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Abstract
Forecasting electric load accurately is a critical prerequisite to dependable
power grid operation. It is thus in the best interests of the responsible in-
stitutions to develop and maintain performant models for predicting load. In
this thesis, we analyze Czech electric load data and execute three pseudo-out-
of-sample forecasting exercises. We employ standard econometric as well as
machine learning methods and compare the results to benchmarks, including
the predictions published by the Czech transmission system operator. The re-
sults of the first task examining the predictability of minute loads using 11 years
of data indicate that the high-frequency load series is predictable. In the second
and third exercises, we utilize hourly loads with additional explanatory vari-
ables. We generate one-step-ahead and 48-hours-ahead forecasts on the 2021
out-of-sample set and evaluate the performance of several methods. In both
exercises, the most accurate results are produced by averaging forecasts of our
specified recurrent neural network and the seasonal autoregressive integrated
moving average model, achieving a mean absolute percentage error of less than
0.5% on the out-of-sample set in the one-step-ahead analysis and 2.3% in the
48-hours-ahead exercise, outperforming the operator’s predictions.

JEL Classification C53, Q40, C58
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Abstrakt
Přesná předpověď elektrického zatížení je zásadním předpokladem spolehlivého
provozu elektrické rozvodné soustavy. Je proto v nejlepším zájmu odpověd-
ných institucí vyvíjet a udržovat výkonné modely pro předpovědi zatížení. V
této práci analyzujeme data o zatížení elektrizační soustavy České republiky a
provádíme tři pseudo-out-of-sample forecasting cvičení. Používáme standardní
ekonometrické modely i metody strojového učení a výsledky porovnáváme s
referenčními hodnotami, včetně předpovědí zveřejňovaných provozovatelem čes-
ké přenosové soustavy. Výsledky první úlohy zkoumající předvídatelnost mi-
nutového zatížení na základě 11 let dat ukazují, že vysokofrekvenční časové
řady zatížení jsou předvídatelné. Ve druhé a třetí úloze využíváme hodinovou
zátěž s dalšími vysvětlujícími proměnnými. Vytváříme předpovědi na jeden
krok a na 48 hodin dopředu na out-of-sample vzorku roku 2021 a vyhodnocu-
jeme výkonnost několika metod. V obou cvičeních byly nejpřesnější výsledky
získány zprůměrováním předpovědí námi specifikované rekurentní neuronové
sítě a sezónního autoregresního integrovaného klouzavého průměru, které dosáh-
ly průměrné absolutní procentní chyby menší než 0.5% na out-of-sample vzorku
v analýze na jeden krok dopředu a 2.3% v úloze na 48 hodin dopředu, čímž
překonávají předpovědi operátora.

Klasifikace JEL C53, Q40, C58

Klíčová slova předpověď zatížení, elektřina, krátkodobé před-
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Motivation In the 1920s, yearly electricity production on the territory of the Czech
Republic reached almost 1300 gigawatt-hours according to the CZSO (2013). Ninety
years later, such a number would cover only about one-sixtieth of the total demand
for electric energy, which is undoubtedly a telling indicator of the drastic increase in
technological progress in the region.

However, there are risks associated with our high reliance on electricity: perhaps
the greatest challenge in the electric power industry is that the demand has to match
the supply of electricity at all times. The issue is that large-scale electricity storage
technologies have not yet reached a level of sophistication to be viable for this task,
as Hong (2014) writes. Consequently, electricity generation needs to be balanced and
coordinated in real-time, 24 hours a day. Because of these factors, coupled with the
natural deterioration of infrastructure and the gradual shift towards “smart grids,”
forecasting of electricity load has been growing in importance (Hong and Fan 2016)
and has relatively recently seen increased coverage in academic literature.

As reported by Hong and Fan (2016), the most widely used techniques for elec-
tricity load forecasting include models from the autoregressive-moving-average fam-
ily, as well as generalized additive models, multiple linear regression, or exponential
smoothing. Researchers also utilize machine-learning algorithms such as artificial
neural networks, support vector machines, or fuzzy regression approaches. Kuster et
al. (2017) provide a review of these electricity load forecasting models and their ap-
plication to data at various scales (e.g., load data of buildings, districts, or countries)
and frequencies (from sub-hourly to annual). Their findings suggest that most works
were concerned with long-term forecasts and that there is no clear indication of which
methods perform best in different circumstances. In a recently published paper by
Lee and Cho (2022), the authors devise a model for nationwide peak electricity load
forecasting in South Korea. They further claim that researchers have mostly concen-
trated on smaller-scale studies, meaning that works utilizing country-level data are,
at the very least, in the minority.

Thus, one of the goals of this thesis is to contribute to this growing body of
literature. In particular, we aim to provide an overview of the Czech energy sector,
highlighting the responsibilities of the licensed transmission system operator ČEPS,
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a.s. (Vlček and Černoch 2013). We will then analyze a highly granular and extensive
dataset of country-wide electricity load obtained from the licensed operator of the
Czech electricity transmission system. Finally, various models will be proposed, and
their performance will be evaluated in a pseudo-out-of-sample forecasting exercise
(as per, for instance, Fan and Hyndman (2012)).

Hypotheses

Hypothesis 1: Very short-term forecasts of electricity load outperform a naïve
random walk model.
Hypothesis 2: Predictability increases with lower frequency data.
Hypothesis 3: Models with external variables generate more accurate forecasts
than models based solely on historical load data.

Methodology We have obtained sub-hourly historical electricity load data from
the transmission grid operator ČEPS, a.s. starting from 2010 until the end of 2021.
Specifically, the dataset contains high-frequency electricity load statistics for the
whole Czech Republic, as well as aggregated lower frequency data on an hourly and
daily basis. Furthermore, at our disposal, we also have the official day- and week-
ahead predictions of the variable in question.

As far as other external factors are concerned, we will also be working with
electricity prices and weather data, both of which are commonly utilized in the
literature (Kuster et al. 2017). Moreover, electricity load data is subject to a wide
range of calendar variations, for example, day of the week or holiday effects (Fan and
Hyndman 2012), which also need to be accounted for and treated properly.

The frameworks we plan on utilizing range from simple univariate models to
more complex multivariate methods. In particular, we aim to utilize models from the
autoregressive-moving-average family, as well as exponential smoothing and vector
autoregression. In addition, we will also evaluate the forecasting accuracy of an ar-
tificial neural network, which has also been used in the short-term load forecasting
literature (Hong and Fan 2016; Kuster et al. 2017).

For the high-frequency data, we will consider a naïve random walk model as
the baseline—failing to outperform this specification in an out-of-sample forecasting
exercise would imply unpredictability of the series in question. This is, in fact, the
principal motivation behind the first hypothesis outlined above. Furthermore, for
the lower frequency data, we will be comparing the results to the official forecasts
published by the transmission system operator. Finally, forecasting accuracy will be
assessed through standard measures such as root mean square error, mean absolute
error, or the Diebold-Mariano test (Diebold and Mariano 2002), and a ceteris paribus
analysis will be conducted.

Expected Contribution According to Malik et al. (2021), load forecasts play
a vital role in the power industry as well as in the operation of the electricity grid
(Hong 2014). Depending on the considered time frame, load forecasting is utilized for
activities such as optimal supply planning, maintenance scheduling, or control over
automatic power generation (Malik et al. 2021). Moreover, both an overestimation
and an underestimation may lead to undesirable consequences—for example, in the
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latter case, the entire system is put into a “vulnerable region to the disturbance”
(Fan and Hyndman 2012), meaning that a “blackout” could occur (Lee and Cho
2022).

We believe that the added value of this thesis is in the use of high-frequency data
on a national scale, especially in the case of the Czech Republic. While some works
have used Czech electricity load data (e.g., Darbellay and Slama (2000) or Uher et
al. (2015)), the frequency of their data and the overall approach differ. In terms of
the lower frequency data and the planned direct comparison of our results to the
official forecast, we think that such analysis could be helpful in assessing the quality
of these predictions and the results could potentially improve the underlying model.

Outline
1. Introduction
2. Literature review
3. Background

- Overview of the Czech energy sector
- Electricity load

4. Data description and methodology
5. Results and discussion
6. Conclusion
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Chapter 1

Introduction

− R. G. Hooke (1955)

In a report on historical energy usage within the present-day boundaries of the
Czech Republic published by the Czech Statistical Office (2013), the earliest
record enumerating annual electricity production dates back to 1919, accord-
ing to which 1093 gigawatt-hours were generated. More than a century later,
the country produces almost 80 times as much electricity each year, contains
thousands of kilometers of power lines, and is part of the continent’s largest
electrical grid (Hofmann et al. 2020; ČEPS 2021; Ritchie et al. 2022).

For the system operator’s seemingly never-ending task of maintaining elec-
tricity supply and demand in balance in order to ensure uninterrupted operation
of the power grid, forecasting load accurately has been crucial (Liao & Tsao
2004). In fact, Krugman & Wells (2015, p. 698) argue that economic growth in
many nations can be severely hindered by an unreliable electrical infrastruc-
ture, further underpinning its importance by stating that governments have
to be politically disciplined to ensure its proper functioning. Moreover, the in-
crease in adoption of renewable electricity sources has further heightened the
significance of this field in recent years due to the inherent variability of output
of some of these modern solutions (Poullikkas 2013; Hong & Fan 2016).

However, despite the current-day abundance of computational capacity and
a considerable body of literature, generating load predictions remains far from
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trivial (Wang et al. 2016; Kuster et al. 2017). Perhaps the main difficulty in
modeling such data is rendered by the presence of multiple seasonal patterns,
which include the day/night cycle, working/non-working days, season of the
year, and public holidays (Weron 2006, p. 68, Fan & Hyndman 2012). Further-
more, because there seems to be a lack of consensus about the most perfor-
mant techniques for load forecasting (Kuster et al. 2017), researchers employ
a variety of methods, such as artificial neural networks (ANNs), autoregressive
integrated moving average (ARIMA) models, or hybrid approaches (Hong &
Fan 2016; Mamun et al. 2020).

While some academic papers have utilized data from the Czech Republic
(Darbellay & Slama 2000; Khan et al. 2002; Uher et al. 2015; Lai et al. 2020),
none of the works that we could find appeared to have investigated minute
load series or contrasted their forecasts with those published by the system
operator. Thus, this thesis aims to contribute to the existing load forecasting
literature by analyzing recent Czech electric load series released by the country’s
transmission grid operator. Specifically, we execute three pseudo-out-of-sample
forecasting exercises, i.e., a model’s forecasting accuracy is tested on an unseen
set of data reserved beforehand (Stock & Watson 2020, p. 575).

In the first minor task, we analyze the predictability of minute-ahead load
using 11 years of recent high-frequency data, hypothesizing that the Czech
minute load series is predictable, based partly on Taylor (2008). The other
two exercises, in which we model hourly data, are concerned with producing
one-step-ahead and up to 48-hours-ahead forecasts on an out-of-sample set of
one year using several methods. In particular, the main techniques that we
employ include seasonal ARIMA with exogenous factors (SARIMAX), recur-
rent neural networks (RNN), and bagged regression trees. For the multivariate
methods, we incorporate additional predictors such as transformations of his-
torical loads, weather, prices, or indicator variables. Moreover, in the latter
multi-step analysis, we further compare our predictions to those published by
the Czech transmission system operator to evaluate their accuracy. Generally,
these short-term projections1 are vital in multiple processes executed during
the operation of a power grid (Khuntia et al. 2016), as we describe later.

The thesis is organized as follows. A review of academic literature on load
forecasting, including a brief historical excursion, is presented in Chapter 2.
The objective of Chapter 3 is to provide a general introduction to power grid

1Let us note that we use the terms forecast, prediction, and projection interchangeably as
a stylistic choice.
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management, the risks associated with inaccurate load forecasts, and the Czech
electric power sector. In Chapter 4, we describe the acquired data and perform
an exploratory analysis. Chapter 5 thoroughly details the methodological part
of this thesis. The results of the three pseudo-out-of-sample forecasting exer-
cises are reported and discussed in Chapter 6. Chapter 7 then summarizes our
findings and suggests possible future steps. Appendices A & B display supple-
mentary materials and additional results, respectively.



Chapter 2

Literature Review

This chapter is composed of five sections. Firstly, we provide a brief historical
overview and early contributions to the field of load forecasting. We then outline
the key design considerations researchers take before specifying a model. In the
third section, we focus on the current methods utilized in academic literature.
After describing a few works concerned with forecasting Czech electric load, we
conclude this chapter by introducing three closely related fields that are also
dependent on predictions.

2.1 A Historical Perspective
While electricity load forecasting is vital for the proper functioning of the power
grid, it has only started garnering increased attention in the 1970s, according
to Sachdev et al. (1977). They attributed the uptick in literature and an overall
rise in the importance of load forecasting to the increase in fuel prices. Regard-
less, the authors list several prior works, the earliest of which dates back to
1918. Nearly three decades later, Dryar (1944) analyzes the impact of weather
attributes such as temperature, wind speed, or the “degree of cloudiness” on
the estimate of the power system load. Whether the paper was the first to ar-
ticulate this relationship in academic literature or not (as alluded to by Wang
et al. (2016)), it is a simple yet meaningful observation—today, weather vari-
ables are widely utilized in load forecasting (e.g., Feinberg & Genethliou (2005)
or Kuster et al. (2017)) as well as electricity price forecasts (Weron 2014).

In this context, Heinemann et al. (1966) find it helpful to decompose the
overall system load into two parts based on whether the weather has an impact
on it or not. The component that is susceptible to weather fluctuations is in
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part affected by the level of comfort that people are unwilling to sacrifice,
as remarked by the authors. The paper itself details a method for making
such a decomposition—this was especially important because of the increasing
amount of electrical appliances found in homes, which significantly raised the
mean system load as well as its volatility. For instance, in the United States,
more than 50% of houses built in the 1960s had central air conditioning units
installed, as reported by the Energy Information Administration (EIA 2009),
meaning that the contribution of these appliances to total energy consumption
on a particularly hot day was gradually becoming more impactful (Heinemann
et al. 1966). Regardless of the demand side of this equation, as time passes,
power systems grow in complexity due to the diversification of energy sources,
decentralization, and grid interconnectedness (Pfenninger et al. 2014), arguably
increasing the importance of load forecasting.

Hong & Fan (2016) state that due to the loosening of regulation in the util-
ity sector in the 1980s, the development of short-term load forecasting (STLF)
methods received a considerable amount of interest. One example of a paper
from this period is that of Hagan & Behr (1987), which forecasts hourly loads
using data from 1983 to 1984. The authors utilize three methods: an autore-
gressive integrated moving average model, a transfer function model, and its
nonlinear extension. Each of these models was trained on 28 days of data and
produced forecasts three weeks ahead. By comparing the predictions with a
conventionally used method for load forecasting using mean absolute percent-
age error (MAPE), they found that all three models outperformed the standard
approach, with the nonlinear procedure achieving the lowest average error.

Advancements in computing have undoubtedly played a significant role in
shaping the modern-day state of the field. In the last decade of the 20th century,
the growth of computer processing power has made the implementation of
artificial intelligence and other computationally demanding methods viable and
intensively researched in load forecasting (Alfares & Nazeeruddin 2002; Weron
2006, p. 68; Wang et al. 2016). Despite that, Hong & Fan (2016) write that only
a limited amount of academic literature in the past thirty years has succeeded
in generating industry-relevant findings, which is something they consider to
be the main objective of the field. Therefore, they stress that contributions
to load forecasting research should aim to be applicable in practice and bring
innovation by, for example, utilizing new data or methods.
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2.2 General Considerations in Model Specification
While the topic of electricity load forecasting may seem narrow enough to
some, there are several distinct avenues to explore, each with its unique set of
obstacles and considerations. For instance, longer forecast horizons are required
for different purposes than short-term predictions in the overall administration
of the power grid (Malik et al. 2021), which we further explore in Section 3.2.
On that account, let us concentrate on three key elements in specifying a load
forecasting model based on Kuster et al. (2017): resolution, scale, and variables.

2.2.1 Resolution

Observations that are captured at periodic intervals and ordered chronologically
is what we typically imagine when we think of time series data (Lütkepohl &
Krätzig 2004, p. 1). In this context, Kuster et al. (2017) refer to the frequency
of data as resolution, which is then closely related to the forecast horizon.

Researchers have commonly used load data with frequencies such as one
minute, five minutes, half-hourly, hourly, daily, monthly, or yearly. For instance,
Taylor (2008) utilizes over a half-year’s worth of load data with a frequency of
one minute obtained from the system operator in Great Britain, concluding that
the most suitable specification for generating predictions of up to 30-minutes-
ahead appears to be a particular exponential smoothing method. Guan et al.
(2013), on the other hand, use five-minute loads in their model and produce
forecasts for the next hour. Furthermore, in both Taylor (2012) and Fan &
Hyndman (2012), the respective authors analyze half-hourly data on a national
level, but their horizons vary (up to 24 hours and 7 days, respectively).

In several papers, hourly data have also been utilized—for example, Kwon
et al. (2020) forecast loads one day ahead with a training set that consists of
about a year of observations. Lee & Cho (2022), on the other hand, train their
model on a 5-year dataset, but they work with daily data. Power system loads
on a monthly frequency were analyzed by Ghiassi et al. (2006), forecasting up
to 12-months-ahead. Finally, Bianco et al. (2009) utilize yearly data for their
predictions, concluding that an increase in power consumption in the Italian
market ought to be anticipated.

According to Hong & Fan (2016), shorter-term forecasts have garnered more
attention throughout the years. To be more specific, while discussing forecast
horizon lengths, the researchers support their argument with a possibly misla-
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beled figure, which displays the number of articles on short-term and long-term
load forecasting (LTLF) listed on the Web of Science in 5-year intervals since
the 1970s. Thus, in Figure 2.1, we provide a revised and updated chart1 similar
to the original plot, which indeed illustrates the disparity in coverage between
the two fields.

Figure 2.1: Articles on short- and long-term load forecasting listed on
the Web of Science

Source: Data collected by the author, chart based on Hong & Fan (2016).

2.2.2 Scale

The overall area or the scope at which loads were gathered is referred to as
the data’s scale. Specifically, these levels range from buildings to city districts
and up to the regional or state level (Kuster et al. 2017). For example, the
paper of Marino et al. (2016) is one of the small-scale works that produces load
forecasts for a single household. Yildiz et al. (2017), on the other hand, analyze
loads generated by a university campus in Australia, stating that the electricity
demand of large building complexes with complicated energy systems tends
to be difficult to forecast, especially considering both internal and external
factors such as weather, scheduling, or high energy requirements of specialized
rooms (e.g., a research laboratory). Another factor Ruiz-Abellón et al. (2018)
account for in their campus-level model are lower-activity periods related to
the academic year. Moreover, Kim et al. (2019) forecast peak load for a 23-

1We collected the data by searching for keywords associated with LTLF and STLF in
each 5-year period on the Web of Science, respectively, and saved the number of aggregated
articles. Thus, these values should only be considered indicative of the overall trend.
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building campus block in South Korea, though the methods that the authors
use slightly differ.

One of the works that is concerned with load forecasts at the district and
city level is that of Jung et al. (2020). Their dataset is composed of more than
a decade of monthly loads in 25 districts of the South Korean capital, but they
also have several weather variables at their disposal. Furthermore, regional-
level data is utilized by Guan et al. (2013)—in particular, the researchers use
high-frequency data obtained from the system operator in New England, and
a significant part of their study focuses on data smoothing, which they found
helpful for further modeling.

Finally, nationwide data are, for instance, analyzed in Liao & Tsao (2004),
Taylor (2008), Papaioannou et al. (2016), Kwon et al. (2020), or Lee & Cho
(2022). However, Lee & Cho (2022) note that most works have been concerned
with data on a lesser scale, implying that studies utilizing country-level loads
are in the minority, which is somewhat supported by Kuster et al. (2017).

2.2.3 Variables

As we have established earlier, the concept of employing additional predictors in
load forecasting perhaps first emerged nearly 80 years ago (Dryar 1944). Apart
from meteorological data, the current body of literature tends to also utilize
other variables, such as calendar effects or demographic and socioeconomic
factors, depending on the resolution of the study (Feinberg & Genethliou 2005;
Weron 2006, p. 68; Mamun et al. 2020).

According to Feinberg & Genethliou (2005), one of the most popular weather-
related factors used by researchers is temperature, followed by humidity. Wind
speed appears to be employed in some approaches as well, either directly or
indirectly—for instance, Khotanzad et al. (1998) transformed the three afore-
mentioned weather variables into one as it enhanced the performance of their
model. In fact, transformations of meteorological factors appear to be somewhat
common in the load forecasting literature across data scale and resolution, as
evidenced by, for example, Fan & Hyndman (2012), Yildiz et al. (2017), Elamin
& Fukushige (2018), or Lee & Cho (2022). Last but not least, cloudiness is also
occasionally incorporated by some (e.g., Kandil et al. (2006)), though with
varying degrees of success.

Another frequently practiced procedure, especially in STLF, consists of con-
trolling for specific days of the week, holidays, particular hours of the day, and
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other seasonal trends. For instance, in their analysis, Yildiz et al. (2017) use
a dummy variable for separating workdays from non-working days as well as
indicators for the day of the week and for the hourly time of day. Additionally,
similar control variables are also used in higher-scale studies, such as that of
Fan & Hyndman (2012) or Jung et al. (2020).

Furthermore, some lower-resolution and higher-scale studies utilize demo-
graphic data—for example, Jung et al. (2020) account for, among other factors,
migration and population density, which they consider reasonable due to the
district-level scale and monthly resolution of the analysis. Finally, two of the
variables that Bianco et al. (2009) also control for in their long-horizon model
are gross domestic product and electricity price. In addition, prices are some-
times utilized in STLF specifications as well (Chen et al. 2001), though less
commonly than other factors mentioned above.

