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List of Symbols and
Abbreviations

Mixture theory

NA Avogadro’s number

b body force

T Cauchy stress tensor

cα concentration of the α-th mixture component

V control volume

ρ density

ρα partial density of the α-th mixture component

M mass of a control volume

mα mass production of the α-th mixture component

Mα molar mass of the α-th mixture component

nα number of moles for the α-th mixture component

v velocity

Compartment model

A vessel cross section area

U cross-section-averaged velocity

C cross-section-averaged concentration

k scalar diffusivity

K diffusivity tensor

R vessel radius

ω concentration-velocity correlation coefficient

ξ(B) quantity ξ in bile
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ξ(H) quantity ξ in hepatocytes

ξ(S) quantity ξ in blood

Double perfusion model

H(B) permeability in bile

H(S) permeability in blood

G compartment inter-permeability

H scalar permeability

p(B) pressure in bile

P
(B)
PV pressure in bile at the periportal end

p(S) pressure in blood

P
(S)
CV pressure in blood at the pericentral end

P
(S)
PV pressure in blood at the periportal end

Exchanges across interfaces

c(comp) complex concentration

c(enz) enzyme concentration

c(prod) product concentration

c(sub) substrate concentration

k+ forward reaction rate constant

Vmax maximum reaction rate

Km Michaelis-Menten constant

k− reverse reaction rate constant

Dimensionless numbers

Kn Knudsen number

Ma Mach number

Pe Péclet number

Re Reynolds number

Numerical solvers

FVMStep one step of the finite volume method solver

RungeKuttaStep one step of the Runge-Kutta solver
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∆z space step

∆t time step

Abbreviations

ATP adenosine triphosphate

BVP boundary-value problem

CV central vein

IBVP initial-boundary-value problem

NTCP sodium/taurocholate cotransporting polypeptide

ODE ordinary differential equation

PV portal vein
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Introduction

Is life worth living? It all depends
on the liver.

James [1895]

Liver diseases have been displaying an increasing incidence in the human
population in recent times. Namely, hepatocellular carcinoma rank fourth in
mortality among cancers. To treat these diseases, a deep understanding of liver
function is required. The complexity of processes involved and their interplay
at many levels of organization favors approaches of systems medicine, where
experiments, clinical data acquisition and computational modelling are integrated.

Most of the liver function is carried out inside lobules where drugs, toxins, and
nutrients enter in blood coming from the intestine, penetrate into hepatic cells,
where they possibly undergo various metabolic reactions, and are secreted into
bile, which then transports them out of the organ (cf. Figure 1.1).

Computational models are able to verify or falsify hypothesized mechanisms
occurring along this briefly described journey, and have already led to the identifi-
cation of unrecognized mechanisms. These could then be used to propose new
therapeutic strategies, for example by Ghallab et al. [2016]. More recently, using
a similar approach, Vartak et al. [2021b] have revived the debate on mechanisms
of bile transport in bile canaliculi, the smallest bile conduits in the liver.

Several modelling studies in recent years have treated flow and transport in
liver micro-architecture. Boissier et al. [2021] have modelled micro-circulation in
vascular networks of liver lobules, with an emphasis on the numerical simulation of
fluorescent compound transport in these networks. However, these studies assume
that the transport in blood is by pure advection. This is similar to work done by
Dichamp et al. [2023], where in addition to flow and transport the model accounts
for exchange with neighboring cells.

Vartak et al. [2021b], on the other hand, focused on transport in the bile
canaliculi network, but did not consider the entire pathway of bile salts from liver
blood capillaries (sinusoids), through hepatocytes, up to their excretion into bile
canaliculi and eventually to bile ducts from where they are transported to the
gallbladder.

Various components are necessary for a fully descriptive model at the level
of liver tissue micro-architecture. The vessel tissue should be deformable and
permeable, transport should include both advection and diffusion in both blood
and bile, as well as exchanges across interfaces between blood and hepatocytes
and hepatocytes and bile. Different exchange mechanisms and their relevance
should be considered there. In general, a compound transported in liver micro-
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architecture participates in multiple metabolic processes inside hepatocytes. Given
the complexity of the full problem at hand, these requirements may make such a
model computationally inefficient or even infeasible. To overcome this, various
model reduction techniques can be applied, that partially depend on the nature
of available data.

The simplest approach is to view the liver as a well-mixed compartment
interacting with other organs and whole-body circulation via a lumped parameter
compartment model, as demonstrated for example by Audebert and Vignon-
Clementel [2018]. While this approach is computationally efficient, it neglects
spatial variation of the organ behavior, which are of great significance in liver.
While the fundamental idea behind modelling metabolic processes in hepatocytes
is simple, and from a mathematical point of view reduces to a system of ODEs, in
practice reduced models, which can be obtained in multiple ways under different
assumptions, are almost always used. As far as flow is concerned, homogenization
techniques are frequently used to derive a multiscale representation of the tissue
microstructure, for example by Hodneland et al. [2019] in brain and by Rohan
et al. [2021a] in liver.

Thesis Goals
The overall goal of this thesis is to derive and implement a proof-of concept
compartment model of fluorescent marker transport in the blood – hepatocytes
– bile system at the level of liver micro-architecture. The steps to achieve it are
summarized below.

1. Situate the system of interest in a relevant physiological context. Identify
key actors in the flow and transport of chemical compounds in the liver at
the level of its micro-architecture.

2. Identify transport mechanisms inside the compartments of the blood –
hepatocytes – bile system, as well as exchange mechanisms between these
compartments.

3. Formulate general 3D governing equations for a mixture in sinusoids and
bile canaliculi.

4. Derive a reduced 1D form of these equations along the vessel axis.

5. Formulate a model of exchanges across interfaces between the compartments
in the blood – hepatocytes – bile system.

6. Use previous points to formulate the whole 1D-0D-1D compartment model
of the system.

7. Implement the model numerically for a simple proof-of-concept geometry
and interpret obtained results.

8. Discuss possible extensions of the model with the outlook of applying it to
real-world experimental setups.

8



Thesis Outline
Chapter 1 introduces the physiological context of the studied system. We briefly
describe liver structure and its function, placing emphasis on the journey of diverse
chemical compounds of interest inside the liver lobule from blood to hepatocytes
and subsequently to bile. Viable transport mechanisms across interfaces in this
system are studied in further detail.

In Chapter 2, we derive the 1D-0D-1D compartment model for the blood –
hepatocytes – bile system at the core of this thesis. We start by stating the
assumptions made in the construction of the model. Next, we formulate the 3D
governing equations for compound transport in blood and bile using concepts of
mixture theory, and derive their 1D reduced forms. The strategy used in reducing
the equations differs slightly from the one used in reference literature. We explain
the difference as well as the reason for choosing an alternative method, and we
suggest a modification of the established strategy that leads to results similar to
those that we obtained. We then outline briefly the derivation of formulae for
fluxes across the compartment interfaces, before finally presenting the complete
compartment model for fluorescent compound transport.

Examples of results of the model are shown in Chapter 3, where we present its
numerical implementation, briefly describe the solution algorithm, and provide
prototypical interpretations of obtained results.

Before concluding, we discuss different aspects of presented work in Chapter 4.
We review the modelling choices made throughout the thesis, and discuss possible
extensions into more realistic settings and multiscale models. We then review
critically the numerical methods used in the implementation, before finishing with
an outline of future research and long-term goals for research in this direction.
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Chapter 1

Physiology of Liver Function and
Fluorescent Marker Transport

This chapter provides an overview of the physiological context of the model
proposed in this work. Its aim is twofold – first, to motivate the construction of
models like the one formulated later and show its possible practical applications;
second, to briefly go through the liver structure and function in enough detail to
justify and provide background for modelling assumptions made later on.

After the initial outline of the general structure and roles of the liver as an organ,
we focus on its main structural element, the liver lobule. We describe its micro-
architecture and how it pertains to the model proposed in the following chapter.
Finally, we review the specifics of fluorescent marker transport mechanisms.

The majority of information stated here is adapted from the thesis by Boissier
[2018] and the references therein. Sources are therefore explicitly cited only at
points where the content deviates from that appearing in the aforementioned
thesis.

1.1 Liver Organization and Function
Besides its important size in most relevant species, liver has a key role in whole-
body regulation of such compounds as nutrients or toxins. Its main functions
are bile production and blood detoxification. The former ensures transport of bile
salts (e.g. cholesterol) out of the liver and into the rest of the body. The latter
consists of transporting drugs, metabolites, and toxins from blood, possibly further
modifying them inside the organ micro-architecture, before finally secreting them
into bile. This mechanism also regulates concentrations of several key compounds
on the single-organ as well as the whole-body level.

Any modifications or malfunctions of these mechanisms can induce liver
pathologies. High concentrations of toxins and drugs in hepatocytes can lead to
recoverable or permanent damage to cells and tissue, resulting in diseases ranging
from fibrosis to liver tissue necrosis or cirrhosis, which can eventually develop into
primary liver cancer.

Understanding the details of liver function mechanisms is clearly of utmost
importance in both disease prevention and treatment. In this respect, accurate
modelling of transport mechanisms inside liver plays a key role from the point of
view of scientific and clinical applications.
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Before discussing liver structure and organization, we start with a brief descrip-
tion of the “journey” of compounds such as drugs, toxins, or nutrients through
liver tissue. Blood enters the liver through both the portal vein (PV) and the
hepatic artery, the latter being rich in nutrients and similar compounds. These
then travel through the vascular micro-architecture, possibly being taken up by
surrounding cells and secreted into bile. They are then transported out of liver
either in bile ducts leading to the gallbladder, or via the central veins (CV) in
liver lobules (see below), which then lead to the inferior vena cava.

1.2 Liver Lobule
Structurally, liver is divided into several lobes (the exact numbers differ among
species), each of them subdivided into structural units called lobules. Their shape is
approximately hexagonal, although advances in liver microstructure segmentation
via image recognition have contested this assumption and have revived the debate
about structural classification of liver tissue (cf. Teutsch [2005]). Liver lobules
contain namely hepatocytes, the cells responsible for the main part of liver function.
These cells communicate with sinusoids, a special type of blood capillaries inside
the lobules, and bile canaliculi, were they secrete bile along with the metabolized
chemical compounds mentioned earlier.

