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Introduction

Nonlinear electrodynamics (NE) began as an attempt at resolving
divergences associated with classical models of a charged particle. These
include the problems of infinite self-energy and electric field divergence of
the electron. This approach attempts to resolve these divergences within the
framework of classical field theory by relaxing the condition of linearity in the
field equations. The first and most well known model to use this approach
was published in 1934 by M. Born and L. Infeld [1], where the fundamental
idea was to impose an upper bound on the field strength in analogy with
the consequences a finite speed of light has on the action of a free particle in
special relativity. This elegant idea did in fact lead to a spherically symmetric
non-trivial electrostatic solution with finite self energy, but did not prove to
be the grand new holistic field theory unifying the descriptions of matter and
electromagnetic field Born envisioned it to be. The Born-Infeld (BI) model
has many exceptional properties among other NE theories, discussed further
in chapter 2, making it the most successful and well-known such theory. BI
however still suffers from some theoretical issues including a discontinuity of
the electric field E at the origin. This problem was soon pointed out and new
NE theories were being developed on these purely theoretical grounds by B.
Hoffmann [2] and N. Rosen [3] for example. The former theory by Hoffman is
expanded upon further in chapter 3.

NE has been shelved and revived many times throughout its existence but
has proven to warrant its presence in the theorist’s toolbox by reappearing
in a variety of contexts. For example, only a year after the Born-Infeld
paper, following Dirac’s description of the positron, Heisenberg and Euler
found a way to add one loop vacuum polarization corrections to the Maxwell
Lagrangian resulting in an effective nonlinear Lagrangian capable of describing
the effects of photon-photon scattering in quantum electrodynamics (QED)
[4, 5]. Other such effective Lagrangians have been used in condensed matter
theory to phenomenologically describe nonlinear effects in Dirac materials
for example [6]. In particular the BI Lagrangian has even appeared in string
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theory as the Dirac-Born-Infeld (DBI) D-brane action [7]. NE thus seems to
have a ubiquitous presence in theoretical physics.

Further, NE coupled to gravity has been used to construct various black
holes and worm holes [8]. As this is a generalization of the standard Einstein-
Maxwell theory, it has also been used to search for generalized exact solutions
to various charged black hole spacetimes. One example is the result presented
by Ayon-Beato and García in [9], interpreting a so-called regular black hole
solution (sometimes also referred to as a Bardeen black hole) as sourced be a
NE model with magnetic charge in spherically symmetric static geometry that
possesses no spacetime curvature singularities. Bardeen black holes are named
after James M. Bardeen, who first presented such a regular solution with a
horizon generated by a certain stress-energy tensor at the GR5 conference
in 1968 in Tbilisi [10]. The NE reinterpretation of this result by Ayon-Beato
and García came much later in 2000. This was achieved with a Lagrangian
that doesn’t give the Maxwell weak-field limit:

LBar(F ) = 3
2sg2

(︄ √
−2g2F

1 +
√

−2g2F

)︄5/2

, (1)

where s = |g|
2m

, g a parameter associated with the magnetic charge and m
a parameter associated with the black hole mass. This result reignited the
foundational idea in NE of a gauge theory with an everywhere regular field.
However it has since been proven that no theories admitting static spherically
symmetric solutions with purely electric sources satisfying the Maxwell
weak-field limit exist [11].

To gauge the physical properties of NE models coupled to gravity that
distinguish them from the Maxwell case we may study for example their
implications for: the existence of exact solutions in certain geometries (i.e.
generalizations to some, for example, rotating or non-spherically-symmetric
case), the black hole thermodynamics, or systems where extreme field
strengths become relevant.

General properties of NE theories were thoroughly studied in the 1960’s
and 70’s. Many of the findings of these studies were covered in lecture notes
by Jerzy Plebański [12]. As a result of this endeavour a general formalism
of NE exists through which the different models can be communicated. We
therefore introduce the basics of this formalism in the first chapter. Then
in the following two chapters we find and examine the Lagrangians of two
particular famous models of NE in Minkowski spacetime to better understand
how they behave and differ on this level, before going into more detail on a
new Lagrangian, recently discovered in [13], called ‘RegMax’ (shortened from
‘regularized Maxwell’). For each model we find the spherically symmetric
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electrostatic solution corresponding to a unit point charge and calculate its
self-energy. In the last chapter we first compare analytic solutions to some
elementary static configurations in the Maxwell, Born-Infeld and RegMax
theories. We then move on to describe the black hole thermodynamics for
the RegMax Lagrangian as this was studied as part of a recent review on this
model [14].
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Chapter 1

Maxwell’s Theory and General
Characteristics of NE

In order to introduce relevant physical ideas and notation used further in
the thesis we begin by deriving Maxwell’s equations in a sequence inspired by
[15]. Here and we restrict ourselves to the flat Minkowski spacetime equipped
with a metric with signature (−,+,+,+) in order to focus solely on the
electrodynamics and not worry about coupling NE with GR.

The action of the field with a massive charged particle moving through
it can be split into three parts: S = Sm + Smf + Sf corresponding to the
‘geometric’ action of the particle in a inertial reference frame, the field-
particle interaction calculated along its world line and the field’s own action
respectively.

The property that quantifies the magnitude and character of a particle’s
interaction with the electromagnetic field is the electric charge q; its value
can be positive, or negative. The electromagnetic field is generally described
by a four-vector quantity Aµ called the four-potential. The interaction action
is thus dependent on Aµ scaled by the charge integrated along the particle’s
world line and the field action only on Aµ in some way (this will be discussed
later). The first two action functions can be then written (assuming the
summation notation) as1:

Sm = −m0

� τ2

τ1

dτ, (1.1)

Smf = q

�
γ(τ1,τ2)

Aµ dx
µ = q

� τ2

τ1

Aµ
dxµ

dτ
dτ, (1.2)

1natural units, where the speed of light c, the vacuum electric permittivity ε0, and ℏ
are all set to one will be assumed everywhere unless explicitly stated otherwise
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where m0 is the particle’s rest mass, τ1, τ2 the proper time of spacetime events
representing the initial and final positions of the particle, dτ =

√︂
−dxµdxµ,

and dxµ

dτ
= uµ is the four-velocity.

To find the equations of motion of this particle by the principle of stationary
action we can assume the field is given and vary the particle trajectory. The
first two expressions 1.1 & 1.2 are therefore sufficient:

0 = δS = δ

� τ2

τ1

(−m0 dτ + qAµu
µ dτ) + δSf

=
� τ2

τ1

(−m0δ dτ + qAµδ(uµ dτ) + qδAµu
µ dτ)

=
� τ2

τ1

(pµ dδx
µ + qAµ dδx

µ + qδAµu
µ dτ)

=
� τ2

τ1

(︄
pµ
dδ xµ

dτ
+ qAµ

dδxµ

dτ
+ qδAµu

µ

)︄
dτ

=
� τ2

τ1

(︄
−dpµ

dτ
δxµ − q

dAµ

dτ
δxµ + qδAµu

µ

)︄
dτ+

+ [(pµ + qAµ) δxµ]τ2
τ1

=
� τ2

τ1

(︄
−dpµ

dτ
+ q

(︄
−∂Aµ

∂xν
+ ∂Aν

∂xµ

)︄
uν

)︄
δxµ dτ

=⇒ dpµ

dτ
= q

(︄
∂Aν

∂xµ
− ∂Aµ

∂xν

)︄
uν , (1.3)

we define: Fµν :=
(︄
∂Aν

∂xµ
− ∂Aµ

∂xν

)︄
, (1.4)

where τ1, τ2 are the proper times of the spacetime events between which the
particle trajectory lies and pµ = m0u

µ is the four-momentum. Fµν is the
electromagnetic field strength tensor, an antisymmetric twice covariant tensor,
whose entries in three dimensional notation correspond to the electric and
magnetic field vectors, E & B, in the following way:

Fµν =

⎛⎜⎜⎜⎝
0 −E1 −E2 −E3
E1 0 B3 −B2
E2 −B3 0 B1
E3 B2 −B1 0

⎞⎟⎟⎟⎠ (1.5)

This expression can be used to check that the right side of the three spacial
equations in 1.3 are indeed the Lorentz force.

From the definition of Fµν in 1.4 we immediately get:
∂Fµν

∂xλ
+ ∂Fνλ

∂xµ
+ ∂Fλµ

∂xν
= 0, (1.6)
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These equations are equivalent with the homogeneous Maxwell equations as
can be seen better from the equivalent form:

ϵµνλκ∂Fλκ

∂xν
= 0, (1.7)

where ϵµνλκ is the four dimensional Levi-Civita tensor; in this form it is
obvious that these are only three independent equations. In space-vector
notation these become:

∇ · B = 0 (1.8)

∇ × E = −∂B
∂t

(1.9)

Since Fµν is indeed a tensor , it can be used to create Lorentz-invariant (this
easily generalizes to general relativistic invariance when concerned with GR )
scalar quantities. It turns out (see [15]) there are only two independent ways
of doing this; one of them generates a true scalar, the other a pseudoscalar:

the scalar invariant: F := −1
4FµνF

µν = 1
2(E2 − B2), (1.10)

the pseudoscalar invariant: G := 1
8ϵ

µνλκFµνFλκ = E · B, (1.11)

invariant scalar expressions can thus be created from F and G2.
As stated above, Sf can only depend on the field, which is characterized

by Aµ. Since the fields E and B (i.e. the entries of Fµν) represent measurable
physical quantities and Aµ is not unique (the four-potential Aµ has gauge
freedom, see again [15] for details), Aµ cannot explicitly appear in the field
equations, nor under the integral in the action. On an experimental basis, we
observe that the fields obey superposition, which indicates the field equations
are linear differential equations. Thus the expression under the integral in
the action should be quadratic in the fields. This leaves only a single option
for Sf up to multiplication by a scalar, which, by convention, we set to −1

4 :

Sf =
� τ2

τ1

�
LM dV0 dτ = −1

4

� τ2

τ1

�
FµνF

µν dV0 dτ, (1.12)

where we introduce the Maxwell field Lagrangian density L = −1
4FµνF

µν =
1
2(E2 − B2).

Before deriving the second pair of Maxwell equations the current four-
vector. A element of charge may be written as dq = ρ dV , where ρ(xµ) is the
charge density. Multiplying this expression by dxµ we get:

dq dxµ = ρ dV dxµ = ρ dV dt
dxµ

dt
. (1.13)
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Since the left side is a four-vector, the right side must also be; and dV dt =
(dV0

1
γ
)(γdτ) is a scalar. This implies that the four-current defined as:

Jµ := ρ
dxµ

dt
= ρ0

dxµ

dτ
(1.14)

must be a four-vector.
In order to obtain the remaining field equations by the principle of station-

ary action we assume the motion of the charge and vary the four-potential
Aµ (treating it as the generalized coordinates):

0 = δS = δSm + δ

�
γ(τ1,τ2)

qAµdx
µ − 1

4δ
�

Ω
FµνF

µν dΩ

= δ

� τ2

τ1

qAµu
µdτ − 1

4δ
�

Ω
F µνFµν dΩ

= δ

�
Ω

(︃
JµAµ − 1

4F
µνFµν

)︃
dΩ

=
�

Ω

(︃
JµδAµ − 1

2F
µνδFµν

)︃
dΩ

=
�

Ω

(︄
JµδAµ − 1

2F
µν ∂

∂xµ
δAν + 1

2F
µν ∂

∂xν
δAµ

)︄
dΩ

=
�

Ω

(︄
JµδAµ + F µν ∂

∂xν
δAµ

)︄
dΩ

=
�

Ω

(︄
JµδAµ − ∂F µν

∂xν

)︄
δAµ dΩ +

�
∂Ω
F µνδAµ dΣν

=
�

Ω

(︄
Jµ − ∂F µν

∂xν

)︄
δAµ dΩ, (1.15)

=⇒ ∂F µν

∂xν
= Jµ, (1.16)

where Ω is the considered spacetime region between τ1 and τ2, dΩ = dt dV =
dτ dV0, in the first row δSm = 0, then the definitions of Jµ, F µν , its antisym-
metry and integration by parts were all used successively. Lastly, the integral
over ∂Ω vanishes since we assume Aµ fixed on the boundary (δAµ = 0 on
∂Ω). 1.16 are the remaining pair of field equations. These can be rewritten
in space-vector notation to the familiar form:

∇ · E = ρ, (1.17)

∇ × B = j + ∂E
∂t
, (1.18)
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where j is the space-vector of the spacial components of Jµ, ie. the standard
current density vector.

