
MASTER THESIS

Josef Mart́ınek

Mixed Precision in Uncertainty
Quantification Methods

Department of Numerical Mathematics

Supervisor of the master thesis: Dr. Erin Claire Carson, PhD.
Study programme: Mathematics

Study branch: Computational Mathematics

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to express my gratitude to dr. Erin Carson and prof. Robert Scheichl
for their help and valuable advice.

ii

Title: Mixed Precision in Uncertainty Quantification Methods

Author: Josef Mart́ınek

Department: Department of Numerical Mathematics

Supervisor: Dr. Erin Claire Carson, PhD., Department of Numerical Mathemat-
ics

Abstract: This work is concerned with analysing and exploiting mixed precision
arithmetic in uncertainty quantification methods with emphasis on the multilevel
Monte Carlo (MLMC) method. Although mixed precision can improve perfor-
mance, it should be used carefully to avoid unwanted effects on the solution
accuracy. We provide a rigorous analysis of uncertainty quantification methods
in finite precision arithmetic. Based on this analysis, we exploit mixed preci-
sion arithmetic in uncertainty quantification methods to improve runtime while
preserving the overall error.

We begin by stating the model problem, an elliptic PDE with random coefficients
and a random right-hand side. Such a problem arises, for example, in uncertainty
quantification for groundwater flow. Our focus is on approximating a quantity
of interest given as the expected value of a functional of the solution of the PDE
problem. To this end, we use the conforming finite element method for approxi-
mation in the spatial variable and the MLMC method for approximation of the
expected value. We provide a novel rigorous analysis of the MLMC method in
finite precision arithmetic and based on this we formulate an adaptive algorithm
which determines the optimal precision value on each level of discretisation. To
our knowledge, this is a new approach. Our theoretical results are then verified
on numerous examples including an elliptic PDE with lognormal random coeffi-
cients, achieving a theoretical speedup of 4–8× compared to the reference double
precision. The modeled speedup is achieved under the assumption that when
single, half or quarter precision is used instead of double precision, the runtime
is improved by the factor of 2, 4 or 8, respectively.

Keywords: Uncertainty quantification, Multilevel, Monte Carlo, Mixed precision,
Iterative refinement

iii

Contents

Introduction 3

1 Finite element method 6
1.1 Elliptic boundary value problem 6

1.1.1 Weak formulation . 6
1.2 Finite element discretisation of the BVP 8

1.2.1 Domain discretisation . 8
1.2.2 Finite element space . 9
1.2.3 Discrete abstract variational problem 10
1.2.4 Convergence results of the FEM 11
1.2.5 FEM in finite precision arithmetic 11

1.3 Finite element method for problems with random data 12
1.3.1 Elliptic BVP with random data 13
1.3.2 FEM for the elliptic BVP with random data 14
1.3.3 Convergence results of the FEM with random data 15
1.3.4 FEM with random data in finite precision arithmetic . . . 17

2 Monte Carlo methods 19
2.1 Monte Carlo method with analytic solution 19
2.2 Monte Carlo method . 21
2.3 Multilevel Monte Carlo Method 24

2.3.1 Definition and complexity theorem 24
2.3.2 Adaptive MLMC algorithm 29
2.3.3 Cost analysis . 31

3 Numerical linear algebra methods 33
3.1 Floating point arithmetic . 33
3.2 Cholesky factorization . 34

3.2.1 Basic properties and computation 34
3.2.2 Summary of error analysis 36

3.3 Iterative refinement . 37
3.3.1 Iterative refinement for FE linear systems 39

3.4 Performance of finite precision
computations . 41

4 Mixed precision Monte Carlo methods 44
4.1 Finite precision MC method . 44
4.2 Mixed precision MLMC method 48

4.2.1 Error estimates . 48
4.2.2 Mixed precision MLMC FE method 50
4.2.3 Cost analysis . 52
4.2.4 Adaptive MPMLMC algorithm 53

1

5 Numerical results 57
5.1 Poisson’s equation with random right-hand side 57
5.2 Elliptic PDE with lognormal random coefficient 63

5.2.1 Introduction and motivation 63
5.2.2 Problem statement . 64
5.2.3 Numerical examples . 65

Conclusion 68

Bibliography 69

List of Figures 72

List of Tables 73

2

Introduction
Mathematical modelling has for a long time been an indispensable tool for un-
derstanding real world situations. Due to the fact that many parameters in
the models are subject to uncertainty, the field of uncertainty quantification has
recently gained considerable interest. One of the typical examples of this phe-
nomenon arises in geosciences, namely, in the study of groundwater flow. A
simple mathematical model for the flow is Darcy’s law, which reads, in its primal
form (involving the law of mass conservation; technical details omitted),

−∇ ·
(︃
k

µ
∇p

)︃
= 0.

In this equation, the tensor k represents the permeability, a material parameter
describing how easily water flows through the medium. The quantity µ is the
dynamic viscosity of the fluid, and p is the pressure of the fluid; both are scalar.
The uncertainty in this equation arises from the parameter k representing the
permeability, which has to be obtained empirically in practice and is measured
only in a few locations and then extrapolated to the entire domain; see [25],
[22], [11], and the references therein. While our ideas can be straightforwardly
generalised to different problems, we will be dealing with a model problem of the
form

−∇ ·
(︂
a(·, ω)∇u(·, ω)

)︂
= f(·, ω).

This elliptic PDE depending on a random parameter ω can be viewed as a gener-
alisation of Darcy’s law. We are interested in estimating the value of a quantity
of interest (QOI), given as a function of the solution u. In this thesis we focus on
the quantity of interest given by the expected value of a given functional of the so-
lution, but other choices of the quantity of interest are possible in principle, such
as the expected value of the value of the solution at a certain point of the domain.
The coefficient a and the right-hand side f , depending on the random parame-
ter ω, are assumed to be random fields, which are (possibly infinite-dimensional)
random objects. If the random parameter ω is a high-dimensional random vector,
the numerical approximation of the quantity of interest becomes exponentially
difficult, which is known as the curse of dimensionality. Our model problem
is a typical example of this (see [14], [12] and [23]), since the solution depends
nonlinearly on the parameters, which increases the difficulty.

In order to approximate the quantity of interest, we have to first discretise the
underlying PDE, since we are not able to solve the PDE analytically. To this end
we use the finite element method (FEM), but any other suitable discretisation
method can be used, as the discontinuous Galerkin method or the finite volume
method, for example. The PDE discretisation introduces in our approximation
the so-called discretisation error. After the PDE has been discretised, we have
to face the challenge of approximating the integral in the expected value. To
this end, the Monte Carlo (MC) methods are often used, which introduces in
our approximation a second kind of error — the so-called sampling error. In the
standard Monte Carlo method we need to take a sufficient number of samples
of the discrete solution computed on a sufficiently fine mesh in order to bound
the overall error. A significant variance reduction can be achieved if the samples

3

are taken on a hierarchy of discretisation levels. This is the underlying idea of
the so-called multilevel Monte Carlo (MLMC); cf. [14], [6]. The MLMC method
dramatically reduces the variance of the resulting estimator while preserving the
overall cost and it allows us to balance the two errors — the discretisation error
and the sampling error — efficiently.

In order to obtain the discrete PDE solution, a system of linear equations must
be solved. This is when the third type of error comes into play, this being the
algebraic error. The algebraic error stems from the fact that the system is solved
on a computer using finite precision arithmetic. While much effort has been put
into balancing the discretisation and sampling error, the impact of the algebraic
error on the overall error has, to our knowledge, not been thoroughly studied.
This is because the use of high-precision floating point arithmetic, e.g., double
precision, has been standard practice in scientific computing for many years. In
recent years, there has been growing interest in the selective use of low precision
floating point arithmetic to accelerate scientific computations while maintaining
acceptable levels of accuracy; cf. [20]. Recent advances in hardware and software
have made such mixed precision algorithms a viable option for many scientific ap-
plications. Our intuition is that on coarser levels of discretisation, lower precision
can safely be used without affecting the overall error. This intuition is confirmed
by our rigorous analysis and leads to significant speedup of the computation.

To solve the resulting linear system we use a direct solver based on Cholesky
factorization, although any other solver can be used in principle. We factorize
the matrix at low precision, speeding up the computation significantly, and we
iteratively improve our solution using iterative refinement until the desired ac-
curacy is achieved. Iterative refinement is a well-known method for improving
the accuracy of an approximate of a linear system; cf. [19], [27]. The first use of
iterative refinement as well as the first rounding error analysis are attributed to
Wilkinsion, who made use of the fact that inner products (and thus the residual)
could be computed at twice the working precision on many computers of that pe-
riod with no additional cost. The first error analysis in floating point arithmetic
is attributed to Moler and can be viewed as a foundation for the recent analyses
of iterative refinement. Today, iterative refinement is a widely used technique to
get a better forward error of the solution, to recover the stability of the solver,
and to accelerate the solution of linear system using low precision arithmetic; see
[27] for an overview.

While Monte Carlo methods have been a focus of interest for many years, the
use of lower precision arithmetic within them has not been rigorously analysed.
The only work which goes in the direction of this thesis is the paper [4]. In this
work, the authors explore the use of lower precision in the MLMC method on a
model problem given by a stochastic differential equation discretised by the Euler
method implemented on a field programmable gate array (FPGA). They propose
a heuristic for choosing an appropriate precision on each level of discretisation
based on testing the precisions one by one using 100 samples on each level. By
precision they mean the number of bits in the significand (mantissa) of the floating
point number. Using this approach, they achieve a speedup of 3—9× on their
model problem on the same FPGA. We approach this topic from a different
perspective and our results are original in many ways. Namely, we

• provide a rigorous analysis of Monte Carlo methods in finite precision arith-

4

metic via error estimates, namely of the standard MC method and the
MLMC method (Sections 4.1 and 4.2.1);

• propose a novel adaptive mixed precision MLMC (MPMLMC) algorithm,
determining the optimal precision on each level of discretisation using the
theoretical error estimates with no additional cost (Section 4.2.4);

• provide the theoretical background for applying the adaptive algorithm to
the model elliptic PDE with random coefficients and a random right-hand
side (Section 4.2.2);

• extend the existing analysis of iterative refinement to linear systems coming
from the finite element method (Section 3.3.1);

• demonstrate the efficiency of the MPMLMC algorithm through many nu-
merical examples, typically achieving a theoretical speedup of 4–8× versus
the standard approach (Chapter 5).

The adaptive MPMLMC algorithm can be straightforwardly employed when
any direct or iterative solver is used for solving the underlying linear system. We
choose to discuss in detail the case when a direct solver is used. Our results offer
many options for generalisation and further research.

The thesis is divided into five chapters. The first chapter introduces the model
problem given by the elliptic PDE in both the deterministic and the random case
as well as its numerical solution by the finite element method. Selected conver-
gence results of the FEM are presented and convergence of the FEM in finite
precision arithmetic is discussed. In the second chapter we introduce the Monte
Carlo methods, namely the standard MC method and the MLMC method. The
corresponding complexity theorems for both methods are given as well as the
adaptive MLMC algorithm. In the third chapter we provide the background
of the numerical linear algebra methods used, including the basics of floating
point arithmetic, Cholesky decomposition, and iterative refinement. Recent de-
velopments and possible gains from using the mixed-precision arithmetic are also
overviewed. The fourth chapter contains the aforementioned analysis of Monte
Carlo methods in finite precision along with the adaptive MPMLMC algorithm.
Finally, the fifth chapter presents the numerical results along with a thorough
discussion.

5

1. Finite element method
Our ultimate goal is to approximate a quantity of interest given in general as
a function of the solution of a partial differential equation (PDE) with random
input data. In order to approximate the quantity of interest, we have to first
discretise the underlying PDE, since we are not able to solve the PDE analytically.
To this end, we use the finite element method (FEM), but any other suitable
discretisation method can be used, such as the discontinuous Galerkin method or
the finite volume method, for example. This first chapter introduces in detail the
model PDE problem and presents the basics of the finite element method. For
simplicity, we start by formulating the deterministic problem. The generalization
for the stochastic case is given in Section 1.3. The focus will be on the convergence
results of the FEM needed in the subsequent chapters. In this chapter we follow
the monograph [10].

1.1 Elliptic boundary value problem
As a representative example we will focus on an elliptic boundary value problem
(BVP) defined as follows:

Problem 1.1 (Elliptic boundary value problem). The problem of finding the
solution of the equation

−∇ · (a∇u) = f on D,

u = 0 on ∂D,
(1.1)

is called an elliptic boundary value problem. Here D ⊂ Rd, d ∈ N is the domain,
and we assume the boundary ∂D to be sufficiently smooth. Further a : D → R+

is a coefficient function and f : D → R is a right-hand side. The homogeneous
Dirichlet boundary condition is employed and we assume the input data to be
smooth, i.e., f ∈ C(D̄) and a ∈ C1(D̄).

A function u ∈ C2(D) ∩ C1(D̄) is called a classical solution of the boundary
value problem if it satisfies (1.1).

1.1.1 Weak formulation
Let us proceed by defining a weak formulation of Problem 1.1 in the standard
way. We denote by H1(D) the Sobolev space,

H1(D) :=
{︃
v ∈ L2(D), ∂v

∂xi

∈ L2(D) ∀i ∈ {1, . . . , d}
}︃
,

which is a Banach space with respect to the norm

∥v∥H1(D) :=
(︄∫︂

D
|v|2 + ∥∇v∥2

Rddx
)︄1/2

.

Here the partial derivatives are taken in the weak sense and the symbol ∥·∥Rd

denotes the Euclidean norm. Further we define H1
0 (D) := C∞

0 (D) ⊂ H1(D),

6

where the completion is taken w.r.t. to the ∥·∥H1(D) norm. The space H1
0 is a

Hilbert space with respect to the inner product

(u, v)H1
0 (D) := (∇u,∇v)L2(D), u, v ∈ H1

0 (D),

The associated norm on H1
0 (D) is given by |v|H1(D) = ∥v∥H1

0 (D) :=
√︂

(v, v)H1
0 (D).

Having introduced the necessary notions, we can proceed to the weak formu-
lation:

Problem 1.2 (Abstract variational problem). Let V := H1
0 (D) and define ã :

V × V → R and l : V → R by

ã(u, v) :=
∫︂

D
a(x)∇u(x) · ∇v(x)dx and l(v) :=

∫︂
D
f(x)v(x)dx,

respectively, for fixed a and f from (1.1). The problem of finding u ∈ V such
that

ã(u, v) = l(v) ∀v ∈ V

is called the weak formulation of the elliptic boundary value problem (Problem
1.1). It will also be referred to as the abstract variational problem (AVP).

For the purpose of the weak formulation it is sufficient to assume that f ∈
L2(D) and a ∈ L∞(D). Formally we can obtain the weak formulation by multi-
plying (1.1) by a test function v ∈ V , integrating over the domain D, and using
Green’s theorem along with the boundary condition. To be able to prove the
existence and uniqueness of the solution of this problem, we have to impose an
additional condition on the input data.

Assumption 1.3. The coefficient function a from Problem 1.2 satisfies that there
exist amin, amax ∈ R such that for almost every (a.e.) x ∈ D, we have

0 < amin ≤ a(x) ≤ amax < ∞.

To solve the abstract variational problem (Problem 1.2), we can now use the
Lax-Milgram lemma:

Lemma 1.4 (Lax-Milgram). Let V be a real Hilbert space equipped with the norm
∥ · ∥V . Let ã : V × V → R be a coercive (with a constant α) and bounded bilinear
form, i.e.,

ã(v, v) ≥ α∥v∥2
V ∀v ∈ V,

|ã(u, v)| ≤ c∥u∥V ∥v∥V ∀u, v ∈ V,

and let l : V → R be a bounded linear functional. Then there exists a unique
u ∈ V such that for all v ∈ V it holds that ã(u, v) = l(v) and we have the a-priori
estimate

∥u∥V ≤ 1
α

∥l∥V ′ ,

where V ′ denotes the dual space of the space V .

7

To show the existence and uniqueness of the solution of Problem 1.2 it is
now sufficient to verify the assumptions of the Lax-Milgram lemma. To this end,
we set V = H1

0 (D) and ∥·∥V = | · |H1
0 (D). The boundedness and coercivity of

the bilinear form ã follow from Assumption 1.3. The boundedness of the linear
functional l in the H1

0 (D) norm follows from the Poincaré-Friedrichs inequality.
The Poincaré-Friedrichs inequality reads that for the bounded domain D there
exists C > 0 such that for all v ∈ H1

0 (D) we have

∥v∥L2(D) ≤ C∥v∥H1
0 (D).

By this, the assumptions of the Lax-Milgram lemma are verified and the well-
posedness of the solution of Problem 1.2 follows. See Chapter 3 in [10] for details.

1.2 Finite element discretisation of the BVP
One of the most prominent and general schemes for finding an approximate solu-
tion to the abstract variational problem (Problem 1.2) is the so-called Galerkin
method. This method proceeds by defining a finite-dimensional subspace Vn ⊂ V
and then solving the restricted problem: Find un ∈ Vn such that

a(un, vn) = l(vn) for all vn ∈ Vn. (1.2)

The finite element method is then a Galerkin-type method given by a special
choice of the subspace Vn which we will describe now. For the rest of the thesis
we are going to assume that D ⊂ R2 and that D is a polygon. In short, we can
say that throughout this thesis we will be using the conforming finite element
method with a shape-regular and quasi-uniform system of triangulations. The
triangulations will consist of triangle-shaped elements. The space Vn will consist
of continuous piecewise-linear functions on D, i.e., functions which are affine on
every triangle and continuous across the triangle edges. The precise meaning of
these words will be given now.

1.2.1 Domain discretisation
Definition (Finite element). A finite element is a triple (K,PK ,ΨK) such that

1. K ⊂ R2 is a triangle with vertices y1, y2, and y3 and it is a closed set,

2. PK is the space of all affine functions on K, and

3. ΨK is given by

ΨK = {ψj : PK → R, ψj(p) = p(yj), j = 1, 2, 3}.

For brevity, we sometimes speak about “an element K” instead of “an element
(K,PK ,ΨK)”.

Definition (Triangulation τh). A triangulation (mesh) τh of the domain D is
defined as a partition of the domain D, τh := {Ki; i = 1, . . . , N}, where Ki is
an element (in the sense of the definition above) for every i ∈ {1, . . . , N}. A
triangulation τh is assumed to satisfy the following assumptions:

8

1. D = ⋃︁
K∈τh

K and

2. for each K1, K2 ∈ τh, exactly one of the following is true:

(a) K1 ∩K2 = ∅,
(b) K1 ∩K2 is a common vertex or a common edge.

Further we define a discretisation parameter h of the triangulation τh by

h := max
K∈τh

diamK.

Given a system of triangulations {τh}, we assume its shape-regularity. Let us
denote by ρK the radius of the inscribed circle in K and hK := diamK. The
system of triangulations is said to be shape-regular if

∃C > 0 ∀τh ∈ {τh} ∀K ∈ τh : ρK

hK

> C.

Moreover, we assume the quasi-uniformity of the family of meshes. A family
of meshes {τh} is said to be quasi-uniform if it is shape-regular and

∃c > 0 ∀τh ∈ {τh} ∀K ∈ τh : hK > ch.

Let us note that the definition of triangulation can be generalised in terms of
both the domain and the finite elements. For instance, it is possible to consider
D ⊂ Rn, n > 2, where D has a more diverse shape than polygonal/polyhedral.
Also the definition of the finite element can be widely generalised to a more
complex shape K, a more general space PK , and also a more general set of the
degrees of freedom ΨK . Please refer to [10] for the general definition. However,
to illustrate the principles of the use of mixed precision arithmetic in uncertainty
quantification methods, we are going to use only this simple setting. A more
general version of the FEM can be readily employed in practical problems.

1.2.2 Finite element space
We proceed to the definition of the finite element space Vh. As suggested above,
we will be using the FE space of piecewise linear functions. Let P1(K) denote
the space of polynomials of total degree 1 on K, where K ∈ τh for a given
triangulation τh. We then define Vh by

Vh := {v ∈ C(D) : v|K ∈ P1(K) for all K ∈ τh} ⊂ H1(D).

Moreover we define the space Vh,0 ⊂ Vh which corresponds to the space Vn from
the Galerkin method; cf. (1.2). It is defined as

Vh,0 := {v ∈ Vh : v|∂D = 0} ⊂ H1
0 (D). (1.3)

The function values on the boundary are considered in the sense of traces.
After Problem 1.2 has been discretised using the FEM, the discrete problem
has to be solved. The discrete problem leads to a system of linear algebraic
equations which has to be solved numerically. To this end, we use some of the
numerical linear algebra methods described in Chapter 3. Having introduced the
preliminaries, we now describe for completeness the discrete abstract variational
problem.

9

1.2.3 Discrete abstract variational problem
The FEM proceeds by choosing Vn := Vh,0 in the Galerkin method (1.2). The
discrete problem then reads
Problem 1.5 (Discrete abstract variational problem). Find uh ∈ Vh,0 such that

ã(uh, vh) = l(vh) ∀v ∈ Vh,0,

where ã and l are defined as in the abstract variational problem (Problem 1.2).
The unique solvability of the discrete abstract variational problem (Problem

1.5) follows from the Lax-Milgram lemma (Lemma 1.4), since Vh,0 ⊂ V = H1
0 (D)

and thus the assumptions of the Lax-Milgram lemma are satisfied similarly to
the AVP 1.2.

As mentioned above, the discrete problem leads to a system of linear algebraic
equations. Since solving this system is an important part of this thesis, we will
now focus on the derivation of this system in more detail.

Consider a triangulation τh of the domain D. Let us denote by n the number
of vertices of the triangulation which do not belong to ∂D, i.e.,

n := card
(︂
{yi, yi is a vertex of K, K ∈ τh, yi /∈ ∂D}

)︂
.

Further let Φ := {ϕ1, . . . , ϕn} denote the basis of Vh,0 such that

ϕj(yi) = δi,j,

supp ϕj =
⋃︂

yj∈K,
K∈τh

K, (1.4)

where i, j = 1, . . . , n.
Let us now express the finite element solution uh ∈ Vh,0 of Problem 1.5 in

terms of the basis Φ, i.e.,
uh =

n∑︂
j=1

xjϕj.