The structural organization of liver is illustrated in Figure 1.1.1 In the figure,
we have marked the region of interest for our model in red, with the arrows
showing the direction of compound transport. The exact mechanisms by which
this transport occurs are discussed in the following section.

1.3 Transport Mechanisms
In the blood – hepatocytes – bile system, the three main transport mechanisms
across interfaces are

• active transport, which consists of ATP molecules pulling the compounds in
or out of the cells against the concentration gradient,

• passive diffusion, in which sufficiently hydrophobic molecules pass through
cell membranes as a result of their concentration gradient,

• facilitated diffusion, where transport occurs as a result of the concentration
gradient in a compound different to the compound of interest.

We now proceed to specify which of these mechanisms are relevant for each interface
(cf. Schulze et al. [2019], Kamisako et al. [1999]). As can be seen in Figure 1.2,
courtesy of van de Steeg et al. [2012], there are numerous possible modes of
transport between the sinusoids, the hepatocytes, and the bile canaliculi, and their
relative dominance depends heavily on the particular compounds transported.
In this work, we concentrate mainly on transport of fluorescent tracers used in
experiments on mice. This is due to the long-term goal of the developed model
being to fit data from a specific experimental setup for mouse liver lobules. The

1The image was taken from bioninja.com.au.
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Figure 1.1: Liver structure classification – image taken from bioninja.com.au. The
whole liver is first divided into several lobes, which are constituted by liver lobules – the
main structural units of liver. In theory, these are assumed to have a hexagonal shape,
although this has recently been contested (cf Teutsch [2005]). Inside the lobules, blood
from the portal vein and the hepatic artery mixes, and diverse compounds are taken up
from it by hepatocytes. These metabolize the compounds and secrete them into bile,
which then transports them out of the lobule and eventually out of the organ.

12
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discussion of transport mechanisms below will therefore be in some sense specific
to these compounds.

At the time of writing, no exchange occurring between adjacent hepatocytes
has been observed experimentally. Moreover, this exchange is not realistic even
from a theoretical point of view, since the processes happening outside hepatocytes
are much more efficient at compound clearance. We will therefore not consider
the interfaces between hepatocytes in what follows.

It is also possible that the compound gets sequestered at some points of its
journey through the blood – hepatocytes – bile system, i.e., it is stored and slowly
leaks out. From an experimental point of view, there is little knowledge about
this process, although, in theory, it would be possible in some parts of the system.

Figure 1.2: Transport mechanisms inside the liver lobule – image courtesy of van
de Steeg et al. [2012]. There are multiple modes of transport across interfaces in
the blood – hepatocytes – bile system. However, in the particular case of fluorescent
tracer transport, the prevailing idea is that the compounds are taken up from blood
via facilitated diffusion, and get in bile via active secretion (cf. Schulze et al. [2019],
Kamisako et al. [1999]).

1.3.1 Blood-Hepatocyte Interface
First, according to current experimental results, no active transport occurs between
the blood capillaries and hepatocytes. The largely prevalent portion of transport
is due to facilitated diffusion. More specifically, energy from the NTCP sodium
cation concentration gradient is used to transport the compound of interest from
the blood into the hepatocytes. This mechanism could in theory be rate-limiting,
although this has not been measured in real-world conditions thus far.

As for the transport by passive diffusion, while it cannot be completely excluded,
it is expected to be very weak in presence of facilitated diffusion and has not been
measured in practice.

13



1.3.2 Hepatocyte-Bile Interface
Contrary to the previous case, the transport between hepatocytes and bile canali-
culi is almost always active. Different transporters are responsible for the exchange,
and the secretion rates for the hepatocyte-bile interface are dictated by the partic-
ular combination of these transporters in the hepatocyte membrane.

1.3.3 Effect of Zonation
The experimentally observed anisotropy in transport properties along the PV-
CV axis is mostly due to different amounts of transporters along the axis (cf.
Tachikawa et al. [2018]). From a modelling point of view, these differences are
relevant for the rate-limiting processes in the transport chain for each individual
compound of interest. It is worth noting that the space-dependent characteristics
need not be monotone along the PV-CV axis, and have a non-trivial experimental
bias. For example, in experimental studies on mice, the compound is injected
through the tail into the portal vein. The PV hepatocyte uptake tends to be very
fast, inducing a concentration gradient in blood, which in turn necessarily induces
zonation into the transport properties along the PV-CV axis.

Chapter Summary In this chapter, we have introduced the physiological
context of the model at the core of this thesis. After a brief review of liver function
and its structural organization, we have established the liver lobule as the structural
unit of interest. In the liver lobule, chemical compounds are transported from blood
in sinusoids through neighboring hepatocytes into bile canaliculi. Specifically,
fluorescent tracers are taken up by hepatocytes via facilitated diffusion and
then secreted into bile canaliculi by active transport. Exchange rates for both
mechanisms can vary across different lobule regions. Equipped with this contextual
information, we are ready to formulate a mathematical model of flow and transport
in this system.

14



Chapter 2

Mathematical Modelling of
Fluorescent Compound Transport

In view of the practical applications of liver function models presented in previous
chapters, these have to be derived or postulated with great care for the sense and
implications the assumptions have with respect to the biophysical reality. The
following chapter attempts to describe a model of fluorescent tracer transport
inside the liver lobule micro-architecture with these concerns in mind.

We start by formulating general equations for each part of the system, namely
we state the balance laws in the blood capilary and the bile canaliculus in a
general form and in 3D geometry. We then proceed with the derivation of a
general strategy of reducing the 3D equations into 1D, taking into account the
domain geometry. Finally, we use this strategy to derive governing equations for
flow and transport in the reduced 1D setting. We comment briefly on alternative
approaches to the model reduction, discussing their pitfalls and applicability.

After formulating equations for flow and transport, we continue with a review
of mathematical models of compound transport across interfaces, and discuss
assumptions made in deriving them.

We conclude by presenting the full compartment model of the blood – hepato-
cytes – bile system constructed from the previously presented elements.

2.1 3D Model Description
We first present a reasonably general approach to modelling flow and transport
of fluorescent tracers in the system. Motivated by its real-world properties, we
formulate the governing equations in the framework of 3D continuum mixture
theory.

2.1.1 General Modelling Assumptions
Schematically, the system we are modelling consists of three interacting parts:

1. In the sinusoids of blood capilaries, the blood from the portal vein and
the hepatic artery mixes and transports any of the compounds present
towards the central vein at the center of the lobule. Here, we make the first
modelling assumption by neglecting hepatic arterial blood flow. As [Boissier,
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2018, Section 1.1.1] mentions, hepatic arterial blood flow accounts for 20 –
30 % of total blood inflow. Moreover, it is the blood from the portal vein
that is rich in nutrients and other compounds, the transport of which we
want to model.
Apart from blood flow and compound transport, the sinusoid walls can
deform (cf. Greuter and Shah [2016]) and provide a means of communication
with the outer environment, more specifically with hepatocytes.

2. The hepatocytes take up compounds transported by blood from the portal
vein (and possibly also from the hepatic artery). Inside the cells, compounds
can be metabolized in numerous ways, which we will not treat in detail at
the moment. Products of the reactions are then secreted into bile canaliculi.

3. Bile canaliculi ensure bile formation and transport of metabolized compounds
into the bile duct network and eventually out of the liver. Like sinusoids,
they should also be modelled as compliant vessels.

As for the exact nature of bile formation and flow, it has been the subject of a
lively debate even recently. As outlined in the review paper by Vartak et al. [2021a],
bile transport in liver has historically been described by the osmotic concept, with
bile flowing into the canaliculi towards the bile ducts, in the direction opposite
to the sinusoidal blood flow. This concept was sufficient to explain clearance
characteristics of many choleretic compounds excreted in bile. However, due to the
small size of bile canaliculi, it was impossible to observe or quantify this process
directly.

Recent advances in imaging techniques, however, have allowed for direct flux
analysis in bile canaliculi. This analysis suggests that the flow of molecules in bile
is diffusion-dominated and that canalicular flow is negligible. For the interlobular
ducts, diffusion is augmented by flow.

Currently, there are two opposing theories on this matter:

1. The first postulates an osmotically driven flow inside the canaliculi. Bile
acids along with other solutes have a strong osmotic potential and therefore
draw water from the hepatocytes into bile canaliculi. Since the canalicular
network is closed at the pericentral side, there is a directed flow towards the
periportal bile duct. This was historically the first concept of bile transport
and although it explains several macroscopic measurements, it was never
observed or measured directly. Among others, Meyer et al. [2017] is a prime
example of this theory.

2. Recent advances in imaging techniques have allowed for direct flux analysis
in bile canaliculi. This analysis suggests that bile transport in the canaliculi
is closer to a diffusion in a stagnant fluid, and that fluid flow is evident only
in the ducts. The distinction between the two opposing theories is important
for metabolism of certain compounds and for liver disease therapy. This
concept is due to Vartak et al. [2021b].

From the mathematical modelling point of view, this context implies that we
should take special care in deriving equations for bile transport, ideally accounting
for transport both by advection and by diffusion. Incidentally, effects of diffusion
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in blood can also be non-negligible, therefore it is of interest to include this in our
model, too.

2.1.2 Mixture Theory Formulation
The main aim is to model transport of a fluorescent tracer injected into the
cardiovascular system. Thus, we are effectively describing a mixture of blood
plasma and the fluid containing the tracer. Following the mixture theory outline
by [Hutter and Jöhnk, 2004, Chapter 7], we have decided to model the blood
and bile parts of the systems as Class I multi-component (in the simplest case
two-component, the two components being blood plasma or bile and fluorescent
tracer fluid) mixtures. This means in particular that we are prescribing only
the mass balance equations component-wise. The linear momentum balance,
as well as eventually balances of energy and entropy are formulated for the
mixture as a whole. This is motivated by the relative simplicity of description
for Class I mixtures, and is justified by reasonably similar rheological properties
of the contrast fluid and the blood plasma/bile. We will make a brief remark on
constitutive relations relevant to the studied system at the end of this section.