1.16 may also be used to quickly derive the continuity equation — taking
the derivative of both sides with respect to xµ and using the antisymmetry of
F µν (the operator ∂2

∂xµ∂xν is symmetric):

∂2F µν

∂xµ∂xν
= 0 = ∂Jµ

∂xµ
, (1.19)

the second equality is the continuity equation; the statement of conservation
of charge, which, by Noether’s theorem, is a result of the U(1) gauge symmetry
of Aµ.

The E field solution for a static unit point charge is the Coulomb field
E = e

4πr2 er, where er is the unit radial vector. The self-energy of this charge
can be calculated as:

U = 1
2

�
|E|2 dV = e2

8π

� ∞

0

1
r2 dr → ∞. (1.20)

The elimination of this divergence and identification of a corresponding finite
value with the electronic mass was one of the primary motivations for the
development of nonlinear electrodynamics.

General Characteristics of NE Theories
There are similarities between NE theories that are worth covering before

studying the specifics of some NE models. Here we examine some features of
source-free, relativistic, gauge invariant and non-linear theories.[16, 17]

In general, NE is concerned with altering the Lagrangian density function
LNE in the expression for the field action Sf =

�
LNE dΩ to a invariant

function of the electromagnetic field invariants F and G2 thus taking the
form LNE = L(F,G2). Lagrangians that in the weak-field limit approach the
Maxwell Lagrangian LM are said to obey the principle of correspondence.
Although it is often assumed an NE theory obeys this principle, general
NE Lagrangians do not, and many such Lagrangians have also been studied
[9]; the general theory is independent of this assumption. Since any NE
Lagrangian leads to a different set of field equations by the action principle,
it would be useful to find a unifying description for the form of these NE field
equations.

The electromagnetic field is described by the four-potential Aµ which, in
order to preserve gauge invariance, appears in the Lagrangian and any other
derived measurable physical quantity, only as elements of the field strength
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tensor Fµν defined in 1.4. NE makes an analogy with the classical theory
describing electrodynamics of continuous media, where electric displacement
field Dmedia and magnetic field Hmedia are introduced as depending on the
fields E and B as well as properties of the material media through constitutive
relations. NE theory introduces a new field described by the four-anti-potential
Pµ, which in order to preserve gauge invariance, appears in LNE only as a new
field strength tensor defined by the antilinear combination pµν =: ∂µPν −∂νPµ

that obeys equations of the same form as the source-free Maxwell equations .
This new tensor field pµν is bound to the components of fµν (we reserve Fµν

for the Maxwell field and use fµν for the resulting NE E and B field) by the
NE constitutive relations in Lagrangian formalism:

D = D(E,B), (1.21)
H = H(E,B), (1.22)

where D and H are space-vectors from the components of the new pµν tensor
(see 1.32). These constitutive relations may be derived from the form of LNE

as will be shown (see 1.32). The first pair of equations that follow immediately
from the definition of fµν (see 1.6, 1.7 and 1.8) remain in completely unaltered
form. The second pair of equations (source-free) becomes:

∇ · D = 0, (1.23)

∇ × H = ∂D
∂t

. (1.24)

These equations can alternatively be supplemented with constitutive relations
in Hamiltonian formalism:

E = E(D,B), (1.25)
H = H(D,B), (1.26)

where D and B are chosen to be the independent variables. This leads to a
consistent Hamiltonian formulation of NE theory with field equations that
resemble Hamilton’s canonical equations of motion in classical mechanics [16]:

q̇ = ∂H
∂p

∂D
∂t

= ∇ × H
vs.

ṗ = −∂H
∂q

∂B
∂t

= −∇ × E
(1.27)

Next we prove the above assertion on the form of second pair of NE
equations in Lagrangian formalism by the variational principle applied to the
field action. The Lagrangian density in a general NE theory (obeying the
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conditions listed above) is any function of the invariants F and G2 defined in
1.10 and 1.11: L = L(F,G2); to simplify the calculation we work here with
the Lagrangian in the form L = L(F,G) but to keep the theory covariant,
only Lagrangians with G2 should be considered. The second pair of field
equations in the absence of charges, as assumed, can then be found by the
following calculation:

0 = δSf = δ

�
Ω

L(F,G) dΩ

=
�

Ω

∂L
∂F

δF + ∂L
∂G

δGdΩ = ⋆,

we calculate δF and δG separately:

δF = − 1
4δ (F µνFµν) = −1

2F
µνδFµν = −1

2F
µν

(︄
∂

∂xµ
δAν − ∂

∂xν
δAµ

)︄
=

= − 1
2F

µν ∂

∂xµ
δAν + 1

2F
µν ∂

∂xν
δAµ =

= − 1
2F

νµ ∂

∂xν
δAµ + 1

2F
µν ∂

∂xν
δAµ = F µν ∂

∂xν
δAµ, (1.28)

δG = ∂G

∂Fµν

δFµν + ∂G

∂Fλκ

δFλκ =

=1
8ϵ

µνλκFλκ

(︄
−2 ∂

∂xµ
δAν

)︄
+ 1

8ϵ
µνλκFµν

(︄
−2 ∂

∂xλ
δAκ

)︄
=

= − 1
4

(︄
ϵµνλκFλκ

∂

∂xµ
δAν + ϵµνλκFµν

∂

∂xλ
δAκ

)︄
=

= − 1
2ϵ

µνλκFλκ
∂

∂xµ
δAν = 1

2ϵ
µνλκFλκ

∂

∂xν
δAµ =: ⋆F µν ∂

∂xν
δAµ, (1.29)
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where we denoted the Hodge dual of F µν as ⋆F µν := 1
2ϵ

µνλκFλκ. Then:

⋆ =
�

Ω

(︄
∂L
∂F

F µν + ∂L
∂G

⋆F µν

)︄
∂

∂xν
δAµ dΩ

= −
�

Ω

∂

∂xν

(︄
∂L
∂F

F µν + ∂L
∂G

⋆F µν

)︄
δAµ dΩ+

+
�

∂Ω

(︄
∂L
∂F

F µν + ∂L
∂G

⋆F µν

)︄
δAµ dΣν

= −
�

Ω

∂

∂xν

(︄
∂L
∂F

F µν + ∂L
∂G

⋆F µν

)︄
δAµ dΩ, (1.30)

=⇒ ∂

∂xν

(︄
∂L
∂F

F µν + ∂L
∂G

⋆F µν

)︄
= 0. (1.31)

With analogy to Maxwell’s theory (source-free) we may now define the new
antisymmetric tensor:

pµν := ∂L
∂F

F µν + ∂L
∂G

⋆F µν =

⎛⎜⎜⎜⎝
0 D1 D2 D3

−D1 0 H3 −H2
−D2 −H3 0 H1
−D3 H2 −H1 0

⎞⎟⎟⎟⎠ . (1.32)

The components of this tensor define vectors D and H in NE. The remaining
field equations may now be written in the form

∂pµν

∂xν
= 0, (1.33)

which in space-vector notation becomes equations 1.23 & 1.24. With a source
the calculation is again analogous to 1.16, where Jµ now has the characteristic
of a free four-current. Then:

∇ · D = ρ, (1.34)

∇ × H = j + ∂D
∂t

. (1.35)

Although the canonical formulation of NE will not be explored further,
it is useful to calculate the Hamiltonian density H proportional to the field
energy density u and the 00-th component of the energy-momentum tensor
T. We can then calculate the self energy of point charges in various NE
models and check if it turns out finite. Born and Infeld in [1] even attempted
to explain the electronic mass with their theory by use of the energy-mass
relation; setting the self energy U = mec

2 and obtaining a value for the BI
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parameter β (this is discussed further in Chapter 2). The Hamiltonian density
is obtained by a Legendre transform of the Lagrangian:

H = T00 = 4πu = D · E − L. (1.36)

For more details on the general characteristics of NE theories, the algebraic
and general physical properties or the canonical formulation see [16, 12].

The Field of a Static Point Charge in NE
If we have a Lagrangian given explicitly in terms of F and G, finding

the electric field of a static point charge the absence of all magnetic fields
(B = H = 0) and any external electric fields reduces to finding the solutions
of the field equations for a spherically symmetric electrostatic field; these
have the form:

∇ × E = 0, (1.37)
∇ · D = 0, (1.38)

Which in spherical coordinates reduces further to:

1
r2

d
dr
(︂
r2Dr

)︂
= 0. (1.39)

With
Dr = ∂L

∂F
Er (1.40)

from 1.32, since L is now independent of G. The first equation 1.37 gives
Er = −ϕ′(r) for some potential function ϕ(r). F now also (by definition)
becomes F = 1

2E
2
r . The solution to the spherically symmetric electrostatic

field equations is then:
Dr = e

4πr2 , (1.41)

where e is an integration constant with dimensions of charge that we may set
equal to the elementary charge and the 4π is added to associate the result with
Coulomb’s law in the used natural unit system (ε0 = µ0 = c = ℏ = 1). Thus if
the NE has a weak-field limit corresponding to the Maxwell Lagrangian, then
ENE

r
r→∞−−−→ EMax

r = e
4πr2 . The electric field E of an electrostatic elementary

charge in this situation is now described by valid solutions Er(r) to the
equation

e

4πr2 = ∂L
∂F

Er. (1.42)
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Chapter 2

Born-Infeld Theory

The foundational argument for motivating their model in [1, 18], M.
Born and L. Infeld (this model will further be referred to as BI) claim
the ‘philosophical superiority’ of what they call the unitarian standpoint
concerning the relation of matter to the electromagnetic field in opposition to
the dualistic standpoint representing the direction fundamental physics was
headed in at the time.

The unitarian standpoint asserts the existence of a single physical entity:
the electromagnetic field, from which the mass of particles may be derived
from their field energy. Infinite self-energy of a point charge and the general
characteristics of Maxwell’s theory made it exceedingly difficult to explain
the existence of the electron; a problem known as the search for a classical
model for the electron. Earlier attempts to find unitarian models failed,
either by introducing new forces of non-electromagnetic origin as in the case
of Heaviside, Searle, Thomson and others, or by abandoning gauge invariance
as in the case of G. Mie [19]. For more information on classical electron
models see for example [20].

The BI theory is thus an attempt to construct a theory of electrodynamics
based on the unitarian standpoint that, unlike previous attempts, obeys the
principle of general covariance and gauge invariance by setting a maximum
field strength.