2.3 State-of-the-Art Load Forecasting Methods
In spite of the relatively sizable amount of coverage of STLF in academic liter-
ature, no particular modeling approach is preferred in terms of its performance
(Hong & Fan 2016; Kuster et al. 2017). As per Hong & Fan (2016), both ma-
chine learning and standard statistical methods are utilized in electric load
forecasting. Some of the most popular techniques listed by the authors are
ANNs, support vector machines, fuzzy regression, gradient boosting, ARIMA-
family models, multiple linear regression, exponential smoothing, and gener-
alized additive models. Mamun et al. (2020) further add that hybrid models,
i.e., a combination of two or more methodologies, tend to be utilized and of-
ten produce better results than the underlying methods on their own. Finally,
several papers report forecasts of custom techniques used by the grid operator
relevant to the study (e.g., Taylor (2008)). These approaches are generally not
thoroughly described in the respective papers themselves, but instead link to
other works or documents that elaborate on the methodology.

In Table 2.1, we provide a categorized list of STLF literature we have cited
thus far based on the utilized methods. As we may observe, the overwhelming
majority of papers have used some form of an ANN, ranging from fuzzy logic to
a wavelet neural network (Liao & Tsao (2004) and Guan et al. (2013), respec-
tively). A few publications that we have reviewed also produce forecasts using
hybrid models—we explore these articles in detail below due to their relevance
to our research design: large-scale and higher-frequency data.
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Table 2.1: Methods used within the load forecasting literature refer-
enced in Section 2.2

Method Literature
ANNs Khotanzad et al. (1998), Chen et al. (2001),

Liao & Tsao (2004), Kandil et al. (2006), Fan
& Hyndman (2012), Taylor (2012), Guan
et al. (2013), Papaioannou et al. (2016),
Marino et al. (2016), Yildiz et al. (2017),
Kim et al. (2019), Kwon et al. (2020), Lee
& Cho (2022)

ARIMA-family Taylor (2008), Taylor (2012), Papaioannou
et al. (2016), Elamin & Fukushige (2018),
Kim et al. (2019), Lee & Cho (2022)

Exponential smoothing Taylor (2008), Taylor (2012), Papaioannou
et al. (2016), Kim et al. (2019)

Generalized additive models Fan & Hyndman (2012)
Hybrid models Fan & Hyndman (2012), Taylor (2012), Lee

& Cho (2022)
Multiple linear regression Yildiz et al. (2017)
Tree-based models Yildiz et al. (2017), Ruiz-Abellón et al.

(2018)
Support vector machines Papaioannou et al. (2016), Yildiz et al.

(2017), Lee & Cho (2022)
Other (e.g., operator-specific) Taylor (2008), Taylor (2012), Guan et al.

(2013), Kwon et al. (2020)

Fan & Hyndman (2012) present an STLF model on a regional scale in Aus-
tralia, which has consequently been applied in practice by the market operator.
While the authors had the possibility of utilizing a larger dataset with more his-
torical records, the final training set consisted of semi-hourly data from 2004 to
2008 as it produced more precise results. Fan & Hyndman (2012) then conduct
an out-of-sample forecasting exercise by generating half-hourly predictions of
three specifications with a horizon of up to one week. The approaches used by
the researchers were composed of a semi-parametric additive regression, ANN,
and a hybrid method, all of which incorporated a set of explanatory variables,
including log-transformed lagged electricity demand, temperature, and several
seasonal categorical or dummy variables. Between October 2008 and March
2009, the average monthly out-of-sample mean absolute error (MAE) of the ad-
ditive model was, with the exception of January 2009, less than 100 megawatts
(MW), while the other two specifications consistently recorded values above 110
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MW. Similarly, the MAPE of the two approaches remained consistently 0.3–0.9
percentage points higher than that of the semi-parametric additive method.

A short-term load forecasting exercise utilizing half-hourly data from Great
Britain and France is performed by Taylor (2012). The in-sample portion of
the 3-year dataset spans from 2007 to 2008, while the out-of-sample set con-
sists of observations in 2009. Multiple univariate exponential smoothing tech-
niques, such as an extension of the Holt-Winters method or a singular value
decomposition-based approach, are employed. The forecasts produced by these
methods were compared with ARIMA and ANN benchmarks, as well as the
predictions of the official model used by the operator and also employed in the
author’s previous work (Taylor 2008). For all horizons ranging from 30 min-
utes up to 24 hours ahead, the method that generated forecasts of British loads
with the minimal MAPE was an unweighted average of the two aforementioned
exponential smoothing approaches and the operator-utilized model.2

Lee & Cho (2022) evaluate the performance of several machine learning
and hybrid methods in a peak load forecasting exercise using national-level
data from South Korea. In particular, the analysis is based on roughly 6 years
of daily loads (5 years of training and nearly 11 months of test data), span-
ning from 2014 to late 2019. In all their models, the authors control for the
effect of holidays, average temperatures, humidity, and also degree day mea-
sures—heating degree days and cooling degree days, which indicate the temper-
atures required to heat or cool indoor areas to a “comfortable” level, according
to the United States Environmental Protection Agency (EPA 2022). Out of the
non-hybrid specifications, the most accurate method with respect to the error
measures used was the long short-term memory (LSTM) neural network. Sim-
ilarly, the hybrid approach consisting of a SARIMAX model and the LSTM
RNN provided comparable levels of accuracy. Importantly, however, both pro-
cedures surpassed the official predictions produced by the power grid operator
in South Korea in terms of all the applied error metrics.

2.4 Load Forecasting Using Czech Data
As we have shown earlier, the topic of load forecasting has received a great
deal of attention in academic literature, especially in the last two decades.
Despite that, it seems that only a limited number of studies have been con-

2The French dataset was not used in this part of the analysis.
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cerned with forecasting electricity load within the Czech power grid. Among
the papers that make use of such data, Darbellay & Slama (2000) have per-
haps attracted the most interest. In their research article, the authors work
with hourly 1994 and 1995 national-scale loads and forecast up to 36 hours
ahead using ARIMA-family models as well as an ANN. However, their main
objective was to contrast the sufficiency of linear and non-linear methods for
predicting electricity loads in the Czech Republic. Importantly, they conclude
that introducing non-linearity has no significant impact, though it is worth not-
ing that their results could perhaps be improved by using hourly rather than
daily temperature data in combination with hourly loads.

The data utilized by Khan et al. (2002) is also hourly and even overlaps with
the dataset of Darbellay & Slama (2000), though it contains more observations
as it covers the period from 1994 to the end of 2000. In contrast, however, Khan
et al. (2002) motivate the usage of non-linear methods by stating that linear
techniques are inefficient due to the nonstationarity of the underlying process
as well as the lack of linearity between loads and meteorological variables.
Consequently, the methods that they use consist of six different ANNs—the
choice of utilizing these techniques is further supported by the usage of several
weather-related factors such as humidity, wind velocity, or temperature.

In a conference paper by Uher et al. (2015), the authors work with hourly
regional electricity consumption data in the Czech Republic from 2011 to 2014.
Their analysis, however, is not concerned with employing meteorological vari-
ables; instead, five approaches are specified and trained on power consumption
data with calendar effects as the only additional inputs. The performance of
these techniques is then compared on a test set using root mean square er-
ror (RMSE)—out of the five considered methods, local polynomial regression
attained the lowest error.

One of the more recent additions to the load forecasting literature using
Czech data is a research article by Lai et al. (2020). In their analysis, Lai et al.
(2020) use ten years of daily peak loads from 2006 in three European countries
to present their approach based on deep learning and data augmentation, which
the authors describe as a method that generates additional data points. Their
technique is shown to outperform several standardly utilized approaches, such
as an ARIMA model or an LSTM RNN, on all three datasets using the MAPE
metric.

All in all, while it is true that several articles have been published using
Czech data, we believe that there is still potential for improvement, particularly
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with more recent and higher-frequency data. Moreover, as we have outlined
above, some studies evaluate the performance of their methods directly on a test
set rather than also employing a validation set (see, for example, Ripley (1996,
pp. 7–8)). In this sense, we believe that the latter of the two approaches may
provide a better understanding about the validity of the technique, should it be
implemented by a grid operator. Additionally, none of the works that we have
surveyed in this subsection model high-frequency data (e.g., minute frequency)
or compare their forecasts to those produced by the official transmission system
operator. Therefore, our goal is to contribute to this growing body of academic
literature by addressing these issues.

2.5 Wind, Solar, and Price
Although predicting electricity load is a crucial task in the energy sector, the
industry naturally engages in other forms of planning, too. For this reason,
Hong et al. (2020) review wind and solar power generation as well as electricity
price forecasting with the goal of encouraging cooperation across these fields, as
they all frequently encounter similar obstacles and ultimately share a common
objective. For example, the authors argue that all of these disciplines benefit
from the adoption of machine learning approaches, and they also employ the
same variables, such as those associated with weather. But they further add
that there are also recurring problems across analyses, like the absence or insuf-
ficiency of model comparisons, the originality of the dataset, or the improper
use of error measures.

As a result of unsustainable increases in man-made emissions, wind and
solar power generation capacities have grown significantly each year in the past
decade (Ahmed et al. 2020; Hanifi et al. 2020). The inherent volatility stemming
from changes in weather that these two forms of renewable energy generation
bring to the system presents the grid operator with a number of additional
challenges as these technologies become more widely adopted, which further
necessitates the use of forecasting (van Ackooij et al. 2018; Ahmed et al. 2020).
For example, Boldiš (2013) describes that on particularly windy days, excess
energy produced by German wind turbine farms gets distributed throughout
the power system, and because of the interconnected European electricity grid,
it could potentially lead to an overload of the transmission systems of bordering
countries.

Furthermore, from the reviews of Ahmed et al. (2020) and Alkhayat &
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Mehmood (2021), the connection that Hong et al. (2020) highlight becomes ev-
ident, as wind and solar power generation researchers appear to utilize much of
the same techniques and tools as load forecasters do. For instance, Alkhayat &
Mehmood (2021) report that hybrid models combining or incorporating ANNs
and employing meteorological variables such as wind speed, temperature, hu-
midity, or air pressure, show extensive usage in both domains.

Perhaps one of the most cited researchers in the electricity price forecast-
ing literature is Rafał Weron, with two of the professor’s most notable works
being a book on price and load forecasting (Weron 2006) and a paper on the
advancements in price forecasting (Weron 2014). In the article, the author pre-
dominantly reviews the usage of several methods in the literature, many of
which are the same as those used in load forecasting, and provides suggestions
for the future trajectory of the field, with one of the main ideas being a need for
consistent model performance comparison and data reuse. More recently, Lago
et al. (2018) compared the accuracy of forecasts produced by more than 20
different methods using Belgian data from 2010 until late 2016. In their fore-
casting exercise, they discover that the best-performing approaches are deep
learning models; they further find that hybrid models fail to surpass the base
techniques applied individually. We kindly refer the reader to the work of our
colleague Křížová (2021) for further details on the topic of electricity price
forecasting.



Chapter 3

Background

In this chapter, we start by briefly describing what an electrical grid is. We
continue by explaining the principal responsibilities in power system operation.
Grid-scale energy storage, renewable sources of electricity, and future issues
are then discussed. This is followed by an examination of the role of varying
time horizons in the context of load forecasting and power grid management.
Next, we briefly investigate the economic costs of producing imprecise forecasts.
Lastly, we review some aspects of the Czech electricity industry and its future.

3.1 Power Grid
The key components of a power system are production plants and stations con-
nected by supply lines that constitute an electrical grid, the primary function of
which is to produce, transmit, transform, and distribute electrical energy (Vlček
et al. 2019, p. 147; ČEPS 2020). Put briefly, once electricity is generated, it
is transformed to a higher voltage with the intention of being more effectively
transmitted to supply points. Distribution lines then deliver electricity to con-
sumers at a safer voltage (Crozier et al. 2020; EIA 2022).

Understandably, the scale of such systems is inherently enormous. Consider,
for example, the size of the United States power grid, which is connected by
millions of kilometers of power lines—due to its size, it could be regarded as
the largest machine on the planet (Richardson 2022).

3.1.1 Maintaining Balance

While electricity shares much of the same characteristics as other commodities,
it needs to be consumed almost at the exact moment it is produced, meaning
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that the supply of electrical energy must always equal the demand at any given
time (Hong 2014; D’Andrade 2017, p. 1). We refer to this condition as energy
balance (Biggar & Hesamzadeh 2014, p. 60). Any other state in a power grid
is highly undesirable, as both an over- and an under-generation may quickly
lead to a partial or even a total power outage (Boldiš 2013; Vlček et al. 2019,
pp. 153–154).

This act of constantly maintaining an equilibrium is further connected to
another balancing process which involves keeping the frequency of the system
as close to a specific fixed level (50 or 60 Hertz depending on the continent) as
possible (Biggar & Hesamzadeh 2014, p. 60; Vlček et al. 2019, p. 154), much
like maintaining an exchange rate in a fixed regime. Instead of the central
bank, however, the entity we have referred to several times in Chapter 2 that
is responsible for the operation of this system is called the system operator
(Harris 2006, p. 13).

The deployment of high-capacity storage, which would be refilled during
low-demand hours and then utilized in peak demand, would perhaps be the
most straightforward solution to the aforementioned issue of energy balance,
and this concept is, to a limited degree, applied in practice mainly through
pumped storage hydropower (Soloveichik 2011; Kittner et al. 2020). However,
coupled with other less employed energy storage methods such as flywheels or
batteries, these technologies are becoming more relevant due to the increase in
the adoption of renewable sources of energy (Poullikkas 2013), some of which
are variable by their nature, as alluded to in Section 2.5. For example, consider
wind power, which has a cubic relationship with wind velocity (Center for
Sustainable Systems 2021): in Figure 3.1, the mean daily wind speed reported
by the Prague-Ruzyně weather station in 2021 is plotted,1 and it is clear that
it varies greatly, creating a stability challenge should a (purely hypothetical)
wind farm be built nearby.

However, while it may appear that integrating such a fluctuating source
of electricity into the system would be ineffective or counterproductive, several
papers, as well as practical experience, show that the introduction of renewables
to robust power systems is safe even with no additional requirements for storage
(Bowen et al. 2019). Additionally, as Bowen et al. (2019) state, grid-scale bat-
teries are a versatile resource in a power system for several reasons, perhaps the

1The daily averages were calculated using half-hourly data. It is also worth noting that
the Czech Republic generated less than 1% of total electricity using wind turbines in 2021
(Ritchie et al. 2022).
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Figure 3.1: Daily average wind speed in Prague-Ruzyně (2021)

main one being their ability to respond almost immediately to unanticipated
supply and demand movements. For instance, the Hornsdale Power Reserve in
Australia is arguably one of the most well-known in this regard in part due to
its almost immediate response to an instability challenge caused by an issue at
a sizable coal plant which averted a “likely cascading blackout” (Bowen et al.
2019). This increase in flexibility is also a benefit of other electricity storage
technologies (Poullikkas 2013), some of which may currently be more financially
viable than batteries (Bowen et al. 2019).

These solutions further relate to the concept of a smart grid, which has
received a great deal of attention relatively recently, and it generally refers to
a vision of how the current power infrastructure could be enhanced utilizing
contemporary technologies (Tuballa & Abundo 2016). It is also considered as
a possible strategy in alleviating the effect of a broader adoption of electric
vehicles on the grid (Liu et al. 2015), which is expected to represent a significant
challenge for the whole system (Crozier et al. 2020).

3.2 Significance of Different Time Horizons
In Section 2.2.1, we examined data resolution as one of the parameters that
varies across research articles, and to expand on this discussion, let us briefly
review the nomenclature in load forecasting regarding time horizons. While
there are no universally accepted definitions in the literature (Ahmed et al.
2020), Hong & Fan (2016) provide an informal categorization of load forecast-
ing horizons with four classes, to which we attempt to adhere in this thesis: very
short-term (up to 1 day ahead), short-term (1 to 14 days ahead), medium-term
(14 days to 3 years ahead), and long-term (more than 3 years ahead). How-
ever, these four categories are frequently simplified to STLF and LTLF, with
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two weeks serving as the midpoint. Having introduced the terms for varying
horizons, let us now explore the significance of these time periods in practice.

3.2.1 Long and Medium Term

It seems reasonable to believe that obtaining the estimated level of electric load
in five years might have different implications for the power system operator
and other interested parties than knowing the approximate value in the next
thirty minutes. Nonetheless, the overall impression that we got from relevant
literature, such as Khuntia et al. (2016) or Malik et al. (2021), is that the ulti-
mate goal appears to be shared—to ensure that electricity is reliably supplied
to those who demand it.

Starting with long-term projections, activities such as component upkeep
and transmission network development planning are undertaken (Khuntia et al.
2016), the latter of which may, for example, comprise the construction of new
power lines (Mahdavi et al. 2019). However, it is worth noting that these grid
investments occur in the medium term, too (Khuntia et al. 2016). Nevertheless,
this task is an inherently complex problem in optimization, and it has received
a substantial amount of attention in academic literature in the past 50 years,
according to Mahdavi et al. (2019).

In the medium term, maintenance procedures are scheduled (Khuntia et al.
2016; Malik et al. 2021). The primary goal of these processes is to maximize
equipment lifespan and minimize the likelihood of unanticipated interruptions
(Khuntia et al. 2016). In this context, Harris (2006, p. 55) provides a model
example that around 16% of uptime tends to be lost to outages (both scheduled
and unplanned) in a standard two-decade-old coal plant.

3.2.2 Short and Very Short Term

One of the key procedures for which short-term load forecasting is crucial is
unit commitment (Hong & Fan 2016; Malik et al. 2021). It can be described as a
cost-minimization problem that, given a particular set of constraints, attempts
to identify the best electricity generation schedule using the existing production
resources (van Ackooij et al. 2018). If the choice of whether (and when) to
turn power-generating units on or off is not considered, the problem is termed
economic dispatch or optimal power flow in the context of a network (van
Ackooij et al. 2018), both of which are mentioned by Malik et al. (2021), further
adding that these activities are undertaken in the very short term as well. In
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their review, van Ackooij et al. (2018) also state that there is a trade-off between
accuracy and speed in unit commitment modeling, referring to the time period
necessary to produce a solution as “unreasonably short.”

In the very short term, contingency analysis is one of the critical tools in
ensuring uninterrupted power grid operation by simulating the consequences
of network component issues (e.g., power line outages) due to unanticipated
failures, weather, or load variability (Khuntia et al. 2016; Coelho et al. 2019).
Real-time system management then benefits from previous operational prepa-
rations, which aim to minimize as much uncertainty as possible during this
process, as stated in Khuntia et al. (2016).

3.3 Cost of Inaccurate Load Forecasts
Overall, many of the stages mentioned in the preceding section involve load
forecasting as a key component (Feinberg & Genethliou 2005; Liao & Tsao
2004). For example, borrowing from Fan & Hyndman (2012), predicting future
loads determines how much spinning reserve—readily accessible electricity pro-
duction capacities (Kirschen & Strbac 2004, p. 110)—should be prepared.

Moreover, Fan & Hyndman (2012), as well as Liao & Tsao (2004), empha-
size the role of accuracy, stating that upward-biased forecasts may result in
financial losses, particularly when ex-ante expectations would have dictated
purchasing extra energy or an additional power-generating unit needing to be
turned on (Ranaweera et al. 1997). In the opposite case, that is, when loads
are underpredicted, Hobbs et al. (1999) state that costs can accumulate for rea-
sons such as the increase in risk associated with lower reserves or the need for
“uneconomic” electricity production as well as purchasing.

Unlike academic literature on load forecasting, economic assessments of
prediction errors appear to be somewhat limited. Understandably, Hong et al.
(2020) maintain that these estimates are “quite difficult, if ever possible” to con-
ceive. Regardless, some researchers have tried to quantify the cost of producing
imprecise forecasts; for instance, Hobbs et al. (1999) concentrate on day-ahead
hourly predictions for the purposes of unit commitment. In their case study,
they found that a MAPE equal to about 1% had essentially no effect on the
cost of production, while a MAPE of 5% significantly increased these expenses
by at least 0.35%, with the upper bound reaching around 0.5 percentage points
higher in one of their settings. However, in more recent works, such as Wang &
Wu (2017), the focus seems to be pivoted toward utilizing these potential costs
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for generating better forecasts—the authors are also concerned with unit com-
mitment, and they weigh predictions of various models based on their economic
effect on the process.

3.4 Electric Power Sector in the Czech Republic
The energy industry in the Czech Republic has experienced a large degree
of development following the country’s transition to democracy, which was
set in motion in 1989 (Vlček et al. 2019, pp. 28–29). Since 2003, the Czech
Republic has consistently generated between 81 and 88 terawatt-hours (TWh)
of electricity annually—roughly 30% more than in the 1990s (Ritchie et al.
2022). As a member of the European Union (EU), the country produced around
8 megawatt-hours (MWh) per capita in 2021, which was nearly 2 MWh above
the Union’s average, based on the data from Ritchie et al. (2022).

3.4.1 Transmission System

In the Czech Republic, the transmission part of the electricity grid is managed
by ČEPS, a. s.,2 which was established in 1998 and currently has a single
shareholder—the Ministry of Industry and Trade (Vlček et al. 2019, p. 149). As
the sole license holder, ČEPS has a legal obligation to maintain the transmission
system, ensuring that it operates uninterrupted in a “safe and reliable” manner
(ČEPS 2020).

In 2021, the transmission grid of the Czech Republic comprised 5703 kilo-
meters of major power lines, around two-thirds of which were 400 kilovolt (kV)
lines (ČEPS 2021). A recent illustration of the 400 and 220 kV networks can
be seen in Figure 3.2, together with substations and the largest power plants in
the country, most of which produce electricity by burning coal. The schematic
in Figure 3.2 further includes 17 power lines that connect the Czech transmis-
sion system directly with all of its neighbors and indirectly with the rest of
the nations that are a member of the continent’s main subnetwork, known as
the synchronous grid of Continental Europe (Hofmann et al. 2020). As Vlček
et al. (2019, p. 149) describe, such a high degree of connectedness allows for
considerable cross-border flows and electricity trading that ensure higher reli-
ability while also introducing risks from unanticipated overflows or other diffi-
culties—one of which we have described in Section 2.5.