Before formulating the governing equations in each compartment, we start by
recalling the key concepts of mixture theory used in what follows. The starting
point of our description of mixtures is the coexistence assumption, simply stating
that all components of the mixture are present in all material points. We use
partial densities ρα, α = 1, . . . , N to represent the proportions of respective
components in each material point. This means that the massMα(V) of the α-th
component contained inside a control volume V can be expressed as Mα(V) =∫︁

V ρα dV . The density ρ of the whole mixture is defined in an analogous manner
as M(V) =

∫︁
V ρ dV .

Next, we define component concentration cα as the mass fraction of the com-
ponent, i.e.,

cα := ρα
ρ
. (2.1)

This definition implies that cα is dimensionless and always less than or equal to 1.
Moreover, under the reasonable assumption of mass additivity, we have

N∑︂
α=1

ρα = ρ =⇒
N∑︂
α=1

cα = 1. (2.2)

While the presented definition of concentration is convenient from a theoretical
point of view, in real measurements we usually encounter other notions of concen-
tration, namely molar concentration, measured usually in mol cm−3, and the mass
concentration, measured in g cm−3. The latter actually coincides with the above
defined partial density ρα. As for molar concentration, it can be easily recovered
using mass fraction concentration, since

nα(V) =
∫︂

V
c(molar)
α dV =⇒ c(molar)

α = ρcα
NAMα

, (2.3)

where nα(V) denotes the number of moles of the α-th component in the control
volume V , Mα is the molar mass of the α-th component, and NA is the Avogadro’s
constant.
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With all the relevant component-wise quantities properly defined, we can pro-
ceed to stating the balance laws. Since our model describes mechanical phenomena
without considering thermo-mechanical coupling1, we will not formulate balances
of energy and entropy. As for the rest,

• the mass balance for separate components of the mixture can be rewritten
into the form

∂ρ

∂t
+ div (ρv) = 0, (2.4)

ρ

(︄
∂cα
∂t

+ v · ∇cα
)︄

+ div jα = mα, α = 1, . . . , N, (2.5)

with v denoting the whole-mixture velocity, jα the diffusive flux of the α-th
component, and mα its production, e.g., due to chemical reactions;

• the linear momentum balance is prescribed for the whole mixture and has
the classic form

∂

∂t
(ρv) + div (ρv ⊗ v) = divT + ρb, (2.6)

where T is the Cauchy stress tensor and b is the body force density;

• the angular momentum balance reduces to the symmetry condition for the
Cauchy stress tensor, i.e., T = TT . In general, if the components of the
mixture exhibit intrinsic rotational behavior (e.g. in the form of spins),
we would have to include additional equations in our model. However, we
consider non-polar mixtures only in here, primarily for the sake of simplicity.

The above equations are relatively general, and can describe flow and transport
of multiple components in blood as well as in bile. Naturally, closure relations
have to be provided in each case by prescribing constitutive relations for the
Cauchy stress and the diffusive fluxes.

An obvious first choice for blood and bile rheology could be the incompressible
Newtonian fluid, with the Cauchy stress tensor given by

T := −pI + η
(︂
∇v + (∇v)T

)︂
, (2.7)

where p is the pressure and η the fluid viscosity. While an argument could be
made for bile fitting the model assumptions for this constitutive relation, the
heterogeneous nature of blood plasma suggests the need for a more complex
rheological description. In particular, the red blood cells influence the flow
properties of blood, especially in small veins and capillaries. This phenomena is
called the Fahraeus-Linqvist effect. The simplest way of taking it into account is
by introducing apparent viscosity into Equation (2.7) to replace the actual blood

1This is clearly a bold assumption, since apart from the flow we are also modelling chemical
exchanges between blood, hepatocytes, and bile, as well as possible metabolic processes inside
hepatocytes. The thermodynamic aspect of these processes is surely non-trivial. However, for
the sake of simplicity, this aspect is neglected here.
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plasma viscosity η. Secomb and Pries [2013] proposed an empirical formula for
effective blood viscosity that reads

ηeff = η

[︄
1 + (η45 − 1) (1−HD)C − 1

(1− 0.45)C − 1

(︃ 2R
2R− 1.1

)︃2]︄ (︃ 2R
2R− 1.1

)︃2
, (2.8)

where

C =
(︂
0.8 + e−0.15R

)︂ (︃
−1 +

(︂
1 + 10−11R12

)︂−1
)︃

+
(︂
1 + 10−11R12

)︂−1
,

η45 = 6e−0.17R + +3.2− 2.44e−0.06(2R)0.645
,

R is the vessel radius, and HD is the discharge hermatocrit. This formula captures
experimentally observed effects of red blood cells on blood flow properties for
vessels of different radii.

In the compartment model presented below, we put emphasis mainly on
transport, taking the already computed flow field as an input to the model. We
will therefore not discuss the issue of rheology further, the above example serving
as an illustration of a possible approach.

2.2 Model Reduction
In models of flow in blood vessels (and by extension in bile canaliculi), it is
often impractical to compute full 3D problems, given the complexity of vascular
networks. The simplest model reduction technique lies in reformulating the 3D
governing equations as 1D equations for cross-section-averaged quantities in the
axial direction of the vessel. We will now illustrate the general strategy behind
this technique, and then apply it to particular balance laws. While the reference
on this subject seems to be the textbook by [Formaggia et al., 2009, Chapter 10],
the strategy we present here is slightly different from the one presented therein.
We will comment on these differences and their implications in Section 2.2.3.

2.2.1 Reduction of a General Balance Law
Consider a fluid flowing in an axially symmetric tube with a deformable wall.
This means that its radius R can be space- and time-dependent, i.e., R = R(t, z),
z being the axial coordinate. The situation is illustrated in Figure 2.1. We further
consider a control volume Vδ(t) that has special form illustrated in Figure 2.1.
We assume that this control volume is material. More specifically, we assume that
the cross-section parts of the boundary Σ−, Σ+ move with the fluid, and the wall
part of the boundary Γδ moves with the vessel wall. If v is the fluid velocity, vw is
the velocity of the vessel wall, and vb the boundary velocity, we can write this as

vb|Σ−
= v|Σ−

, vb|Σ+
= v|Σ+

, vb|Γδ
= vw. (2.9)

Before going further, we make a brief note of the notation used in the deriva-
tion. In what follows, dV , dS, dγ denote volume, surface, and contour measures,
respectively. The unit normal to the boundary (surface boundary for volumes, con-
tour boundary for surfaces) will be denoted n with subscript of the corresponding
boundary in case of possible ambiguity.
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z

Σ+Σ−

Γδ

Vδ(t)

δ

Figure 2.1: Vessel geometry and control volume.

The integral form of a general balance law for a quantity ψ over this control
volume reads∫︂

Vδ(t)

∂ψ

∂t
dV +

∫︂
∂Vδ(t)

ψvb · n dS =
∫︂
∂Vδ(t)

j(ψ) · n dS +
∫︂

Vδ(t)
r(ψ) dV, (2.10)

where j(ψ) represents the fluxes of ψ and r(ψ) the volume source terms (including
production, supply, and interaction).

Next, we study of the limit of Equation (2.10) multiplied by 1/δ as δ → 0,
proceeding term by term.

We start with the term containing ∂ψ
∂t

, where we can write

1
δ

∫︂
Vδ(t)

∂ψ

∂t
dV = 1

δ

∫︂ z+δ

z

(︄∫︂
Σ(t,ẑ)

∂ψ

∂t
dS
)︄

dẑ

= 1
δ

∫︂ z+δ

z

(︄
∂

∂t
(Aψ)−

∫︂
∂Σ(t,ẑ)

ψvw · n∂Σ dγ
)︄

dẑ

δ→0−−→ ∂

∂t
(Aψ)−

∫︂
∂Σ(t,z)

ψvw · n∂Σ dγ,

where we have used the 2D version of the Reynolds transport theorem for the
cross-section

∂

∂t

∫︂
Σ(t)

ψ dS =
∫︂

Σ(t)

∂ψ

∂t
dS +

∫︂
∂Σ(t)

ψvb · n∂Σ dγ,

along with assumptions (2.9) and the definition

ψ := 1
A

∫︂
Σ
ψ dS, where A := |Σ|

for the cross-section average of the quantity ψ.
We follow by treating the surface integral term on the left-hand side of Equation
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(2.10) as follows:

1
δ

∫︂
∂Vδ(t)

ψvb · n dS = 1
δ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∫︂
Σ−
ψv · nΣ− dS

+
∫︂

Σ+
ψv · nΣ+ dS

+
∫︂

Γδ

ψvw · nΓδ
dS

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
δ

(︄∫︂
Σ+
ψvz dS −

∫︂
Σ−
ψvz dS

)︄

+ 1
δ

∫︂ z+δ

z

∫︂
∂Σ(t,ẑ)

ψvw · nΓδ

cos β dγ dẑ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
δ→0−−→ ∂

∂z
(Aψvz) +

∫︂
∂Σ(t,z)

ψvw · nΓδ

cos β dγ.

Since we consider possibly varying vessel radius, we need to include a (cos β)−1

factor in the contour integration, where β is the angle between the two normals
n∂Σ and nΓδ

, as shown in Figure 2.2.
The volume integral term on the right-hand side of Equation (2.10) can be

rewritten in a straightforward manner as

1
δ

∫︂
Vδ(t)

r(ψ) dV = 1
δ

∫︂ z+δ

z

(︄∫︂
Σ(t,ẑ)

r(ψ) dS
)︄

dẑ δ→0−−→ Ar(ψ).

