morphology can, in turn, affect hydrological processes such as runoff, evapotranspiration, and
water quality (e.g., Leopold & Wolman, 1957; SCHUMM & Khan, 1972). For example,
alterations to river channels through human activities, such as channelization or damming, can
impact hydrological processes and alter fluvial geomorphological dynamics (e.g., paper VI).

Hence, changes in one system component can have cascading effects on the others, influencing water 
availability, the timing of runoff, sediment transport, river channel morphology, and other related 
processes. Understanding these interconnections is essential for comprehensively studying and 
managing water resources, river ecosystems, and climate change impacts on the Earth's hydrological 
system. UAVs have provided an efficient and effective means for collecting high-resolution data in these 
areas, allowing for better insights and understanding of these processes.

2.1 Advancements in sensor technology and UAVs for cryospheric research: 
Revolutionizing snow cover mapping and monitoring

The advancements in sensor technology, such as low-cost micro-sensors and UAV availability, have 
revolutionized environmental research, particularly in cryospheric studies. These technologies have 
become integral to the cryospheric toolkit (Bhardwaj et al., 2016), allowing for the cost-effective, rapid, 
and flexible collection of high-resolution data at more minor regional scales (Rhee et al., 2017). 
Researchers previously relied on limited in-situ observations or sparse satellite-based Remote Sensing 
(RS) data to study environmental processes. However, using UAVs has opened up new possibilities for 
cryospheric scientists, providing a safer alternative to ground-based measurements in hazardous or 
remote snow-covered environments, such as avalanche-prone areas (Birkeland et al., 1995; Součková et 
al., 2022) or glacier margins (Narro Pérez et al., 2023; Sobolewski et al., 2023). This has enabled 
researchers to understand snow distribution and properties for various applications, including weather 
forecasting, hydrological modeling, avalanche forecasting, climate change research, and winter sports 
management.

Among the wide variety of sensors used in cryospheric studies, such as RGB, miniaturized Light 
Detection and Ranging (LiDAR), Multispectral (MS), or TIR cameras, optical imagery remains the 
primary data source, providing high-resolution and real-time data on snow properties, such as SD, which 
is the vertical distance between the top snow surface points and the top bare ground point. Researchers 
also use other sensors, such as those mentioned above, for data collection and interpretation, such as 
Snow Water Equivalent (SWE), snow density, snowmelt volume, and snowmelt timing, allowing for 
on-demand and real-time data acquisition and frequent and repeated measurements to capture snow 
cover dynamics and changes. Table 1 provides examples of snow cover mapping and monitoring 
methods and their vertical accuracies based on Digital Elevation Models (DEMs) or Digital Surface 
Models (DSMs) derived from elevation differences between snow and terrain surface compared to 
reference data.

UAVs are combined with other technologies like manual probing, magnaprobe (Sturm & Holmgren, 
2018), or Ground Penetrating Radar (GPR; e.g., McGrath et al., 2019) to provide reference data. 
However, relying solely on sparse and biased point measurements may not capture the high variability of 
SD. Combining UAVs with Airborne Laser Scanning (ALS), Terrestrial Laser Scanner (TLS), or both 
offers unique advantages for snow mapping, allowing for comprehensive and high-resolution data 
capture from air or ground perspectives. However, integrating UAVs with LiDAR techniques, MS, TIR,
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or Hyperspectral (HS) cameras presents challenges such as accurate georeferencing, data processing,
storage requirements, and cost considerations. Moreover, these sensors are only sometimes
consumer-friendly and require significant resources to ensure calibration accuracy and sufficient user
training to extract usable and scientific information (Tmušić et al., 2020).

Table 1. Overview of different snow cover mapping and monitoring technologies and their vertical
Snow Depth (SD) accuracies, spatial coverage, cost, advantages, and limitations, found in the literature.

Method
Vertical
Accuracy

(m)

Spatial
Coverage Cost Advantages Limitations Publications

ALS* 0.1 - 5.0 Large areas High

Accurate and
comprehensive
3D models of

snowpack,
suitable for

difficult-to-access
areas

High cost of
sensors

Currier et al.,
2019; Deems et

al., 2013; Mazzotti
et al., 2019, 2020;
Painter et al., 2016

TLS** < 0.10 Up to 1000 m Moderate

Accurate
measurements of
SD, suitable for

smaller areas

Limited spatial
coverage

compared to ALS

Prokop, 2008;
Prokop et al., 2008

Satellite-based
Imagery

(Pleiades)***
0.47 - 1.47

Moderate to
large areas
(>100 km2)

Moderate

Provide
high-resolution

imagery,
relatively lower

cost compared to
LiDAR

technologies

Lower spatial
resolution, which
results in reduced
vertical accuracy,

costly, GCPs
necessary

Deschamps-Berger
et al., 2020;

Eberhard et al.,
2021; Marti et al.,

2016

UAV-based
Photogrammetry

****
0.1 - 0.16 Vast areas Low

High spatial
resolution and

accuracies

Relying on
weather

conditions,
limited payload

capacity

Avanzi et al.,
2017; Bühler et al.,

2016; Cimoli et
al., 2017; De

Michele et al.,
2016; Eberhard et
al., 2021; Vander
Jagt et al., 2015

Direct
Georeferencing

(UAV)*****
(<0.10) Vast areas Low

Lower accuracy
compared to

ground
control-based
UAV surveys

Snow process at
local

measurement
scales

Vander Jagt et al.,
2015

*Either compared to TLS ground-based data, GPS-equipped magnaprobe or manual snow probing, **Compared to
manual snow probing or tachymetry survey, ***Compared to UAV snow maps and terrestrial imagery,
****Compared to manual snow probing, MultiSation scan or UAV snow maps. *****Direct georeferencing
without Ground Control Points (GCPs).

Another possibility is integrating satellite data, enabling multi-sensor data fusion (e.g., Eberhard et
al., 2021). However, some challenges and considerations exist when integrating UAVs with satellite data
for snow cover monitoring. It requires careful data processing and integration (e.g., geometric and
radiometric corrections, co-registration, and data fusion from different sensors and platforms), cost and
logistics (e.g., equipment, personnel, logistics, and data storage), regulatory and operational aspects
(e.g., permissions and permits), data continuity and reliability (e.g., adverse weather conditions or limit
of UAV data). The standalone use of RGB-based imagery is adequate to get high-resolution snow cover
maps (mm to m resolution) while delivering valuable outputs (papers I and III). However, each platform
has advantages and disadvantages and must overcome challenges such as steep terrain (high parallax),
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sensor saturation due to high-albedo surfaces, and poor stereo-correlation in limited surface texture for
fresh snow (Eberhard et al., 2021). While UAVs have demonstrated an improved understanding of snow
distribution in heterogeneous landscapes in certain studies (e.g., papers I and III), additional research is
required to enhance accuracy and expand coverage.

2.2 Advancements in UAV remote sensing techniques for river morphology monitoring
and grain size estimation: A focus on image-based methods and deep learning approaches

Observing rivers repeatedly is crucial for understanding flood events and river morphology.
However, traditional methods like ALS or airplane photogrammetry are expensive and inflexible (Lane
et al., 2000, 2010; Legleiter, 2012), while TLS is limited to smaller areas (Brasington et al., 2012).
Satellites have limitations in accuracy due to coarse spatial resolution. Traditional granulometry methods
involve laborious field measurements (e.g., Fehr, 1987; Wolman, 1954). Therefore, there is a need for
more flexible and cost-effective methods to monitor and study rivers. Researchers have turned to
image-based methods for grain size estimation to reduce effort and potential biases. These methods have
been popular since the early 2000s and have recently been extended to quantify grain size using UAVs
and low-cost photogrammetry software. Studies by Carbonneau et al. (2018), Detert & Weitbrecht
(2012), and (Purinton & Bookhagen, 2019) have shown promising results in reducing manual data
collection time and effort and minimizing biases associated with traditional methods. Paper II has
successfully utilized UAV orthomosaics and implemented the approach after Detert & Weitbrecht (2012)
based on the representative segmentation approach, where individual grains are identified through image
segmentation to extract precise grain size information from targeted transects of fluvial gravel bars,
showing that this method expands the area of investigation beyond the traditional local sampling
approaches. However, this approach has limitations due to overlapping or irregularly shaped grains and
vegetation or shadows in the images (Mair et al., 2022).

To overcome this, recent advancements in DL frameworks have enabled remote grain size
measurements from scaled or georeferenced UAV images, eliminating the need for time-consuming field
calibration. One promising DL approach, as demonstrated by Lang et al. (2021), is based on the digital
line sampling technique and utilizes CNNs to analyze UAV datasets one-to-one, resulting in improved
accuracy and precision of grain size measurements. This presents a promising solution to the challenge
of grain size estimation (paper V). DL approaches can revolutionize how grain size and other parameters
are measured in RS applications, reducing the potential for human error and increasing data collection
and analysis efficiency, which can facilitate the study of various geological and environmental
phenomena (paper V).

Furthermore, integrating the capabilities of UAV optical imagery and photogrammetric
reconstructions with established digital image analysis and hydro-morphological assessment methods
can enhance the availability, quality, consistency, and reproducibility of information related to stream
restoration effectiveness and sustainability (paper VI), as well as river bottom information extraction and
reconstruction (paper VII).

2.3 Assessing peatlands with UAV remote sensing: Monitoring hydrological dynamics

Peatlands are considered significant ecosystems threatened by various factors, including climate
change, land use changes, and drainage for agriculture or industrial purposes. These ecosystems are vital
in regulating the hydrological cycle and storing carbon, which makes them critical in mitigating the
effects of climate change (Grabowski et al., 2022). UAVs can help map and monitor these ecosystems,
providing essential data on their health, hydrological dynamics, and carbon storage potential, which are
critical for effective conservation and management strategies (Dinsmore et al., 2008; Harris & Baird,
2019). Understanding the rate at which the peat environment responds to disturbances is necessary to
accurately assess the future fate of peatlands (Loisel et al., 2014, 2021). As for the other studies in this
dissertation, UAV RS provides exciting new capabilities for peatland observation. The groundwater table
is commonly characterized as GWL - defined as the height of groundwater above mean sea level - and
Depth-to-Water (DTW) - the groundwater depth relative to local terrain level. These two metrics are
related. The groundwater is typically measured reliably in the field using point-based techniques such as
piezometers or shallow monitoring wells (paper IV), which are difficult to install and require repeated
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field monitoring. Alternatively, GWL and DTW can be estimated via UAV-derived products, as done by
Lovitt et al. (2018).

The water content in the soil, known as SM, plays a vital role in controlling decomposition rates and
affecting carbon balance (Turetsky et al., 2015). SM is characterized as the water content available for
plant metabolism (Ahmed et al., 2017), influencing diversity patterns (Xu et al., 2018), and ecosystem
features (Damm et al., 2022). It also affects drought stress (Liu et al., 2021), vegetation distribution
(Orru et al., 2016), microbial activity (Fenner & Freeman, 2011), disturbance proneness (Grau-Andrés et
al., 2019), and carbon cycling balances (Kimmel & Mander, 2010; Sharma et al., 2022) — variations in
water availability impact peatlands' ability to absorb or emit greenhouse gases (Nijp et al., 2017).
Different approaches are used to obtain SM data to understand better and monitor water availability in
peatland ecosystems. Three approaches are commonly used to measure SM in peatland ecosystems:
in-situ measurements, physically based predictions, and RS. In-situ measurements involve collecting
samples from specific points, providing precise, time-consuming, and expensive data that may not
capture total variability (Silva et al., 2023). Physically based predictions use models to represent
ecosystem processes and structures, providing a comprehensive view but requiring accurate input data
and assumptions (Grayson et al., 1992a, 1992b). RS predictions use satellite or ALS data to measure SM
over a large area but have lower spatial resolution and accuracy and are limited to the top few
centimeters of soil (<5 cm) (Brocca et al., 2017). RS methods like ground-penetrating radar or
cosmic-ray neutron probes provide information on deeper SM but also have limitations. In some cases,
in-situ measurements are preferred for their accuracy, despite being limited to small scales
(Rahimzadeh-Bajgiran et al., 2013; Wigmore et al., 2019).