2Hereinafter solely referred to as ČEPS.
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Figure 3.2: Czech 400 kV and 220 kV electricity transmission networks
in 2021

Source: Republished with permission from ČEPS (2021).

3.4.2 Electricity Mix and Decarbonization

Regarding the Czech electricity mix, which can be extracted and analyzed in
context through the extensive report of Ritchie et al. (2022), around 40% of
electrical energy is currently generated by coal-fired power plants, but this pro-
portion has been steadily decreasing since 1991. On the other hand, the usage
of nuclear power, which accounted for approximately 36% of total generation
in 2021, has been more or less increasing in the past decade, which could also
be said for renewable forms of electricity. Furthermore, according to the data
compiled by the authors, only 11 countries in the world reported producing
more than 30% of their total electricity using nuclear power plants in 2021,
with the Czech Republic being one of the few where an increase in the adop-
tion of this source of energy has been observed in the last couple of years. It
is worth noting that the stance of many countries on nuclear power seemed
to have begun to shift in 2022, as many started reconsidering it as a “part of
the answer” to the issues related to energy security, which has been challenged
after the Russian invasion of Ukraine, as well as the ever so pressing issue of
climate change, as per The Economist (2022a).
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According to a recent assessment by the Intergovernmental Panel on Cli-
mate Change (IPCC), a rise of 1.5 °C in comparison to the pre-industrial era is
anticipated to materialize between 2030 and 2052 (IPCC 2022, p. 4). Notwith-
standing its impact on ecosystems around the world, this increase is going to
have a number of detrimental effects on human health and security, the authors
warn. Perhaps the most direct example of the impact of global warming could
be illustrated on small island states, like the Maldives, which will nearly cease
to exist as a result of an increase in seawater levels (The Economist 2022b).
Therefore, one of the goals that governments must continue to pursue is to
reduce carbon emissions (IPCC 2022, p. 276).

In this context, the Czech Republic ranked second among its neighbors in
terms of coal-generated power per capita in 2021 (3.236 kilowatt-hours), while
Poland produced the most (3.437 kilowatt-hours) per person. In comparison
to the rest of the world, the nation’s proportion of electricity generated us-
ing low-carbon sources was about 10 percentage points higher than the global
arithmetic mean—in this regard, the Czech Republic has been above average for
almost two decades. Since at least 1985, however, the situation has more or less
been the exact opposite in the European context, i.e., always roughly 10 per-
centage points below the mean of all the member states of the European Union
(Ritchie et al. 2022). Furthermore, according to the European Parliamentary
Research Service, the Czech Republic’s pace in lowering emissions was slower
in the past few years when compared to the EU average (Jensen 2021). In a
recent McKinsey report, the company states that reaching carbon neutrality in
2050 would require a faster rate of decarbonization than currently proposed—a
process that would entail introducing significant technological alterations to
each sector of the economy (Hanzlík et al. 2020).



Chapter 4

Data Description

This chapter is divided into two parts: a description of the acquired datasets and
an exploratory analysis. The first section gives an overview of the load, weather,
and price data we gathered, as well as information on how missing variables
were treated. The other part of this chapter presents summary statistics and
data visualizations.

4.1 Datasets
In Section 2.2.3, we outlined the factors that researchers need to consider be-
fore modeling load. The general idea is that widely different variables can be
employed depending on the scale and the resolution of the data in the analysis.
However, we have also seen that, in some cases, no additional independent vari-
ables are utilized by researchers, meaning that they exclusively use past values
and seasonal indicators. While this is also a possibility, Hong & Fan (2016)
maintain that the utilization of, for example, meteorological data tends to be
favorable as it often results in generating better forecasts, but it may be chal-
lenging for researchers to obtain these variables freely, especially high-frequency
series, as we have learned.

In this analysis, we compiled data from three sources.1 Firstly, we acquired
Czech load data from ČEPS, the Czech transmission system operator (ČEPS
2022). Meteorological variables were collected from two weather stations in
the country through the Integrated Surface Dataset published by the National
Centers for Environmental Information (NOAA 2001). Finally, we further as-

1The links to the data sources can be found in the respective bibliographical entries.
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sembled price data from the Czech Electricity and Gas Market Operator (OTE
2022). Let us discuss each of these datasets in more detail below.

4.1.1 Load

The electric load data used in our analysis was gathered over an 11-year period,
starting on January 1st, 2011, and ending on December 31st, 2021. Our dataset
initially included 2010 loads, but we decided to shorten the timespan by a year
due to missing values of the other series. The data is at a national scale (i.e., the
entire Czech grid), and it was collected at minute intervals, later aggregated by
averaging to an hourly frequency. In the description of the data, ČEPS (2022)
describe load as the “instantaneous amount of active power” in MW, further
decomposing gross load, i.e., including losses and power consumption of plants,
into:

Load = Generation + Import − Export − Pumping.

This data had a very high level of quality. The only issue we had to resolve
was that two observations (four in the minute data) contained unreasonably
large values. These were replaced using linear interpolation, which is a method
we also utilized for weather variables, and we discuss it in more detail in the
next subsection (Section 4.1.2).

We display the entire load time series in Figure 4.1 as a line plot with daily
load (aggregated for visual clarity) in MW on the vertical axis and time on
the horizontal axis. Comparing Figure 4.1 to the daily peak loads in South
Korea from 2014 to 2019, pictured in the article of Lee & Cho (2022), both
series seem to have a slight upward trend from 2014 up to 2018, meaning that
both countries gradually produced more electricity during this period, but this
increase was later followed by a minor decrease or rather a stabilization in the
case of our data. However, perhaps the most noticeable feature of the load data
in Figure 4.1 is that the series exhibits multiple levels of seasonality.

To explore further, let us, for example, focus on the data from 2021 and
expand the line plot by another dimension representing the hour of the day,
creating a surface plot2 (Figure 4.2). This visualization helps us identify several
cycles in the load data, such as an increase in load during the winter and a
decrease in the summer.

Returning to a two-dimensional graph, Figure 4.3 focuses on an arbitrarily
chosen month (November 2021) and a particular day within that month (11th

2Figure 4.2 was inspired by the surface plot of power consumption in Uher et al. (2015).
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Figure 4.1: Daily load in the Czech Republic from 2011 to 2021

Note: Aggregated to daily data by averaging for visual clarity.

Figure 4.2: Daily load in the Czech Republic in 2021 expanded by
hour of the day

of November 2021) for illustrative purposes. These charts display that, apart
from a day/night pattern, there is a decrease in electricity consumption during
the weekends. To better demonstrate the latter point, we plot a load heatmap in
Figure 4.4 with hours of the day on the horizontal axis and days of the week on
the vertical axis (similar to Wang et al. (2021)). Clearly, on average, electricity
consumption was lower on Saturday and Sunday than during workdays based
on the 2011 to 2021 national-level data.

Moreover, another calendar effect is perhaps best visible in the first load
chart (Figure 4.1): there is a sharp decrease right before the end of each year,
which is due to winter holidays—for instance, in their analyses, Fan & Hyndman
(2012) and Yildiz et al. (2017) add dummy variables for other national holidays
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as well, because loads exhibit a similar pattern during these days.

Figure 4.3: Seasonal patterns in hourly Czech electric load in 2021

Figure 4.4: Mean hourly load by day of the week (2011 to 2021)

4.1.2 Weather

With respect to meteorological data, we collected weather variables from two
stations in the Czech Republic, namely Ruzyně and Brno-Tuřany. There were
three reasons for the choice of these two locations:

1. Unlike most stations in the Integrated Surface Dataset, both Ruzyně and
Tuřany offer higher frequency (30-minute) weather data.

2. We believe that the two stations provide a more accurate representation of
the weather across the entire nation because they are roughly on opposing
sides of the country.

3. Finally, the approach of combining weather data from two stations has
also been applied in other academic literature—namely Fan & Hyndman
(2012).

For the data to be consistent, several pre-processing steps were required.
Firstly, we needed to synchronize the data from the two weather stations by
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finding missing values. Once these observations were identified for each of the
two stations, we imputed the missing data (less than 0.5% of all values) in
two ways. Either we borrowed observations from the other station if the first
location was missing a particular record and the other one was not, or we used
the best of three interpolation methods (spline, linear, and Stineman following
Moritz & Bartz-Beielstein (2017)) to fill in the values. That is, for each variable,
we selected the method that produced values closest to the 10-year mean of
the observation in question in absolute terms. However, using this approach,
the most accurate technique was linear interpolation in all cases. As per Lepot
et al. (2017), this approach fits a line through two points to find the missing
values. In other words, we may find xb using xa and xc in the following way:

xb = xc − xa

c − a
· (b − a) + xa,

where, in the time series context, xa and xc are values that are observed before
and after xb, respectively. Due to the minimal number of missing values and
the convenience of working with a complete series, we preferred this method
over deleting the missing data.

Then, we aggregated the half-hourly data to hourly by averaging, mainly
due to the fact that the predictions that we wanted to compare against were
produced using hourly data. The other reason was that two variables (air pres-
sure and visibility) were not reported on a half-hourly basis. After all of these
processing steps were completed for each station, we combined the data from
the two locations by calculating their means and differences, based on Fan &
Hyndman (2012). Their reasoning is that highly similar data from two weather
stations in relatively close proximity provide almost no new information. Addi-
tionally, the authors further motivate the usage of taking differences by stating
that the newly produced data ought to be “almost uncorrelated” with the
means. Thus, the final set of hourly meteorological variables included averages
and differences between the two stations of the following series (plotted in Fig-
ure 4.5): air pressure in hectopascal (hPa), temperature in degrees Celsius (°C),
visibility distance in kilometers (km), and wind velocity in meters per second
(m/s).

4.1.3 Prices

As we described in Subsection 2.2.3, the use of price data in generating load
forecasts does not seem to be prevalent in academic literature. Regardless,
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Figure 4.5: Line plots of hourly price and weather data (2011 to 2021)

Note: Aggregated to daily data by averaging for visual clarity. “∆” refers to the difference
between 2 weather stations.

we decided to obtain price data to see whether their inclusion would help in
producing more accurate predictions.

Therefore, we compiled day-ahead market price data (as per Weron (2014))
from the Czech electricity and gas market operator. These were available at an
hourly frequency and were denominated in Euros (EUR) per megawatt-hour.
We plotted the price data together with the weather variables in Figure 4.5—let
us note that negative values can occur in electricity prices due to supply and
demand imbalances (Sewalt & De Jong 2003).

4.2 Exploratory Analysis
Since we already discussed various characteristics of the load series, let us start
this section by commenting on some of the features of the weather and price
data pictured in Figure 4.5. Except for prices and the station-differenced se-
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ries, all the raw meteorological variables seemed to expectedly exhibit seasonal
patterns in the surveyed timeframe, with temperature being perhaps the most
apparent exemplar of highly cyclical behavior. Moreover, this series appeared
to develop quite similarly to load—in fact, the Pearson and the Spearman cor-
relation coefficients of these two series were -0.47 and -0.46, respectively (Table
4.1), suggesting a negative relationship. Being mindful of the statistical mantra
that correlation does not imply causation, in Section 2.1, we discovered that a
link between these two variables was articulated decades ago, if not earlier.

The two-station average temperature readings ranged from -15.4 °C to 35.5
°C from 2011 to 2021, with the standard deviation being equal to 8.3 °C (Table
4.2). In addition, the middle chart in Figure 4.5, representing the difference in
temperatures between the two locations, appears to have increasing variance
over time, which we consider an intriguing revelation for which we fail to supply
an explanation. The difference in wind speed, air pressure, or visibility does not
seem to follow the same trend, however.

Table 4.1: Spearman and Pearson correlation coefficients of all vari-
ables (hourly data from 2011 to 2021)

Variable 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
1. Load — 0.10 -0.10 0.49 -0.46 0.08 -0.29 -0.13 0.07 0.05
2. Air pressure 0.09 — 0.17 0.06 -0.14 0.08 -0.11 -0.04 -0.08 -0.00
3. ∆Air pressure -0.11 0.18 — 0.01 0.13 -0.08 0.07 -0.11 -0.02 -0.08
4. Price 0.35 0.04 -0.01 — -0.07 0.02 -0.15 -0.08 -0.02 0.01
5. Temperature -0.47 -0.14 0.12 -0.10 — -0.11 0.45 0.16 -0.04 -0.07
6. ∆Temperature 0.09 0.07 -0.07 0.03 -0.10 — -0.07 -0.02 0.01 0.34
7. Visibility -0.29 -0.11 0.06 -0.10 0.43 -0.08 — 0.46 0.02 0.01
8. ∆Visibility -0.13 -0.04 -0.11 -0.06 0.15 -0.03 0.47 — 0.01 0.05
9. Wind speed 0.08 -0.06 -0.03 -0.03 -0.06 0.02 0.01 0.01 — 0.02
10. ∆Wind speed 0.06 0.00 -0.09 0.03 -0.08 0.34 0.00 0.04 0.07 —

Note: Spearman correlation coefficient is in the upper triangle, Pearson correlation coefficient
in the lower triangular part. Further, “∆” refers to the difference between 2 weather stations.

From Table 4.1, a relatively strong positive association can be observed
between load and price—this relationship can likely be attributed to the dif-
ference in pricing between the base and the peak load (Morris 2013). Except
for visibility, however, other weather variables displayed a lackluster level of
correlation with load.

Regarding prices, from Figure 4.5 and Table 4.2, we may see that the series
mostly fluctuated around 30 to 50 EUR/MWh for about ten years. In 2021,
however, the day-ahead price seemed to have soared, reaching 620 EUR/MWh
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at one point (Table 4.2). Partly due to this increase, the distribution of price
in Figure 4.6 is fat-tailed, a frequent property of financial time series.

Table 4.2: Summary statistics of all variables (hourly data from 2011
to 2021)

Variable Min Q1 Median Mean Q3 Max SD
Load (MW) 4401.1 6888.9 7888.1 7928.5 8857.3 12132.8 1355.1
Air pressure (hPa) 976.7 1012.1 1017.0 1017.2 1022.4 1048.0 8.3
∆Air pressure -18.1 -1.4 -0.1 -0.2 1.1 9.8 2.0
Price (EUR/MWh) -150.0 28.9 38.7 43.9 51.4 620.0 32.1
Temperature (°C) -15.4 3.4 9.8 10.0 16.6 35.5 8.3
∆Temperature -22.3 -4.0 -1.0 -1.1 2.0 20.2 5.1
Visibility (km) 0.1 15.0 27.5 27.9 40.0 76.0 15.5
∆Visibility -65.0 -5.0 5.0 6.8 15.0 81.8 16.9
Wind speed (m/s) 0.2 2.4 3.3 3.6 4.4 14.8 1.6
∆Wind speed -13.2 -1.2 0.3 0.4 2.0 14.8 2.7
Note: “∆” refers to the difference between 2 weather stations.

Figure 4.6: Histograms of all variables (hourly data from 2011 to 2021)

Note: “∆” refers to the difference between 2 weather stations.

Moreover, from 2011 to 2021, hourly loads in the Czech Republic ranged
between 4401.1 MW to 12132.8 MW (Table 4.2). Although the mean and the
median of the series seemed to be somewhat close, the distribution of loads
visually appears to be slightly right-skewed and light-tailed (Figure 4.6). In
Appendix B, we also provide the summary statistics for the 1-minute load
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time series in Table B.1—we may observe that in the higher-frequency data,
the minimum was almost 60 MW lower than in the hourly data, while the
maximum recorded load was more than 400 MW higher.

Focusing further on Figure 4.6, an interesting feature that can be found in
the weather data is that the temperature distribution seems to contain two local
maxima—one slightly above zero and the other close to 15 °C. Moreover, from
the distribution of visibility, values near 30 km tended to be reported the most
by the two stations, on average. Because we have little to no way of verifying
whether such a high number of occurrences of observations close to the number
in question is sensible, we can only speculate that perhaps the value is some
default setting reported by the sensors that record visibility measurements in
weather stations.



Chapter 5

Methodology

In the first section of this chapter, we describe the statistical methods applied in
our analysis. Afterward, the use of dummy variables and additional predictors
is motivated and explored. The next section then outlines unit root testing and
other pre-estimation procedures. In the fourth section, the three forecasting
exercises are described. The two subsequent parts then outline parameter and
variable selection, while the final part is concerned with forecast error measures.

5.1 Applied Methods
In this study, we use several univariate and multivariate time series frame-
works based on the surveyed literature. Let us begin by introducing the sim-
plest—yet occasionally unbeatable (e.g., in exchange rate forecasting (Rossi
2013))—model: the random walk.

First of all, we need to introduce the term stationarity. If the probability
distribution of a time series yt remains unchanged over time, then yt is said to
be a stationary time series (Stock & Watson 2020, pp. 561–562). In the words
of Hyndman & Athanasopoulos (2021, sec. 9.1), the statistical properties of
the series are not dependent on the timeframe at which it is examined. The
random walk is a prime example of a nonstationary process, as its realizations
typically exhibit abrupt increases and decreases, as well as prolonged timespans
of upward or downward trends (Hyndman & Athanasopoulos 2021, sec. 9.1).
Formally, yt follows a random walk when

yt = yt−1 + ut, t = 1, 2, ..., T, (5.1)

where ut is a white noise term at time t, i.e., a sequence of independent and
identically distributed random variables with zero mean and finite variance σ2

u
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(Tsay 2005, p. 64; Box et al. 2015, p. 28). It is straightforward to observe that
the one-step-ahead prediction of such a model is simply equal to yt. As a matter
of fact, this holds for all forecast horizons (Tsay 2005, p. 64). Thus, this method
is often referred to as naïve (Hyndman & Athanasopoulos 2021, sec. 5.8).

Applying first differences to the random walk renders the series stationary
as ∆yt equals the white noise term, which is stationary by definition (Box et al.
2015, p. 28)—if a series needs to be differenced once to achieve stationarity,
then it is integrated of order one and is said to contain a unit root (Brooks
2014, p. 360).

5.1.1 SARIMAX

The random walk model is a special case of an autoregressive model of order
one, which is written as

yt = ϕ0 + ϕ1yt−1 + ut,

with ut being a white noise series (Tsay 2005, p. 32). Combining the autore-
gression with a moving average, which models yt as a linear combination of
white noise terms ut−i, i = 0, 1, 2, ..., q, and further incorporating orders of
integration, d, we arrive at an ARIMA(p, d, q) model. If we utilize the backshift
notation, i.e., Bjyt = yt−j with j = 0, 1, 2, ..., we can write the ARIMA(p, d, q)
model as

(1 − ϕ1B − ... − ϕpBp)(1 − B)dyt = ϕ0 + (1 + θ1B + ... + θqB
q)ut, (5.2)

where ut is a white noise term, and ϕ0 is the intercept (Brooks 2014, p. 256;
Hyndman & Athanasopoulos 2021, sec. 9.2, 9.5).

Expanding the model further, we may include external regressors by adding
them onto the right-hand side of Equation 5.2 (Hyndman 2010). Finally, sea-
sonality can also be approached with an ARIMA-type framework by extend-
ing Equation 5.2 to an ARIMA(p, d, q)(P, D, Q)s model (Hyndman & Athana-
sopoulos 2021, sec. 9.9), often abbreviated as SARIMA. Combining all of the
aforementioned specifications, we arrive at a SARIMAX(p, d, q)(P, D, Q)s model
with k exogenous factors that can be formulated as1

ϕp(B)ΦP (Bs)(1 − B)d(1 − Bs)Dyt = ϕ0 + θq(B)ΘQ(Bs)ut +
k∑︂

i=1
βixit, (5.3)

1Note that in the forecast R package (Hyndman & Khandakar 2008), the SARIMAX
model is implemented in a way that allows the standard coefficient estimate interpretation
(Hyndman 2010).
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where ut is a white noise series, ϕ0 is a constant term, and x1t, ..., xkt are external
variables at time t (Hyndman & Khandakar 2008; Papaioannou et al. 2016; Lee
& Cho 2022). Moreover, to elaborate:

• ϕp(B) = 1 − ϕ1B − ... − ϕpBp represents the AR(p) part,
• θq(B) = 1 + θ1B + ... + θqB

q is the MA(q) polynomial,
• ΦP (Bs) = 1 − Φ1B

s − ... − ΦP BP s determines the order P seasonal AR,
• and ΘQ(Bs) = 1 + Θ1B

s + ... + ΘQBQs being the seasonal MA part of
order Q.

In Table 2.1, we mention two papers in which the SARIMAX specifica-
tion was utilized for forecasting load: Papaioannou et al. (2016) and Lee &
Cho (2022). For instance, in Papaioannou et al. (2016), the authors fit a
SARIMAX(4, 1, 1)(1, 1, 2)7 model while employing external factors such as a
holiday dummy variable or lagged temperature data.

5.1.2 Regression Trees

Classification and regression trees are methods that separate data into smaller
regions and generate fitted values for the dependent variable, generally as an
average for the specific partition (James et al. 2021, p. 327). In particular, James
et al. (2021, p. 330) decompose the construction of regression trees into two
stages: the first step aims to identify regions R1, ..., RJ minimizing the residual
sum of squares ∑︁J

j=1
∑︁

i∈Rj
(yi − ȳRj

)2, where ȳRj
represents the mean of the

response variable in region j. The initial stage is performed using an algorithm
called recursive binary splitting, which finds a feature Xj and a cutoff value
c ∈ R that reduce the residual sum of squares the most. In turn, this produces
partitions Xj ≥ c and Xj < c within the set of all possible values of X1, ..., Xp,
where p is the number of predictors (James et al. 2021, pp. 330–331).

