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Introduction
Estimates and forecasts of the second moment represent an important topic
in the context of finance and economics. The concept of volatility and covariance
(covolatility) of assets plays a key role in portfolio selection, where it measures
risk. A wide range of papers was dedicated to the development of different tech-
niques for the estimation of covariance and volatility of assets. Consequently,
forecasting models assuming certain time dependence of covariance are of interest.
Commonly used models in the context of covariance estimation and forecasting
include ARCH and GARCH models that have been extensively studied over the
past years. However, there has been a significant shift in the relevant research
in the recent years.

Over the last decades, we have observed impactful technological enhancements
in the finance. Increasing computational power and better overall connectivity
enable us to process and share data faster than before. Possibly the most ground-
breaking change in current finance enabled by these technological advancements
is the availability of high-frequency intraday data. Generally speaking, there is
no clear definition of high-frequency data. However, any data with a time step
smaller than one day could usually be considered as highfrequency data. Nev-
ertheless, high-frequency data commonly include time intervals of 30-sec, 1-min,
2-min, 5-min, 15-min, and 30-min. In the recent years, we can also notice the
emergence of ultra-high-frequency data. Such data correspond to so-called tick-
by-tick observations, which are recorded even a hundred times per second.

In the past, most studies analyzing the covariance structure of portfolios of as-
sets almost exclusively based main findings on the daily price observations (or
even less frequently observed data). The ability to observe data more frequently,
therefore, brings to the table new possibilities and topics in terms of the devel-
opment of estimators and forecasting methods. On the contrary, such intraday
data also introduce new challenges that have to be taken into the consideration.
The prime example of such a challenge is microstructure noise. This term refers
to various concepts that influence the price on small time intervals. Interestingly,
these effects are more predominant for observations with higher frequency.

In contrast to the studies focusing on the methods developed on the basis
of low-frequency data, e.g., Šípka (2022) for daily data, we concentrate on the
analysis and comparison of different estimators and forecasting models based on
high-frequency data. As the high-frequency data enables us to approximate the
continuous price process better, it is reasonable to focus on the estimation of
the so-called integrated covariance matrix of a continuous price process itself.
Nowadays, this topic is highly discussed in modern finance as it promises more
accurate descriptions of the actual covariance structure of the price process.

In this thesis, we focus at first on different estimators of the integrated covari-
ance. Consequently, we use obtained estimates as a basis for forecasting models.
We will survey several competing forecasting models which can be combined

2



with different integrated covariance estimators. We will be mainly interested
in the generalizations of a univariate HAR model into a multidimensional case
since the univariate HAR model shows favorable results for modeling univariate
volatilities. We will present several such generalizations, which we later compare
in an empirical study. We have not found such a comparison of different combi-
nations of covariance estimators and forecasting models in the relevant literature.
Therefore, we view it as an interesting topic to discuss. The comparison itself
will be based on both economic and statistical forecast evaluation. The economic
comparison is tightly connected with the portfolio optimization problem, includ-
ing transaction costs. Transaction cost is also a very rarely discussed topic in
the relevant literature. The thesis’s content is ordered so that we first present
the critical theory in the first four chapters. Lastly, the fifth chapter presents
an empirical study, where we apply described methods in the theoretical part to
real-life data consisting of the stock prices of 50 different companies using 5-min
interval data. The data and the corresponding code will be a part of an electronic
attachment.
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I. Integrated Covariance
In this chapter, we define the integrated covariance matrix, also known as the
integrated covolatility matrix. Such matrices represent the analogue of the in-
tegrated volatility in the multivariate case. We adopt the notation of formal
definition mainly from Bollerslev et al. (2019). In general, we will assume that
there are N assets analyzed over time t ∈ [0, T ]. However, in order to present
a more comprehensive explanation of the corresponding model, in this chapter,
we set t ∈ [0, 1]. We start with the definition of a log-price process which we
define as X∗

t = (X∗
t,(1), . . . , X

∗
t,(N))T , where X∗

t,(n) denotes the log-price of the n-th
asset at time t. This process is assumed to be evolving in a continuous time and
following Itô (semi-martingale) process:

dX∗
t = µtdt+ σtdBt, 0 ≤ t ≤ 1. (I.1)

Vector µt = (µt,(1), . . . , µt,(N))T denotes an N -dimensional locally bounded drift
process, σt is an N × N symmetric matrix corresponding to a given covariance
process and Bt = (Bt,(1), . . . , Bt,(N))T is an N -dimensional vector of indepen-
dent Brownian motions. We also denote the spot covariance matrix of X∗

t as
Σt = σtσ

T
t .

The characteristic we will mainly focus on for the rest of this thesis is the
integrated covariance. It is formally defined as a N ×N matrix:

IC =
∫︂ 1

0
Σsds. (I.2)

Unfortunately, the process X∗
t and the integrated covariance IC are not observ-

able in practice. Therefore, in order to deal with the integrated covariance, we
define the difference r∗

ti
= (X∗

ti+1
−X∗

ti
) as a continuous log-return vector process

(further simply continuous return process) with ∆ = maxi(ti+1 − ti) −→ 0. IC can
be then in theory estimated by the quadratic variation of the process X∗

t . For-
mally, the quadratic variation of a stochastic process is defined using a continuous
return process, r∗

t , as:

QV = lim
∆→0

(︄∑︂
i

(r∗
ti

)(r∗
ti

)T

)︄
, 0 ≤ ti ≤ 1. (I.3)

By the theory of the quadratic variation, it holds that QV −→ IC. Such estimator
is unbiased, assuming the high sampling frequency asymptotically free of a mea-
surement error as described in Andersen et al. (2001).

On the other hand, it is important to note that the differences in sampling
times are assumed to be infinitesimally small, which is hardly achievable in prac-
tice. Therefore, we define the log-price vector process as follows:

xt = X∗
t + ut,

where ut represents various microstructure noises occurring on the real market
(e. g. discreteness, non-trading, bid-ask spread, etc.). Such a process xt is what
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we are capable of observing on the market. Therefore, the estimator based on the
cross-products of intraday returns obtained using xt, as introduced in equation
I.3 for continuous counterpart, becomes very noisy due to the presence of the
microstructure noises on the market. Hence, the resulting estimates are contam-
inated with potentially significant measurement errors, which is highly undesir-
able. We will devote the following chapter to various estimators of the integrated
covariance using discretized data. Some of them specifically focus on the task of
dealing with microstructure noises.

Remark. In its more general form, the continuous log-price vector process X∗
t

could also include components corresponding to jumps and co-jumps. We will
discuss these topics in the following chapter, but it is not our main concern to de-
scribe these particular concepts in great detail.

Remark. The best approximation of the continuous log-price process X∗
t is the so-

called tick-by-tick (or, in other words, ultra-high-frequency) data. However, this
type of data carries several disadvantages. The first one is their quality which
is usually quite poor because such datasets frequently include a lot of missing
observations. Observations are also usually not equidistantly spread, which can
be, in some cases, difficult to handle. Another important property is that mi-
crostructure noises are much more persistent when using ultra-high-frequency
data. In fact, adjusting the estimators to remain consistent when using ultra-
high-frequency data is usually necessary. From a more practical point of view,
their noticeable shortcoming is their high acquisition cost. For those reasons, it
is more feasible to work with other high-frequency intraday data like 5-min or 2-
min data, which does bring fewer challenges, and their performance in the context
of various integrated covariance estimators is similar to ultra-high-frequency data.
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II. Estimators of Integrated
Covariance
In this chapter, we present various realized covariance estimators, or more pre-
cisely, estimators of the integrated covariance. In the next chapter, these esti-
mators will be used to obtain forecasts of the realized covariance matrix. We
consider only several estimators in this thesis, even though there are many dis-
tinct approaches to estimating the integrated covariance. It would simply not be
possible to include all estimators, so we rather focus on selected ones that are
based on different estimation methods.

On the other hand, we would like to mention some interesting estimators that
we will omit later. One such estimator is the composite realized kernel estimator
introduced in Lunde et al. (2016). This estimator uses two-dimensional realized
kernel estimators (described in the subsection II.3), which are later recombined
to construct high-dimensional estimates of realized covariance. Even though this
estimator is very data efficient and can be used for a large number of assets, it is
not guaranteed that the resulting estimate will be positive semi-definite. There-
fore, the estimated matrix has to be projected to the space of positive definite
matrices to obtain a proper estimator.

The second appealing approach described in Bollerslev et al. (2019) combines
multivariate modulated realized covariance estimators with pre-averaging estima-
tors. These estimators will be later discussed in chapter II.4. The estimator of
Bollerslev et al. (2019) accounts for serially correlated microstructure noises and
price process jumps, a concept that will be described more broadly in II.5. An-
other possible advantage of the resulting estimator is its flexibility because it can
be extended to an approximative factor model as it is detailed in the Bollerslev
et al. (2019), where the principal component analysis (PCA) is used to reduce
the dimensionality.

Similarly to the previous chapter, we will assume that there are N investment
assets in consideration. From now on, we will work exclusively with discrete
observations, in contrast to the first chapter dealing with the continuous vector
price process. We specify here the denotation in detail to avoid any future con-
fusion. We will assume that observations are collected over T time periods, and
during each time period t, there are several instants i during which we observe
the log-prices of assets. First, we introduce the notation for the log-price vector
and then for log-returns of assets:

xt,i = (xt,i,(1), . . . , xt,i,(N))T ,

rt,i = xt,i − xt,i−1 = (rt,i,(1), . . . , rt,i,(N))T ,

where t ∈ {1, 2, . . . , T} serves as a time period index (day index) for the interval
[t−1, t), index i represents an equidistant partition of particular time period t, and
indices 1, 2, . . . , N denote individual assets. We will generally assume that each
time period t contains M + 1 equidistant values of log-prices, i ∈ {0, 1, . . . ,M}.

6



This translates to M partitions, i ∈ {1, 2, . . . ,M}, for time series of returns in
each time period t. Effectively, we have M observations in each time period t.

Estimators described in this chapter will be later used in an empirical study,
where we will compare their forecasting capabilities. We use intraday observable
vectors of log-returns (briefly returns) rt,i to define individual estimators in the
rest of this section.

Remark. Certain approaches presented in this chapter do not require partitions
to be equidistantly spaced. In general, partitions can vary for distinct assets. In
such cases, we will introduce methods that could be used to handle these specific
circumstances. Implicitly, we will not use the assumption of equidistant parti-
tions in such situations.

Remark. (Non-synchronicity) The concept of varying partitions of a given time
interval for different assets is often called non-synchronicity. On the other hand, if
we observe stock prices of assets in the same time instances (same partitions), we
call this data synchronous. In other words, non-synchronicity concerns the possi-
bility that assets can have different trading time windows, whereas synchronicity
implies the same trading time windows for all analyzed assets.

II.1 Realized Covariance
Firstly, we introduce the simplest integrated covariance estimator, which was
foreshadowed in chapter I. It was initially outlined in its univariate form by
Andersen et al. (2001). We will refer to this estimator as the realized covariance1

estimator defined as:
RCt =

M∑︂
i=1

rt,ir
T
t,i, (II.1)

where M is once again the number of partitions and rt,i is an N -dimensional
vector of asset returns in the day t and the i-th partition.

The main advantage of this estimator is its simplicity. Therefore, it seems
convenient to use this particular estimator in practice; however, if the number
of intraday observations M increases, then RCt becomes inconsistent due to mi-
crostructure noises. Realized covariance neither accounts for jumps of the process.
This motivates us to construct different estimators that would overcome the bias
in the case of finer partitioning.

II.2 Realized Bi-power Covariance
Next, we present the multivariate realized bi-power estimator, originally proposed
in Barndorff-Nielsen and Shephard (2003) assuming a univariate price process

1This estimator is also known as realized covolatility or realized covariation.
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and later generalized for a multivariate price process in Shephard and Barndorff-
Nielsen (2004).

The idea behind this estimator is to capture the jump component of the price
process and factor its contribution to the variation of the process. It describes
both the continuous part and jump component of quadratic variation. Such an ap-
proach is a significant modification in comparison with the previously described
realized covariance estimator, where only the continuous part of the quadratic
variation was targeted. The bi-power covariance can also be used together with
the realized covariance to construct a non-parametric statistic and corresponding
statistical test for the occurrence of jumps.