Machine Learning (ML) algorithms such as Random Forest (RF) and Extreme Gradient Boosting
(XGBoost) are increasingly used in soil and water science research (Malekzadeh et al., 2019; Naghibi et
al., 2017; Salehi Hikouei et al., 2021). These algorithms have been recognized as powerful tools for
technological progress, particularly in monitoring and predicting different characteristics of groundwater
resources. ML models are practical and efficient in modeling various environmental variables
(Raghavendra & Deka, 2016; Regan et al., 2019). Recent research has also demonstrated the potential of
ML algorithms in classifying different peatland microforms using drone imagery and exploring the
extent to which changes in this microform are related to climate and land-use drivers (Steenvoorden et
al., 2022). However, there is still a knowledge gap in understanding how these algorithms could be
applied to model GWL and SM in peatlands based on reference sample points, especially at different
temporal and spatial scales. The combination of ML algorithms with UAV multisensor data has the
potential to provide precise monitoring tools at a low cost, as demonstrated by paper IV. This approach
provides a more comprehensive understanding of peatland hydrology and aid in developing management
strategies to protect and restore these valuable ecosystems. Nevertheless, further research is needed to
explore the potential of these algorithms to model GWL and SM in peatland and to comprehend the
implications of different temporal and spatial scales.

2.4 Platforms and sensors

The optimal platforms and sensors for a survey hinge on various factors, including spatial and
spectral resolution, aerial coverage, and image quality requirements. Additional considerations may
include available time and budget. The primary challenge lies in determining the suitable platform and
sensor design, encompassing desired spatial coverage, ground resolution, and spectral resolution
(Tmušić et al., 2020).

2.4.1 UAV platforms

UAVs are classified based on weight, endurance, altitude, and operational radius, with differences in
size, cost, and payloads. The most commonly used UAVs in environmental studies are rotary-wing,
fixed-wing, or hybrid UAVs (Figure 1a,b,c,d), selected according to study objectives, necessary payload,
flight ranges, maneuverability requirements, and similar factors. Multi-rotor drones (Figure 1a, b) have
high agility and maneuverability, vertical takeoff and landing, but lower flight speeds and altitude due to
rotor energy requirements, making them preferable for environmental mapping. Fixed-wing UAVs
(Figure 1c) offer longer endurance, greater payload capacity, and higher flight speed, but image quality
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might be poorer due to the prone to blurry images (e.g., motion blur). Hybrid UAVs (Figure 1d) use
electric motors/rotors for Vertical Takeoff and Landing (VTOL) and wings for horizontal and level
flights powered by electric or internal combustion engines. However, Hybrid drones are still associated
with high costs.

Figure 1. Examples of UAV platforms used in hydrological and environmental studies include
rotary-wing UAVs, such as the OktoKopter from MikroKopter (a) and the DJI Matrice 200 Series (b),
which offer vertical takeoff and landing, hover capabilities, and low-speed flight for easy control and
maneuver. Fixed-wing drones, such as the eBee ultra from senseFly (c) and the hybrid-fixed-wing
solution from Wingtra (d), have rigid wings for forward lift, a simple structure, a long flight range, and
lower maintenance.

UAVs have critical components such as the frame, navigation system, power system, and payload
(Giordano et al., 2016). The frame is made of carbon fiber or plastic and holds all the components,
including a Global Navigation System (GNSS) antenna for controlling navigation, flight stabilization,
and location data collection. Some drones have a Real-Time Kinematics (RTK) system for real-time
corrections (e.g., DJI Phantom 4 RTK, DJI Matrice RTK (SZ DJI Technology Co., Ltd., Shenzhen,
China), and accurate positioning data during the flight. Ground Control Points (GCPs) with known
coordinates may be needed for geodetic positioning if a drone lacks an onboard navigation system. A
geodetic GNSS receiver or Total Station (TS) measures these GCPs (e.g., targets). Although the
increasing popularity of UAVs can be attributed to the versatility of rotary-wing multi-copters,
fixed-wing platforms are still favored for larger-scale surveys spanning areas such as 1 km2 owing to
their energy efficiency characteristics. Therefore, when planning a study, researchers must carefully
consider the limitations of UAV platforms, such as flight duration based on battery capacity and
maximum flight distance. In addition, platform selection is also impacted, including user experience,
research field, sensor type, required payload, and availability of dedicated software for flight control
(Tmušić et al., 2020).

2.4.2 Sensors and Instruments

In environmental science, the following sensors are generally used individually or combined: RGB,
MS, HS, TIR, LiDAR sensors, or microwave sensors. This work exclusively describes RGB, MS, and
TIR imagery UAV sensing. Table 2 lists different UAV sensors with their advantages, disadvantages, and
possible applications.
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RGB system

RGB cameras (i.e., digital cameras) capture reflectance in the visible spectrum (0,4 to 0,7 μm) and
produce high-quality RGB images (i.e., photographs). These are the most common sensors used in
UAVs. These cameras typically have three values for individual RGB pixels and simultaneously capture
data from three channels using color filters. UAVs with RGB sensors are easy to operate, relatively
inexpensive, and provide high-quality RGB images primarily for dense 3D point cloud creation,
orthoimagery (papers II, V, VII), and the development of DEMs (papers I and VI), DSMs (papers III and
IV), and Digital Terrain Models (DTMs). The sensor size and focal length are important considerations
when choosing a suitable RGB sensor. Larger sensors generally result in higher-quality images, while
shorter focal lengths are associated with levels of geometric distortion and require geometric correction
(e.g., fisheye lens). The type of shutter utilized is also necessary, with global mechanical shutters
offering faster speeds than electronic rolling shutters. Motion blur can be a concern with electronic
rolling shutters, which may negatively affect the data quality collected. Flying at low velocities (e.g., 4
ms-1) can minimize this effect, as demonstrated by Vautherin et al. (2016). Similarly, barrel, pincushion,
and mustache distortions caused by the camera lens and point of view during shooting are typical in
UAV imagery and can affect the object's geometry in the image (Tmušić et al., 2020). Orthorectification
is a process that can correct these optical distortions and perspective changes resulting from the sensor's
viewing angle and position. The rectification plane in aerial photogrammetry is always the XY plane,
while in near-object photogrammetry, it can be user-defined. To obtain the third coordinate (i.e., the
distance to the object measured perpendicular to the rectification plane), a 3D digital model is necessary
to represent the object's geometry. However, with the high point density obtained from SfM algorithms,
a reasonably accurate 3D digital model can be obtained (Tmušić et al., 2020).

RGB sensors are used in various applications (Table 2), including stream restorations and
sustainability (e.g., paper VI), bathymetry extraction (e.g., paper VII), flood monitoring (Langhammer &
Vacková, 2018), surface flow velocity (Kinzel et al., 2019; Legleiter et al., 2018; Legleiter & Kinzel,
2021), water quality (Koparan et al., 2018; Morgan et al., 2020), granulometric studies (paper II and V),
and snow research (e.g., papers I and III).

Multispectral (MS) system

MS imaging, the most advanced spectral imaging technique for UAVs, uses a ready-to-use sensor
system to deliver high-quality images. These cameras capture reflectance in the visible (Red) to the
Near-Infrared (NIR) region (~4,5 μm to ~1,0 μm) and have a narrower bandwidth than RGB sensors.
Off-the-shelf MS cameras often operate as multi-cameras that simultaneously trigger all channels (4 to
6). The MS sensors generally capture at-sensor radiance, resulting in RAW images expressed in Digital
Numbers (DN). Converting these DN values into absolute surface reflectance values is imperative, as
surface and atmospheric interference influence at-sensor radiance (Wang & Myint, 2015). Various
techniques exist for this conversion, with the Empirical Line Method (ELM) being the most commonly
used during image postprocessing (Aasen & Bolten, 2018). Images of known reflectance surfaces
establish an empirical line between image DNs and surface reflectance under survey-specific light
conditions (Aasen et al., 2015; Ahmed et al., 2017; Crusiol et al., 2017; Laliberte et al., 2011; Wang &
Myint, 2015; Wehrhan et al., 2016). However, the optical device and sensor's spectral response also
affects the relationship between DN and surface reflectance value, requiring additional corrections
(Kelcey & Lucieer, 2012; Wang & Myint, 2015). I.e., MS sensors can have geometric distortions and
spectral/radiometric noise that affect image quality. Comprehensive Field of View (FOV) equipment can
introduce radial variation in viewing angle due to solar motion, leading to non-static illumination
sources. Clouds can also cause darker spots and variations in DN values, making overlapping stitching
images challenging (J. Liu et al., 2016; Stark et al., 2017). Therefore, radiometric correction methods are
necessary to overcome challenges with MS UAV imagery. This correction involves correcting the
vignetting effect, reflectance, and atmospheric scattering (Honkavaara et al., 2014; Lucas, 1995).

The vignetting effects have three physical causes: natural, optical, and mechanical. They can be
reduced through Fourier analysis or a polynomial function (Minařík et al., 2019). The dark current is
caused by the thermal stimulation of electrons in solid-state sensors, and it can be reduced by taking an
image with the lens covered and subtracting it from all obtained images. Anisotropic properties in
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objects, such as the Bidirectional Reflectance Distribution Function (BRDF), can produce various
reflectance effects, and their correction involves using a class-specific calibration function (Honkavaara
et al., 2014). Atmospheric effects caused by scattering and gaseous absorption depend on flying altitude
and study area characteristics, including Rayleigh (when the particles are smaller than the light
wavelength), Mie (when the particles are about the size of the light wavelength), and nonselective
scattering (when the particles are more significant than the light wavelength).

The atmospheric correction is generally omitted in low-altitude UAV flights. However, in some cases
where the quantity of aerosols or haze is high, aerosol sensors could be used, like in Morillas et al.
(2013), or a layered scattering physical-based model could be used, like in (Huang et al., 2016). For a
more comprehensive understanding of MS photogrammetric processing regarding radiometric
corrections, please refer to the works of Minařík et al. (2019) and Minařík & Langhammer (2016).

After all these applied corrections, Vegetation Indices (VI) combining surface reflectance of two or
more spectral bands allows calculating advanced VI in the final orthomosaic. MS sensors are rather
expensive and heavy, producing coarser pixel resolutions than RGB images. They have mainly used for
vegetation monitoring (Assmann et al., 2019; Beyer et al., 2019; Camenen et al., 2016), bathymetry
studies (Flener et al., 2013; Lejot et al., 2007), flood monitoring (Brigante et al., 2017), surface and
groundwater interaction (Bandini et al., 2017), or water quality monitoring (Koparan et al., 2018). More
details are available in Colomina & Molina (2014).

Thermal (TIR) system

Objects on Earth emit radiation in the far infrared spectrum (~3 μm to ~100 μm), and its intensity
depends on their surface temperature. Natural objects emit radiation in proportion to blackbody
radiation, characterized by their emissivity (ε) value, which varies from 0 to 1 based on their chemical
composition and physical structure (Rubio et al., 1997). For example, plant emissivity is around 0.98.
Any object above absolute zero emits radiation in the TIR band based on temperature and emissivity.

TIR cameras provide non-invasive visual representations of thermal radiation emitted by objects in
the long-wave spectral bands (e.g., ~7.5 μm to ~14 μm). They sense a wide range of temperatures (e.g.,
-25°C to 135°C) and come with inexpensive, affordable models. Expensive models are more accurate.
Low-cost sensors are not radiometrically calibrated and can only provide information on relative
temperature differences in raw DN. Two types of TIR imaging sensors are in use: cooled and uncooled.
UAV-mounted TIR cameras are usually uncooled because they are small and lightweight (paper IV), but
are less thermally sensitive and respond more slowly than cooled sensors. Fisheye effects are observed
with FLIR radiometric UAV cameras, and images must be radiometrically calibrated for quantitative
assessments (Pajares, 2015). It can be challenging to derive accurate surface temperature measurements,
and manufacturers' estimates of temperature precision can be up to ±5°C (or 5% of the reading).

The low accuracy of TIR cameras can be attributed to the uncooled microbolometers used in their
Focal Plane Array (FPA). These microbolometers have sensitivity and offset that vary with temperature,
and their thermal radiation can interfere with the signal from the object of interest (Olbrycht & Więcek,
2014), resulting in a poor signal-to-noise ratio (Budzier & Gerlach, 2015). Radiometric calibration is
necessary to correct these factors. However, the proprietary nature of manufacturer specifications makes
it challenging to know how well they account for them (Budzier & Gerlach, 2015; Ribeiro-Gomes et al.,
2017; Shaw et al., 2005). Non-Uniformity Correction (NUC) is performed during UAV operations to
harmonize the sensor's response signal. However, it may not account for factors such as lens distortion
(vignetting) or sudden changes in ambient temperature (Olbrycht & Więcek, 2014). Other factors that
affect temperature measurements include object emissivity, humidity, the surrounding temperature, and
distance. While low-budget uncooled TIR cameras are more commonly used in UAV applications due to
their smaller size and lower weight, methods to minimize their temperature-dependency effects have
been described. However, they have not thoroughly discussed this in previous publications (Shaw et al.,
2005).