As for the flux term on the right-hand side of Equation (2.10), we proceed
analogously to the surface integral on the left-hand side, writing

1
δ

∫︂
∂Vδ(t)

j(ψ) · n dS = 1
δ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∫︂
Σ−

j(ψ) · nΣ− dS

+
∫︂

Σ+
j(ψ) · nΣ+ dS

+
∫︂

Γδ

j(ψ) · nΓδ
dS

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
δ

(︄∫︂
Σ+
j(ψ)
z dS −

∫︂
Σ−
j(ψ)
z dS

)︄

+ 1
δ

∫︂ z+δ

z

∫︂
∂Σ(t,ẑ)

j(ψ) · nΓδ

cos β dγ dẑ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
δ→0−−→ ∂

∂z
(Aj(ψ)

z ) +
∫︂
∂Σ(t,z)

j(ψ) · nΓδ

cos β dγ.

Putting these four terms back together results in

∂

∂t

(︂
Aψ

)︂
+ ∂

∂z

(︂
Aψvz

)︂
= ∂

∂z

(︃
Aj

(ψ)
z

)︃
+ J (ψ) + Ar(ψ), (2.11)

where we have defined

J (ψ) :=
∫︂
∂Σ(t,z)

j(ψ) · nΓδ

cos β − ψvw · nΓδ

cos β + ψvw · n∂Σ dγ.

The above term represents eventual fluxes across the boundary, and its exact form
is dictated by the boundary conditions of the 3D problem.
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This is the sought after 1D reduction of the general balance law. It essentially
states that the reduced governing equation has a form of a balance law for a 1D
continuum with averaged quantities multiplied by the cross-section area, with an
additional flux term representing exchanges with external media.

Σ Γδ

n∂Σ nΓδ

β

Figure 2.2: Different normals at the vessel boundary.

2.2.2 One-dimensional Balance Laws
In the following, we derive particular balance laws for mass, linear momentum,
and component concentration by substituting appropriate quantities for ψ in
Equation (2.11).

Mass Balance

In the usual 3D setting, the mass balance equation is obtained by substituting
the density ρ into the general form of the balance law (cf. Equation (2.4)). In
this case, however, we take a slightly different approach and set ψ ≡ 1. Mass
conservation implies r(ψ) ≡ 0 and j(ψ) ≡ 0. The mass balance then reads

∂A

∂t
+ ∂

∂z
(Avz) = 0. (2.12)

As we can see, this equation represents the balance of volume rather than the
balance of mass. This is connected to the fact that in reduced models of blood
flow, constant density is usually assumed.2

Momentum Balance

Following the constant density assumption, we seek the linear momentum balance
by substituting ψ := v instead of the usual ρv term from Equation (2.6). The
volume source term represents body forces, i.e., r(ψ) := b, and the flux term ac-
counts for surface stresses, i.e., j(ψ) := T. Throughout the cross-section averaging
procedure, all except z-components vanish due to symmetry, and the result is

∂

∂t
(Avz) + ∂

∂z

(︂
Av2

z

)︂
= ∂

∂z

(︂
ATzz

)︂
+ J (vz) + Abz. (2.13)

2This may seem as an oversimplification, given the complex internal structure of blood plasma.
One possible argument justifying such simplification is that the quantity ρ in the equations
represents a sort of effective density that takes into account the structure of the real fluid.
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As mentioned above, the term J (vz) follows from boundary conditions in the 3D
setting. The simplest choice clearly corresponds to J (vz) ≡ 0.

Since the eventual aim is to solve the above equation for vz, we introduce
the Coriolis coefficient α := v2

z/vz
2 that is non-dimensional and depends on the

velocity profile. For example, for a flat profile α = 1, while for a parabolic profile
α = 4/3 (cf. [Formaggia et al., 2009, Chapter 10]).

In order for the linear momentum balance to be well-posed (or part of a
well-posed system), constitutive relations have to be provided for the Cauchy
stress tensor T. Detailed discussion of appropriate constitutive relations for blood
and bile is beyond the scope of this work, but we refer the reader to Formaggia
et al. [2009] for a brief outline.

Equation for Concentration

By setting ψ := cα, α = 1, . . . , N , we aim to find the 1D analog of Equation (2.5).
In general, j(cα) represents the diffusive fluxes of individual mixture components,
and r(cα) represents the reactions between the components. The exact nature of
both quantities depends on the properties of the studied system. In our case, it is
reasonable to assume (for both blood and bile) that no reactions occur inside the
vessel, but there is nontrivial exchange across the vessel wall. This exchange will
be represented by the Jα term in the governing equation. For the purposes of our
model, we further assume that the diffusive fluxes are given by Fick’s law, i.e.,
j(cα) := −K∇cα. The symbol K denotes the diffusivity tensor, if the diffusion is
isotropic, then the scalar diffusivity will be denoted k.

If we incorporate all the assumptions and substitute in the general 1D balance
equation, we get

∂

∂t
(Acα) + ∂

∂z
(Acαvz) = ∂

∂z

(︂
Aez ·Kα∇cα

)︂
+ Jα.

Furthermore, if in analogy with the linear momentum balance we introduce the
velocity-concentration correlation coefficient ωα := cαvz/cα vz, and for the sake of
simplicity assume homogeneous isotropic diffusion, the equation for component
concentration now reads

∂

∂t
(Acα) + ∂

∂z
(ωαAcα vz)− kα

∂2

∂z2 (Acα) = Jα. (2.14)

This is essentially an advection-diffusion-reaction equation for individual compo-
nents of the mixture. It is exactly this equation that we will use, after specifying
transport mechanisms contributing to Jα, to model transport in blood as well as
in bile.

2.2.3 Alternative Model Reduction Approaches
The strategy for deriving 1D reduced governing equations from their 3D counter-
parts presented here is somewhat different from the one presented in [Formaggia
et al., 2009, Chapter 10]. While in theory both strategies should lead to equiv-
alent results, we have chosen this particular derivation namely for consistency
in the treatment of the deformable vessel wall, and the way in which the spatial
derivatives of cross-section-averaged quantities are obtained.
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However, the governing equation for concentration formulated by [Formaggia
et al., 2009, Equation (10.34)] differs considerably from Equation (2.14) above,
the most striking difference being the absence of the 1D diffusion term in the
version of Formaggia et al. [2009]. Although Formaggia et al. [2009] do not provide
exact derivation assumptions, [D’Angelo, 2007, Section 2.2] derives the equation
in detail. The detailed derivation reveals that the argument leading to the 1D
diffusion term being neglected is dimensional. Indeed, if L is the length of the
vessel and R0 is its characteristic radius, then we can define non-dimensional
variables

r̂ := r

R0
, ẑ := z

L
.

Next, we assume that R0/L =: ε ≪ 1. If we now rewrite the 3D Laplacian
operator in non-dimensional variables and neglect terms quadratic in ε, we get

∆3Dc = 1
R2

0r̂

∂

∂r̂

(︄
r̂
∂c

∂r̂

)︄
+ 1
R2

0r̂
2
∂2c

∂θ2 + 1
L2

∂2c

∂ẑ2

= 1
R2

0

[︄
1
r̂

∂

∂r̂

(︄
r̂
∂c

∂r̂

)︄
+ 1
r̂2
∂2c

∂θ2 + ε2 ∂
2c

∂ẑ2

]︄

≈ 1
R2

0

[︄
1
r̂

∂

∂r̂

(︄
r̂
∂c

∂r̂

)︄
+ 1
r̂2
∂2c

∂θ2

]︄

= 1
r

∂

∂r

(︄
r
∂c

∂r

)︄
+ 1
r2
∂2c

∂θ2

= ∆2Dc,

where we have denoted the 2D and 3D Laplacian operators by the respective
subscripts. If we compare this with the derivation of the governing equation for
concentration, in particular the manipulations involving the flux term, we can see
that this train of thought would indeed lead to neglecting the 1D diffusion term
in the final equation.

Despite appearing innocent, the above approximation has its pitfalls. The
main issue lies in the fact that the term quadratic in ε is further multiplied by
1/R2

0. Under the assumption that R0/L≪ 1, R0 is bound to be very small, e.g.,
of order of magnitude ε for L of order of magnitude 1, therefore making 1/R2

0
potentially very large. In this situation, even a perturbation of order ε2 can be
too important to be neglected. In the derivation of the governing equation for
concentrations above, we have avoided such arguments altogether, and the above
discussion shows yet another reason for choosing an alternative strategy.

Nevertheless, the scaling argument presented above can be used to derive the
reduced 1D equation for concentration with the diffusion term present, provided
that it is exploited in a slightly different manner. For the sake of generality, we can
consider possibly non-isotropic diffusion and study the term div (K∇c) instead
of ∆3Dc. No generality is lost if we prescribe the diffusivity tensor in the form
K := diag (kr, 0, kz).

If we start again by expressing this form of the diffusive term in cylindrical
coordinates, this time omitting the angular derivatives due to assumed axial
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symmetry, we find that

div (K∇c) = 1
R2

0r̂

∂

∂r̂

(︄
r̂kr

∂c

∂r̂

)︄
+ 1
L2

∂

∂ẑ

(︄
kz
∂c

∂ẑ

)︄

= 1
L2

[︄
ε−2 1

r̂

∂

∂r̂

(︄
r̂kr

∂c

∂r̂

)︄
+ ∂

∂ẑ

(︄
kz
∂c

∂ẑ

)︄]︄
. (2.15)

In the scaling argument, we take L to be of order 1 in comparison to R0, which is
of order ε. If we now look at the limit as ε→ 0 and require that the expression
stays finite, it is clear that c cannot depend on r. This yields the sought after
reduction of the 3D diffusion term to 1D diffusion along the z axis.

A similar argument can be developed for the advection term in the equation
for concentration. In the 3D governing equation (2.5), advection is represented by
the term v · ∇c. The gradient in cylindrical coordinates, taking into account axial
symmetry of the problem, reads

∇c = ∂c

∂r
er + ∂c

∂z
ez = 1

L

(︄
ε−1 ∂c

∂r̂
er + ∂c

∂ẑ
ez

)︄
, (2.16)

where we have used the scaling introduced above. Again, investigating the limit
as ε → 0, we find that if the term is to stay finite, then c cannot depend on r,
and the gradient effectively reduces to a partial derivative along the z axis.