Due to the linearity of the bilinear form ã and the functional l, the discrete AVP
(Problem 1.5) can be equivalently reformulated as

n∑︂
j=1

xj ã(ϕj, ϕi) = l(ϕi), i = 1, . . . , n, (1.5)

which can be rewritten as a system of linear algebraic equations. Define

bi := l(ϕi) and ai,j := ã(ϕj, ϕi).

We obtain what will be referred to as the FE system

Ax = b, (1.6)

where A = (ai,j)n
i,j=1 ∈ Rn×n is the stiffness matrix, b = (bi)n

i=1 ∈ Rn is the right-
hand side and x = (xi)n

i=1 ∈ Rn is the vector of unknowns. Solving this system is
equivalent to solving Problem 1.5.

From the fact that the bilinear form ã is symmetric and coercive it follows
that the matrix A is symmetric and positive definite. Note also that because of
the property (1.4) the matrix A is sparse. All these properties are referred to
later when the numerical solution of the system is discussed.

10

1.2.4 Convergence results of the FEM
This section presents convergence results of the FEM needed in the subsequent
chapters. We do not aim to provide thorough analysis of the convergence results,
but a brief overview of the results important for our purposes.

In order to obtain the desired estimates, we need our solution u to be of higher
regularity. Therefore we need to impose, on top of Assumption 1.3, one additional
assumption on the AVP 1.2:

Assumption 1.6. Consider the abstract variational problem (Problem 1.2). The
domain D is assumed to be convex and coefficient function a is assumed to be
Lipschitz continuous on D.

Lemma 1.7 (FEM convergence in the L2 norm). Let {τh} be a system of trian-
gulations of the domain D. Let uh ∈ Vh,0 be the solution of the discrete abstract
variational problem (Problem 1.5) corresponding to the triangulation τh. Then
the following estimate holds:

∥u− uh∥L2(D) ≤ Ch2∥f∥L2(D),

where C > 0 is independent of h and f .

Proof. In a standard way, via the Aubin-Nitsche duality trick, we obtain

∥u− uh∥L2(D) ≤ Ch2|u|H2(D); (1.7)

see [10], Section 2.3.4. Here C is independent of h and u and | · |H2(D) denotes
the H2-seminorm. As proved in [26], Lemma 5.1 and Lemma 5.2, Assumption
1.6 ensures that the solution u is H2-regular, i.e., u ∈ H2(D) and

∃C > 0 ∀f ∈ L2(D) : |u|H2(D) ≤ C∥f∥L2(D). (1.8)

Note that [26] deals with the problem with random data. The proof in the
deterministic case can be found in [15], Section 5.2. The statement of the lemma
is now an immediate consequence of the inequalities (1.7) and (1.8).

The equation (1.8) proving the H2-regularity of the solution is a standard
result from PDE theory in the case when we assume convexity of the domain; see
the monograph [15].

1.2.5 FEM in finite precision arithmetic
Until now we have considered the underlying PDE problem and its solution via
the finite element method. We have considered the FE discretisation and con-
sequently, the exact solution uh of the discrete problem. However, in practice
the solution uh is not obtained exactly due to the limitations of finite precision
arithmetic, rather we compute an approximation ˆ︁uh of the discrete solution uh.
The aim of this section is to estimate the error ∥uh − ˆ︁uh∥H1

0 (D) by means of the
residual of the solution of the FE system Ax = b. Let us first introduce the
notation.

11

Let ˆ︁x ∈ Rn be an approximate solution of the FE system (1.6). The approxi-
mation (reconstruction) ˆ︁uh of the FE solution uh is then given by

ˆ︁uh =
n∑︂

j=1
ˆ︁xjϕj.

Recall that the FE solution uh is given by uh = ∑︁n
j=1 xjϕj, where x ∈ Rn is

the solution of the FE system Ax = b. Let us denote by r the residual of the
approximate solution ˆ︁x, i.e., r := Aˆ︁x− b. The following lemma provides us with
an estimate of ∥uh − ˆ︁uh∥H1

0 (D) using the residual r. It is a corollary of Proposition
9.19 from [10].

Lemma 1.8. Let uh be the solution of the discrete AVP (Problem 1.5) and letˆ︁uh be the approximation of uh defined above. Then

∥uh − ˆ︁uh∥H1
0 (D) ≤ C∥f∥L2(D)

∥r∥Rn

∥b∥Rn

,

where C is independent of h and u and f . The symbol ∥·∥Rn denotes the Euclidean
norm.

Proof. Let us verify the assumptions of Proposition 9.19 from [10]. The propo-
sition assumes that the so-called discrete inf-sup condition holds; see (9.8) in
the aforementioned book. The discrete inf-sup condition is equivalent to well-
posedness of the discrete problem (Problem 1.5) as stated below Remark 2.20 in
[10], which means that we require the unique solvability of the problem and the
a-priori estimate for the norm of the solution. The discrete problem (Problem
1.5) is well-posed owing to the Lax-Milgram lemma and thus the discrete inf-sup
condition holds. The next assumption reads (transcribed to our notation)

∃g ∈ L2(D) ∀vh ∈ Vh,0 : |l(v)| ≤ ∥g∥L2(D)∥vh∥L2(D).

This follows immediately from the definition of l (see Problem 1.2) and Hölder’s
inequality. By this the assumptions of the theorem are verified. The fact that
C is independent of h follows from the discussion under Proposition 9.19 in [10],
since we assume the family of triangulations {τh} to be quasi-uniform. Note that
for the condition number of the mass matrix Mt (see Proposition 9.19 in [10]) to
be independent of the discretisation parameter h regardless of the dimension of
the domain, only the quasi-uniformity of the mesh is required, see Section 9.1.3,
Theorem 9.8 in [10]. Also our bilinear form ãh is uniformly bounded with respect
to h due to the fact that in our case ãh = ã (i.e., the bilinear form itself is not
discretized in any way).

1.3 Finite element method for problems with
random data

Until now we have considered only the standard finite element method for prob-
lems that do not include any uncertainties. However, in the problems which we
encounter, uncertainty plays a crucial role. We therefore introduce uncertainty

12

in our model elliptic boundary value problem and then discuss the finite element
method applied to this problem. This will be used in the uncertainty quantifi-
cation algorithms described in Chapter 2. More details can be found in [2] and
[26].

1.3.1 Elliptic BVP with random data
We begin with the theoretical preliminaries. In the following definition we intro-
duce the so-called random field. The goal here is to introduce uncertainty in the
coefficient and the right-hand side of the boundary value problem (Problem 1.1).
The definition generalises in some sense the coefficient a and the right-hand side
f from the BVP and therefore we use the same notation.

Definition 1.9. Let D ⊂ R2 be the domain as in the BVP (Problem 1.1). Let
(Ω,U ,P) be a probability space, where Ω is an abstract set of elementary events, U
is the σ-algebra of events and P : U → [0, 1] is a probability measure. A random
field is a mapping

a : D × Ω → R

satisfying that for all x ∈ D the function a(x, ·) : Ω → R is a random variable.

Definition. For a fixed ω ∈ Ω the function a(·, ω) : D → R is called a realization
of the random field a.

We often need to work with the norm of a random field. A common approach
is to define abstract Bochner spaces, a generalization of Lebesgue spaces, and
measure the norm of the random field in a suitable Bochner space, as is done in
[26], for example. We choose not to introduce here the fully general definition
of Bochner spaces. Instead, we introduce only the necessary notation so that we
can work with random fields comfortably:

Definition. Let p, q ∈ [1,∞). Let f be a random field such that for a.e. ω ∈ Ω
it holds that f(·, ω) ∈ Lp(D). Then we define

∥f∥Lq(Ω,Lp(D)) =
(︄∫︂

Ω
∥f(·, ω)∥q

Lp(D)dω
)︄1/q

,

if the integral on the right-hand side converges.

Let us now state the elliptic boundary value problem with random data which
is a direct generalization of the BVP (Problem 1.1).

Problem 1.10 (BVP with random data). Let (Ω,U ,P) be a probability space
and ω ∈ Ω. The problem of finding a solution to the equation

−∇ ·
(︂
a(·, ω)∇u(·, ω)

)︂
= f(·, ω) on D,

u(·, ω) = 0 on ∂D,
(1.9)

is called the boundary value problem with random data. Here we assume that the
random fields f and a satisfy f(·, ω) ∈ C(D) and a(·, ω) ∈ C1(D).

13

Let us note that after a ω ∈ Ω has been sampled, the equation (1.9) for this
fixed ω does not contain any randomness.

In the same way we now generalise the abstract variational problem (Problem
1.2):

Problem 1.11 (AVP with random data). Let (Ω,U ,P) be a probability space
and ω ∈ Ω. Recall that V = H1

0 (D) and let us define ã : V × V × Ω → R and
l : V × Ω → R by

ã
(︂
u(·, ω), v, ω

)︂
:=
∫︂

D
a(x, ω)∇u(x, ω) · ∇v(x)dx and

l(v, ω) :=
∫︂

D
f(x, ω)v(x)dx,

respectively, for fixed random fields a and f satisfying a(·, ω) ∈ L∞(D) and
f(·, ω) ∈ L2(D).

If u(·, ω) ∈ V satisfies

ã
(︂
u(·, ω), v, ω

)︂
= l(v, ω) ∀v ∈ V

for a.e. ω ∈ Ω, then u is called a weak solution of the elliptic boundary value
problem with random data (Problem 1.10). The problem of finding such a u will
also be referred to as the abstract variational problem with random data.

In order to prove the unique solvability of the AVP with random data, we im-
pose one additional assumption, analogous to Assumption 1.3 in the deterministic
case.

Assumption 1.12. The random field a from the AVP with random data (Prob-
lem 1.11) satisfies that there exist amin and amax such that for a.e. ω ∈ Ω and
a.e. x ∈ D it holds that

0 < amin ≤ a(x, ω) ≤ amax < ∞.

Let us remark that this assumption can be somewhat weakened by making
the coefficients amin and amax ω-dependent. For simplicity, this weaker version is
considered.

Via Assumption 1.12 it is possible to prove the unique solvability of the AVP
with random data (Problem 1.11) sample-wise using the Lax-Milgram lemma
(Lemma 1.4) in the standard way; see [2]. Owing to Assumption 1.12, the co-
ercivity and continuity constants in the Lax-Milgram lemma do not depend on
ω.

1.3.2 FEM for the elliptic BVP with random data
In order to solve the AVP with random data (Problem 1.11) we use the finite
element method. The FEM is used to solve the problem with a fixed value of
the parameter ω ∈ Ω after the parameter has been sampled. Thus there is, in
principle, no difference from the deterministic case in the way how the FEM is
used. Let us proceed to the formulation of the discrete problem.

14

Problem 1.13 (Discrete AVP with random data). Let Vh,0 ⊂ V be the FE space
(1.3). If uh(·, ω) ∈ Vh,0 is such that

ã(uh, vh, ω) = l(vh, ω) ∀v ∈ Vh,0,

for a.e. ω ∈ Ω, then the function uh is called a solution of the discrete AVP with
random data. The functions ã, l, and the parameter ω ∈ Ω are taken from the
AVP with random data (Problem 1.11).

The existence and uniqueness of the solution of the discrete AVP with random
data follow from the inclusion Vh,0 ⊂ V and the fact that the non-discrete Problem
1.11 is uniquely solvable. Analogously to the non-discrete case, the coercivity and
continuity constants are ω-independent due to Assumption 1.12.

1.3.3 Convergence results of the FEM with random data
In this section we will use the convergence results for the deterministic FEM
from Section 1.2.4 to derive convergence results for the problem with random
data, which will be useful in the subsequent chapters.

The following assumption is a stochastic version of Assumption 1.6. The
assumption can be somewhat weakened by making the Lipschitz constant L ω-
dependent.

Assumption 1.14. Consider the AVP (Problem 1.11). The domain D is as-
sumed to be convex and the random field a is assumed to be uniformly Lipschitz
continuous in the following sense. There exists L > 0 such that for a.e. x1, x2 ∈ D
and for a.e. ω ∈ Ω it holds that

|a(x1, ω) − a(x2, ω)| ≤ L∥x1 − x2∥.

This assumption allows us now to prove an estimate in the L2 norm for the
FEM with random data. Let us now formulate the probabilistic counterpart of
Lemma 1.7 regarding the convergence of the FEM in the L2 norm. The proof of
this result is similar to the proof of Lemma 1.7. We present it here to stress how
we use Assumption 1.14 and the fact that the constant L in this assumption is
ω-independent.

Lemma 1.15 (Convergence of the FEM with random data in the L2 norm). Let
{τh} be a system of triangulations of the domain D. Let uh : D× Ω → R be such
that for a.e. ω ∈ Ω the function uh(·, ω) ∈ Vh,0 is the solution of the discrete AVP
with random data (Problem 1.13) corresponding to the triangulation τh. Then for
a.e. ω ∈ Ω the following estimate holds:

∥u(·, ω) − uh(·, ω)∥L2(D) ≤ Ch2∥f(·, ω)∥L2(D),

where C > 0 is independent of h, f , and ω.

Proof. In a standard way, via the Aubin-Nitsche duality trick, we can get

∥u(·, ω) − uh(·, ω)∥L2(D) ≤ Ch2|u(·, ω)|H2(D). (1.10)

Here C is independent of h and u and because of Assumption 1.12, C is also
independent of ω. This is because (1.10) is derived using the a-priori estimate

15

from the Lax-Milgram lemma (Lemma 1.4) and both the continuity constant
and the coercivity constant α are independent of ω due to Assumption 1.12.
Assumption 1.14 ensures that the solution u is H2-regular in the following sense.
There exists C > 0 such that for a.e. ω ∈ Ω and for every f(·, ω) ∈ L2(D) we
have

|u(·, ω)|H2(D) ≤ C∥f(·, ω)∥L2(D). (1.11)
The ω-independence of the generic constant C is guaranteed here by the ω-
independent constant L in Assumption 1.14. The claim of the lemma is now
a consequence of the inequalities (1.10) and (1.11).

References for the inequalities used in the proof were given in the proof of
Lemma 1.7. Note that this theorem is a special case of Theorem 2.1 from [26].
The assumptions of this theorem are satisfied due to Assumptions 1.12 and 1.14
and the fact that we consider the homogeneous boundary condition.

Theorem 1.16 (FEM error for a functional of the solution). Let p ∈ [1,∞). Let
{τh} be a system of triangulations of the domain D. Let uh : D × Ω → R be
the same as in Lemma 1.15 and let the function ω ↦→ ∥f(·, ω)∥L2(D) belong to the
space Lp(Ω). Further, let G : H1

0 (D) → R be a functional ω-uniformly Lipschitz
continuous with respect to the L2 norm, i.e.,

∃L > 0 ∀u1, u2; u1(·, ω), u2(·, ω) ∈ H1
0 (D) for a.e. ω ∈ Ω :⃓⃓⃓

G(u1(·, ω)) −G(u2(·, ω))
⃓⃓⃓
≤ L∥u1(·, ω) − u2(·, ω)∥L2(D).

(1.12)

Under these assumptions, the following estimate holds:

∥G(u) −G(uh)∥Lp(Ω,R) ≤ Ch2,

where C is independent of h, u, and ω. Here G(u) −G(uh) denotes the function
ω ↦→

(︂
G(u(·, ω)) −G(uh(·, ω))

)︂
.

Proof. First, it makes sense for the functional G to be Lipschitz continuous with
respect to the L2 norm, since H1

0 (D) ↪→ L2(D). For a.e. ω ∈ Ω we have, using
the Lipschitz continuity of G,⃓⃓⃓

G(u(·, ω)) −G(uh(·, ω))
⃓⃓⃓
≤ L∥u(·, ω) − uh(·, ω)∥L2(D),

where L does not depend on ω. We can now use Lemma 1.15 to obtain⃓⃓⃓
G(u(·, ω)) −G(uh(·, ω))

⃓⃓⃓
≤ Ch2∥f(·, ω)∥L2(D), (1.13)

where C is a generic constant independent on ω and f . If we take equation (1.13)
to the power p and integrate over Ω, we get

∥G(u) −G(uh)∥p
Lp(Ω,R) ≤ Cph2p

∫︂
Ω

∥f(·, ω)∥p
L2(D)dω,

which yields the desired inequality.

Let us note that if the bounds in Assumption 1.12 are weakened and depend
on ω, the analysis becomes more complicated and additional smoothness assump-
tions on the input data have to be made; see [26] for a thorough analysis. We now
give an example of a functional satisfying the Lipschitz condition from Lemma
1.16.

16

Example 1.17. Let us prove that the functional G : H1
0 (D) → R defined by

G(v) :=
∫︂

D
v(x)dx

is uniformly Lipschitz continuous with respect to the L2 norm in the sense of
(1.12).

Indeed, let us denote by λ(D) the Lebesgue measure of D and define M :=√︂
λ(D). Let u1, u2 : Ω × D → R be such that u1(·, ω), u2(·, ω) ∈ H1

0 (D) for a.e.
ω ∈ Ω. Then⃓⃓⃓

G(u1(·, ω)) −G(u2(·, ω))
⃓⃓⃓
=
⃓⃓⃓∫︂

D
u1(x, ω) − u2(x, ω)dx

⃓⃓⃓
≤
∫︂

D
|u1(x, ω) − u2(x, ω)|dx

≤ ∥u(·, ω) − u2(·, ω)∥L2(D)∥1∥L2(D)

= M∥u(·, ω) − u2(·, ω)∥L2(D),

where in the last inequality we used Hölder’s inequality. The result we obtained
also proves that the functional is well defined, since H1

0 (D) ↪→ L2(D).

1.3.4 FEM with random data in finite precision arith-
metic

The goal of this section is to obtain a result analogous to Lemma 1.8 in our
probabilistic setup and then, as a consequence, a similar result for the functional
G(u). At first, we straightforwardly generalize the notions from Section 1.2.5.

Let ˆ︁uh be the approximation of the FE solution uh to the discrete AVP with
random data (Problem 1.13) such that

ˆ︁uh(·, ω) =
n∑︂

j=1
ˆ︁xj(ω)ϕj.

Similarly we define the residual r as r(ω) := A(ω)ˆ︁x(ω) − b(ω). Let us now state
a lemma analogous to Lemma 1.8.

Lemma 1.18. Let uh be the solution of the discrete AVP with random data
(Problem 1.13) and let ˆ︁uh be the approximation of uh defined above. Then for
a.e. ω ∈ Ω it holds that

∥uh(·, ω) − ˆ︁uh(·, ω)∥H1
0 (D) ≤ C∥f(·, ω)∥L2(D)

∥r(ω)∥Rn

∥b(ω)∥Rn

,

where C is independent of h, u, and ω.

Proof. For a fixed ω ∈ Ω we can proceed completely analogously to the proof of
Lemma 1.8. The only difference is that in this case the RHS f is ω-dependent
and thus it cannot be included in the constant C.

The fact that C is independent of h follows similarly as in Theorem 1.8, since
we assume the family of triangulations {τh} to be shape-regular. Similarly in this
case the bilinear form ãh is uniformly bounded with respect to h and ω due to
the fact that ãh = ã and Assumption 1.12.

17

To verify that C is also independent of ω, we write down the constant explicitly
(see Proposition 9.19 in [10]). It holds that

C = κ(Mt)1/2

ctPα
. (1.14)

The condition number κ(Mt) is independent of ω from the definition of Mt, see
the first paragraph of Section 9.1.3 in [10]. Further, α is the coercivity constant
and it is independent of ω from Assumption 1.12 and ctP is the constant from the
embedding H1

0 (D) ↪→ L2(D). This completes the proof.

This theorem allows us to control the error ∥uh(·, ω) − ˆ︁uh(·, ω)∥H1
0 (D) if we

control the relative residual ∥r(ω)∥Rn/∥b(ω)∥Rn of the resulting linear system.
We proceed to the estimate of the error in the case of the functional G(u).

Lemma 1.19. Let uh, ˆ︁uh, and r be as in Lemma 1.18. Further, let G : H1
0 (D) →

R be a functional ω-uniformly Lipschitz continuous with respect to the L2 norm
(see Theorem 1.16). Then for a.e. ω ∈ Ω,

⃓⃓⃓
G(uh(·, ω)) −G(ˆ︁uh(·, ω))

⃓⃓⃓
≤ C∥f(·, ω)∥L2(D)

∥r(ω)∥Rn

∥b(ω)∥Rn

,

where the constant C is independent of ω, u, and h.

Proof. We have⃓⃓⃓
G(uh(·, ω)) −G(ˆ︁uh(·, ω))

⃓⃓⃓
≤ L∥u(·, ω) − ˆ︁uh(·, ω)∥L2(D)

≤ C∥u(·, ω) − ˆ︁uh(·, ω)∥H1
0 (D)

≤ C∥f(·, ω)∥L2(D)
∥r(ω)∥Rn

∥b(ω)∥Rn

,

where we used the Lipschitz continuity of G, the Poincaré-Friedrichs inequality,
and Lemma 1.18, respectively. The generic constant C is independent of ω, u,
and h due to Lemma 1.18 and the proof is complete.

18

2. Monte Carlo methods
Our ultimate goal is to approximate a quantity of interest given as a function of
the solution of a PDE with random input data. The quantity of interest will in
our case be given by the expected value of a functional of the solution. Chapter
1 was concerned with the discretisation of the underlying PDE in the spatial
variable. After the PDE has been discretised, we have to face the challenge of
approximating the integral in the expected value. A more general question is how
uncertainties in the input data (i.e., in the coefficients of the PDE) influence the
results. This is the concern of the field called uncertainty quantification (UQ).
Uncertainty quantification uses various types of methods to determine how the
results of the models are affected by uncertain input data, one of them being the
Monte Carlo (MC) class of methods. This broad class of methods will be our focus
now. This chapter provides an explanation of the basic principles and convergence
results of two Monte Carlo methods, namely, the standard MC method and the
MLMC method, focusing mostly on problems coming from PDEs. Note that in
this chapter, we do not take into account any effect of rounding errors and finite
precision computations. The impact of the use of finite precision arithmetic and
how to exploit it will be discussed in Chapter 4. This chapter is based on [14]
and [6].