Hence, UAV-based TIR imaging can deliver high-resolution and spatially-resolved surface
temperature measurements for environmental applications (Table 2). To ensure accurate calibration,
challenges such as spatial non-uniformity, sensor drift, FPA stabilization, and measurement bias must be
addressed (Berni et al., 2009; Gerhards et al., 2019; Kelly et al., 2019; Mesas-Carrascosa et al., 2018;
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Ribeiro-Gomes et al., 2017; Torres-Sánchez et al., 2013). Thus, pixel values can reliably be converted
into surface temperature. Despite its limitations, TIR imagery is widely used in animal monitoring
(Briscoe et al., 2014), plant physiology (Still et al., 2019), landscape ecology (Scherrer & Körner, 2011),
temperature mapping (Nieto et al., 2022), tile drainage (Tilahun & Seyoum, 2021), evapotranspiration
(KUSTAS & NORMAN, 1996), SM (Dai et al., 2022), turbidity plumes (Kolokoussis et al., 2011),
groundwater discharge (Lee et al., 2019), and wetland mapping (Jeziorska, 2019). However, it does not
provide information on the temperatures of beneath-surface layers (i.e., under the canopy, under a rock,
or soil temperatures).

Table 2. Examples of environmental applications, advantages, and disadvantages of different UAV
sensors.

Sensors Environmental applications Advantages (+) Disadvantages (-)

RGB sensors

Aerial photogrammetry, DEM, DSM,
DTM, change detection, bathymetry,

flood monitoring, surface flow
velocity, snow, and ice depth

Portable, common,
relatively high-quality

RGB images for
orthoimagery and DSM,

easy to integrate with
different platforms,

low-cost, easy to use

Limited spectral information,
lack geometric (e.g. barrel,
pincushion, and mustache
distortion (Tmušić et al.,
2020)) and radiometric

calibration

MS sensors

Bathymetry, flood monitoring, surface
and groundwater interaction, water
quality, snow surface distribution,

vegetation mapping, plant physiology,
pest-detection

Multiple wavelengths,
allow geometric

reconstruction and
radiometric calibration

Higher cost than RGB, image
processing complex
compared to RGB,

radiometric and atmospheric
correction is a must, with
limited compatibility with

UAVs

TIR sensors

Temperature mapping, tile drainage,
evapotranspiration, turbidity plumes,

groundwater discharge, thermal
inertia, soil water content, plant stress

Sense a wide range of
temperatures

Thermally sensitive,
vignetting effects, low spatial

resolution, radiometric
corrections required,

sensitive to change in surface
roughness and emissivity

changes

3. Material and methods

3.1 Background of photogrammetric processing

With the advancement of UAV technology, modern processing approaches have emerged, combining
established photogrammetric and computer vision algorithms. These techniques, outlined by
Hirschmüller (2008) and Triggs et al. (2000), have led to the development of the SfM and Multi-View
Stereo (MVS) processing pipeline (Remondino et al., 2014). SfM-MVS involves capturing the 3D
geometry of an object or scene from multiple viewpoints of a moving camera, resulting in
high-resolution UAV products with temporal and spatial accuracy, making the process time-efficient,
cost-effective, and user-friendly of most photogrammetric products (Fonstad et al., 2013).

3.1.1 RGB photogrammetry

A standard SfM-MVS pipeline for reconstructing overlapping RGB-based UAV imagery consists of
three phases: sparse point cloud reconstruction, georeferencing, and dense point cloud generation
(Remondino et al., 2011). The process starts with feature-based matching to generate a point cloud of tie
points, which includes image observations, internal constraints, and a sparse point cloud. This is
achieved through a self-calibrating Bundle Block Adjustment (BBA) without a priori information. The
feature-based matching uses collinearity to identify corresponding points in the images based on
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epipolar geometry, reconstructing multi-stereo pairs. Subsets of images are incrementally aligned until
the complete photogrammetric block is oriented. The Cameras' Interior (IO) and Exterior Orientation
(EO) parameters are simultaneously determined through iterations in the least squares sense, minimizing
a global reprojection error. This error quantifies the pixel differences between the initially detected
corresponding points and those estimated and back-projected into all overlapping images of the
photogrammetric block. As a result, space resection and the intersection of every tie point are resolved,
and a sparse point cloud with 3D coordinates in an arbitrary coordinate system is generated.

Control information is essential for scaling and orienting the resulting sparse point cloud and
photogrammetric block to determine the 3D shape of a surface accurately. This information is typically
obtained from surveyed GCPs for indirect georeferencing or from the positions and orientations of the
camera exposure stations for direct georeferencing. These control points are weighted observations,
external constraints, and tie points (internal constraints) in the least squares BBA. This allows for
re-estimating the camera's IO and EO parameters and the 3D coordinates of the sparse point cloud in the
desired coordinate system.

Once the epipolar geometry of the photogrammetric block has been established, differences are
computed for all pixels using image-matching techniques such as semi-global matching (Gerke et al.,
2010; Hirschmüller, 2008). These differences are then used to triangulate the pixels, creating a 3D
surface that is smooth and free of abrupt irregularities, achieved through gradient-based and
energy-minimization algorithms. This process in the SfM-MVS pipeline results in a dense point cloud
with RGB color information, serving as a raw representation of the 3D surface. The georeferenced point
cloud, whether sparse or dense, can be exported and interpolated to generate DSMs or DEMs that
exclude vegetation or DTMs that represent only the bare ground. These models can be used for various
applications, such as generating orthophotos and orthomosaics.

3.1.2 Multispectral photogrammetry

The 3D reconstruction of MS UAV-based imagery follows a similar processing workflow as RGB
imagery using commercial software, including tasks such as image alignment, dense point cloud
generation, and orthomosaic creation using Agisoft Metashape (Agisoft LLC, St. Petersburg, Russia) or
similar software with direct or indirect georeferencing. However, additional processing steps are
required due to the unique characteristics of MS sensors, such as radiometric considerations and lower
resolution compared to RGB imagery, as mentioned in section 2.4.2. Radiometric processing for MS
imagery involves two main phases: radiometric (sensor) corrections and atmospheric corrections.
Radiometric corrections aim to restore the normalized DN values to have uniform responses across the
image. This can be achieved through relative radiometric calibration, which normalizes DN values
concerning a reference, or absolute radiometric calibration, which converts DN values to radiance.
These corrections help reduce additive noise and account for changes in incoming radiance from sensors
and optics, which may cause vignetting effects and non-uniform quantum efficiency among chip cells
(Minařík et al., 2019; Minařík & Langhammer, 2016). Atmospheric correction is performed on top of the
radiometric correction results and involves deriving surface radiance or reflectance from the corrected
DN values. Newer sensors such as MicaSense, RedEdge, or Parrot Sequoia are equipped with built-in
radiometric calibration systems and software like Pix4Dmapper (Pix4D S.A., Lausanne, Switzerland)
and Agisoft Metashape can automatically apply these corrections.

3.1.3 Thermal photogrammetry

When generating orthomosaics from TIR images captured by UAVs, a processing workflow similar
to RGB and MS imagery with conventional photogrammetric software can be applied. However, it is to
consider radiometric corrections specific to TIR imagery in addition to standard processing steps as
mentioned above. The output image of a thermal camera may be self-calibrated in radiance, corrected
for atmospheric absorption and emission, and converted to surface temperature values for each pixel,
depending on the type and age of the camera (Titus et al., 2022). It is important to note that uncooled
TIR cameras typically have a lower spatial resolution. Their thermal accuracy can vary based on camera
settings, flight planning, weather conditions, corrections, and ortho mosaicing, ranging from ±0.1 to ±5
°C (Kelly et al., 2019). However, to obtain accurate surface temperature measurements, radiometric
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correction is necessary. The ELM, which relies on known temperatures of thermal targets on the ground,
is commonly used. Four targets, including black (hottest target), white (coolest target), and two
intermediate targets (e.g., dry and wet bare soil), are placed on the ground to produce a wide temperature
range. These targets are measured continuously during UAV flight using thermo-radiometers and
recorded by a data logger (e.g., IR120, Campbell Scientific, ±0.2 °C accuracy when calibrated against a
blackbody).

Alternatively, an alternative approach can be applied as used in paper IV. The acquired TIR imagery
in paper IV was not radiometrically or atmospherically corrected, even though the FLIR DUO R TIR
camera delivers calibrated radiometric temperature measurements for each pixel but with a significant
error range thermal accuracy of ±5 °C. A simple linear regression was applied during post-processing to
achieve a reliable surface temperature estimation, utilizing sampled ground instrument temperatures and
the thermal camera's DN pixel outputs. This approach was chosen to minimize discrepancies and ensure
a close alignment with actual surface temperatures. To further enhance accuracy, it is recommended to
place ground temperature sensors in areas that exhibit uniformity in slope, composition, and texture,
reducing potential errors arising from sensor location within the imagery (Titus et al., 2022). Proper
calibration of TIR cameras should ideally be carried out under controlled laboratory conditions that are
time-consuming and complex (Budzier & Gerlach, 2015).

3.2 Best practices for UAV-based data collection

Flight planning is critical in photogrammetric projects, impacting data acquisition and processing.
Several factors must be carefully considered, including platform specifications (RGB, MS, or TIR
imaging), study site extent, terrain sampling distance, payload characteristics, topography, study
objectives, weather, and regulations. The workflow developed in this study comprises three phases,
incorporating best practices from the literature (e.g., Guan et al., 2022; Tmušić et al., 2020) and the
authors' experiences (Figure 2).

The first phase includes pre-mission and on-site pre-flight planning (Figure 2; Phase 1), which
involves obeying regulations and obtaining necessary permissions, especially in National Parks (i.e.,
Šumava NP or Krkonoše NP). Specific requirements such as a pilot license and signed permits are
necessary to avoid interfering with flora and fauna, especially during the breeding season. Familiarizing
oneself with these rules before conducting a UAV survey is paramount. During phase one, the next step
involves defining the project's objectives (Figure 2; Phase 1). For example, this could involve arranging
regular grain size analyses to repeatedly chart changes in fluvial dynamics along a river point bar or
carrying out SD monitoring to map transformations in the vertical dispersion of snow cover precisely. It
is then essential to establish the quality specifications needed for the project, such as the minimum
required accuracy in vertical measurements (mean bias) and precision (1σ or RMSE, assuming a normal
distribution of data), which can be justified based on the project's requirements. However, this
determination demands a preliminary understanding of the features being mapped.

The next step in phase one involves determining the optimal resolution based on the smallest object
to be mapped. The Minimum Mappable Unit (MMU) determines the appropriate Ground Sampling
Distance (GSD) for mapping objects or features (Singh & Frazier, 2018). When the MMU is small,
indicating smaller objects to be mapped, a smaller GSD is needed to capture the desired level of detail,
and vice versa. The GSD specifies the size of each pixel in the UAV image captured on the ground, and
it is influenced by factors such as camera specifications, flying height, and pixel pitch. Higher flying
heights result in a larger GSD, while lower flying heights produce a smaller GSD. A smaller GSD leads
to higher image resolution and increased level of detail, while larger GSD results in lower resolution and
reduced level of detail. This directly impacts the accuracy and precision of data obtained from the UAV
survey, highlighting the significance of MMU and GSD in determining the quality of mapping
outcomes.

Once regulations, objectives, quality specifications, and GSD are set, the second phase selects the
appropriate sensor (Figure 2; Phase 2). Sensors can be used alone or in combination with other sensors.
RGB sensors are suitable for retrieving the snow cover, mapping granulometry, or mapping wetlands.
MS and TIR sensors produce lower-resolution images, making them unsuitable for high-resolution
topographic mapping. However, the MS camera may be helpful in snow mapping or extracting VIs in

21

https://www.zotero.org/google-docs/?Y1wL2V
https://www.zotero.org/google-docs/?3gvM5b
https://www.zotero.org/google-docs/?bqOb3x
https://www.zotero.org/google-docs/?AHZGCm


peatland monitoring, providing more spectral information for training a machine or deep learning
classification model. At the same time, TIR sensors are beneficial for extracting relative surface
temperature only.