The multivariate realized bi-power estimator BPt = (bpt,(m,n)), for m,n =
1, 2, . . . , N , at time period t is an N × N symmetric matrix with the (m,n)-th
element of the matrix defined as:

bpt,(m,n) =π8

M∑︂
i=2

(︂⃓⃓⃓
rt,i,(m) + rt,i,(n)

⃓⃓⃓ ⃓⃓⃓
rt,i−1,(m) + rt,i−1,(n)

⃓⃓⃓
−⃓⃓⃓

rt,i,(m) − rt,i,(n)

⃓⃓⃓ ⃓⃓⃓
rt,i−1,(m) − rt,i−1,(n)

⃓⃓⃓)︂
,

(II.2)

where rt,i,(n) is the n-th element of vector rt,i. One drawback of this estimator
is that it does not deal with microstructure noises. However, it was shown in
Shephard and Barndorff-Nielsen (2004) that the impact of these noises on the
consistency of this estimator is rather negligible.

II.3 Realized Kernel Covariance
Another important class of estimators is the so-called realized kernel covariance.
This estimator’s multivariate setting was first introduced in Barndorff-Nielsen et
al. (2011), where important properties of this approach, including its consistency
and guaranteed positive semi-definiteness, were derived. At the same time, it is
relatively robust to microstructure noises and non-synchronicity.

Realized kernel estimator is formally defined as:

RKt = Γ0 + 2
H∑︂

h=1
f

(︄
h− 1
H

)︄
Γh,

where Γh =
M∑︂

i=h

rt,ir
T
t,i−h forH ≥ 0.

(II.3)

In this case, H denotes an arbitrarily chosen bandwidth parameter crucial for
controlling the microstructure noises and non-synchronicity. In the equation II.3,
the function f : R → R is a non-stochastic weight function conventionally referred
to as a kernel function.

Regarding parameter selection, the parameter H has to be increased with
expanding portfolio size to maintain consistency of realized kernel covariance.
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The recommended choice is to set H approximately to n1/2. As for the kernel
function f , there are various possible options like Parzen’s, Tukey-Hanning’s,
or modified Tukey-Hanning’s kernel, etc. We present and later implement only
Parzen’s kernel, which can be defined as:

f(x) =

⎧⎪⎪⎨⎪⎪⎩
1 − 6x2 + 6x3 k ≤ 1

2
2(1 − x)3 1

2 ≤ k ≤ 1
0 x > 1.

(II.4)

II.4 Modulated Realized Covariance
Next, we introduce the modulated realized covariance estimator that was first de-
scribed in Christensen et al. (2010). This estimator should behave more robustly
in the presence of microstructure noises and non-synchronous trading. However,
it needs bias correction to remain consistent, especially in larger dimensions (in
terms of the number of assets). This multivariate estimator is based on its uni-
variate counterpart introduced in Jacod et al. (2009) as its generalization. Such
a univariate estimator is frequently referred to as a pre-averaging estimator in
related literature.

The adjective "pre-averaging" relates to the application of the pre-averaging
procedure to returns. The motivation for the application of the pre-averaging
procedure is to remove the effects of microstructure noises. The general idea
behind this method is taken over from the concept of smoothing, where the less
dominant effects should be removed from the principal pattern contained in the
data. There is a practical approach to pre-averaging presented in Christensen et
al. (2010), which we will closely follow.

First, we define a sequence of integers kM and a number θ ∈ (0,∞) such that:
kM√
M

= θ + o(M−1/4).

Then we choose a weight function g : [0, 1] → R, which is continuous, piecewise
continuously differentiable with a piecewise Lipschitz derivative g′ and g(0) =
g(1) = 0 fulfilling

∫︁ 1
0 g

2(s)ds > 0. We also construct following functions related
to g:

ϕ1(s) =
∫︂ 1

s
g′(u)g′(u− s)du, ϕ2(s) =

∫︂ 1

s
g(u)g(u− s)du,

ψ1 = ϕ1(0), ψ2 = ϕ2(0),

Φ1,1 =
∫︂ 1

0
ϕ2

1ds, Φ1,2 =
∫︂ 1

0
ϕ1(s)ϕ2(s)ds,

Φ2,2 =
∫︂ 1

0
ϕ2

2(s)ds.

Functions ϕ1, ϕ2 are assumed to be equal to zero outside the [0, 1] interval. With
all these prerequisites in hand, we can now define the pre-averaged return for
given t as:

r̃t,i =
kM −1∑︂
j=1

(︃
g
(︃
j

kM

)︃
rt,i+j

)︃
for i = 0, 1, . . . ,M − kM + 1. (II.5)
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In this general setting, we can define the modulated realized covariance as:

MRCt = M

M − kM + 2 · 1
ψ2kM

M−kM +1∑︂
i=0

r̃t,ir̃
T
t,i, (II.6)

where the first term M
M−kM +2 is a correction for the true number of summands.

One commonly used choice of the weight function is g(x) = min(x, 1 − x). In
the related literature Hautsch and Podolskij (2013), it is also recommended to use
one particular choice of parameter θ, θ = 0.8. We mentioned at the beginning of
this subsection that it is necessary to perform a bias correction for the estimator
to remain consistent. Such a bias correction can be constructed as follows:

MRCt = M

M − kM + 2 · 1
ψ2kM

M−kM +1∑︂
i=0

r̃t,ir̃
T
t,i − ψkM

1

θ2ψkM
2

Ψ̂, (II.7)

where
ψkM

1 = kM

kM∑︂
i=1

(︃
g
(︃
i+ 1
kM

)︃
− g

(︃
i

kM

)︃)︃
,

ψkM
n = 1

kM

kM −1∑︂
i=1

g2
(︃
i

kM

)︃
, Ψ̂ = 1

2M

M∑︂
i=1

rt,ir
T
t,i.

However, there is still one obstacle. Modulated realized covariance with bias
correction is no longer a positive semi-definite matrix. Thus, it is necessary to
perform certain procedures to ensure the estimator’s positive semi-definiteness.
One practical approach is presented in Shephard and Barndorff-Nielsen (2004).
This method requires first performing the spectral decomposition of our estimated
matrix. Then we concentrate on the diagonal matrix, which has eigenvalues on
its diagonal. We then find and change all the negative eigenvalues to 0. Finally,
we reconstruct the covariance matrix estimate using the newly obtained diagonal
matrix of eigenvalues (with zeros instead of negative eigenvalues) in the spectral
decomposition. In fact, we will later refer to this estimator with bias correction
as the modulated realized covariance.

There is also an interesting connection between the modulated realized covari-
ance estimator and the realized kernel estimator. More precisely, the modulated
realized estimator can be mapped into the realized kernel estimator. For example,
suppose we choose the weight function g = min(x, 1 − x) as mentioned earlier.
In that case, it can be proven that the corresponding kernel estimator is Parzen’s
kernel, described in the subsection II.3.

II.5 Realized Threshold Covariance
In this subsection, we introduce the realized threshold covariance estimator, first
presented in Mancini and Gobbi (2012). The main difference between this specific
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estimator and the ones presented above is that it considers potential jumps and
co-jumps of the log-price process. Effectively, the jump component represents an
idiosyncratic risk, while the co-jump component stands for systematic risk. The
idiosyncratic risk can be thought of as a risk that is specific to a single asset.
On the other hand, systematic risk is a risk that affects the whole market (or,
possibly, a given market sector).

The realized threshold covariance estimator deals with non-synchronicity. By
applying a particular threshold, it focuses on removing the effects of jumps. We
will only present the final form of the estimator here because its derivation is
very technical. One can find the detailed derivation of this specific estimator
in Mancini and Gobbi (2012). We define realized threshold covariance RTCt =
(rtct,(m,n)), m,n = 1, 2, . . . , N , as:

rtct,(m,n) =
M∑︂

i=1
rt,i,(m)1{r2

t,i,(m)≤T RM,(m)}rt,i,(n)1{r2
t,i,(n)≤T RM,(n)}, (II.8)

where TRM,(n) is a given threshold value for individual asset n and 1 is an indica-
tor function. The threshold parameter does not have to depend on an individual
asset, but we present here a parameter choice that does assume its dependence on
a specific asset. Paper by Mancini and Gobbi (2012) does not introduce any opti-
mal threshold value and instead presents different possibilities that are compared
using simulations. Nevertheless, there was subsequent research done concerning
this topic, for example, Jacod and Todorov (2009), where the threshold value
is defined as 9∆−1

M · bpt,(n,n), where ∆M is a window size (time partitioning lag)
and bpt,(n,n) is a bi-power variation of asset n. It is not shown whether such a
threshold behaves optimally; however, it represents a more sophisticated way of
setting the threshold value.

II.6 Two-time Scale Realized Covariance
In the following subsection, we introduce the two-time scale realized covariance
estimator. First, we present a general definition of this estimator, including bias
correction, initially defined in Zhang et al. (2005) and Zhang (2011). Later, we
describe its robust version that should be more immune against jumps. Both
of these methods, in theory, require tick-by-tick data to perform as expected by
theory. Nevertheless, we will be later interested in their performance on lower
frequency data in comparison with the remaining methods. Both of these esti-
mators are very complex, and they focus on dealing with microstructure noises
and non-synchronicity.

First, it is necessary to calculate moving averages of returns based on two
different rolling basis (time scales) of log-prices. Therefore, we will be using log-
price series to derive this estimator. We follow the notation used at the beginning
of this chapter, but we also need to introduce new time series for individual assets.
Hence, the log-price time series for one unique asset over a time period t will be
denoted as xt,(n) = (xt,0,(n), . . . , xt,M,(n))T for n = 1, 2, . . . , N . Furthermore, we
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will refer to the short rolling basis J as the fast time scale and wider rolling basis
K as the slow time scale. Typically, the fast time scale parameter J equals 1
(1 day). We then define the diagonal elements and non-diagonal elements of the
two-time scale realized covariance TSt = (tst,(m,n)), m,n = 1, 2, . . . , N separately.
Let us start with the diagonal elements that can be for an asset n obtained as:

tst,(n,n) =
(︄

1 − MK

MJ

)︄−1 (︄
[xt,(n),xt,(n)](K) − MK

MJ

[xt,(n),xt,(n)](J)
)︄
, (II.9)

where
MK = M −K + 2

K
, MJ = M − J + 2

J
,

[xt,(n),xt,(n)](l) = 1
l

M−l+1∑︂
i=1

(︂
xt,i+l,(n) − xt,i,(n)

)︂2
for l = J,K.

The definition of non-diagonal elements of this estimator requires a few addi-
tional steps. Synchronizing data at the beginning is necessary, meaning we first
find the time partitions at which all the assets were traded. This is done using
the refresh time method initially derived in Harris, F. H. deB. et al. (1995). We
present here the refresh time method alongside the definition of non-diagonal el-
ements of the two-time scale realized covariance of two assets m and n.

We need to assume a more general setting than the one described at the
beginning of the chapter II to show the most crucial aspects of the refresh time
method. We assume that the log-price xt,(m) of the asset m was observed during
instants (partitions of t) 0 = τ0 ≤ τ1 ≤ · · · ≤ τp1 = 1 and the log-price xt,(n), of
the asset n was observed during instants (partitions) 0 = θ0 ≤ θ1 ≤ · · · ≤ θp2 = 1.
In general, these partitions do not have to be equidistant, and the assets could
be observed in different instants of t. We also denote parameter P = p1 + p2,
which will be important shortly. Now, we synchronize the observations using the
refresh time method by applying relations:

ti = max{τ ∈ (τ1, . . . , τp1) : τ ≤ vi},

si = max{θ ∈ (θ1, . . . , θp2) : θ ≤ vi},
where vi can be for example defined using the relation vi − vi−1 = ∆v for ∀i,
where ∆v represents a constant. This implies that a series of vi’s would be
equally spaced out in time. We also assume that the length of this time series is
equal to P . We can finally define the non-diagonal elements of TSt as:

tst,(m,n) = c

(︄
[xt,(m),xt,(n)](K) − MK

MJ

[xt,(m),xt,(n)](J)
)︄
, (II.10)

where

[xt,(m),xt,(n)](l) = 1
l

P −l+1∑︂
i=1

(︂
xti+l,(m) − xti,(m)

)︂T (︂
xsi+l,(n) − xsi,(n)

)︂T
for l = J,K,

c is a constant that must satisfy the relation c = 1 + o(M−1/6
P ), where MP is a
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sampling frequency of the time series {vi}. This constant should compensate for
bias from the threshold construction.