We begin this chapter by introducing our model problem, i.e., we formulate
precisely the problem of approximating the quantity of interest. The Monte Carlo
methods described below will be, for simplicity, demonstrated and explained using
this problem. Note that the MC methods can be used to tackle various types of
problems; see [14] for an overview. We restrict ourselves to this model problem
to show the basic principles.

Problem 2.1. Consider the elliptic boundary value problem with random data
(Problem 1.10). Let G : H1

0 (D) → R be a functional and let u be the weak
solution of the BVP (1.9). Estimate the quantity of interest (QOI) defined as
the expected value of the random variable Q : Ω → R given by ω ↦→ G(u(·, ω)).
The functional G is assumed to be uniformly Lipschitz continuous in the sense of
(1.12).

The expected value E[Q] from the definition above will also be denoted by
E[G(u)]. Remark that there are other possibilities for what the quantity of inter-
est can be, e.g., the mean E[u(x, ·)] or the variance var[u(x, ·)]. The class of MC
methods can be applied to tackle these problems as well. We will for simplicity
keep our focus on Problem 2.1.

2.1 Monte Carlo method with analytic solution
This section describes in more detail the basic Monte Carlo method. The idea
behind the Monte Carlo estimator is simple — the QOI is approximated by
the sample mean and we expect the sample mean to converge to the expected
value. For simplicity, we begin with the case where the analytic solution of the
underlying PDE is given. We proceed directly to the definition of the MC method
for Problem 2.1.

19

Definition 2.2 (Monte Carlo estimator with analytic solution). Let u : D×Ω →
R be the weak solution of the BVP (1.9). Let E[Q] be the expected value (quantity
of interest) defined in Problem 2.1. Define the Monte Carlo estimator for E[Q]
by

ˆ︁QN := 1
N

N∑︂
k=1

Q(k),

where Q(k) are independent and identically distributed (i.i.d.) random variables
following the same distribution as Q.

In this first case, we are able to evaluate Q(k)(ω) exactly for ω ∈ Ω, since we
are given the analytic solution u of the PDE and we assume that the functional
G can be evaluated exactly. In what follows, we will use the expression “random
samples of Q” instead of “i.i.d. random variables following the same distribution
as Q”. In order to quantify the error of the estimator we will use the mean square
error (MSE), this will be the case for all of the following estimators. Since ˆ︁QN

is an unbiased estimator for E[Q], the mean square error of ˆ︁QN can be expressed
via the variance of Q, as stated in the following lemma. The proofs of these
auxiliary results for the MC method will be given here, since they illustrate the
basic principles which are then applied in more complex cases.

Lemma 2.3 (“Bias-variance decomposition” of the MSE of the Basic MC esti-
mator). The mean square error of the MC estimator ˆ︁QN from Definition 2.2 can
be expanded as

E
[︂
(E[Q] − ˆ︁QN)2

]︂
= var[Q]

N
.

Proof. From the basic properties of the mean we can write

E
[︂
(E[Q] − ˆ︁QN)2

]︂
= E

[︂
(E[Q])2 − 2E[Q] ˆ︁QN + (ˆ︁QN)2

]︂
= (E[Q])2 − 2E[Q]E[ˆ︁QN] + E[(ˆ︁QN)2].

Since the ˆ︁QN is an unbiased estimator for E[Q], the last expression can be rewrit-
ten as

(E[Q])2 − 2E[Q]E[ˆ︁QN] + E[(ˆ︁QN)2] = E[(ˆ︁QN)2] − (E[ˆ︁QN])2 = var[ˆ︁QN].

Finally, since Q(k) are i.i.d., we conclude using the basic properties of the variance
that E

[︂
(E[Q] − ˆ︁QN)2

]︂
= var[ˆ︁QN] = var[Q]

N
.

Even though the lemma is called “Bias-variance decomposition”, there is no
term corresponding to the bias in the expression of the MSE. That is because in
this case we are assumed to have the analytic solution of the PDE which allows
the estimator to be unbiased. This is, however, unrealistic in practical problems.
When we do not have the analytic solution and use the FEM to solve the PDE,
the decomposition will contain a term corresponding to the bias. Such a case will
be discussed in the following section.

20

2.2 Monte Carlo method
In this section we no longer assume that we know the analytic solution of the PDE,
and instead we use the FEM to solve the PDE to obtain the discrete solution.
This will make our MC estimator biased. The discrete solution does not have
to be obtained by the conforming FE method; in principle it can be obtained
by any convenient discretisation method. Even though we will, for simplicity,
use the FEM defined in Chapter 1, sometimes much more general results can be
obtained with no additional effort. In such situations we present the more general
results. The Monte Carlo estimator which uses the discrete solution is defined as
follows:

Definition 2.4 (Monte Carlo estimator). Let uh : D× Ω → R be the solution of
the discrete AVP with random data (Problem 1.13) or any other discrete solution
of the AVP (Problem 1.11). Let E[Q] be the quantity of interest defined in Problem
2.1. Let Qh be a random variable defined as Qh : Ω → R, ω ↦→ G(uh(·, ω)).
Define the Monte Carlo estimator for E[Q] by

ˆ︁Qh,N := 1
N

N∑︂
k=1

Q
(k)
h ,

where Q(k)
h are random samples from Qh.

We can immediately see that the MC estimator is an unbiased estimator for
E[Qh]. However, it is not an unbiased estimator for E[Q]. In this case, the MSE
can be expanded as follows.

Lemma 2.5 (Bias-variance decomposition of the MSE of the MC estimator).
The mean square error of the MC estimator ˆ︁Qh,N from Definition 2.4 can be
expanded as

E
[︂
(E[Q] − ˆ︁Qh,N)2

]︂
= (E[Q−Qh])2 + var[Qh]

N
.

Proof. We rewrite the left-hand side to obtain

E
[︂
(E[Q] − ˆ︁Qh,N)2

]︂
= E

[︂(︂
(E[Q] − E[Qh]) + (E[Qh] − ˆ︁Qh,N)

)︂2]︂
.

The next steps are similar to the proof of Lemma 2.3:

E
[︂(︂

(E[Q] − E[Qh]) + (E[Qh] − ˆ︁Qh,N)
)︂2]︂

= (E[Q−Qh])2 + 2E[Q−Qh]E
[︂
E[Qh] − ˆ︁Qh,N

]︂
+ E

[︂
(E[Qh] − ˆ︁Qh,N)2

]︂
.

Since ˆ︁Qh,N is an unbiased estimator for E[Qh], the last expression can be rewritten
as follows:

(E[Q−Qh])2 + 2E[Q−Qh]E
[︂
E[Qh] − ˆ︁Qh,N

]︂
+ E

[︂
(E[Qh] − ˆ︁Qh,N)2

]︂
= (E[Q−Qh])2 + E

[︂
(E[ˆ︁Qh,N] − ˆ︁Qh,N)2

]︂
.

The above expression is now equal to var[ˆ︁Qh,N]. Using the fact that the Q(k)
h are

i.i.d., we can conclude that var[ˆ︁Qh,N] = var[Qh]
N

, which completes the proof.

21

Note that if in Lemma 2.5 we take the analytic solution u instead of the
discrete solution uh, the random variable Qh reduces to Q and we are back in the
setting of the Bias-variance decomposition of the MC estimator (Lemma 2.3).

In practical applications, we want to ensure that the MSE is under a given
tolerance. The question is what the total cost of computing the MC estimate will
then be — we want to express the cost in terms of the tolerance. The answer to
this question is provided by the following theorem. The theorem is abstract in
the sense that the discrete solution does not have to be the piecewise linear FE
solution as defined in Chapter 1; it just has to satisfy some given assumptions.
The version of the theorem specifically for the FE solution is given below. Note
that throughout the thesis, the cost will be measured in terms of floating-point
operations (FLOPs).

Theorem 2.6 (Abstract complexity theorem for the MC method). Assume that
there exist α, γ > 0 such that

|E[Qh −Q]| = O(hα) for h → 0, (2.1)
Cost(Q(k)

h) = O(h−γ) for h → 0, (2.2)

where Qh is from Definition 2.4 and Cost(Q(k)
h) denotes the cost per one sample

from the random variable Qh in terms of FLOPs. Assume further there exists
σ2 such that for all h > 0 sufficiently small it holds var[Qh] ≤ σ2. Then for
any ϵ > 0 sufficiently small there exist N ∈ N and h > 0 such that the MSE is
bounded by ϵ2, i.e.,

∥E[Q] − ˆ︁Qh,N∥2
L2(Ω,R) = E

[︂
(E[Q] − ˆ︁Qh,N)2

]︂
≤ ϵ2

and the total computational cost of the MC estimate for E[Q] satisfies

Cost(ˆ︁Qh,N) = O(ϵ−2−γ/α).

Proof. The basic idea of the proof is to balance the two components in the bias-
variance decomposition (Lemma 2.5). From (2.1) it follows that

∃C1 > 0 ∀h̃ ∈ (0, h1) : |E[Qh −Q]| ≤ C1h̃
α
.

Let ϵ > 0 be given. If ϵ is sufficiently small then we have

∃h ∈ (0, h1) : C1h
α = ϵ√

2
. (2.3)

Now, let N be defined by
N :=

⌈︂
2 var[Qh]ϵ−2

⌉︂
. (2.4)

Then it holds that
var[Qh]
N

≤ ϵ2

2 . (2.5)

Using the bias-variance decomposition (Lemma 2.5), we obtain from (2.3) and
(2.5) a bound for the MSE:

E
[︂
(E[Q] − ˆ︁Qh,N)2

]︂
= (E[Q−Qh])2 + var[Qh]

N
≤ ϵ2

2 + ϵ2

2 ≤ ϵ2.

22

Let us now determine the total cost. From (2.4) it follows that for ϵ sufficiently
small we have

N ≤ 4 var[Qh]ϵ−2 ≤ 4σ2ϵ−2 = O(ϵ−2). (2.6)
Equation (2.3) yields h = Cϵ1/α for a generic constant C. From the assumption
(2.2) it follows (if ϵ and consequently h are sufficiently small) that ∃C2 > 0 :
Cost(Q(k)

h) ≤ C2h
−γ. Using the fact that h = Cϵ1/α, we obtain

Cost(Q(k)
h) = O(ϵ−γ/α). (2.7)

The overall cost can be expressed as Cost(ˆ︁Qh,N) = N · Cost(Q(k)
h) which, along

with (2.6) and (2.7), gives us the desired result.

To formulate the MC complexity theorem specifically for the finite element
solution, the computational cost of solving the FE system (1.6) has to be discussed
so that we are able to determine the parameter γ from the previous lemma. This
cost depends on the numerical solver we use to approximate the solution. In the
best case the system can be solved in linear complexity, which can be achieved
when an optimal multigrid solver is used. Throughout this chapter we assume
that the cost of solving the FE system is O(n) FLOPs, where n is the dimension
of the matrix. This assumption leads to the constant γ = 2 in Theorem 2.6,
since n ≈ h−2, where h is the discretisation parameter. Naturally, the multigrid
solver is not the only possibility for solving the FE system. The FE system (1.6)
can be solved, e.g., by a sparse direct solver based on Cholesky factorization. In
this case the theoretical complexity of solving the system is O(n3/2) operations
assuming D ⊂ R2; see Section 3.2.1.

Theorem 2.7 (Monte Carlo FEM complexity). Let f be sufficiently smooth so
that Theorem 1.16 holds and assume that the cost per sample increases as

Cost(Q(k)
h) = O(h−2).

Then for any ϵ > 0 there exist h > 0 and N ∈ N such that

E
[︂
(E[Q] − ˆ︁Qh,N)2

]︂
≤ ϵ2

and
Cost(ˆ︁Qh,N) = O(ϵ−3),

where ˆ︁Qh,N is the MC estimator for E[Q] in the sense of Definition 2.4 corre-
sponding to the solution uh of the discrete AVP with random data (Problem 1.13).

Proof. We will show that we can apply Theorem 2.6 with α = 2 and γ = 2. Let
us at first prove the boundedness of the quantity var[Qh]:

var[Qh] = E[Q2
h] − (E[Qh])2

≤ E[(Qh −Q+Q)2]
= E[(Qh −Q)2] + 2E[(Qh −Q)Q] + E[Q2]
≤ 2E[(Qh −Q)2] + 2E[Q2]
≤ Ch4 + 2E[Q2]
≤ Ch4

bnd + 2E[Q2],

23

where we have used Theorem 1.16. The fact that α = 2 can be deduced from
Theorem 1.16:

|E[Qh −Q]| ≤ E[|G(uh) −G(u)|] = ∥G(u) −G(uh)∥L1(Ω) = O(h2),

where we used Jensen’s inequality, the definition of the mean, and Theorem 1.16,
respectively. Thus Assumption (2.1) holds with α = 2.

Finally, Assumption (2.2) holds with γ = 2 as assumed, which concludes the
proof.

If a different solver than multigrid is used to solve the FE system, we obtain
in general a different value of the parameter γ and the result of the complexity
theorem (Theorem 2.7) has to be adjusted accordingly.

2.3 Multilevel Monte Carlo Method
Another of the MC-type methods is the so-called Multilevel Monte Carlo (MLMC)
method, which was first introduced in the context of stochastic differential equa-
tions in 2008 by Mike Giles in the pioneering work [13]. It was soon applied in
uncertainty quantification for PDE-related problems. One of the first works in
this context was [6], which we follow here. MLMC is a refinement of the tradi-
tional Monte Carlo method that aims to reduce the computational cost of the
estimator by sampling on a hierarchy of discretisation levels. The underlying idea
is the following: Let us consider L + 1 discretisation levels labeled 0, . . . , L and
denote by E[Ql] the approximation of the quantity of interest E[Q] on level l.
The meshes corresponding to the individual discretisation levels are assumed to
be refined with increasing l. Then we can write, using the telescopic sum,

E[QL] = E[Q0] +
L∑︂

l=1
E[Ql −Ql−1].

Each term in the sum can now be estimated by a simple Monte Carlo estima-
tor. Since the variance of the random variables E[Ql − Ql−1] decays quickly for
increasing l, it is sufficient to take only a small number of samples on the finer
levels of the discretisation and still, due to the telescopic sum, obtain the bias
error corresponding to the finest level L. The precise formulation is given below.
In our work, we will use MLMC extensively in combination with mixed-precision
computations.

At first, we present the definition of the MLMC estimator and then the cor-
responding bias-variance decomposition theorem. With the bias-variance decom-
position in hand, it will be then easier to explain the underlying principles behind
the MLMC method and how the computational cost is reduced compared to the
MC method.

2.3.1 Definition and complexity theorem
Definition 2.8 (Multilevel Monte Carlo estimator). Let E[Q] be the quantity of
interest defined in Problem 2.1. Let h0 ≥ . . . ≥ hL > 0 be the discretisation

24

parameters, uhl
the corresponding solutions of the discrete random AVP (Prob-

lem 1.13) and Qhl
, l ∈ {0, . . . , L}, the corresponding random variables defined

analogously as in Definition 2.4. Define the following auxiliary MC estimators:

ˆ︁Y0 = ˆ︁Yh0,N0 := 1
N0

Nl∑︂
k=1

Q
(k)
h0 ,

ˆ︁Yl = ˆ︁Yhl,Nl
:= 1

Nl

Nl∑︂
k=1

(︂
Q

(k)
hl

−Q
(k)
hl−1

)︂
, l = 1 . . . , L.

Then, the estimator
ˆ︁QML

L,{Nl} :=
L∑︂

l=0

ˆ︁Yl

will be referred to as the MLMC estimator for E[Q].

This means that the ˆ︁Yl are in fact MC estimators for the expected values of
random variables Yl defined by Y0 := Qh0 and Yl := (Qhl

− Qhl−1) for l ≥ 1.
Important is that the estimators ˆ︁Yl are, in this work, assumed to be independent.
Note that when computing the estimate of E[Yl] = E[Qhl

− Qhl−1] using ˆ︁Yl, the
difference is computed for each k using a single sample ω(k). We can now proceed
to the bias-variance decomposition of the MLMC estimator.

Lemma 2.9 (Bias-variance decomposition for the MLMC estimator). The mean
square error of the MLMC estimator ˆ︁QML

L,{Nl} from Definition 2.8 can be expanded
as

E
[︂
(E[Q] − ˆ︁QML

L,{Nl})
2
]︂

= (E[Q−QhL
])2 +

L∑︂
l=0

var[Yl]
Nl

.

Proof. The mean of the MLMC estimator can be rewritten as

E[ˆ︁QML
L,{Nl}] =

L∑︂
l=0

E[ˆ︁Yl] = E[Qh0] +
L∑︂

l=1
E[Qhl

−Qhl−1] = E[QhL
],

since ˆ︁Yl are unbiased estimators of Yl and the sum is telescopic. We can now
exploit the fact that ˆ︁Yl are independent to get

var[ˆ︁QML
L,{Nl}] =

L∑︂
l=0

var[ˆ︁Yl].

Analogously to the proof of Lemma 2.5 we obtain
L∑︂

l=0
var[ˆ︁Yl] =

L∑︂
l=0

var[Yl]
Nl

,

and the proof is finished.

We now give an intuitive explanation of why the computational cost is reduced
using the MLMC method compared to the MC method while preserving the error
tolerance. Let us have a look at the bias-variance decompositions for the MC
method and the MLMC method given by Lemma 2.5 and Lemma 2.9, respectively.
In order to get the same bias error in the MC method as in the MLMC method,

25

we have to take h := hL. In order to balance the bias and the variance terms
in the bias variance decomposition of the MC method, we have to take a large
number of samples NL to make the term var[QhL

]
NL

in Lemma 2.5 small. This is
not the case in the MLMC method, because the variance var[Yl] decays rapidly
with increasing l and we can thus take only a small number of samples NL on
the finest level of discretisation where the computation is most expensive. The
precise meaning of this intuitive explanation is given in the following theorem.

Theorem 2.10 (Abstract complexity theorem for the MLMC method). Let m ∈
N, m > 1, and let h0, h1, . . . be discretisation parameters satisfying h0 > 0 and
hl = 1

m
hl−1. Assume that there exist α, β, γ > 0 such that α ≥ 1

2 min{β, γ} and

|E[Qhl
−Q]| = O(hα

l), (2.8)
var[Yl] = O(hβ

l), (2.9)
Cl = O(h−γ

l), (2.10)

where Cl := Cost(Y (k)
l) and the notation is the same as in Definition 2.8. Then

for any 0 < ϵ < exp−1 there exist L ∈ N and {Nl}L
l=0 such that

E
[︂
(E[Q] − ˆ︁QML

L,{Nl})
2
]︂
< ϵ2,

and the total computational cost of a MLMC estimate satisfies

Cost(ˆ︁QML
L,{Nl}) =

⎧⎪⎪⎨⎪⎪⎩
O(ϵ−2), if β > γ,

O(ϵ−2| log ϵ|2), if β = γ,

O(ϵ−2−(γ−β)/α), if β < γ.

Proof. The proof is adapted from [6]. Let ϵ > 0. Let us denote by c1, c2, c3
the constants from (2.8), (2.9), and (2.10), respectively. We can without loss of
generality (WLOG) assume that h0 = 1, otherwise we just scale the constants
c1, c2, c3. Under this assumption we can write hl = m−l. In order to bound the
mean squared error by ϵ2, we balance the terms in the bias-variance decomposition
(Lemma 2.9). Both the bias term and the variance term will be bounded by ϵ2

2 .
Let L ∈ N be defined as

L := ⌈α−1 logm(
√

2c1ϵ
−1)⌉.

Then it holds that
m−α ϵ√

2
< c1m

−Lα ≤ ϵ√
2
, (2.11)

because the right-hand side inequality is equivalent to L ≥ α−1 logm(
√

2c1ϵ
−1) and

the left-hand side inequality in (2.11) is equivalent to L < α−1 logm(
√

2c1ϵ
−1)+1.

Using the second inequality in (2.11) we get

|E[QhL
−Q]| ≤ c1h

α
L = c1m

−Lα ≤ ϵ√
2
, (2.12)

and the bias error is bounded.

26

We will now derive an auxiliary inequality which will be used later. The
formula for the sum of the geometric sequence and a straightforward computation
yield

L∑︂
l=0

mγl = (mγ)L+1 − 1
mγ − 1 = mγL −m−γ

1 −m−γ
<

mγL

1 −m−γ
. (2.13)

Using the first inequality in (2.11) we obtain

L∑︂
l=0

mγl <
mγL

1 −m−γ
<
mγ(

√
2c1)

γ
α

1 −m−γ
ϵ− γ

α . (2.14)

Let us distinguish three cases:

1. First we consider β = γ. In this case, let us define Nl by

Nl :=
⌈︂
2ϵ−2(L+ 1)c2m

−βl
⌉︂
.

It follows that

var
[︂ ˆ︁QML

L,{Nl}

]︂
=

L∑︂
l=0

var[ˆ︁Yl] ≤
L∑︂

l=0

c2m
−βl

Nl

≤ ϵ2

2 ,

where we have used the definition of ˆ︁QML
L,{Nl} and the fact that ˆ︁Yl are in-

dependent, the assumption (2.9), and the definition of Nl, respectively. It
remains to determine the overall cost. We have

Cost(ˆ︁QML
L,{Nl}) ≤ c3

L∑︂
l=0

Nlm
γl

≤ c3

L∑︂
l=0

(︂
2ϵ−2(L+ 1)c2m

−βl + 1
)︂
mγl

≤ c3
(︂
2ϵ−2(L+ 1)2c2 +

L∑︂
l=0

mγl
)︂

≤ C
(︂
ϵ−2(log ϵ)2 + ϵ− γ

α

)︂
,

where C > 0 is a generic constant. Here we used the assumption (2.10), the
definition of Nl, the fact that β = γ, the definition of L, and the inequality
(2.14), respectively. Since ϵ < e−1, we have 1 =

(︂
log(e−1)

)︂2
<
(︂
log(ϵ)

)︂2
.