The subsequent step in the second phase of the workflow involves selecting the appropriate aircraft to
mount the sensor. For our example project, multi-copters were the most suitable option. They can
perform vertical takeoff and landing in complex vegetated terrains, fly slowly, and stop to capture
high-quality images (reducing motion blur). Moreover, they can hover at low flight heights for close data
capture of small objects, and the project's small spatial coverage (e.g., <2 ha) is ideal for low battery
capacity. Field checks and proper georeferencing are crucial for accurate and reliable UAV survey
results.

Figure 2. A three-phase workflow was adjusted after Guan et al. (2022) using best practices for
conducting RGB, MS, and TIR UAV mapping of environmental subjects.

Evaluating the location for probable obstructions or safety risks, determining suitable zones for
taking off and landing, and ensuring adequate, evenly dispersed GCPs (about five GCPs per hectare for
planar georeferencing and 10 GCPs per hectare for vertical georeferencing (Manfreda et al., 2019)) are
all crucial for precise georeferencing and shape estimation. Likewise, when employing an MS or TIR
sensor, it is essential to verify that the spectral targets are correctly positioned for MS surveillance. For
reliable detection of GCPs in the thermal domain, composite materials composed of, for instance,
styrofoam and black metal have been demonstrated to be effective with thermal data (Perich et al.,
2020). Alternatively, black or white polypropylene panels, representing the thermal extremes, may also
be utilized and must be visible in the images. Additional GCPs as independent Check Points (CPs) are
recommended for unbiased accuracy estimates.

After determining the sensor, aircraft, field reconnaissance, GCP placement, and radiometric
calibration targets, the final phase in the workflow is the third phase (Figure 2; Phase 3), which entails
planning and executing the UAV surveys. Flight planning can be performed a few days before or on the

22



day of the mission for precise and efficient data capture. Based on the pilot's skills, autopilot software is
recommended (e.g., DJI GS Pro, Litchi, or DroneDeploy). The software adjusts the flight path, flight
speed, altitude, image overlaps, and camera settings based on the desired GSD in advance. Manual
flights may be required in case of signal loss, saving batteries, or extending the distance. The prevailing
terrain and vegetation monitoring methods involve grid or double-grid flight missions tailored to the
desired level of overlap (Du & Noguchi, 2017; Pádua et al., 2018; Tahir et al., 2018). However, it is
essential to consider the weather conditions, particularly the wind direction, when developing flight
patterns, as they can directly affect the quality of data retrieved. For example, the movement of
vegetation can significantly impact the accuracy of 3D reconstructions. At the same time, wind speed,
illumination, cloudiness, and adverse weather conditions like wind and fog can further undermine the
quality of surveys. Both MS and TIR sensors are particularly vulnerable to these factors.

Capturing RGB-based UAV images in RAW format is preferred as it retains more information and
allows for enhancements. However, obtaining image data in compressed file formats (e.g., JPEG, PNG)
will be sufficient for many applications but will introduce unnecessary noise (Boesch, 2017; Singh &
Frazier, 2018). RAW format data have a significantly higher bit-depth, e.g., 12-16 bit vs. 8-bit image
information. For example, when setting up a DJI Mavic Pro camera, it is recommended to use an
aperture of 2.8, a shutter speed of 1/800, and a minimum ISO of 100. Manual focus is preferred, and
weather conditions should be checked frequently. The flight should occur around midday to minimize
shadows, and all equipment should be charged, including additional propellers for damage. According to
Minařík & Langhammer (2016), MS images are captured in the RAW data format in the initial stage.
Then, to make them compatible with commonly used MS image analysis programs, these images are
transformed into a single-page TIFF file format using PixelWrench2 (PW2), software provided by
Tetracam Inc, like in our case. On the other hand, TIR data is first captured as radiometric JPEGs. For
more comprehensive information on MS and TIR image capturing, refer to paper IV. The last steps
(Figure 2; Phase 3) include the GCP survey, documenting and storing the data, parameters, and reference
data.

3.3 Best practices of UAV data processing

Most SfM-MVS software can be classified into two categories: commercial packages such as Pix4D
and Agisoft Metashape, which have standardized workflows and operate as "black boxes" with limited
transparency into their internal workings, or open-source software such as VisualSFM and MicMac,
which have more complex workflows but allow for more significant internal inspection and
understanding by researchers (Tmušić et al., 2020). Utilizing Agisoft Metashape software, the upcoming
steps will involve the application of RGB, MS, and TIR photogrammetric techniques. In the case of
RGB images, the first step involves uploading the images. When working with RAW images for snow
monitoring, more than simply uploading them as the first step may not be recommended. These images
often have poor contrast, which can be improved by applying content enhancement or histogram
equalization techniques (e.g., Cimoli, 2015) in Adobe Suite. This can result in a wider, more centered
histogram, producing higher image quality. To ensure proper alignment with a six-band single
multispectral image, each single-page TIFF file must undergo geometric registration before being added
to Agisoft software. This process involves performing band-to-band registration followed by band
stacking (Guo et al., 2019). Once completed, the MS images can be accurately incorporated into the
Agisoft software for further radiometric calibration and analysis (as illustrated in Figure 3, step 1). In
Agisoft Metashape, Band 4 is typically designated as the master channel for processing. Similarly,
converting TIR images from radiometric JPEG to 16-bit TIFF format is necessary for processing in
Agisoft Metashape.

During the second step, removing blurred images is a critical task (Figure 3; step 2). Agisoft
Metashape has an automatic image quality assessment feature that identifies images with a value below
0.5 (sometimes 0.7) and recommends their removal from photogrammetric processing (Agisoft LLC,
2021). The value is calculated by assessing the sharpness level of the most focused region in the image,
as described by Tmušić et al. (2020). This method effectively determines the appropriate value for RGB
and MS images. However, TIR images, which often have lower resolution, typically have values below
this threshold. Step 3 involves image alignment using SfM to identify and match standard features, while
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step 4 uses BBA to adjust camera parameters and 3D point positions, using a least-squares global
optimization approach to reduce image residuals (S. I. Granshaw, 2020; James et al., 2017). Following
this procedure, the output is a more dependable, aligned image network that relies solely on the
estimated camera positions from the imagery, resulting in a sparse cloud. Step 5 involves quality control
assessment of the image network by checking for tie point errors (Cooper et al., 2021; James et al.,
2017). The Gradual Selection tool available in Agisoft Metashape facilitates the cleaning process by
enabling the selection of points based on three distinct criteria. The Reprojection error is one criterion
utilized to eliminate points with large residuals, which may be erroneous. When dealing with sharp
images, achieving a tie point reprojection error between 0.3 to 0.5 pixels is possible. Another criterion is
Projection accuracy, which permits the selection of tie points that may be less reliable. The final
criterion is the Reconstruction uncertainty, which allows for removing points from models with low
base-to-height ratios. Tie points at the edges of the project area exhibit a higher degree of reconstruction
uncertainty than those in the block center. This is due to reduced lateral overlapping in images covering
the edges, as pointed out by Mayer et al. (2018). In step 6, the GCP data should be imported, ensuring
consistency with the GNNS data coordinates. Once the GCP data is imported, a manual association of
points with their locations is necessary.

Figure 3. A 16-step workflow was adjusted after Guan et al. (2022) used for processing UAV-based
surveys of environmental studies, which includes exceptions and deviations for the MS and TIR
photogrammetry.

If using Agisoft Metashape, it is crucial to uncheck all geotagged photos before this step to prevent
the production of a distorted DSM resulting from intervening in high-quality GCP data with less
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accurate GNNS data (Tmušić et al., 2020). After manually identifying one GCP in two images, the
software automatically starts filtering out the remaining images containing the given GCP. Once the
software has identified the position of the GCPs, these observations are incorporated into the BBA
without being designated as control points and without including their corresponding ground
coordinates. This processing technique is commonly referred to as a "free" or "inner constraints" bundle
adjustment (S. Granshaw, 1980). It enables assessing the image observations' quality and estimating
their measurement precision before they are linked to ground coordinates.

By optimizing camera alignment, georeferencing accuracy can be substantially improved (as shown
in Figure 3, step 7) by updating GCPs and camera-estimated coordinates with georeferencing errors.
This results in a more precise capture of GCP quality in pixels (as illustrated in Figure 3, step 8), where
the RMSE of reprojection is closely associated with estimating planar and vertical positional accuracy,
thus leading to a more accurate outcome. Finally, GCPs are linked with their 3D ground coordinates in
step 9 for georeferencing, and another BBA is performed using all GCPs as a control in step 10 (Figure
3). To ensure the desired level of accuracy, it is essential to remove GCPs with a high total reprojection
error (i.e., more considerable RMSE value) before creating the dense point cloud. It ensures that the
image network achieves internal consistency and that high-quality ground control observations are
incorporated without significant errors resulting from poorly matched tie points or incorrectly identified
GCPs (James et al., 2017). To facilitate this process, a Python script for GCP errors can be exported in
step 11, allowing for further analysis of the RMSE values. Moving on to step 12 of the processing
workflow, the next step is camera model optimization, which is determined through self-calibration
during BBA (Griffiths & Burningham, 2019). One way to assess the error in the GCPs is to randomly
select a set of them as CPs and perform another BBA for error evaluation (Figure 3, step 13). This
process can be repeated with a different set of randomly selected GCPs as control points until the best
possible model is achieved. Accurately determining the magnitude of absolute vertical and horizontal
error is paramount in geometric processing (Tmušić et al., 2020). Step 14 generates a dense point cloud
with the best-selected CPs, and the resulting point cloud can be classified in Metashape or exported as a
LAS file. Steps 15 and 16 involve generating a high-resolution 3D model or orthoimagery (Figure 3).
RGB orthomosaics can be exported as GeoTIFF files.

The workflow for MS images remains the same until step 13, but performing reflectance
transformation is essential before creating the dense point cloud (Figure 3; step 14). This can be
achieved by using values from five reflectance targets based on laboratory values and using the ELM
method described by Minařík et al. (2019), such as when using the Tetracam µMCA. So this helps to
generate reflectance and normalize signals for different illumination conditions and atmospheric effects.
For newer MS sensors, the software typically recognizes calibration and radiometric parameters.
However, for more comprehensive details, please refer to paper IV. The workflow for TIR follows the
same steps as RGB image processing. From DSM outputs, thermal orthomosaics can be generated to
display thermal signatures in DN values ranging, for example, from 0 to 65535, as in our case. Paper IV
demonstrates that these DN values can be converted into relative temperatures. MS and TIR
orthomosaics can also be exported as GeoTIFF files for further analysis.

3.4 Applied UAVs and camera sensors

In the dissertation, we used a variety of drones with different sensor configurations from RGB
through MS to TIR. Some drones had sensors already attached, while others allowed for the attachment
of individual sensors as needed. Table 3 summarizes the essential drone and camera specifications
utilized in the various papers. It includes information such as drone and camera model, sensor, focal
length, flight time, GPS, and the corresponding research paper in which they were utilized. Table 4
provides a separate list of specifications for the MS and TIR sensors. The Tetracam µMCA captures
images in the visible and NIR spectrum and the RedEdge component (Table 4). The camera's spectral
bands were selected based on previous studies (e.g., Imran et al., 2020; Martínez Prentice et al., 2021;
Turpie, 2013) to detect vegetational parameters and monitor changes in peat bog environments. To
ensure accurate data, an in-house radiometric calibration was developed for the dissertation (paper IV).
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Table 3. Summary of the critical drone and camera specifications used in the papers.