Born’s Idea
In order to obtain a Lagrangian that sets a finite upper bound on the field

strength, M. Born makes an analogy with how the postulate of finite maximal
velocity changes the Newtonian action function of a free particle 1

2mv
2 to the
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special relativistic expression m0c
2
(︃

1 −
√︂

1 − v2

c2

)︃
, where c is the speed of

light in vacuum. This leads him to alter the Maxwellian electromagnetic field
action LM defined in 1.12 to the following form:

LB := β2

⎛⎝1 −
√︄

1 − (E2 − B2)
β2

⎞⎠ 1.10= β2
(︄

1 −
√︄

1 − 2 F
β2

)︄
, (2.1)

where β is a constant, referred to as the absolute field, with units of electromag-
netic field intensity, which, in the electrostatic case represents the maximal
field strength, and in general ‘the quotient of the field strength expressed in
the conventional units divided by the field strength in the natural’ [1].

Since the derivation of 2.1 is far from rigorous, Born, now joined by L.
Infeld, derived a Lagrangian based on the same idea by demanding its general
covariance. In [1] they wrongly claim that the discovered Lagrangian is singled
out by its covariance through the method they employ to derive it. The fact is,
that taking the Lagrangian to be any invariant function of F and G2 leads to
an invariant expression; this certainly nullifies their claim of uniqueness. This
method by which the BI Lagrangian was obtained is however quite elegant
and will be briefly restated in the following section.

BI Lagrangian Derivation
We begin by assuming the existence of any covariant tensor field aµν . It

is easy to prove (see 5) that the spacetime integral of expression
√︂

|aµν | is a
general-relativistic scalar invariant; and so the idea is to use it for the field
Lagrangian as the integrand in the action Sf . If we were to allow the field to be
determined by multiple tensor fields, an invariant scalar may be created by a
sum of such terms. We wish to describe both the metrical and electromagnetic
fields by the arbitrary aµν . Any tensor may be decomposed into its symmetric
and antisymmetric parts; we plan to identify the symmetric part of aµν ,
defining gµν , with the metric tensor, which implies the antisymmetric part
must also be covariant; we thus identify it, fµν , with the electromagnetic field.
A Lagrangian leading to an invariant action may thus be assumed to take
the following form:

L ∝
√︂

−|aµν | + A
√︂

−|gµν | +B
√︂

|fµν | (2.2)

(the negative signs are there because the determinant of the metric is negative).
Since fµν is assumed to be of the form 1.4, its spacetime integral vanishes
; and therefore we can set B = 0. In order to determine A, we explicitly
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calculate the value |aµν | in Cartesian coordinates. We would like the new
Lagrangian density to correspond to the Maxwell Lagrangian −1

4F
µνFµν in

the weak field limit (when we can neglect higher powers (>2) of fµν). By
direct calculation we get:

−|aµν | = −|ηµν + fµν | = −

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

−1 f12 f13 f14
−f12 1 f23 f24
−f13 −f23 1 f34
−f14 −f24 −f34 1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

5.37= 1 − f 2
12 − f 2

13 − f 2
14 + f 2

23 + f 2
24 + f 2

34 − |fµν |, (2.3)

where, in the weak field limit, we neglect the term |fµν | and any higher order
terms that come up in the Taylor expansion of the square-root.

√︂
|aµν | then

becomes 1
4F

µνFµν when we set A = −1. Thus after multiplying the right
hand side of 2.2 by −1 to get the Maxwell limit we obtain:

LBI =
√︂

−|gµν | −
√︂

−|gµν + fµν |, (2.4)

which in flat space Cartesian coordinates becomes:

LBI = 1 −
√

1 + F − G2, (2.5)

where

F = 1
2fµνf

µν = −f 2
12 − f 2

13 − f 2
14 + f 2

23 + f 2
24 + f 2

34 ∝ −2F, (2.6)

G =
√︂

|fµν | 5.38= f12f34 + f14f23 − f24f13 ∝ G. (2.7)

We now introduce the constant β: ‘the quotient of the field strength expressed
in the conventional units divided by the field strength in the natural units’[1]
and write:

F = − 2
β2F = 1

β2

(︂
B2 − E2

)︂
, (2.8)

G = G

β2 = 1
β2 E · B, (2.9)

LBI = β2
(︄

1 −
√︄

1 + 1
β2 (B2 − E2) − 1

β4 (E · B)2
)︄
, (2.10)

= β2
(︄

1 −
√︄

1 − 2 F
β2 − G2

β4

)︄
. (2.11)
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With this in mind we may now calculate pµν in flat spacetime BI theory in
Cartesian coordinates in terms of fµν using 1.32 and 2.8:

pµν = ∂LBI

∂F
F µν + ∂LBI

∂G
⋆F µν = −2∂LBI

∂F
fµν + ∂LBI

∂G
⋆fµν , (2.12)

DBI = E + GB√
1 + F − G2

, (2.13)

HBI = B − GE√
1 + F − G2

. (2.14)

The Field of a Static Point Charge in BI Theory
With the theory we have developed so far we can solve the Born-Infeld

field equations for the simple case of a static, spherically symmetric field with
B = H = 0. From the discussion in the previous chapter, the electric field E
can be obtained as the solution to:

e

4πr2 = ∂L
∂F

Er, (2.15)

where F = 1
2E

2
r and

∂L
∂F

= ∂LBI

∂F
= −2∂LBI

∂F
. (2.16)

Then from 2.13 and 2.10:

Dr = Er√︃
1 −

(︂
Er

β

)︂2
= − ϕ′(r)√︃

1 −
(︂

ϕ′(r)
β

)︂2
= e

4πr2 . (2.17)

We introduce a new dimensionless quantity representing a characteristic
‘radius of an electron’:

r0 :=
√︄

e

4πβ . (2.18)

Then from 2.17:

e2

(4π)2r4

(︄
1 − ϕ′(r)2

β2

)︄
= ϕ′(r)2 =⇒ ϕ′(r)2

(︄
1 + e2

(4π)2r4β2

)︄
= e2

(4π)2r4 ,

=⇒ Er = −ϕ′(r) = eβ√︂
e2 + (4π)2r4β2

= β√︃
1 +

(︂
r
r0

)︂4
. (2.19)

Since the field is pointing radially outwards from the origin with non-zero
magnitude everywhere (see figure 2.1), we get a discontinuous change in its
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Figure 2.1 E field of a static point
charge in BI theory.

x

Ex

Figure 2.2 Radial component of the E
field of a static point charge in BI theory
on an axis going through its origin.

direction when moving along an axis going through the origin between two
points very close either side of it. This can be seen explicitly by converting to
Cartesian coordinates and in figure 2.2; the x-component of the field becomes:

Ex = x√
x2 + y2 + z2

β√︃
1 + (x2+y2+z2)2

r4
0

.

The energy density of this field is then by 1.36:

4πu =DBI · E − LBI = E2√︂
1 − E2

β2

− β2
(︄

1 −
√︄

1 − E2

β2

)︄

=β2

⎛⎜⎜⎝ 1√︃
1 − E2

r

β2

− 1

⎞⎟⎟⎠ 2.19= β2

⎛⎝√︄(︃r0

r

)︃4
+ 1 − 1

⎞⎠ . (2.20)

When integrated over space we get the energy of a static charge in BI theory:

U = 1
4π

�
β2

⎛⎝√︄(︃r0

r

)︃4
+ 1 − 1

⎞⎠ =
3β2r3

0Γ
(︂
−3

4

)︂2

32
√
π

≈1.2361β2r3
0 = 1.2361 e2

(4π)2
1
r0
, (2.21)

where Γ is the Gamma function.
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Chapter 3

Hoffmann-Born-Infeld

Soon after the publication of the BI paper [1], objections were made
concerning critical arguments in the paper [21, 3, 2]. A big point of critique
was the erroneous assertion that the BI Lagrangian is uniquely determined
by its general covariance, but this was not the only problem: there is also the
discontinuity of the field at the origin in Cartesian coordinates discussed at
the end of the last chapter and spacetime turns out singular at the centre of
a point charge when general relativity is considered among other problems
mentioned in [2].

One of the proposals to fix these issues came from Hoffmann and Infeld
in [2]. The main idea was to make the E field vanish at the centre of a
point-particle, thus eliminating the discontinuity at the origin in Cartesian
coordinates, by introducing a logarithmic term to the Lagrangian. This
Lagrangian was derived by utilizing the variational principle applied to a ‘new
action function’ of the form T = L + H; this approach is based on a paper by
Infeld [22]. A brief overview precedes the derivation of the HBI Lagrangian
in the next section.

HBI Lagrangian Derivation

Infeld’s Method
In this section we use:

F := 1
2fµνf

µν , P := 1
2

⋆pµν
⋆pµν , R := 1

2fµνp
µν = −1

2
⋆fµν

⋆pµν

Before deriving this Lagrangian with B. Hoffmann, L. Infeld came up with
a new formalism for deriving generally invariant action functions [22]. This
formalism is based in part on observations in Born’s original paper [18]
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involving the action principle in the form δ
�

HB dτ = 0, where H(P) =√
1 + P − 1, yields an equivalent set of field equations as the traditional form

δ
�

LB dτ = 0, where LB(F) =
√

1 + F − 1; the Lagrangian and Hamiltonian
being connected by a Legendre transformation.

In this section we restrict ourselves to an action function dependent solely
on the electric field, since we are concerned with the field of an electrostatic
point charge and B = 0. Infeld introduced a new form of action function
T = T (F, P, R) by the property:

pµν = ∂T
∂fµν

⇐⇒ ⋆fµν = ∂T
∂⋆pµν

. (3.1)

He then showed in [22] that T (F, P, R) can always be represented as the sum
T (F, P, R) = L(F)+H(P), and in fact also that this representation is equivalent
to the equivalence of equations 3.1. The Lagrangian and Hamiltonian may
then be recovered from T by the equations:

L(F) =1
2 (T (F, P, R) + R) , (3.2)

H(P) =1
2 (T (F, P, R) − R) , (3.3)

and the relations:

R =TFF − TPP, (3.4)
R2 = − FP, (3.5)
0 =TFF + TPP + TRR, (3.6)

which are derived from the properties of T (here the notation TF represents
the partial derivative of T (F, P, R) with respect to F). These relations allow
us to determine F = F(P) and R = R(P), or P = P(F) and R = R(F). It also
follows that:

∂L(F)
∂fµν

=∂T (F, P, R)
∂fµν

= pµν , (3.7)

∂H(P)
∂⋆pµν

=∂T (F, P, R)
∂⋆pµν

= ⋆fµν , (3.8)

The action principle now takes the form δ
�

T dτ = 0 and yields two forms
of the first pair of field equations (Infeld calls these integrability conditions):

∂⋆fµν

∂xν
= 0, ∂pµν

∂xν
= 0, (3.9)
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and two versions of the second pair (the Euler equations):

∂

∂xν

(︄
∂T
∂fµν

)︄
= 0, ∂

∂xν

(︄
∂T
∂⋆pµν

)︄
= 0, (3.10)

these equations reduce to the field original equations obtained by varying the
Lagrangian when the properties 3.1 of T hold.