Together with α ≥ γ
2 we obtain

ϵ− γ
α ≤ ϵ−2 ≤ ϵ−2(log ϵ)2

and in total,

Cost(ˆ︁QML
L,{Nl}) ≤ C

(︂
ϵ−2(log ϵ)2 + ϵ− γ

α

)︂
= O(ϵ−2| log ϵ|2).

2. Assume now β < γ. Since the idea of the proof remains the same, we will
therefore proceed more briefly. Let

Nl :=
⌈︄
2ϵ−2c2m

(γ−β) L
2

m−(β+γ) l
2

1 −m−(γ−β)/2

⌉︄
.

27

Analogously to the previous case we can estimate

L∑︂
l=0

var[ˆ︁Yl] ≤ ϵ2

2 m
−(γ−β) L

2
(︂
1 −m−(γ−β)/2

)︂ L∑︂
l=0

m(γ−β) l
2 ≤ ϵ2

2 ,

where we used the definition of Nl and the inequality (2.13). The cost can
be estimated by

Cost(ˆ︁QML
L,{Nl}) < c3

(︄
2ϵ−2c2

m(γ−β) L
2

1 −m−(γ−β)/2

L∑︂
l=0

m(γ−β) l
2 +

L∑︂
l=0

mγl

)︄
. (2.15)

The left-hand side inequality in (2.11) yields

m(γ−β)L ≤
(︂√

2c1
)︂ γ−β

α mγ−βϵ− γ−β
α .

Also ϵ < e−1 < 1 and α ≥ 1
2β and therefore ϵ− γ

β ≤ ϵ−2− γ−β
α . Using this and

the (2.14), the inequality (2.15) yields

Cost(ˆ︁QML
L,{Nl}) = O(ϵ−2− γ−β

2).

3. Assume finally β > γ. In this case, Nl is defined as

Nl :=
⌈︄
2ϵ−2c2

m−(γ+β) l
2

1 −m−(β−γ)/2

⌉︄
.

The variance can be estimated similarly to the previous case:

L∑︂
l=0

var[ˆ︁Yl] ≤ 1
2ϵ

2
(︂
1 −m−(β−γ)/2

)︂ L∑︂
l=0

m−(β−γ) l
2 ≤ ϵ2

2 .

The cost can be estimated by

Cost(ˆ︁QML
L,{Nl}) < c3

(︃
2ϵ−2c2

(︂
1 −m−(γ−β)/2

)︂−2
+

L∑︂
l=0

mγl
)︃
.

Since ϵ < e−1 < 1 and α ≥ 1
2γ, we have ϵ−γ/α ≤ ϵ−2. Finally, using the

inequality (2.14), we get

Cost(ˆ︁QML
L,{Nl}) = O(ϵ−2)

and the proof is finished.

Let us now state the version of the complexity theorem for the FE solution
defined in Chapter 1. It is a result analogous to Theorem 2.7 for the standard
MC method.

28

Theorem 2.11 (MLMC FEM complexity). Let f be sufficiently smooth so that
Theorem 1.16 holds. Let m ∈ N, m > 1 and let h0, h1, . . . be discretisation
parameters satisfying h0 > 0 and hl = 1

m
hl−1. Assume that the cost per sample

is given by Cl = O(h−2
l). Then, for any 0 < ϵ < exp−1 there exist L ∈ N and

{Nl}L
l=0 such that

∥E[Q] − ˆ︁QML
L,{Nl}∥

2
L2(Ω,R) < ϵ2

and
Cost(ˆ︁QML

L,{Nl}) = O(ϵ−2),

where ˆ︁QML
L,{Nl} is the MLMC estimator for E[Q] in the sense of Definition 2.8

corresponding to the solution uh of the discrete AVP with random data (Problem
1.13).

Proof. In order to prove the theorem, it suffices to verify the assumptions of
Theorem 2.10. From Theorem 2.7 we know that α = γ = 2. It thus remains to
determine the value of β. To this end, let us estimate

var[Yl] = E[Y 2
l] − E[Yl]2

≤ E[(Qhl
−Q+Q−Qhl−1)2]

≤ E[(Q−Qhl
)2] + 2E[(Qhl

−Q)(Q−Qhl−1)] + E[(Q−Qhl−1)2]
≤ 2E[(Q−Qhl

)2] + 2E[(Q−Ql−1)2].

In the last inequlaity, we used the Cauchy–Schwarz inequality and the fact that
2ab ≤ a2 + b2 for a, b ∈ R. The last expression can be estimated using Theorem
1.16 as

2E[(Q−Qhl
)2] + 2E[(Q−Qhl−1)2]

= 2∥G(u) −G(uhl
)∥2

L2(Ω,R) + 2∥G(u) −G(uhl−1)∥2
L2(Ω,R)

≤ 2C2h4
l + 2C2h4

l−1

= 2C2(1 +m4)h4
l

= Ch4
l ,

where C is a generic constant. Thus the assumption of Theorem 2.10 holds with
β = 4 and the proof is finished.

In practice we use an adaptive algorithm to determine the values L and
{Nl}L

l=0. The value L has to be large enough in order to bound the bias error and
the values Nl have to be large enough to bound the variance term; see the bias-
variance decomposition (Lemma 2.9). What we need to estimate the MSE using
the bias-variance decomposition are some computable error estimates, which are
based on the sample average and sample variance. These will be the topic of the
next section along with the adaptive algorithm.

2.3.2 Adaptive MLMC algorithm
As suggested above, the adaptive MLMC algorithm aims to compute the optimal
values of L and {Nl}L

l=0. It does so using sample averages ˆ︁Yl (see Definition 2.8)
and sample variances

s2
l := 1

N − 1

Nl∑︂
k=1

(︂
Y

(k)
l − ˆ︁Yl

)︂2
(2.16)

29

of the random variables {Yl}L
l=0. What we also need in the algorithm is the cost

per sample Cl which is given by the solver we use to solve the corresponding FE
system.

We now describe how the adaptive algorithm computes the new values L and
{Nl}L

l=0. For this, we need the following lemma:

Lemma 2.12. Assume that there exists h̃ > 0 such that the function h ↦→ |E[Qh−
Q]| is strictly decreasing for all h ≤ h̃ and satisfies

∃c1, c2 > 0 ∀h ≤ h̃ : c1h
α ≤ |E[Qh −Q]| ≤ c2h

α. (2.17)

Further, let l ∈ N be such that hl−1 ≤ h̃ and denote r := c1
c2

. If rmα − 1 > 0 then

|E[Qhl
−Q]| ≤ 1

rmα − 1 |E[Yl]|,

where the notation is as in Theorem 2.10.

Proof. We employ the reverse triangle inequality to estimate⃓⃓⃓
|E[Qhl

−Q]| − |E[Qhl−1 −Q]|
⃓⃓⃓
≤
⃓⃓⃓
E[Qhl

−Q] − E[Qhl−1 −Q]
⃓⃓⃓
= |E[Yl]|. (2.18)

Since the error is strictly decreasing, the expression on the left-hand side can be
rewritten as⃓⃓⃓

|E[Qhl
−Q]| − |E[Qhl−1 −Q]|

⃓⃓⃓
= |E[Qhl

−Q]|
⃓⃓⃓
1 −

|E[Qhl−1 −Q]|
|E[Qhl

−Q]|
⃓⃓⃓

= |E[Qhl
−Q]|

(︃ |E[Qhl−1 −Q]|
|E[Qhl

−Q]| − 1
)︃
.

(2.19)

Using the inequality (2.17), we obtain

|E[Qhl
−Q]| ≤ c2h

α
l ,

|E[Qhl−1 −Q]| ≥ c1h
α
l−1.

Using the fact that hl−1 = mhl, the right-hand side of (2.19) can then be esti-
mated from below as

|E[Qhl
−Q]|

(︃ |E[Qhl−1 −Q]|
|E[Qhl

−Q]| − 1
)︃

≥ |E[Qhl
−Q]|

(︃
c1

c2

hα
l−1
hα

l

− 1
)︃

= |E[Qhl−1 −Q]|(rmα − 1).

This, together with (2.18), yields

|E[Qhl−1 −Q]| ≤ 1
rmα − 1 |E[Yl]|.

The lemma allows us to estimate the bias error using the sample average ˆ︁Yl

as
|E[Qhl

−Q]| ≤ 1
rmα − 1 |E[Yl]| ≈ 1

rmα − 1 | ˆ︁Yl|. (2.20)

30

This allows us essentially to determine the value of L (if the bias error on the
level L is not small enough, we increase L).

Let us now describe how to determine the (optimal) values {Nl}L
l=0. To this

end, we minimize the total computational cost of the MLMC estimator for a fixed
variance. The computational cost of the MLMC estimator can be written as

Cost(ˆ︁QML
L,{Nl}) =

L∑︂
l=0

NlCl, (2.21)

where Cl = Cost(Y (k)
l) is the cost per one sample of Yl as in the complexity

theorem. We can now minimize (2.21) with respect to Nl, l = 0 . . . , L under the
constraint

L∑︂
l=0

Vl

Nl

= ϵ2

2 .

This constrained optimization problem can be solved by the method of Lagrange
multipliers. A straightforward computation yields that the optimal values of Nl

satisfy

Nl = λ

√︄
Vl

Cl

(2.22)

with an implied constant λ satisfying

λ = 2
ϵ2

L∑︂
l=0

√︂
VlCl.

We can now proceed to the adaptive algorithm itself. At each iteration, the
algorithm estimates the optimal values {Nl}L

l=0 using the sample variance (2.16)
and the formula (2.22). Then it checks using (2.20) if the bias error is under
the desired tolerance and if not, increases the value L by one and initializes NL.
If the bias error is under the given tolerance and so is the variance, estimated
by ∑︁

l s
2
l /Nl (see the bias-variance decomposition, Lemma 2.9), the algorithm

terminates, otherwise the process is repeated.
We proceed to the formulation of the adaptive MLMC algorithm; see Algo-

rithm 1 (the algorithm is adapted from [6]). In the following section we analyse
in more detail the cost of the MLMC algorithm.

2.3.3 Cost analysis
This section aims to analyse the contributions of the individual levels in the
MLMC method to the overall cost. The total cost is given by (2.21), i.e., the
total cost is given by the sum of the costs on individual levels. Let us express
how the total cost is increased per level. This is given by the ratio

Cl+1Nl+1

ClNl

. (2.23)

Assumptions (2.9) and (2.10) tell us that var[Yl] = O(hβ
l) and Cl = O(h−γ

l),
respectively. If we moreover assume that var[Yl] ≃ hβ

l and Cl ≃ h−γ
l , where the

31

Algorithm 1: Adaptive MLMC algorithm
Input: h0, m, ϵ, L = 1, Lmax, N0 = N1 = Ninit

Output: ˆ︁QML
L,{Nl}

while L ≤ Lmax do
for l = 0 to L do

Compute Nl new samples Y (k)
l using Def. 2.8;

Compute ˆ︁Yl, s2
l and estimate Cl;

end
Update estimates for Nl using (2.22);
if | ˆ︁YL| > rmα−1√

2 ϵ then
L := L+ 1;
NL := Ninit;

if | ˆ︁YL| ≤ rmα−1√
2 ϵ and ∑︁L

l=0 s
2
l /Nl ≤ ϵ2/2 thenˆ︁QML

L,{Nl} := ∑︁L
l=0

ˆ︁Yl;
end

symbol ≃ means “is equal up to a multiplicative constant”, then we can rewrite
(2.23) as

Cl+1Nl+1

ClNl

=

⌜⃓⃓⎷hβ−γ
l+1

hβ−γ
l

=
⌜⃓⃓⎷(m−1hl)β−γ

hβ−γ
l

= m
γ−β

2 ,

where we used the assumption that hl = m−1hl−1 (see Theorem 2.10). We observe
that the contribution of each individual level to the overall cost depends on the
values of β and γ. In general we can say that the cost per level is increased
(decreased) by the factor m(γ−β)/2. Based on the values of β and γ, three cases
can be naturally distinguished which correspond to the three cases in Theorem
2.10. The most interesting for our future considerations is the case when β > γ
where the cost on the coarsest level dominates. We summarize our observations
in the following corollary:

Corollary 2.13. Let the assumptions of Theorem 2.10 hold and let var[Yl] ≃ hβ
l

and Cl ≃ h−γ
l where β > γ. Then the cost C0N0 on the coarsest level dominates

and it holds that
Cl+1Nl+1

ClNl

= m
γ−β

2 ,

i.e., the cost per level decays with the factor m γ−β
2 .

32

3. Numerical linear algebra
methods
In Chapter 1 we were concerned with the numerical solution of a PDE via the
finite element method. Our focus in this chapter will be solving the resulting sys-
tem of linear algebraic equations in finite precision arithmetic. The consequences
of using finite precision arithmetic in Monte Carlo methods are then studied in
Chapter 4.

3.1 Floating point arithmetic
This section gives a brief overview of principles of computations in floating point
arithmetic and definitions of basic notions. A floating point (FP) number system
F is a finite subset of real numbers whose elements can be written in a spe-
cific form. The FP system F is characterised by three parameters, the so-called
significand (mantissa), base, and exponent. One quantity determined by these
parameters is the so-called range of F. The range is, roughly speaking, a subset
of the real numbers representable in F. The range of F consists of two parts:
The positive part is the interval between the smallest positive FP number and
the largest FP number. The negative part is defined analogously. A thorough
description of F can be found in Chapter 2 of [19]; we will focus here only on the
properties crucial for our work.

An important property of the FP system F is the machine precision ϵM . It
is the distance between the number 1 and next floating point number. Another
important property is the unit roundoff δ, which is defined as δ := 1

2ϵM . In the
work [19] the unit roundoff is denoted by the lowercase u. We denote it here by
δ to distinguish it from a solution of a PDE denoted in this work by u and the
tolerance of the algorithms denoted in Chapter 2 by ϵ. The process which assigns
an element fl(x) ∈ F to an element x ∈ R is called rounding. The important
property is that any element lying in the range of F can be approximated within
F via rounding with a relative error not larger than δ. For details see Theorem
2.2 in [19].

We assume that all computations which are carried out in FP arithmetic are
carried out under following standard model. We assume that for all x, y ∈ F we
have

fl(x op y) = (1 + µ)(x op y), |µ| ≤ δ, op = +,−,×, /. (3.1)
Note that this assumption implies that we assume all of the considered quantities
to lie within the range of F. The standard model is valid in particular for IEEE
arithmetic. IEEE arithmetic is a technical standard of floating point arithmetic
which assumes all of the preliminaries above and adds other technical assump-
tions; see [19] for an overview. The IEEE standard defines several basic formats.
In this work we use formats both standardised and not standardised by IEEE. All
of the formats we will use are hardware-supported, namely by the NVIDIA H100
SXM GPU (see Section 3.4). To be specific, in this thesis we use quarter (q43),
half, single, and double precision. Note that the base of all of these formats is 2.

33

Unit roundoff Range Bits
quarter (q52) 2−3 ≈ 1.3 × 10−1 10±5 8
quarter (q43) 2−4 ≈ 6.3 × 10−2 10±2 8
half 2−11 ≈ 4.9 × 10−4 10±5 16
bfloat16 2−8 ≈ 3.9 × 10−3 10±38 16
single 2−24 ≈ 6.0 × 10−8 10±38 32
double 2−53 ≈ 1.1 × 10−16 10±308 64

Table 3.1: Range, value of the unit roundoff, and number of bits required for
storing one number for various precision formats. Not all of them are defined by
the IEEE standard.

The corresponding values of the unit roundoff are denoted by δq δh, δs, and δd,
respectively, and their values are shown in Table 3.1 along with the range and the
number of bits the number occupies in computer memory. Two different formats
of quarter precision are shown — q43 and q52. The former has 4 exponent bits, 3
significand bits, whereas the latter has 5 exponent bits, 2 significand bits. When
an algorithm is run, all the computations are assumed to be carried out under
the standard model (3.1). This assumption allows us to analyse the error of the
algorithm. For simplicity, we will often abbreviate “the format of the floating
point arithmetic with unit roundoff δ” to “the precision δ”. The results of the
error analysis of the algorithms important for this work are given in the following
sections. We will be interested not only in the error analysis of the algorithms
but also in their computational complexity (cost in terms of FLOPs).

3.2 Cholesky factorization
As discussed in Section 1.2.3, seeking the FE solution of our elliptic boundary
value problem is equivalent to solving a system of linear algebraic equations. As
pointed out, the matrix of this system has some special properties which have to
be taken into account when the system is solved, namely, the matrix is sparse,
symmetric, and positive definite. One prominent class of methods suitable for
solving systems with such a matrix are sparse direct solvers based on Cholesky
factorization, which will be our focus in this section. Here we follow [19].

3.2.1 Basic properties and computation
The Cholesky factorization is a matrix factorization of the form A = RTR, where
R is upper triangular with positive diagonal elements. The following theorem
guarantees its existence and uniqueness for a symmetric positive definite matrix.

Theorem 3.1. Let A ∈ Rn×n be a symmetric positive definite matrix. Then there
exists a unique upper triangular matrix R ∈ Rn×n with positive diagonal elements
such that A = RTR.

Proof. See [19], Theorem 10.1.

34

Algorithm 2: Column Cholesky factorization
Input: A ∈ Rn×n symmetric positive definite
Output: Upper triangular R ∈ Rn×n with positive diagonal entries

satisfying A = RTR

for j = 1 to n do
for i = 1 to j − 1 do

ri,j = (ai,j −∑︁i−1
k=1 rk,irk,j)/ri,i;

end
rj,j = (aj,j −∑︁j−1

k=1 r
2
k,j)1/2;

end

We now turn our attention to how to compute the Cholesky decomposition.
For a dense matrix, we have three basic options: To build the matrix R column
by column, row by row, or the so-called submatrix factorization. The standard
column algorithm will be described here. It can be straightforwardly derived from
the equation A = RTR:

Consider A = (ai,j)n
i,j=1 and R = (ri,j)n

i,j=1. Let us now rewrite the equation
A = RTR element by element:

ai,j =
i∑︂

k=1
rk,irk,j, j ≥ i.

Solving the equation corresponding to a1,1 gives us now r1,1. Consequently, solving
the equation corresponding to a1,2 yields r1,2 and in a similar way we can obtain
r2,2, r1,3, r2,3, r3,3, etc. Hence we obtain the matrix R column by column, which
can be written down in the form of an algorithm; see Algorithm 2, taken from
[19], Algorithm 10.2. The computational complexity of the algorithm is O(n3)
FLOPs.

The Cholesky factorization can be used to solve a system Ax = b: First we
decompose A = RTR to obtain the system RTRx = b. Denoting y := Rx, we can
solve the system RTy = b using forward substitution. Finally, the system Rx = y
is solved by backward substitution. The complexity of solving the system Ax = b
using Algorithm 2 is O(n3).

The complexity of Cholesky factorization can be, in our case, reduced signif-
icantly by exploiting the sparsity of the matrix A. We will not go into details
here; only a brief overview of the complexity results will be given. There are
results showing that for the class of matrices coming from the discretisation of a
PDE via the conforming FEM in 2D (which is our case), the complexity of the
Cholesky factorization can be reduced from O(n3) to O(n3/2). The complexity of
the substitution part can be in this case reduced from O(n2) to O(n log n); see
[27], Section 2.2. Such a class of techniques for sparse Cholesky factorization is
implemented in the library CHOLMOD used in Matlab.

In this work we use another variant of the Cholesky factorization - the LDL⊤

factorization, since we can avoid computing the square roots on the diagonal, see
[19], Chapter 10, for a reference. The results of the error analysis of the LDL⊤

factorization are analogous to the standard Cholesky factorization presented in
this section, according to [19]. For the numerical results, it is not of high impor-
tance which of these two algorithms we choose.

35

3.2.2 Summary of error analysis
As suggested in Section 3.1, in practice Algorithm 2 is run in floating point
arithmetic and only an approximation of the true factorization is computed. The
Cholesky factorization is used to solve a system Ax = b as suggested in Section
3.2.1 and we are interested in the error of the computed solution.

Assume that ˆ︁x is the solution of the system Ax = b in a FP arithmetic
format with the unit roundoff δ. This means in our context that the Cholesky
factorization and forward and backward substitution are all performed in this
FP arithmetic format and as a result, they produce the solution ˆ︁x. The error of
the approximation can be studied from many perspectives. One possibility is, for
instance, to analyse the absolute forward error ∥x − ˆ︁x∥ or the relative forward
error ∥x− ˆ︁x∥/∥x∥ in a suitable norm (or componentwise). We will be interested
in the so-called backward error which will prove useful later. The backward error
aims to express the approximate solution ˆ︁x as the true solution to a problem with
perturbed input data. Let us first introduce an auxiliary notation. Let n ∈ N be
such that nδ < 1. We denote

γn := nδ

1 − nδ
.

The main result of the backward error analysis is given by the following theorem
adapted from [19], Theorem 10.4.
Theorem 3.2. Let A ∈ Rn×n be symmetric positive definite and suppose Cholesky
factorization produces a computed factor ˆ︁R and a computed solution ˆ︁x to Ax = b.
If max

(︂
(3n+ 1)δ, nγn+1

)︂
< 1/2 then

(A+ ∆A)ˆ︁x = b, ∥∆A∥2 ≤ 4n(3n+ 1)δ∥A∥2, (3.2)
where ∥ · ∥2 denotes the spectral norm of a matrix.

This theorem tells us that this algorithm for solving a system of linear equa-
tions is backward stable. In practice it turns out that the estimate (3.2) often
overestimates the true error and thus this result may be useful only theoretically.

For the purpose of the error analysis in Theorem 3.2 we assumed that Cholesky
factorization applied to the matrix A succeeds. Wilkinson showed that Cholesky
factorization is guaranteed to succeed if 20n3/2κ2(A)δ ≤ 1, where κ2(A) denotes
the condition number of A (with respect to the spectral norm); see [19], Section
10.1.1. There are further results which guarantee success of the factorization
under certain conditions on the singular values of A; see Theorem 10.7 in [19].