Drone model Camera model Sensor Focal Length Flight
Time GPS Paper

DJI Phantom 2 Vision+ Built-in RGB camera 14 MP CMOS, 96° FOV, f/2.8 lens 5 mm ~25 min GPS I

DJI Inspire 1 PRO Zenmuse X5 RGB camera,
interchangable cameras

16 MP CMOS, 94° FOV, f/2.8 lens, image size pixel 336 x
256

20 mm (equivalent
format to 35 mm) ~18 min GPS I, V, VI

MikroKopter Hexacopter Canon EOS 500 DSLR RGB 18 MP CMOS 20 mm ~15 min GPS/
GLONASS II

MikroKopter OctoXL
octocopter

Panasonic Lumix DMX-GX7
RGB 16 MP Micro Four Thirds CMOS 20 mm (equivalent

format to 35 mm) ~15 min GPS/
GLONASS III, V

DJI Mavic Pro Built-in RGB camera 12.3 MPx camera with 1/2.3" CMOS sensor 28 mm (equivalent
format to 35 mm) ~27 min GPS/

GLONASS IV

DJI Mavic Pro
Equipped with MAPIR Survey3
Mount holding a FLIR DUO R

dual-sensor RGB/Thermal camera

Thermal sensor: Uncooled VOx Microbolometer, thermal
measurement accuracy +/-5°C, spectral bands 7.5 to 13.5

µm, image size pixel 160 x 120, FOV 90°
8 mm ~27 min GPS/

GLONASS IV

MikroKopter OctoXL
octocopter

Tetramcam µMCA (Micro
Multispectral Camera Array) Snap

6

5.2 MP CCD sensor, six multispectral filters, image size
pixel 1280 x 1024

Micro-MCA cameras
use fixed 9.6 mm
x-mount lenses

~15 min GPS/
GLONASS IV

DJI Matrice 210 RTK V2 Zenmuse X4s RGB camera,
interchangable cameras 20 MP CMOS, f/2,8-f/1.1, image size pixel 5472 x 3648 focal length equivalent

to 24 mm ~38 min
GPS/

GLONASS/
RTK

V, VII

DJI Mavic 2 Pro Hasselbad L1D-20c RGB camera 20 MP camera with 1" CMOS sensor, FOV 77°, f/2,2,
image size pixel 5472 x 3648

focal length equivalent
to 28 mm ~30 min GPS/

GLONASS VI, VII

DJI Phantom 4 Pro Built-in RGB camera 20 MP CMOS with 1" CMOS sensor, FOV 84°, f/2,8,
image size pixel 4000×3000

24 mm (equivalent
format to 35 mm) ~20 min GPS/

GLONASS VII

eBee* (fixed-wing) Canon S110 RGB camera 12 MP with 1/2.3" CMOS sensor, image size pixel 4000 x
3000, f/8 at all focal length 24 mm - 120 mm ~90 min GPS/

GLONASS VII

eBee* (fixed-wing) Canon S110NIR camera 12.1 MP with 1/1.7" CMOS sensor, acquired false colored
images with three channels 24 mm - 120 mm ~90 min GPS/

GLONASS VII

DJI Matrice 210 RTK V2 Micasense RedEdge-M multilense
MS camera

12 MP CMOS sensor, image pixel size 1280 x 960, five
multispectral filters 5.4 mm ~38 min GPS/

GLONASS VII

*eBee by senseFly manufacture.
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On the other hand, the MicaSense RedEdge-M multi-lens MS camera captures five bands from
different lens cones simultaneously - three in the visible spectrum (RGB) and two in the invisible
spectrum (RGB, RedEdge, and NIR). Refer to Table 4 for more specifications. The FLIR DUO R
dual-sensor RGB/TIR camera captures visible or thermal imaging alone or both simultaneously, with the
sensor specifications indicated in Table 4. The combination of the lightweight and compact FLIR DUO
R camera, the stable Mavic Pro UAV platform, and the second gimbal allowed us to collect detailed and
precise TIR data quickly and relatively efficiently (paper IV).

Table 4. The spectral resolution pertains to the Tetracam μ-MCA Snap 6 camera, MicaSense
RedEdge-M, and FLIR DUO R.

Camera Spectral Bands Filters Central Wavelength
(nm)

FWHM*
(nm)

Tetramcam µMCA 1 Green 550 20

2 Red 650 20

3 Red Edge 700 20

4 Near-Infrared I (NIR) 800 20

5 Near-Infrared II (NIR) 850 20

6 Near-Infrared II (NIR) 900 20

MicaSense RedEdge-M 1 Blue 475 20

2 Green 560 20

3 Red 668 10

4 Red Edge 717 10

5 NIR 840 40

FLIR DUO R 1 Red 660 -

2 Green 550 -

3 Blue 470 -

4 Infrared Radiation (IR) 1000 -

* FWHM: full width at half maximum.

3.5 Study areas

For the dissertation, the study focused on five Areas of Interest (AOI) within the Šumava National
Park (Bohemian Forest) located in Southwestern Czechia, three AOI in Prague, Czechia, and two AOI in
the southern part of Poland. Two of the areas were chosen for the study of snow cover variations. The
first location was an open area with meadow coverage and isolated trees (Figure 4a, b). In contrast, the
second location was a forest area dominated by Norway Spruce (Picea abies (L.) Karst.) with significant
canopy gaps due to bark beetle (Ips typographus L.) infestations (Figure 4c, d). The forest area also
demonstrated diversity in forest coverage, with one part covered with fallen branches and rotten wood
and another covered with still healthy spruce trees but already infected ones in the green attack phase.
These two areas with opposing characteristics were used to study the effect of vegetation on snow cover
mapping with UAVs, and the data collected was used in papers I and III.
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Figure 4. Locality map of the study area southwest of the Czech Republic, near the German border. The
Upper Vydra Basin map indicates the locations of the test sites (red and green dots), while the aerial
photograph displays: (a) the open area with meadow coverage (snow-free), (b) the same area with snow
cover, (c) the forest plot with disturbed forest (snow-free), and (d) the same area with snow cover.

The third locality studied in the dissertation was an experimental area of the Javoří Brook in the
Šumava Mts., which represents an unregulated river stream that experienced elevated dynamics of
fluvial processes (Figure 5). This area is located in the headwaters of a mid-mountain range and
frequently experiences flooding. The area's land use, settlement, and management practices have
significantly changed. In the past, the area was surrounded by medieval virgin forests, which were then
converted to a forest spruce monoculture for the wood industry after being impacted by bark beetle
outbreaks. The study site is a river point bar located at the confluence of the Javoří and Roklanský
Brooks, where fluvial processes were started by a flood in June 2013 and heavily accelerated by an early
winter flood in December 2015 (Curda et al., 2011). The inner bend point bar exhibits active bank
erosion and fluvial accumulations, resulting in consistent changes in PSD (paper V). This makes it an
ideal location for studying sediment dynamics within a river system. The experimental site has been
utilized in papers II and V of the dissertation.

Figure 5. The locality map presents the study area southwest of the Czech Republic near the German
border. The Upper Vydra Basin map indicates the test site location (dark blue dot), and an aerial
photograph shows the Javoří Brook river point bar.
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The Rokytka peat bog in the Šumava Mts. was the fourth and fifth experimental locality studied in
the dissertation (paper IV). The peat bog is a large montane-raised ombrotrophic complex covering 250
hectares, and two sites within the complex were chosen for this study. The sites were located along the
Rokytka stream and covered an altitude range between 1100 and 1260 m a.s.l. Two opposed test sites
were selected to study GWL and SM in this peat bog. The first test site covered an area of approximately
4.5 hectares and consisted of an open treeless site with several pools and a complex system of
hummocks and hollows with flat areas in between (Figure 6a). The site was mainly covered by pine
(Pinus mungo Turra), blueberry (Vaccinium myrtillus L.), and moss vegetation (Sphagnum sp.). The
second site was a flat zone mainly covered by moss and cotton grass vegetation (Eriophorum sp.)
(Figure 6b). Both sites contained a well-developed raised ombrogenous peat bog with a Histosol soil
type varying from 0.5 m to 6 m depth. Dead spruce trees surround both locality plots, with healthy
seedlings at the second site and various dwarf communities. The first site was drained naturally into the
local stream, and the vegetation varies based on the water regime. Grass parts without trees are where
the groundwater table occurs near the surface, and the soil is primarily saturated with water throughout
the year. The second site was most likely affected by one drainage ditch, which drained only a small
buffer due to the high hydraulic conductivity of peat. The chosen localities were compared and analyzed
to understand the properties and functions of different parts of the peat bog environment from an optical
point of view.

Figure 6. The locality map illustrates the study area southwest of the Czech Republic, near the German
border. It depicts the Upper Vydra Basin and identifies the locations of the test sites using yellow and
pink dots. The accompanying aerial photograph showcases the peat bog's upper (a) and lower sections
(b).

In the sixth scenario of the dissertation (paper VI), the Lipanský (LIP; Figure 7a), Rokytka (ROK;
Figure 7b), and Hostavický (HOS; Figure 7c) brooks in Prague were selected as study sites due to their
varying levels of human impact, ranging from minimal impact in the ROK to heavily impacted in the
LIP. The LIP and HOS are comparatively larger streams with a significant amount of human activity,
including channelization and discharge of wastewater. Due to this, these streams experience more
significant human impact, which can affect the river's morphology and water quality. On the other hand,
the ROK is a smaller stream, mainly fed by springs, and has limited human impact. This makes it an
ideal site for studying natural river processes and ecosystem dynamics without the influence of
anthropogenic factors. The streams are located in valleys with minimal gradients and flat floodplains and
historically developed into meandering channels but were gradually straightened and stabilized using
concrete profiles due to urban development. This resulted in "new wilderness" zones in the formerly
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unmaintained areas. However, after 2000, the City of Prague started a program to restore small streams
in the metropolitan area, including the LIP, ROK, and HOS brooks. Restoration works were completed
between 2014 and 2018, restoring one to two-kilometer-long stream segments for each brook.

Figure 7. The locality map displays the study area in Prague, Czech Republic, and highlights the
locations of the test sites with red, blue, and green dots. The accompanying aerial photographs depict the
Lipanský (LIP) brook in (a), Rokytka (ROK) brook in (b), and Hostavický (HOS) brook in (c). The blue
markings on the streams indicate the specific sections used to evaluate geometric properties.

In the seventh scenario of the dissertation (paper VII), the study area is in the Izerskie Mountains in
southwestern Poland, along the Polish-Czech border (Figure 8). The field experiment was conducted at
two sites on Hala Izerska, with Site 1 on a straight segment of the Izera River and Site 2 on a meander
northward. The Izera River is a major tributary of the Elbe River. The area has a hilly landscape with
minor changes in elevation due to granite weathering. The alluvial channel section represents a natural
stream controlled by dynamic fluvial processes, with soft sandy riverbanks and a gravel-sand riverbed.
Bank erosion and accumulation of landforms are common due to the lack of training structures and
sedimentary material. The channel has asymmetrical banks with erosive undercuts ranging from 0.5 to 1
meter. Different accumulation forms include point bars, mid-channel bars, obstruction bars, and
longitudinal bars. The channel width ranges from 4.7 to 17.7 meters, and the average slope of the
riverbed is 1.36 ‰. The study section is surrounded by coniferous forest on the right bank and a grassy
meadow on the left.
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Figure 8. Overview of both studies sites a), Site 1 b), and Site 2 c) location with profile lines.

3.6 Applied methodology

Various methods were utilized for data collection and analysis, with the majority carried out by the 
author and detailed for each publication in the thesis (see List of publications included in the thesis). 
These methods included

1. careful planning of UAV campaigns;
2. conducting UAV mapping for snow and forest metrics, peat bog surfaces, and grain size

variability;
3. determining their attributes using DEMs, DSMs, and aerial orthoimagery;
4. measuring their surface and subsurface morphology in-situ or using DEMs, DSMs, or aerial

orthoimagery;
5. collecting ground samples as a reference and determining their physical properties such as SD,

GWL, SM, temperature, or bathymetry;
6. conducting grain size annotation;
7. modeling GWL, SM, and grain size distribution using programming solutions;
8. performing statistical analysis;
9. extensive literature searching aimed at contextualizing the results in broader research or regional

contexts; and
10. interpreting and synthesizing the findings.

The UAV imagery was processed using Agisoft Metashape software (formerly PhotoScan; Agisoft
LLC, St. Petersburg, Russia), and point cloud filtering was performed using either LAStools software
(https://rapidlasso.com/lastools) or CloudCompare software (http://www.cloudcompare.org/).
Computation was mainly done using Excel, RStudio, Python, or C++ environments, and further
processing of the aerial data was conducted using QGIS (https://qgis.org/en/site/) or ArcGIS10
(Environmental Systems Research Institute) software. All the data and methods used in this study are
detailed in the publications themselves (see Supplements) and are not entirely explained here.

4. Overview of published research

This chapter summarizes the results of the dissertation's seven research papers. Four articles were
published in the impact journal Remote Sensing (IF2022 = 5.349), one in Sensors (IF2022 = 3.847), and
one in peer-reviewed collections The International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences indexed on Web of Science. Two research papers are being reviewed
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in the Journal of Hydroinformatics (IF 3.085) and the International Journal of Applied Earth Observation
and Geoinformation (IF 7.672).