Following James et al. (2021, pp. 330–331), the procedure outlined above is
repeated up to a certain point (e.g., a preset minimum number of records result-
ing from a split is achieved), after which the second step is conducted. Since
the first stage outputs regions R1, ..., RJ , the fitted values of the dependent
variable can simply be obtained as its mean within the particular Rj.

Simpler regression trees can be intuitively visualized—in Figure 5.1, we dis-
play an illustrative schematic produced by the rpart.plot package (Milborrow
2022) in R (R Core Team 2022) using our load & one-hour lagged temperature
data, and we further include the nomenclature used in tree-based modeling. As



5. Methodology 35

per Berk (2016, p. 132), the top part of the regression tree, the root node, encap-
sulates the whole dataset (as indicated by the proportion 100%), and splits into
two internal nodes based on whether Temperaturet−1 is larger than or equal
to 7.4 °C. Finally, the four terminal nodes at the bottom of the schematic are
the particular partitions R1, ..., R4 produced by the algorithm mentioned above
(James et al. 2021, p. 329). Thus, for instance, using Temperaturet−1 = 15 °C
as the input leads to the predicted load at time t equal to 7567 MW.

Figure 5.1: Example of a regression tree predicting hourly load using
lagged temperature data

According to Boehmke (2018) three parameters are typically optimized in
regression trees. Firstly, minimum split refers to the smallest number of obser-
vations in order for a split to be executed. Secondly, maximum depth controls
the allowed amount of internal nodes that can occur on a single path from
a root node to any terminal node. Finally, the cost complexity parameter α,
borrowing from Berk (2016, pp. 157–158), adds a penalty to the residual sum
of squares for each terminal node, resulting in the following objective function
being minimized

|N |∑︂
m=1

∑︂
i:xi∈Rm

(yi − ȳRm
)2 + α|N |,

where |N | is the count of terminal nodes of tree N , and Rm is the m-th region
(Boehmke 2018; James et al. 2021, pp. 332–333).

Moreover, James et al. (2021, pp. 340–341) add that standard regression
trees tend to have issues with high variance. The authors maintain that it
can be lowered using, for example, bootstrap aggregation, otherwise known as
bagging. In this procedure, k different samples are taken from the training
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set—on each of these, a regression tree is constructed. A prediction is then
produced as an average of all the predictions generated by the k trees.

A useful byproduct generated by bagged regression tree models is variable
importance. This metric indicates, typically in relative terms, the contribution
of each explanatory variable to the reduction of the residual sum of squares
(Berk 2016, p. 224, James et al. 2021, p. 343). However, as Berk (2016, p. 224)
maintains, in-sample performance may not necessarily be reciprocated in an
out-of-sample exercise.

Regression trees have been utilized for load forecasting by Yildiz et al.
(2017), as we mentioned in Table 2.1. Ruiz-Abellón et al. (2018), on the other
hand, employ more sophisticated tree-based methods such as random forests
or boosting. In both cases, however, the authors use lagged inputs to be able
to generate forecasts, and they further add several types of dummy variables
to increase performance.

5.1.3 Artificial Neural Network

Berk (2016, p. 312) succinctly describes artificial neural networks as “a com-
plicated f(X) [...] approximated by a composition of many, far more simple
functions.” In this regard, James et al. (2021, p. 404) state that the specific
structure of neural networks, displayed in Figure 5.2, is the key difference from
other nonlinear methods. The ANN pictured in Figure 5.2 is called a multi-
layer perceptron (MLP) or a feed-forward neural network (Goodfellow et al.
2016, p. 5). Here, p predictors in the input layer are propagated to the hid-
den layer with K units, and finally to the output layer, producing Y . Thus,
following James et al. (2021, p. 404), the model f(X) can be written as

f(X) = β0 +
K∑︂

k=1
βk g(wk0 +

p∑︂
i=1

wkiXi)⏞ ⏟⏟ ⏞
Ak

, (5.4)

where g(z) is an activation function and β0, ..., βK & w10, ..., wKp are parame-
ters. An example of an extensively used function for g(z) is the rectified linear
unit (ReLU), which equals 0 if z is negative; otherwise, the function outputs z

(Aggarwal 2018, p. 13).
Researchers tend to specify multiple hidden layers instead of just one,

which often facilitates finding more performant models as opposed to increas-
ing K within a single hidden layer (James et al. 2021, p. 407). Furthermore,
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Figure 5.2: Feed-forward neural network structure example

Source: Based on James et al. (2021, p. 405).

when considering time series in the context of ANN modeling, a specific ap-
proach is appropriate for the temporal structure of the data (James et al. 2021,
pp. 421–422). This type of information can be processed using a recurrent neu-
ral network—an extension of the feed-forward ANN architecture that adds a
feedback loop (Goodfellow et al. 2016, p. 164).

In Figure 5.3, an illustration of an unrolled2 RNN is shown. In contrast to
the feed-forward neural network pictured in Figure 5.2, we may observe that
the Aℓ units not only process inputs Xℓ, but also the previous information
Aℓ−1 (James et al. 2021, pp. 422–423) or hidden state (Aggarwal 2018, p. 39).
Additionally, every Aℓ generates a prediction for Y , denoted as Oℓ. Similarly
to Equation 5.4, this output is calculated as

Oℓ = β0 +
K∑︂

k=1
βkAℓk,

with Aℓk being equal to g(z), where

z = wk0 +
p∑︂

j=1
wkjXℓj +

K∑︂
s=1

uksA(ℓ−1)s,

supposing that X
′
ℓ = (Xℓ1, ..., Xℓp), A

′
ℓ = (Aℓ1, ..., AℓK), with p being the num-

2A verbose, but arguably more descriptive, approach to illustrate the network.
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ber of predictors, and K representing the number of units in the hidden layer
(James et al. 2021, p. 423).

Figure 5.3: Simplified unrolled recurrent neural network structure

Source: Based on James et al. (2021, p. 422).

Due to the inherent parameter sharing in RNNs, a significant issue called the
vanishing or exploding gradient problem may arise during training (Goodfellow
et al. 2016, pp. 286–287, 396). Moreover, even under the assumption of stability,
another obstacle in utilizing RNNs is that long-term relationships are given far
less priority than short-term dependencies (Goodfellow et al. 2016, p. 396).

The long short-term memory RNN architecture is able to process long-term
dependencies by augmenting the Aℓ units from the standard RNN structure
(Goodfellow et al. 2016, p. 405; James et al. 2021, p. 426). In Figure 5.4, the
structure of a single LSTM cell is illustrated based on Olah (2015). One of the
key additions is the cell state Cℓ, which aims to preserve some of the memory
from the previous cells (Aggarwal 2018, p. 293). Furthermore, an LSTM cell has
gates that regulate the information flow using the sigmoid (σ(z)) and hyperbolic
tangent (tanh(z)) activation functions (Aggarwal 2018, p. 293), the formulation
of which is given in Appendix A.1.

As per Goodfellow et al. (2016, pp. 406–407) & Aggarwal (2018, pp. 293–294),
the equations for forward propagation can be expressed as

fℓk = σ

⎛⎝wf
k0 +

p∑︂
j=1

wf
kjXℓj +

K∑︂
s=1

uf
ksh(ℓ−1)s

⎞⎠ ,

gℓk = σ

⎛⎝wg
k0 +

p∑︂
j=1

wg
kjXℓj +

K∑︂
s=1

ug
ksh(ℓ−1)s

⎞⎠ ,
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cℓk = fℓk c(ℓ−1)k + gℓk σ

⎛⎝wk0 +
p∑︂

j=1
wkjXℓj +

K∑︂
s=1

uksh(ℓ−1)s

⎞⎠ ,

qℓi = σ

⎛⎝wq
k0 +

p∑︂
j=1

wq
kjXℓj +

K∑︂
s=1

uq
ksh(ℓ−1)s

⎞⎠ ,

hℓk = tanh(cℓk) qℓk,

where fℓk represents the forget gate, which outputs values from 0 to 1 and acts
as a weight, adjusting the amount of information to exclude from the cell state.
Similarly, the input gate, gℓk, also produces values in the [0, 1] interval, but
controls additions to the cell state. Therefore, the current ℓ cell state, cℓk, is
appropriately updated, with fℓk and gℓk containing a different set of biases and
weights (hence the f & g superscripts, respectively). Additionally, qℓk represents
the output gate, which further dampens the amount of information to pass to
the LSTM cell’s output hℓk—in this final stage, the tanh activation produces
a value from −1 to 1, in turn updating hℓk (Goodfellow et al. 2016, p. 406;
Aggarwal 2018, p. 293–295; Le et al. 2019).

Figure 5.4: Simplified schematic of a long short-term memory cell

Source: Based on Olah (2015).

As remarked by Aggarwal (2018, pp. 187–188), due to the vast array of
parameters in neural network methods, the number of feasible specifications
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tends to be enormous. Disregarding the input variables or in-sample length, in
an LSTM RNN, it is possible to input different values of the following terms

• number of hidden layers,
• units in each layer,
• loss function,
• activation functions,
• number of time steps producing a prediction (sequence length),
• proportion of units to randomly omit (dropout),
• optimization algorithm or optimizer,
• number of observations to pick in the optimization algorithm (batch size),
• step size in the optimizer (learning rate),
• processed passes of the entire in-sample set (epoch),

among others (Goodfellow et al. 2016, pp. 83–84; Bouktif et al. 2020; James
et al. 2021, pp. 436–439, 445). In terms of optimizers, once again, there are nu-
merous options. To give an example of an established algorithm, Adam (Kingma
& Ba 2014) tends to be viewed as “fairly robust” for different sets of parameters
(Goodfellow et al. 2016, pp. 305–306).

LSTM RNNs are utilized in several fields, from translation to image recog-
nition (Goodfellow et al. 2016, p. 404). From the load forecasting literature that
we reviewed in Section 2.3, three works use this method: Marino et al. (2016),
Kwon et al. (2020), and Lee & Cho (2022). Specifically, Marino et al. (2016)
forecast several steps ahead by employing sequence to sequence learning (see,
e.g., Aggarwal (2018, pp. 299–303)). In our analysis, following Keydana (2021a)
and Keydana (2021b), we implement an LSTM RNN with a two-layered feed-
forward ANN and (possible) dropout in between the MLP layers to generate
forecasts multiple-steps-ahead. The same approach is applied in the one-step-
ahead task, too.

5.2 Additional Predictors

5.2.1 Dummy Variables

Hyndman & Athanasopoulos (2021, sec. 7.4) provide several examples of context-
agnostic independent variables that are regularly applied in time series analyses.
Particularly, the authors list dummy variables as a powerful tool in accounting
for holidays, outliers, but also seasonal patterns. Throughout this thesis, we
have referenced many load forecasting papers (e.g., Fan & Hyndman (2012),
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Yildiz et al. (2017), or Ruiz-Abellón et al. (2018)) that utilize dummy variables
mainly to account for seasonality or specific events.

However, while controlling for working days or holidays is common across
load forecasting works, each study seems to have a slightly different mix of these
exogenous predictors. This is also the case in our analysis—the time period
of the data that we have obtained intersects with the COVID-19 pandemic.
According to Google’s Mobility Reports in the Czech Republic, there was a
significant decline in the movement of people in public spaces or places of
work, especially during states of emergency (Seznam Zprávy 2022). To capture
any potential effects of these events on load, we have created a dummy variable
that is equal to one during states of emergency declared by the Government of
the Czech Republic due to the pandemic and equal to zero otherwise.

The COVID-19 binary predictor was thus implemented into all the dummy
variable specifications that we tested. Firstly, we started with a matrix of indica-
tors similar to Ruiz-Abellón et al. (2018), which included predictors accounting
for the day of the week, month of the year, holidays, and COVID-19. However,
specifying a dummy variable for each day of the week did not appear to yield
better results than treating Saturday and Sunday as non-working days without
the split. This idea was based on Yildiz et al. (2017) and supported by the
available data—earlier, we provided a heatmap of hourly loads during the week
(Figure 4.4), which indicated that there is an apparent difference in the load
profiles of weekdays and weekends.

To illustrate this point further, we display boxplots of hourly loads for each
day of the week in Figure 5.5. In this chart, we may observe that the difference
in the distribution of Saturday and Sunday values is minimal, meaning that it
might not be worthwhile including a dummy variable for both days.

Figure 5.5: Czech hourly load boxplots by weekday (2011 to 2021)
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While a similar conclusion could be made for the working days, we dis-
covered that separating the week into two exclusive groups seemed to generate
worse results than including dummy variables for each day of the week (minding
the dummy variable trap (Stock & Watson 2020, pp. 229–230)) and a combined
predictor for the weekend. Furthermore, we treated both holidays and weekends
as non-working days due to their relatively similar load profiles. In addition,
as evidenced by Figure 5.6, while the Christmas holidays officially start on De-
cember 24 and end on the 26th, it appears that loads tend to continue to record
lower levels in the subsequent days. Because of this, even though these final
few days of December may have otherwise been classified as working days, we
manually labeled them as non-working days.

Figure 5.6: Hourly Czech load each December from 2011 to 2021

Last but not least, we believed that by using a single indicator variable,
our models were not able to adequately capture the substantial decrease in
load that occurs on weekends and holidays. Strictly speaking, non-working
days comprise more than 2/7 of all the observations, which we considered as
a compelling argument for intervention. Therefore, comparably to Elamin &
Fukushige (2018), we decided to capture the additional information provided
by these observations by constructing an interaction term of hours of the day
and non-working days. Thus, the final matrix of 63 dummy variables aimed to
capture the following effects:

• month of the year,
• day of the week (for each working day),
• non-working days (a single variable for weekends and holidays),
• COVID-19 states of emergency,
• hour of the day,
• interaction of non-working days and hours of the day.
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5.2.2 Feature Engineering

Apart from the set of dummy variables outlined in the previous section, we
prepared several additional predictors by applying transformations to the vari-
ables described in Chapter 4. Following some of the ideas applied in Fan &
Hyndman (2012), we transformed each of the base predictors (see Table 4.2) to
create Xt−1, Xt−24, Xt−48, Xt−72, mean Xt in the past 7 days, and maximum
Xt in the last 24 hours.

As a result, a substantial number of features were created.3 Employing all
the available variables would likely lead to overfitting on the in-sample set,
which would negatively impact the out-of-sample performance, notwithstand-
ing the computational burden. Thus, as described in Section 5.1.2, we fit a
bagged regression tree model and extract the relative importance measure of
each variable in order to provide a starting point in variable selection (in the
neural network models). We supply more information in Section 5.6.

In future research using Czech data, we believe that it would be worth-
while investigating the performance of more complex weather variables such as
heating and cooling degree days employed in Lee & Cho (2022). Alternatively,
one could apply dimensionality reduction using principal components (as in
Papaioannou et al. (2016), for example).

5.3 Pre-estimation Procedures
In standard econometric time series analyses, one of the steps frequently per-
formed before estimating a model is a test for a unit root, the presence of which
may be problematic for inference as well as forecasting (Stock & Watson 2020,
pp. 584–586). One such approach, the Augmented Dickey-Fuller test (ADF),
first examines the equation

∆yt = γyt−1 +
p∑︂

i=2
βi∆yt−i+1 + ut, (5.5)

where yt is the investigated series, and ut is assumed to be a white noise term.
The test then evaluates the hypothesis that γ = 0, meaning that a rejection
of the null hypothesis would suggest no unit root (Brooks 2014, pp. 361–363;
Enders 2015, p. 206–208). Furthermore, a constant term and a time trend may
be added to Equation 5.5 to account for additional information (Enders 2015,

3Refer to Table B.4 in Appendix B for summary statistics of the 7-day averages and
24-hour maxima.
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p. 206). In terms of lag length selection, Brooks (2014, p. 363) states that it is
crucial to consider several lags and the sensitivity of the test results. Thus, we
perform the three variations of the ADF test with up to 10 lags for all variables.

We report the results for each of the raw series in our dataset in an uncon-
ventional way in Table B.2 in the Appendix; that is, we display the number
of times the null hypothesis was rejected for up to 10 lags to aggregate the
large number of outputs. It is clear that, according to the test, a unit root
was present in most of the series—for prices, for example, nonstationarity is
expected based on Figure 4.5. Series that may not be affected by the pres-
ence of a unit root could include the hourly load series, difference in station
temperatures, air pressure, and (possibly) raw temperatures (Table B.2).

However, we consider these results as a suggestion rather than a strict rule.
One of the reasons is that, following Hyndman & Khandakar (2008), the design
of the null hypothesis of the Augmented Dickey-Fuller test tends to encourage
higher orders of differencing than necessary. This also seemed to be the case
with our high-frequency data, as even first-order differencing did not seem to
alleviate the supposed issue, but only for lag lengths up to 10—by setting the
lag order to the default value suggested by the tseries R package (Trapletti
& Hornik 2023), none of the previously problematic first-differenced series ap-
peared be integrated of order two (see Table B.3).

Moreover, in neural networks, predictors are typically processed to increase
model performance (Aggarwal 2018, p. 127). As per Aggarwal (2018, p. 127),
one possible transformation, standardization, involves subtracting the mean of
the data and dividing the resulting term by the standard deviation. Thus,
following Keydana (2021a), we standardize our data before fitting our neural
networks.

Seasonal differencing is another possible transformation that could be ap-
plied to our data (Hyndman & Athanasopoulos 2021, sec. 9.1). Nevertheless, ac-
cording to the surveyed load forecasting literature, seasonality tends to be con-
trolled using indicator variables (e.g., Taylor (2008), Fan & Hyndman (2012),
or Yildiz et al. (2017)).

Finally, in some papers (e.g., Fan & Hyndman (2012) or Taylor (2012)), the
authors log-transform their load series as a pre-estimation procedure. According
to Taylor (2012), this is generally done to “stabilize the variance of each series.”
In other works, however, researchers do not seem to apply the logarithmic
transformation (e.g., Darbellay & Slama (2000); Kandil et al. (2006)).
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5.4 Research Questions and Forecasting Schemes
In this study, we develop three forecasting schemes, each addressing a different
research question. Firstly, using the one-minute load data, we attempt to out-
perform a random walk model’s forecasts in a pseudo-out-of-sample forecasting
exercise, utilizing historical load data only. The remaining two analyses employ
hourly data, with the shared goal of producing the most accurate out-of-sample
forecasts—one-step-ahead and up to 48-hours-ahead. In the latter pseudo-out-
of-sample exercise, our predictions are compared with the forecasts published
by ČEPS.

5.4.1 Minute Data

The highest-frequency publicly accessible national load data provided by ČEPS
have a frequency of one minute, as described in Section 4.1.1. At this resolu-
tion, obtaining any additional predictors, such as weather or prices, is difficult;
thus, the outlined pseudo-out-of-sample exercise only utilizes historical loads.
In Taylor (2008), the author also analyzes minute-frequency British load se-
ries, and implements several univariate forecasting methods, evaluating their
performance on a ten-week-long out-of-sample set by generating predictions of
up to 30 minutes ahead. One of the tested models was a driftless random walk.
While it clearly produced the least accurate forecasts in terms of MAPE from
approximately 5 to 30 minutes ahead, its one-step-ahead predictions have, on
average, outperformed the official weather-based model used by the transmis-
sion system operator in Great Britain. Other methods, however, achieved lower
MAPE than the random walk.

Our objective in the first scheme is to demonstrate that the high-frequency
Czech load series is also predictable. In other words, following the results of
Taylor (2008), we hypothesize that using the Czech load data, it is possible to
consistently generate more accurate one-minute-ahead predictions than those
generated by a naïve method in a pseudo-out-of-sample forecasting exercise.
Naturally, from Figure 4.3, there are several visible patterns that may be ex-
ploited in modeling. However, our aim is to determine whether there is enough
information to train a model (on a relatively short in-sample set and using
detrended series) that outperforms a random walk in the very short term.

In particular, based on the results from Section 5.3, we are working with the
first differences of logs of the entire minute load series spanning from 2011 to
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2021—a small subset of the differenced data is pictured in Figure 5.7 for illus-
tration. Thus, rearranging Equation 5.1 by subtracting yt−1, the naïve forecast
then predicts no change from the previous period. For k ∈ {2, 3, 4}, the overall
scheme consists of the following steps:

1. Set k days as the in-sample set, starting at 00:00 on the first day and
ending at 23:59 on the k-th day.

2. Set the k + 1st day of the minute load series as the out-of-sample set.
3. Using the Hyndman & Khandakar (2008) model selection algorithm4 with

maximum orders of p and q set to 10, fit an ARIMA(p, d, q) specification
that minimizes the Akaike information criterion (AIC) on the in-sample
set.5

4. Produce one-step-ahead forecasts of the chosen ARIMA model trained
on k days of minute data and the random walk for the entire k + 1st day
(the out-of-sample set).

5. Compare the predictions with actual values using MAE and RMSE. Ad-
ditionally, save the results of relevant tests.

6. Move forward in time by one day and repeat the procedure until December
31st, 2021.

Finally, since the length of the in-sample set is also considered as a parameter
(2, 3, and 4 days), we select the length that results in the most precise forecasts
to simplify the evaluation and reporting of the results.

Figure 5.7: First differences of log-transformed Czech minute load se-
ries (Nov 11 2021)

Intuitively, following this scheme, a model is estimated every 24 hours on
2 to 4 days of historical data. The estimated coefficients are then used to

4We provide a short summary of the algorithm in the Appendix (Section A.2).
5If the lowest-AIC model is ARIMA(0, 0, 0) with zero mean, fit ARIMA(1, 0, 1), instead.



5. Methodology 47

calculate one-step-ahead forecasts in real time—i.e., updating every minute to
incorporate the newest load data point as it becomes available and generating
a forecast for the next minute. After 24 hours, a new model is reestimated
utilizing the latest 2 to 4 days of historical load data, and the process continues.
Because the length of the in-sample set is fixed, we may refer to this approach
as a rolling scheme.