Not all arithmetic operations in the algorithm for solving Ax = b have to be
carried out in one precision. There are techniques which allow us to improve the
accuracy of the computed solution via, e.g., iterative refinement, which will be the
topic of the following section. This and the fact that the theoretical estimates
often exaggerate the true error motivate us to introduce the so-called effective
precision δe. The effective precision is not necessarily a hardware or software-
supported precision (like the IEEE standards, e.g.). It is rather a parameter
expressing how accurately the solution to Ax = b is actually computed.

Let ˆ︁x be a solution of Ax = b computed by an algorithm. The solution is said
to be computed effectively to precision δe if

∥b− Aˆ︁x∥Rn

∥b∥Rn

≤ Cδe (3.3)

36

for a constant C > 0. Here ∥·∥Rn denotes the Euclidean norm, although it is
possible to use any other norm in principle. The constant C may or may not be
dependent on the matrix A and other input data; this is problem-dependent. As
we can see, this definition is very broad and the effective precision is not uniquely
defined; the property can be satisfied by more than one value.

3.3 Iterative refinement
Iterative refinement is a technique used to enhance the accuracy of a numerical
solution to a linear system; see [19], Chapter 12, for an overview. The general
scheme of iterative refinement involves computing a residual vector, which rep-
resents the difference between the exact solution and the current approximate
solution, and then applying a correction to the current approximation to reduce
the error. In this way, the process can be repeated iteratively until the limiting
level of accuracy is achieved.

As explained in [27], the first use of iterative refinement as well as the first
rounding error analysis are attributed to Wilkinsion, who made use of the fact
that the inner product (and thus the residual) could be computed at twice the
working precision on many computers of that period with no additional cost. The
first error analysis in floating point arithmetic is attributed to Moler and can be
viewed as a foundation for the recent analyses of iterative refinement. Today,
iterative refinement is a widely used technique to improve the forward error of
a solution, to recover the stability of the solver, and to accelerate the solution
of a linear system using low precision arithmetic; see [1]. In this work, the use
of iterative refinement is motivated by the cost reduction, but not only: it turns
out that we do not often require that the solution is recovered to full accuracy.
Iterative refinement allows us to factorize the matrix cheaply using low precision
and then cheaply improve the accuracy of the computed solution to the required
level in the sense of the relative residual.

The particular version of iterative refinement which we use in this work is
adapted from [5]. Consider a linear system Ax = b where A ∈ Rn×n and b ∈ Rn.
The iterative refinement algorithm contains explicitly three precisions, δr, δ, and
δf , and one precision, δs, implicitly. Note that in this section the symbol δs does
not denote single precision and we use it here to keep the indices in accordance
with the aforementioned paper, where the precision are denoted by ur, u, uf and
us, respectively. The definitions of these precisions are, as explained in [5]:

• “δ is the precision at which the data A, b and the solution x are stored (the
working precision),

• δf is the precision at which the factorization of A is computed,

• δr is the precision at which residuals are computed,

• δs is the precision at which the correction equation is (effectively) solved.”

All of the precisions δr, δ, δs and δf will take in the cases of interest one of the
values of quarter, half, single, or double precision and it is assumed δr ≤ δ ≤ δs ≤
δf . We proceed directly to the algorithm which is a special case of Algorithm 1.1

37

Algorithm 3: Iterative refinement
Input: A ∈ Rn×n, b ∈ Rn, both in precision δ, tolerance TOL > 0.
Output: an approximation xi of the solution x stored in precision δ.

1 Factorize A in precision δf ;
2 Solve Ax0 = b in precision δf by substitution and store x0 at precision δ;
3 for i = 0 to imax do
4 Compute ri = b− Axi at precision δr and round ri to precision δs;
5 if ∥ri∥/∥b∥ < TOL then
6 Exit algorithm;
7 Solve Adi = ri by substitution at precision δf or δ using the

factorization from step 1 and store di at precision δ;
8 xi+1 = xi + di at precision δ;
9 end

from [5]; see Algorithm 3. As mentioned above, δs is the precision at which the
equation in step 7 is solved. In our case the precision δs takes the value of δf ,
since the factorization is carried out in precision δf and we always consider the
factorization method to be either Cholesky or LDL⊤ decomposition.

The precision to be used in step 7 of the algorithm is always specified when
iterative refinement is used. By using precision δ in step 7 of the algorithm, no
numerical benefit from the perspective of the limiting accuracy can be obtained.
However, we benefit from it in the sense that, roughly speaking, a higher variety
of accuracies can be achieved, see Section 5.1. There is also no point in using
extra precision to compute the residual in step 4 of the algorithm, since we are
interested only in bounding the backward error; see [5].

It is worth noting that the stopping criterion in Algorithm 3 given by the
relative residual norm is non-standard and is motivated by our specific use of
iterative refinement; see Chapters 4 and 5. The key idea is the following: The
tolerance for the relative residual norm in step 5 of the algorithm corresponds to
the value δe from the previous section. That is, if we set in step 5 the tolerance
TOL := δe and Algorithm 3 converges, then the produced solution is computed
effectively to precision δe in the sense of (3.3). For a different and more standard
choice of the stopping criteria, see [8]. The convergence of Algorithm 3 is in [5]
analysed thoroughly. We give here only a brief overview of the results which are
of our interest. We are particularly interested in the normwise backward error
analysis in the ∥·∥Rn norm (the Euclidean norm). The normwise backward error
analysis is presented in [5] in the ∥·∥∞ norm. An analogous result can be obtained
for the ∥·∥Rn norm and the proof can be the same step by step. The following
lemma summarizes the convergence conditions along with the convergence results.
It is a direct consequence of Corollary 4.2 in [5].
Lemma 3.3. Let Algorithm 3 without steps 5 and 6 be applied to a linear system
Ax = b with a nonsingular matrix A ∈ Rn×n. Let the following conditions hold:

1. The solver used in step 7 produces a computed solution ˆ︁di to Adi = ˆ︁ri

satisfying
∥ˆ︁ri − A ˆ︁di∥Rn ≤ δs(c1∥A∥2∥d̂i∥Rn + c2∥r̂i∥Rn),

where c1, c2 > 0 and

38

2. the quantity ϕ := (c1κ2(A) + c2), where c1 and c2 are the same as above, is
sufficiently smaller than 1.

Here κ2(A) denotes the condition number of A (with respect to the spectral norm).
Under these assumptions the residual is reduced in each iteration by a factor
approximately ϕ and the algorithm eventually produces a computed solution ˆ︁xi

backward stable to the working precision, i.e.,

∥b− Aˆ︁xi∥Rn ≲ pδ(∥b∥Rn + ∥A∥2∥ˆ︁xi∥Rn), (3.4)

where p denotes the maximum number of nonzeros in any row of the augmented
matrix [Ab]. The symbol ≲ means “is less then or equal up to a multiplicative
constant”.

For the matrix factorization we use the Cholesky factorization, which leads to
the following estimate for the constant c1 from Lemma 3.3 (see Theorem 3.2):

c1 ≤ 4n(3n+ 1).

This lemma has some practical consequences. Under the assumptions of the
lemma, the convergence of the algorithm is monotonic in terms of the norm of
the residual and the algorithm terminates using the termination condition given
in steps 5 and 6 as long as the tolerance is not too small. The limiting value of
the tolerance can be deduced from (3.4).

In this work we use Algorithm 3 extensively to achieve the desired accuracy
of the computed solution. We obtain additional benefits from using the iterative
refinement in terms of the cost. The point is to reuse the factorization computed
in step 1 of the algorithm in step 7 of the algorithm. If we reuse the factorization
as suggested, we can improve the accuracy of the solution with a small additional
cost, because the factorization is typically more costly than the substitution part
in terms of the required number of operations, see Section 3.2.1.

3.3.1 Iterative refinement for FE linear systems
In this section we aim to put iterative refinement into the theoretical framework
of our work, namely that of Chapter 1. We investigate the behaviour of iterative
refinement applied to linear systems stemming from the finite element method.
For simplicity, we shall assume that the underlying PDE does not contain any
randomness, i.e., we are in the setting of Problem 1.1, and we wish to solve the
corresponding FE system (1.6). Note that our considerations in this section are
restricted to the case D ⊂ R2 but they can be straightforwardly generalised to
cases when the domain D is a subset of Rn, n ̸= 2, and when the PDE is of a
different order (different than 2).

Consider the FE system (1.6) corresponding to the discretisation parameter
h > 0. Our goal is to reformulate Lemma 3.3 in terms of the data of the original
problem (Problem 1.5). To this end we need some auxiliary inequalities. These
inequalities, which we summarize here, can be found in [10].

Lemma 3.4. Let Ax = b be the FE system corresponding to Problem 1.5. Then
the following estimates hold:

39

1. ∥A∥2 ≤ c,

2. κ2(A) ≤ ch−2, and

3. ∥b∥Rn ≤ ch∥f∥L2(D),

where κ2 is the condition number of A with respect to the spectral norm and the
generic constant c is independent of the discretisation parameter h.

Proof. Note that all theorems referenced in this proof are from [10] and more
details can be found there. The first claim follows from the first part of the proof
of Theorem 9.11 (the last inequality in the first part) and Theorem 9.8. The in-
equality from Theorem 9.11 gives us a bound on ∥A∥2 using h and the eigenvalues
of the mass matrices. Theorem 9.8 gives us the bounds for the eigenvalues of the
mass matrices.

The second point follows from Theorem 9.11 and Example 9.13, since in our
case s = t = 1 in Theorem 9.11.

The third point can be proved as follows. Let us define the mass matrix as in
[10], page 386, i.e.,

Mi,j =
(︂∫︂

D
ϕiϕj

)︂
,

i, j = 1, . . . , n, where ϕi, ϕj are the basis functions described in Section 1.2.3. Let
y ∈ Rn. Denote by vh the corresponding element of Vh,0 represented by y, i.e.,

vh =
n∑︂

j=1
yjϕj. (3.5)

According to (9.5) in [10], we have for all vh ∈ Vh,0

µ
1/2
min∥y∥Rn ≤ ∥vh∥L2(D) ≤ µ

1/2
min∥y∥Rn , (3.6)

where µmin and µmax denote the smallest and largest eigenvalue of M, respec-
tively. Further, from Theorem 9.8 in [10] we obtain that for any eigenvalue µ of
M the following inequality holds:

c1h
2 ≤ µ ≤ c2h

2, (3.7)

where c1 and c2 are independent of h. Recall that the right-hand side b is defined
for i = 1, . . . , n by bi = l(ϕi), where l is from Problem 1.5. For any y ∈ Rn we
obtain, using (3.5), (3.6), (3.7) and Hölder’s inequality,

∥y∥Rn = sup
y∈Rn

(b, y)
∥y∥Rn

= µ
1/2
min sup

vh∈Vh,0

l(vh)
∥vh∥L2(D)

≤ ch sup
vh∈Vh,0

∥f∥L2(D)∥vh∥L2(D)

∥vh∥L2(D)

= ch∥f∥L2(D),

which completes the proof.

40

As a consequence of Lemma 3.4 and Lemma 3.3 we formulate the following
corollary about the behaviour of iterative refinement for the FE systems.

Corollary 3.5. Let Ax = b be the FE system corresponding to Problem 1.5 and
let the assumptions of Lemma 3.3 hold. Let ϕ and ˆ︁xi be as in Lemma 3.3. Then

1. the factor ϕ satisfies ϕ ≤ kh−2 + c2 and

2. ∥b− Aˆ︁xi∥Rn ≲ pδ(h∥f∥L2(D) + ∥ˆ︁xi∥Rn),

where c2 is from Lemma 3.3 and k = cc1 where c1 is from Lemma 3.3 and c is
from Lemma 3.4, part 1.

Proof. The proof follows immediately from Lemma 3.3 using the inequalities from
Lemma 3.4.

This lemma has some practical consequences. In the case of the MLMC
method, we solve our FE problem on a hierarchy of meshes assuming that the
meshes are uniformly refined by the factor m > 1; see Section 2.3. This lemma
helps us to understand the behaviour of iterative refinement in this case, which
will be useful later. If the assumptions of Corollary 3.5 are satisfied, we can
conclude that the more we refine the mesh, the slower the iterative refinement
converges (for a fixed value of δs) and the approximate rate is given by point 1.
On the other hand, the limiting precision bounding the norm of the residual does
not change dramatically as the mesh is refined according to point 2. This is a
consequence of the fact that refining the mesh increases the condition number
significantly, but does not drastically increase the norm of the matrix or right-
hand side.

3.4 Performance of finite precision
computations

The use of high-precision floating point arithmetic, e.g., double precision, in sci-
entific computing has been standard practice for many years. However, as the
size and complexity of scientific simulations increase, so does the need for more
efficient computational resources. In recent years, there has been growing inter-
est in the use of low precision floating point arithmetic to accelerate scientific
computations while maintaining acceptable levels of accuracy. Recent advances
in hardware and software have made it a viable option for many scientific appli-
cations. This section aims to discuss the performance of the discussed algorithms
on current architectures and assess the gain stemming from using lower precision
arithmetic. We also give a brief overview of some recent results regarding the
performance gain from using lower precision compared to higher precision. This
is used to make reasonable assumptions regarding the theoretical speedup of the
algorithms enabled by the use of lower precision arithmetic.

As discussed in [3], the computational time of a numerical algorithm is, on
current architectures, usually bounded by one of the following:

• Compute throughput, that is, the number of arithmetic operations that can
be performed per cycle,

41

• memory bandwidth, that is, the number of operands than can be moved be-
tween levels of a memory hierarchy (sequential case) or between processors
(parallel case) each cycle, or

• latency, which is the time from initiating a data request to having the data
available for another instruction.

Note that in further considerations, we discuss sequential architectures. Con-
sidering the simplest model, we can assume that the number of arithmetic oper-
ations that can be performed per cycle is inversely proportional to the number
of bits required to store a floating point number. Let us denote by Td the com-
putational time of a numerical algorithm run in double precision and denote in
the same way Ts, Th, and Tq. If the bounding quantity of the computational time
is the compute throughput or the memory bandwidth, we can conclude that it
holds that

Ts = 1
2Td,

Th = 1
4Td, (3.8)

Tq = 1
8Td.

This means that the computational time is proportional to the number of bits
required to store one floating point number. In the rest of the thesis we as-
sume (3.8) and we use this assumption to estimate the theoretical speedup of the
algorithms. Since our assumptions on the computational model are very restric-
tive and this conclusion might not be valid in practice, we refer to some recent
numerical results to verify (3.8) empirically.

Let us compare the computational performance using quarter, half, single,
and double precision, denoted FP8, FP16, FP32, and FP64, respectively, on the
NVIDIA H100 SXM5 GPU. The performance is given in terms of the number
of floating point operations per second (FLOPS). The results, obtained from the
NVIDIA specifications [24], are summarised in Table 3.2. Let us make further
comments on the presented values. Some of the values of the table have been
obtained using so-called tensor cores (TC). Tensor cores are specialised cores
which enable the GPU to compute D = AB + C, where all matrices A,B, and
C are of the dimension 4 × 4, in mixed precision with no loss of accuracy and a
rapid acceleration of the computation; see [16]. However, not all of the considered
precisions are TC-supported. Namely, of those shown in the table, single precision
(FP32) is not TC-supported on NVIDIA H100 SXM5 GPU. On the contrary,
quarter precision (FP8) is only supported using tensor cores. Note that further
speedup (usually double) can be obtained if we assume certain sparsity of the
data; see [24]. We, however, do not make this assumption and also the values
displayed in Table 3.2 do not assume the sparsity. We observe that the use of
quarter precision increased the performance remarkably more than 29× compared
to double precision (both using TC) which is much better than our presumption
(3.8). This is, however, only the theoretical maximum which is attainable using
this hardware. The practical performance gain depends on various aspects of the
problem as well as the implementation. To estimate the gain realistically, we refer
to the work [16].

42

H100 V100
Peak FP64 33.5 6.8
Peak FP64 TC 66.9 -
Peak FP32 66.9 14
Peak FP16 133.8 28
Peak FP16 TC 989.4 85
Peak FP8 TC 1978.9 -

Table 3.2: Performance of NVIDIA H100 SXM5 and NVIDIA V100 PCIe GPUs
for various precisions in TFLOPS (FLOPS means “floating point operations per
second”). No sparsity is assumed.

In [16] several numerical experiments measuring the performance gain of low
precision arithmetic were conducted using an NVIDIA V100 PCIe GPU. The
theoretical peak performance of the NVIDIA V100 PCIe GPU is given in Table
3.2. In comparison with the NVIDIA H100 GPU, the peak performance of the
NVIDIA V100 is not as high and some of the precisions, namely FP8 TC and
FP64 TC, are not supported. In the work [16], the performance of the LAPACK
algorithm GETRF for computing the LU factorization of a matrix was studied
in various precisions. Their implementation computing the LU factorization ac-
curately to half precision (using TC) achieves a speedup of 4× to 5× compared
to double precision and a 2× speedup over single precision (both not using TC).
These results, which can be found in Section V of the aforementioned study, are
in accordance with our assumption (3.8) about the computational time and con-
firm that this assumption is realistic. It is worth mentioning, however, that this
practical result does not correspond completely to our case, since the latency,
mentioned at the beginning of this section, comes into play.

43

4. Mixed precision Monte Carlo
methods
In this chapter we present a thorough convergence analysis of the Monte Carlo
methods discussed in Chapter 2 in finite precision arithmetic. Based on this anal-
ysis, we exploit low precision arithmetic to speed-up the Monte Carlo algorithms.
We propose a mixed precision MLMC (MPMLMC) method designed to achieve
accurate and reliable results while also minimizing computational costs. By uti-
lizing the multilevel scheme, we can optimize the use of low precision arithmetic
in the areas where it is sufficient, while still being able to switch to high-precision
arithmetic in regions where it is necessary to maintain accuracy.

To our knowledge, this approach is new in the context of MC methods for
PDE-based problems. Our work can be compared to the paper [4] where the
authors discuss the idea of MPMLMC in the context of stochastic differential
equations and then suggest a heuristic to determine a suitable precision for each
level of the computation. Our approach is original in many ways; namely we

• provide a rigorous analysis of Monte Carlo methods in finite precision arith-
metic via error estimates, namely of the standard MC method and the
MLMC method;

• propose a novel adaptive mixed precision MLMC (MPMLMC) algorithm,
determining the optimal precision on each level of discretisation using the
theoretical error estimates with no additional cost;

• provide the theoretical background for applying the adaptive algorithm to
the model elliptic PDE with random coefficients and a random right-hand
side.

The correctness of the adaptive algorithm is demonstrated on numerous exper-
iments in Chapter 5. While we demonstrate the proposed methods here on the
model Problem 2.1, they can be straightforwardly generalised to tackle various
types of problems.

4.1 Finite precision MC method
Throughout this chapter we will use the symbol ˆ︁uh to denote the solution of the
discrete AVP with random data (Problem 1.13) computed effectively to precision
δ. This means that ˆ︁uh(·, ω) =

n∑︂
j=1

ˆ︁xj(ω)ϕj, (4.1)

where ˆ︁x is such that
∥b(ω) − A(ω)ˆ︁x(ω)∥Rn

∥b(ω)∥Rn

≤ Cδ (4.2)

and C > 0 is independent of the problem data and ω. The validity of this
assumption in practice is discussed at the end of Section 4.2.4. See Section 1.3.4
for a reminder about the FEM in finite precision arithmetic and Section 3.2.2

44

for the definition of the effective precision. In principle, it is possible to use any
discrete solution computed numerically in such a way that (4.1) and (4.2) are
satisfied, not only the FE approximation. We proceed to the definition of the
finite precision Monte Carlo (FPMC) estimator.

Definition 4.1 (Finite precision Monte Carlo finite element estimator). Let ˆ︁uh :
D×Ω → R be as in (4.1). Let E[Q] be the quantity of interest defined in Problem
2.1. Let Qh,δ be a random variable defined as Qh,δ : Ω → R, ω ↦→ G(ˆ︁uh(·, ω)).
Define the finite precision Monte Carlo estimator (FPMC) for E[Q] by

ˆ︁Qh,N,δ := 1
N

N∑︂
k=1

Q
(k)
h,δ,

where Q(k)
h,δ are random samples from Qh,δ.

This definition assumes that finite precision comes into play only when the
FE system Ax = b is solved. Once the system is solved, the estimate itself is
computed using exact arithmetic. This is a reasonable assumption, since the cost
of computing the estimate itself is negligible relative to the cost of solving the
linear system N times. We now state the bias-variance decomposition, which is
completely analogous to Theorem 2.5.

Lemma 4.2 (Bias-variance decomposition of the MSE of the FPMC estimator).
The mean squared error of the FPMC estimator ˆ︁Qh,N,δ from Definition 4.1 can
be expanded as

E
[︂
(E[Q] − ˆ︁Qh,N,δ)2

]︂
= (E[Q−Qh,δ])2 + var[Qh,δ]

N
.

Proof. The proof is identical to the proof of Theorem 2.5.

We proceed directly to the error estimate for the FPMC method. It is again
general in the sense that the discrete solution does not have to be the FE so-
lution defined in Chapter 1; it can be any discrete solution satisfying certain
assumptions.

Theorem 4.3 (Error of the FPMC method). Assume that there exists α such
that

|E[Qh,δ −Q]| = O(hα + δ) for h, δ → 0, (4.3)
var[Qh,δ] = var[Qh] +O(δ) for δ → 0, (4.4)

where Qh,δ is from Definition 4.1. Assume further there exists σ2 such that for
all h sufficiently small it holds that var[Qh] ≤ σ2. Then for any N ∈ N, δ > 0,
and h > 0, the error of the corresponding FPMC estimator ˆ︁Qh,N,δ satisfies

E
[︂
(E[Q] − ˆ︁Qh,N,δ)2

]︂
≤ C

(︄(︃
h2α + σ2

N

)︃
+
(︃
hαδ + δ2 + δ

N

)︃)︄
.