We can go one step further by comparing the scaling of radial terms in
Equations (2.15) and (2.16). If we assume that the diffusivity tensor components
scale as

kz = k0, kr = k0ε,

then, injecting this into Equation (2.15), we find that the radial terms in advection
and diffusion scale with identical negative powers of ε. We can interpret this in
the sense that these terms effectively “compensate”. The above scaling could be
justified for example if the diffusivities in specific directions depended linearly on
the mean free path of compound microconstituents in those directions. However,
even if such a hypothesis does not hold, the scaling argument leading to the
reduced 1D form of the terms remains valid.

Note that the advection term thus obtained differs slightly from that in
Equation (2.14), namely the velocity is kept outside the z-partial derivative in
what is discussed here. However, the equivalence of the two terms can be shown
via the mass balance (cf. Equation (2.12)).

2.3 Modelling Transport across Interfaces
The aim of the following section is to derive explicit forms of fluxes Jα appearing
in Equation (2.14) and discuss the limits of validity of the proposed formulae.
The content of this section is largely adapted from Chapter 2 of the reference
textbook on the matter by Keener et al. [2009].

As discussed in Section 1.3, fluorescent compounds are transported across
blood-hepatocyte and hepatocyte-bile interfaces notably via two mechanisms –
active transport and facilitated diffusion. Before treating these mechanisms in
detail, we recall for the purpose of further use in derivations the law of mass
action used for determining reaction rates.
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Consider two chemical compounds A and B reacting to form a single product
C, written symbolically as

A + B
k+−−→←−−
k−

C, (2.17)

where k+ and k− are reaction-specific rate constants, and the double arrow indicates
that the reaction in general happens in both directions, one defined as forward
(corresponding to k+) and other as reverse (corresponding to k−). The definitions
of the two directions follow from thermodynamic properties of the reaction and
will not be discussed further here.

The law of mass action states that the rate of the chemical reaction (2.17),
i.e., the rate of change in product concentration, is given by

dcC

dt = k+cAcB − k−cC, (2.18)

where cA, cB, cC are concentrations of compounds A, B, C respectively. Despite
being called a law, Equation (2.18) presents rather a useful model applicable
to many situations. In particular, this model can be used, along with scaling
considerations, to derive models for more complicated chemical processes.

2.3.1 Active Transport
When we say that a compound is taken up or secreted actively, we generally mean
that it undergoes an enzymatic reaction of the form

substrate + enzyme
k+1−−→←−−
k−1

complex k2−−→ product + enzyme,

where the compound has the role of both substrate and product, and it is the
complex that ensures the transport. If we denote the substrate, enzyme, complex,
and product concentration by c(sub), c(enz), c(comp), and c(prod), respectively, then
the law of mass action for this reaction chain reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dc(sub)

dt = k−1c
(comp) − k+1c

(sub)c(enz),

dc(enz)

dt = (k−1 + k2)c(comp) − k+1c
(sub)c(enz),

dc(comp)

dt = k+1c
(sub)c(enz) − (k−1 + k2)c(comp),

dc(prod)

dt = k2c
(comp).

(2.19)

Since the above system is impractical to be fully solved, we reduce it under the
quasi-steady-state approximation, i.e., assuming that the rates of formation and
breakdown of the complex are essentially equal, and therefore dc(comp)

dt ≈ 0. Next,
we introduce dimensionless variables

σ := c(sub)

c
(sub)
0

, ξ := c(comp)

e0
, τ := k+1e0t,

κ := k−1 + k2

k+1 + c
(sub)
0

, ε := e0

c
(sub)
0

, α := k−1

k+1c
(sub)
0

,
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where c(sub)
0 is the characteristic substrate concentration and e0 is the total amount

of enzyme. Rewriting the system (2.19) using these variables, as well as assuming
quasi-steady state, yields

dσ
dτ = −σ + ξ(σ + α), dξ

dτ = ε−1 (σ − ξ(σ − κ)) .

In practice, the concentration of enzymes needed to catalyze a reaction is consid-
erably (i.e. orders of magnitude) lower than that of the substrate, which implies
that ε≪ 1. Similarly to Section 2.2.3, we can investigate the limit as ε→ 0 and
require that the right-hand side of the corresponding equation be well-defined,
which leads to

ξ = σ

σ + κ
.

Injecting this bc into dimensionless equations, and then going back to regular
variables, we obtain the expression of Michaelis-Menten kinetics for enzymatic
reactions

dc(prod)

dt = −dc(sub)

dt = Vmaxc
(sub)

Km + c(sub) . (2.20)

The symbols Vmax, Km denote the maximal reaction rate and the Michaelis-Menten
constant, respectively.

It is worth noting that Michaelis-Menten kinetics have two characteristic
regimes:

• the linear regime can be considered if c(sub) ≪ Km, in which case we can
approximately rewrite Equation (2.20) into the form

dc(prod)

dt = Vmax

Km
c(sub);

• the saturated regime, which corresponds to c(sub) ≫ Km, and where Equation
(2.20) is approximated by

dc(prod)

dt = Vmax.

2.3.2 Facilitated Diffusion
The idea behind facilitated diffusion is that a compound that would normally
diffuse relatively slowly across a membrane will have its diffusion rate enhanced
significantly by entering an enzymatic reaction, the product of which is also
diffusing across the membrane. Since the derivation of the flux for facilitated
diffusion (demonstrated by Keener et al. [2009]) is slightly non-trivial, especially
in terms of accepted hypotheses on the system, we go through it in detail here.

The reaction scheme considered here is

substrate + enzyme
k+−−→←−−
k−

product.
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We model the reaction in a 1D continuum along the coordinate x ∈ (0, L) by a
system of diffusion-reaction equations

∂c(sub)

∂t
−Ds

∂2c(sub)

∂x2 = −k+c
(sub)c(enz) + k−c

(prod), (2.21)

∂c(enz)

∂t
−De

∂2c(enz)

∂x2 = −k+c
(sub)c(enz) + k−c

(prod), (2.22)

∂c(prod)

∂t
−Dp

∂2c(prod)

∂x2 = k+c
(sub)c(enz) − k−c

(prod), (2.23)

where c(sub), c(enz), c(prod) denote the concentrations of the substrate, the enzyme,
and the product respectively, and Di, i = s, e, p are the corresponding diffusion
coefficients. Since the product is assumed to be similar in mass and structure to
the enzyme, we take Dp ≈ De in the following.

Under the hypothesis that the total amount of enzyme is conserved in the
reaction, we have c(enz) + c(prod) = const. =: ce at steady state. This makes
Equation (2.22) redundant, and Equations (2.21) and (2.23) further reduce to

Ds
∂2c(sub)

∂x2 +De
∂2c(prod)

∂x2 = 0,

which yields immediately upon integration

Ds
∂c(sub)

∂x
+De

∂c(prod)

∂x
= const. =: −J,

where J is the facilitated diffusion flux. Integrating this expression once again
along the 1D continuum (0, L) leads to

J = Ds
c(sub)

⃓⃓⃓
x=0
− c(sub)

⃓⃓⃓
x=L

L
+De

c(prod)
⃓⃓⃓
x=0
− c(prod)

⃓⃓⃓
x=L

L
. (2.24)

The interpretation of this equation is trivial, since it essentially states that the
total diffusive flux of the compound of interest is composed of the diffusion of the
compound alone, enhanced by the diffusion of the product of the reaction between
the compound and the corresponding enzyme.

Under the assumption of quasi-steady state, we can use Michaelis-Menten
kinetics (cf. Equation (2.20)) to deduce that

c(prod) = ce
c(sub)

K + c(sub)

with K := k−
k+

, which upon substitution into Equation (2.24) yields

J =
(︄
Ds

L
+ De

L

ceK

(K + c(sub)|x=0)(K + c(sub)|x=L)

)︄(︂
c(sub)

⃓⃓⃓
x=0
− c(sub)

⃓⃓⃓
x=L

)︂
.

(2.25)
For the sake of notational simplicity, we will rewrite Equation (2.25) into the form

J =
⎛⎝κ(1)

f + κ
(2)
f

(Kf + c(sub)|x=0)(Kf + c(sub)|x=L)

⎞⎠(︂c(sub)
⃓⃓⃓
x=0
− c(sub)

⃓⃓⃓
x=L

)︂
, (2.26)

where we have defined

κ
(1)
f := Ds

L
, κ

(2)
f := DeceK

L
, Kf := K.
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Summary of Assumptions

In deriving the final formulae for exchange fluxes (2.20) and (2.26), several as-
sumptions on the reaction and species properties were made. We will summarize
them here for the sake of clarity.

For the active enzymatic transport we assumed that

• the complex forms and breaks down at essentially equal rates, leading to
the quasi-steady-state approximation,

• the enzyme concentration is significantly lower than the substrate concen-
tration.

For transport by facilitated diffusion we assumed

• that the diffusivities of the product and the enzyme are essentially equal,

• quasi-steady state for the enzymatic reaction,

• that the enzymatic reaction was taking place in a 1D continuum.

If the resulting model presented below is to be applied to a real-world system,
then it is crucial to verify that these assumptions are indeed valid. However,
as Keener et al. [2009] remarks, the above formulae are used beyond the scope
of their theoretical validity quite frequently, and give satisfying results even in
scenarios where one or more assumptions are violated.

2.4 Compartment Model
In the previous sections, we have described methods for modelling the behavior of
individual parts of the blood – hepatocytes – bile system, as well as interactions
between them. This means that we are now sufficiently equipped to formulate the
governing equations for compound transport across the whole system.