HBI Lagrangian
We now turn our attention to the derivation of the action function proposed

in the HBI paper [2]. We assume the action function in the form T = T (F, P).
From the definitions of the tensors fµν and pµν as the curls of the potential
vector Aµ and anti-potential vector Pµ (the analogous quantity to Aµ for pµν ,
ie.: pµν =: ∂µPν − ∂νPµ) respectively, the first pair of field equations:

∂⋆fµν

∂xν
= 0, (3.11)

∂pµν

∂xν
= 0, (3.12)

are satisfied automatically. We also expect fµν and pµν to be conjugate with
respect to the action function as in the section on general NE. This translates
to the equations:

pµν = ∂LHBI(F)
∂fµν

= ∂T (F, P)
∂fµν

= 2TFf
µν , (3.13)

⋆fµν = ∂LHBI(F)
∂⋆pµν

= ∂T (F, P)
∂⋆pµν

= 2TP
⋆pµν , (3.14)

where the second equalities follow from 3.7 and 3.8. These equations are 3.1.
Substituting 3.13 (effectively the constitutive relations) into 3.12 we get field
equations in the form:

∂⋆fµν

∂xν
= 0, (3.15)

∂fµν

∂xν
= ρµ, (3.16)

where ρµ : = −∂ log(2TF )
∂xν

fµν . (3.17)
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Multiplying the first equation by fµν and the second one by ⋆pµν we get:

R =2TFF, (3.18)
−R =2TPP, (3.19)
=⇒ −R2 = 4TFTPFP, (3.20)

by 3.5: 1 =4TFTP. (3.21)

Multiplying 3.13 and 3.14 directly we get:

0 = TFF + TPP, (3.22)

which is 3.6 and coincidentally an expression of Euler’s homogeneous function
theorem, from which it follows that 0 = ∑︁n

i xi
∂f
∂xi

for any function f that is
homogeneous of degree zero in its arguments (that is: f(αx) = α0f(x) =
f(x) := f(x1, . . . , xn)). This means we can write T satisfying this last
condition in terms of a new function that is homogeneous degree zero in F
and P:

T (F, P) = T (ϵ(F, P)), where ϵ(F, P) :=
√︄

−F
P
. (3.23)

From 3.21 we get:

2TFϵ =1, (3.24)
2TPϵ

−1 =1, (3.25)
and

Tϵ = −P, ϵ2Tϵ = F. (3.26)

We demand the field equations be well-defined at every point in spacetime
by imposing a regularity condition on the solutions fµν of equations 3.15 and
3.16 that they belong to the class of at least once differentiable functions
everywhere. This also implies for spherically symmetric electrostatic solutions
that Er must be zero at the origin in order to prevent a discontinuity in
Cartesian coordinates of E. This assumption is not fulfilled in Born’s or
BI theory. The following arguments then specify the unique form of action
function up to the first order in ϵ:

The regularity condition demands the electric field intensity to vanish at
the origin, thus having a first order Taylor expansion of rn for some n > 0:

Er
r→0−−→ 0 ∼ rn, n > 0. (3.27)

We know the solution of Dr in NE is 1.41 ∼ r−2, thus:

ϵ ≡ Er

Dr

r→0−−→ 0 ∼ r2+n, n > 0. (3.28)
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To get the Maxwell limit for large r we need:

Dr
r→∞−−−→ Er

r→∞−−−→ 0 ∼ r−2, (3.29)
ϵ

r→∞−−−→ 1, Tϵ
r→∞−−−→ 0, T r→∞−−−→ 0. (3.30)

These conditions give:

P r→0−−→ ∞ ∼ r−4,
1
ϵ

r→0−−→ ∞ ∼ r−(2+n), n > 0. (3.31)

Then ‘if Tϵ can be expanded in a power series in ϵ, the lowest term must
contain 1

ϵ
.’ So we assume:

−P = Tϵ = −1
ϵ

+ α + ..., α = const. (3.32)

Which after integration gives:

T = k + αϵ− log ϵ+ ..., k = const. (3.33)

Taking the limits

T r→∞−−−→ 0 = k + α.1 − 0 + ...,

Tϵ
r→0−−→ 0 = −1

1 + α + ... =⇒ α = 1, (3.34)

=⇒ k = −1, (3.35)
=⇒ T (ϵ) = ϵ− log ϵ− 1. (3.36)

It now follows that:

Tϵ = 1 − 1
ϵ

= −P, (3.37)

=⇒ 1 + P =
√︄

−P
F

= 1
ϵ
. (3.38)

The last equation can be solved for P in terms of F:

P = − 1 − 1 ±
√

1 + 4F
2F

(3.39)

=⇒ 1
ϵ(F, P(F)) = −1 ±

√
1 + 4F

2F
, (3.40)

=⇒ ϵ(F, P(F)) = 1
2
(︂
1 ±

√
1 + 4F

)︂
. (3.41)
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We can now explicitly express pµν in terms of fµν by calculating TF(F, P) and
substituting for P :

TF(F, P) =Tϵ(ϵ(F, P))ϵF(F, P) =
(︄

1 − 1
ϵ(F, P)

)︄
ϵF(F, P)

3.37= (−P) 1
2ϵ(F, P)

−1
P

= 1
2ϵ(F, P) (3.42)

=⇒ 2TF(F, P(F)) = −1 ±
√

1 + 4F
2F

. (3.43)

We can also find the explicit form of the Lagrangian LHBI(F) using 3.2 and
3.18:

LHBI(F) =1
2 (T (F, P(F)) + 2TF(F, P(F))F)

=1
2

(︄
ϵ(F, P(F)) − log ϵ(F, P(F)) − 1 + 2 1

2ϵ(F, P(F))F
)︄

=1
2

(︄
1
2
(︂
1 ±

√
1 + 4F

)︂
− log

(︄
1 ±

√
1 + 4F
2

)︄
− 1 + −1 ±

√
1 + 4F

2F
F

)︄

= − 1
2

(︄
1 ∓

√
1 + 4F + log

(︄
1 ±

√
1 + 4F
2

)︄)︄
, (3.44)

where the upper sign is defined (for a point charge) in the region r4 > q2b2

and the lower sign where r4 < q2b2; we get equality of the two expressions at
r4 = q2b2. It is possible to only chose the upper (or lower) sign Lagrangian in
all space if for the inside/outside we adopt a Bertotti-Robinson (BR) type
spacetime (uniform magnetic field) and outside/inside a Reissner-Nordtröm
(RN) type spacetime (static charged black hole), where in the region of (BR)
type we set Er and Dr constant, obeying continuity to avoid double-valuedness
of D(E): from 3.47 we see that E vanishes both at zero and at infinity [8].
Choosing the upper sign, using F = −2 F

β2 and setting a constant factor to get
the Maxwell limit, we get:

LHBI(F ) = β2

2

⎛⎝1 −
√︄

1 − 8 F
β2 + log

⎛⎝1 +
√︂

1 − 8 F
β2

2

⎞⎠⎞⎠ . (3.45)
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The Field of a Static Charge in HBI Theory
From 3.45 and 1.42 we can get the electric field analogously to the case

with LBI :

Dr = e

4πr2 = −2∂LHBI(F)
∂F

Er = ∂LHBI(F )
∂F

Er =

= β2
1 −

√︃
1 − 4E2

r

β2

2E2
r

Er, (3.46)

where we used F = −E2
r

β2 and F = E2
r

2β2 . Then using the same definition for the
‘radius of the electron’ as in BI theory, r0 =

√︂
e

4πβ
, we get:

(︄
2Er

e

4πr2β2 − 1
)︄2

= 1 − 4E
2
r

β2 =⇒ Er

(︄
e2

(4π)2r4β2

)︄
= e

4πr2 ,

=⇒ Er = −ϕ′(r) = 4πer2β2

e2 + (4π)2r4β2 = β

(︂
r
r0

)︂2

1 +
(︂

r
r0

)︂4 . (3.47)

As we can see explicitly from figures 3.1 and 3.2, this model effectively
eliminates the discontinuity in E at the origin.

The energy density of the HBI point-charge field is given by 1.36:

4πu =DHBI · E − LHBI

=β
2

2

(︄
1 −

√︄
1 − 4E2

β2

)︄
− β2

2

⎛⎝1 −
√︄

1 − 4E2

β2 + log
⎛⎝1 +

√︂
1 − 4E2

β2

2

⎞⎠⎞⎠

= − β2

2 log
⎛⎝1 +

√︂
1 − 4E2

β2

2

⎞⎠ = −β2

2 log

⎛⎜⎜⎜⎝1
2 +

⌜⃓⃓⃓
⃓⃓⎷1

4 −

(︂
r
r0

)︂4

(︃
1 +

(︂
r
r0

)︂4
)︃2

⎞⎟⎟⎟⎠
= − β2

2 log
(︄

1
2

(︄
1 + r4 − r4

0
r4 + r4

0

)︄)︄
(3.48)

Integrating over all space we get for a static point-charge in HBI theory the
energy:

U =
�
u dV = 1

9
(︂
3
√

2π − 4
)︂
β2r3

0 ≈ 1.03652 e2

(4π)2
1
r0
. (3.49)
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Figure 3.1 E field of a static point
charge in HBI theory.

x

Ex

Figure 3.2 Radial component of the E
field of a static point charge in HBI theory
on an axis going through its origin.
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Chapter 4

RegMax

In this chapter we provide a brief overview of NE coupled to gravity and
then explore a particular recently discovered model that arises in the context
of exact radiative solutions of black hole spacetimes and slowly rotating black
holes [13, 23].

The coupling of classical electrodynamics to gravity is done simply by
altering the electromagnetic Lagrangian LEM in the vacuum Einstein-Hilbert
action written for a generic NE theory (in geometric units with G = 1):

S = 1
16π

�
(R − 2Λ + 4LEM)

√
−g d4x, (4.1)

where R is the Ricci scalar, Λ is the cosmological constant and g the metric
determinant. This action leads via the variation of the metric to the NE-
Einstein field equations with the NE energy momentum tensor on the right
hand side:

Gµν + Λgµν = 8πTµν . (4.2)

We can find the explicit form of Tµν this way and check the correspondence
of its 00-component with the Hamiltonian density in the first chapter:

δS = 1
16π

� √
−gδ (R − 2Λ + 4LEM) + (R − 2Λ + 4LEM) δ

√
−g d4x,

= 1
16π

� (︄(︄
δR

δgµν
+ 4δLEM

δgµν

)︄
+(︄

1√
−g

(R − 2Λ + 4LEM) δ
√

−g
δgµν

)︄)︄
√

−gδgµν d4x = 0. (4.3)
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Terms with R and Λ become after some standard calculations to be found
for example in [24], the left hand side of the Einstein field equations. To get
the energy-momentum tensor we first calculate the following:

δ
√

−g = − 1
2√

−g
δg = −1

2
√

−g (gµνδg
µν) , (4.4)

where the last step involves Jacobi’s formula for the derivative of matrix de-
terminants from linear algebra to get δg = δ det gµν = ggµνδgµν = −ggµνδg

µν ,
where in the last equality we use the formula for the derivative of an inverse
matrix. And also:

δF λκ

δgµν
=
δ
(︂
gλαgκβFαβ

)︂
δgµν

= Fαβ

(︂
gλαδκ

µδ
β
ν + gκβδλ

µδ
α
ν

)︂
=Fανg

λαδκ
µ + Fνβg

κβδλ
µ. (4.5)

Then:

δL(F,G)
δgµν

=∂L
∂F

δF

δgµν
+ ∂L
∂G

δG

δgµν

= − 1
4
∂L
∂F

(︄
2Fλκ

δF λκ

δgµν

)︄
+ ∂L
∂G

(︄
ελκσρ

8√
−g

(︄
F λκ δF

σρ

δgµν
+ F σρ δF

λκ

δgµν

)︄

+ ελκσρF
λκF σρ

8
δ 1√

−g

δgµν

⎞⎠
4.5,4.4= − 1

4
∂L
∂F

(︂
2Fλκ

(︂
Fανg

λαδκ
µ + Fνβg

κβδλ
µ

)︂)︂
+

+ ∂L
∂G

(︄
ελκσρ

8√
−g

(︂
F λκ

(︂
Fανg

σαδρ
µ + Fνβg

ρβδσ
µ

)︂
+

+ F σρ
(︂
Fανg

λαδκ
µ + Fνβg

κβδλ
µ

)︂)︂
+ ελκσρF

λκF σρ

8
1
2

1√
−g

gµν

)︄

= − 1
2
∂L
∂F

(︂
FλµF

λ
ν + FµκFν

κ
)︂

+ ∂L
∂G

(︄
1

8√
−g

(︂
ελκσµF

λκF σ
ν+

+ελκµρF
λκFν

ρ + ελµσρF
σρF λ

ν + εµκσρF
σρFν

κ
)︂

+

+ ελκσρF
λκF σρ

8
1
2

1√
−g

gµν

)︄

=∂L
∂F

FµλF
λ

ν + 1
2
∂L
∂G

Ggµν , (4.6)

where the last equality holds due to the anti symmetry of Fµν . Thus from
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4.3, 4 and 4.6 we get the NE energy-momentum tensor:

8πTµν =2
(︄

2δLEM

δgµν
− LEMgµν

)︄
,

Tµν = 1
4π

(︄
2∂L
∂F

FµλF
λ

ν + ∂L
∂G

Ggµν − LEMgµν

)︄
. (4.7)

We may now check this is in accordance with 1.36.
By varying the electromagnetic field we get the same NE field equations

with LEM = L(F,G2) as in the first chapter. The standard classical coupling
is the Einstein-Maxwell theory, where LEM = F = −1

4FµνF
µν . This theory

has a divergence in both the electromagnetic field and spacetime geometry at
the centre of a charged black hole.

NE can be used to smooth out at least one of these divergences. The BI
model for example removes only the field divergence as discussed in the second
chapter. The Bardeen model [9], mentioned in the introduction, removes
spacetime divergence but not the field divergence and it doesn’t obey the
principle of correspondence (i.e. the Maxwell weak field limit). Some models
of NE coupled to gravity can thus aid with theoretical problems associated
with spacetime divergences.

Since it is known the linear electromagnetic theory does not describe the
nonlinear effects arising from QED in the presence of very strong fields and
that effective classical NE theories describing these effects to some degree
of accuracy do exist, NE may play a role in describing processes in these
extreme circumstances as a phenomenological model. Such circumstances
include neutron stars or the formation of black holes, where such strong fields
may be common [25, 12, 5].

For a more detailed introduction to NE coupled with GR see [26, 12].
Recently, in [13], a new Lagrangian has been discovered that admits

exact radiative solutions to the NE-Einstein field equations in the Robinson-
Trautman class of exact black hole solutions. Later, the same Lagrangian
came up when considering slowly rotating black holes [23]. This prompted a
further study of this Lagrangian in [14]; some main results of which, mainly
regarding electrodynamic properties and black hole thermodynamics, will be
developed in the following sections.
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RegMax Electrodynamics
In order to be consistent with a recent review [14], in this section we adopt

new conventions for the units, where 1
4πε0

= 1, and field invariants:

S := − 2F = 1
2fµνf

µν , (4.8)

P :=2G = 1
2fµν

⋆fµν . (4.9)

In the following we explore some basic electrodynamic properties of the
so-called ‘RegMax’ Lagrangian:

LRegMax(S) = −2α2
(︄

1 − 3 log(1 − s) + s3 + 3s2 − 4s− 2
2(1 − s)

)︄
, (4.10)

where s :=
(︃−S
α4

)︃ 1
4
. (4.11)

This Lagrangian obeys the principle of correspondence (has the Maxwell weak
field limit) and belongs to the restricted class of Lagrangians dependent only
on S (a generalization to L(S,P2) has not been found yet). Thus in all the
following we assume P = 0. Note also this form of the Lagrangian is suited
for the electric case where S < 0 (although a magnetic extension has been
constructed, see [14]) and so here we only deal with the case B = 0.

A full rigorous derivation of it may be found in the paper it was discovered
in [13]. An intuitive way of finding it can be achieved by assuming a simple
form of regularization to the Maxwell field of a point charge. We may demand,
as is true in the Born-Infeld theory, to have a field maximum at the origin
independent of the charge given by a fixed parameter of the theory that we
denote β:

|Er|
r→0−−→ β. (4.12)

There are many functions fulfilling such a requirement including the BI point
charge, or

Q

r2 + |Q|
β

(4.13)

for example. From a theoretical point of view it is however satisfying and
intuitive for the inverse-square law to stay valid for all r. This requirement
can be almost satisfied (depending on the interpretation) if we imagine a small
bit of space being ‘eaten up’ at the origin in order to create the proportional
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charge source i.e. the inverse square law holds if to the distance from the
origin we just add the inaccessible radius r = |Q|

α
. This reduces the form of

the electric field further to:

Er = Q(︃
r +

√
|Q|
α

)︃2 , (4.14)

where α2 = β. We have effectively just ‘cut out’ and stitched together the
boundary of a ball of radius

√
|Q|
α

from the standard Maxwell point charge
field.

The general NE equation 1.42 in the new convention has the form (here,
Q = e

4πε0
= e):

Dr = Q

r2 = 2LSEr, (4.15)

where LS = ∂L
∂S . Plugging Er into this using S = −E2

r we get:

LS = −1
2
√

−S
Q(︃√︃

|Q|√
−S −

√
|Q|
α

)︃2 (4.16)

= −1

2
(︃

1 −
(︂

−S
α4

)︂ 1
4
)︃2 . (4.17)

Integrating this w.r.t. to S yields the RegMax Lagrangian 4.10.

RegMax properties
Here we present some basic known properties of the RegMax theory

developed in [13, 23, 14] that categorize it among other NE theories, that
make it unique and that motivate its further study.

RegMax is a recently proposed model of NE that follows from the most
straightforward regularization to the Coulomb point charge electric field
resulting in the complicated looking Lagrangian 4.10. It belongs to the
restricted class of NE theories dependent only on the field invariant S, i.e.
L = L(S), and obeys the principle of correspondence with the linear Maxwell
theory in the weak field limit. It is characterized by a dimensionful parameter
α dimensionally related by β ∝ α2 to the BI parameter β with [β] = (length)−1.
The theory is not conformal and does not possess electromagnetic duality like
BI or ModMax [27].
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RegMax implies vacuum birefringence (the two degrees of freedom (modes)
propagated by NE electromagnetic waves do not propagate with the same
speed), as does any generic NE theory apart from BI (as proved by Plebański
[12]). A problem that may occur with some restricted NE models is that one
of the modes may not be causal. It has been proven in [14] however that the
propagation of RegMax modes is causal.

At r = 0 the gravitating spherically symmetric AdS RegMax solution
possesses a singularity and, depending on the parameters in the resulting
metric function f0 5.16, can have zero, one or two horizons.

The theory provides radiative Robinson-Trautman spacetime solutions
with ‘Maxwell-like’ properties [13], solutions to slowly rotating black holes [23],
accelerated (C-metric) black holes and other important gravitating solutions
[14]. The fact all these solutions can be found analytically in a form very
close to Maxwell solutions makes the RegMax model unique.

The Field of a Static Charge for the RegMax Lagrangian

Reversing the heuristic derivation of Lagrangian 4.10 and taking the
derivative of the Lagrangian with respect to S we get:

LS(S) = − 1
2 (s− 1)2 . (4.18)

Then the static, spherically symmetric NE equation for a charge Q takes the
form:

Dr = Q

r2 = −2LSEr = 1
(s− 1)2Er, (4.19)

which has a non-diverging solution for the electric field:

Er = α2Q(︂
αr +

√︂
|Q|

)︂2 . (4.20)

This may be integrated to obtain the vector potential:

A = ψ0dt, ψ0 = − αQ

αr +
√︂

|Q|
. (4.21)

We can also specify the electromagnetic invariant S:

S = −E2
r = − α4Q2(︂

αr +
√︂

|Q|
)︂4 (4.22)
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Figure 4.1 The diverging Er̃ field 4.23
(red dashed) and solution 4.20 (solid
black) with Q = α = 1.
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Figure 4.2 The Dr
˜ field generated by

substituting the diverging solution 4.23
into 4.19 (red dashed) and the unique NE
field equations solution Dr = Q

r2 (solid
black) with Q = α = 1.

There is also a diverging solution with a sign change in the expression in
the denominator that solves the algebraic equation for r <

√
|Q|
α

:

Er̃ = α2Q(︂
αr −

√︂
|Q|

)︂2 . (4.23)

A comparison of Er and the diverging Er̃ is shown in figure 4.1, where. When
we check if Er̃ truly solves the NE equation by substituting into 4.19, we get
that the left hand side Dr = Q

r2 only equals the right hand side in the region

r <

√
|Q|
α

. How this solution fails outside the region can be seen in figure

4.2: for r <
√

|Q|
α

the dashed red line and solid black line overlap indicating
Dr
˜ = Dr, but outside this interval the two lines separate, indicating Er̃ is no

longer even a solution outside the region. But even in the region r <

√
|Q|
α

this solution does not correspond to the field generated by a charge Q, as can
be checked by integrating the generated charge density over the valid region
and finding the result diverges. This calculation is shown in the appendix 5.

We can also find the energy density of the static point-charge by 1.36; the
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expression simplifies a lot if we assume Q > 0. Then:

u =DrEr − LRegMax(S) = Q

r2
α2Q(︂

αr +
√︂

|Q|
)︂2 − LRegMax(F )

=
α2
√︂

|Q|
(︂
−3α

√︂
|Q|r +Q− 6α2r2

)︂
r2
(︂√︂

|Q| + αr
)︂ − 6α4 log

⎛⎝ αr√︂
|Q| + αr

⎞⎠ . (4.24)

This can be integrated over all space to obtain the energy of a static point
charge for this Lagrangian:

U = 1
4π

�
u dV = 8

3παQ
3/2. (4.25)
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Chapter 5

Elementary NE Solutions and
Black Hole Thermodynamics

Elementary NE Solutions
In this section we compare Maxwell, Born-Infeld and RegMax electrody-

namics by observing the solutions of symmetric configurations: point charge,
homogeneously charged sphere (electrostatic) and an infinite wire with current
(magnetostatic). The calculations are inspired by the work in [28], where only
the Born-Infeld case is considered.[29, 30]

The static, spherically symmetric field of a unit point charge in each of
the models (using the solutions) is compared in figure 5.1.

EM

EBI

E

0 1 2
r

1

2

3

4

5
E

Figure 5.1 A comparison of the electrostatic fields generated by a point charge with
Q = 1 for the Maxwell theory (solid black line), Born-Infeld with β = 4 (blue dashed)
and RegMax with α = 2 (red dot-dashed) [14].