There also exists a robust modification of the two-time scale realized esti-
mator. It uses a similar approach concerning the refresh time method and the
way how it deals with microstructure noises. However, it also targets jumps by
adding additional terms and then by rescaling the estimated covariances. We will
not present its definition here because it requires a significant generalization of
our log-price process. One can study the full theory behind this specific robust
estimator in Boudt and Zhang (2010). Unfortunately, both of these estimators
are not necessarily positive semi-definite. Therefore, we need to apply a partic-
ular procedure to obtain a positive semi-definite estimator. One possibility is to
perform the method previously described in subsection II.4.

II.7 Realized Cholesky Covariance
Next, we present estimator introduced in Boudt et al. (2017), which uses differ-
ent approach in order to obtain an estimate of the integrated covariance. This
model also adjusts for non-synchronous data and deals with microstructure noises.
An important advantage of this estimator is also its guaranteed positive semi-
definiteness by definition.

The realized Cholesky covariance distinguishes significantly from previously
introduced estimators. We will briefly describe the method itself, but we will not
go into great detail. An in-depth description of the algorithm itself can be found
in Boudt et al. (2017).

We assume that the covariance matrix can be decomposed using Cholesky
(LDL) decomposition2 as follows:

Σ = HGHT ,

where

H =

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0
h2,1 1 . . . 0
...

...
. . .

...
hN,1 hN,2 . . . 1

⎞⎟⎟⎟⎟⎟⎠ and G =

⎛⎜⎜⎜⎜⎜⎝
g1,1 0 . . . 0
0 g2,2 . . . 0
...

...
. . .

...
0 0 . . . gN,N

⎞⎟⎟⎟⎟⎟⎠ .

Next, it is necessary to construct a factor model using synchronized returns. The
refresh time method could be used for this purpose. Generally, it is assumed that
factors are normally distributed with zero expected value and that their variance
is proportional to the time between observations. Lastly, the estimates of specific
elements of matrices G and H could be obtained as residual variances of the fac-
tors and beta coefficients from the regression of returns on these factors. Thus, it

2We neglect the time index for a more comprehensive explanation. In general, it holds
Σt = HtGtH

T
t , hence Ht and Gt would be dependent on time.
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is necessary to estimate quadratic variations of factors and quadratic covariations
of factors and returns to obtain estimates of gn,n and hm,n. Different estimators
of integrated covariance could be used in this context.3 It is recommended to
apply the algorithm iteratively on an expanding dataset of returns.

Finally, we obtain the estimates of H and G that we use to reconstruct the
realized Cholesky estimator as:

CholC = ĤĜĤ
T (II.11)

As could be seen above, this approach is rather complex and could be very time
inefficient. However, based on the simulation results from Boudt et al. (2017), it
seems that the precision gain, especially in the environment of non-synchronicity,
is not negligible, even when compared with composite estimators.

II.8 POET Estimator
Lastly, we present one representative of a slightly different class of estimators.
The majority of estimators presented till now do not consider any specific adjust-
ments for large dimensionality in terms of a number of assets.4 Effectively, they
usually perform quite poorly in cases when the number of assets N is fairly large.
However, when N starts to be very large, for example, close to or even greater
than the number of observations in a single time period, then serious problems
with the overall performance of discussed estimators could occur. Therefore, it
is reasonable to introduce some regularization to improve the accuracy of the
final estimate. One such technique is presented by Fan et al. (2013), and it is
usually referred to as the principal orthogonal complement thresholding (POET).

The POET estimator puts the covariance matrix into the context of an ap-
proximative factor model. This setup also enables the covariance matrix to be
potentially sparse.5 We assume a factor model for our returns given by:

rt,i = Btft,i + ut,i.

Then we define a factor model for the covariance matrix using the relation:

Σt = Btcov(ft,i)BT
t + Σu,

where Bt = (bt,(1), . . . , bt,(N))T and bt,(n) is an S-dimensional vector of factor
loadings. Term ft,i is an S-dimensional vector of common factors and Σu is an

3In Boudt et al. (2017), it is recommended to use the modulated realized covariance because
of its robustness to microstructure noises.

4There are few exceptions that have been already outlined in this thesis. The realized
Cholesky estimator does reduce dimensionality in some sense, and the briefly introduced com-
posite kernel could also be transformed into an approximative factor model similar to the POET
estimator.

5Sparse in the context of a matrix denotes a situation when the matrix consists of a large
number of zero or close to zero (in a numerical sense) elements.
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N × N covariance matrix of N -dimensional vector of idiosyncratic components
ut,i, i = 1, 2, . . . ,M . Factor loadings Bt, common factors ft,i and idiosyncratic
terms ut,i (Σu) are all not observable. The only observable values in this factor
model are returns themselves. Thus, we will start by estimating the covariance
matrix Σt. In the case of the POET estimator, it is obtained using the realized
covariance estimator. The factor model is then estimated using principal compo-
nent analysis (PCA), which significantly reduces the dimensionality.

We present here the crucial steps of the POET estimator. Certain steps are
omitted, but one can follow the in-depth definition of this method in Fan et al.
(2013). We assume that λ̂t,1 ≥ λ̂t,2 ≥ · · · ≥ λ̂t,N are ordered eigenvalues of the re-
alized covariance matrix and vectors ẑt,n, n = 1, 2, . . . , N, are their corresponding
eigenvectors. It holds due to the spectral decomposition of the realized covariance
that: ˆ︁Σt =

K∑︂
n=1

λ̂t,nẑt,nẑ
T
t,n + ˆ︂Rt,K ,

where ˆ︂Rt,K = ∑︁N
n=K+1 λ̂t,nẑt,nẑ

T
t,n is the principal orthogonal complement and K

is the number of diverging eigenvalues of Σt. K is generally unknown and has to
be estimated. Bai and Ng (2001) describes a commonly used procedure for this
purpose.

After determining the value of K, we apply thresholding to ˆ︂Rt,K . Various
methods can be used to set threshold parameters and thresholds themselves. One
such method was presented in subsection II.5. We will not present any additional
method in this thesis, and we will simply assume that after applying thresholds
to ˆ︂Rt,K we obtain ˆ︂Rτ

t,K . With this fact in mind, we finally receive our estimator
of the integrated covariance:

POETt =
K∑︂

n=1
λ̂t,nẑt,nẑ

T
t,n + ˆ︁Rτ

t,K . (II.12)

The evident advantage of this estimator is that it does not require any opti-
mization and, thus, is very feasible computationally. Another already mentioned
advantage of this estimator is its accuracy, even with a large number of assets in a
portfolio. Lastly, this covariance estimator guarantees positive semi-definiteness,
which is a desirable property of the resulting integrated covariance matrix.
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III. Forecasting Methodology
In this chapter, we introduce several approaches to forecasting integrated covari-
ance. We will be interested exclusively in one-day (one-period) ahead forecasting
throughout the rest of this thesis. This chapter will describe all models using
the realized covariance estimator. Later, in the chapter V, we will apply selected
models to different integrated covariance estimators.

First, we can mention the forecasting method, which is the simplest one pos-
sible. We will assume that the realized covariance matrix follows a random walk
process as it evolves over time. Therefore, based on this assumption the resulting
one-day ahead forecast is simply the estimate for the last observable time period.
At first glance, this method seems too simple to yield reasonable results. Nev-
ertheless, given the high-frequency intraday observations, it ultimately generates
quite competitive forecasts. Hence, it performs relatively well despite the fact
that this approach completely neglects the long-term trends of the realized co-
variance. We will formally denote it as the RW model.

III.1 HAR Model
We presented the simplest approach possible to forecasting. However, this ap-
proach seems, in theory, very naive. We will now introduce another competing
method that incorporates lagged values into the model and, thus, enables our
model to capture additional information about the behavior of the covariance
matrix in a longer time horizon. First, we present the univariate version of the
model and, later, its generalization to a multidimensional case.

III.1.1 Univariate HAR Model
The heterogeneous autoregressive model (HAR) of realized volatility was intro-
duced by Corsi (2009). As we are working with a one-dimensional model, we
will use the univariate counterpart of the realized covariance, which is usually re-
ferred to as the realized volatility, RVt. The property of asset’s (logarithmic) price
volatility that the model accounts for is often referred to as heterogeneity. Several
papers were published concerning different aspects of this hypothesis, and exten-
sive studies empirically demonstrated that the heterogeneous property is worth
dealing with. There are distinct entities contributing to the heterogeneity of
volatility, e.g., temporal horizons, different risk profiles of agents, distinct ways of
information processing, etc. To deal with all the mentioned sources of heterogene-
ity (and others) at once is nearly impossible. Corsi (2009) with his HAR model
concentrates on the heterogeneity arising from the time horizon differences. He
explains that the heterogeneity from time horizon differences originates from var-
ious market participants. These participants could be roughly divided into three
distinct groups. The first group consists of short-term traders who frequently
change their positions, usually in only a few minutes or hours (sometimes in just
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split seconds). In the second group, there are medium-term agents who change
their positions at approximately weekly intervals. At last, long-term investors do
not change their positions very often, and they sometimes do not change their
holdings for years. These distinct groups eventually act differently in the given
market environment. Hence, they create discrepancies in the volatility of asset
prices. The HAR model aims to capture heterogeneity originating from such dif-
ferences. In other words, the model should examine not only the current behavior
of the volatility but also its long-term trends.

From a mathematical perspective, the univariate HAR model is basically
an AR-type model with volatilities considered over variety of time horizons. Thus,
it does not technically belong to the class of long-memory models. Nevertheless,
it is shown by Corsi (2009) that thanks to the aggregation of volatilities, it can
capture the long-memory property. In other words, it can approximate the het-
erogeneous property of volatility despite remaining a fairly simple model. The
HAR model of realized volatility of a single asset n is defined as:

RVt+1 = α + β(d)RVt + β(w)RV
(w)

t + β(m)RV
(m)

t + εt+1, (III.1)

where RVt+1 and RVt are realized volatilities at time t+1 and t. Thus, in the setup
of our model, the term RVt is a 1-day lagged realized volatility. The remaining
realized volatilities in the model correspond to aggregated lagged values of the re-
alized volatility over a week (5 days), RV (w)

t , and over a month (20 or 22 days),
RV

(m)
t . For example, the weekly aggregated lagged realized volatility is defined

as:
RV

(w)
t = 1

5 (RVt +RVt−1 +RVt−2 +RVt−3 +RVt−4) .

Coefficient α is an intercept, and β(d), β(w), β(m) are coefficients corresponding
to lagged and aggregated values of realized volatility. Finally, εt+1 is the non-
observable volatility fluctuation. This model can also be modified to contain
additional lagged independent variables, e.g., lagged realized volatilities aggre-
gated over two weeks, etc. The structure of the model is very advantageous
concerning forecasting as it essentially does not require any major operations to
obtain forecasts. We can simply obtain the forecast for time period t + 1 based
on the values known at time t just from the model definition. We will denote this
forecast as ˆ︃RV t+1|t.

There are also several modifications of the univariate HAR model. One that
is certainly worth noting is an approach introduced by Hillebrand and Medeiros
(2010). They focused on combining the univariate HAR model with neural net-
works. To be more precise, they used bootstrap aggregation (bagging) in con-
nection with the HAR model to target the noisiness in the data. This approach,
based on their findings, improved the accuracy of (out-of-sample) forecasts.

III.1.2 Multivariate HAR Model
We established the model for the univariate case. However, our ultimate goal
is to forecast the multivariate realized covariance matrix. Therefore, a natural
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question of generalization of described HAR model arises. Numerous approaches
extending HAR model into the multidimensional case were introduced in the past.
We will discuss the notable ones in the following paragraphs.

We need to consider several things as we generalize the HAR model to multi-
ple dimensions. In the univariate case, we always assume non-negativeness of the
variance. Similarly, in the multivariate setting, we assume that the covariance
matrix is symmetric and positive semi-definite. However, such a condition on the
covariance matrix is much more restrictive in the multivariate case and, therefore,
more complicated to fulfill than the one in the one-dimensional case. Hence, it
is not reasonable to construct a multivariate HAR model in the form of III.1 for
each individual pairwise covariance term in the covariance matrix because such
an approach would plausibly result in violation of the positive semi-definiteness of
the covariance matrix. Bauer and Vorkink (2011) introduced different approach.
First, they apply a matrix logarithm to a covariance matrix. Then they vectorize
obtained matrix and define the multivariate HAR model on the log-scale, which
will be shown in this thesis later. We will follow their approach and formally
define mentioned transformation before continuing with the multivariate model
itself.