5.4.2 Hourly Data

The main results of this thesis are intended to be produced by the second
set of exercises, which focus on multivariate hourly load forecasting using the
variables described in Chapter 4 & Section 5.2 and methods outlined in Section
5.1. From a researcher’s standpoint, modeling hourly or daily data may be
desirable due to the wide availability of other related time series.

Additionally, it appears that multi-step hourly-frequency forecasts might
further be significant in the dispatch control of the transmission grid, at least
in the Czech Republic—this observation is evidenced by some of the docu-
ments ČEPS shares on their website. In particular, in their monthly reports
on the preparation of grid operation, one-month-ahead hourly predictions can
be found in one of the document’s sections (see, for example, ČEPS (2023b)).
The use of these forecasts is further corroborated on the “Assessment of power
system operation” page (ČEPS 2023a), where ČEPS states that its control
center primarily evaluates, among other variables, electricity production, fre-
quency, or system load, and they further add that the key information related
to these quantities is made public—in fact, we utilize a part of this dataset in
this thesis. Moreover, aside from historical load data, the company also releases
hourly load forecasts for the next 48 hours, as well as longer-term predictions
of up to a year ahead. When we requested additional information about this
data from ČEPS, we were suggested to examine the documents available on
their website. Thus, our investigation revealed that despite all the projections
being hourly with a varying number of steps ahead, the initial periods where
the forecasts intersected (e.g., the initial 48 hours in a 48-hour-ahead and a
week-ahead forecast) do not share the same values, which implies that each se-
ries of the multiple-steps-ahead predictions is calculated differently. Secondly,
as we were mostly interested in the two-day-ahead hourly forecasts, we learned
that these are published at around 00:00 every day and calculated until 23:00
the next day. Lastly, in one of their press releases, ČEPS (2013) write about



5. Methodology 48

the introduction of a new geospatial system in dispatch control, which shows
“historical information and predictions [. . . ] displayed for a time horizon of 48
hours,” further solidifying the significance of this horizon.

Therefore, we aimed to produce pseudo-out-of-sample forecasts for the en-
tirety of 2021 by rolling without re-estimation. In particular, these predictions
were generated in two ways:

• One-step-ahead, i.e., predict next hour’s load, move forward by one hour,
repeat.

• Up to 48-hours-ahead, i.e., generate a sequence of 48 load forecasts, ad-
vance by two days, repeat.

In the 48-hours-ahead scheme, we then compared these projections of several
models not only with the actual values of load, but also with the published pre-
dictions. Regarding the one-step-ahead exercise, this approach was performed
by, for example, Elamin & Fukushige (2018). In this case, we were interested in
generating one-step-ahead forecasts for one year and comparing the accuracy
of several methods—as discussed in Section 3.2.2, very short term predictions
have a variety of uses, such as real-time system management. Finally, in both
schemes, we intended to combine forecasts from the utilized models to de-
termine whether more accurate predictions would be generated, much like in
related literature (e.g., Lee & Cho (2022)).

To describe each of the schemes in more detail, we present an illustration in
Figure 5.8 outlining the length of the in-sample, validation, and out-of-sample
sets in both scenarios.6 The general objective was to fit each model on the in-
sample set, find optimal parameters on the validation set, and produce forecasts
out-of-sample. Note that although the underlying structure of the three sets is
more or less shared across the two forecasting exercises, the best-performing
specifications of the utilized methods should be expected to be different. Fur-
thermore, apart from the obvious fact that the out-of-sample set is the same
for all methods, the validation set should also be shared for total comparability.
Finally, we see no issue with comparing the pseudo-out-of-sample performance
of models with various in-sample lengths, in accordance with related literature
(e.g., Dowell & Pinson (2016))—some methods might be expected to provide a
better fit with more data while others may fail to utilize longer history. Thus,
a minor part of our analysis involved the comparison of several in-sample set
sizes.

6Note that the in-sample set is often referred to as a training set, while the out-of-sample
set is frequently called a test set (Hyndman & Athanasopoulos 2021, sec. 5.8).



5. Methodology 49

Figure 5.8: Subsets of hourly data used in the pseudo-out-of-sample
forecasting exercises

Regardless, in similar academic literature, the choice of the length of each of
these sets varies. For instance, as mentioned in Section 2.3, the dataset of Fan
& Hyndman (2012) originally spanned from 1997 up to March 2009, but the
authors discovered that an in-sample set starting in 2004 did not compromise
the forecasting performance of the models evaluated on an out-of-sample set
of 6 months. In particular, they write that “increasing the size of the data set
[...] is not always helpful” since the association between load and other factors
could be gradually shifting in time.

As displayed in Figure 5.8, the 31st of May 2020 is assigned as the end
date of the in-sample set. Directly following is the validation set, which we use
for variable selection and also for finding optimal parameters of the utilized
methods (refer to Section 5.5). Note that, in this sense, in-sample set length
can be thought of as a parameter, too. Moreover, while it might seem sensible
to consider the entirety of 2020 as the validation set, doing so would prevent
us from capturing the effects of COVID-19 in the in-sample set; therefore, we
consider the chosen number of months as a reasonable length for model calibra-
tion. Lastly, variable and optimal parameter selection is primarily performed by
minimizing forecast error measures on the validation set while also considering
in-sample fit (see, for example, Goodfellow et al. (2016, pp. 118–119)). These
error metrics are described in Section 5.7.

In related academic literature, researchers typically produce forecasts on up
to 1 year of unseen data (e.g., Taylor (2012) or Lee & Cho (2022)). Thus, as
pictured in Figure 5.8, our out-of-sample set encompasses almost the entirety
of 2021—the final day of the year was removed because it is the 365th day (i.e.,
not divisible by two). Finally, let us note that we also excluded observations
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from 2011 due to the fact that the calculated features described in Section 5.2.2
naturally introduced missing values in the first month of the year.

5.5 Model Parameter Selection
Except for the random walk model, each of the methods described in Section 5.1
contains several parameters. While some of them can be selected manually—for
example, it might be sensible to set the s parameter in the SARIMAX model
(Equation 5.3) to 24 with hourly data to exploit the daily seasonal pattern
(Elamin & Fukushige 2018; Hyndman & Athanasopoulos 2021, sec. 9.9)—how-
ever, more often than not, parameters are chosen in an automated manner
(Goodfellow et al. 2016, pp. 422–423).

Thus, for the three methods that we utilize in this thesis to predict hourly
data, i.e., SARIMAX, bagged regression trees, and LSTM RNN, we conduct a
grid search (Goodfellow et al. 2016, p. 427) to determine the best-performing
specifications on the validation set in both the one-step-ahead and the 48-
hours-ahead schemes. Table 5.1 contains the final parameter sets we converged
to through several rounds of manual searches. For instance, in the SARIMAX
model, setting d = 2 generally did not appear to generate better results than
lower values of the order of differencing (D = 2 as well). In addition, we tested
different values of s, but achieved the most satisfactory results with s = 24, as
alluded to in the paragraph above. Furthermore, it required numerous attempts
to find reasonable parameter values in the bagged regression trees because some
produced high-error forecasts on the validation set, while setting other values
resulted in overfitting on the in-sample set.

Therefore, while the rightmost column in Table 5.1 provides the final num-
ber of estimated models, the actual amount could be two to three times larger
for several additional reasons other than those described earlier, including tests
of various in-sample sets or variables, as well as trial and error. In particular,
with respect to the in-sample size, the grid search was conducted using data
starting in 2017 (adhering to the scheme pictured in Figure 5.8). Later, the
best-performing specifications were tested horizontally with longer and shorter
lengths by year. Let us note that we are aware of the limitations of this heuris-
tic approach—ideally, varying in-sample set lengths should be tested with all
parameter combinations; however, this would drastically increase the compu-
tational time required to conduct this search.

Similarly, for feasibility, the number of bootstrap replications in regression
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Table 5.1: Final sets of parameters tested in a grid search

Model Parameter Tested values Count

SARIMAX (p, d, q) (1, 0, 1) → (4, 1, 4) 256(P, D, Q)s (0, 0, 0)24 → (1, 1, 1)24

Bagged
trees

min split 18, 19, ..., 30

455max depth 16, 17, ..., 22
cost complexity 10−8, 2.575 · 10−7, ..., 10−6

bootstrap rep. 30

RNN

hidden size 64, 128, 192

108

LSTM layers 1, 2
linear units 128, 256, 512
learning rate 0.001, 0.0005
linear dropout 0, 0.2
LSTM dropout 0, 0.2
seq. length 120
loss function mean square
MLP activation ReLU
preprocessing standardization
optimizer Adam
batch size 128
epochs up to 30

Note: In-sample set starts in 2017. Combinations of input variables not in-
cluded in the model count. Any other parameters remained at default values.

trees was set to 30 in the grid search. We tested several specifications with 100
replications; however, the decrease in the utilized error metrics (see Section 5.7)
on the validation set was around 2.5% (e.g., from 100 RMSE to 97.5 RMSE).
Thus, we believe that setting the number of bootstrap replications to 30 is an
acceptable tradeoff. Moreover, the same number of repetitions would need to be
applied to all 455 configurations to ensure fair competition, should one decide
to increase the parameter value, which is the reason why we ultimately did not
employ 100 bootstrap replications. Similarly, in the neural network grid search,
some parameters, such as batch size or the loss function, were fixed due to the
large number of possible combinations.

Finally, let us note that with respect to regression trees, sources such as
Laurinec (2017) or Boehmke (2018) were helpful in determining the starting
parameters. Similarly, as mentioned earlier, in the specification and implemen-
tation of the recurrent neural network, we adapted the approach outlined in
Keydana (2021a) and Keydana (2021b).
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5.6 Variable Selection
The total number of hourly variables used in this thesis is 132 (see Table
B.9)—these included the raw series explored in Section 4.2, features created us-
ing these variables from Section 5.2.2, and a set of indicators detailed in Section
5.2.1. To avoid overfitting, we concluded that some form of variable selection
was necessary. For example, in Fan & Hyndman (2012), the authors initially fit
a model with all available predictors and continued removing variables until the
out-of-sample performance no longer improved. However, this approach would
be computationally unfeasible in our case due to the grid search.

Therefore, to resolve this issue, we have decided to exploit the strengths
of each utilized method. To elaborate, firstly, because ARIMA-family models
are primarily associated with univariate time-series modeling (Brooks 2014,
p. 251), we only utilize historical load data and dummy variables in the SARI-
MAX model. This further alleviates the problem in the multiple-steps-ahead
forecasting task, where the future values of potential external regressors would
need to be supplied.

Secondly, as outlined in Section 5.1.2, regression trees contain a variable
selection mechanism, which solves the issue in this particular case. However,
the procedure also requires future values of external inputs for longer forecasts.
Thus, we use bagged regression trees only in the one-step-ahead forecasting
exercise, ensuring that lagged variables are used as predictors.

Finally, in the neural network model, while the problem of multiple-steps-
ahead multivariate forecasting is resolved using an MLP, the number of inputs
needs to be regulated. Thus, we decided to fit a bagged regression tree model
on the 2012 to 2020 dataset (i.e., excluding the 2021 out-of-sample set) and
save the relative variable importance measures. We then tried to employ the
top 15 predictors in the neural network models and added or discarded predic-
tors depending on the improvement of the RNN’s validation set performance.
The relative variable importance measures (i.e., decrease in the residual sum
of squares relative to the best variable) can be seen in Figure 5.9—after test-
ing several specifications, the bagged regression tree model was fitted with 30
bootstrap replications, maximum depth of 18, minimum split of 21, and the
cost complexity parameter equal to 5.05 · 10−7. It is apparent that transforma-
tions of load, followed by temperature, seemed to be considered as the most
important predictors.

Additionally, we used dummy variables as inputs to control for calendar
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Figure 5.9: Bagged regression tree variable importance (top 15 pre-
dictors)

Note: Relative importance shows the decrease in the residual sum of squares relative
to the best variable. “Avg. 7D” means average in the past 7 days. “Max 24h” refers to
the maximum in the last 24 hours.

effects and seasonality because it is very frequently applied in academic litera-
ture, as we have previously observed. Furthermore, we later discarded the two
price variables because their inclusion did not appear to considerably improve
fit in our testing. Therefore, the final set of predictors included in the neural
networks contained Loadt−1, Max Load in 24 hourst, Loadt−24, Average Load in
7 dayst, Loadt−72, Loadt−48, Average Temperature in 7 dayst, Temperaturet−72,
Temperaturet−48, Temperaturet, Max Temperature in 24 hourst, Temperatu-
ret−24, Temperaturet−1, and the indicator variables from Section 5.2.1.

5.7 Forecast Error Measures
Several error measures can be utilized to assess the accuracy of a model on an
out-of-sample set in a pseudo-out-of-sample forecasting exercise. Denoting ft,h

as the h-step-ahead forecast at time t, the following metrics, all of which we
referred to in earlier parts of the thesis, are typically used to quantify error:

RMSEh =
⌜⃓⃓⎷ 1

m

m∑︂
h=1

(yt+h − ft,h)2,

MAEh = 1
m

m∑︂
h=1

|yt+h − ft,h|, MAPEh = 1
m

m∑︂
h=1

⃓⃓⃓⃓
⃓yt+h − ft,h

yt+h

⃓⃓⃓⃓
⃓ ,

where m is the length of the out-of-sample set (Brooks 2014, pp. 293, 298, Tsay
2005, p. 194).
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Additionally, the Diebold-Mariano test (DM), modified by Harvey et al.
(1997), approaches the comparison of forecasts in the form of a hypothesis test
(Diebold & Mariano 1995). Following Harvey et al. (1997), if we consider e

(1)
t

and e
(2)
t to be two different h-steps-ahead forecast errors (i.e., et = yt+h − ft,h),

the null hypothesis of equal accuracy

E(g(e(1)
t ) − g(e(2)

t )) = 0,

where the loss function g(·) transforms the error in a pre-specified manner (e.g.,
by squaring), is tested against a one- or two-sided alternative (Harvey et al.
1997; Enders 2015, pp. 86–88).

Because the Diebold-Mariano test only examines errors from h-steps-ahead
forecasts and not a sequence of predictions (Harvey et al. 1997; Hardy 2016),
we apply the Friedman and Nemenyi tests (Demšar 2006; Svetunkov 2022) to
compare predictions in the 48-hours-ahead exercise. Following Demšar (2006),
the Friedman test assigns a rank to each forecast through analysis of variance
measures and calculates the mean ranking for each method. It then tests the null
hypothesis of equal average rank—if rejected, the Nemenyi test is consequently
conducted. In this procedure, the following statistic is calculated

Critical difference = qα,k

√︄
k(k + 1)

6N
, (5.6)

where qα,k is a critical value for the Nemenyi test based on the significance
level α along with the number of compared methods k, and N refers to the
number of data points. That is, any two methods’ performance is thought to
significantly vary if their difference in mean ranking is larger than the value of
the statistic from Equation 5.6 (Demšar 2006). These results are then reported
following the visualization outlined in Koning et al. (2005).

The computational part of this thesis relied on the following R (R Core Team 2022)
and Python (Van Rossum & Drake 2009) packages: aTSA (Qiu 2015), caret (Kuhn 2022),
DescTools (Signorell 2023), dplyr (Wickham et al. 2023a), forecast (Hyndman & Khan-
dakar 2008), ggplot2 (Wickham 2016), ggsci (Xiao 2023), imputeTS (Moritz & Bartz-
Beielstein 2017), ipred (Peters & Hothorn 2022), isdparser (Chamberlain 2020), librarian
(Quintans 2021), lubridate (Grolemund & Wickham 2011), matplotlib (Hunter 2007), mlr
(Bischl et al. 2016), pandas (McKinney 2010), plotly (Plotly Technologies Inc. 2015), purrr
(Wickham & Henry 2023), readxl (Wickham & Bryan 2023), rpart (Therneau & Atkinson
2022), rpart.plot (Milborrow 2022), rstudioapi (Ushey et al. 2022), tibble (Müller &
Wickham 2022), tidyr (Wickham et al. 2023b), torch (Falbel & Luraschi 2023), tseries
(Trapletti & Hornik 2023), tsibble (Wang et al. 2020), tsutils (Kourentzes 2022), xtable
(Dahl et al. 2019), xts (Ryan & Ulrich 2023), and zoo (Zeileis & Grothendieck 2005).



Chapter 6

Results and Discussion

This chapter comprises four sections. In the first part, we describe the results
of the forecasting scheme employing high-frequency data. We then continue
by reporting the two exercises utilizing hourly data, the first of which is one-
step-ahead, while the other contains hourly load predictions of up to two days
in the future. Each of these three sections contains a general overview of the
results, followed by a detailed description, and ends with a summary of our
findings. We conclude this chapter by discussing the contribution of this thesis,
its limitations, and future research opportunities.

6.1 Minute Data
The objective of the first minor analysis was to investigate the predictability of
high-frequency Czech load series in first differences of logs using in-sample sets
of two to four days. This question was tested by iteratively fitting a large set of
ARIMA models using the Hyndman & Khandakar (2008) algorithm, producing
one-step-ahead forecasts for the next day, and comparing their accuracy to the
predictions generated by a random walk model. Following the results of Taylor
(2008), we hypothesized that the Czech minute load series is predictable, and
we find some evidence in support of this claim.

6.1.1 Detailed Results

As reported earlier in Section 5.4.1, we conducted the one-minute-ahead pseudo-
out-of-sample forecasting exercise with in-sample lengths of two to four days.
Afterward, RMSE and MAE metrics were calculated for each out-of-sample day
of minute data and compared across the three sizes. Averaging by day, both
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of these measures recorded the lowest values using the two-day in-sample set
(mean RMSE of 0.00348 & mean MAE of 0.00270). Therefore, we report the
results for in-sample sets of two days (Ti = 2880) and one-day out-of-sample
sets (Ti = 1440) of the minute data from 2011 to 2021 (i = 1, 2, ..., 4016).

Estimation

In Figure 6.1, we may observe the top ten most frequent specifications that were
selected using the Hyndman & Khandakar (2008) algorithm. It is evident that,
despite the fact that the input load series was in first differences of logarithms,
the lowest-AIC specifications tended to be differenced one additional time.
The reason for this might be that the algorithm performed a unit root test
only on the two-day subset of the data instead of the entire 2011 to 2021
series. Regardless, it is apparent that with a total of 4016 models estimated,
ARIMA(2, 1, 2) was selected in nearly 17% of all cases, closely followed by an
ARIMA(0, 1, 5) model.

Figure 6.1: Ten most frequent lowest-AIC specifications fitting Czech
minute load data (2011 to 2021)

Note: With two days of minute data used as the in-sample set, the final number
of employed models was 4016.

Evaluation

There were 4016 out-of-sample days of minute data, the overwhelming ma-
jority1 of which contained 1440 one-step-ahead predictions generated by the
ARIMA and random walk models. For each of these sets of forecasts, we calcu-
lated RMSE and MAE (we use MAE instead of MAPE because the load series
is in first differences) and plotted the results in two ways.

1The outliers were daylight savings time days.
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Firstly, in the left panel of Figure 6.2, we display the RMSE values of the
one-step-ahead ARIMA & naïve forecasts, and while there is a large degree of
overlap between the errors produced by the two methods, especially for lower
values of root mean square error, the distribution of RMSE values generated
by the ARIMA models seems to be considerably shifted to the left for RMSE
values between 0.003 to 0.004. Similarly, observing the right panel of Figure
6.2, which displays the mean absolute error values, results in more or less the
same conclusion.

Figure 6.2: Histograms of RMSE (left) and MAE (right) values of one-
step-ahead out-of-sample forecasts of Czech minute load
data (2011 to 2021)

Note: Two days were used as the in-sample set; the out-of-sample set’s length was one day.

To provide a thorough understanding of whether these differences were sta-
tistically significant, we conducted the modified (one-tailed) DM test briefly
described in Section 5.7, with the alternative hypothesis being that the ran-
dom walk forecasts were less accurate than ARIMA forecasts. This was done for
the entire series of predictions, as well as for each of the out-of-sample days of
one-minute-ahead forecasts, respectively. Moreover, we performed the modified
Diebold-Mariano procedure with absolute and squared loss.

The results of the one-tailed DM test utilizing the entire 2011 to 2021
set of one-step-ahead out-of-sample predictions can be seen in Table 6.1. At
the significance level of 5%, we reject the null hypothesis, suggesting that the
ARIMA forecasts were more accurate than the naïve predictions.

Table 6.1: Results of the modified Diebold-Mariano test comparing
the random walk and ARIMA forecasts

Loss function Statistic p-value
Absolute -254.98 < 0.01
Square -163.14 < 0.01

Note: The alternative hypothesis is that the random walk
forecasts were less accurate than the ARIMA forecasts.
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As outlined above, we were further interested in conducting the procedure
for each of the 4016 out-of-sample days. Thus, we saved the resulting DM
test p-values of one-tailed tests, and we report the number of rejections of the
null hypothesis at the significance level of 5% in Table 6.2. The modified DM
test results reveal that in 2703 out of 4016 cases (absolute loss), the forecasts
produced by the ARIMA models were significantly more accurate than those
generated by a random walk. When using squared loss, the number of H0 rejec-
tions was much higher—in 3569 instances. However, let us note that it would
be problematic from a statistical standpoint to arrive at a general conclusion
using these particular results. In this regard, the findings presented in Table
6.1 would be more suitable.

Table 6.2: Results of the modified Diebold-Mariano tests for each of
the out-of-sample days

Loss function H0 rejected∗ Failed to reject H0
∗

Absolute 2703x 1313x
Square 3569x 447x

Note: ∗number of times the null hypothesis was/was not rejected
at the significance level of 5%. The alternative hypothesis is that the
random walk forecasts were less accurate than the ARIMA forecasts.