If we assume a static ball of radius R with homogeneous charge density
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(homogeneous in the sources ρ of D):{︄
ρ r ≤ R
0 r > R

, (5.1)

we can use Gauss’s law (due to spherical symmetry) to reduce the NE equations
in the same fashion as was done for a point charge in the first chapter. Thus:

Dr =
{︄

ρ
3r inside
ρR3

3r2 outside . (5.2)

Plugging this into the static, spherically symmetric NE equation we get the
radial electric fields (with the convention 1

4πε
= 1):

EMax =
{︄

Q
R3 r inside
Q
r2 outside , (5.3)

EBI =

⎧⎪⎨⎪⎩
βrQ√

R6β2+Q2r2
inside

βQ√
Q2+β2r4

outside , (5.4)

E =

⎧⎪⎨⎪⎩
α2Qr

Qr+αR(αR2+2
√

|Q|rR)
inside

α2Q

(
√

|Q|+αr)2
outside

. (5.5)

These solutions are compared in figure 5.2

EM
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r

0.5
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E

Figure 5.2 A comparison of the electrostatic fields generated by a homogeneously
charged ball with Q = 1 for the Maxwell theory (solid black line), Born-Infeld with
β = 1 (blue dashed) and RegMax with α = 1 (red dot-dashed) [14].

Similarly, in the stationary (magnetostatic) case, we may calculate the
magnetic field of generated by a infinite straight wire carrying NE field source
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‘current’ by applying the analogue Ampere’s law. The relevant NE field
equation and constitutive relation in this case read:

∇ × H =4πj, (5.6)

H = − 2∂L
∂S

B, (5.7)

where the 4π comes from the convention 1
4πε

= 1 =⇒ µ = 4π by the relation
µε = 1

c2 = 1. The infinite wire directed in the positive z direction with current
I gives the only non-trivial component:

Hφ = 2I
r
. (5.8)

Solving the constitutive relation then gives the φ-component of the magnetic
field B:

BMax =2I
r
, (5.9)

BBI = 2βI√
β2r2 + 4I2 , (5.10)

B = 2α2I2

α2Ir + 2
√

2α
√
I3r + 2I2

. (5.11)

These solutions are again compared in figure 5.3. Note there also exists a
unphysical diverging solution to the RegMax constitutive relation in this case
for r < 2 I

α2 .

BM
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Figure 5.3 A comparison of the magnetic fields generated by a infinite wire with
current I = 1 for the Maxwell theory (solid black line), Born-Infeld with β = 1 (blue
dashed) and RegMax with α = 1 (red dot-dashed).
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Black Hole Thermodynamics
In this section we briefly introduce the study of black hole (BH) thermo-

dynamics in Anti de-Sitter (AdS) spacetime coupled to NE (de Sitter space
BH thermodynamics turns out to be a lot more complicated due to multiple
horizons and is far from being well established). Specifically a sub-branch
of the field concerned with involving the cosmological constant Λ into the
thermodynamic framework as a pressure term, sometimes called ‘black hole
chemistry’, see [31] for a brief introduction and [32] for a comprehensive
review.

In [33], Hawking showed that the surface area of a black hole event horizon
(under some ‘reasonable assumptions’) can never decrease; a statement that re-
sembles the second law of thermodynamics. Bekenstein noticed this similarity
and proposed in [34] that black holes can be assigned an entropy proportional
to the surface area by S ∝ Ac3

ℏG
. Hawking then confirmed this and found the

proportionality constant to be 1
4 in [37]; so we get S = Ac3

4ℏG
. A similar analogy

was made between the black hole surface gravity κ
8πG

and temperature. By
extending this analogy further, Bardeen, Carter and Hawking formulated The
four laws of black hole mechanics in [35] that reflect the second, first, zeroth
and third laws of thermodynamics. The laws follow (in the order from [33]):

The Second Law

The area A of the event horizon of each black hole does not decrease with
time, i.e.

δA ≥ 0. (5.12)

If two black holes coalesce, the area of the final event horizon is greater than
the sum of the initial horizons, i.e.

A3 > A1 + A2. (5.13)

The First Law

For a rotating charged black hole with mass M , angular momentum J and
charge Q:

δM = κ

8πδA+ ΩδJ + ΦδQ,

=TδS + ΩδJ + ΦδQ with G = c = kB = 1, (5.14)

where κ is the surface gravity, Ω the angular velocity and Φ the electric
potential. T and S are the thermodynamic temperature and entropy defined
above.
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The Zeroth Law

The surface gravity, κ of a stationary black hole is constant over the event
horizon.

The Third Law

It is impossible by any procedure, no matter how idealized, to reduce κ to
zero by a finite sequence of operations.

In the paper [35] they are quick to point out that, despite the analogy,
κ

8πG
and A are distinct from the classical temperature and entropy of a black

hole; the classical thermodynamic temperature of a black hole is in fact
absolute zero, since there is no way a black hole could be in equilibrium with
black body radiation at any non-zero temperature. The proposed non-zero
thermodynamic temperature arises when the quantum effects that result in
Hawking radiation are taken into account.

A question that arises when considering NE black hole spacetimes is
consistency with this theory of black hole thermodynamics first developed
by Bekenstein and Hawking [36, 37]. A nice property of all theories of NE
coupled to gravity is that the validity of the zeroth and first laws of black
hole thermodynamics are always given [38].

In the Maxwell case, due to homogeneity of the first law, one can get, by
Euler’s homogeneous function theorem, a formula for the mass – the so-called
Smarr formula [39]. This formula is the BH thermodynamics version of the
Gibbs-Duhem relation in classical thermodynamics (the mass is interpreted
as the internal energy, or enthalpy if we allow Λ [40]) and greatly simplifies
BH thermodynamic calculation. When it is found (which is done by varying
all dimensionful coupling constants and applying dimensional analysis as
shown in [32]) standard thermodynamic formalism may be applied to get
parametric relationships between the thermodynamic potentials and derived
thermodynamic variables (for example the canonical free energy F on the
absolute thermodynamic temperature T ).

Some NE models can then be shown to exhibit nontrivial thermodynamic
and phase transition behaviour. A famous example of such black hole
phase transitions is the so-called Hawking-Page phase transition (first
order) between thermal AdS and a black hole, discovered in [41] and the
small-black-hole/large-black-hole phase transition of charged black holes
[41, 42, 43]. The mechanisms or interpretation of such phase transitions is
not well understood; their study mostly relies on the general formalism of
thermodynamics and the stability analysis it provides to determine when
they occur. In particular, when incorporating the cosmological constant in
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the thermodynamics as a ‘pressure’ term (so-called black hole chemistry
[31]), black hole phase transitions can be modelled by an analogy with Van
der Waals fluid [44]. Explicit heat capacities or the speed of sound can be
calculated; free energy plots and phase diagrams can be constructed etc.

RegMax Black Hole Thermodynamics
In order to study the black hole thermodynamics in gravity coupled to

RegMax, we make use of the full self-gravitating solution generalized from
the static, spherically symmetric field 4.20, presented in [14]. If we write the
resulting line element in the form:

ds2 = −f0dt
2 + dr2

f0
+ r2dΩ2, (5.15)

then the solution is characterized by the metric function f0 given by:

f0 =1 − 2α2|Q| + 4α|Q|3/2 − 6m
3r + 4rα3

√︂
|Q|−

− 4α4r2 log
⎛⎝1 +

√︂
|Q|
rα

⎞⎠+ r2

ℓ2 , (5.16)

where α is the RegMax parameter, m is the invariant mass, Q the charge, ℓ
the angular momentum and dΩ in the previous expression the solid angle
element: dΩ2 = dθ2 + sin2 θdφ2. This metric function is plotted for various
parameter values in 5.4.

The horizon of an AdS black hole is located at the largest root r+ of this
metric function f0(r+) = 0; it corresponds to the Killing horizon generated by
the field ξ = ∂t. We can now determine the thermodynamic variables of the
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Figure 5.4 The metric function f0 plotted in various cases (RegMax AdS black holes).
Depending on the mass m, RegMax black holes are characterized by two regimes based
on the behaviour near r = 0: S-type (red lines), and RN-type (blue lines). A BH
horizon is characterized by the roots of f0; thus we see characteristic Schwarzchild
behaviour in the S-type, converging precisely to that case for m → ∞ (red dashed).
Characteristic Reissner-NordStröm behaviour with 2, 1 and no horizons is seen in the
RN regime with the extremal m → 0 case shown in blue, dot-dashed. There exists a
marginal mass that splits the two regimes and for which limr→0 f0 is finite (solid black
line). This mass is given by Mm = 2α

3 |Q|3/2. The plot is for values Q = ℓ = α = 1
[14].

RegMax AdS black holes using standard formulae that can be found in [32]:

T =f
′
0(r+)
4π , (5.17)

= 1
4πr+

⎛⎝1 − 2α2|Q| − 12α4r2
+ log

⎛⎝1 +

√︂
|Q|
αr+

⎞⎠
+4α3r+

√︂
|Q|

⎛⎝2 + αr+√︂
|Q| + αr+

⎞⎠+ 3r2
+
ℓ2

⎞⎠ ,
S =A4 = πr2

+, (5.18)

ϕ = − ξ · A|r=r+ = αQ

αr+ +
√︂

|Q|
, (5.19)

M =m (from f0(r+) = 0), (5.20)

=1
2r+

⎛⎝1 + r2
+
ℓ2 − 4α4r2

+ log
⎛⎝1 +

√︂
|Q|
αr+

⎞⎠⎞⎠
+ 2

3α|Q|3/2 + 2α3r2
+

√︂
|Q| − α2r+|Q|,
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P = − Λ
8π = 3

8πℓ2 , (5.21)

V =
(︄
∂M

∂P

)︄
S,Q,α

= 4
3πr

3
+, (5.22)

µα =
(︄
∂M

∂α

)︄
S,Q,P

, (5.23)

where M was calculated by the conformal method [45] and µα is the ‘α-
polarization potential’. The first law thus holds in an extended form:

δM = TδS + ϕδQ+ V δP + µαδα. (5.24)

We may also check the corresponding Smarr relation

M = 2TS + ϕQ− 2V P − 1
2µαα (5.25)

holds.

The Canonical Ensemble

In the canonical ensemble we are concerned with a system in equilibrium
with an infinite (thermal) reservoir characterized by a fixed temperature. In
statistical mechanics, the information about the system is then contained
by the canonical partition function Z = Z(β, V,Ni), where β = 1

kBT
. For

example in the discrete case, the probability that the system at given T is
in a state with energy E is given by ρ = 1

Z
e−βE. In thermodynamics, this

corresponds to the fundamental equation F = F (T, V,Ni), where F is the
Helmholtz free energy and, by standard calculation, we get F = −kBT logZ.
The analogy in AdS black hole thermodynamics comes from assuming the
black hole spacetime is in a state that fixes the value of the black hole
thermodynamic temperature T . Thus we wish to formulate the fundamental
relation in terms of T by performing the Legendre transformation of M that
exchanges S for T to obtain the canonical free energy F :

F = M − TS = F (T,Q, P, α). (5.26)

Recall that in this context M actually corresponds to the enthalpy, thus
the variables of this black hole F are the variables of the Gibbs free energy
G(T, P,Ni) in classical thermodynamics and so the naming of the thermody-
namic potentials is ‘shifted’ like this. This is because without Λ, M is treated
simply as the internal energy.