For the sake of simplicity, we assume that it is sufficient to model a single blood
capillary going straight from the portal vein to the central vein communicating
with a single row of (non-interacting) hepatocytes, which in turn communicate
with a single blood canaliculus going all the way from the central vein area
towards the portal vein area, parallel to the row of hepatocytes and the blood
capillary. This setup is hardly realistic in view of the complexity of vascular and
biliary networks inside liver lobules, but nevertheless serves as a good prototype
for liver lobule function, at least qualitatively. To make the model closer to
reality, we could interpret modelled quantities as effective counterparts of the
real-world fields. This would amount to interpreting, e.g., the blood capillary
in the model as a representation of a group or a network of multiple smaller
capillaries. Exact quantification of the effective parameters with respect to their
real-world counterparts requires detailed analysis of capillary and canalicular
network properties, and is beyond the scope of this work. However, it is a
promising project for future work. In Chapter 4, we explore possible extensions of
this model further.

In view of the above assumptions about the system, it is natural to view
it as a compartment model. Usually, compartment models consist of several
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isolated entities called compartments that interact with each other, and from a
mathematical point of view take the form of a system of ODEs. Indeed, transport
in the blood – hepatocyte – bile system has been modelled in this way before
by Audebert and Vignon-Clementel [2018]. In our model, however, the eventual
goal is to capture spatial variations of compound transport mechanisms along the
PV-CV axis. An ODE-only model would therefore be insufficient.

The key idea in devising the model is to extend the equations in the blood
and bile compartments to include flow and diffusion, coupling them with the
ODE-driven hepatocyte compartment. As a result, we get a 1D-0D-1D model
described schematically in Figure 2.3.

Blood
(1D)

Hepatocytes
(0D)

Bile
(1D)

Figure 2.3: Schematic representation of the 1D-0D-1D compartment model.

With this general scheme in mind, we now proceed to formulating governing
equations in individual compartments using the mixture theory formulation from
Section 2.1.2 and the model reduction strategy from Section 2.2. Note that in this
case we can treat flow and transport separately, since the equations for transport
take computed velocity fields as input. Although the main point of interest of
this thesis is to model transport, we will start by a brief illustration of a possible
strategy for modelling flow in the blood and the bile compartments under the
assumption that the two flows are coupled.

Before we start, we summarize the notation used in what follows.

• In notating the modelled quantities, the individual compartments are distin-
guished by superscripts: (S) for blood3, (H) for hepatocytes, and (B) for
bile.

• We use capital letters to denote cross-section-averaged quantities, namely

cα =: Cα, vz =: U.

• Individual mixture components in the blood and the bile compartments
will be distinguished by an index α. For the sake of generality, we assume
the tracer fluid to be an N -component mixture, which implies that we are
modelling N+1-component mixtures in both 1D compartments, the N+1-th
component being either blood plasma or bile. However, thanks to the mass
additivity assumption (2.2), we only need to prescribe governing equations
for the N tracer mixture components, as the remaining concentrations are
given by

C
(S)
N+1 = 1−

N∑︂
α=1

C(S)
α , C

(B)
N+1 = 1−

N∑︂
α=1

C(B)
α .

2.4.1 Flow in Blood and Bile: Double Perfusion
From a physiological point of view, it is natural to assume that the fluid mixtures in
blood and bile are not independent, even beyond sharing the common components

3This inspired by the French “sang”.
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transported from blood to bile via hepatocytes. To model this, we can take the
concept of double perfusion used, e.g., by Kociánová [2019] and Rohan et al. [2021b]
to model the coupling of arterial and venous networks in liver micro-architecture.
To illustrate this approach, we present it in a simplified 1D setting, where it can
be solved analytically.

The governing equations for stationary two-compartment porous medium flow
under the action of no external forces follow from Darcy’s law, and read⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− ∂

∂z

(︄
H(S)∂p

(S)

∂z

)︄
+G

(︂
p(S) − p(B)

)︂
= 0,

− ∂

∂z

(︄
H(B)∂p

(B)

∂z

)︄
+G

(︂
p(B) − p(S)

)︂
= 0,

(2.27)

In the above equations, H(S) and H(B) denote the permeabilities in blood and bile
respectively, p(S) and p(B) denote the respective pressures, and finally G is the
permeability of the two compartments. The velocities in blood and bile are then
given by Darcy’s law as

v(S,B)
z = −H(S,B)∂p

(S,B)

∂z
.

Analytic resolution of the system (2.27) with different types of boundary con-
ditions is presented in detail in Appendix A. For the purposes of the compartment
model presented here, we prescribe pressure values at both ends of the PV-CV
axis in blood. In bile, we prescribe a pressure at the portal vein and assume zero
velocity at the central vein. Together, these boundary conditions read

p(S)
⃓⃓⃓
z=0

= P
(S)
PV , p(S)

⃓⃓⃓
z=L

= P
(S)
CV, p(B)

⃓⃓⃓
z=0

= P
(B)
PV , v(B)

z

⃓⃓⃓
z=L

= 0,

with z = 0 being the PV end, and z = L the CV end. We will discuss this
particular choice of boundary conditions in Chapter 4.

Having illustrated a possible approach to modelling flow in the blood – hep-
atocytes – bile system, we now continue by presenting governing equations for
fluorescent tracer transport.

2.4.2 Blood Compartment
In 3D, we model the blood compartment as an axisymmetric deformable tube
of variable radius R(S)(t, z) and length L. In 1D, only the length dimension
constitutes the computational domain. The radius is accounted for in the 1D
equations containing vessel cross-section area A(S). The governing equations for
the transport of the tracer mixture read

∂

∂t

(︂
A(S)C(S)

α

)︂
+ ∂

∂z

(︂
ω(S)
α A(S)U (S)C(S)

α

)︂
− k(S)

α

∂2

∂z2

(︂
A(S)C(S)

α

)︂
=
⎛⎝κ(1)

f + κ
(2)
f

(Kf + A(H)C
(H)
α,1 )(Kf + A(S)C

(S)
α )

⎞⎠(︂A(H)C
(H)
α,1 − A(S)C(S)

α

)︂
,

α = 1, . . . , N,

(2.28)

where k(S)
α is the scalar diffusion coefficient for the α-th component of the mixture,

and the rest of the symbols follows the notation outlined above. The right-hand
side represents the concentration flux at the vessel boundary, namely the uptake
of compounds from blood to hepatocytes by facilitated diffusion.
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2.4.3 Hepatocyte Compartment
Once the tracer mixture enters the hepatocytes, its components possibly undergo
multiple chemical reactions before the final products are secreted into bile. To
account for this, we assume that the α-th component undergoes Mα − 1 reactions

α1 → α2 → · · · → αMα ,

with α1 being the compound entering the hepatocytes and αMα the final product
secreted into bile. We denote by C(H)

α,i the concentration of the intermediate com-
pound αi and, if convenient, we use the vector notation C(H)

α := (C(H)
α,1 , . . . , C

(H)
α,Mα

)T
for all the compounds entering into the α-th compound chain. Using this vector
notation, we can write the ODE for reaction rates collectively as

dC(H)
α

dt = fα, α = 1, . . . , N,

where fα := (fα,1, . . . , fα,Mα) is the vector of reaction rates.
We couple the 0D model described above by viewing the time derivative in the

ODE as a partial derivative, and by adding terms characterizing uptake of tracer
mixture by facilitated diffusion from blood and active secretion of the products
into bile. The final system of equations reads

∂

∂t

(︂
A(H)C

(H)
α,i

)︂
=
⎛⎝κ(1)

f + κ
(2)
f

(Kf + A(S)C(S))(Kf + A(H)C
(H)
α,i )

⎞⎠
×
(︂
A(S)C(S)

α − A(H)C
(H)
α,i

)︂
−

VmaxA
(H)C

(H)
α,i

Km + A(H)C
(H)
α,i

+ fα,i(A(H)C(H)
α ),

i = 1, . . . ,Mα, α = 1, . . . , N,

(2.29)

2.4.4 Bile Compartment
The model for the bile compartment is analogous in structure to the blood
compartment, although the difference in parameter values and consequently also
in dominant transport mechanisms is notable (cf. discussion in Section 2.1.1).
The governing equations in this compartment read

∂

∂t

(︂
A(B)C(B)

α

)︂
+ ∂

∂z

(︂
ω(B)
α A(B)U (B)C(B)

α

)︂
− k(B) ∂

2

∂z2

(︂
A(B)C(B)

α

)︂
=

VmaxA
(H)C

(H)
α,Mα

Km + A(H)C
(H)
α,Mα

, α = 1, . . . , N, (2.30)

Chapter Summary This chapter was devoted to the derivation of a prototype
1D-0D-1D compartment model of the blood – hepatocytes – bile system inside
the liver lobule. We started by formulating 3D governing equations for flow and
transport inside the 1D compartments using the framework of mixture theory.
We then presented a model reduction strategy that we compared to strategies in
reference literature giving different results, pointing out the differences and the
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pitfalls of reference derivations. We then proposed a modification of the approach
from literature that would lead to the same results as our approach. After
briefly presenting models of compound transport via active enzymatic secretion
and facilitated diffusion, we finished by formulating the governing equations
for fluorescent marker transport in the blood – hepatocytes – bile system, and
discussing a simple model of flow by double perfusion.
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Chapter 3

Numerical Experiments

In the following chapter, we present illustrative numerical simulations for the
model presented in Chapter 2. Since that model is still relatively general, we
consider a few particular, simple but representative, scenarios that are appropriate
for the physiological system in question. Extending these into a more general
form should be straightforward, presenting much more a technical difficulty than
a conceptual one.

We will start by recalling the governing equations for the compartment model
along with simplifying assumptions made in the numerical experiments. We will
then describe in detail the numerical implementation of those equations and
discuss possible modifications and improvements. To conclude the chapter, we
will list and comment on the values of parameters used, and present the results of
the numerical experiments.

3.1 Governing Equations
To start with, suppose in what follows that the tracer fluid only has one component
that does not participate in any reactions inside the hepatocytes, implying that
N = 1, M1 = 1 in Equations (2.28) – (2.30), and we can omit corresponding
subscripts in the notation. Furthermore, absence of reactions in hepatocytes means
that fα ≡ 0 in Equation (2.29). Although drastic at first sight, this simplification
actually describes the real transport properties of several fluorescent tracers used
in practice (cf. de Waart et al. [2010] or Mills et al. [1997] among others).