4.1 Paper I

Lendzioch, T., Langhammer, J., & Jenicek, M. (2016). TRACKING FOREST AND OPEN AREA
EFFECTS ON SNOW ACCUMULATION BY UNMANNED AERIAL VEHICLE
PHOTOGRAMMETRY. International Archives of the Photogrammetry, Remote Sensing & Spatial
Information Sciences, 41. Vols. XLI-B1 (pp.917-923). Copernicus GmbH
https://doi:10.5194/isprsarchives-XLI-B1-917-2016

The study aimed to develop a solution to accurately measure snow cover, volume, and vegetation
properties using a combination of SfM and commercial UAV imagery. The study utilized
downward-looking UAV RGB-based images to measure winter LAIeff in a spruce forest and to observe
SD distributions at two experimental sites, one in an open area and the other in a forested area. The
structural arrangement of trees plays a significant role in the observation of snow accumulation and
persistence/absence (Baker Jr., 1986; Gleason et al., 2017; Lundquist et al., 2013; Molotch et al., 2009;
Varhola et al., 2010), which can affect the accuracy of SD observations due to canopy shading of the
ground surface, interception, or reradiation of absorbed energy by trees (Belmonte et al., 2021;
Lundquist et al., 2013; Sankey et al., 2017; Zheng et al., 2018). The study compared the retrieved
snowpack observations between the open and forested areas and found that the observations of
distributed SD values in the open area were in better agreement with manual probing than those with
deeper patches of snow in the forest. The study also compared LAIeff estimates derived from ground
measurements with UAV LAI data and found that the UAV-based technique showed much closer
distribution matches with the Digital Hemispherical Photography (DHP) than the LAI-2200 canopy
analyzer (Li-Cor, Lincoln, Nebraska). The study highlights the challenges of using high-resolution
centimeter-scale imagery to resolve snow height models with an RMSE at the centimeter level in
non-optimal conditions and complex terrain with high vegetation. The study concludes that a
quicker-to-apply LAI estimation technique to more accurate sighting ground truth estimates should be
found while avoiding significant errors.

4.2 Paper II

Langhammer, J., Lendzioch, T., Miřijovský, J., & Hartvich, F. (2017). UAV-based optical granulometry
as tool for detecting changes in structure of flood depositions. Remote Sensing, 9(3), 240.
https://doi.org/10.3390/rs9030240

This study utilized optical granulometry and UAV-based photogrammetry to obtain PSDs of selective
image tiles from resulting UAV orthoimages along a river point bar and investigate changes in fluvial
processes. We tested UAV flight altitudes ranging from 3 to 12 m above ground level to determine the
optimal flight altitude for balanced ground resolution, spatial coverage, and image overlaps. We found
that an 8 m flight altitude is fair enough for image resolution and photo-sieving, with a moderate volume
of image capture and a 70% front and side image overlap. We applied the BASEGRAIN application
(Detert & Weitbrecht, 2012) to analyze grain size along point bar transects based on a regular grid and
successfully determined eight fractions of grain size percentiles (D10, D16, D30, D35, D50, D65, D84, and
D90) for several transects for 2014 and 2016, respectively. Herewith, we demonstrated the potential for
greater analytical freedom across multiple study sites and multitemporal analysis of areas experiencing
substantial morphological changes. However, the challenge remains in developing a method that can
cover larger areas or estimate PSDs over an entire gravel bar rather than analyzing grain size on a single
high-resolution aerial orthoimage from a ∼1 m2 patch, as in this and previous segmentation studies.
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4.3 Paper III

Lendzioch, T., Langhammer, J., & Jenicek, M. (2019). Estimating snow depth and leaf area index based
on UAV digital photogrammetry. Sensors, 19(5), 1027. https://doi.org/10.3390/s19051027

In this study, we conducted a field survey during the snow accumulation and ablation phase of two
sites (open area vs. forest area), quasi-extension research of the study in paper I. We continued with
indirect LAIeff measurements using UAV-based photogrammetry. We compared the SD measurements
obtained through GCPs, a sparse network, with those obtained through a denser network of manual snow
probing; there was a much better match. In particular, using a single pixel-based SD extraction from
DSMs with fewer samples resulted in better accuracy, with an RMSE of less than 0.10 cm for the open
area and less than 0.16 cm for the forested plot. However, when using a 1 m buffer to extract more
samples, the uncertainty doubled, with an RMSE of less than 0.17 cm for the open area and less than
0.33 cm for the forested plot. Additionally, we tested two UAV flight altitudes (50 m vs. 65 m) to
analyze the difference between indirect winter LAIeff measurements obtained from downward-looking
UAV images. We found that the measured LAIeff values depended on the flight altitude, with higher
altitudes resulting in lower LAIeff values, possibly due to the narrow camera viewing angle. A lower
UAV flight altitude would cover a smaller area but result in more significant variations of scenes and
more accurate LAIeff estimates. This study showed that combining UAV-based photogrammetry with
field surveys can provide accurate SD and LAIeff measurements in forested areas during the snow
accumulation/ablation phase. However, the optimal flight height for achieving the ideal LAIeff estimates
using UAV downward-looking images remains challenging.

4.4 Paper IV

Lendzioch, T., Langhammer, J., Vlček, L., & Minařík, R. (2021). Mapping the groundwater level and
soil moisture of a montane peat bog using UAV monitoring and machine learning. Remote Sensing,
13(5), 907. https://doi.org/10.3390/rs13050907

This study collected fine-scale spatial data from DSMs, RGB, MS, and TIR UAV imagery to predict
in-situ GWL and SM data at two peat bog locations. The study utilized 34 variables as candidate
predictors for the CAST ML regression models, which involved microtopographic, vegetational, and
temperature drivers. A Forward Feature Selection (FFS) implemented in the CAST package was used to
reduce the impact of overfitting caused by correlated variables. The performance test results for each
model indicated moderate to solid performance, even though the Lower Part (LP) provided better
prediction performance than the Upper Part (UP). The models consistently selected fewer than half of
the variables, with temperature and Normalized Difference Vegetation Index (NDVI) being the key
variables, followed by variables related to RGB and topomorphometric spectral variables for the UP and
topomorphometric and RGB spectral variables for the LP. The study suggests that continued monitoring
of the peat bog's topography, morphology, and vegetation will improve our knowledge of the mechanism
involved in response to climate change. The approach used in this study can be used to improve the
prediction of future responses and sensitivities of peatlands.

4.5 Paper V

Lendzioch, T., Langhammer, J., & Sheshadrivasan, V.K. (2023). Automated Mapping of Particle Size
Distribution from UAV - imagery using the CNN-based GRAINet Model. Journal of
Hydroinformatics. IF 3.085 (under review)

The study builds upon the findings of a previous study (paper II) by introducing a new automated
data-driven approach called GRAINet for estimating PSD characteristics on entire gravel bars using
georeferenced UAV images. The GRAINet methodology utilizes a CNN architecture to directly predict
PSD characteristics from image textural features, including mean diameter (dm). The method is tested
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on eight UAV datasets from a point bar of a montane stream in the Javoří Brook Šumava National Park
in Czechia. The model is trained on diverse annotated training sets and evaluated for prediction
accuracies. The GRAINet algorithm demonstrates high to moderate accuracies in predicting mean dm
but tends to underestimate most models. Statistical analyses on image tile properties reveal that
saturation and contrast have a more significant influence than image tile sharpness or orthoimage. The
GRAINet approach provides an efficient and automated means of estimating PSD, enabling prompt
decision-making based on high-resolution grain size maps, even without direct object counts or probes.

4.6 Paper VI

Langhammer, J., Lendzioch, T., & Šolc, J. (2023). Use of UAV Monitoring to Identify Factors Limiting
the Sustainability of Stream Restoration Projects. Hydrology, 10(2), 48.
https://doi.org/10.3390/hydrology10020048

The study used UAV monitoring to assess the sustainability of stream restoration projects in Prague,
Czech Republic. Based on six years of monitoring, we analyzed restoration's quantitative and qualitative
aspects, such as the restoration effect, fluvial processes, hydrological connectivity, and riparian
vegetation. The photogrammetric reconstruction of the riverscape models provided a basis for visual
assessment. Using existing classification schemes and data, we were able to detect critical features
accurately. The results showed significant discrepancies in channel geometry between the planned and
realized restorations and issues in qualitative aspects, such as water overuse, eutrophication, and
inefficient riparian shading, which limit restoration quality. The restored channels were less complex and
featured a simpler geometry than planned, which negatively affected the positive effect of the projects
and limited their sustainability. UAV monitoring also revealed qualitative shortcomings in the
restorations, including stream segments featuring instability and disruptions of hydrological
connectivity. Using UAV monitoring with existing assessment methods can facilitate better information
on stream restoration effectiveness and sustainability.

4.7 Paper VII

Witek, M., Walusiak, G., Halicki, M., Remisz, J., Borowicz, D., Parzóch, K., Kasprzak, Ł.,
Langhammer, J., Gallay, M., Miřijovský, J., Šašak, J., Kaňuk, J., Lendzioch, T., Minařík, R., Popelka, S.,
Niedzielski, T., 2023. Reconstructing bed topography of a shallow river from close-range aerial imagery:
multi-drone experimental campaign in the Izera river (SW Poland/N Czechia). International Journal of
Applied Earth Observation and Geoinformation. IF 7.672 (under review)

The study's objective was to use the SfM algorithm to reconstruct the bathymetry of a shallow Izera
river in SW Poland/N Czechia. We conducted a multi-drone experimental campaign using one
fixed-wing drone (eBee by SenseFly) and three multi-rotors (DJI Matrice 210-RTK V2, DJI Mavic 2
Pro, DJI Phantom 4 Pro) to evaluate the robustness of the approach by exploring its repeatability and
reproducibility. The riverbed topography was reconstructed 48 times using the SfM algorithm and
corrected for refraction. The reference elevations of the riverbed were obtained using leveling, while a
TLS determined water surface elevations. We found that the RMSE of the reconstructions of bottom
river topography varied between 2.6 cm and 109.3 cm, with a median of 17.5 cm, and was mainly
underestimated. The repeatability test for all platforms had an RMSE smaller than 10 cm in 57% of the
cases and up to 76% for only multi-rotors. The reproducibility test had an RMSE smaller than 10 cm in
47% of the cases and up to 60% for only multi-rotors. Hence, we concluded that the approach is robust
regarding its repeatability and reproducibility, mainly when multi-rotors are utilized. However, the
effectiveness of the bottom reconstruction depends on the channel morphology and decreases explicitly
in the vicinity of the river banks.

5. Discussion

The thesis provides insights into using UAV RS technology for studying cryosphere science,
geomorphology, river sustainability, river bathymetry, and peatland dynamics in mid-latitude montane
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regions, specifically, the Šumava region of Czechia, Prague, and southern Poland. These unique regions
with complex topography and hydrology are ideal for understanding natural ecosystems and developing
management strategies. Integrating UAV-based data with ground-based measurements and models is
emphasized to improve prediction accuracy. Findings have implications for future environmental
research and resource management.

5.1 SD and the indirect LAI retrieval from UAV images

The study (paper I) shows that the RGB camera in the visible spectrum can capture SD distributions
in open and forested regions and the impact of vegetation on SD variability. Previous work supports
these SD analysis results, even without additional NIR input (e.g., Avanzi et al., 2017, 2018a; Bühler et
al., 2016; Nolan et al., 2015). Although photogrammetry on snow-covered terrain was previously
deemed infeasible due to low contrast, recent studies have overcome these limitations. However,
creating precise and accurate SfM DEMs/DSMs of homogeneous snow cover can be challenging due to
the difficulty that SfM software faces when attempting to determine matching points using an RGB
sensor on a smooth snow surface. In order to tackle this challenge, it is crucial to consider several factors
that can affect the precision and accuracy of the resultant snow-free and snow-covered models. In
particular, these factors include weather conditions, flying height, distance to GCPs, image overlap, and
field site conditions such as vegetation. Among these factors, illumination and cloud cover can
significantly impact image quality, potentially leading to incomplete or inaccurate 3D reconstructions.
Conversely, the combination of low temperature and wind can limit flight duration and pose a safety risk
to those involved in the survey. In addition to wind speed and direction, air humidity plays a significant
role in image quality. Higher humidity levels contribute to greater light dispersion, making creating
accurate 3D snow cover models more difficult.