Since 5.17 or 5.20 are not in general solvable for r+, all calculations and
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plots are performed by treating r+ as a parameter.
Charged AdS Maxwell black holes in this ensemble give first order phase

transitions between ‘small black hole’ and ‘large black hole’ phases and in the
Born-Infeld case very interesting and complicated phase transition behaviour
arises [46, 44, 47]. First order phase transitions usually terminate for some
critical values (Pc, Vc, Tc) at a critical point, which is usually characterized by
the relations

∂P

∂V
= 0 = ∂2P

∂V 2 . (5.27)

The reason Born-Infeld electrodynamics permits such unusual phase behaviour
is the fact these relations have two independent solutions for the range of
parameters β ∈ ( 1√

8|Q| ,
1

2|Q|). The two critical points are led up to by two
swallow tails that may intersect in complicated ways explaining the unusual
behaviour. One of the results of [14] is the fact RegMax NE does not permit
any such unusual behaviour.

We obtain P = P (V, T,Q, α) by rewriting 5.17 and using 5.21, 5.22, 5.20.
Then 5.27 can be solved for Vc and Tc. To aid the calculation we, without
loss of generality, assumed Q > 0. Then the result is

Vc(α,Q) =2

⎛⎜⎜⎝ i
(︂√

3 + i
)︂
α4/3Q8/3

3

√︃
α2Q (10 − α2Q) + 2

√︂
− (2α2Q− 1)3 + 2

+

+
4i
(︂√

3 + i
)︂
Q5/3

α2/3 3

√︃
α2Q (10 − α2Q) + 2

√︂
− (2α2Q− 1)3 + 2

+ 4Q2+

+
Q− i

(︂√
3 − i

)︂
αQ

3

√︄
Q

(︂
α2Q(10−α2Q)+2

√
−(2α2Q−1)3+2

)︂
α

α2

⎞⎟⎟⎟⎟⎠
1/2

,

(5.28)

Tc(α,Q;Vc) =Q
π

(︄
32Q3/2α3

(α2V 2
c − 4Q)2 +

+ 16Q2 − 32Q3α2 − 8Qα2V 2
c − 8Q2α4V 2

c + α4V 4
c

QVc(αV 2
c − 4Q)2

)︄
, (5.29)

and Pc = Pc(α,Q;Vc(α,Q), Tc(α,Q)) = P (Vc, Tc, Q, α). This solution is real
and unique for physical values of α > 0, Q > 0, V and T , and the functions Vc

and Tc are injective, as can be seen in 5.5, therefore only one critical point and
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also one phase transition is permitted for any given value of α. A comparison
of this solution with the Born-Infeld case is also shown in figure 5.5.

The behaviour of F heavily relies on α. In particular there exists a

Figure 5.5 Critical points in BI and RegMax: The critical points are plotted para-
metrically in α for the BI theory (blue-yellow-green line, where the different colours
refer to the different solutions parametrized by α) and RegMax (red line). We see a
region, where BI dips below the starting point (V → 0) and therefore possesses two
critical points for given β = α2, whereas the RegMax curve is injective with respect to
α. The plot is for Q = 1.

critical value

αc = 1
√

2
√︂

|Q|
, (5.30)

around which the behaviour changes from being similar to the charged-AdS
Maxwell case (α > αc, Van der Waals-like) with characteristic swallow-tail
behaviour indicating a first degree phase transition between the branches of
small and large black holes, see figure 5.6.

By numerically finding the self-intersection points of the swallow tails we
can then construct the P − T phase diagram showed in figure 5.7.

We get Schwarzchild-like behaviour for α < αc, see figure 5.8.
At α = αc we see the behaviour displayed in figure 5.9:

we get the point p at r+ = 0, where the free energy terminates for all ℓ.
This point effectively eliminates the possibility for a swallow tail for this case
and also all α < αc. We can find the temperature Tp and free energy Fp

44



0.06 0.072 0.085 0.098 0.11
T0.56

0.578

0.595

0.612

0.63
F

Figure 5.6 F-T diagram: The behaviour of the canonical free energy in the α > αc

regime (Q = 1) with a swallow tail for P < Pc (blue dashed). For small T we observe
the small black hole phase which, by a first degree phase transition, turns to the large
black hole phase. Then a curve with the critical point at P = Pc (solid black) and a
smooth curve for P < Pc (red dashed) [14].

0. 0.025 0.05 0.075 0.1
T0.

0.005

0.01

0.015
P

C

SBH LBH

Figure 5.7 P-T diagram: For α = 1 > αc (and Q = 1) there exists a first order
phase transition between the small and large black hole phases indicated by (SBH) and
(LBH) in the figure. This phase transition terminates at the critical point C [14].

corresponding to this point p by taking the limit r+ → 0 when α = αc:

T =Tp +O(r+), Tp = 1
π

√
2|Q|

,

F =Q
√

2
3 +O(R3

+). (5.31)

By finding the minimum of T , i.e. the cusp edge curve we get the P − T
phase diagram for the case α ≤ αc; see 5.10 for the case α = αc. For α < αc

the diagram is similar but without the presence of the vertical asymptote at
Tp: the (NO BH) region extends to infinity for large enough P .
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0. 0.075 0.15 0.225 0.3
T0.3

0.35

0.4

0.45

0.5
F

Figure 5.8 F-T diagram: The behaviour of the canonical free energy in the α = 1 = αc

regime (Q = 1) for three values of P = 3
8πℓ2 : ℓ = 0.4 (red dashed), ℓ = 0.7 (solid

black) and ℓ = 0.8 (blue dashed). We see the point p, from which all these curves
emerge (r+ → 0). The first degree phase transition to small black holes has disappeared
and is replaces by a cusp beyond which a region with no black holes (small T ) exists
and the large black hole phase remains for large enough T [14].

0.2 0.2125 0.225 0.2375 0.25
T0.47136

0.471397

0.471433

0.47147
F

p

Figure 5.9 F-T diagram: The behaviour of the canonical free energy in the α = 1
2 <

αc regime (Q = 1) for three values of P = 3
8πℓ2 : ℓ = 0.4 (red dashed), ℓ = 1 (solid

black) and ℓ = 2.2 (blue dashed). For large enough T we get a large black hole phase,
otherwise, beyond the cusp, no black holes exist [14].

A summary of the effect that α has on the behaviour of the free energy
F for fixed P and Q is shown in figure 5.11.

The Grand Canonical Ensemble

In the grand canonical ensemble the system is at equilibrium with an
infinite thermal reservoir further characterized by a fixed value of the electric
potential ϕ. This ensemble allows for the description of neutral thermal
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0. 0.083 0.167 0.25 0.333
T0.

0.25

0.5

0.75
P

NO BH LBH

Tp

Figure 5.10 P-T diagram: For α = αc (and Q = 1) there exists a region with no
black holes, indicated by (NO BH) in the plot, and a region with large black holes (LBH).
In this case the (NO BH) region is bounded by the vertical asymptote characterized by
the temperature Tp = 1

π
√

2|Q| .

α <
1

2

α =
1

2

α >
1

2

α >>
1

2

0.09 0.122 0.154 0.186 0.218 0.25
T0.445

0.461

0.477

0.493

0.509

0.525

F

p

Figure 5.11 F-T diagram: For fixed P (ℓ = 2 and Q = 1) we have plotted the canon-
ical free energy F at the values displayed in the legend. We see the Schwarzschild-like
behaviour with a cusp for α ≤ αc = 1√

2 and VdW-like behaviour in the complementary
case [14].

radiation as a thermodynamic phase that may collapse into a black hole.
In the Einstein-Maxwell theory this collapse is described by a first order
phase transition as shown by Hawking and Page in [41]. The thermodynamic
potential in this case exchanges S for T and Q for ϕ as thermodynamic
variables, resulting in the grand canonical free energy W :

W = M − TS − ϕQ = W (T, ϕ, P, α). (5.32)
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The neutral thermal radiation phase is characterized by:

W ≈ 0. (5.33)

The gravitating solution f0 and all derived thermodynamic quantities are
given for Q; thus we need to express Q in terms of the grand canonical
thermodynamic variables. We can find Q = Q(ϕ, α) by inverting the relation
5.19:

Q = ϕ

2α2

(︃
2α2r+ + |ϕ| +

√︂
ϕ2 + 4|ϕ|α2r+

)︃
. (5.34)

In a similar sense to how there exists a critical αc for which the behaviour
of the F −T diagram changes in the canonical ensemble, there exists a critical

ϕc = 1√
2

(5.35)

in the grand canonical ensemble that has an effect on the W − T diagram.
In the following we assume, without loss of generality, α = 1. For ϕ > ϕc

the W −T diagram permits, for small enough pressures P < Pc a swallow tail
indicating a first order phase transition between the small black hole (small
T ) and large black hole (large T ) phases; see 5.12. This phase transition
in the grand canonical ensemble is not present in the linear Maxwell case.
There is no radiation phase in this case as the thermodynamically stable
configurations (minimal W ) are all below W = 0 for the entire temperature
domain T > 0 for any P or α.

The phase diagram for this case is shown in 5.13.
For the case ϕ = ϕc we get what can be seen in figure 5.14: at r+ = 0

a termination point q appears, universal for all P (or ℓ), that blocks the
possibility of the small black hole phase and in its place the radiation phase
is ‘revealed’ at W ≈ 0. We can find the temperature Tq and free energy Wq

corresponding to this point by taking the limit r+ → 0:

T =Tq +O(r+), Tq = α2

π
√

2
,

W = − 1
6
√

2α2
+O(r3

+). (5.36)

A curiosity of the new radiation-large black hole transition is that for a
range of large enough P (as we assume α = 1 fixed), where the cusp (the
point of minimal T of the curves in the corresponding W − T plots) is below
W ≈ 0, we effectively see a discontinuous jump in W . This discontinuity in a

48



0.1 0.2 0.3
T

-0.2

-0.1

0.

0.1
W

Figure 5.12 W − T diagram: For ϕ > ϕc (ϕ = 0.71 and α = 1) we have plotted the
grand canonical free energy W at P = 0.0008 (red dashed swallowtail), P = 0.005
(solid black swallow tail), P = 0.25 (blue dot-dashed smooth decreasing curve). Only
the black hole phases exist on the curve with lowest possible W for given T [14].

0. 0.1 0.2
0.

0.1

0.2

0.3

0.4

C

SBH LBH

Figure 5.13 P − T diagram: For ϕ > ϕc (ϕ = 0.71 and α = 1) the phase diagram
looks similar to the VdW phase transition just as in the canonical case for α > αc. The
critical point C can be found by substituting Q(ϕ, α) into Tc and Pc [14].

thermodynamic potential has been seen in this context before for example
with the complicated ‘reentrant phase transitions’ behaviour in BI case and
has been referred to as a zeroth degree phase transition following the Gibbs
phase transition categorization naming scheme [47, 48].

When the cusp pierces W ≈ 0 a first order transition between the large
black hole and radiation phases is restored. The presence of the radiation
phase also implies there in no ‘no black hole’ region in the grand canonical
ensemble. The P − T phase diagram for this case is shown in fig 5.15. In this
ϕ = ϕc case there also exists a vertical asymptote for the zeroth degree phase
transitions at Tq in the P − T diagram (not shown in 5.15 due to scale).
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0.1 0.2 0.3
T

-0.3

-0.2

-0.1

0.