While the modified DM test is more insightful in determining which of
the two forecasts were significantly more accurate, for completeness, let us
also report the number of times the root mean square error and the mean
absolute error were lower for the ARIMA forecasts. In terms of RMSE, the naïve
method’s predictions were more precise in 70/4016 instances. Regarding MAE,
on the other hand, the comparison contained 3186 cases where the ARIMA
forecasts yielded lower values of mean absolute error.

Finally, in Table 6.3, mean yearly values of RMSE and MAE metrics from
the pseudo-out-of-sample forecasting exercise are shown for both the ARIMA
and the random walk. Intriguingly, in the initial four years of our data, both
methods produced more accurate predictions (on average) than in later peri-
ods—a notable increase in all error metrics can be observed from 2014 to 2015.
However, since then, the difference in the measures across the two methods
appeared to have increased in favor of the ARIMA models. In other words,
despite producing higher error, ARIMA forecasts were comparatively more ac-
curate from 2015 to 2021 than in the initial four years in contrast with the naïve
predictions. Lastly, let us note that median RMSE and MAE values exhibited
an analogous pattern.
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Table 6.3: Average yearly RMSE and MAE of ARIMA and random
walk one-minute-ahead forecasts (2011 to 2021)

ARIMA Forecasts Naïve Forecasts
Year RMSE MAE RMSE MAE
2011 0.00313 0.00242 0.00320 0.00244
2012 0.00292 0.00224 0.00299 0.00225
2013 0.00275 0.00211 0.00280 0.00210
2014 0.00282 0.00214 0.00287 0.00213
2015 0.00394 0.00304 0.00416 0.00320
2016 0.00389 0.00302 0.00411 0.00319
2017 0.00375 0.00294 0.00400 0.00313
2018 0.00378 0.00296 0.00404 0.00317
2019 0.00377 0.00295 0.00403 0.00316
2020 0.00376 0.00295 0.00402 0.00315
2021 0.00379 0.00297 0.00410 0.00322

Diagnostics

Although the primary objective of this exercise was to determine whether it
is possible to outperform a random walk model in one-step-ahead pseudo-out-
of-sample forecasting, for completeness, we conducted three diagnostic tests
on the residuals produced by each of the 4016 specified ARIMA models. Once
again, let us reiterate that these results should be interpreted in the context of
each fitted model rather than being used to form general conclusions.

Firstly, we performed the Ljung-Box test for serial correlation, described
in Section A.3 of Appendix A, for lag lengths of 4 to 7. In the majority of
cases (5% significance level), we were unable to reject the null hypothesis of
no residual autocorrelation for every tested lag—the maximum number of H0

rejections was 65 for 7 lags (Table B.6), suggesting a satisfactory fit in most
instances.

Then, the presence of autoregressive conditional heteroskedasticity (ARCH)
effects in the residuals was tested using the Portmanteau test on squared resid-
uals (see Section A.3). At the significance level of 5%, the results (available in
Table B.7) somewhat indicate that, for some of the models, there may be ad-
ditional information contained in the residuals that could be further captured.

Finally, we also performed the Jarque-Bera (JB) test (explained in Section
A.4) to assess whether the ARIMA residuals were normally distributed in each
of the 4016 cases. Following the results in Table B.8, it seems that, in most
instances, the normality assumption appeared not to hold (5% significance
level). However, as mentioned by Brooks (2014, p. 210), the lack of residual
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normality does not necessarily have to be problematic when the in-sample size
is large.

Summary and Discussion

Overall, considerable improvements could be introduced to the modeling ap-
proach used in this exercise, such as accounting for ARCH effects in some cases.
However, even with an extremely short in-sample set, we see that it is possible
to produce more accurate very short term forecasts than those generated by a
random walk model.

Therefore, we believe that the presented evidence provides support in favor
of the hypothesis that high-frequency Czech load is predictable, especially fol-
lowing the overall results of the Diebold-Mariano test presented in Table 6.1.
However, it is important to note that when observing the histograms in Figure
6.2, we noted that for lower values of the error metrics, there is a considerable
overlap. Because the reported RMSE and MAE values quantify error for an
entire day of one-minute-ahead forecasts, we later discovered that winter days
were typically those where the random walk model produced predictions with
accuracy closer to the forecasts generated by the ARIMA models. As outlined in
Section 4.1.1, people typically demand more electricity during this season and
load has higher variance, which might be a part of the reason why it appears
to be more difficult to predict Czech minute load in winter.

On the contrary, even if we were to completely abstract from the findings
of Taylor (2008), we believe that some degree of predictability of any national-
level minute load series should be expected as even short-term in-sample periods
contain a day/night cycle. Though, it should be noted that our load series was in
first differences of logs, which means that such an exploitable pattern seemingly
vanishes (see Figure 5.7).

6.2 Hourly Data: One-Step-Ahead
The first of the two major analyses utilizing hourly data was concerned with
evaluating one-step-ahead forecasts of national-level loads on the 2021 out-of-
sample set. Predictions produced by five methods were compared: SARIMAX,
bagged regression trees, RNN, random walk, and RNN-SARIMAX. Overall,
the combined forecasts generated by RNN-SARIMAX appeared to be the most
accurate in comparison with other methods.
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6.2.1 Detailed Results

In the one-hour-ahead pseudo-out-of-sample forecasting exercise, which we de-
tailed in Section 5.4.2, the primary objective was to find the most accurate
specification generating the lowest-error predictions of load on the 2021 out-
of-sample set (T = 8734). Initially, three methods with optimized parameters
were employed: SARIMAX, bagged regression trees, and LSTM RNN. Because
official one-step-ahead load forecasts are not published by ČEPS, we added
naïve forecasts as a benchmark. Moreover, we further averaged the predictions
of the two most accurate models—the SARIMAX and the LSTM RNN—to pro-
duce even more precise forecasts. All these values were then compared using
conventional error metrics (RMSE and MAPE) as well as the Diebold-Mariano
test.

Estimation

Based on the results of the grid search and a subsequent test of several in-
sample set lengths, optimal parameters of the three methods were selected for
modeling load and can be seen in Table 6.4. For instance, one of the chosen
specifications was SARIMAX(1, 0, 1)(1, 1, 1)24, which contains Loadt as the de-
pendent variable2 that is shared across all the models. However, because the
three approaches utilized different lengths of the in-sample set, we refrain from
comparing their performance in this regard. Nevertheless, in Appendix B, we
provide coefficient estimates of the SARIMAX model (left side of Table B.10) as
well as a plot of in-sample and validation loss per epoch in the neural network
(left panel in Figure B.1).

Moreover, since the SARIMAX coefficient estimates are somewhat inter-
pretable (Hyndman 2010), let us briefly review some of the relationships dis-
played in Table B.10. Overall, most parameters are highly statistically signif-
icant. Some of those that do not appear to be different from zero include the
coronavirus dummy variable, several months throughout the year, or indicators
for two to four o’clock. Finally, it seems that the inclusion of hour-of-day and
non-working day interactions, as motivated in Section 5.2.1, was a reasonable
decision due to the (mostly) highly statistically significant negative parameter
estimates. This is further corroborated by the observation that these per-hour
coefficients do not cancel each other’s effect—for instance, the parameter esti-

2Regular load, i.e., no transformations were applied. Applying natural logarithms to the
dependent variable yielded mixed results across models.
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mate of the interaction of non-working day and hour 20 is equal to −467.69,
while the coefficient for hour 20 alone equals 1610.32 (both highly significant).

Table 6.4: Specifications used in the one-step-ahead forecasting exer-
cise with hourly data

Model Parameter Selected values Variables∗

SARIMAX
(p, d, q) (1, 0, 1) Load and

indicators(P, D, Q)s (1, 1, 1)24
in-sample start Jan 2018 (T = 21162)

Bagged
trees

min split 18
Load, weather, price,
all transformations,

and indicators

max depth 21
cost complexity 2.575 · 10−7

bootstrap rep. 30
in-sample start Jan 2013 (T = 64976)

RNN

hidden size 192

Load, temperature,
load transformations,

temperature
transformations,
and indicators

LSTM layers 1
linear units 256
learning rate 0.001
linear dropout 0
LSTM dropout 0
seq. length 120
loss function mean square
MLP activation ReLU
preprocessing standardization
optimizer Adam
batch size 128
epochs 22 (see Figure B.1)
in-sample start Jan 2015 (T = 47460)

Note: ∗Full list of variables available in Table B.9 of Appendix B. Bagged regression trees
and neural networks contain random elements; thus, the seed was fixed for reproducibility.
Any other parameters remained preset at default values.

Evaluation

In Table 6.5, the validation and out-of-sample RMSE & MAPE values for
each utilized method’s predictions are shown, including the benchmark naïve
forecasts and the combined model. All in all, the averaged RNN-SARIMAX
one-step-ahead predictions appeared to be the most accurate in terms of RMSE
as well as MAPE in both the validation (RMSE1 = 51.43, MAPE1 = 0.00492)
and the out-of-sample sets (RMSE1 = 53.77, MAPE1 = 0.00484).

Interestingly, with regard to the utilized out-of-sample error metrics, the
most precise method from the three standard models was the SARIMAX,
closely followed by the RNN. Finally, the root mean square forecast error of the
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bagged regression tree model was equal to 101.03, while the random walk pro-
duced roughly three times as much error, both in terms of RMSE and MAPE.
Thus, due to its poor performance, we ignore these naïve predictions in some
further comparisons purely for practical reasons.

Table 6.5: One-step-ahead validation & out-of-sample forecasting ac-
curacy results

Validation Out-of-sample
Method RMSE MAPE RMSE MAPE

RNN 61.56 0.00604 65.19 0.00596
SARIMAX 58.12 0.00556 60.24 0.00540

Bagged trees 91.36 0.00883 101.03 0.00884
RNN-SARIMAX 51.43 0.00492 53.77 0.00484

Random walk 308.39 0.02977 305.79 0.02756
Note: The out-of-sample set spanned from Jan 2021 to Dec 2021.

Because demand for electricity varies throughout the year, forecasting ac-
curacy may be expected to change as well. Thus, we provide monthly values
of RMSE and MAPE of the 2021 out-of-sample set forecasts in a graphical as
well as a tabular format in Figure 6.3 & Table 6.6, respectively. It is apparent
that in nearly all months, both the root mean square and the mean absolute
percentage error metrics were the lowest for the combined RNN-SARIMAX
predictions, recording the minimum RMSE in August (RMSE1 = 40.99) and
the lowest MAPE in June (MAPE1 = 0.00428).

The SARIMAX model’s forecasts can perhaps be considered as the second-
most accurate as measured by RMSE and MAPE in the pseudo-out-of-sample
exercise—in fact, in February 2021, the method recorded slightly lower MAPE
than the RNN-SARIMAX. Both the RMSE and MAPE of the bagged regres-
sion tree model’s forecasts suggested that the method, using the parameters
specified in Table 6.4, was the least fit for producing one-step-ahead forecasts
on the 2021 data, further corroborating the results from Table 6.5.

To determine which of the methods produced the most accurate one-hour-
ahead forecasts on the out-of-sample set, let us perform several modified Diebold-
Mariano tests with absolute and square loss. The results are displayed in Table
6.7 and it is clear that none of the methods produced more precise forecasts than
the RNN-SARIMAX at the 0.1% significance level, even after lowering the sig-
nificance threshold using Bonferroni correction (James et al. 2021, pp. 564–565).
The SARIMAX also appeared to yield significantly more accurate predictions
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Figure 6.3: One-step-ahead out-of-sample forecast errors by month

Table 6.6: One-step-ahead out-of-sample forecast errors by month

RMSE MAPE
Month
(2021) RNN SARIMAX Bagged

trees
RNN-

SARIMAX RNN SARIMAX Bagged
trees

RNN-
SARIMAX

Jan 74.36 76.83 118.27 67.05 0.00599 0.00567 0.00939 0.00508
Feb 86.01 64.04 148.55 63.80 0.00701 0.00509 0.01107 0.00515
Mar 73.47 64.28 125.83 58.39 0.00609 0.00537 0.01059 0.00479
Apr 63.85 63.27 114.53 54.92 0.00607 0.00584 0.01035 0.00514
May 59.48 52.21 84.34 47.54 0.00591 0.00537 0.00829 0.00483
Jun 53.80 50.44 69.41 44.00 0.00550 0.00499 0.00678 0.00428
Jul 48.89 51.37 66.86 42.70 0.00539 0.00571 0.00728 0.00473
Aug 50.35 47.32 71.59 40.99 0.00532 0.00519 0.00797 0.00445
Sep 58.48 50.69 88.82 45.40 0.00586 0.00519 0.00864 0.00463
Oct 66.65 60.94 99.64 54.15 0.00632 0.00546 0.00903 0.00502
Nov 61.02 60.46 82.51 50.91 0.00540 0.00507 0.00740 0.00441
Dec 76.98 73.24 110.82 67.26 0.00666 0.00584 0.00947 0.00558

than the RNN on the 2021 out-of-sample load data, both with regard to abso-
lute and square loss in the DM test (0.1% significance level).

Thus, in Figure 6.4, we provide examples of the most accurate one-step-
ahead forecasts (RNN-SARIMAX) together with actual load in four periods
of the 2021 out-of-sample set. We considered it important to include weekends
(Feb 6, Jun 13, Dec 25–26) and holidays (Oct 28, Dec 24–26) in these panels,
which are more challenging to forecast than regular days. Overall, except for the
Christmas holidays, the one-hour-ahead RNN-SARIMAX predictions appeared
to very closely approximate the actual load in the February, June, and October
sample plots.
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Table 6.7: Modified Diebold-Mariano test results in the one-step-
ahead forecasting scheme

Modified DM Test p-values – Absolute Loss
HA : Column i method’s forecasts are less accurate than row j method’s forecasts, i, j ∈ {1, ..., 5}

RNN SARIMAX Bagged
trees

Random
walk

RNN-
SARIMAX

RNN — >0.1 <0.001 <0.001 >0.1
SARIMAX <0.001 — <0.001 <0.001 >0.1

Bagged trees >0.1 >0.1 — <0.001 >0.1
Random walk >0.1 >0.1 >0.1 — >0.1

RNN-SARIMAX <0.001 <0.001 <0.001 <0.001 —
Modified DM Test p-values – Square Loss

HA : Column i method’s forecasts are less accurate than row j method’s forecasts, i, j ∈ {1, ..., 5}

RNN SARIMAX Bagged
trees

Random
walk

RNN-
SARIMAX

RNN — >0.1 <0.001 <0.001 >0.1
SARIMAX <0.001 — <0.001 <0.001 >0.1

Bagged trees >0.1 >0.1 — <0.001 >0.1
Random walk >0.1 >0.1 >0.1 — >0.1

RNN-SARIMAX <0.001 <0.001 <0.001 <0.001 —

Figure 6.4: Sample plots of the best one-hour-ahead forecasts and ac-
tual load (2021)

Diagnostics

For completeness, we conducted several residual diagnostic procedures and tests
for the SARIMAX, RNN, and bagged regression trees (in both the one-hour-
ahead and 48-hours-ahead exercises), detailing our process in Appendix A,
Section A.5, though we are unsure of the contribution of diagnostics in the lat-
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ter two nonlinear methods. Thus, concentrating primarily on the results of the
SARIMAX models (see Section A.5), serial correlation and ARCH effects ap-
pear to be present, suggesting that some information may not be utilized by the
employed specifications (as per Hyndman & Athanasopoulos (2021, sec. 5.4)).

While this issue might be alleviated by including additional parameters,
residual diagnostics are “not a good way to select a forecasting method” (Hyn-
dman & Athanasopoulos 2021, sec. 5.4). Crucially, though, in the grid search
outlined in Section 5.5, higher orders of p and q (see Equation 5.3) were tested
and generated worse results on the validation set in terms of RMSE and MAPE.
Nonetheless, we believe that these results should be somewhat expected because
of the multiple seasonal patterns present in the load data, which are challenging
to fully account for.

Summary and Discussion

In sum, we may observe that most employed models produced relatively highly
accurate predictions of the 2021 Czech transmission grid load when compared
to the benchmark random walk in the one-hour-ahead pseudo-out-of-sample
forecasting exercise. With the exception of trees and the naïve method, every
other model produced forecasts with MAPE far below 1% on a monthly basis.
The most accurate technique in terms of RMSE, MAPE, and Diebold-Mariano
tests involved averaging the predictions of the SARIMAX and the RNN models,
yielding RMSE of around 53.77 and MAPE of 0.484% out-of-sample.

Given its performance, we believe that the RNN-SARIMAX model could be
helpful in real-time management of the transmission grid. However, it is worth
noting that we have no information about the actual models used by the sys-
tem operator for one-hour-ahead projections. Nonetheless, we believe that the
predictions of each of the models can be enhanced by, for example, including
composite weather variables, as mentioned in Section 5.2.2. Another oppor-
tunity for improvement in the performance of these methods would involve
conducting the grid search with higher-order parameters (for instance, more
bootstrap replications in the bagged regression trees, larger seasonal AR &
MA parameters of the SARIMAX model, etc.), but perhaps more importantly,
executing the complete search for each expansion of the initial in-sample set.
Lastly, for variable selection in the neural network model, the implementation
of a more extensive step-wise selection procedure similar to Fan & Hyndman
(2012) may further be utilized to increase out-of-sample accuracy of the RNN.
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6.3 Hourly Data: 48-Hours-Ahead
In the second analysis utilizing hourly load, we generated forecasts of up to
48-steps-ahead through a rolling scheme and evaluated the performance of sev-
eral models on the 2021 out-of-sample set. The SARIMAX, RNN, and sea-
sonal naïve (SNAIVE) predictions were compared with the Czech transmission
grid operator’s forecasts (refered to as official). Additionally, RNN-SARIMAX,
RNN-Official, and SARIMAX-Official averaged predictions were calculated and
included in the comparison. All in all, while these combined forecasts appeared
to be more precise than the standard methods as well as the official projections,
the RNN-SARIMAX seemed to be the most accurate.

6.3.1 Detailed Results

The primary goal of forecasting load 48-hours-ahead out-of-sample and com-
paring the predictions to actual values was to assess the accuracy of the official
projections published by ČEPS (see Section 5.4.2 for a detailed description of
the scheme). As described in Section 5.6, regression trees were not utilized,
unlike in the one-step-ahead analysis. Instead, SNAIVE was employed as a
benchmark. Much like the naïve forecast, the SNAIVE method simply predicts
the same values as in the previous season (Hyndman & Athanasopoulos 2021,
sec. 5.2), which we set to the year before the start of the out-of-sample set
in our case.3 Furthermore, both the SARIMAX and LSTM RNN specifications
were optimized for the 48-hours-ahead forecasting exercise, resulting in different
parameters than in the first task.

Afterward, all three of the aforementioned methods were used to generate
forecasts up to 48-hours-ahead on the 2021 out-of-sample set (T = 8734).
Then, using simple averaging, RNN-SARIMAX, RNN-Official, and SARIMAX-
Official predictions were created. All the multi-step forecasts were compared
using RMSE and MAPE—overall and by month. The Friedman and Nemenyi
tests (Section 5.7) were then employed for method comparison.

Estimation

The specifications selected based on the results of the conducted grid search
are displayed in Table 6.8. Once again, Loadt is the dependent variable in all

3Practically, we simply superimposed 2020 data onto 2021, further aligning the load values
by wekends instead of the correct dates.
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tested models, and the final in-sample lengths of the SARIMAX and the RNN
vary, complicating comparisons of in-sample fits. In Table B.10 of Appendix B,
coefficient estimates of the SARIMAX(2, 0, 2)(1, 0, 1)24 specification are shown,
and the in-sample & validation loss per epoch of the RNN is displayed in the
right panel of Figure B.1, the latter of which suggested choosing 17 epochs in
the neural network model.

Focusing on SARIMAX parameter estimates in Table B.10, as in the first
specification, most relationships appear to be statistically significant. Moreover,
the coefficient estimates of the utilized dummy variables seem to be more or
less equal across the two specifications, taking standard errors into account. For
instance, the coefficient of non-working days (wknd_or_h) was negative in both
cases and equal to approximately -170 in the two specifications. On the other
hand, the parameter estimate of the coronavirus indicator now appeared to
be highly statistically significant and equal to around -121. In standard linear
regression, this would suggest that load during the states of emergency due to
the pandemic was slightly lower than usual—in a SARIMAX model, however,
the interpretation of this result might be less straightforward (Hyndman 2010).

Table 6.8: Specifications used in the 48-hours-ahead forecasting exer-
cise with hourly data

Model Parameter Selected values Variables∗

SARIMAX
(p, d, q) (2, 0, 2) Load and

indicators(P, D, Q)s (1, 0, 1)24
in-sample start Jan 2018 (T = 21162)

RNN

hidden size 128

Load, temperature,
load transformations,

temperature
transformations,
and indicators

LSTM layers 1
linear units 512
learning rate 0.001
linear dropout 0
LSTM dropout 0
seq. length 120
loss function mean square
MLP activation ReLU
preprocessing standardization
optimizer Adam
batch size 128
epochs 17 (see Figure B.1)
in-sample start Jan 2016 (T = 38702)

Note: ∗Full list of variables available in Table B.9 of Appendix B. Neural networks con-
tain random elements; thus, the seed was fixed for reproducibility. Any other parameters
remained preset at default values.
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Evaluation

Table 6.9 displays the forecast RMSE and MAPE metrics on the validation
(where applicable) and out-of-sample sets of seven methods: RNN, SARIMAX,
SNAIVE, RNN-SARIMAX, the official 48-hours-ahead predictions, and the
RNN-Official & SARIMAX-Official forecast combinations. Concentrating on
the out-of-sample error values, the lowest-RMSE predictions were generated
by the simple mean of the RNN and official predictions (RMSE48 = 269.76).
With regard to MAPE, the highest accuracy forecasts, considering the en-
tire 2021 out-of-sample set, were generated by the RNN-SARIMAX models
(MAPE48 = 0.2300). Furthermore, for 1 to 48-hours-ahead forecasts, the RNN
on its own appeared to yield more accurate out-of-sample load forecasts than
the SARIMAX in terms of both error measures.