Now, we introduce several functions that will be used to transform the realized
covariance. Generally speaking, let us have a square matrix A. We define matrix
exponential function, expm, as:

B = expm(A) =
∞∑︂

k=0

1
k!A

k.

The reasoning behind such a transformation is that the matrix B would sat-
isfy the positive semi-definiteness (even positive definiteness) condition if A is a
symmetric square matrix. We also define the inverse function of expm as logm,
A = logm(B). Properties of both logm and expm functions are discussed in
the attachment A.3. Next, we will introduce the vech operator of a matrix,
a = vech(A), which stacks the elements on and below the diagonal of A to
a vector a. Assuming that the matrix A has the dimensions N ×N , then the re-
sulting vector would be of size P = 1

2N(N+1). There also exists a unique inverse
operator invvech, which forms an N ×N symmetric matrix, A = invvech(a).

After introducing all the relevant functions and operators, we can proceed
to the definition of the multivariate HAR model. In the case of the univariate
HAR model, we first constructed lagged and aggregated values of realized volatil-
ities RVt, RV

w
t , RV

m
t . The construction of the multivariate model follows the

same principle as the one in the one-dimensional case. The one-weak lagged and
aggregated realized covariance, RC(w)

t , is defined as:

RC
(w)
t = 1

5 (RCt +RCt−1 +RCt−2 +RCt−3 +RCt−4) .

Similarly, we can define the aggregated realized covariance matrix RC(m)
t over a

month. The next step is to apply logm transformation to lagged and aggregated

18



matrices as follows:

At+1 = logm(RCt+1),At = logm(RCt),A(w)
t = logm(RC(w)

t ),
A

(m)
t = logm(RC(m)

t ).

After these matrix logarithmic transformations we can apply vech operator to
obtain the corresponding vectors at+1,at,a

(w)
t ,a

(m)
t . The size of these vectors is

P = 1
2N(N + 1), where N is the number of assets in the considered portfolio.

III.1.2.1 MHAR-A

We will now consider several extensions of the univariate HAR model of Corsi
(2009). The first possibility is to use the previously described transformation
of the realized covariance and its lagged (aggregated) values and then construct
separate linear models, where each element of at+1 is dependent purely on the
corresponding lagged values. We define this model as follows:

at+1,(p) = αp + β(d)
p at,(p) + β(w)

p a
(w)
t,(p) + β(m)

p a
(m)
t,(p) + εt+1,(p), p = 1, 2, . . . , P, (III.2)

where at,(p) corresponds to the p-th element of the vector at, similarly for the re-
maining terms at+1,(p), a

(w)
t,(p), a

(m)
t,(p), εt+1,(p) and their corresponding P -dimensional

vectors at+1,a
(w)
t ,a

(m)
t , εt. Such a model is still relatively simple as it requires

estimating 3P coefficients for lagged values and P coefficients for the intercept
term. However, there may be some information loss due to separate estimations.
On the other hand, this model does not require too many parameters compared
to other HAR extensions that will be covered below. We will denote this model
MHAR-A, and we will more broadly discuss its performance in chapter V, where
we compare it with different models.

III.1.2.2 MHAR-B

Another viable method similar to the presented one was developed by Chiriac
and Voev (2011). We present here their original approach based on Cholesky de-
composition. Nevertheless, they suggested implementing it using the logarithmic
transformation (as it is applied in chapter V). Originally, one used Cholesky de-
composition similar to the one introduced in the subsection II.7. However,Chiriac
and Voev (2011) applied the classical Cholesky decomposition, not the LDL de-
composition. Assuming that one makes use of the realized covariance matrix RCt,
we can construct its Cholesky decomposition as RCt = UT

t Ut, where Ut is the
upper triangular matrix. Chiriac and Voev (2011) then define an P = 1

2N(N+1)-
dimensional vector yt = vech(Ut) and construct the corresponding multivariate
HAR model as:

yt+1 = α + β(d)yt + β(w)y
(w)
t + β(m)y

(m)
t + ϵt+1, (III.3)

where again y
(w)
t stands for aggregated lagged values over a week period (similarly

for monthly aggregation y
(m)
t ), α is a P -dimensional parameter and β(k), k =
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d, w,m, are scalar coefficient corresponding to each lag. It is clear from the model
structure that it provides only limited flexibility and possibly omits important
relations. Nevertheless, it is applicable for high-dimensional cases because it
has a very reasonable number of unknown parameters and offers an interesting
alternative to the MHAR-A model. As it was previously mentioned, in this thesis
we apply alternative MHAR-B model defined as:

at+1 = α + β(d)at + β(w)a
(w)
t + β(m)a

(m)
t + εt+1, (III.4)

where the logm transformation is used instead of the Cholesky decomposition.

III.1.2.3 MHAR-C

The last extension of the univariate HAR model to multiple dimensions we present
here was introduced by Bauer and Vorkink (2011). It still follows the same
structure of lagged values as the previously discussed models, but it incorporates
cross-section parameters. We can construct the desired multivariate HAR model
of Bauer and Vorkink (2011) as:

at+1 = α + B(d)at + B(w)a
(w)
t + B(m)a

(m)
t + εt+1, (III.5)

where at,a
(w)
t ,a

(m)
t are vectors of lagged and aggregated values of dimension P

and B,B(w),B(m) are matrices of unknown coefficients of the dimension P × P .
It can be seen that such a model has a very large number of parameters that have
to be estimated. To be more precise, we have P parameters for the intercept term
and 3P 2 coefficients corresponding to the remaining explanatory variables. There-
fore, this model is barely usable in practice as the enormous number of unknown
parameters does not make it possible to apply such an approach for a greater
number of assets N . Hence, Bauer and Vorkink (2011) continue to develop their
model by using principal component analysis for at (and a

(j)
t , j = w,m) aiming

at a variable reduction. This procedure significantly reduces the number of pa-
rameters because it targets the correlated cross-section coefficients in the model,
which is due to the covariance modeling very large. The number of parameters
in the final model then depends on the selected number of principal components.
For example, if we use two principal components in our model, the final model
would end up with 7P parameters. Model of Bauer and Vorkink (2011) incorpo-
rating principal component analysis will be denoted MHAR-C in this thesis.

Bauer and Vorkink (2011) also include other explanatory variables to the
model, e.g., T-bill interest rate, etc. They specifically use variables that are be-
lieved to forecast stock returns and volatility well according to economic theory.
They then construct a factor model including both the lagged values and the
economic-based explanatory variables. We will omit these additional variables
and exclusively focus on the lagged and aggregated values in the model.

III.1.2.4 Different HAR Generalizations

Several other methods generalizing the univariate HAR model of Corsi (2009)
were introduced in the past. Čech and Baruník (2017) have generalized the
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HAR model by Chiriac and Voev (2011) based on Cholesky decomposition to the
so-called GHAR model (Generalized HAR model). They have used seemingly
unrelated regression (SUR) to extract information from the correlation of error
terms to improve forecasting ability. This approach enables a certain common
structure of the realized covariance in the framework of the model in some sense.
However, as the error terms of the HAR model are generally heteroscedastic, this
model could possibly struggle with efficiency. Another very complex approach is
introduced by Hong and Hwang (2022) assuming exponentially decaying coeffi-
cients in the multivariate HAR model.

III.1.2.5 Bias Correction

The last thing that we need to consider regarding the multivariate HAR model
is the bias of described methods. Due to the logarithmic transformation, we can
expect particular bias in our predictions implied by Jensen’s inequality. Both
Chiriac and Voev (2011) and Bauer and Vorkink (2011) discuss the application
of specific bias corrections. The correction described by Bauer and Vorkink (2011)
is not suggested to correct the forecast. Chiriac and Voev (2011) extends this
correction for forecast correction purposes. This approach is based on the mean
or median of the fraction:

ξt,(n) =

√︂
RCt,(n,n)√︂ˆ︃RCt,(n,n)

, (III.6)

where RCt,(n,n) corresponds to the n-th diagonal element of the matrix RCt. They
also critically discuss the potential use of such a bias correction. Their study does
not find empirical justification for applying such correction unless the bias is fairly
large. They measure the bias using the mean of the fraction series ξt,(n) and its
overall deviation from 1 for each n (and different ranges of values used in the
calculation of mean). In practice, this correction based on their findings could,
in fact, have even negative effects on the resulting forecasts when the bias is rel-
atively small. Therefore, we decided not to apply the bias correction in our case.

III.2 Alternative Models
There are also various alternatives to model the dynamics of realized covariance
matrices. We will shortly describe two different approaches in this subsection.
Although non of these methods will be later used in the empirical application,
we decided to present these methods as their role in the context of the realized
covariance forecasting is rather important.

The first potential competitor of the HAR model is the Wishart autoregres-
sive (WAR) model introduced by Gourieroux et al. (2009). The advantage of
the WAR model is that it naturally possesses positive definiteness and symmetric
properties. Common estimation procedures of the WAR model include a method
of moments and maximum likelihood estimation. Possibly major disadvantage of
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the WAR model in comparison with the HAR model is that it cannot capture
the long-memory dependence. We have already discussed properties of volatility
observed in practice at the beginning of this chapter, including the importance
of the long-memory property.

The second popular model that can be considered in the context of mod-
eling the realized covariance matrix is the vector autoregressive fractionally in-
tegrated moving average (VARFIMA) model. This model was introduced by
Chiriac and Voev (2011). Similarly to their multivariate HAR model, they de-
fine the VARFIMA model using Cholesky factorization and model the vectorized
upper triangular matrix Ut. The VARFIMA is also capable of incorporating the
long-memory property of realized covariance and, therefore, it is a direct competi-
tor to the multivariate HAR models. Chiriac and Voev (2011) in their empirical
study found that the VARFIMA model slightly outperformed their multivariate
HAR model. However, it should be noted that their multivariate HAR model
significantly differs from the one introduced by Bauer and Vorkink (2011) or the
univariate HAR models applied to individual elements of the realized covariance.
Hence, the comparison of all these forecasting methods presents an interesting
topic to be analyzed.
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IV. Portfolio Optimization and
Forecast Evaluation
In the previous chapter, we presented various forecasting methods of the real-
ized covariance (and different estimators of the integrated covariance). Now, we
will be interested in the application and evaluation of resulting forecasts. One
such application is portfolio optimization. In this chapter, we will describe the
portfolio optimization problem, including the transaction cost constraint. The
optimization results will also be used to compare previously described estimators
and forecasting methods. As a part of this chapter, we also present a statistical
evaluation method that we will use to compare different models in chapter V.

IV.1 Portfolio Optimization Including Transac-
tion Costs

We present a portfolio optimization problem with constraint limiting transaction
costs. We will be purely interested in the global minimum variance portfolio
(GMVP) because it does not require expected return specification. It was shown
in various studies that volatility has a significantly more important role than the
expected return in the presence of high-frequency data. Hence, we can solely
focus on the integrated covariance estimators that are our main topic throughout
the thesis and omit the estimation of the expected return.

There are two main constraints in the most common formulation of the GMVP
optimization problem. The first one limits the overall value of usable funds, and
the second one describes whether short sales are allowed or not. In general, we will
assume that short sales are allowed. However, the possibility of short positions
in the optimization problem also has an impact on the second constraint, which
is usually mathematically formulated as ∑︁N

n=1 w(n) ≤ W , where w(n) is weight
corresponding to asset n (or in other words the portion of wealth that is invested
into the asset n) and W is a total disposable amount of wealth. For the rest of
this thesis, we will assume that the total disposable wealth of an investor is equal
to 1. Under the classical formulation of GMVP with short sales allowed, this
condition is not very strict. It is described by Mansini et al. (2015) and Fan et
al. (2012) that imposing the so-called booksize constraint (sometimes also called
gross exposure constraint):

N∑︂
n=1

|w(n)| ≤ s, (IV.1)

in combination with the classical sum of weights enables us to limit the short
positions. The parameter s is then called the gross exposure parameter. It cor-
responds to the total allowed exposure. One can control the portion of short
positions in the portfolio by correspondingly regulating the value of the gross ex-
posure parameter s. Classical Markovitz portfolio would correspond to the case
when s = ∞. On the other hand, the choice s = 1 implies that the short-sales
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are not allowed.