The flow in 1D compartments follows from the double perfusion model described
in Section 2.4.1, and the system of corresponding governing equations (2.27) can
be solved analytically. For clarity, we recall the considered boundary conditions

p(S)
⃓⃓⃓
z=0

= P
(S)
PV , p(S)

⃓⃓⃓
z=L

= P
(S)
CV, p(B)

⃓⃓⃓
z=0

= P
(B)
PV , v(B)

z

⃓⃓⃓
z=L

= 0.

For the purposes of the numerical experiments in this chapter, we have chosen

H(S) = 2, H(B) = 5, G = 1, P
(S)
PV = 4, P

(S)
CV = 1, P

(B)
PV = −2

as parameter values. Their role is purely illustrative. Real-world parameters will
be discussed in Chapter 4. The velocity profiles in blood and bile thus obtained
are shown in Figure 3.1.
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Under the above assumptions, the governing equations for the 1D-0D-1D
transport model, along with the initial and boundary conditions, read

∂

∂t

(︂
A(S)C(S)

)︂
+ ∂

∂z

(︂
ω(S)A(S)U (S)C(S)

)︂
− k(S) ∂

2

∂z2

(︂
A(S)C(S)

)︂
=
⎛⎝κ(1)

f + κ
(2)
f

(Kf + A(H)C(H))(Kf + A(S)C(S))

⎞⎠(︂A(H)C(H) − A(S)C(S)
)︂
,

(3.1)

∂

∂t

(︂
A(H)C(H)

)︂
=
⎛⎝κ(1)

f + κ
(2)
f

(Kf + A(H)C(H))(Kf + A(S)C(S))

⎞⎠
×
(︂
A(S)C(S) − A(H)C(H)

)︂
− VmaxA

(H)C(H)

Km + A(H)C(H) ,

(3.2)

∂

∂t

(︂
A(B)C(B)

)︂
+ ∂

∂z

(︂
ω(B)A(B)U (B)C(B)

)︂
− k(B) ∂

2

∂z2

(︂
A(B)C(B)

)︂
= VmaxA

(H)C(H)

Km + A(H)C(H) ,

(3.3)

C(S)
⃓⃓⃓
t=0

= C(H)
⃓⃓⃓
t=0

= C(B)
⃓⃓⃓
t=0

= 0, (3.4)

C(S)
⃓⃓⃓
z=0

= g(t), k(S) ∂

∂z

(︂
A(S)C(S)

)︂⃓⃓⃓⃓⃓
z=L

= 0, (3.5)

k(B) ∂

∂z

(︂
A(B)C(B)

)︂⃓⃓⃓⃓⃓
z=L

= 0, C(B)
⃓⃓⃓
z=L

= 0. (3.6)

While the arguments behind prescribing the governing equations in this specific
form have been discussed at length in Chapter 2, we still need to justify, or at
least motivate, the choice of initial and boundary conditions.

As initial conditions, we prescribe zero concentration in all compartments at
t = 0 in Equation (3.4). This is the natural choice given the real-world context of
the model.

The inlet (z = 0) boundary condition in the blood compartment is given by
a prescribed input concentration profile, representing the time evolution of the
concentration of the injected tracer. The concentration profiles that are usually
prescribed are presented below.

1. The square impulse translates to a uniform concentration profile in a chosen
time window and is expressed mathematically as

gα(t) = c0χ[t0,t1](t), c0 > 0, t0, t1 ∈ [0, T ].

2. The Gaussian impulse has the familiar form

gα(t) = c0
1

σ
√

2π
exp

[︄
−(t− αt0)2

(2σ2)

]︄
, c0, σ, α > 0, t0 ∈ [0, T ].
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3. The arterial input function (AIF) approximates the arterial pulse and,
according to Parker et al. [2006], has the form

gα(t) = c1(t) + c2(t) + α
exp (−βt)

1 + exp [−s(t− τ)] ,

ci(t) = Ai

σi
√

2π
exp

[︄
−(t− Ti)2

(2σi)2

]︄
, i = 1, 2,

A1, A2, σ1, σ2, α, β, s > 0, T1, T2, τ ∈ [0, T ].

4. The most realistic option is to use interpolated experimental data.

Illustrative plots of the above input concentration profiles are in Figure 3.2. Even
though the choice of parameters was a mere matter of convenience, we list the
parameter values here for reference:

• step/square impulse: c0 = 1, t0 = 0.05, t1 = 0.25,

• Gaussian impulse: c0 = 0.125, σ = 0.05, α = 1, t0 = 0.15,

• AIF: A1 = A2 = 0.0375, σ1 = 0.18, σ2 = 7, α = 2.705, β = 4.62, s = 47.56,
T1 = 0.188, T2 = 0.496, τ = 0.23.

At the outlet (z = L), we decided to impose zero diffusive flux. The inter-
pretation of this condition is that we assume that, at the outflow boundary, the
tracer is simply advected with blood into the central vein.

The boundary conditions in the bile compartment are analogous to the blood
compartment, with zero concentration prescribed at the inlet (z = L, which
is opposite to blood because of the different directions of blood and bile flow)
meaning that there is no tracer injected directly into the bile canaliculi.

3.2 Numerical Implementation
The numerical schemes used to find approximate solutions of the system (3.3)
– (3.6) were chosen to be very simple, mainly for implementation convenience
reasons. This has obvious drawbacks in terms of the implementation stability
and efficiency that we will address in more detail in Chapter 4. Nevertheless, the
chosen numerical methods lead to promising proof-of-concept results presented
below.

More specifically, the IBVPs in blood and bile are essentially hyperbolic
equations, which is one of the motivations for using the finite volume method
to solve both, another motivation being that parts of the implementation used
in this thesis were adapted from Boissier et al. [2021]. To approximate the flux
in the equations, we used a combination of a simple upwind flux with a central
difference approximation of the diffusion term. The boundary conditions were
enforced using ghost cells (cf. Boissier et al. [2021], LeVeque [2002]). The equation
in the hepatocyte compartment is essentially an ODE, and was solved via the
Runge-Kutta method of the fourth order. Time-stepping in all numerical schemes
was explicit. These numerical schemes were implemented in Python, without
using any third-party solver libraries, apart from NumPy for vector manipulation.

36



Figure 3.1: Velocity profiles in blood and bile given by the double perfusion model.
On the position axis, 0 µm would correspond to the PV end of the axis, while 1 µm
would correspond to the CV end of the axis. Due to an a priori arbitrary choice of
parameter values, these are purely illustrative, but their relation to real-world values
will be discussed in Chapter 4.

Figure 3.2: Different input concentration profiles.
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We chose this rather low-level approach due to long-term aims of the numerical
implementation discussed in Chapter 4. To test the implementation, numerical
solutions obtained with it were compared to analytical results in special scenarios,
as we show in Appendix B.

Since the problems in the three compartments are coupled, the same has to be
true for the individual solvers. In particular, the right-hand side of the equation in
each compartment depends on the concentration in the compartment, as well as
the concentration in the neighboring compartment. Thus, at each time step, the
solver takes two inputs – the concentration in the compartment at the previous
time step, and the most up-to-date concentration in the neighboring compartment,
as described in Algorithm 1. A straightforward physical interpretation of this
algorithm is that the sequence of solver steps corresponds to the compound
passing progressively from blood through hepatocytes into bile. In the algorithm,
FVMStep denotes the method that runs one step of the finite volume solver, and
RungeKuttaStep the method that runs one step of the ODE solver.

Algorithm 1 Numerical solution of the system (3.3) – (3.6).
INPUT: blood inlet concentration profile g(t)
C(S)

⃓⃓⃓
t=t0

:= 0, C(H)
⃓⃓⃓
t=t0

:= 0, C(B)
⃓⃓⃓
t=t0

:= 0
for n = 1, . . . , N do

C(S)
⃓⃓⃓
t=tn
← FVMStep

(︃
C(S)

⃓⃓⃓
t=tn−1

, C(H)
⃓⃓⃓
t=tn−1

)︃
C(H)

⃓⃓⃓
t=tn
← RungeKuttaStep

(︃
C(H)

⃓⃓⃓
t=tn−1

, C(S)
⃓⃓⃓
t=tn

)︃
C(B)

⃓⃓⃓
t=tn
← FVMStep

(︃
C(B)

⃓⃓⃓
t=tn−1

, C(H)
⃓⃓⃓
t=tn

)︃
end for

OUTPUT:
{︃
C(S)

⃓⃓⃓
t=tn

}︃N
n=1

,
{︃
C(H)

⃓⃓⃓
t=tn

}︃N
n=1

,
{︃
C(B)

⃓⃓⃓
t=tn

}︃N
n=1

3.3 Results
In this section, we present results of the numerical simulations for various examples
of parameter setup and discuss the observed behavior of the compartment model.

We chose to model two slightly different scenarios, to which we refer as
Scenario 1 and Scenario 2 in what follows. In Scenario 1, we set the facilitated
diffusion parameters to κ

(1)
f = 1 s−1, κ(2)

f = 1 AUµm2/s, Kf = 0.05 AUµm2 and
the active secretion parameters to Km = 0.5 AUµm2, Vmax = 1 AUµm2/s, whereas
in Scenario 1, we set the facilitated diffusion parameters to κ(1)

f = 1× 10−4 s−1,
κ

(2)
f = 5× 10−3 AUµm2/s, Kf = 0.05 AUµm2 and the active secretion parameters

to Km = 0.02 AUµm2, Vmax = 2.5 AUµm2/s. The common parameters for both
scenarios are listed in Table 3.1.

For Scenario 1, a step input function was used. For Scenario 2, we ran three
simulations 2a, 2b, 2c for the step input function, the Gaussian input function,
and AIF respectively. The time-space plots of solutions for all four simulations
are shown in Figures 3.3 – 3.6. Although the parameters used in the scenarios

38



Table 3.1: Simulation parameter values common to Scenario 1 and Scenario 2.