Table 6.9: 48-hours-ahead validation & out-of-sample forecasting ac-
curacy results

Validation Out-of-sample
Method RMSE MAPE RMSE MAPE
Official — — 372.44 0.03953
RNN 300.25 0.02667 308.71 0.02499

SARIMAX 321.76 0.02946 326.00 0.02844
SNAIVE 557.49 0.05562 699.69 0.06153

RNN-SARIMAX 261.84 0.02395 271.60 0.02300
RNN-Official — — 269.76 0.02517

SARIMAX-Official — — 272.82 0.02525
Note: The out-of-sample set spanned from Jan 2021 to Dec 2021.

Similarly to the previous hourly forecasting exercise, we report monthly
RMSE and MAPE measures to observe the development of forecast accuracy
in time, and these results are shown in two sets of figures and tables for clarity.
Firstly, in Figure 6.5 & Table 6.10, the performance of standard methods (i.e.,
no forecast combinations) is displayed together with the official predictions. On
average, the forecasts of the RNN and the SARIMAX models were more accu-
rate in terms of both error metrics in the majority of instances. With respect
to RMSE, however, the official predictions were comparatively closer in some
months, yet still seemed worse overall. Altogether, we discovered that Decem-
ber was the most challenging month to generate forecasts for, in part due to
the Christmas holidays—specifically, as partially illustrated in the bottom-right
panels of Figures 6.8 or B.2, the two methods had a tendency to overestimate
load on some of the non-working days; on the other hand, the operator’s predic-
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tions were remarkably precise on December 24th, though less so in the following
days.

However, perhaps the most surprising finding was the accuracy of the sea-
sonal naïve method in August 2021 (RMSE48 = 188.88 & MAPE48 = 0.02167)
as well as in later months. While the method produced highly inaccurate pre-
dictions in the first half of the year (see Figure 6.5 and Table 6.10), its forecasts
in late summer and early fall were superior to the official projections in terms
of MAPE.

Figure 6.5: 48-hours-ahead out-of-sample forecast errors of standard
methods by month

Table 6.10: 48-hours-ahead out-of-sample forecast errors of standard
methods by month

RMSE MAPE
Month
(2021) Official RNN SARIMAX SNAIVE Official RNN SARIMAX SNAIVE

Jan 430.55 324.34 424.65 518.97 0.04260 0.02746 0.03461 0.04377
Feb 403.58 373.19 467.06 782.66 0.03741 0.02965 0.03658 0.07021
Mar 393.89 367.21 357.19 590.34 0.04050 0.03271 0.02849 0.05780
Apr 431.95 489.06 375.52 1538.43 0.04630 0.04043 0.03410 0.20609
May 345.48 176.27 240.62 895.50 0.04255 0.01782 0.02403 0.12106
Jun 372.02 149.93 240.98 489.00 0.04790 0.01542 0.02354 0.06726
Jul 329.92 286.86 255.96 376.97 0.04350 0.02384 0.02772 0.05249
Aug 328.49 166.90 258.35 188.88 0.04458 0.01763 0.02766 0.02167
Sep 280.13 204.62 228.78 391.94 0.03403 0.01919 0.02242 0.02906
Oct 359.30 271.93 281.47 430.86 0.04260 0.02407 0.02608 0.04076
Nov 402.51 233.52 301.92 464.08 0.04274 0.01858 0.02690 0.03961
Dec 364.70 444.96 383.19 741.95 0.03440 0.03625 0.02912 0.06666

Diverting our attention to Figure 6.6 & Table 6.11, which show the monthly
results of the averaged (up to) 48-steps-ahead predictions on the 2021 out-of-
sample set, it is evident that the official forecasts were now the least accurate
every month both in terms of RMSE and MAPE. Moreover, in the summer,
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the RMSE of the official two-day projections was more or less two-fold in com-
parison with the most accurate method (RNN-SARIMAX), while MAPE was
approximately three times as large in some cases—intriguingly, the MAPE for
the RNN-SARIMAX in June was at its minimum, while the MAPE for the
official forecasts was the highest during this month. With regard to the other
methods, the 48-hours-ahead RNN-SARIMAX predictions seemed to achieve
the lowest error in terms of MAPE in 7/12 months, ranging from around 1.5%
to nearly 3.3%. Combining the RNN or SARIMAX forecasts with the offi-
cial projections appeared to yield comparatively better results in the context
of RMSE rather than MAPE, with the lowest RMSE being recorded for the
RNN-Official averaged predictions in September (RMSE48 = 143.55).

Figure 6.6: 48-hours-ahead out-of-sample forecast errors of averaged
forecasts by month

Table 6.11: 48-hours-ahead out-of-sample forecast errors of averaged
forecasts by month

RMSE MAPE
Month
(2021) Official RNN-

SARIMAX
RNN-
Official

SARIMAX-
Official Official RNN-

SARIMAX
RNN-
Official

SARIMAX-
Official

Jan 430.55 337.68 327.60 368.63 0.04260 0.02798 0.03119 0.03210
Feb 403.58 385.12 350.29 353.19 0.03741 0.03045 0.02937 0.02929
Mar 393.89 317.90 345.55 301.78 0.04050 0.02842 0.03263 0.02914
Apr 431.95 384.47 367.90 325.07 0.04630 0.03353 0.03635 0.03109
May 345.48 173.30 215.00 219.49 0.04255 0.01742 0.02487 0.02365
Jun 372.02 158.36 209.69 227.12 0.04790 0.01540 0.02382 0.02335
Jul 329.92 225.40 185.83 170.18 0.04350 0.02302 0.02100 0.01927
Aug 328.49 171.74 193.47 231.12 0.04458 0.01852 0.02330 0.02585
Sep 280.13 169.52 143.55 187.56 0.03403 0.01679 0.01629 0.02118
Oct 359.30 215.66 220.66 255.08 0.04260 0.02059 0.02304 0.02642
Nov 402.51 206.19 209.21 310.30 0.04274 0.01754 0.01953 0.03043
Dec 364.70 358.03 343.71 247.64 0.03440 0.02768 0.03113 0.02109
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Because we are working with a sequence of up to 48-hours-ahead forecasts
rather than a vector of h-steps-ahead predictions, the Diebold-Mariano test
should not be used for comparisons (as mentioned in Section 5.7). Instead, in
Figure 6.7, we provide the results of the Friedman and Nemenyi tests visu-
ally—intuitively, the lower the method’s mean rank, the better the forecasts.
In our case, the most performant method, according to the results of these two
tests, was the RNN-SARIMAX model, with the solo RNN in second (both ranks
were statistically significant at the 5% level). The SNAIVE method was deter-
mined as the least accurate approach, narrowly outperformed by the official
predictions.

Figure 6.7: Results of the Friedman and Nemenyi tests comparing the
performance of methods in the 48-hours-ahead scheme

Finally, in Figure 6.8, we display four sample four-day periods with the
RNN-SARIMAX forecasts, actual load, and official predictions.4 As mentioned
in Section 6.2.1, we emphasize weekends and holidays in the selected plots due
to the higher difficulty in forecasting load accurately during these periods. If
we were to only consider the working days in Figure 6.8, the accuracy of the
RNN-SARIMAX predictions would seem unparalleled when compared to the
official forecasts, especially in the four June days (top-right panel). However,
for some public holidays like December 24th, the operator’s projections were
substantially more precise, as mentioned earlier.

Diagnostics

In terms of residual diagnostics, which are presented in Section A.5, identical
conclusions are reached as in the one-step-ahead forecasting exercise—for in-
stance, there were issues with autocorrelation and heteroskedasticity in most

4In Figure B.2 of Appendix B, we also provide sample forecasts of the remaining methods
in this exercise.
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Figure 6.8: Sample plots of the best (up to) 48-hours-ahead forecasts,
official predictions, and actual load (2021)

models. To avoid repeating ourselves, we refer the reader to the explanation
provided in the one-step-ahead analysis (Sections 6.2.1 and A.5).

Summary and Discussion

With the objective of forecasting load up to 48-hours-ahead on the 2021 out-
of-sample set, we were able to specify models capable of outperforming the
predictions published by ČEPS. Overall, averaging the outputs of the RNN
and SARIMAX methods yielded the most accurate forecasts for a horizon of
up to two days, producing MAPE of around 1.5% to 3.4%, whereas the official
prediction’s mean absolute percentage error ranged from 3.4% to 4.8% on a
monthly basis.

However, one important observation from the sample plots in Figure 6.8
should be highlighted. All four panels show that the system operator’s projec-
tions frequently underestimate the actual load. Nevertheless, when we compare
this approach to the strategy of similar institutions around the world, such as
the Australian Energy Market Operator for which Fan & Hyndman (2012) cre-
ated a short-term load forecasting model, we do not observe the same pattern
of underestimation. Perhaps it might be less complicated to increase electric-
ity production in the very short term rather than managing excess load in the
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Czech context. In this regard, we would strongly advise utilizing a different load
forecasting method for holidays (e.g., expert judgement) due to the occasional
lack of accuracy of the proposed RNN-SARIMAX model during these periods.

6.4 Contribution, Limitations, & Future Research
To reiterate, the results of the first task revealed that high-frequency Czech
transmission system load is predictable, i.e., more accurate than a naïve guess in
a one-step-ahead scheme, which is in accordance with related literature (specif-
ically Taylor (2008)). We suppose that this question may have been tackled
by operators themselves or monitoring systems manufacturers at some point.
Regardless, based on our findings, it is possible that some structural shift may
occasionally occur, as evidenced by the change in average error from 2014 to
2015 (Table 6.3), raising the importance of these types of exercises. Moreover,
with the increasing adoption of renewable sources of electricity, we believe that
the relevance of these analyses may further grow due to the stability challenge
discussed in Section 3.1.1.

In the second task, we utilized hourly load data and produced forecasts for
the 2021 out-of-sample set one-step-ahead. As reported, the best specification
consistently generated predictions with MAPE fluctuating around 0.5% on a
monthly basis, establishing itself as a potentially useful tool in real-time system
management, we believe. Due to factors such as different sampling periods, it
may be challenging or even incorrect to compare the results with those from
related literature directly. Taking this into account, to provide at least some
level of comparison, in Darbellay & Slama (2000), the authors list MAPE met-
rics of their one-step-ahead Czech load forecasts produced by an ANN and an
ARIMAX model. For the two utilized techniques, the error measure was equal
to around 1% both in 1994 & 1995. In our analysis, we were able to generate
one-hour-ahead predictions with the lowest MAPE of less than 0.5% in 2021.

The third exercise expanded on the second task by forecasting up to 48-
steps-ahead, and comparing our predictions with forecasts published by the
Czech transmission system operator. Following the results, we believe that our
thesis provides several ideas and opportunities to improve the official predic-
tions. Specifically, we would highlight the performance of the developed indi-
cator variables that could be utilized in future analyses, as they drastically
improved fit, particularly in the case of the SARIMAX models. Though, let
us emphasize that caution must be exercised with respect to load predictions
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for certain holidays. Nevertheless, we have seen that even a simple seasonal
naïve model was able to generate more accurate forecasts in some instances,
indicating that the official predictions could perhaps be refined. Overall, we
believe that the system operator should have a vested interest in maintaining
accurate load forecasting models in order to facilitate compliance with its legal
obligations (ČEPS 2020).

These improvements, as discussed in Section 3.3, which is concerned with
the effects of inaccurate load forecasting, may lead to cost savings due to, for in-
stance, decreased risk associated with the allocation of reserves or more efficient
electricity production (Ranaweera et al. 1997; Hobbs et al. 1999). Following the
findings of the third analysis, this might be especially relevant for all summer
and early fall months.

With regard to the limitations of our research, we believe that more specifi-
cations could be surveyed in the grid search, especially with respect to varying
in-sample sets (the grid search we conducted was performed on an in-sample
set starting in 2017). Another potential enhancement to the outcomes of this
thesis would likely be reached with the help of closer collaboration with the
Czech system operator. Additionally, more complex weather predictors, as well
as more elaborate variable selection schemes, would perhaps further improve
model fit. Finally, the RNN-SARIMAX model’s forecasts for 48-hours-ahead on
particular public holidays, such as December 24th, significantly overpredicted
actual load on the 2021 data—for this reason, different approaches, e.g., ex-
pert knowledge, should be used in forecasting load during these specific, albeit
infrequent, days of the year.

In terms of directions of future research, one possibility would be to con-
sider longer-horizon hourly predictions using the Czech data, such as one week
or a month. Another option could involve evaluating different load forecasting
frameworks on the dataset that we prepared, or even on newer load, weather,
and price data published by ČEPS, NOAA, and OTE, respectively. Further-
more, Hong & Fan (2016) generally advocate for more extensive development
of probabilistic forecasts with the objective of more thoroughly processing un-
certainty, especially in the context of the industry’s gradual shift towards sus-
tainability. Finally, as maintained by Hong et al. (2020), cross-disciplinary co-
operation as well as reproducibility are currently the key steps in generating
valuable research in the field of load forecasting.
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Conclusion

The utility sector’s deregulation in the 1980s jumpstarted the research on short-
term load forecasting (Hong & Fan 2016). However, despite the field’s substan-
tial body of literature, generating accurate predictions remains a challenging
endeavor (Kuster et al. 2017), yet an essential part of the modern-day power
grid operation (Malik et al. 2021).

In this thesis, we analyzed minute- and hourly-frequency national-level elec-
tric load series from the Czech transmission system operator and conducted
three pseudo-out-of-sample forecasting exercises to assess the performance of
several univariate & multivariate methods. The objective of the first task was
to determine whether high-frequency load is predictable by comparing rolling
ARIMA one-step-ahead forecasts with predictions generated by a random walk.
This exercise was performed using more than a decade (2011–2021) of first-
differenced minute-frequency logarithmic loads, and we found evidence in sup-
port of predictability, which is consistent with related literature (Taylor 2008).

The second and third analyses utilized hourly loads as well as explanatory
variables derived from weather data, electricity prices, and seasonal patterns of
the modeled series. In both exercises, we conducted a grid search to determine
optimal parameter combinations based on the performance of each model on
the validation set (June 2020 to December 2020). Furthermore, a significant
part of these two tasks was the development of a large set of indicator variables
accounting for seasonal and calendar effects, as well as the creation of additional
predictors by transforming the historical load data and the raw explanatory
variables, following the paper of Fan & Hyndman (2012).

In one of the hourly analyses, we compared the one-step-ahead out-of-
sample forecasting accuracy of several methods on one year of unseen data
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(2021) using RMSE, MAPE, and the Diebold-Mariano test. Particularly, one-
step-ahead forecasts generated by the following techniques were compared:
SARIMAX, LSTM RNN, bagged regression trees, random walk, and averaged
predictions of the SARIMAX and the LSTM RNN models. Overall, the most
accurate next-hour forecasts were produced by combining the SARIMAX and
the RNN, which consistently generated predictions with approximately 0.5%
MAPE on a monthly basis.

The final exercise utilizing hourly data was concerned with evaluating the
performance of various techniques in forecasting load up to 48-hours-ahead on
the 2021 out-of-sample set, and comparing these predictions to those published
by the Czech transmission system operator. In particular, we employed different
SARIMAX & recurrent neural network models than in the one-hour-ahead
task—both with optimized parameters for forecasting hourly load up to 48-
steps-ahead. We further included a seasonal naïve method as well as averages
of the SARIMAX, RNN, and the operator’s projections. The combinations of
these three approaches generally yielded the most accurate results in terms
of MAPE and RMSE. Importantly, however, the RNN-SARIMAX forecasts
produced lower RMSE as well as MAPE than the official predictions in every
month of 2021, and generated around 50% less error in terms of both metrics in
several months, especially with respect to MAPE. Finally, based on the results
of the Friedman and Nemenyi tests, RNN-SARIMAX was determined as the
most performant method.

While the proposed models in the hourly-load analyses can be improved by,
for example, conducting a broader grid search or generating more accurate fore-
casts for some holidays, we believe that this thesis might offer some suggestions
and ideas for enhancing the official predictions. Lastly, because we anticipate
that the significance of generating precise load projections will rise as a result of
the industry’s transition towards sustainability, we find it important to engage
in interdisciplinary cooperation (as argued by Hong et al. (2020)), which could
be beneficial for all parties involved.
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Appendix A

Additional Definitions

In this section, we provide additional definitions and explanations referenced
in the main body of the thesis.

A.1 Sigmoid and Hyperbolic Tangent
The sigmoid and hyperbolic tangent functions are widely used in artificial neu-
ral networks as activations, and can be written as

σ(z) = 1
1 + e−z

,

tanh(z) = 2σ(2z) − 1,

following Goodfellow et al. (2016, p. 191) and James et al. (2021, p. 405).

A.2 ARIMA Model Selection
The Hyndman & Khandakar (2008) non-seasonal ARIMA(p, d, q) step-wise
model selection algorithm first fits the following specifications: (0, d, 1), (1, d, 0),
(0, d, 0), and (2, d, 2), where the order of differencing d is selected based on the
results of the Kwiatkowski–Phillips–Schmidt–Shin test. If the d parameter is
set to be equal to zero or one, a constant term is added, and a fifth specifica-
tion with no intercept (ARIMA(0, d, 0)) is tested (Hyndman & Athanasopoulos
2021, sec. 9.7). Afterward, if the Akaike information criterion is specified as the
goodness of fit measure, it is calculated as

AIC = −2log(L) + 2(p + q + k),
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where L is the model’s likelihood, p & q are the AR & MA orders, respectively,
and k = 1 if an intercept term is included, k = 0 otherwise. The lowest-AIC
model is then chosen as a temporary baseline.

In the second step of the algorithm, models with p ± 1, q ± 1, and an
excluded or included intercept term are fitted based on the specification from
the previous step. If a model with lower AIC is found, then it is treated as
the new baseline. This stage is repeated until there is no adjacent specification
with lower AIC. Finally, by default, the maximum order of p and q is set to 5.

A.3 Ljung-Box and ARCH Tests
The term autocorrelation refers to the linear relationship between ut (in our
case, ut refers to the model’s residuals) and its lags (Tsay 2005, p. 26). For lag
ℓ, autocorrelation ρℓ can be written as

ρℓ = Cov(ut, ut−ℓ)
V ar(ut)

,

where ut is assumed to be weakly stationary, i.e., its mean, variance, and au-
tocovariance (top term in the above equation) are constant (Tsay 2005, p. 26,
Brooks 2014, pp. 252–253).

The Ljung-Box test augments the Portmanteau test, which is used to de-
termine whether several autocorrelations of ut are statistically different from
zero, and defines the following test statistic

Q(m) = T (T + 2)
m∑︂

ℓ=1

ρ̂2
ℓ

T − ℓ
,

where T refers to the sample size, ρ̂ is the sample autocorrelation, and the statis-
tic asymptotically follows a chi-square distribution with m degrees of freedom
(Tsay 2005, p. 27).

The test for ARCH effects, on the other hand, is concerned with squared
residuals u2

t , and tests the null hypothesis of H0 : ρ1 = ... = ρm = 0, i.e., no
autocorrelation between u2

t and its lags. The test employs the original Port-
manteau statistic, which is formulated as

Q∗(m) = T
m∑︂

ℓ=1
ρ̂2

ℓ ,

where, with m degrees of freedom, Q∗(m) is asymptotically chi-square dis-
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tributed, T is the size of the sample, and ρ̂ refers to the sample autocorrelation
(Tsay 2005, pp. 26–27, 101).

A.4 Jarque-Bera Test
Following Tsay (2005, pp. 9–10), the skewness and the excess kurtosis of a
normally distributed random variable are both equal to zero. The Jarque-Bera
test utilizes these two facts and defines a test statistic that can be written as

JB = Ŝ
2(x)

6/T
+ (K̂(x) − 3)2

24/T
,

where Ŝ(x) & K̂(x) refer to sample skewness and kurtosis, respectively, while
T is the sample size. Finally, the JB statistic is asymptotically chi-squared
distributed with two degrees of freedom. The null hypothesis of the JB test is
that the variable in question is normally distributed (Tsay 2005, pp. 9–10).

A.5 Hourly Data: Residual Diagnostics
Firstly, let us note that varying lengths of the in-sample set were used in most
methods. Thus, pairwise comparisons of residual diagnostics should not be
attempted. In Figure A.1, we may observe the autocorrelation functions of
residuals for all standard methods across the two different hourly schemes. It is
apparent that in both SARIMAX models, which are perhaps the only models
where standard residual diagnostics are reasonable, a considerable degree of
information appears to be accounted for. In all other models’ residuals, there
seems to be, at the very least, a spike at the 24th lag, which can be attributed
to daily seasonality—the reason why this does not occur in the SARIMAX
models is likely due to the s parameter being set to 24 (see Equation 5.3).

In terms of diagnostic tests, we conducted the Ljung-Box test for serial
correlation, outlined in Section A.3, for lags of 1 to 7. For all models and for
each of the seven lag lengths, the null hypothesis was rejected at the significance
level of 5%, implying the presence of serial correlation. Similarly, in the ARCH
tests (see Section A.3), for all tested lag lengths (1 to 7), the null hypothesis
was rejected in all models (p-value below 5%). Let us note that in Papaioannou
et al. (2016), which is one of the works where residual diagnostics are conducted
(though only for SARIMAX), the authors fail to reject the null hypothesis in
both the Ljung-Box and the ARCH tests. However, they do not appear to
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Figure A.1: Autocorrelation functions of residuals from all models

disclose the tested lag lengths, and furthermore, their analysis considered daily
load data (from a different country). Moreover, in Kim et al. (2019), which is
concerned with hourly building-level loads, the authors report mixed results in
terms of residual autocorrelation with their ARIMA specifications.