Secondly, we will focus on the transaction costs. There are three main cate-
gories of transaction costs related to an individual trade. First, there is a com-
mission, which is basically a fee that the broker charges for trade execution. The
second one is a bid/ask spread that refers to the difference between the buying
price and the price if we immediately sell the same stock. Lastly, there is a mar-
ket impact that is linked to the trading of multiple stocks on the same asset. By
executing orders on various stocks of the same company, the investor changes the
price and, therefore, adds extra cost to the trade. Sometimes, the fourth type of
transaction cost is specified, which refers to the lost profit from the unrealized
trading opportunity. In literature, this fourth type of transaction cost is usually
referred to as an opportunity cost. However, we do not specifically target lastly
mentioned transaction cost.

A rational investor would like to decrease the transaction costs as much as
possible. And as each trade is accommodated with given transaction costs, it is
reasonable to limit the frequency of portfolio changes. Such a property is ensured
by imposing a so-called turnover constraint:

N∑︂
n=1

|wt,(n) − wt−1,(n)| ≤ L
N∑︂

n=1
|wt−1,(n)|, (IV.2)

where wt,(n) is a position in the asset n at time t and L is a turnover constraint
parameter. Such a condition limits the changes in the portfolio and, therefore,
limits the transaction costs. The choice of the turnover constraint parameter L
is quite ambiguous as it is usually set to the value between 0 and 1 depending on
the desired transaction costs restriction.

Combining all the described constraints with the classical GMVP and also
introducing time dependence of weights into the optimization problem, we for-
mulate the optimization problem using a one-day ahead forecast of the covariance
matrix ˆ︁Ωt+1|t:

min
wt+1

wT
t+1

ˆ︁Ωt+1|twt+1

s.t.
N∑︂

n=1
wt+1,(n) ≤ 1

N∑︂
n=1

|wt+1,(n)| ≤ s,

N∑︂
n=1

|wt+1,(n) − wt,(n)| ≤ L
N∑︂

n=1
|wt,(n)|,

wt+1 ∈ RN ,

(IV.3)

where wt+1 = (wt+1,(1), wt+1,(2), . . . , wt+1,(N))T , wt = (wt,(1), wt,(2), . . . , wt,(N))T ,
are an N -dimensional vectors of weights at time t+1, t respectively. ˆ︁Ωt+1|t is once
again one-day ahead forecast of the integrated covariance matrix. Parameter s de-
notes the gross exposure parameter, and L is the turnover constraint parameter.
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We denote the resulting weights for which the minimum is attained as ˆ︂wt+1. In
general, this optimization problem can be extended for k-days ahead forecasts of
the covariance ˆ︁Ωt+k|t and corresponding portfolio weights wt+k,(n), n = 1, 2, . . . , N .

The turnover constraint depends on portfolio weights from a previous period,
as could be seen in the inequality IV.2. In chapter V, we will be mainly interested
in portfolio optimization starting with some initial weights. It is necessary to
determine these weights beforehand because we assume that we do not have any
particular positions in any of the assets from the considered portfolio. It is a
common practice to set initial weights to the weights of the equally weighted
portfolio w(eq) = (w(eq)

(1) , w
(eq)
(2) , . . . , w

(eq)
(N))T , w(eq)

(n) = W
N

for ∀n. Therefore, we can
reformulate the optimization problem described in IV.3 using the equal weights
that substitute the role of weights from the previous period:

min
wt+1

wT
t+1

ˆ︁Ωt+1|twt+1

s.t.
N∑︂

n=1
wt+1,(n) ≤ 1

N∑︂
n=1

|wt+1,(n)| ≤ s,

N∑︂
n=1

|wt+1,(n) − w
(eq)
(n) | ≤ L

N∑︂
n=1

|w(eq)
(n) |,

wt+1 ∈ RN ,

(IV.4)

where again wt+1 is an N -dimensional vector of weights at time t + 1, ˆ︁Ωt+1|t is
one-day ahead forecast of the integrated covariance matrix estimator and w(eq)

is a vector of weights for equally weighted portfolio.

IV.2 Forecast Evaluation
At last, we present various methods, which will be later in the chapter V used to
compare forecasts. We will mainly focus on the evaluation based on the optimiza-
tion problem formulated in the previous subsection and the statistical evaluation.

IV.2.1 Economic Forecast Evaluation
The most straightforward way of comparing forecasts based on the results of
GMVP is to compare the attained minima for each model-estimator combination
directly. This method seems very tempting. However, drawing any reasonable
conclusions from this approach is difficult as it does not provide common ground
for the model-estimator combinations.

Second, a more sophisticated comparison method is presented in Bollerslev et
al. (2019). They use optimal weights ˆ︂wt+1 that minimize the optimization prob-
lem (in our case IV.4) for each model-estimator combination and then compare
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their performance by calculating:

ˆ︂wT
t+1RCt+1ˆ︂wt+1, (IV.5)

where RCt+1 is the realized covariance for the time period t+ 1 (based on 5-min
intraday data). Hence, the RCt+1 is constructed from the data that were not
used during the estimation of the forecasting models as we evaluate the out-of-
sample forecasts. The realized covariance matrix RCt+1 is taken as a proxy for
the integrated covariance at time t + 1. This approach enables us to compare
the obtained values reasonably as they are all connected through the realized
covariance matrix for the time period t+ 1.

IV.2.2 Statistical Forecast Evaluation
Alternatively, several different error measures could be used to compare the pre-
cision of forecasts. We will present the Frobenius norm solely as it seems to be
the most common choice among various already referenced papers concerned with
models of the realized covariance. As we are performing (out-of-sample) forecast,
we will be interested in the precision of the one-day ahead forecast ˆ︁Ωt+1|t. We
will compare this forecast with the integrated covariance proxy calculated based
on the data that were observed during day t+ 1, ˆ︁Ωt+1. However, it is important
that data for the day t+ 1 were not used to fit the model because, once again, we
are interested in the forecast evaluation. We will select two different choices of
the integrated covariance proxy initially suggested by Čech and Baruník (2017).
The first choice of proxy will be simply the realized covariance (see II.1), and the
second one will be the realized kernel covariance (see II.3). We then calculate the
Frobenius norm of the matrix Ct+1 = ˆ︁Ωt+1|t − ˆ︁Ωt+1 = (ct+1,(m,n))m,n=1,2,...,N as:

∥Ct+1∥F =

⌜⃓⃓⎷ N∑︂
m=1

N∑︂
n=1

|ct+1,(m,n)|2. (IV.6)

Contrary to the economic forecast evaluation methods, this approach has a formal
statistical justification as it coincides with the RMSE (root-mean-square error)
evaluation of the forecast. On the other hand, this statistical comparison has one
possible disadvantage, which is actually shared with the economic evaluation.
The choice of the covariance proxy is obviously not unique, but some proxy has
to be selected as the integrated covariance is latent. Using two specific choices
may not result in a fair evaluation because the proxies themself can have poor
precision, and they will likely favor the forecasts based on the corresponding esti-
mator. Nevertheless, the solution to this issue surely does not consist in extending
the number of proxies just by itself. It can be seen that both economic and sta-
tistical comparison methods face similar problems regarding the choice of proxy.
However, two different choices of covariance proxy in the statistical evaluation
should be adequate for our purposes.
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V. Empirical Study
In this chapter, we will focus on the application of presented models and estima-
tors on real-life data. We will first introduce the data and procedures used during
the calculation itself. In the second subsection, we will show the results and com-
pare different models used to forecast different integrated covariance estimators.

V.1 Data and Technical Details
Our main goal is to estimate the integrated covariance matrix of vector time se-
ries and then construct a one-day ahead forecast based on the models presented
in the chapter III. We consider 5-min intraday data of stock prices for 50 different
companies. We decided to use 5-minute intervals as they provide the properties of
high-frequency data and also tend to be a bit less affected by the microstructure
noises. We do not observe the before-hours, after-hours, or overnight trading
data. This can be quite limiting for certain integrated covariance estimators,
especially those developed for the tick-by-tick data preferably observed continu-
ously, including overnight observations (this concerns mainly the two-time scale
realized covariance estimator and its robust modification).

Our data consist of 50 randomly selected companies from the S&P500 index.
We decided to analyze larger companies as their intraday prices are usually more
consolidated. Nevertheless, we still had to deal with missing observations in our
case too. We will work with intraday observations from 12 August 2022 till 30 De-
cember 2022, a total of 98 business days. We used Python programming language
to obtain the intraday observations as it offers an open-source library yfinance,
which connects users to Yahoo! Finance APIs. Users can then access different
trading data, including the intraday data for different time intervals (1-min, 2-
min, etc.). The only problem is the maximum time horizon one can obtain. The
number of accessible business days differs for particular time intervals; however,
for the 5-min time interval, it is capped at 60 days. This means that in a given
time, we can access intraday data only for the last 60 business days. Therefore, it
is necessary to repeat the procedure and extend the data set over time to obtain
more observations. Subsequently, we also use a Python environment to perform
cleaning of obtained data (in our case, replacing missing values with linearly in-
terpolated values) and for the calculation of logarithmic returns. The remaining
calculations were performed in the R software environment because it has more
tools for intraday data analysis. A prime example of such a tool is a library called
highfrequency, which contains various functions for calculating different integrated
covariance estimators. This package also includes a function that transforms a
non-positive semi-definite matrix into a positive semi-definite matrix. We men-
tion this fact because this function often does not perform as expected, and the
results of the function are numerically unstable. Hence, we would recommend
using different algorithms to ensure the symmetric positive semi-definiteness of
covariance matrices since the positive semi-definiteness is pivotal not only from
the theoretical point of view but also because of the logarithmic matrix trans-
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formation in the model development.1 Models described in the chapter III were
handled manually using common R functions like lm.

Figure V.1: Graph shows the cumulative explained variability of the principal
components in the MHAR-C model combined with the realized covariance esti-
mator for 50 assets. Each curve corresponds to the explained variability of the
first principal components for different lagged (aggregated) values of the realized
covariance estimator.

Moreover, we present selected company tickers with corresponding names and
sectors of each analyzed company in the attachment A.1. Data, together with
the briefly described code, will be attached as the electronic attachment.

Remark. For the construction of the MHAR-C model, we use only the first two
principal components. If we omitted the principal component analysis in this
particular model, we would end up with 4 878 150 parameters for the 50 × 50
covariance matrix. Estimating such a large number of parameters is completely
unacceptable because it would result in serious overfitting. Therefore, the prin-
cipal component analysis is needed as described in chapter III. Using the first
two principal components, we would end up with 8 925 (using three principal
components, we would end up with 12 750). Although this number of parameters
is still large, we were able to reduce it dramatically.

Remark. The first two (three) principal components in the case of 50 analyzed
assets explained roughly 17%(19%), 16%(23%) and 50%(65%) for 1-day lagged,
5-days lagged aggregated, and 22-days lagged aggregated values, respectively.
These percentages are significantly larger if we consider a smaller portfolio of
five assets. For five randomly selected assets, the explained variability using the
first two principal components is 36%, 52%, and 83% for 1-day lagged, 5-days
lagged aggregated, and 22-days lagged aggregated values, respectively. Such re-
sults mostly coincide with the results obtained by Bauer and Vorkink (2011). We
could consider more components in the MHAR-C model to increase the explained

1One can use for example function nearest_spd from library pracma.
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Figure V.2: Graphs show elements of the first eigenvectors arising from the princi-
pal component analysis for each lagged variable of the realized covariance matrix
in the context of 50 assets.

variability, but such a procedure would necessarily drastically enlarge the number
of parameters in the model. Therefore, we decided to stay with only two compo-
nents as it was suggested by Bauer and Vorkink (2011).

V.2 Comparison of Forecasts
In the following part, we will analyze and compare different approaches to in-
tegrated covariance modeling. We first calculate different estimators of the in-
tegrated covariance described in chapter II based on the given data. To avoid
any misunderstanding, we summarize all the used estimators together with the
corresponding notation in the form of the following list:

• Realized Covariance (RC),

• Realized Bi-power Covariance (BP ),

• Realized Kernel Covariance (RK),

• Modulated Realized Covariance (MRC),

• Realized Threshold Covariance (RTC),

• Two-Time Scale Realized Covariance (TS),

• Robust Two-Time Scale Realized Covariance (RTS),

• Realized Cholesky Covariance (CholC),

• POET Estimator (POET ).