45

Proof. Using the bias-variance decomposition (Lemma 4.2) we obtain

E
[︂
(E[Q] − ˆ︁Qh,N,δ)2

]︂
= (E[Q−Qh,δ])2 + var[Qh,δ]

N

≤ C

(︄
(hα + δ)2 + var[Qh] + δ

N

)︄

≤ C

(︄(︃
h2α + σ2

N

)︃
+
(︃
hαδ + δ2 + δ

N

)︃)︄
,

where C > 0 is a generic constant.

Observe that if we add the assumption δ = O(hα) to the statement of Theorem
4.3 and add an assumption to bound the variance then the theorem can be further
simplified.

Corollary 4.4 (Error of the FPMC method 2). Let the FPMC estimator ˆ︁Qh,N,δ

satisfy the assumptions of Theorem 4.3. Let ˆ︁Qh,N be the standard MC estimator
using the same values of h and N as the FPMC estimator. Assume that the
MC estimator ˆ︁Qh,N satisfies (2.1), i.e., we have bias decay of order O(hα). If
we assume δ = O(hα) and if there exists σ2 > 0 such that var[Qh] ≤ σ2 and
var[Qh,δ] ≤ σ2 then the mean squared errors of both estimators can be bounded by

E
[︂
(E[Q] − ˆ︁Qh,N,δ)2

]︂
E
[︂
(E[Q] − ˆ︁Qh,N)2

]︂
⎫⎪⎬⎪⎭ ≤ C

(︃
h2α + σ2

N

)︃
,

i.e., the MSE of the FPMC estimator is asymptotically the same as the MSE of
the standard MC estimator.

Proof. The bound for the standard MC estimator can be deduced from the bias-
variance decomposition (Lemma 2.5) and assumption (2.1). The bound for the
FPMC estimator is a corollary of Theorem 4.3.

The corollary can be informally explained as follows: If assumption (4.3)
holds then the MC estimate can be computed in finite precision arithmetic with
a sufficiently small unit roundoff δ without losing the assymptotic accuracy.

A crucial question is when the assumptions (4.3) and (4.4) are satisfied. An
answer to this question will be given in the following lemma.

Lemma 4.5. Let f be sufficiently smooth so that Theorem 1.16 holds. Let ˆ︁uh

be the solution of the discrete AVP with random data (Problem 1.13) computed
effectively to precision δ; see (4.1). Then

|E[Qh,δ −Q]| = O(h2 + δ) for h, δ → 0,
var[Qh,δ] = var[Qh] +O(δ) for δ → 0;

in other words, the assumptions (4.3) and (4.4) from Theorem 4.4 hold.

Proof. The bias error can be decomposed as follows:

|E[Qh,δ −Q]| ≤ E[|G(ˆ︁uh) −G(u)|]
= ∥G(u) −G(uh) +G(uh) −G(ˆ︁uh)∥L1(Ω)

≤ ∥G(u) −G(uh)∥L1(Ω) + ∥G(uh) −G(ˆ︁uh)∥L1(Ω), (4.5)

46

where we used Jensen’s inequality and the definition of the mean. The fact that

∥G(u) −G(uh)∥L1(Ω) ≤ Ch2, (4.6)

where C > 0 is independent of h, u, and ω, follows from Theorem 1.16. Further,
due to Lemma 1.19 and the fact that ˆ︁uh is computed effectively to precision δ,
we get ⃓⃓⃓

G(uh(·, ω)) −G(ˆ︁uh(·, ω))
⃓⃓⃓
≤ C∥f(·, ω)∥L2(D)δ,

for a generic constant C > 0. Integrating this inequality over Ω yields

∥G(uh) −G(ˆ︁uh)∥L1(Ω) ≤ Cδ,

where C is independent of u, h, and ω. This, combined with (4.6) and using
(4.5), gives us the desired estimate.

Let us now estimate the variance var[Qh,δ]. We have

var[Qh,δ] = E
[︂
(Qh,δ − E[Qh,δ])2

]︂
= ∥Qh,δ − E[Qh,δ]∥2

L2(Ω)

≤
(︃

∥Qh − E[Qh]∥L2(Ω) + ∥Qh,δ −Qh∥L2(Ω) +
⃓⃓⃓
E[Qh −Qh,δ]

⃓⃓⃓)︃2

≤ ∥Qh − E[Qh]∥2
L2(Ω) + 2∥Qh − E[Qh]∥L2(Ω)a+ a2

= var[Qh] + 2
√︂

var[Qh]a+ a2, (4.7)

where
a := ∥Qh,δ −Qh∥L2(Ω) + E

[︂
|Qh −Qh,δ|

]︂
.

In the same way as above, using Lemma 1.19 and the fact that ˆ︁uh is computed
effectively to precision δ, it can be proved that a ≤ Cδ where C is independent
of u, h, and ω. Using (4.7), we thus obtain

var[Qh,δ] ≤ var[Qh] + 2
√︂

var[Qh]cδ + c2δ2

= var[Qh] +
√︂

var[Qh]O(δ).

The first possibility is to finish the proof here. In that case we would have
var[Qh,δ] = var[Qh] + O(δ) where the hidden constant depends on the variance
var[Qh]. Since the dependence is known explicitly, we can directly use it in
further analysis. We will, however, continue with the proof to make the constant
independent of the variance. We prove that the variance var[Qh] converges to
var[Q] as h → 0 and thus it can be bounded independently of h for h sufficiently
small.

We know from Theorem 1.16 that

E
[︂
|Qh −Q|2] ≤ Ch4. (4.8)

Therefore E
[︂
|Qh −Q|2] → 0 as h → 0. By using Jensen’s inequality and Hölder’s

inequality we obtain that
⃓⃓⃓
E[Qh −Q]

⃓⃓⃓
→ 0 as h → 0, which means that E[Qh] →

E[Q] as h → 0. From the continuity of the L2 norm we also have E[Q2
h] → E[Q2]

as h → 0. In all, we obtain that var[Qh] = E[Q2
h]−

(︂
E[Qh]

)︂2
converges to var[Q] as

h → 0. From this it follows that var[Qh] can be, for h sufficiently small, bounded
by a constant (uniformly with respect to h). From this and (4.8) it follows that
var[Qh,δ] = var[Qh] +O(δ) where the hidden constant is independent of h.

47

In this lemma we verified the assumptions of Theorem 4.3 and Theorem 4.4
for our model problem (Problem 2.1). The error estimate for the finite precision
MC estimator for our model problem (using the FEM solution) thus follows as a
corollary of Theorem 4.3.

Corollary 4.6 (Error of the FPMC FE method). Let the assumptions of Lemma
4.5 be satisfied. Then for any N ∈ N, δ > 0, and h > 0, the error of the
corresponding FPMC estimator ˆ︁Qh,N,δ satisfies

E
[︂
(E[Q] − ˆ︁Qh,N,δ)2

]︂
≤ C

(︄(︃
h4 + σ2

N

)︃
+
(︃
hαδ + δ2 + δ

N

)︃)︄
.

Proof. The statement follows from Lemmas 4.5 and 4.3.

4.2 Mixed precision MLMC method
The topic of this section will be the use of finite precision arithmetic in the MLMC
method. Intuitively, the MLMC method offers better opportunities to exploit low
precision arithmetic than the MC method, since a considerable part of the work
in the MLMC method is done on the coarse levels where low precision can be
efficiently used. We proceed to the definition of the mixed precision MLMC
estimator.

Definition 4.7 (Mixed precision MLMC estimator). Let E[Q] be the quantity
of interest defined in Problem 2.1. Let h0 ≥ . . . ≥ hL > 0 be the discretisation
parameters, δ0, . . . , δL > 0 a sequence of precisions, and ˆ︁uhl,δl

the corresponding
approximate solutions of the discrete random AVP (Problem 1.13) computed ef-
fectively to precision δl (see (4.1)). Let Qhl,δl

, l ∈ {0, . . . , L}, be the corresponding
random variables defined analogously as in Definition 4.1. Define the following
auxiliary MC estimators:

ˆ︁Y0 = ˆ︁Yh0,N0,δ0 := 1
N0

Nl∑︂
k=1

Q
(k)
h0,δ0 ,

ˆ︁Yl = ˆ︁Yhl,Nl,δl
:= 1

Nl

Nl∑︂
k=1

(︂
Q

(k)
hl,δl

−Q
(k)
hl−1,δl−1

)︂
, l = 1 . . . , L.

Then, the estimator
ˆ︁QMPML

L,{Nl},{δl} :=
L∑︂

l=0

ˆ︁Yl

will be referred to as the mixed precision MLMC (MPMLMC) estimator for E[Q].

4.2.1 Error estimates
The aim of this section is to analyse the error induced by using finite precision
arithmetic in the MPMLMC method. The process will be similar to the error
analysis of the standard MLMC method. We proceed, similarly to the standard
MLMC method, to the bias-variance decomposition.

48

Lemma 4.8 (Bias-variance decomposition for the MPMLMC estimator). The
mean square error of the MPMLMC estimator ˆ︁QMPML

L,{Nl},{δl} from Definition 4.7
can be expanded as

E
[︂
(E[Q] − ˆ︁QMPML

L,{Nl},{δl})
2
]︂

= (E[Q−QhL,δL
])2 +

L∑︂
l=0

var[Yl]
Nl

.

Proof. The proof is identical to the proof of Lemma 2.9.

We now proceed directly to the error estimate, which will help us to determine
in which parts of the computation mixed precision can be efficiently used. It is
again general in the sense that the discrete solution does not have to be the
FE solution defined in Chapter 1, but any discrete solution satisfying certain
assumptions.

Theorem 4.9 (Error of the MPMLMC method). Let m ∈ N, m > 1, and let
h0, h1, . . . be discretization parameters satisfying h0 > 0 and hl = 1

m
hl−1. Let

δ0, δ1, . . . be a sequence of precisions, i.e., 1 > δl > 0. Assume that there exist
α, β, γ > 0 such that α ≥ 1

2 min{β, γ} and

|E[Qhl,δl
−Q]| = O(hα

l + δl), (4.9)
var[Yhl,Nl,δl

] = O(hβ
l + δ2

l), (4.10)

where the notation is the same as in Definition 4.7. Let L ∈ N and N0, . . . , NL ∈
N and let ˆ︁QMPML

L,{Nl},{δl} be the corresponding MPMLMC estimator. Then the MSE
of this estimator satisfies

E
[︂
(E[Q] − ˆ︁QMPML

L,{Nl},{δl})
2
]︂

≤ C

(︄(︃
h2α

L +
L∑︂

l=0

hβ
l

Nl

)︃
+
(︃
hα

LδL + δ2
L +

L∑︂
l=0

δ2
l

Nl

)︃)︄
.

Proof. The inequality follows from a simple calculation: From the bias-variance
decomposition (Lemma 4.8) and the assumptions (4.9) and (4.10) it follows that

E
[︂
(E[Q] − ˆ︁QMPML

L,{Nl},{δl})
2
]︂

= (E[Q−QhL,δL
])2 +

L∑︂
l=0

var[Yl]
Nl

≤ C

(︄
(hα

L + δL)2 +
L∑︂

l=0

hβ
l + δ2

l

Nl

)︄

≤ C

(︄(︃
h2α

L +
L∑︂

l=0

hβ
l

Nl

)︃
+
(︃
hα

LδL + δ2
L +

L∑︂
l=0

δ2
l

Nl

)︃)︄
,

where C > 0 is a generic constant.

This theorem can be further simplified if we make further assumptions on the
precision δl.

Corollary 4.10 (Error of the MPMLMC method 2). Let the MPMLMC estima-
tor ˆ︁QMPML

L,{Nl},{δl} satisfy the assumptions of Theorem 4.9. Let ˆ︁QML
L,{Nl} be the standard

MLMC estimator defined by the same values of hl and Nl as the MPMLMC esti-
mator. Assume that the MLMC estimator ˆ︁QML

L,{Nl} satisfies (2.8) and (2.9), i.e.,

49

we have the standard bias and variance decay. If we assume δL = O(hα
L) and

δ2
l = O(hβ

l) then the mean squared errors of both estimators can be bounded by

E
[︂
(E[Q] − ˆ︁QMPML

L,{Nl},{δl})
2
]︂

E
[︂
(E[Q] − ˆ︁QML

L,{Nl})
2
]︂

⎫⎪⎬⎪⎭ ≤ C
(︃
h2α

L +
L∑︂

l=0

hβ
l

Nl

)︃
,

i.e., the MSE of the MPMLMC estimator is asymptotically the same as the MSE
of the standard MLMC estimator.

Proof. The bound for the standard MLMC estimator follows from the bias-
variance decomposition (Lemma 2.9) and assumptions (2.8) and (2.9). The bound
for the MPMLC estimator follows from the fact that δL = O(hα

L) and δ2
l = O(hβ

l)
and Theorem 4.9.

From Theorem 4.9, we see that the error can be naturally split into two parts.
The first part bounds the error of the standard MLMC method and the second
part comes from the fact that we use finite precision arithmetic. We observe that
the error induced by using finite precision arithmetic can be further split: The
first part, i.e., hα

LδL + δ2
L, corresponds to the bias error and it tells us how much

at most the bias error can be increased using finite precision arithmetic. We can
see that this part of the error depends only on the precision δL which suggests
that the bias error is influenced only by the precision used on the finest level of
the computation.

Then there is the part of the error corresponding to the variance, i.e.,

L∑︂
l=0

δ2
l

Nl

.

We observe that the more samples we take on level l the lower precision δl can be
used to achieve the same error on each level. Note that in this context “to lower
the precision” means “to increase δl”. This is particularly interesting in the case
of our model problem when β > γ and the lower precision can be exploited to
reduce the computational time significantly as discussed in the following section.

4.2.2 Mixed precision MLMC FE method
This section aims to apply the general estimates derived above in the case of
our model problem. Let us now verify that the assumptions (4.9) and (4.10) are
satisfied in the case of our model problem.

Lemma 4.11. Let f be sufficiently smooth so that Theorem 1.16 holds. Let
m ∈ N, m > 1, and let h0, h1, . . . be discretisation parameters satisfying h0 > 0
and hl = 1

m
hl−1. Let ˆ︁uhl

be the solution of the discrete AVP with random data
(Problem 1.13) computed effectively to precision δl (see (4.1)) and assume that
there exists k1, k2 > 1 such that k1δl ≤ δl−1 ≤ k2δl for all l ≥ 1. Then

|E[Qhl,δl
−Q]| = O(h2

l + δl), (4.11)
var[Yhl,Nl,δl

] = O(h4
l + δ2

l). (4.12)

50

Proof. The estimate (4.11) has already been verified in Lemma 4.5. Let us verify
(4.12) (the idea is similar). Let us estimate

var[Yhl,Nl,δl
] = E[Y 2

hl,Nl,δl
] − E[Yhl,Nl,δl

]2 (4.13)

≤ E
[︂(︂
Qhl,δl

−Qhl
+Qhl

−Q+Q−Qhl−1 +Qhl−1 −Qhl−1,δl−1

)︂2]︂
.

Using the same technique as in the proof of Theorem 2.11, we obtain an estimate
of the form

var[Yhl,Nl,δl
] ≤C

(︂
E[(Qhl,δl

−Qhl
)2] + E[(Qhl

−Q)2]

+ E[(Q−Qhl−1)2] + E[(Qhl−1 −Qhl−1,δl−1)2]
)︂
. (4.14)

The quantity E[(Qhl
−Q)2] +E[(Q−Qhl−1)2] can be estimated analogously as in

the proof of Theorem 2.11 by

E[(Qhl
−Q)2] + E[(Q−Qhl−1)2] ≤ Ch4

l . (4.15)

The quantity E[(Qhl,δl
− Qhl

)2] = ∥G(uhl
) − G(ˆ︁uhl

)∥2
L2(Ω) can be estimated from

above as follows: Due to Lemma 1.19 and the fact that ˆ︁uhl
is computed effectively

to precision δl, we get⃓⃓⃓
G(uhl

(·, ω)) −G(ˆ︁uhl
(·, ω))

⃓⃓⃓
≤ C∥f(·, ω)∥L2(D)δl,

for a generic constant C > 0. Taking the second power of this inequality and
integrating over Ω yields

∥G(uhl
) −G(ˆ︁uhl

)∥2
L2(Ω) ≤ Cδ2

l , (4.16)

where C is independent of u, hl, and ω. Using (4.16) we obtain

∥G(uhl
) −G(ˆ︁uhl

)∥2
L2(Ω) + ∥G(uhl−1) −G(ˆ︁uhl−1)∥2

L2(Ω) ≤ C(δ2
l + δ2

l−1)
≤ C(δ2

l + k2
2δ

2
l)

≤ Cδ2
l .

This, together with (4.15) and (4.13), yields the desired estimate (4.12).

This lemma allows us to reformulate Theorem 4.9 specifically for the discrete
solution obtained by the finite element method, which is summarized in the fol-
lowing corollary.
Corollary 4.12 (Error of the MPMLMC FEM). Let the assumptions of Lemma
4.11 be satisfied. Let L ∈ N and N0, . . . , NL ∈ N and let ˆ︁QMPML

L,{Nl},{δl} be the
corresponding MPMLMC estimator. Then the MSE of this estimator satisfies

E
[︂
(E[Q] − ˆ︁QMPML

L,{Nl},{δl})
2
]︂

≤ C

(︄(︃
h4

L +
L∑︂

l=0

h4
l

Nl

)︃
+
(︃
h2

LδL + δ2
L +

L∑︂
l=0

δ2
l

Nl

)︃)︄
.

Proof. The claim follows from Lemma 4.11 and Theorem 4.9.

Note that in this section we have not focused on the cost of the MPMLMC
method. This is because in terms of FLOPs the asymptotic cost remains the
same as for the standard MLMC method as long as δL = O(hα

L) and δ2
l = O(hβ

l).
However, due to the use of lower precision arithmetic, the overall computational
time can be reduced significantly which is the topic of the next section.

51

4.2.3 Cost analysis
The goal of this section is to estimate the gain from using the MPMLMC method
in terms of the computational time. Note that this section does not aim to be
exact, but rather to estimate realistically the resulting speedup. The verification
of these results in practice using real low precision hardware is outside the scope
of this thesis.

To obtain the reference values we use the standard MLMC method where all
computations are carried out in double precision. We exploit the fact that in the
setting when β > γ, which is true for the MLMC FE method (see Theorem 2.11),
the variance decays faster than the cost increases and thus the cost on the coarsest
level dominates. Due to the results from Section 4.2.1 the linear system on the
coarsest level, computed in total N0 times, can be solved very “inaccurately”.
As a result the overall computational time is dramatically reduced. Let us now
formulate these ideas more precisely.

If β > γ then we know from Section 2.3.3 that the cost on the coarsest level
dominates and the cost per level decays with the factor m γ−β

2 where m = hl−1/hl.
Recall that in the case of MLMC FEM we have β = 4 and γ = 2 (see the proof
of Theorem 2.11) so that m γ−β

2 = m−1. This suggests that the overall cost (in
terms of FLOPs) on the finest level L is small compared to the cost on levels
l = 0, . . . , L − 1 and we neglect it in this section. At the same time Theorem
4.10 tells us that the system of linear equations coming from the FE method
(the FE system) can be solved effectively to precision δl satisfying δ2

l = O(hβ
l)

and the asymptotic error of the MPMLMC estimator remains the same as when
the linear system is solved exactly. Moreover, (3.8) and the discussion in Section
3.4 suggest that if an algorithm is run in quarter, half, or single precision, the
overall computational time can be reduced by the factor 8, 4, or 2, respectively,
compared to the same algorithm in double precision. The combination of these
observations yields the following corollary.

Corollary 4.13. Let β > γ and let the assumptions of Theorem 4.10 be satisfied.
Assume moreover that there exists a precision δ satisfying δ2 = δ2

l = O(hβ
l) for all

l = 0, . . . , L− 1. Suppose that δ is such that the FE system can be solved on each
level l = 0, . . . , L − 1 effectively to precision δ using quarter (or half or single)
precision for the dominant part of the computations and let ˆ︁QMPML

L,{Nl},{δl} be the
corresponding MPMLMC estimator. Assume further that the reference standard
MLMC estimator is computed using double precision on all levels.

Then the MSE of the MLMC and MPMLMC estimator is asymptotically the
same in the sense of Theorem 4.10 and the computational time is reduced by
approximately 8× (or 4× or 2×) using the MPMLMC estimator. In other words,

T (ˆ︁QMPML
L,{Nl},{δl}) ≈ 1

C
T (ˆ︁QML

L,{Nl}),

where T (·) denotes the computational time and C = 8 (or C = 4 or C = 2,
depending on what precision is used for the dominant part of the computations).

Let us further explain the assumption that the linear system should be solved
effectively to precision δ using a certain precision for the dominant part of the
computations. To achieve this, iterative refinement can be efficiently used. As

52

discussed in Section 3.3, iterative refinement allows us to use a lower precision
for the costly, dominant part of solving the equation (e.g., for the factorization)
and then regain the desired accuracy using relatively cheap iterations.

Naturally, the MPMLMC method can be also used in a setting when β ≤ γ.
However, we do not expect the computational time to be reduced as dramatically
as in the case β > γ. In general we can say that if the dominant part of solving
the FE system on the finest level is carried out at least in single precision, the
computational time is in the same way reduced at least 2× compared to double
precision.

4.2.4 Adaptive MPMLMC algorithm
In this section we develop an adaptive algorithm which will automatically choose
the correct precision on each level of the MLMC method. We will use Algorithm
1 as the foundation for our proposed algorithm. The first step is the choice of
the precision.