Finally, in Figure A.2, we plot histograms of residuals with plots of the
normal density function in each. In comparison with the normal distribution,
it is immediately apparent that the residuals in all five panels exhibit excess
kurtosis, suggesting a lack of normality. This is further corroborated by the
results of the Jarque-Bera test (see Section A.4), as the null hypothesis of a
normal distribution is rejected in each instance.

Figure A.2: Histograms of residuals from all models

Note: Normal density plot added for illustrative purposes.



Appendix B

Additional Results

This appendix includes additional tables and figures we refer to in the thesis.

Table B.1: Summary statistics of 1-minute load (2011 to 2021)

Variable Min Q1 Median Mean Q3 Max SD
Load (MW) 4343 6881 7882 7923.5 8851 12569 1357.1

Table B.2: Augmented Dickey-Fuller test results on raw data (2011 to
2021)

ADF test H0 rejections∗

Variable None Drift Drift & Trend
Load (minute) 0/10 0/10 0/10
Load (hourly) 4/10 5/10 5/10
Air pressure 0/10 9/10 9/10
Air pressure (station diff.) 0/10 0/10 0/10
Price 0/10 0/10 0/10
Temperature 3/10 3/10 3/10
Temperature (station diff.) 6/10 6/10 6/10
Visibility 0/10 0/10 0/10
Visibility (station diff.) 0/10 0/10 0/10
Wind speed 0/10 0/10 0/10
Wind speed (station diff.) 0/10 0/10 0/10

Note: ∗p-value below 5%; Hourly data taken since 2012. Rejection of
the null hypothesis suggests that a unit root is not present.
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Table B.3: Augmented Dickey-Fuller test results on a subset of differ-
enced data (2011 to 2021)

Standard ADF test
Differenced variable Lag order p-value
Load (minute) 179 <0.01
Air pressure (station diff.) 45 <0.01
Price 45 <0.01
Temperature 45 <0.01
Visibility 45 <0.01
Visibility (station diff.) 45 <0.01
Wind speed 45 <0.01
Wind speed (station diff.) 45 <0.01

Note: Hourly data taken since 2012. Rejection of the null
hypothesis suggests that a unit root is not present.

Table B.4: Summary statistics of additional predictors (hourly data
from 2012 to 2021)

Variable Min Q1 Median Mean Q3 Max
Load Avg. 7D 6287 7256 7778 7948 8615 10 539
Load Max 24h 6176 8209 8934 8989 9743 12 133
Air Pressure Avg. 7D 995 1013 1017 1017 1021 1036
Air Pressure Max 24h 980 1015 1019 1020 1025 1048
∆Air Pressure Avg. 7D −4.623 −0.914 −0.070 −0.174 0.626 2.850
∆Air Pressure Max 24h −6.200 0.000 1.200 1.272 2.400 9.800
Price Avg. 7D 1.151 31.468 37.458 43.147 44.554 312.895
Price Max 24h 2.22 43.60 53.43 62.51 66.12 620.00
Temperature Avg. 7D −12.281 3.530 9.993 10.082 16.944 27.739
Temperature Max 24h −11.925 5.775 12.650 12.788 19.900 35.475
∆Temperature Avg. 7D −5.283 −2.055 −1.243 −1.117 −0.282 5.923
∆Temperature Max 24h −13.000 2.050 4.850 5.093 7.800 20.200
Visibility Avg. 7D 2.444 19.849 29.343 28.250 37.166 56.488
Visibility Max 24h 0.80 27.50 42.50 40.18 55.00 75.95
∆Visibility Avg. 7D −11.354 1.220 6.142 6.564 11.515 35.442
∆Visibility Max 24h −19.50 10.00 25.00 25.59 40.00 81.80
Wind Speed Avg. 7D 1.956 3.089 3.485 3.604 4.003 6.896
Wind Speed Max 24h 1.650 4.200 5.200 5.366 6.325 14.825
∆Wind Speed Avg. 7D −3.212 −0.311 0.248 0.398 1.026 4.653
∆Wind Speed Max 24h −4.800 2.050 3.300 3.739 5.100 14.750

Note: “∆” refers to the difference between 2 weather stations. “Avg. 7D” means average in
the past 7 days. “Max 24h” refers to the maximum in the last 24 hours.

Table B.6: Results of the Ljung-Box tests of ARIMA residuals

Lags H0 rejected∗ Failed to reject H0
∗

4 6x 4010x
5 25x 3991x
6 49x 3967x
7 66x 3950x

Note: ∗number of times the null hypothesis was/was not
rejected at the significance level of 5%. The alternative hy-
pothesis is that residuals exhibit autocorrelation.
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Table B.7: Results of the ARCH tests of squared ARIMA residuals

Lags H0 rejected∗ Failed to reject H0
∗

4 2624x 1392x
5 2656x 1360x
6 2595x 1421x
7 2553x 1463x

Note: ∗number of times the null hypothesis was/was not
rejected at the significance level of 5%. Rejection of the null
hypothesis suggests the presence of ARCH effects.

Table B.8: Results of the Jarque-Bera tests of ARIMA residuals

H0 rejected∗ Failed to reject H0
∗

3842x 174x
Note: ∗number of times the null hypothesis was/was not
rejected at the significance level of 5%. The null hypothesis
is that the residuals are normally distributed.

Figure B.1: Average in-sample and validation loss per epoch

Figure B.2: Sample plots of all 48-hours-ahead forecasts and actual
load (2021)
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Table B.9: Explanatory variables used in this thesis

Variable name Description Directly used in Variable name (cont.) Description (cont.) Directly used in (cont.) 

air_pressure Air pressure (hPa) 1. wind_speed_diff_t72 Wind speed station diff. at t-72 1. 

air_pressure_diff Air pressure station difference 1. wind_speed_diff_avg_7_days Avg. wind speed stat. diff. in 7 days 1. 

price_eur_mwh Price (EUR/MWh) 1. wind_speed_diff_max_24_hrs Max wind speed stat. diff. in 24 hours 1. 

temperature Temperature (°C) 1., 2., 3. mon_Feb Month of February 1., 2., 3., 4., 5. 

temperature_diff Temperature station difference 1. mon_Mar Month of March 1., 2., 3., 4., 5. 

visibility_distance Visibility (km) 1. mon_Apr Month of April 1., 2., 3., 4., 5. 

visibility_distance_diff Visibility station difference 1. mon_May Month of May 1., 2., 3., 4., 5. 

wind_speed Wind speed (m/s) 1. mon_Jun Month of June 1., 2., 3., 4., 5. 

wind_speed_diff Wind speed station difference 1. mon_Jul Month of July 1., 2., 3., 4., 5. 

load_mw_t1 Load (MW) at t-1 1., 2., 3. mon_Aug Month of August 1., 2., 3., 4., 5. 

load_mw_t24 Load at t-24 1., 2., 3. mon_Sep Month of September 1., 2., 3., 4., 5. 

load_mw_t48 Load at t-48 1., 2., 3. mon_Oct Month of October 1., 2., 3., 4., 5. 

load_mw_t72 Load at t-72 1., 2., 3. mon_Nov Month of November 1., 2., 3., 4., 5. 

load_mw_avg_7_days Average load in 7 days 1., 2., 3. mon_Dec Month of December 1., 2., 3., 4., 5. 

load_mw_max_24_hrs Max load in 24 hours 1., 2., 3. day_Mon Monday indicator 1., 2., 3., 4., 5. 

air_pressure_t1 Air pressure at t-1 1. day_Thu Tuesday indicator 1., 2., 3., 4., 5. 

air_pressure_t24 Air pressure at t-24 1. day_Tue Wednesday indicator 1., 2., 3., 4., 5. 

air_pressure_t48 Air pressure at t-48 1. day_Wed Thursday indicator 1., 2., 3., 4., 5. 

air_pressure_t72 Air pressure at t-72 1. covid_dummy COVID-19 states of emergency  1., 2., 3., 4., 5. 

air_pressure_avg_7_days Average air pressure in 7 days 1. hour_01 Indicator for 01:00 1., 2., 3., 4., 5. 

air_pressure_max_24_hrs Max air pressure in 24 hours 1. hour_02 Indicator for 02:00 1., 2., 3., 4., 5. 

air_pressure_diff_t1 Air pressure station diff. at t-1 1. hour_03 Indicator for 03:00 1., 2., 3., 4., 5. 

air_pressure_diff_t24 Air pressure station diff. at t-24 1. hour_04 Indicator for 04:00 1., 2., 3., 4., 5. 

air_pressure_diff_t48 Air pressure station diff. at t-48 1. hour_05 Indicator for 05:00 1., 2., 3., 4., 5. 

air_pressure_diff_t72 Air pressure station diff. at t-72 1. hour_06 Indicator for 06:00 1., 2., 3., 4., 5. 

air_pressure_diff_avg_7_days Avg. air pressure stat. diff. in 7 days 1. hour_07 Indicator for 07:00 1., 2., 3., 4., 5. 

air_pressure_diff_max_24_hrs Max air pressure stat. diff. in 24 hours 1. hour_08 Indicator for 08:00 1., 2., 3., 4., 5. 

price_eur_mwh_t1 Price at t-1 1. hour_09 Indicator for 09:00 1., 2., 3., 4., 5. 

price_eur_mwh_t24 Price at t-24 1. hour_10 Indicator for 10:00 1., 2., 3., 4., 5. 

price_eur_mwh_t48 Price at t-48 1. hour_11 Indicator for 11:00 1., 2., 3., 4., 5. 

price_eur_mwh_t72 Price at t-72 1. hour_12 Indicator for 12:00 1., 2., 3., 4., 5. 

price_eur_mwh_avg_7_days Average price in 7 days 1. hour_13 Indicator for 13:00 1., 2., 3., 4., 5. 

price_eur_mwh_max_24_hrs Max price in 24 hours 1. hour_14 Indicator for 14:00 1., 2., 3., 4., 5. 

temperature_t1 Temperature at t-1 1., 2., 3. hour_15 Indicator for 15:00 1., 2., 3., 4., 5. 

temperature_t24 Temperature at t-24 1., 2., 3. hour_16 Indicator for 16:00 1., 2., 3., 4., 5. 

temperature_t48 Temperature at t-48 1., 2., 3. hour_17 Indicator for 17:00 1., 2., 3., 4., 5. 

temperature_t72 Temperature at t-72 1., 2., 3. hour_18 Indicator for 18:00 1., 2., 3., 4., 5. 

temperature_avg_7_days Average temperature in 7 days 1., 2., 3. hour_19 Indicator for 19:00 1., 2., 3., 4., 5. 

temperature_max_24_hrs Max temperature in 7 days 1., 2., 3. hour_20 Indicator for 20:00 1., 2., 3., 4., 5. 

temperature_diff_t1 Temperature station diff. at t-1 1. hour_21 Indicator for 21:00 1., 2., 3., 4., 5. 

temperature_diff_t24 Temperature station diff. at t-24 1. hour_22 Indicator for 22:00 1., 2., 3., 4., 5. 

temperature_diff_t48 Temperature station diff. at t-48 1. hour_23 Indicator for 23:00 1., 2., 3., 4., 5. 

temperature_diff_t72 Temperature station diff. at t-72 1. wknd_or_h Non-working day indicator 1., 2., 3., 4., 5. 

temperature_diff_avg_7_days Average temp. stat. diff. in 7 days 1. hour_01.wknd_or_h 01:00 on a non-working day 1., 2., 3., 4., 5. 

temperature_diff_max_24_hrs Max temp. stat. diff. in 24 hours  1. hour_02.wknd_or_h 02:00 on a non-working day 1., 2., 3., 4., 5. 

visibility_distance_t1 Visibility at t-1 1. hour_03.wknd_or_h 03:00 on a non-working day 1., 2., 3., 4., 5. 

visibility_distance_t24 Visibility at t-24 1. hour_04.wknd_or_h 04:00 on a non-working day 1., 2., 3., 4., 5. 

visibility_distance_t48 Visibility at t-48 1. hour_05.wknd_or_h 05:00 on a non-working day 1., 2., 3., 4., 5. 

visibility_distance_t72 Visibility at t-72 1. hour_06.wknd_or_h 06:00 on a non-working day 1., 2., 3., 4., 5. 

visibility_distance_avg_7_days Average visibility in 7 days 1. hour_07.wknd_or_h 07:00 on a non-working day 1., 2., 3., 4., 5. 

visibility_distance_max_24_hrs Max visibility in 24 hours 1. hour_08.wknd_or_h 08:00 on a non-working day 1., 2., 3., 4., 5. 

visibility_distance_diff_t1 Visibility station diff. at t-1 1. hour_09.wknd_or_h 09:00 on a non-working day 1., 2., 3., 4., 5. 

visibility_distance_diff_t24 Visibility station diff. at t-24 1. hour_10.wknd_or_h 10:00 on a non-working day 1., 2., 3., 4., 5. 

visibility_distance_diff_t48 Visibility station diff. at t-48 1. hour_11.wknd_or_h 11:00 on a non-working day 1., 2., 3., 4., 5. 

visibility_distance_diff_t72 Visibility station diff. at t-72 1. hour_12.wknd_or_h 12:00 on a non-working day 1., 2., 3., 4., 5. 

visibility_distance_diff_avg_7_days Average vis. stat. diff. in 7 days  1. hour_13.wknd_or_h 13:00 on a non-working day 1., 2., 3., 4., 5. 

visibility_distance_diff_max_24_hrs Max vis. stat. diff. in 24 hours  1. hour_14.wknd_or_h 14:00 on a non-working day 1., 2., 3., 4., 5. 

wind_speed_t1 Wind speed at t-1 1. hour_15.wknd_or_h 15:00 on a non-working day 1., 2., 3., 4., 5. 

wind_speed_t24 Wind speed at t-24 1. hour_16.wknd_or_h 16:00 on a non-working day 1., 2., 3., 4., 5. 

wind_speed_t48 Wind speed at t-48 1. hour_17.wknd_or_h 17:00 on a non-working day 1., 2., 3., 4., 5. 

wind_speed_t72 Wind speed at t-72 1. hour_18.wknd_or_h 18:00 on a non-working day 1., 2., 3., 4., 5. 

wind_speed_avg_7_days Average wind speed in 7 days 1. hour_19.wknd_or_h 19:00 on a non-working day 1., 2., 3., 4., 5. 

wind_speed_max_24_hrs Max wind speed in 24 hours 1. hour_20.wknd_or_h 20:00 on a non-working day 1., 2., 3., 4., 5. 

wind_speed_diff_t1 Wind speed station diff. at t-1 1. hour_21.wknd_or_h 21:00 on a non-working day 1., 2., 3., 4., 5. 

wind_speed_diff_t24 Wind speed station diff. at t-24 1. hour_22.wknd_or_h 22:00 on a non-working day 1., 2., 3., 4., 5. 

wind_speed_diff_t48 Wind speed station diff. at t-48 1. hour_23.wknd_or_h 23:00 on a non-working day 1., 2., 3., 4., 5. 

Note: 1. Regression trees (1h), 2. Neural network (1h), 3. Neural network (48h), 4. SARI-
MAX (1h), 5. SARIMAX (48h)



B. Additional Results IX

Table B.10: Coefficient estimates of utilized SARIMAX models
SARIMAX(1, 0, 1)(1, 1, 1)24 SARIMAX(2, 0, 2)(1, 0, 1)24

Coefficient Estimate Std. Error Coefficient Estimate Std. Error
ar1 0.9816 0.00136 ar1 1.97464 0.00226
ma1 0.29207 0.00621 ar2 -0.97576 0.00222
sar1 0.13722 0.00877 ma1 -0.70651 0.00666
sma1 -0.79172 0.00482 ma2 -0.2573 0.00649
mon_Feb -14.53115 29.91639 sar1 0.98588 0.00125
mon_Mar -46.91535 40.90776 sma1 -0.72442 0.00529
mon_Apr -86.12984 48.76624 intercept 7869.23319 239.53275
mon_May -43.9137 54.07169 mon_Feb -210.1423 30.65739
mon_Jun -80.05926 59.18844 mon_Mar -594.62601 42.2364
mon_Jul -90.75683 61.5647 mon_Apr -907.88537 50.56949
mon_Aug -112.87219 61.86111 mon_May -1195.24756 56.56638
mon_Sep -156.15876 59.94916 mon_Jun -1476.91027 62.29227
mon_Oct -159.34261 55.579 mon_Jul -1429.32722 64.55802
mon_Nov -99.96327 48.30778 mon_Aug -1349.05973 64.69478
mon_Dec -91.37257 36.01687 mon_Sep -1135.49513 62.21605
day_Mon -3.15634 6.15528 mon_Oct -822.44967 57.22503
day_Thu 10.85688 4.25464 mon_Nov -533.59467 49.57709
day_Tue 5.30801 6.28638 mon_Dec -156.31173 36.86929
day_Wed 15.86034 5.76355 day_Mon -5.69198 6.64457
covid_dummy 9.89966 37.93814 day_Thu -3.82966 4.42493
hour_01 72.2208 22.59185 day_Tue -2.06219 6.49076
hour_02 13.20509 35.93579 day_Wed 4.65097 5.84415
hour_03 -73.29973 48.44715 covid_dummy -120.94652 38.79617
hour_04 59.24605 64.52324 hour_01 56.65308 18.26381
hour_05 525.81975 78.47194 hour_02 0.96685 28.68193
hour_06 1482.08728 92.18742 hour_03 -77.22945 37.55772
hour_07 1949.01311 104.33286 hour_04 67.11282 48.17774
hour_08 2105.92383 114.99423 hour_05 537.22603 56.61774
hour_09 2207.1684 123.75633 hour_06 1482.41327 64.18285
hour_10 2157.49149 130.51679 hour_07 1951.9727 70.57672
hour_11 2148.08557 135.0981 hour_08 2134.67084 75.89824
hour_12 2266.58891 137.40265 hour_09 2279.46805 80.04869
hour_13 2148.91018 137.37309 hour_10 2278.05856 83.09656
hour_14 1893.88227 134.97634 hour_11 2321.21649 85.04645
hour_15 1836.11702 130.2044 hour_12 2464.97367 85.93511
hour_16 1694.95761 123.10496 hour_13 2367.20449 85.66136
hour_17 1651.72666 113.74489 hour_14 2131.43585 84.29881
hour_18 1591.44757 102.25132 hour_15 2102.91036 81.86197
hour_19 1799.97268 88.75227 hour_16 1987.30415 78.31976
hour_20 1610.31506 73.52462 hour_17 1930.22171 73.553
hour_21 1114.43474 56.62065 hour_18 1839.09151 67.50338
hour_22 712.18019 38.888 hour_19 2002.88041 60.1998
hour_23 322.48813 20.23573 hour_20 1757.23434 51.48703
wknd_or_h -177.69826 4.68995 hour_21 1219.53327 41.20851
hour_01.wknd_or_h -155.97375 4.25097 hour_22 781.09833 29.58879
hour_02.wknd_or_h 8.61972 6.63892 hour_23 336.86742 16.64512
hour_03.wknd_or_h 79.93399 8.2075 wknd_or_h -166.87946 4.65089
hour_04.wknd_or_h -28.84806 9.40411 hour_01.wknd_or_h -146.05144 4.11637
hour_05.wknd_or_h -501.81407 10.35838 hour_02.wknd_or_h 26.93947 6.42753
hour_06.wknd_or_h -1330.08827 11.12514 hour_03.wknd_or_h 104.22893 8.00204
hour_07.wknd_or_h -1497.12055 11.75103 hour_04.wknd_or_h -0.85548 9.23552
hour_08.wknd_or_h -1332.13097 12.25778 hour_05.wknd_or_h -470.63372 10.23429
hour_09.wknd_or_h -1064.63637 12.63922 hour_06.wknd_or_h -1295.62085 11.0492
hour_10.wknd_or_h -734.71323 12.91162 hour_07.wknd_or_h -1458.53444 11.7114
hour_11.wknd_or_h -652.47792 13.08355 hour_08.wknd_or_h -1288.63659 12.23727
hour_12.wknd_or_h -885.38552 13.14761 hour_09.wknd_or_h -1017.62047 12.63921
hour_13.wknd_or_h -916.13695 13.12275 hour_10.wknd_or_h -684.0472 12.92466
hour_14.wknd_or_h -845.49564 13.00069 hour_11.wknd_or_h -598.65956 13.09897
hour_15.wknd_or_h -857.92584 12.7889 hour_12.wknd_or_h -830.06437 13.16621
hour_16.wknd_or_h -798.70977 12.47532 hour_13.wknd_or_h -859.37479 13.12976
hour_17.wknd_or_h -822.4925 12.05394 hour_14.wknd_or_h -790.18353 12.99151
hour_18.wknd_or_h -620.38341 11.51246 hour_15.wknd_or_h -806.04282 12.74982
hour_19.wknd_or_h -624.72917 10.83627 hour_16.wknd_or_h -752.1147 12.40136
hour_20.wknd_or_h -467.68507 10.00511 hour_17.wknd_or_h -782.13449 11.94033
hour_21.wknd_or_h -296.20895 8.96994 hour_18.wknd_or_h -586.84646 11.36079
hour_22.wknd_or_h -18.183 7.65279 hour_19.wknd_or_h -599.48927 10.65069
hour_23.wknd_or_h 87.33024 5.84776 hour_20.wknd_or_h -450.81702 9.79057
- - - hour_21.wknd_or_h -285.45787 8.74897
- - - hour_22.wknd_or_h -16.39575 7.47063
- - - hour_23.wknd_or_h 84.24174 5.81483
In-sample set: Jan 2018 to May 2020 (n = 21162) In-sample set: Jan 2018 to May 2020 (n = 21162)
In-sample RMSE: 60.06 In-sample RMSE: 60.92
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