We will obtain one estimate of the integrated covariance (with dimensions 50×50)
for each day and each choice of estimator. This means that we will have nine
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different estimates of the integrated covariance for every single day from the 98
observed business days sample. Subsequently, we separate the last observation
period from the rest because we want to have one out-of-sample observation that
we will use for both economic forecast evaluation using the GMVP and statistical
forecast evaluation using the Frobenius norm as described in chapter IV.

After removing the last estimated integrated covariance matrices, we are left
with estimates over 97 days. We will apply four different forecasting methods to
those slightly truncated datasets. A list of the utilized forecasting models can be
seen below:

• Random walk assumption-based model (RW ),

• The univariate model of Corsi (2009) applied to each element of the logm-
transformed estimated integrated covariance matrices (MHAR-A),

• The multivariate HAR model of Chiriac and Voev (2011) (MHAR-B),

• The multivariate HAR model of Bauer and Vorkink (2011) (MHAR-C).

Using the described models, we perform a 1-day ahead forecast for each model
in combination with each integrated covariance estimator (each model-estimator
combination). We will use the results arising from different model-estimator
combinations and compare them using different evaluation techniques described
in the chapter IV.

V.2.1 Economic Comparison
We continue by comparing the model-estimator combinations using the economic
approach described in the previous chapter IV. We will solve several portfolio
optimization tasks described in IV.4 with different choices of the gross exposure
parameter s. In this subsection, we present the results for the three most common
choices of parameter s. Specifically, s equal 1, 2, and 3, where the case s = 1
implies that the short-sales are not allowed. The other two cases restrict the
portion of shorted stocks in the portfolio. We also present the results of portfolio
optimization for s = 1.5, 2.5,∞ in the attachment A.2. The turnover parameter
L will be generally set to a 1

2 as we want to restrict the transaction costs only
moderately. Our portfolio is assumed to be composed of 50 individual assets with
a covariance structure given by integrated covariance estimators.

Let us begin by presenting the attained minima of the objective function,
wT

t+1
ˆ︁Ωt+1|twt+1. As we said in the previous chapter, this approach is not ideal

for comparing different methods. However, we want to somewhat present the
portfolio optimization results to outline the context of our framework. It could
be seen in the table V.1 that for the majority of estimators, the results are not
very dependent on the choice of gross exposure parameter s. The increasing value
of this parameter in the majority of cases does not affect the final results. Such
results are quite unexpected because we would expect that setting the parameter
s to a higher value should improve the final result of minimization. To be more
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precise, the increasing value of s enables more short positions in a portfolio and,
hence, extends the space of parameters, which should rationally result in the same
or improved results in terms of minimization. However, this is not the case be-
cause the turnover constraint limits the transaction costs and, therefore, imposes
additional limitations on resulting optimal weights. Overall, the best results in
terms of the attained minima were obtained using the POET estimator, which
attained the lowest values among the considered model-estimator combinations.
However, the results of the attained minima are not necessarily conclusive, as
this approach does not take into account any proxy of the integrated covariance.

POET RTS TS RTC MRC CholC BP RK RC

s = 1

RW 0.18 11.73 25.11 39.68 35.34 15.55 11.81 103.56 57.00

MHAR-A 1.08 5.64 10.78 74.74 44.76 19.49 49.34 21.76 156.13

MHAR-B 0.54 26.51 40.67 66.95 66.59 53.33 46.65 33.55 84.42

MHAR-C 0.97 28.11 23.82 85.10 43.71 49.70 55.90 18.26 151.64

s = 2

RW 0.18 11.73 25.11 39.68 35.34 15.55 11.81 103.56 57.00

MHAR-A 1.08 5.64 10.78 74.74 31.21 22.03 49.34 21.76 156.13

MHAR-B 0.54 26.51 40.67 66.95 66.59 53.33 46.65 41.01 84.42

MHAR-C 0.97 27.69 23.82 85.10 43.71 49.70 55.90 18.26 151.64

s = 3

RW 0.18 11.73 25.11 39.68 35.34 15.55 11.81 103.56 57.00

MHAR-A 1.08 5.64 10.78 74.74 31.21 22.03 49.34 21.76 156.13

MHAR-B 0.54 26.51 40.67 66.95 66.59 53.33 46.65 41.01 84.42

MHAR-C 0.97 27.69 23.82 85.10 43.71 49.70 55.90 18.26 151.64

Table V.1: The attained minima in the portfolio optimization problem described
in the chapter IV for three different choices of gross exposure parameter s (1, 2, 3).
All the presented results are displayed on the 107 scale.

Next, we will use the optimal weights ˆ︂wt+1 obtained as the solution of the
portfolio optimization for each model-estimator combination and calculate the
following: ˆ︂wT

t+1RCt+1ˆ︂wt+1,

where ˆ︂wt+1 are the optimal weights in which portfolios attend the minima pre-
sented in the table V.1 (as theoretically described in the chapter IV). The realized
covariance RCt+1 serves as a proxy of the integrated covariance at time t+ 1. It
is much clearer how to compare different methods using this approach because all
the resulting values are now connected by the realized covariance matrix from the
time period t+1 (in our case, day 98). Hence we have a common link between the
evaluation of all the selected methods. Therefore, comparing such results is much
more reasonable than purely the attained minima of the portfolio optimization.
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Results for each model-estimator combination are presented in the table V.2.

EqW POET RTS TS RTC MRC CholC BP RK RC

s = 1

RW 139.84 24.10 22.07 21.94 20.65 20.36 19.67 25.74 22.73 24.45

MHAR-A 139.84 17.56 28.50 14.33 18.52 17.27 14.34 21.62 13.32 20.62

MHAR-B 139.84 19.30 18.88 21.99 18.51 18.70 19.42 20.13 17.57 18.00

MHAR-C 139.84 21.12 21.80 16.53 20.20 19.09 19.57 22.57 13.73 18.80

s = 2

RW 139.84 24.10 22.07 21.94 20.65 20.36 19.67 25.74 22.73 24.45

MHAR-A 139.84 17.56 28.50 14.33 18.52 12.94 14.21 21.62 13.32 20.62

MHAR-B 139.84 19.30 18.88 21.99 18.51 18.70 19.42 20.13 18.34 18.00

MHAR-C 139.84 21.12 20.88 16.53 20.20 19.09 19.57 22.57 13.73 18.80

s = 3

RW 139.84 24.10 22.07 21.94 20.65 20.36 19.67 25.74 22.73 24.45

MHAR-A 139.84 17.56 28.50 14.33 18.52 12.94 14.21 21.62 13.32 20.62

MHAR-B 139.84 19.30 18.88 21.99 18.51 18.70 19.42 20.13 18.34 18.00

MHAR-C 139.84 21.12 20.88 16.53 20.20 19.09 19.57 22.57 13.73 18.80

Table V.2: Table contains the evaluation of model-estimator combinations based
on the calculation of ˆ︂wT

t+1RCt+1ˆ︂wt+1, where RCt+1 is the realized covariance for
the out-of-sample period t + 1 (day 98) and ˆ︂wt+1 are the optimal weights ob-
tained as a result of the optimization problem described in IV.4 (the portfolio
weights corresponding to the attained minima presented in the table V.1). The
table shows the performance based on the described evaluation method for three
selected choices of gross exposure parameter s (1, 2, 3). The EqW column corre-
sponds to the portfolio with equal weights. All the presented results are displayed
on the 106 scale.

The results presented in the table V.2 are obviously not very dependent on
the choice of gross exposure parameter s. Such results could be expected as the
weights used for calculating the criterion in the table V.2 are the same as the ones
used in the table V.1 of attained minima. We will discuss the individual perfor-
mance of estimators and forecasting models first. Afterward, we will be interested
in the comparison of model-estimator combinations using economic comparison.

V.2.1.1 Economic Comparison of Estimators

We begin with the comparison of individual estimators. The best way to com-
pare the presented estimators independently on the selected forecasting models
is by using the random walk assumption-based model (RW). Such a choice of
forecasting model does not greatly influence the evaluation; hence, we analyze
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the forecasting ability of each estimator solely. It can be seen that all the esti-
mators are capable of outperforming the results of an equally weighted portfolio
(EqW ). Such results implicate rather significant predictive ability of individual
estimators, at least in the context of one-day ahead forecasts. Table V.2 shows
that the results are not affected by the choice of s. Therefore, we can compare
the results of individual estimators irrespective of the value of parameter s.

The realized Cholesky covariance (CholC) estimator performs the best in
comparison with all the presented estimators based on the evaluation using the
weights from the portfolio optimization. The second-best estimator is the mod-
ulated realized covariance (MRC), and the third-best is the realized threshold
covariance estimator (RTC). Based on these results, it seems that more robust es-
timators with respect to the microstructure noises and non-synchronicity perform
better than simpler estimators like the realized covariance (RC) or the realized
bi-power covariance (BP ). Interestingly enough, the two-time scale realized co-
variance (TS) and its robust modification (RTS) perform relatively well despite
the fact that they were developed for the tick-by-tick data. These estimators were
able to outperform all the simpler estimators, e.g., the realized covariance (RC)
or the realized bi-power covariance (BP ), but also some of the more complex
estimators like the POET estimator.

On the other hand, the worst-performing estimator is the realized bi-power
covariance (BP ), which performs even worse than the realized covariance (RC)
estimator. However, both of these estimators are not significantly outperformed
by their counterparts. The results for all estimators are very competitive, but it
seems that more complex estimators like the CholC, MRC, or RTC do achieve
better results when comparing simply the predictive ability of individual estima-
tors.

V.2.1.2 Economic Comparison of Forecasting Models

Comparing individual estimators is still quite straightforward by using the RW
model. On the other hand, discussing the economic evaluation for forecasting
models is much more difficult because the results are substantially dependent on
the choice of the estimator. However, there are a few interesting points that we
would like to point out.

First, we can observe in V.2 that MHAR models are able to outperform the
RW model for the majority of estimators. Only exceptions could be seen when
using the two-time scale realized covariance (TS) and its robust version (RTS).
However, all the estimators are able to predict relatively well on their own (in
combination with the RW model). This statement is supported by the fact that
the RW model is capable of significantly outperforming the equally weighted
portfolio and realizing fairly competitive results compared to MHAR models.
The MHAR models are beneficial in most cases. On the other hand, combining
certain estimators with specific models sometimes results in inferior performance,
which will be more broadly discussed in the next subsection. One such example is
the robust two-time scale realized covariance in combination with the MHAR-A
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model.

Secondly, it seems that the MHAR-A model performs more consistently for
various choices of estimators than the remaining forecasting models. The MHAR-
A model outperforms its competitors for five different choices of covariance es-
timators and, therefore, achieves the best results based on the economic evalua-
tion. Both MHAR-B and MHAR-C models are also able to outperform the RW
model for almost any choice of the covariance estimator. However, the results of
these models are surely a bit more volatile than the ones of the MHAR-A model.
Overall, it seems that there is a significant contribution of MHAR models when
it comes to covariance forecasting.

V.2.1.3 Economic Comparison of Model-Estimator Combinations

Next, we will discuss in detail the results of the model-estimator combinations.
An interesting phenomenon that we touched on earlier is that the results are
significantly influenced by the choice of the estimator, as some forecasting mod-
els perform better in combination with certain specific estimators. For example,
MHAR-B outperforms the other MHAR models in combination with the robust
two-time scale realized covariance (RTS) or the realized threshold covariance
(RTC). The MHAR-C model achieves the best results compared to the remain-
ing models for the realized kernel covariance (RK) and the realized covariance
(RK). However, in both of those cases, it still does not outperform the MHAR-A
model.

The RW model performs comparatively well in combination with the real-
ized threshold covariance (RTC) and the realized Cholesky covariance (CholC).
It can also outperform some MHAR models in combination with the two-time
scale realized covariance (TS) and the robust two-time scale realized covariance
(RTS). In general, the random walk assumption-based model RW performs bet-
ter in comparison with the remaining forecasting models when combined with
more complex estimators.