In order to choose the correct precision in each step, we will use the error
bound for the MPMLMC method from Theorem 4.9. We propose the follow-
ing choice: Choose the precision δl on level l such that the total MSE of the
MPMLMC estimator is not greater than a constant times the MSE of the MLMC
estimator for a fixed constant from the interval (1, 2). According to Theorem 4.9,
for this to hold it suffices to choose δl, l = 0, . . . , L such that

hα
LδL + δ2

L +
L∑︂

l=0

δ2
l

Nl

≤ kp

(︃
h2α

L +
L∑︂

l=0

hβ
l

Nl

)︃
for a fixed constant kp ∈ (0, 1). To balance the terms in the error estimate, it is
sufficient to choose δL such that

hα
LδL + δ2

L ≤ 1
2kph

2α
L (4.17)

and δl, l = 0, . . . , L− 1 such that
L∑︂

l=0

δ2
l

Nl

≤ 1
2kp

L∑︂
l=0

hβ
l

Nl

. (4.18)

Since for δL ≤ hα
L is δ2

L ≪ hα
LδL, it suffices to choose

δL ≤ 1
2kph

α
L.

Moreover, in order to satisfy (4.18) we can choose δl as

δl :=
√︄
kp

2 h
β/2
l , l = 0, . . . , L− 1,

δL := min
{︄√︄

kp

2 h
β
2
L ,
kp

2 h
α
L

}︄
.

(4.19)

By this choice both (4.17) and (4.18) are satisfied and we obtain the desired
error estimate if the rest of the assumptions in Theorem 4.9 are satisfied. The
precise formulation is given for the discrete solution obtained by the finite element
method in the following example.

53

Example 4.14. Let f be sufficiently smooth so that Theorem 1.16 holds. Let
m ∈ N, m > 1, and let h0, h1, . . . be discretisation parameters satisfying h0 > 0
and hl = 1

m
hl−1. Let ˆ︁uhl

be the solution of the discrete AVP with random data
(Problem 1.11) computed effectively to precision δl where δl is given by (4.19)
using a fixed kp ∈ (0, 1). Let L ∈ N and N0, . . . , NL ∈ N and let ˆ︁QMPML

L,{Nl},{δl} be the
corresponding MPMLMC estimator. Then the MSE of this estimator satisfies

E
[︂
(E[Q] − ˆ︁QMPML

L,{Nl},{δl})
2
]︂

≤ C(1 + kp)
(︃
h4

L +
L∑︂

l=0

h4
l

Nl

)︃
. (4.20)

The proof of this claim follows from the definition of δl (see (4.19)) and Corollary
4.12.

Let us discuss in more detail the choice of the constant kp. Although in this
work the constant kp is chosen to be fixed, more general choices are possible, one
of which is discussed in the next paragraph. Note that the precision δl defined
by (4.19) is, for l < L, not sensitive with respect to the changes of the constant
kp. Indeed, if the constant is decreased 100×, the precision decreases only 10×.
Based on the bound (4.20), the value kp := 1/10 is a safe choice to bound the
mixed precision error, as demonstrated in Chapter 5. Note also that the values
of δl can be computed “on the fly” with no additional cost.

It is natural to ask how the choice of the constant kp affects the number of
samples Nl required on each level l to achieve the desired tolerance. According
to Theorem 4.9 and the discussion below, if the precision δl is chosen according
to (4.19) then the variance is increased on each level at most by approximately
the factor (1 + kp). This means, according to (2.22), that the number of samples
Nl on each level is increased at most by the same factor (1 + kp). Since kp ≪ 1,
this does not pose a problem for us. In some cases however, it might useful to
control how the number of samples Nl increases. In such a case we can choose
the constant as kp ∝ 1/Nl. This will ensure using again Theorem 4.9 and (2.22)
that the number of samples Nl increases on each level at most by an additive
constant. We proceed now to the formulation of the MPMLMC algorithm, given
in Algorithm 4. See Section 2.3.2 for the notation.

Throughout this chapter we have assumed that we are able to compute the
approximate discrete solution ˆ︁uhl

on the level l effectively to precision δl, i.e.,
we have assumed (4.1). Now we address the question how to achieve this. We
propose two ways which can possibly be combined: First, any suitable iterative
solver can in principle be used with the stopping criterion given by (4.2). Since
the values of δl obtained using the adaptive MPMLMC algorithm are typically
relatively “big” (see Chapter 5 for examples), the iterative solver can potentially
achieve the tolerance in a very small number of iterations, leading to significant
gains in computational time. Note that this case is not covered by the cost
analysis in the previous section and in Corollary 4.13. In this case, the gain in
computational time does not come primarily from using low precision, but rather
from reducing the number of iterations.

The second possibility how to achieve the desired tolerance is the use of it-
erative refinement and this will be our choice in Chapter 5. Iterative refinement
can be used with in principle with any direct or iterative solver; see Section 3.3
and [5]. We use it with the LDL⊤ solver. We illustrate the utility of iterative
refinement in our context by an example.

54

Algorithm 4: Adaptive MPMLMC algorithm
Input: h0, m, ϵ, L = 1, Lmax, N0 = N1 = Ninit

Output: ˆ︁QMPML
L,{Nl},{δl}

while L ≤ Lmax do
Compute δl, l = 0, . . . , L, using (4.19);
for l = 0 to L do

Compute Nl new samples Y (k)
l using Def. 4.7;

Compute ˆ︁Yl, s2
l and estimate Cl;

end
Update estimates for Nl using (2.22);
if | ˆ︁YL| > rmα−1√

2 ϵ then
L := L+ 1;
NL := Ninit;

if | ˆ︁YL| ≤ rmα−1√
2 ϵ and ∑︁L

l=0 s
2
l /Nl ≤ ϵ2/2 thenˆ︁QMPML

L,{Nl},{δl} := ∑︁L
l=0

ˆ︁Yl;
end

Suppose that we are in the setting of our model problem (Problem 2.1) and
assume that the discrete solution corresponds to the solution of the discrete AVP
with random data (Problem 1.11). This means, according to Lemma 4.11, that
the assumptions of Theorem 4.12 are satisfied, namely, β = 4. Let hl = 1/32
where l < L. Then we obtain from (4.19), assuming kp = 0.1, that δl ≈ 2.2×10−4.
In order to obtain the approximate discrete solution ˆ︁uhl

, we have to now solve
a linear system, let us denote it Ax = b. For the solution ˆ︁uhl

to be computed
effectively to precision δl, we have to assure that the relative residual of the system
is less than δl ≈ 2.2 × 10−4. Suppose that the system is solved using a direct
solver. Because δh ≈ 5 × 10−4 > δl, we cannot expect that it will be sufficient
to use the direct solver in half precision to achieve the desired accuracy. Instead,
we have to move directly to single precision with the unit roundoff δs ≈ 6 × 10−8

which typically assures that the system is solved accurately enough. However,
this approach does not allow us to use the full potential of the MPMLMC method,
since the accuracy of the computed solution is unnecessarily high.

The previous example illustrates the problem coming from the “sparsity” of
the standard precision formats - quarter, half, single, and double. To tackle this
problem we use iterative refinement, described in Section 3.3. As explained in
the aforementioned section and as illustrated by numerous examples in Chapter
5, iterative refinement helps us to achieve just the desired accuracy with a small
additional cost. If we come back to the previous example, it turns out that in
order to achieve the desired accuracy δl ≈ 2.2×10−4 it is sufficient to factorize the
matrix A in half precision and then perform one iteration of iterative refinement
where only the residual is computed in single precision (see Algorithm 3). It is now
clear that the cost of using iterative refinement in this case stays approximately
the same as the cost of running just the sparse direct solver once in half precision,

55

due to the fact that the factorization part dominates the overall cost; see Section
3.2.1.

56

5. Numerical results
In this chapter, we present numerical results to validate the theoretical findings
we have discussed in the previous chapter on the mixed precision multilevel Monte
Carlo method. To demonstrate our results, we will use two problems, one simple,
where an analytic solution is available, allowing us to perform a comprehensive
analysis of our method. The second problem will be a more realistic example,
demonstrating the practical application of our approach. We begin by provid-
ing an overview of our implementation, detailing the technical aspects of our
computations, including the hardware and software used.

We conduct all our numerical experiments using MATLAB R2019b on a com-
puter equipped with an Intel(R) Core(TM) i5-3320M CPU and 8GB RAM. All
the algorithms presented in this chapter are implemented by us except for the
simulation of low precision arithmetic, for which we use the “chop” function writ-
ten by Nicholas Higham [18] with the setting “q43” to obtain quarter precision.
Apart from the chop function, the implementation of our algorithms is carried
out using standard numerical libraries available in MATLAB.

5.1 Poisson’s equation with random right-hand
side

Let us formulate the first problem, which is a special case of Problem 1.10:

−∆u(·, ω) = f(·, ω) on D,

u(·, ω) = 0 on ∂D,
(5.1)

where we take D = (0, 1)2. The weak formulation (see Problem 1.11) is given by

ã
(︂
u(·, ω), v

)︂
= l(v, ω) ∀v ∈ V = H1

0 (D),

where

ã
(︂
u(·, ω), v

)︂
:=
∫︂

D
∇u(x, ω) · ∇v(x)dx and

l(v, ω) :=
∫︂

D
f(x, ω)v(x)dx.

We will be concered with the quantity of interest given by

Q =
∫︂

Ω

(︃∫︂
D
u(x1, x2, ω)d(x1, x2)

)︃
dω.

In other words, the quantity of interest is the expected value of the random
variable ω ↦→ G(u(·, ω)) where the functional G is given for a fixed ω ∈ Ω by

G(u(·, ω)) =
∫︂

D
u(x1, x2, ω)d(x1, x2).

In particular, we consider f = −2 exp (cω)(x1(x1 − 1) + x2(x2 − 1)) where
c > 0 is a fixed constant and ω ∼ Uni(0, 1). In this case, the solution is given

57

l = 0 l = 1
Prec. level itref δ0 itref δ1

1 qhhh0 2.1e−1 qhhh0 6.2e−1
2 qhhh0 2.1e−1 qhhh1 3.8e−2
3 qhhh1 1.7e−2 qhhh2 6.5e−3
4 qhhh2 2.2e−3 qhss3 7.0e−4
5 qhss3 2.5e−4 qhss4 1.1e−4
6 qhss4 3.0e−5 hsss1 4.3e−6
7 qhss6 1.3e−6 hsss2 4.8e−7

Table 5.1: First example: MPMLMC settings and choice of the precisions for
iterative refinement (Algorithm 3). The exact setting is described symbolically,
e.g., (δf , δ7, δ, δr, nit) = (hsss2), where δ7 is the precision chosen at step 7 of
Algorithm 3 and h = half, s = single. For example, line 7 in the table says that
in test number 7 we used the “qhss” iterative refinement with 6 iterations on
the coarser level l = 0 and we achieved accuracy 1.3e−6 in terms of the relative
residual.

by u = x1(1 − x1)x2(1 − x2) exp (cω) and Q = 1
36c

(exp (c) − 1). Throughout this
section, we consider c = 1.5.

To obtain the discrete solution of (5.1) (for a fixed value of ω), we use the
finite element method as described in Chapter 1, which includes solving the cor-
responding discrete abstract variational problem (Problem 1.13). To this end, we
solve the resulting linear system (see Section 1.2.3) using methods from Chapter
3; the exact setting is always described when the numerical results are shown.
To obtain the reference solution (in Algorithm 1), the built-in backslash func-
tion is used. Throughout our experiments the initial discretization parameter is
h0 = 1/4 and the mesh is refined on each level by a factor m = 2.

Note that in this case the assumptions 1.12 and 1.14 are trivially satisfied.
Moreover, f ∈ C∞(D) so that the assumptions of Theorem 1.16 and Lemma 1.19
are satisfied due to Example 1.17.

The first example of this section exploits the fact that the exact value of the
quantity of interest is known, which enables a thorough analysis of the error of
the MPMLMC estimator and comparison of its results to the standard MLMC
estimator. To this end, let us choose the tolerance for the MLMC algorithm to
be ϵ = 6×10−3. The assumptions of theorem 2.10 are satisfied with α = 2, β = 4
and γ = 2 as proved in Theorem 2.11. We choose the value γ = 2, since for the
size of matrices which are of interest, the MATLAB backslash operator exhibits
a linear convergence rate; see Figure 5.2. We use the same value of the parameter
γ in the MPMLMC algorithm (Algorithm 4). This corresponds to the case when
we use a similar solver to MATLAB backslash implemented in lower precision.
Since MATLAB currently does not support half and quarter precision, we rely on
our implementations described in Chapter 3. Further, we set the initial number
of samples to Ninit = 100.

In the setting described above, Algorithm 1 converges to the number of sam-
ples N0 = 50 and N1 = NL = 3. We now aim to verify Theorem 4.9. Let us
consider (in the whole example) the MPMLMC estimator ˆ︁QMPML

L,{Nl},{δl} correspond-
ing to the values N0 = 50 and N1 = NL = 3. To verify Theorem 4.9 we vary

58

1 2 3

Precision level

10
-5

10
-4

10
-3

10
-2

10
-1

MLMC MSE

2

MPMLMC MSE

Bound for MPMLMC MSE

(a) Precision level 1-3

1 2 3 4 5 6 7

Precision level

2

2.5

3

3.5

4

4.5

5

5.5

6

10
-5

MLMC MSE

2

MPMLMC MSE

(b) Precision level 1-7

Figure 5.1: Comparison of MLMC in mixed precision and MLMC in reference
precision (double) on Poisson’s problem with random RHS. Higher precision level
means higher precision is used. The specific values of precision are given in Table
5.1. The MSE of the MPMLMC estimator decreases rapidly with increasing
precision and soon (from level number 3 on) we are not able to distinguish between
the finite precision and the probabilistic error.

the precisions δl and compare the observed error and the error bound given by
the theorem. Recall that we need to ensure that the FE solution is computed
effectively to precision δl in the sense of (4.1). Various values of precision δl are
achieved by varying the settings of the iterative refinement algorithm (Algorithm
3). For the factorization method in step 1 of the algorithm we use the LDL⊤

decomposition so that we can avoid computing the square root on the diagonal
in Algorithm 2. Note that in the case where only the right-hand side is random,
the matrix decomposition can be precomputed. We use this fact to speed-up our
LDL⊤ solver.

Let us describe now the exact setting of the iterative refinement algorithm.
The algorithm contains 3 precisions, i.e., δf , δ, and δr that take on one of the
values quarter (q), half (h), single (s), or double (d). The desired accuracy δl is
achieved by prescribing a fixed number of iterations of iterative refinement. To
simplify the notation, we describe the exact setting of the iterative refinement
schematically as an ordered quintuple, e.g., (δf , δ7, δ, δr, nit) = (hhss2), where
δ7 is the precision chosen at step 7 of the algorithm 3. The specific settings of
iterative refinement used in this subsection on both level h0 and level h1 = hL

along with the achieved accuracies δ0 and δ1 = δL are shown in Table 5.1. The
presented values of δl are computed as a sample average of 1000 samples using
(4.2). Note that in this test we do not aim to use iterative refinement and low
precision arithmetic to reduce the cost of the computations but merely as a tool
to achieve the desired accuracy of computations.

The fact that we are able to determine the exact value of the quantity of
interest allows us to estimate the mean squared error of both the MLMC and
MPMLMC estimators. At first, we perform 3 experiments, starting at quarter
precision and gradually increasing the precisions δl, and we analyse the results,

59

10
0

10
1

10
2

10
3

dimension of the matrix (n)

10
-6

10
-5

10
-4

10
-3

E
la

p
s
e
d
 t
im

e
 (

s
e

c
o
n

d
s
)

Estimated rate

c n

Figure 5.2: MATLAB backslash rate.
We observe the linear rate for small
matrices.

2 3 4 5 6 7

Precision level

0.0616

0.0618

0.062

0.0622

0.0624

0.0626

0.0628

0.063

MPMLMC sample avg

MLMC sample avg

Figure 5.3: MPMLMC and MLMC sam-
ple average comparison. Higher preci-
sion level means higher precision is used.
The specific values of precision are given
in Table 5.1. From level number 3 on-
ward we are not able to distinguish be-
tween the finite precision and probabilis-
tic error.

which can be seen in Figure 5.1a. The solid line shows the MSE of the MPMLMC
estimator using increasing levels of precision (using various settings of iterative
refinement). The settings corresponding to the levels of precision labeled 1, 2,
and 3, are shown in the first three rows of Table 5.1, respectively. As the reference
value, the plot shows the MSE of the standard MLMC estimator. All of these
four values of the MSE were computed using 104 samples of the corresponding
estimator. The plot also shows the tolerance ϵ2 and the bound given by Theorem
4.9. For the purpose of the plot we set the constant C = 0.1. The bound is,
however, only asymptotic and therefore it is too rough in this preasymptotic
phase.

We observe that the MPMLMC estimator performs unexpectedly well even
when both of the equations are solved in quarter precision with no iterative re-
finement (precision level 1). As δl decreases, the MSE of the MPMLMC estimator
approaches the MSE of the MLMC estimator as expected. Note that the MSE of
the MPMLMC estimator achieves the desired tolerance already in precision level
2.

Let us investigate what happens when we decrease δl further. The MSE of the
MPMLMC estimator is shown on Figure 5.1b along with the tolerance ϵ2 and the
MSE of the reference MLMC estimator. Each of the 7 results was obtained using
103 samples and the settings are given in Table 5.1, the reference value was com-
puted using 104 samples. This plot suggests that starting from precision level 3,
when δl decreases more, the probabilistic part of the error starts to dominate and
we are no longer able to see the impact of finite precision arithmetic on the overall
error. This is confirmed by Figure 5.3. The number of samples used remains the
same but this time we show the sample average along with the asymptotic 95%
confidence intervals instead of the MSE. We observe that starting from precision
level 3, the confidence intervals of the MPMLMC estimator contain the whole

60

kp = 0.1
ϵ δ0 δ1 δ2 δ3

6e−3 1.4e−2 7.8e−4 - -
3e−3 1.4e−2 3.5e−3 1.9e−4 -

1.5e−3 1.4e−2 3.5e−3 1.9e−4 -
7.5e−4 1.4e−2 3.5e−3 8.7e−4 4.9e−5

l itref
0 qhhh
1 hhss
2 hhss
3 hsss

Table 5.2: Second example, k = 0.1: MPMLMC settings and choice of the preci-
sions for iterative refinement (Algorithm 3). Note that the factorization is carried
out in quarter precision on the coarsest level and in half precision on the other
levels. Values δ0, . . . , δ3 indicate the required effective precision in terms of rela-
tive residual norm on each level given by the adaptive algorithm (Algorithm 4).

confidence interval of the MLMC estimator so that no additional information re-
garding the impact of finite precision arithmetic can be obtained. Note that the
length of the confidence interval is proportional to the reciprocal of the square
root of the number of samples taken. Therefore making our error estimates more
accurate increases the cost of computations significantly which makes the esti-
mates too expensive to compute even though the matrix decomposition can be
precomputed.

The second example of this section aims to verify Algorithm 4. To this end
we use the same equation as in the previous test. The algorithm is tested using
various values of the tolerance ϵ and of the parameter kp and the results are
shown in Figure 5.4. For each value of the tolerance ϵ, the MPMLMC estimator
is computed using Algorithm 4 and the MSE is displayed (denoted MPMLMC
MSE). The MSE is estimated using 100 samples for each estimator. For each
of the MPMLMC estimators, the reference value of its MSE is computed using
the MATLAB backslash function and the results are displayed (denoted MLMC
MSE). These reference values are computed using 500 samples for each estimator.
Tables 5.2 and 5.3 show the exact setting of the MPMLMC algorithm for test,
i.e., the setting of the iterative refinement, kp, and the required effective precision
in terms of relative residual norm on each level, i.e., δl. Note that now the values
δl are computed by the adaptive algorithm (Algorithm 4) and are used in the
stopping criterion of the iterative refinement (Algorithm 3).

In this case we do not aim to analyse the error thoroughly as above. The goal
is to compare the error with the tolerance and estimate the overall cost. The
algorithm always reaches the desired tolerance, but a comparison of the results
is difficult, since the probabilistic error plays a big part here. We observe that
the MSE of the MPMLMC estimator is close to the MSE of the reference MLMC
estimator. For some values we even observe that the MSE of the MPMLMC
estimator is smaller than the MSE of the MLMC estimator. From our point of
view the main cause is that the number of samples is not big enough and thus the
probabilistic part of the error dominates, which was observed in the first example
as well.

Let us now estimate the gain in terms of the cost. In Tables 5.2 and 5.3 we can
see that the factorization is performed in quarter precision (level l = 0) or half
precision (levels l = 1, 2, 3), which would give us, by Corollary 4.13, a speedup
of 4× to 8× compared to the same algorithm run in double precision. However,

61

kp = 0.4
ϵ δ0 δ1 δ2 δ3

6e−3 2.8e−2 3.1e−3 - -
3e−3 2.8e−2 7.0e−3 7.8e−4 -

1.5e−3 2.8e−2 7.0e−3 7.8e−4 -
7.5e−4 2.8e−2 7.0e−3 1.7e−3 2.0e−4

l itref
0 qhhh
1 hhss
2 hhss
3 hsss

Table 5.3: Second example, k = 0.4: MPMLMC settings and choice of the preci-
sions for iterative refinement.

10
-6

10
-5

10
-4

Tolerance (2)

10
-7

10
-6

10
-5

10
-4

MPMLMC MSE

MLMC MSE
2

(a) kp = 0.1

10
-6

10
-5

10
-4

Tolerance (2)

10
-7

10
-6

10
-5

10
-4

MPMLMC MSE

MLMC MSE
2

(b) kp = 0.4

Figure 5.4: Second example: MPMLMC MSE compared to the reference ML-
MC MSE (double precision) and the tolerance — Poisson’s problem with random
RHS.

since we can precompute the matrix factorization, the dominant computational
cost is moved to the substitution part. In this case the same corollary gives
us a 4× speedup, since the substitution is performed in half precision on all
levels apart from the finest one, i.e., l = 3, and the cost on the finest level is
negligible compared to the other levels. The estimated speedup is the same for
both kp = 0.1 and kp = 0.4. The difference between them is that the former needs
at some levels (not all) at most one additional iteration of the iterative refinement,
which does not increase the cost significantly. A more significant gain in the cost
can be obtained when the matrix factorization dominates, which will be the case
in the following section. We note here that there is indeed a difference between
taking kp = 0.1 and kp = 0.4 in terms of the number of iterations of the iterative
refinement. For example, in the former case we need on the coarsest level l = 0
on average two iterations, whereas in the latter case only one iteration on average
is required (see Table 5.1).