0.1
W

q

Figure 5.14 W −T diagram: For ϕ = ϕc (ϕ = 1√
2 , α = 1) we have plotted the grand

canonical free energy W at P = 0.0007 (red dashed) where the cusp has pierced the
W ≈ 0 thermal radiation level and a first order phase transition exists between them,
P = 0.0016 (solid black) where the cusp is only touching zero: Wcusp ≈ 0 (maximal
P for a first order transition to exist) and P = 0.153 (blue dot-dashed) where there
is a discontinuous jump in W between the thermal radiation and the large black hole
phase. All the curves terminate at the point q when r+ → 0 [14].

0. 0.01 0.02 0.03 0.04
T0.

0.0025

0.005
P

RAD LBH

1st

0th

Figure 5.15 P − T diagram: For ϕ = ϕc (α = 1) we plot the phase diagram between
the radiation (RAD) and large black hole (LBH) phases. For small enough T there is
a first order phase transition which turns to a zeroth order transition when the cusp
crosses Wcusp ≈ 0. For ϕ = ϕc there exists a vertical asymptote for the zeroth order
coexistence curve at T = Tq = α2

π
√

2 ; for ϕ < ϕc the curve exists for all T > 0 [14].

In the ϕ < ϕc case the behaviour of the previous ϕ = ϕc case continues,
only the point q disappears and there is no vertical asymptote in the P − T
phase diagram – the zeroth order phase transition exists for all large enough
T . The W − T plot of this case is shown in figure 5.16

A summary of the effect that ϕ has on the behaviour of the free energy
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RAD

0.35 0.7
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-0.3

-0.2

-0.1

0.

0.1
W

Figure 5.16 W − T diagram: For ϕ < ϕc (ϕ = 0.5 and α = 1) we have plotted the
grand canonical free energy W at P = 0.02 (red dashed), P = 0.12 (solid black) and
P = 0.42 (blue dot-dashed). We see that for P ⪅ 0.12 (red and black lines) there
exists a first order phase transition, while for larger P this becomes a zeroth order phase
transition [14].

0.125 0.25
T

-0.6

-0.4

-0.2

0.

0.2
W

q

Figure 5.17 W − T diagram (effect of ϕ): For fixed P = 0.01 and α = 1 we have
plotted the grand canonical free energy W at ϕ = 0.5 (solid red) where a first order
RAD-LBH transition exists, ϕ = 0.67 (red dashed) where a zeroth order RAD-LBH
transition exists, ϕ = ϕc (black thin) where the point q and zeroth order RAD-LBH
transition exists (whether the cusp is below or above W ≈ 0 depends on P ), ϕ = 0.725
(black dashed) where a swallow tail and first order SBH-LBH transition exists, ϕ ≈ 0.76
(solid black) with a critical point of the SBH-LBH transition exists and finally ϕ = 0.85
(solid blue) with no phase transitions [14].

W for fixed P = 0.01 and α = 1 is shown in figure 5.17.
Finally, putting everything in the grand canonical ensemble together, by

we display the ϕ−T phase diagram in figure 5.18. We see there are in general
four critical points C1 − 4. For small enough P the zeroth order transition
between C3 and C4 may vanish due to the cusp piercing the W ≈ 0 value
when ϕ = ϕc.
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0. 0.05 0.1
T0.

0.5

1.
ϕ

RAD

LBH

SBH

C1
C2

C3

C4

Figure 5.18 ϕ − T diagram: For P = 0.01 and α = 1 we display the phase diagram
between the small black hole (SBH), large black hole (LBH) and radiation (RAD)
phases. We observe first order phase transitions between the SBH and LBH phases
(solid black curve from C1 to C2) and between the RAD and LBH phases (solid black
curve to the right of C4). Zeroth order phase transitions exist in general between all
the phases and are denoted by dashed curves. The SBH-RAD (black dashed) and
SBH-LBH (red dashed between C2 and C3) zeroth order transitions lie on the ϕ = ϕc

line. For small enough pressures P the RAD-LBH (blue dashed from C3 to C4) zeroth
order transition vanishes and C4 overlaps C3. The diagram is symmetric w.r.t. the
ϕ = 0 axis and the solid black coexistence curve is regular at ϕ = 0 [14].

To conclude the grand canonical ensemble, we see that the presence of
the thermal radiation phase diversifies the phase behaviour of RegMax black
holes and a critical value of ϕ = ϕc takes on the role of the critical value
α = αc in the canonical ensemble.
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Conclusion

Starting from the linear Maxwell theory we have developed the formalism of
nonlinear electrodynamics. Motivated by resolving the self-energy divergence
of the electron we assumed the electromagnetic interaction is governed by a
new set of field equations that come from applying the action principle to a
generalized Lagrangian density of the form LNE = L(F,G2). The resulting
NE equations are given the same formal structure as Maxwell’s equations
by expressing them in terms of of a new anti symmetric second rank tensor
pµν bound to the physical F µν fields by the NE constitutive relations. In the
static spherically symmetric case of a unit charge we obtain a formal general
solution that reduces the search for the corresponding electric field of any NE
theory to an algebraic equation. We use this result to compare the further
discussed NE theories between each other.

The founding Born-Infeld model is introduced and the Lagrangian density
is re-derived. We demonstrate one of its perceived drawbacks, the discontinuity
of E at the origin, and find the value of the finite self-energy of a unit
‘point’ charge UBI ≈ 1.2361 e2

(4π)2
1
r0

. We follow this up by the Hoffmann-Born-
Infeld model, one of the models that was supposed to fix the issues with BI.
For this we summarize Infeld’s interesting approach of devising an action
function with the desired properties. This is done also to aid the derivation
of the HBI Lagrangian for which we also calculate the unit charge E field and
self-energy UHBI ≈ 1.03652 e2

(4π)2
1
r0

.
In the remaining part of the thesis we examine the RegMax NE model

and its contemporary context. NE coupled to gravity is introduced through
assuming the validity of the Einstein field equations and deriving the form
of of the NE energy-momentum tensor by varying the NE-Einstein-Hilbert
action w.r.t. the metric gµν . Next a heuristic derivation of the RegMax
Lagrangian is given based on regularizing the static Coulomb field in the
most straight forward was possible while preserving a skewed re-interpretation
of the inverse square law. We also find the unit charge E field and self-
energy U = 8

3παQ
3/2. An extension of the static spherically symmetric case

is made to obtain the fields of a homogeneously charged ball with Q = 1
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and an infinite wire with current I = 1 and the RegMax, BI and Maxwell
solutions are compared. Then the basics of black hole thermodynamics are
introduced before applying them to an analysis of RegMax AdS black hole
thermodynamics in the canonical and grand canonical ensembles. We find
an explicit analytic expression for all the critical points in the canonical
ensemble 5.28, 5.29. We also discover critical values of α = αc = 1√

2
√

|Q|
and

ϕ = ϕc = 1√
2 in the canonical and grand canonical ensembles respectively, for

which the phase behaviour fundamentally changes. A series of figures (figures
5.6 – 5.18) is produced to illustrate this behaviour with a key result being
the elaborate ϕ− T phase diagram of 5.18; these are precisely the findings
presented more thoroughly in [14].
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Appendix

Invariance of
� √︃

|aµν| d4x

A coordinate transformation xµ ↦→ x′µ has the Jacobian J = ∂x′µ

∂xµ . By
this transformation the spacetime volume element d4x becomes d4x′ = Jd4x
since dxµ are contravariant. |aµν | becomes

⃓⃓⃓
a′

µν

⃓⃓⃓
= J−2|aµν | since aµν is twice

covariant. Thus taking the square root of |aµν | makes the Jacobians cancel
out and the expression

� √︂
|aµν | d4x is an invariant.

Determinant calculation in BI

−|aµν | = −

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

−1 f12 f13 f14
−f12 1 f23 f24
−f13 −f23 1 f34
−f14 −f24 −f34 1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ = −

⎛⎜⎝−(−1)1+1

⃓⃓⃓⃓
⃓⃓⃓ 1 f23 f24
−f23 1 f34
−f24 −f34 1

⃓⃓⃓⃓
⃓⃓⃓−

− f12 (−1)1+2

⃓⃓⃓⃓
⃓⃓⃓ f12 f13 f14
−f23 1 f34
−f24 −f34 1

⃓⃓⃓⃓
⃓⃓⃓− f13 (−1)1+3

⃓⃓⃓⃓
⃓⃓⃓ f12 f13 f14

1 f23 f24
−f24 −f34 1

⃓⃓⃓⃓
⃓⃓⃓−

− f14 (−1)1+4

⃓⃓⃓⃓
⃓⃓⃓ f12 f13 f14

1 f23 f24
−f23 1 f34

⃓⃓⃓⃓
⃓⃓⃓
⎞⎟⎠ =

=
(︂
1 + f23f24f34 − f23f24f34 + f 2

24 + f 2
34 + f 2

23

)︂
−

− f12
(︂
f12 + f14f23f34 − f13f24f34 + f14f24 + f12f

2
34 + f13f23

)︂
+

+ f13
(︂
f12f23 − f14f34 − f13f

2
24 + f14f

2
23 + f12f24f34 − f13

)︂
−

f14
(︂
f12f24f34 + f14 − f13f23f24 + f14f

2
23 − f12f24 − f13f34

)︂
=

=1 − f 2
12 − f 2

13 − f 2
14 + f 2

23 + f 2
24 + f 2

34 − |fµν |, (5.37)
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where

|fµν | =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

0 f12 f13 f14
−f12 0 f23 f24
−f13 −f23 0 f34
−f14 −f24 −f34 0

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ = −f12(−1)1+2

⃓⃓⃓⃓
⃓⃓⃓ f12 f13 f14
−f23 0 f34
−f24 −f34 0

⃓⃓⃓⃓
⃓⃓⃓−

− f13 (−1)1+3

⃓⃓⃓⃓
⃓⃓⃓ f12 f13 f14

0 f23 f24
−f24 −f34 0

⃓⃓⃓⃓
⃓⃓⃓− f14 (−1)1+4

⃓⃓⃓⃓
⃓⃓⃓ f12 f13 f14

0 f23 f24
−f23 0 f34

⃓⃓⃓⃓
⃓⃓⃓ =

=f12
(︂
f14f23f34 − f13f24f34 + f12f

2
34

)︂
− f13

(︂
−f13f

2
24 + f14f23f24+

+ f12f24f34) + f14
(︂
f12f23f34 − f13f23f24 + f14f

2
23

)︂
=

= (f12f34 + f14f23 − f24f13)2 (5.38)

Divergence of the charge of the second solution
The ‘free’ charge density of the solution

Er̃ = α2Q(︂
αr −

√︂
|Q|

)︂2 (5.39)

can be defined as the divergence of E:

∇ · E = 1
r2

d(r2Er)
dr = ρfree. (5.40)

This gives:

ρfree = −
2α2Q

√︂
|Q|

r
(︂
αr −

√︂
|Q|

)︂3 . (5.41)

This function can be integrated in spherical coordinates:
�

4πρfreer
2 dr = −

4πQ
√︂

|Q|
(︂√︂

|Q| − 2αr
)︂

(︂√︂
|Q| − αr

)︂2 . (5.42)

In the region r <
√

Q
α

(where Er̃ is a solution) we get:

Q̃ = lim
r→

√
Q

α

�
ρfree − lim

r→0

�
ρfree = ∞ − (−4πQ) = ∞ (5.43)

With all other valid solutions of the NE field equations we have an equality
between the integrated divergence of D (equal to Q) and the integrated
divergence of E calculated here. Thus this solution is unphysical.
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