The MHAR-A model in combination with the modulated realized covariance
(MRC) performs the best across all the model-estimator combinations. This
combination significantly outperforms the MRC in combination with competing
forecasting models. However, when the gross exposure parameter is equal to one,
it does not achieve better results than, for example, the realized kernel estimator
(RK). A slightly worse overall performance could be observed for the combination
of the realized kernel estimator (RK) and the MHAR-A model, followed by the
RK estimator combined with the MHAR-C model. Very impressive results are
also achieved using the CholC and the TS estimators combined with the MHAR-
A model. According to the economic evaluation, all of these models perform
significantly better than the competing model-estimator combinations.

It is difficult to decide which model-estimator combination is the best based
on the presented economic evaluation as the results depend on many factors, like
the choice of gross exposure parameter s. However, the trend occurring in the
evaluation of the model-estimator combinations seems to be as follows. The RW
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model usually performs well compared to the remaining models in combination
with the more complex estimators (the robust two-time scale realized covariance,
RTS, or the realized Cholesky covariance, CholC). The simpler the estimator
gets, the better performance we achieve using the more complex forecasting mod-
els compared to the RW model, e.g., the realized covariance (RC) or the realized
kernel estimator (RK). This trend is more predominant when we compare the
RW model with the MHAR-B and MHAR-C models. The MHAR-A model works
well with more complex estimators like the realized Cholesky covariance (CholC).

It seems that the MHAR-A model combined with more complex estimators
that consider the impact of microstructure noises (MRC or CholC) achieves the
best results in comparison with the remaining models. On the other hand, some
estimators do not significantly benefit from the use of MHAR models, e.g., the
robust two-time scale realized covariance (RTS). In such cases, the RW model
seems to achieve very competitive results.

To summarize our results, it can be seen that all three MHAR models benefit
from the use of certain specific estimators. The MHAR-B model outperforms the
competing MHAR models when combined with the robust two-time scale real-
ized covariance (RTS) or the realized threshold covariance (RTC). The MHAR-C
model benefits substantially from the combination with the realized covariance
estimator (RC) or the realized kernel estimator (RK). However, in the case of
both of these estimators, it does not achieve the best overall results. The MHAR-
A model outperforms the remaining models in combination with the majority of
estimators. The most significant differences in the performance could be observed
for the modulated realized covariance (MRC) and the realized Cholesky covari-
ance (CholC) too.

In general, the MHAR models outperform the RW model in most cases when
comparing single estimator choices. The best performance for a single model-
estimator combination is achieved by the MHAR-A model with the MRC es-
timator. For s equal to one, the best-performing model-estimator combination
is the MHAR-A model with the realized kernel estimator (RK). However, the
MHAR-C model, combined with the RK estimator, is also very close in terms of
the economic evaluation to the MHAR-A model with the RK estimator.

To be fair, this evaluation can be quite misleading. If we were to compare our
models only based on economic evaluation, we could omit the quality of the pre-
diction from a different perspective, like the error measures. For those reasons, we
will present the statistical evaluation of the selected models in the next subsection.

V.2.2 Statistical Comparison
In the following subsection, we will be interested in the statistical evaluation of
presented model-estimator combinations using the Frobenius norm as described
in the chapter IV. We again present our results in the form of a table, where we
show the resulting values of the Frobenius norm for different models and inte-
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grated covariance estimators.

First, we will look at the results where the realized covariance estimator is
used as a proxy for the integrated covariance. In the table V.3, we show the re-
sulting values of the Frobenius norm for each forecast. It is quite likely that this
method favors the realized covariance estimator because this specific estimator is
also used as the proxy. Therefore, it is unsurprising that the realized covariance
(RC) achieves the best results.

Both MHAR-A and MHAR-C models achieve the smallest values of the Frobe-
nius norm in connection with the RC estimator. Nevertheless, we will mainly
focus on comparing the remaining estimators and models. The random walk
assumption-based forecasts perform relatively well compared to the more sophis-
ticated MHAR models, even in terms of statistical evaluation. In the previous
subsection, we saw that the RW model achieved competitive results regarding
economic evaluation. However, we expected a more significant difference when
using the comparison based on the Frobenius norm. In some cases, the RW
forecasts perform basically the same as the remaining models, e.g., the POET
estimator.

The estimators developed for the tick-by-tick data (the two-time scale real-
ized covariance, TS, and the robust two-time scale realized covariance, RTS) are
able to achieve very competitive overall results in comparison with the remaining
estimators. For example, they outperform the POET estimator, which achieved
the worst results across all the forecasting models except the RW model. The
realized kernel estimator (RK) combined with the RW model achieves the worst
results. This indicates that the predictive ability of the individual estimator is
rather poor. However, the combination of this particular estimator with MHAR
models produces very competitive results. For example, the MHAR-A model with
the RK estimator performs second-best in terms of the statistical evaluation out
of all the model-estimator combinations.

It is again fairly difficult to decide which estimator is the overall best perform-
ing according to the Frobenius norm based on the realized covariance proxy as we
see different best estimator choices for different forecasting models. Nevertheless,
we can observe that the best-performing model-estimator combination from the
economic comparison (the MHAR-A model with MRC estimator) performs quite
well when we compare it with the remaining estimators using the Frobenius norm.
Overall similar results are obtained for forecasts based on the realized kernel esti-
mator (RK) and the modulated realized covariance (MRC), which achieved the
second-smallest values of the norm (after the realized covariance, RC).

Regarding the forecasting models, it seems that the best overall results were
obtained for the MHAR-A model. In most cases, this model performs the best
or very close to the best-performing model in terms of the value of the Frobenius
norm. Contrary to economic evaluation, the realized bi-power covariance achieves
very competitive results, especially for the MHAR-A and the MHAR-C models.
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POET RTS TS RTC MRC CholC BP RK RC

RW 8.562 6.845 6.070 6.707 5.892 6.390 6.207 14.151 7.551

MHAR-A 8.570 7.618 5.799 5.407 5.154 5.249 5.266 5.090 3.858

MHAR-B 8.582 7.687 7.473 5.921 6.107 6.829 6.313 6.801 4.303

MHAR-C 8.592 7.237 7.149 5.548 6.124 6.520 5.192 6.488 3.958

Table V.3: Table containing the resulting values of the Frobenius norm of the
matrix obtained as the difference between the forecast based on given model-
estimator combination and the realized covariance used as the proxy for the in-
tegrated covariance of the out-of-sample period t+ 1 (day 98).

Next, we present a comparison based on the Frobenius norm with the realized
kernel covariance (RK) selected as the proxy for the integrated covariance, shown
in the table V.4.

The realized covariance estimator (RC), in combination with various mul-
tivariate HAR models, quite convincingly outperforms the remaining model-
estimator combinations. The realized kernel estimator (RK) achieves similar
values as the remaining models even though the choice of proxy should be in
its favor. Outside these two estimators, we see quite comparable results to the
previous statistical evaluation. The POET estimator seems to perform the worst
out of the considered estimators.

The MHAR-A model again performs the best out of the selected models across
all the different estimators. The MHAR-C model performs almost identically
to the MHAR-A model when combined with the realized threshold covariance
(RTC) or the realized covariance (RC) estimators. Therefore, our results based
on the realized kernel covariance proxy seem consistent with those obtained for
the realized covariance as the integrated covariance proxy.

POET RTS TS RTC MRC CholC BP RK RC

RW 9.521 7.983 7.191 7.992 7.072 7.473 7.899 15.108 9.182

MHAR-A 9.519 8.667 7.053 6.760 6.501 6.528 6.458 6.192 5.115

MHAR-B 9.534 8.645 8.442 7.141 7.150 7.818 7.440 7.823 5.789

MHAR-C 9.538 8.219 8.175 6.713 7.199 7.535 6.438 7.537 5.139

Table V.4: Table containing the resulting values of the Frobenius norm of the
matrix obtained as the difference between the forecast based on given model-
estimator combination and the realized kernel covariance used as the proxy for
the integrated covariance of the out-of-sample period t+ 1 (day 98).

The Frobenius norm is the only truly formal method to evaluate the quality of
forecasts presented in this thesis. Hence, it gives us the best idea about the perfor-
mance of each model-estimator combination. Based on the results obtained using
two different proxies for the integrated covariance in the out-of-sample period,
it seems that the best-performing combination is to use the realized covariance
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estimator to estimate the integrated covariance and then apply the MHAR-A
model to forecast the covariance. The choice of MHAR-A could be potentially
justified by the fact that this model mostly performs better than the remaining
forecasting models and that it is simpler than the model MHAR-C.

On the other hand, all the multivariate HAR models perform better than the
RW model in combination with RC, RK, or BP . Interestingly, we observe a very
similar trend as in the economic evaluation. The RW model performs relatively
better in combination with more complex estimation methods like RTS, TS, or
POET compared to the remaining models (especially MHAR-B and MHAR-C).
It is also worth noting that in the context of both statistical evaluations (eval-
uation with both proxies), it seems that the multivariate HAR model is most
advantageous in comparison with the RW model in combination with the RC
and the RK estimators. For these two estimators, there seems to be a significant
gap in the performance of the RW and MHAR models. Therefore, using one of
these two estimators in combination with MHAR models as a primary option is
quite rational based on the statistical evaluation.
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Conclusion
In this thesis, we presented a concise theory behind the integrated covariance of
the multivariate price process. Later we introduced several methods that can
be used to estimate the integrated covariance. Our first goal was to combine
these estimators with different forecasting models that were rigorously described
in chapter III. Next, we presented different approaches to the evaluation of result-
ing forecasts. One of them is the portfolio optimization problem also involving
transaction costs. In the empirical study, we applied the described methods to
real-life data of 50 companies from S&P500 and analyzed the results by compar-
ing different model-estimator combinations.

In the empirical study, we briefly discussed technical details regarding the ac-
quisition of data and the calculation of forecasts. We also discussed the most chal-
lenging part of the implementation, which was tightly connected to the numerical
stability of the matrices. Simply put, satisfying the positive semi-definiteness of
both forecasts and estimates of the integrated covariance for each day was fairly
difficult.

Next, we primarily focused on the comparison of various models and esti-
mators of the integrated covariance. We tried to view them separately by in-
dividually analyzing the most persistent properties of selected estimators and
models. On the contrary, we also discussed in detail the properties of model-
estimator combinations as one entity. We found that more complex estimators
seem to work better with the simpler MHAR-A model or even with the random
walk assumption-based model (RW). In contrast, simpler estimators like the re-
alized covariance do benefit from the use of the multivariate HAR models and,
according to statistical evaluation, perform the best among the considered model-
estimator combinations. According to the economic forecast evaluation, few of
the more complex estimators, e.g., the modulated realized covariance or the real-
ized Cholesky covariance, perform well in combination with the MHAR-A model.
On the contrary, such estimators do not work as great with the remaining mul-
tivariate HAR models. The statistical evaluation seems to support such results
as the forecasting precision in the context of both proxies of the integrated co-
variance proves to be better with the MHAR-A model than in combination with
other MHAR models. Therefore, there seems to be a noticeable contribution
to the forecasting performance of estimators that consider microstructure noises
when combined with the MHAR-A or random walk assumption-based models.