Let us make a final remark on the computational cost. While we recognise
the need to verify our theoretical results in more detail, e.g., using smaller values
of the tolerance ϵ or using more samples in Figures 5.4a and 5.4b, we are limited
by the performance of our hardware (described above). To give an actual CPU
time, the MSE of the MPMLMC estimator in Figure 5.4b was obtained in ap-
proximately 7.5 hours. Therefore, increasing the number of samples, e.g., by a

62

factor of 10, to lower the probabilistic error, is not within our reach.

5.2 Elliptic PDE with lognormal random coeffi-
cient

5.2.1 Introduction and motivation
One example of how the MLMC method is employed is modeling the flow through
porous media in geosciences. An overview of this topic can be found in [25]. The
simplest mathematical model for the flow is Darcy’s law, which reads (technical
details omitted):

q = −k
µ

∇p on D,

p = p0 on ∂D.

(5.2)

In this equation, the vector q refers to the volumetric flux or Darcy velocity,
while the tensor k represents the permeability, a material parameter describing
how easily water flows through the medium. The quantity µ, on the other hand,
is the dynamic viscosity of the fluid, and p is the pressure of the fluid; both
are scalar. For simplicity, only Dirichlet boundary conditions are considered,
although Neumann boundary conditions are common as well; see [26]. Another
condition on q arises from the law of mass conservation, i.e.,

∇ · q = 0. (5.3)

Combining (5.2) and (5.3), we obtain Darcy’s law in its primal form, i.e.,

−∇ ·
(︃
k

µ
∇p

)︃
= 0 on D,

p = p0 on ∂D.

(5.4)

Note that this form of the equation is similar to our model example (Problem 1.1).
The uncertainty in this equation arises from the parameter k representing the
permeability, which has to be obtained empirically in practice and is measured
only in a few locations and then extrapolated to the entire domain. Detailed
information can be found in [25], [22], and [11].

We will make the common assumption that k is a lognormal random field (see
Definition 1.9) and can be expanded using the Karhunen-Loève (KL) expansion.
The KL expansion can be truncated so that the coefficient k is described using
a finite-dimensional random vector. For more detailed information about the
lognormal random fields, the KL expansion, and an example of their use, see [2],
[23] and the references therein.

63

5.2.2 Problem statement
With this motivation in mind, we will now solve an equation of the following
form, which is a special case of (1.9):

−∇ ·
(︂
a(·, ω)∇u(·, ω)

)︂
= f on D,

u(·, ω) = 0 on ∂D,
(5.5)

for a given random field a. The random field is chosen in such a way that it
represents the truncated Karhunen-Loève expansion, i.e.,

a(x1, x2, ω) = exp
(︄

s∑︂
j=1

ωj
1
jq

sin (2πjx1) cos (2πjx2)
)︄
.

Here ω = (ω1, . . . , ωs) ∈ Rs is such that ωj ∼ N(0, σ2) for a fixed σ > 0. Random
fields of this form are widely used, see [2], [23] and [6] for examples. Note that
the right-hand side f is deterministic.

Compared to Section 5.1, one important difference occurs here. Due to the
fact that ωj ∼ N(0, σ2), Assumptions 1.12 and 1.14 are not satisfied anymore.
This could be resolved using, for example, ωj ∼ Uni(0, c), in which case both
assumptions are satisfied as in the previous section. However, we want to test the
developed methods under more realistic circumstances. Let us therefore discuss
in more details the implications of the fact that Assumptions 1.12 and 1.14 do not
hold. The classical approach is to replace Assumption 1.12 with the following:
The random field a from the AVP with random data (Problem 1.11) satisfies that
for a.e. ω ∈ Ω there exist amin(ω) and amax(ω) such that for a.e. x ∈ D it holds
that

0 < amin(ω) ≤ a(x, ω) ≤ amax(ω) < ∞. (5.6)
Assumption 1.14 can be modified analogously. Moreover, further smoothness
assumptions considering a, amin, and amax have to be made; see Assumptions A1
to A3 in [26].

Let us now discuss how this change affects the theory of the FEM and the
Monte Carlo methods. It is possible to prove that under these modified assump-
tions all the error estimates in Section 1.3.3 hold with, ultimately, the constant C
in Theorem 1.16 depending on ω. Consequently, the complexity theorems from
Chapter 2 remain valid. A derivation of how the generic constant C in the error
estimates depends on ω can be found in [26]. As noted in the aforementioned
paper, the smoothness assumptions are satisfied for the elliptic problem with
lognormal coefficients.

The other point which needs to be addressed is the impact of the modification
of Assumptions 1.12 and 1.14 on the FE solution in finite precision arithmetic.
To track down how the constants in the estimates are affected, it is necessary
to go back to Lemma 1.18 where the underlying estimate is given. We will not
discuss it here in detail. We only note that from (5.6) it follows that the coercivity
constant α from (1.14) depends now on ω which leads to the constant C from
Lemma 1.18 being dependent on ω. Lemma 1.18 is then used in Lemma 4.11 to
verify the assumptions of the MPMLMC error theorem (Theorem 4.9). The proof
of Lemma 4.11 has to be then modified in the way that under certain smoothness

64

1.5 2 2.5 3 3.5 4 4.5 5

Tolerance () 10
-3

0.03

0.0305

0.031

0.0315

0.032

0.0325

0.033

0.0335

0.034

QOI

MPMLMC sample avg

MLMC sample avg

(a) Sample average with 95% asymptotic
confidence intervals.

1.5 2 2.5 3 3.5 4 4.5 5

Tolerance () 10
-3

0

0.5

1

1.5

2

2.5

3

3.5

4
10

-3

(b) Bias error.

Figure 5.5: Comparison of MLMC using mixed precision and MLMC in reference
precision (double) for an elliptic PDE with lognormal coefficients. MPMLMC
achieves approximately the same error as the reference MLMC while using quar-
ter and half precisions for the dominant part of the computations (the matrix
factorization).

assumptions on the random field a, Hölder’s inequality in Bochner spaces has to
be employed to obtain the estimate (4.16). The general approach is similar to
the estimates given in [26].

Our observations can be informally summarised as follows: If the random field
a is sufficiently smooth and if Assumptions 1.12 and 1.14 are modified in the sense
of (5.6) then all the theoretical results remain valid also for the equation (5.5)
with the difference that the hidden constants in the asymptotic error estimates
depend now on ω.

5.2.3 Numerical examples
In the first example of this section, we choose the data in (5.5) as follows: The
right-hand side satisfies f ≡ 1 on D and the parameters in the coefficient function
are chosen as s = 4, q = 2, and σ2 = 1.4. To solve this problem numerically,
we employ the same numerical methods as in Section 5.1. Both the variational
and the discrete formulations are analogous as well. The only difference as far
as the numerical solution is concerned is the fact that in this case the matrix
decomposition cannot be precomputed, since the stiffness matrix A depends on
the random parameter vector ω. In order to assemble the stiffness matrix, which
is done using the element stiffness matrices, a numerical quadrature has to be
employed. One of the standard choices is the midpoint rule; see [6]. We use the
four-point Gaussian quadrature on each of the elements.

The adaptive MPMLMC algorithm (Algorithm 4) is run with the choice
kp = 0.1 for three values of the tolerance ϵ, namely ϵ = 5, 2.5, 1.25 × 10−3. The
parameters α, β, and γ from the MLMC complexity theorem (Theorem 2.10) are
chosen as in the previous section (β = 4, α = 2) except for the parameter γ.
Here we choose γ = 3 based on the theoretical complexity of a sparse direct
solver, which is in our case O(n3/2) where n is the dimension of the matrix; see

65

10
-6

10
-5

Tolerance (2)

10
-6

10
-5

MPMLMC MSE

MLMC MSE
2

Figure 5.6: MSE of the MPMLMC and MLMC method — elliptic PDE with
the lognormal coefficient. Both methods achieve approximately the same MSE in
accordance with predictions and the error is safely below the given tolerance ϵ2.

Section 3.2.1. The setting of iterative refinement is in this case the same as in the
second example in the previous section, given by Table 5.2 with one difference,
this being the fact that on the level l = L = 3 we use here the “ssdd” variant
of iterative refinement. We run Algorithm 4 for each of the three values of the
tolerance and show (Figure 5.5) the resulting sample average and bias error of
the MPMLMC estimator (computed using 200 samples) along with the values
for the reference MLMC estimator (using double precision, 500 samples). The
reference MLMC estimator uses the same levels and number of samples on each
level as the MPMLMC estimator. We observe that considering the sample av-
erage MPMLMC achieves approximately the same error as the reference MLMC
while using quarter and half precision for a majority of the computations (i.e.,
the matrix factorization). We compute also the reference value of the quantity
of interest. To this end we use Algorithm 1 using the tolerance ϵ = 2 × 10−4

(this is the bounding value of the tolerance for which the computational time is
reasonable using our setup). The reference value of the QOI is shown in Figure
5.5a.

Figure 5.6 shows the resulting bias error given by |E[ˆ︁QMPML
L,{Nl},{δl}] − QOI| (or

|E[ˆ︁QML
L,{Nl}] − QOI| in case of the MLMC estimator). We observe that the bias

error achieved by both estimators is approximately the same and the error is
safely below the given tolerance so that the desired accuracy is achieved.

As noted above, the mixed precision setting is given by Table 5.2. This means
that the dominant part of the computations, i.e., the matrix factorization, is
carried out in quarter precision on the coarsest level and half precision on all the
finer levels. Therefore, Corollary 4.13 gives us a 4–8× theoretical speedup in this
nontrivial case of the elliptic PDE with a lognormal coefficient.

From our observations we can conclude that in many nontrivial cases and for
the values of the tolerance which are of interest we can use quarter precision for
the dominant part of the computations on the coarsest level and half precision for
the dominant part of the computations on the remaining levels (apart from the
finest one, possibly). In these cases the theoretical speedup of the computations
is 4–8×. In the case where our problem is very ill-conditioned, we may be forced
to switch to higher precision earlier and in such cases the speedup can be 4× or

66

2–4×, depending on the exact setting.
Note that we have not encountered overflow in the low precision matrix fac-

torization in any of the examples presented in this chapter. In the case where
overflow occurs, scaling or shifting techniques can be used, see [21].

67

Conclusion
This work makes three main contributions to existing Monte Carlo methods. The
first major contribution is the rigorous analysis of Monte Carlo methods in finite
precision arithmetic given via error estimates, which are fully general and can
be straightforwardly applied to any PDE- or ODE-based problem as long as the
assumptions of the respective theorems are satisfied. Namely, we have analysed
the standard Monte Carlo method and the multilevel Monte Carlo method.

Our second major contribution involves the model problem, i.e., the elliptic
PDE with random coefficients and a random right-hand side. To solve this model
problem numerically, we employed the finite element method leading to a system
of linear equations. Our analysis shows that if we are able to control the error of
the solution of this linear system in the sense of the relative residual norm, we
are able to apply the aforementioned general error estimates and thus to control
the effect of finite precision arithmetic in Monte Carlo methods for this problem.

The third major contribution is connected to the proposed adaptive mixed
precision MLMC algorithm. The optimal values of precision can be computed
“on the fly” with no additional cost and the theoretical error estimates ensure
that the overall error is below a given tolerance. The adaptive algorithm can be
straightforwardly employed when any direct or iterative solver is used for solving
the underlying linear system. We choose to discuss in detail the case when a
direct solver is used. The adaptive algorithm has been extensively tested using
a direct solver with iterative refinement on various settings of the model prob-
lem including Poisson’s equation with a random right-hand side and an elliptic
PDE with lognormal random coefficients, achieving a theoretical speedup of 4–
8× compared to the reference double precision. The modeled speedup is achieved
under the assumption that when single, half, or quarter precision is used instead
of double precision, the runtime is improved by a factor of 2, 4 or 8, respectively.

We have also extended the existing analysis of iterative refinement to linear
systems stemming from the finite element method to better understand the be-
haviour of iterative refinement in the context of our model problem. We have
verified our theoretical results regarding the MC methods on numerous exam-
ples, one of the conclusions being the fact that we have successfully used quarter
precision in a non-trivial example which appears to be a rare achievement within
scientific computing applications.

The presented results offer many possibilities for further research, such as
the use of mixed precision within other uncertainty quantification algorithms, for
example, the multi-index Monte Carlo method [17] or the multilevel Markov chain
Monte Carlo method [9]. Further gain from using mixed precision in the MLMC
method can be obtained if the sampling and the discretisation error are not
balanced equally but rather they are balanced optimally as in the continuation
MLMC method [7]. We see this as another promising possibility for further
research.

68

Bibliography
[1] Ahmad Abdelfattah, Hartwig Anzt, Erik G Boman, Erin Carson, Terry Co-

jean, Jack Dongarra, Alyson Fox, Mark Gates, Nicholas J Higham, Xiaoye S
Li, et al. A survey of numerical linear algebra methods utilizing mixed-
precision arithmetic. The International Journal of High Performance Com-
puting Applications, 35(4):344–369, 2021.

[2] Ivo Babuška, Raúl Tempone, and Georgios E Zouraris. Galerkin finite
element approximations of stochastic elliptic partial differential equations.
SIAM Journal on Numerical Analysis, 42(2):800–825, 2004.

[3] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Minimiz-
ing communication in numerical linear algebra. SIAM Journal on Matrix
Analysis and Applications, 32(3):866–901, 2011.

[4] Christian Brugger, Christian de Schryver, Norbert Wehn, Steffen Omland,
Mario Hefter, Klaus Ritter, Anton Kostiuk, and Ralf Korn. Mixed precision
multilevel Monte Carlo on hybrid computing systems. In 2014 IEEE Confer-
ence on Computational Intelligence for Financial Engineering & Economics
(CIFEr), pages 215–222. IEEE, 2014.

[5] Erin Carson and Nicholas J Higham. Accelerating the solution of linear sys-
tems by iterative refinement in three precisions. SIAM Journal on Scientific
Computing, 40(2):A817–A847, 2018.

[6] K Andrew Cliffe, Mike B Giles, Robert Scheichl, and Aretha L Teckentrup.
Multilevel Monte Carlo methods and applications to elliptic PDEs with ran-
dom coefficients. Computing and Visualization in Science, 14:3–15, 2011.

[7] Nathan Collier, Abdul-Lateef Haji-Ali, Fabio Nobile, Erik Von Schwerin,
and Raúl Tempone. A continuation multilevel Monte Carlo algorithm. BIT
Numerical Mathematics, 55:399–432, 2015.

[8] James Demmel, Yozo Hida, William Kahan, Xiaoye S Li, Sonil Mukherjee,
and E Jason Riedy. Error bounds from extra-precise iterative refinement.
ACM Transactions on Mathematical Software (TOMS), 32(2):325–351, 2006.

[9] Tim J Dodwell, Christian Ketelsen, Robert Scheichl, and Aretha L Tecken-
trup. A hierarchical multilevel Markov chain Monte Carlo algorithm with
applications to uncertainty quantification in subsurface flow. SIAM/ASA
Journal on Uncertainty Quantification, 3(1):1075–1108, 2015.

[10] Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite ele-
ments, volume 159. Springer, 2004.

[11] R Allan Freeze. A stochastic-conceptual analysis of one-dimensional ground-
water flow in nonuniform homogeneous media. Water resources research,
11(5):725–741, 1975.

69

[12] Alexander D Gilbert, Ivan G Graham, Frances Y Kuo, Robert Scheichl, and
Ian H Sloan. Analysis of quasi-Monte Carlo methods for elliptic eigenvalue
problems with stochastic coefficients. Numerische Mathematik, 142:863–915,
2019.

[13] Michael B Giles. Multilevel Monte Carlo path simulation. Operations re-
search, 56(3):607–617, 2008.

[14] Michael B Giles. Multilevel Monte Carlo methods. Acta numerica, 24:259–
328, 2015.

[15] Pierre Grisvard. Elliptic problems in nonsmooth domains. SIAM, 2011.

[16] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J Higham.
Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-
precision iterative refinement solvers. In SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis, pages
603–613. IEEE, 2018.

[17] Abdul-Lateef Haji-Ali, Fabio Nobile, and Raúl Tempone. Multi-index Monte
Carlo: when sparsity meets sampling. Numerische Mathematik, 132:767–806,
2016.

[18] Nicholas J Higham. Chop - MATLAB code for rounding matrix elements
to lower precision. URL: https://github.com/higham/chop. [Accessed 23-4-
2023].

[19] Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM,
2002.

[20] Nicholas J Higham and Theo Mary. Mixed precision algorithms in numerical
linear algebra. Acta Numerica, 31:347–414, 2022.

[21] Nicholas J Higham, Srikara Pranesh, and Mawussi Zounon. Squeezing a
matrix into half precision, with an application to solving linear systems.
SIAM journal on scientific computing, 41(4):A2536–A2551, 2019.

[22] Robert J Hoeksema and Peter K Kitanidis. Analysis of the spatial structure
of properties of selected aquifers. Water resources research, 21(4):563–572,
1985.

[23] Fabio Nobile, Raúl Tempone, and Clayton G Webster. A sparse grid stochas-
tic collocation method for partial differential equations with random input
data. SIAM Journal on Numerical Analysis, 46(5):2309–2345, 2008.

[24] Anonymous report. NVIDIA H100 Tensor Core GPU Architecture. URL:
https://resources.nvidia.com/en-us-tensor-core. [Accessed 23-4-2023].

[25] Adrian E Scheidegger. The physics of flow through porous media. University
of Toronto press, 1957.

[26] Aretha L Teckentrup, Robert Scheichl, Michael B Giles, and Elisabeth Ull-
mann. Further analysis of multilevel Monte Carlo methods for elliptic PDEs
with random coefficients. Numerische Mathematik, 125:569–600, 2013.

70

[27] Bastien Vieuble. Mixed precision iterative refinement for the solution of large
sparse linear systems. PhD thesis, INP Toulouse, 2022.

71

List of Figures

5.1 Comparison of MLMC in mixed precision and MLMC in reference
precision (double) on Poisson’s problem with random RHS. Higher
precision level means higher precision is used. The specific values
of precision are given in Table 5.1. The MSE of the MPMLMC es-
timator decreases rapidly with increasing precision and soon (from
level number 3 on) we are not able to distinguish between the finite
precision and the probabilistic error. 59

5.2 MATLAB backslash rate. We observe the linear rate for small
matrices. 60

5.3 MPMLMC and MLMC sample average comparison. Higher pre-
cision level means higher precision is used. The specific values of
precision are given in Table 5.1. From level number 3 onward we
are not able to distinguish between the finite precision and proba-
bilistic error. 60

5.4 Second example: MPMLMC MSE compared to the reference ML-
MC MSE (double precision) and the tolerance — Poisson’s problem
with random RHS. 62

5.5 Comparison of MLMC using mixed precision and MLMC in refer-
ence precision (double) for an elliptic PDE with lognormal coeffi-
cients. MPMLMC achieves approximately the same error as the
reference MLMC while using quarter and half precisions for the
dominant part of the computations (the matrix factorization). . . 65

5.6 MSE of the MPMLMC and MLMC method — elliptic PDE with
the lognormal coefficient. Both methods achieve approximately the
same MSE in accordance with predictions and the error is safely
below the given tolerance ϵ2. 66

72

List of Tables

3.1 Range, value of the unit roundoff, and number of bits required for
storing one number for various precision formats. Not all of them
are defined by the IEEE standard. 34

3.2 Performance of NVIDIA H100 SXM5 and NVIDIA V100 PCIe
GPUs for various precisions in TFLOPS (FLOPS means “floating
point operations per second”). No sparsity is assumed. 43

5.1 First example: MPMLMC settings and choice of the precisions for
iterative refinement (Algorithm 3). The exact setting is described
symbolically, e.g., (δf , δ7, δ, δr, nit) = (hsss2), where δ7 is the pre-
cision chosen at step 7 of Algorithm 3 and h = half, s = single. For
example, line 7 in the table says that in test number 7 we used the
“qhss” iterative refinement with 6 iterations on the coarser level
l = 0 and we achieved accuracy 1.3e−6 in terms of the relative
residual. 58

5.2 Second example, k = 0.1: MPMLMC settings and choice of the
precisions for iterative refinement (Algorithm 3). Note that the
factorization is carried out in quarter precision on the coarsest level
and in half precision on the other levels. Values δ0, . . . , δ3 indicate
the required effective precision in terms of relative residual norm
on each level given by the adaptive algorithm (Algorithm 4). . . . 61

5.3 Second example, k = 0.4: MPMLMC settings and choice of the
precisions for iterative refinement. 62

73

	Introduction
	Finite element method
	Elliptic boundary value problem
	Weak formulation

	Finite element discretisation of the BVP
	Domain discretisation
	Finite element space
	Discrete abstract variational problem
	Convergence results of the FEM
	FEM in finite precision arithmetic

	Finite element method for problems with random data
	Elliptic BVP with random data
	FEM for the elliptic BVP with random data
	Convergence results of the FEM with random data
	FEM with random data in finite precision arithmetic

	Monte Carlo methods
	Monte Carlo method with analytic solution
	Monte Carlo method
	Multilevel Monte Carlo Method
	Definition and complexity theorem
	Adaptive MLMC algorithm
	Cost analysis

	Numerical linear algebra methods
	Floating point arithmetic
	Cholesky factorization
	Basic properties and computation
	Summary of error analysis

	Iterative refinement
	Iterative refinement for FE linear systems

	Performance of finite precision computations

	Mixed precision Monte Carlo methods
	Finite precision MC method
	Mixed precision MLMC method
	Error estimates
	Mixed precision MLMC FE method
	Cost analysis
	Adaptive MPMLMC algorithm

	Numerical results
	Poisson's equation with random right-hand side
	Elliptic PDE with lognormal random coefficient
	Introduction and motivation
	Problem statement
	Numerical examples

	Conclusion
	Bibliography
	List of Figures
	List of Tables