Reasonable vertical accuracies were achieved in the SfM models in paper I, despite the cloudy
weather conditions during the surveys. The snow-covered DEMs exhibited particularly good accuracies.
It is noteworthy that Revuelto et al. (2021) found that a clear sky at noon would lead to more
homogeneous illumination and greater coverage in the SD map. However, the lower accuracies of the
bare ground DEMs were primarily due to the open area SfM survey conducted over a more uniform
vegetational surface comprising single trees, high thick grass, and hummocks in between. Dense
vegetation types can obscure the line-of-sight of the actual ground level and introduce additional bias in
vertical model accuracies (Goetz et al., 2018; James et al., 2017). As reported in other studies (Adams et
al., 2018b; Bühler et al., 2016; Nolan et al., 2015), the same issue can arise with dead tree stumps lying
on the ground (e.g., Stevenson et al., 2015; Wierzbicki, 2017).

In paper III, we showed that the precision of bare-ground DSMs improved even under different
weather conditions. However, partly clear skies were not ideal due to fleeting shadows on the ground,
especially in the forest, which can affect the flight mission configuration regarding data gaps. To
overcome this issue, we recommend using a k-means clustering algorithm after Jain (2010) removes
light and hard shadows on snow-covered point clouds and improves the precision of the snow-on or
snow-off DSMs. To assess the accuracy of our results, we compared the vertical SD accuracies obtained
from our study with manual probing using either a pixel-based approach or denser snow probing
networks. We found that our results were as good and aligned with the results of other studies (e.g.,
Avanzi et al., 2017, 2018b; Bühler et al., 2016; Cimoli et al., 2017; De Michele et al., 2016; Harder et
al., 2016; Vander Jagt et al., 2015). However, it is crucial to note that the accuracy of snow probing is
also influenced by local snowpack characteristics and the underlying ground, such as vegetation and
microtopography, which can result in estimation errors at the centimeter to decimeter level (Adams et
al., 2018a; Bühler et al., 2016; Fernandes et al., 2018; Harder et al., 2016). In paper III, we improved the
accuracy of our SD measurements by accounting for the effect of vegetation compression by the snow,
which was observed as the most significant negative value showing an underestimation of SD for UAVs,
especially in paper I. However, confounding effects due to vegetation remain a common phenomenon in
the snow community, as observed in other studies (i.e., Bühler et al., 2016; Eberhard et al., 2021).

To our knowledge, low-cost downward-looking UAV-based images have not yet been applied to
investigate the indirect winter LAIeff, which considered the clumping effect of leaves in a canopy causing
LAI measurements to overestimate or underestimate the amount of leaf area. The direct methods usually
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obtain vegetation LAI by manually sampling leaves and measuring their total area using a leaf area
meter, which is destructive, time-consuming, and labor-intensive (Yan et al., 2012). Alternative, less
destructive, and well-established instruments for indirect LAI measurements are, e.g., the LAI-2200
plant canopy analyzer (Li-Cor, Lincoln, Nebraska) or DHP, two of the most common devices.
Otherwise, downward-looking UAV images can be used. The basic technique is the same as used in
DHP analysis (Chianucci & Cutini, 2012; Jonckheere et al., 2004; Miller, 1967); the difference is that
the background is the snow-covered terrain instead of the sky.

Paper I provides some of the earlier results of the simultaneous UAV mapping of SD and the indirect
winter LAIeff. Randomization is a widely used statistical method often employed in experimental designs
to reduce the effects of bias and confounding variables (Smith, 1998). In the context of UAV-based LAI
estimation, randomization can help ensure the representativeness and generalizability of the data
distributions and minimize the potential impact of systematic errors in allocation. In paper I, we used
randomization to assign and rank the extracted winter LAIeff data (i.e., LAI-2200, DHP, and UAV-based
LAIeff) randomly from the highest to the lowest values to assess the quality of the random selection rule.
The results showed relatively high relationships between the different LAI methods using this simple
statistical method, indicating that the randomization effectively reduced bias and confounding variables.

However, we used a local control experiment in paper III, where data was matched based on specific
variables assigned randomly to a group at a specific location to ensure that the data at the exact location
is as similar as possible regarding the character being controlled. For instance, plot number one
corresponded to the first extracted values from each method; plot number two corresponded to the
second extracted values from each method, etc., and were then compared. This method decreases the
experimental error and increases the efficiency of the experimental design (Yu & Kumbier, 2017).
Usually, the detected forest area should be by ground-based techniques, and drone LAI measurements
are about the same, but the drone LAI measurements were somewhat underestimated (paper III). One
potential source of bias is the presence of intercepted snow at the tree canopy, which can cause an
underestimation of LAI values. This is because intercepted snow can block the view of leaves, making it
challenging to measure leaf area accurately. However, once the snow ablates and the tree canopies
become snow-free, the correspondence between drone LAI measurements and other techniques can
improve. Nonetheless, the non-completely snow-covered forest floor (e.g., the presence of snow
uncovered lying wood on the ground and shadows) also affects the accuracy of LAI measurements
because the forest floor should be wholly snow-covered and act as a light background for the
hemispherical analysis of the images. Therefore, it is essential to consider the characteristics of the forest
floor when interpreting LAI measurements obtained using drone technology.

Another aspect is the flight height of the UAV. As the flight increases, the image's resolution
decreases, making it more challenging to measure the leaf area accurately. Additionally, the flight height
can also affect the angle of incidence of the light captured by the camera; with increasing flight height,
the angle of incidence becomes more oblique, affecting the amount of light reflected by the presence of
needles and branches. This can cause shadows and other artifacts, making measuring the LAI precisely
from a downward-looking view more challenging. It is recommended to use a lower flight height to
capture images with higher resolution and a more direct angle of incidence to make accurate LAI
measurements in spruce forests. The optimal flight height depends on the specific characteristics of the
forest and the resolution and accuracy requirements of the study. Paper III presents this pattern, where
the LAI values decrease with higher flight height. At higher altitudes, the camera sees a larger area,
which means that the LAI values captured are more likely to be averaged across a larger area. This may
result in less variation in the LAI values captured, as the camera is capturing a broader, more
representative sample of the canopy. In contrast, the camera sees a smaller area at lower altitudes, which
means a higher variation in the captured scenes. This is because the camera is more likely to capture a
smaller, more localized area with a different LAI value than the surrounding area.

Although LAI is not directly related to SD, it serves as an indicator or proxy to evaluate the accuracy
of SD measurements obtained by the UAV. High LAI values suggest less snow accumulation and lower
SD readings in these areas, whereas low LAI values suggest more snow accumulation and higher SD
measurements. Hence, LAI and snow accumulation have an inverse relationship (Jost et al., 2012).
Therefore, using LAI as a proxy can help to improve the accuracy of SD measurements obtained by
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UAVs, particularly in areas where vegetation density varies significantly. However, the relationship
between LAI and snowmelt is complex and depends on various factors, including temperature,
precipitation, wind, sun angle, canopy snow-holding capacity, vegetation cover, and soil moisture. For
instance, some intercepted snow may sluff off the canopy, particularly in dense forest areas, and
contribute to snow accumulation on the ground. Dense canopies absorb and convert more solar radiation
into heat, reducing solar radiation reaching the ground and slowing down melting. Sparse canopies allow
more solar radiation to reach the ground, increasing surface heat and accelerating snow melting. We
found lower relationships between SD and LAI during snow ablation in paper III. Some outliers'
tendencies showed a slight correlation between higher LAI values and SD. One assumption is that some
of the intercepted snow sluffed off the canopy, mainly intercepted snow of the denser forest areas, and
was added to beneath-forest accumulation (Lundquist et al., 2013). Alternatively, as stated above, a
denser canopy reduces the amount of solar radiation that reaches the ground and slows the melting
process. Consequently, in papers I and III, we obtained low-cost RGB imagery using UAVs, and all the
methods used in the studies could make relatively accurate predictions.

5.2 UAV optical grain size detection
The studies (papers II and V) used optical UAV-based imagery to develop and test classification

procedures for determining grain size percentiles and characteristics of fluvial deposits along a river
point bar over time. The earlier study (paper II) used a segmentation-based approach (Detert &
Weitbrecht, 2012), while the more recent study (paper V) used a CNN framework (Lang et al., 2021),
which enables the remote measurement of grain size from georeferenced images. Segmentation-based
approaches involve dividing an image into regions based on specific criteria and then analyzing each
region separately. In the case of the study in paper II, the river point bar image was segmented based on
color and texture to separate different material types, including sand, gravel, and larger rocks only at the
surface. The segmented regions were then classified into different grain size categories.

In contrast, the DL approach used in paper V is a more automated indirect method of PSD
determination based on texture and neural networks that can analyze granulometry across entire
orthomosaic images. The DL algorithm first segments the image into small patches and then classifies
each patch as clasts or background material. The clasts are further segmented and classified based on
size, shape, and texture. This method requires less manual intervention and can analyze larger areas
more efficiently than the segmentation-based approach used in paper II. However, like any DL
algorithm, it requires a substantial amount of training data (lots of labeled images) to be effective, and
the quality of the training data can affect the accuracy of the results. While both approaches have
strengths and weaknesses, the segmentation-based approach used in paper II might provide more
accurate results but is more time-consuming and subjective (Chardon et al., 2022) and can only be used
on individual image tiles. Using the default options for each step is recommended to decrease the
processing time of each image tile (Chardon et al., 2022).

In contrast, the DL approach is more efficient and automated for analyzing granulometry across
larger areas. However, it is a relatively new method, and more research is needed to fully understand its
potential and limitations. The accuracy of the result hinges mainly on the quality of the images and the
orthoimage itself, which includes factors such as sharpness, contrast, and color accuracy. While image
resolution may have a minor influence, the dataset used to train the CNN can significantly impact the
model's ability to generalize to new data (paper V). Hence, obtaining high-quality images with minimal
distortion and precise identification of objects is essential for accurate analysis using
segmentation-based and DL approaches. Low-altitude overflights in stable weather conditions are
recommended to capture high-resolution sediment accumulation, as papers II and V suggested.
However, simplifying clast schematization in 2D space is a limitation of these methods. Accurate
identification of objects and their shapes is also influenced by other factors, such as image compression,
uniform lighting conditions (one of the most crucial factors), and the absence of shadows. Therefore,
carefully considering and selecting imaging equipment and image processing techniques is necessary to
ensure the best possible results.
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5.3 Limitations of the sustainability of stream restoration projects

The study (paper VI) highlights the potential of using high-resolution optical imaging from UAVs
and photogrammetric reconstruction techniques for assessing various aspects of fluvial geomorphology
and stream restoration. The high-resolution imagery obtained from UAVs equipped with RGB cameras
can be used for detailed topographic reconstruction using the SfM algorithm. This allows for rapid field
mapping and objective determination of discrepancies in geometric properties of the riparian zone at a
centimeter-level resolution. However, optical sensing is limited by the direct visibility of scenes and
riparian vegetation, and overhang canopy can obstruct the mapping of channel properties in natural
landscapes. Multiple views of an object from different angles can partially solve this problem, and
scheduling imaging campaigns during the vegetation season can help bypass extensive obstruction by a
deciduous canopy (paper VI). Alternatively, one way to address this issue is using NIR or HS sensors,
which offer advantages. NIR sensors can penetrate vegetation to some extent (depending on the
thickness and density of the vegetation, type, and sensitivity of the sensor being used), enabling the
mapping of submerged aquatic vegetation. In contrast, HS sensors can provide more detailed
information on vegetation composition and other materials on the riverbanks and channel. Nevertheless,
these sensors are more expensive and require more processing than standard RGB cameras despite their
benefits, particularly HS sensors.

Based only on optical UAV monitoring, paper VI found that the restored vegetation and planned
habitat diversification did not fully recover due to insufficient or improper maintenance. This led to
potential ecological and hydromorphological quality declines. Therefore, it is essential to include
post-project monitoring and evaluation in the design and implementation of restoration projects to
ensure their effectiveness and long-term sustainability. Furthermore, UAV monitoring enabled the
identification of issues related to vegetation restoration. During the restoration projects aimed to restore
the vegetation along the streams, the monitoring revealed that the restored vegetation was only
sometimes thriving.