Based on our findings, using the multivariate HAR models (especially the
MHAR-A and MHAR-C models) combined with simpler estimators like the real-
ized covariance or even the realized kernel estimator seems rational. Nevertheless,
if we decide to use more sophisticated approaches regarding the integrated covari-
ance estimation (e.g., the realized Cholesky covariance), it might be beneficial to
use a simpler MHAR-A model or even the random walk assumption-based model
as they performs more consistently with the more complex estimators.
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A. Attachments

A.1 Selected Companies

Ticker Security Sector Founded
AAL American Airlines Group Industrials 1934

AAPL Apple Inc. Information Technology 1977
AES AES Corporation Utilities 1981

AMAT Applied Materials Information Technology 1967
AMD AMD Information Technology 1969

AMZN Amazon Consumer Discretionary 1994
AON Aon Financials 1982

APTV Aptiv Consumer Discretionary 1994
BAC Bank of America Financials 1998
BAX Baxter International Health Care 1931
BLK BlackRock Financials 1988
CLX Clorox Consumer Staples 1913

CSCO Cisco Information Technology 1984
CZR Caesars Entertainment Consumer Discretionary 1973
DPZ Domino’s Consumer Discretionary 1960
DVA DaVita Inc. Health Care 1979
EXR Extra Space Storage Real Estate 1977
FRC First Republic Bank Financials 1985

GOOGL Alphabet Inc. (Class A) Communication Services 1998
GS Goldman Sachs Financials 1869

HES Hess Corporation Energy 1919
ICE Intercontinental Exchange Financials 2000

INTC Intel Information Technology 1968
IPG Interpublic Group of Companies (The) Communication Services 1930
KIM Kimco Realty Real Estate 1958
KO Coca-Cola Company (The) Consumer Staples 1886

LUMN Lumen Technologies Communication Services 1930
META Meta Platforms Communication Services 2004
MHK Mohawk Industries Consumer Discretionary 1878
MKC McCormick & Company Consumer Staples 1889
MLM Martin Marietta Materials Materials 1993
MSFT Microsoft Information Technology 1975
NFLX Netflix Communication Services 1997
NVDA Nvidia Information Technology 1993
PARA Paramount Global Communication Services 2019
PNC PNC Financial Services Financials 1845
RE Everest Re Financials 1973

SBNY Signature Bank Financials 2001
SPGI S&P Global Financials 1917
STZ Constellation Brands Consumer Staples 1945

TSLA Tesla, Inc. Consumer Discretionary 2003
VLO Valero Energy Energy 1980

VTRS Viatris Health Care 1961
VZ Verizon Communication Services 2000

WAT Waters Corporation Health Care 1958
WHR Whirlpool Corporation Consumer Discretionary 1911
WMT Walmart Consumer Staples 1962
WTW Willis Towers Watson Financials 2016
WY Weyerhaeuser Real Estate 1900
ZBH Zimmer Biomet Health Care 1927

Table A.1: Table containing individual tickers and core financial information of
50 considered companies.
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In table A.1, we present the companies from S&P500 used in the empirical study.
Unfortunately, as of the date of writing this thesis, one company from the list is
no longer a part of the index. Regulators shut down the Signature Bank (SBNY)
around March 10, 2023. The reason for the regulator’s intervention was the
massive amount of withdrawals from the bank accounts due to another bank’s
failure (the Silicon Valley Bank).
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A.2 Portfolio Optimization Results

POET RTS TS RTC MRC CholC BP RK RC

s = 1

RW 0.18 11.73 25.11 39.68 35.34 15.55 11.81 103.56 57.00

MHAR-A 1.08 5.64 10.78 74.74 44.76 19.49 49.34 21.76 156.13

MHAR-B 0.54 26.51 40.67 66.95 66.59 53.33 46.65 33.55 84.42

MHAR-C 0.97 28.11 23.82 85.10 43.71 49.70 55.90 18.26 151.64

s = 1.5

RW 0.18 11.73 25.11 39.68 35.34 15.55 11.81 103.56 57.00

MHAR-A 1.08 5.64 10.78 74.74 31.21 22.03 49.34 21.76 156.13

MHAR-B 0.54 26.51 40.67 66.95 66.59 53.33 46.65 41.01 84.42

MHAR-C 0.97 27.69 23.82 85.10 43.71 49.70 55.90 18.26 151.64

s = 2

RW 0.18 11.73 25.11 39.68 35.34 15.55 11.81 103.56 57.00

MHAR-A 1.08 5.64 10.78 74.74 31.21 22.03 49.34 21.76 156.13

MHAR-B 0.54 26.51 40.67 66.95 66.59 53.33 46.65 41.01 84.42

MHAR-C 0.97 27.69 23.82 85.10 43.71 49.70 55.90 18.26 151.64

s = 2.5

RW 0.18 11.73 25.11 39.68 35.34 15.55 11.81 103.56 57.00

MHAR-A 1.08 5.64 10.78 74.74 31.21 22.03 49.34 21.76 156.13

MHAR-B 0.54 26.51 40.67 66.95 66.59 53.33 46.65 41.01 84.42

MHAR-C 0.97 27.69 23.82 85.10 43.71 49.70 55.90 18.26 151.64

s = 3

RW 0.18 11.73 25.11 39.68 35.34 15.55 11.81 103.56 57.00

MHAR-A 1.08 5.64 10.78 74.74 31.21 22.03 49.34 21.76 156.13

MHAR-B 0.54 26.51 40.67 66.95 66.59 53.33 46.65 41.01 84.42

MHAR-C 0.97 27.69 23.82 85.10 43.71 49.70 55.90 18.26 151.64

s = ∞

RW 0.17 11.73 25.11 38.14 35.34 18.61 11.81 91.39 56.97

MHAR-A 1.08 4.79 10.78 74.71 31.21 22.03 49.34 21.76 156.13

MHAR-B 0.57 26.54 40.67 66.17 66.59 49.08 46.65 41.01 84.42

MHAR-C 1.00 27.69 23.82 85.15 43.71 49.70 55.90 18.26 151.33

Table A.2: The attained minima in the portfolio optimization problem de-
scribed in the chapter IV for six different choices of gross exposure parameter
s (1, 1.5, 2, 2.5, 3,∞). The choice of parameter s equal to ∞ correspond to classi-
cal Markovitz portfolio. All the presented results are displayed on the 107 scale.
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EqW POET RTS TS RTC MRC CholC BP RK RC

s = 1

RW 139.84 24.10 22.07 21.94 20.65 20.36 19.67 25.74 22.73 24.45

MHAR-A 139.84 17.56 28.50 14.33 18.52 17.27 14.34 21.62 13.32 20.62

MHAR-B 139.84 19.30 18.88 21.99 18.51 18.70 19.42 20.13 17.57 18.00

MHAR-C 139.84 21.12 21.80 16.53 20.20 19.09 19.57 22.57 13.73 18.80

s = 1.5

RW 139.84 24.10 22.07 21.94 20.65 20.36 19.67 25.74 22.73 24.45

MHAR-A 139.84 17.56 28.50 14.33 18.52 12.94 14.21 21.62 13.32 20.62

MHAR-B 139.84 19.30 18.88 21.99 18.51 18.70 19.42 20.13 18.34 18.00

MHAR-C 139.84 21.12 20.88 16.53 20.20 19.09 19.57 22.57 13.73 18.80

s = 2

RW 139.84 24.10 22.07 21.94 20.65 20.36 19.67 25.74 22.73 24.45

MHAR-A 139.84 17.56 28.50 14.33 18.52 12.94 14.21 21.62 13.32 20.62

MHAR-B 139.84 19.30 18.88 21.99 18.51 18.70 19.42 20.13 18.34 18.00

MHAR-C 139.84 21.12 20.88 16.53 20.20 19.09 19.57 22.57 13.73 18.80

s = 2.5

RW 139.84 24.10 22.07 21.94 20.65 20.36 19.67 25.74 22.73 24.45

MHAR-A 139.84 17.56 28.50 14.33 18.52 12.94 14.21 21.62 13.32 20.62

MHAR-B 139.84 19.30 18.88 21.99 18.51 18.70 19.42 20.13 18.34 18.00

MHAR-C 139.84 21.12 20.88 16.53 20.20 19.09 19.57 22.57 13.73 18.80

s = 3

RW 139.84 24.10 22.07 21.94 20.65 20.36 19.67 25.74 22.73 24.45

MHAR-A 139.84 17.56 28.50 14.33 18.52 12.94 14.21 21.62 13.32 20.62

MHAR-B 139.84 19.30 18.88 21.99 18.51 18.70 19.42 20.13 18.34 18.00

MHAR-C 139.84 21.12 20.88 16.53 20.20 19.09 19.57 22.57 13.73 18.80

s = ∞

RW 139.84 22.19 22.07 21.94 20.83 20.36 19.58 25.74 21.19 24.44

MHAR-A 139.84 17.56 27.54 14.33 18.51 12.94 14.21 21.62 13.32 20.62

MHAR-B 139.84 20.44 18.89 21.99 18.13 18.70 17.09 20.13 18.34 18.00

MHAR-C 139.84 20.44 20.88 16.53 20.22 19.09 19.57 22.57 13.73 18.77

Table A.3: Table contains the evaluation of model-estimator combinations based
on the calculation of ˆ︂wT

t+1RCt+1ˆ︂wt+1, where RCt+1 is the realized covariance
for the period t + 1 and ˆ︂wt+1 are the optimal weights obtained as a result of
the optimization problem described in the chapter IV (the portfolio weights cor-
responding to the attained minima presented in the table A.2). We show the
performance based on this evaluation method for all six selected choices of gross
exposure parameter s (1, 1.5, 2, 2.5, 3,∞). The EqW column corresponds to the
portfolio with equal weights. All the presented results are displayed on the 106

scale.
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A.3 Properties of expm and logm Functions
We will follow Chiu et al. (1996) and show some interesting and important prop-
erties of both logm and expm functions. Let us have a N×N dimensional matrix
A. The matrix exponential function is defined as:

B = expm(A) =
∞∑︂

s=0

As

s! ,

where A0 reduces to the N ×N identity matrix and As denotes ordinary matrix
multiplication of A (s times). Therefore, the elements of B do not typically
coincide with exponentiated elements of individual elements of A.

Let us also assume that B is an N ×N positive definite matrix with spectral
decomposition B = T DT T , where D is an N ×N dimensional diagonal matrix
with eigenvalues of B on the diagonal and the columns of the N ×N orthogonal
matrix T consist of the corresponding eigenvectors. We can now define the matrix
logarithm of B as:

A = logm(B) = T logm(D)T T ,

where logm(D) is again an N ×N dimensional diagonal matrix with logarithms
of eigenvalues on the diagonal. The matrix logarithm is an inverse function to
the matrix exponential function.

Both transformations have some important properties that are worth mention-
ing. We present several of these properties and observations under the assumption
of positive definiteness of B.

1. Let W be an N × N orthogonal matrix. Then based on the spectral de-
composition of B it holds:

logm(W BW T ) = W AW T = W logm(B)W T

2. The determinant |B| of the matrix B satisfies:

log(|B|) = tr(A),

where tr(A) is a trace of the matrix A (which is equal to the sum of the
diagonal elements of A).

3. The inverse B−1 satisfies:

B−1 = expm(−A).

4. On the other hand, it does not generally hold that

Bp = expm(Ap),

where Bp is some p× p (p < N) positive semi-definite submatrix of B con-
sisting of p rows and corresponding p columns and Ap is the corresponding
submatrix of A.
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5. It is also generally not true that the diagonal elements of A correspond to
the logarithms of eigenvalues of B.

6. Let us assume that B is a linear combination of an N ×N identity matrix
IN and an N ×N idempotent matrix G, B = aIN + bG, where a and b are
positive constants. Then

A = logm(B) = αIN + βG,

where α = log(a) and β = log(a + b) − log(a). This relation also holds for
submatrices Ap,Bp,Gp, Ip, p ≤ N .

7. In general,
expm(A)expm(B) ̸= expm(A + B).

Additionally, it holds
tr(expm(A)expm(B)) ≥ tr(expm(A + B)),

Equality in both cases holds if and only if A and B are commutative ma-
trices (AB = BA).

8. Finally, we will formulate a significant relation between matrices A and B
as a lemma. This property is of great importance in the context of the
multivariate HAR models.
Lemma 1. For any real positive definite N × N dimensional matrix B,
there exists a real symmetric square matrix A of the same dimensions as
B such that:

B = expm(A).
Reversely, for any real symmetric matrix A, the matrix B = expm(A) is
positive definite.

Proof. We have already described the spectral decomposition of B,
B = T DT T ,

where D is a diagonal matrix of eigenvalues of B and T is an orthogonal
matrix of corresponding normalized eigenvectors in columns. Let A =
T logm(D)T T , then:

expm(A) = expm(T logm(D)T T ) = T DT T = B.

On the contrary, let us assume that A is a real symmetric matrix, and then
there exists an orthogonal matrix T such that A = T DT T , where D is a
diagonal matrix. Subsequently, it holds:

expm(A) = expm(T DT T ) = T expm(D)T T

= T diag(exp(λ1), . . . , exp(λN))T T .

For any vector x ̸= 0 we construct the quadratic form:
xT expm(A)x = (xT T )diag(exp(λ1), . . . , exp(λN))(xT T )T .

The element exp(λi) of the diagonal matrix in the quadratic form is always
positive for any i and, therefore, the matrix B = expm(A) is positive
definite.
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