In some cases, the vegetation did not grow at all, while in other cases, the vegetation growth was
dominated by invasive species. Additionally, vegetation restoration often fails to restore the natural
structure and diversity of the riparian zone. It is clear that while the restoration projects have improved
the streams' geomorphological properties, issues still need to be addressed. The need for more
complexity in the restored channels compared to the approved plans and issues in flow continuity and
hydrological connectivity demonstrates the need for better planning and monitoring of restoration
projects. The specific issues identified in each catchment also highlight the importance of considering
local conditions and potential impacts on the ecosystem when designing and implementing restoration
projects. The study found that stream restoration projects' quantitative and qualitative aspects must be
assessed to ensure their effectiveness and sustainability. While traditional field surveys are essential,
UAV monitoring using RGB sensors has the potential to provide reliable spatial information on critical
parameters such as stream geometry, flow continuity, water quality, and riparian shading. Although UAV
monitoring cannot replace field surveys for all ecohydrological parameters, it can be a valuable tool for
routine monitoring of restoration projects and providing information compatible with standard
monitoring schemes.

5.4 Obtaining river bathymetry

The study (paper VII) found that the UAV-SfM approach for reconstructing river bathymetry is a
robust and repeatable method for assessing bottom river topography, with RMSE values ranging from
3.8 to 109.3 cm on site 1 and 2.6 cm to 32.1 cm on site 2. These results are consistent with other studies
assessing the accuracy of remote reconstruction of submerged landforms in different rivers and coastal
areas (e.g., Figueiredo & Rockwell, 2022; Li et al., 2019). However, the limitations of the method
depend on factors such as the types of UAVs and sensors used, river channel morphology, and the
transparency of the water. Clear water conditions are ideal for reconstructing riverbeds, while water
surface roughness, turbulence, and suspended sediment can constrain the accuracy of the reconstruction.
Disturbances on the water's surface can also cause ambiguity in the location and shape of objects. Thus,
while the UAV-SfM approach is a reliable tool for assessing river bathymetry, it is essential to consider
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these limitations when interpreting the results. The accuracy of obtaining an accurate bathymetric model
is affected by various factors, with the refraction effect at the air-water interface being one of the most
complex. To accurately reconstruct the river bed, the refractive index must be considered. The refractive
index used in this paper was 1.34, which is suitable for clear water but may not be appropriate for all
river channels.

Additionally, uneven water surfaces may cause the refractive index to vary between images or within
a single image, further affecting the accuracy of the reconstruction. In most cases, the reconstructed river
bed elevation was underestimated, which could be due to the refractive index needing to be set higher.
On the other hand, in some cases, the elevation was overestimated. Therefore, accurate bathymetric
modeling requires careful consideration of various factors, including the local conditions and the
refractive index. Meteorological conditions are essential in UAV data acquisition and subsequent
topography reconstructions. The weather conditions during the flights must be similar to ensure these
factors do not affect the results. It is also crucial to consider how the water's surface is lit, as the sun's
glint and reflection can make it difficult or impossible for the light to reach the channel bottom.
Reflections and overexposure were detected on only a few images, and they had no impact on
SfM-based spatial data and, thus, on reconstructions of bottom river topography. However, the results
can vary more due to the specificity of sites and the location of profiles delineated within sites rather
than due to meteorological or lighting factors. Studies have shown that the UAV-SfM approach is robust
to variable lighting conditions, as consistent results of bottom reconstructions have been achieved under
changeable lighting conditions. The effectiveness of river bottom reconstruction using UAVs depends on
several factors, including river channel morphology and the accuracy of determining the position and
elevation of the water surface. The reconstruction accuracy decreases near river banks, especially in the
coastal zone, due to incised, steep banks covering the bottom and shadows from riparian vegetation. The
accuracy of the reconstruction also depends on the depth of the river, with deeper water bodies requiring
higher accuracy in determining the position and elevation of the water surface. Using highly precise TLS
for determining water table elevation reduces errors due to inaccurate water table determination. The
accuracy of the bottom reconstruction is compared to reference measurements of submerged topography
produced by leveling, which may be affected by difficulties in reaching the water-land interface and the
impossibility of proper location of the initial benchmarks. This study confirmed the effectiveness of the
method of river bottom reconstruction using UAVs, and the high efficiency of this method was
confirmed, especially for multirotor. Despite the not completely satisfactory results of the bottom
reconstruction, the repeatability and reproducibility of the method were proved.

5.5 Estimating GWL and SM based on multiple UAV datasets

Paper IV presents a study that combines UAV imagery and ML to extract microclimatic variables that
might control GWL and SM in an ombrotrophic peat bog environment. We used a multi-step process
that involved using UAVs equipped with RGB, MS, and TIR sensors to capture high-resolution images
of the surface and subsurface features over two peat bog sites. We then used a derived suite of variables
from DSMs, RGB, MS, and TIR datasets to predict the connection probability of GWL and SM. The
primary goal was to understand if the extracted microclimatic variables can improve the knowledge and
understanding of the patterns of GWL and SM in peatlands. While elevation models based on remotely
sensed data have been used in peatland research in the past, ranging from delineating and identifying
wetlands and peatlands within a broader ecological landscape (e.g., Chasmer et al., 2020; Hird et al.,
2017) to mapping water-table depth (Rahman et al., 2017) and microtopography within individual
peatland (Lovitt et al., 2018), this study is the first demonstration of using multiple UAV-based datasets
as an exploratory tool for understanding the natural patterns of GWL and SM in peatlands. We used the
CAST algorithm to model the relationship between morphometric, topographic, vegetational, and
temperature-related variables and GWL and SM based on the method by Meyer et al. (2018). We also
used the FFS method with a target-oriented Leave-Location-Out (LLO) Cross-Validation (CV) strategy
to select the most critical variables. We estimated the Area of Applicability (AOA) to evaluate the
transferability of the models. Using the CAST prediction method and target-oriented LLO CV
validation, the modeling of GWL and SM may have resulted in less accurate prediction maps with high

39

https://www.zotero.org/google-docs/?4pjkBy
https://www.zotero.org/google-docs/?4pjkBy
https://www.zotero.org/google-docs/?3Q8ar3
https://www.zotero.org/google-docs/?ZQtlge
https://www.zotero.org/google-docs/?BvemJe


R2, low RMSEs, and low MAEs having better-achieved results with GWL and SM predictions at the LP
than at the UP (Figure 9).

Figure 9. An overview of evaluating metrics including Squared Pearson correlation (R2), Root Mean
Square Error (RMSE), and Mean Absolute Error (MAE) between in-situ data such as Groundwater
Level (GWL) and Soil Moisture (SM) for the Upper Part (UP) and Lower Part (LP) of the peat bog
study area, based on classification of the CAST model after Meyer et al. (2018).

On the one hand, we speculate that the incomplete spatial coverage of the mapping area and hence
the incomplete coverage of the UAV maps may have contributed to lower performance due to technical
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issues with the drone, cameras (particularly MS and TIR sensor), batteries, or weather conditions (e.g.,
strong winds around 21 km/h) during the surveys could not be maintained entirely. While modeling, this
missing parts of a partly missing MS map (NDVI variable) or TIR map (temperature variable) affected
the model predictions and thus created gaps with missing information. On the other hand, among the
essential variables were those that do not lead to an over-fitting and are more focused on model
performance in the context of unknown space locations or time steps (Meyer et al., 2018), which were
suggested yielding optimal results in view to LLO. Removing misinterpreted variables, such as
temporally constant predictors (e.g., elevation, slope, …), could not improve the performance,
suggesting that the variables' potential to predict beyond the training locations and time is weakened.
However, the models are more robust as only a small subsidy of the initial variables was used. Others
were rated as counterproductive and had been removed during FFS, and over-fitting could be reduced.
Though predicting environmental variables in space and time remains challenging, the validation
strategy used here allows for assessing model errors objectively and identifying over-fitting. However, it
should be treated with caution because the relationships between these variables and GWL and SM are
complex (Reus, 2022). Nevertheless, this study showed that defining and visualizing the AOA for a
spatial prediction model helps ensure high-quality predictions. The AOA is a crucial part of the spatially
explicit mapping error estimation. It can depict where the estimated model performance can be expected
to hold because the model was enabled to learn about such environments. The AOA can further provide
new insight into missing training data and whether new sampling is needed to adequately represent the
entire prediction domain (Ludwig et al., 2022).

6. Conclusions and outlook

The dissertation demonstrated that UAV-based photogrammetry and image analysis techniques can be
used for non-invasive, objective, and accurate determination of a range of parameters important for
understanding the changing dynamics of hydrological and physiographic processes and determining
their response to changing climate. My research aimed to develop and demonstrate the potential of
novel techniques that allow the use of UAV-based technologies to extract various parameters, including
SD, LAI, PSD, river sustainability, river bathymetry, and microclimatic variables related to morphology,
topography, vegetation, and temperature.

Papers I and III contributed as follows:

● The studies found that it is possible to achieve satisfactory results using RGB-based UAV
imagery for estimating SD and indirect winter LAIeff, even under unfavorable conditions such as
overcast or partly cloudy weather and insufficient illumination. However, to achieve accurate
estimates of SD and indirect winter LAIeff, it is crucial to ensure good illumination during the
survey. This is because flying the UAV under good illumination of the surveyed area can help to
create a better SD model, which will, in turn, improve the accuracy of the estimates of SD and
indirect winter LAIeff, especially in cases where there is no snow interception or no
snow-covered wood at the ground for the latter. Further work is needed to simultaneously
extract SD and forest structure information to effectively substitute time-consuming fieldwork
for delivering direct input data for empirical models in snow research. The next step will be to
assess SWE using UAV-mounted radar and perform initial field experiments to complete the
suite of snowpack parameters using UAV RS.

Papers II and V contributed as follows:
● The studies proposed novel techniques with significant advantages over traditional

granulometric surveys: greater flexibility across multiple study sites and the potential for
multitemporal analysis of areas undergoing significant granulometric changes at different time
horizons, including changes due to weather events over time. The ultra-high resolution of
orthoimages provides more detailed information, which helps estimate local effects on river
bars, and allows for analysis in variable user-defined patterns independent of the design of the
file sampling campaign. This enables researchers to design and test different patterns for
granulometric analysis according to the goals of their studies. However, the DL approach is
limited because it does not quickly transfer scales to new data, requiring significant effort and
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time to train the model for a new setting. A training-free image processing tool like
BASEGRAIN (Detert & Weitbrecht, 2012) could replace the manual annotation process,
making the process more efficient and reducing the effort required to train the model in the
future.

Paper IV contributed as follows:
● The study demonstrated a framework for using the RF ML algorithm, LLO CV, and multisensor

UAV imagery (RGB, MS, TIR) to identify critical microclimatic variables that control and
govern GWL and SM in peatlands with moderate accuracy. The FFS method prevented
overfitting, and only the optimal predictor variables were used for spatial and temporal model
predictions. Additionally, the AOA was applied to limit predictions to the spatial area that
features an environment that the model was enabled to learn about, suggesting that assessing the
AOA is essential to avoid wrong conclusions and increase the quality of ML based on fieldwork
data. The study demonstrated the importance of careful planning and a modern mapping
approach to extend results from point locations to the test plots. However, given the highly
dynamic nature of the environment, the study also highlighted the need for caution in
interpreting snapshot measurements and the potential limitations of using limited field samples
to train models for mapping more prominent areas.

Paper VI contributed as follows:
● The study found that although the primary goals of the restoration projects were achieved, the

new steam patterns significantly differed from the approved restoration plans. The restored
channels were less complex. They featured a simpler geometry than planned, leading to a deficit
in the complexity of the realized restorations, which deteriorates the positive effect of the
projects and limits their sustainability. In addition, UAV monitoring indicated substantial
shortcomings in the qualitative aspects of the restorations in streams and riparian zones. The
study highlighted the importance of the conjoint assessment of quantitative and qualitative
aspects of stream restoration projects. The use of UAV monitoring and optical RGB sensors has
the potential to provide reliable and feature-rich spatial information, enabling the assessment of
the critical geometric and qualitative aspects of stream restorations.

Paper VII contributed as follows:
● The main findings were that the approach is practical for bottom topography reconstruction,

primarily when multi-rotors are utilized. The resulting higher errors associated with fixed-wing
acquisition can be affected by the vulnerability of this platform to the wind. The study also
found that bottom river reconstruction decimeter levels were obtained for only 25% of cases for
all sites and platforms. The results varied depending on the site and the type of platform. The
analyzed method was repeatable and reproducible, especially for multi-rotors. The conclusion is
that using the SfM algorithm and the refractive index, the river bottom reconstruction method is
robust, especially regarding its repeatability and reproducibility.
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