Quantity Symbol Value

General

Time step (s) ∆t 5× 10−5

Initial time (s) t0 0
Final time (s) T 1
Space step (µm) ∆z 0.02
Lobule radius (µm) L 1
Blood compartment

Vessel radius (µm) R(S) 1
Correlation coefficient ω(S) 1
Diffusivity (µm2 s−1) k(S) 3
Bile compartment

Vessel radius (µm) R(S) 1
Correlation coefficient ω(S) 1
Diffusivity (µm2 s−1) k(S) 3

serve merely to illustrate the model output, we can still try to provide possible
physiological interpretations of the solution behavior.

Scenario 1 is represented in Figure 3.3. Here, the uptake and secretion in
hepatocytes are the dominant mechanisms. Indeed, as soon as the compound is
injected into blood and starts diffusing along the PV-CV axis, non-zero concen-
trations in bile appear almost immediately. The concentration in bile is relatively
uniform in space, which suggests that the uptake and secretion mechanisms are
saturated everywhere. This motivates the choice of lower values for exchange
parameters to investigate behavior in cases where uptake and secretion are not
necessarily dominant.

From Figure 3.4, we clearly see that the uptake and secretion are indeed no
longer dominant in Scenario 2a. This is manifested by a slower decrease in concen-
tration along the PV-CV axis in blood, as well as the slower rise in concentrations
in bile. After some time, the exchange mechanisms get saturated, but only in
the pericentral region. Similarly to Scenario 2a, non-trivial concentration in bile
appears in two “waves” in Scenario 2b (cf. Figure 3.5). However, the first “wave”
is considerably larger than in Scenario 2a. In Figure 3.6, representing Scenario 2c,
we only see one “wave” of non-trivial concentration in bile, which is in contrast
with Scenarios 2a and 2b. This “wave” is then followed by a progressive saturation
of the uptake and secretion mechanisms caused by the longer tail of the AIF. This
saturation is relatively uniform, but is slower than in Scenario 1 due to lower
uptake and secretion rates.

We can also see that while concentrations in bile are lower by approximately
an order of magnitude compared to concentrations in blood in Scenario one, this
difference is of up to four orders of magnitude in Scenario 2. This is due to the
lower values of exchange rates, meaning, that less of the compound actually gets
across the blood – hepatocytes and hepatocytes – bile interfaces.
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As a final remark, we recall and emphasize that the purpose of the numerical
experiments presented above was to illustrate different behaviors of the compart-
ment model. The results presented here have little pertinence to a real-world
human or animal liver lobule. Nevertheless, the interpretation of the results for a
more realistic setup would be analogous, the core being the identification of the
dominant transport mechanisms and their impact on the solution behavior.

Chapter Summary This chapter illustrated the behavior of the previously
presented compartment model by several numerical experiments. These have
shown that, based on the choice of parameter values in the model, different
transport mechanisms among advection, diffusion, active secretion, and facilitated
diffusion can be interpreted as dominant. This aspect of the solution behavior
can be used in the future to calibrate the model parameters to fit a real-world
experimental setup.

Figure 3.3: Time-space solution plot for Scenario 1. We can see that, in this scenario,
the uptake and secretion in hepatocytes are the dominant mechanisms. Once the
compound is injected into blood and starts diffusing along the PV-CV axis, non-zero
concentrations in bile appear almost immediately. The concentration in bile is relatively
uniform in space, which suggests that the uptake and secretion mechanisms are saturated
everywhere.
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Figure 3.4: Time-space solution plot for Scenario 2a. Compared to Scenario 1 (cf.
Figure 3.3), the uptake and secretion are no longer dominant, which is apparent from
the slower decrease in concentration along the PV-CV axis in blood, as well as the
slower rise in concentrations in bile. After some time, they get saturated, but only in
the pericentral region.

Figure 3.5: Time-space solution plot for Scenario 2b. Similarly to Scenario 2a (cf.
Figure 3.4), non-trivial concentration in bile appears in two “waves”. However, the first
“wave” is considerably larger than in Scenario 2a.

41



Figure 3.6: Time-space solution plot for Scenario 2c. Contrary to Scenarios 2a (cf.
Figure 3.4) and 2b (cf. Figure 3.5), we only see one “wave” of non-trivial concentration
in bile. This “wave” is then followed by a progressive saturation of the uptake and
secretion mechanisms caused by the longer tail of the AIF. This saturation is relatively
uniform, but is slower than in Scenario 1 due to lower uptake and secretion rates.
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Chapter 4

Discussion and Outline of Future
Work

4.1 Modelling Assumptions
The liver lobule, like virtually all physiological systems, is an extremely complex
system. In modelling its behavior, numerous assumptions had to be made, and
the choice of these assumptions is in no way unique.

4.1.1 Model Geometry
First, the compartment model proposed in this thesis models the PV-CV axis as
one straight line, along which there is a blood vessel, a row of hepatocytes, and a
bile canaliculus. Considering the complexity of the vascular and biliary networks
in the real lobule, this is obviously a crude over-simplification of the actual system
geometry. Nevertheless, there are several ways of extending the modelling and
numerical results obtained in this simplified setting to more realistic, and thus
more complex, geometries.

One consists in localizing the model scope to network branches instead of the
entire PV-CV axis. In their simulation of micro-circulation and transport inside
liver lobules, Boissier et al. [2021] and Dichamp et al. [2023] solve 1D governing
equations (under the assumption of stationary laminar flow of a Newtonian fluid in
a cylindrical vessel these yield the well-known Poiseuille flow) in individual vascular
network branches and match them at bifurcations according to appropriate rules.
Similarly, the compartment model presented in this thesis could be adapted to
more complex lobule geometries by restricting the governing equations (3.1),
(3.2), and (3.3) to simple segments of the particular geometry and subsequently
matching the solutions using appropriate boundary conditions.

This point of view is complicated by the fact that, in a realistic lobule geometry,
the blood and bile networks are a priori different. While this is an inconvenience
in terms of numerical implementation of the model, it is not a conceptual issue.
Furthermore, this approach favors separate treatment of the hepatocyte compart-
ment by individual cells. In addition to being more realistic, it therefore leads
itself naturally to cooperation with cellular models of liver tissue.

Another way of extending the proposed model is to re-interpret the current
model geometry as an effective representation of the PV-CV axis across the lobule.
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For this approach, rather than considering the detail of vessel networks, we assume
that the lobule cross-section is radially symmetric, which is reasonably close to
the hexagonal cross-section geometry and more convenient for the presentation
of the approach. In this setting, the 1D-0D-1D compartment model can be
viewed as a reduced model of the radially symmetric lobule in the radial direction,
corresponding to the PV-CV axis. The model parameters would then represent
effective values of their real-world counterparts, capturing both the compartment
structure and properties averaged over the corresponding circular radius on the axis.
The basis for this point of view is already present in the model, in the form of double
perfusion governing equations for flow. Instead of exact vascular tree geometries,
these equations consider the blood and biliary networks as coupled porous media
described by the permeabilities that implicitly carry information about network
structure. Although very coarse on the microscopic level, this approach leads
naturally to multi-scale models and methods such as homogenization, as used for
example by Rohan et al. [2021a].

In deciding which of these two approaches is preferable, available data as well
as intended use of results have to be taken into account. Ideally, a correspondence
between the approaches should be designed, so that they can coexist and commu-
nicate, thus making the extension applicable to a multiscale model, for example
of the entire liver.

4.1.2 Dimensional Analysis
The aim of numerical experiments presented in Chapter 3 was mainly to show
a proof-of-concept numerical implementation of the compartment model and to
illustrate solution behavior in a few particular cases. Hence, values of simulation
parameters were chosen with little regard for the real-world lobule, focusing rather
on the direct impact of parameter value choice on the behavior of the model.
Furthermore, the task of choosing realistic parameter values is not completely
straight-forward because, due to the microscopic nature of the modeled system,
parameter values are often not available at all, or have relatively wide ranges.
For reference, we provide some representative values of key parameters, or their
estimates, used in other studies in Table 4.1.1 Since the long-term goal is to
reproduce results of experiments on mice, the values provided are relevant to the
mouse liver lobule.1

With these concrete parameter values, we can in particular assess the system
dimensions and confront them with the model assumptions described in the
previous chapters. To do so, we will compute several dimensionless constants
characterizing fluid behavior, namely

• the Knudsen number Kn defined by

Kn = Ma
Re

√︃
γπ

2 ,

1Boissier [2018] in fact uses arbitrary values of diffusion coefficients for numerical simulations
in bile. However, the value given in Table 4.1 is presented as a reference for diffusion in blood.
We re-use this value for bile, based on assumption of similar properties of the two fluids.

1Li et al. in fact models human biliary system. However, we suspect that properties such as
density and viscosity should not differ significantly between the bile of mice and men.
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Table 4.1: Representative values of model parameters for a realistic liver lobule.

Quantity (unit) Value Reference

General

Lobule radius (µm) 250 Boissier [2018]
Blood compartment

Vessel radius (µm) 3.61 Boissier [2018]
Density (kg m−3) 1054 Ahmadi-Badejani et al. [2020]
Viscosity (mPa s) 1.3 Boissier [2018]
Velocity (µm s−1) 60 Boissier [2018]
Diffusivity (µm2 s−1) 150 Boissier [2018]
Bile compartment

Vessel radius (µm) 0.25 Meyer et al. [2017]
Density (kg m−3) 1000 Li et al.
Viscosity (mPa s) 1 Li et al.
Velocity (µm s−1) 0.785 Meyer et al. [2017]
Diffusivity (µm2 s−1) 150 Boissier [2018]1

Ma being the Mach number, Re the Reynolds number (see below), and γ is
the ratio of specific heats. The Knudsen number is used to assess whether a
given system can be modelled reasonably well by equations of continuum
mechanics, or whether a discrete approach using molecular dynamics is
necessary (cf. [Laurendeau, 2005, Section 16.2]). The Mach number is
defined as the ratio of the characteristic fluid velocity and the speed of the
sound in the fluid.

• The Reynolds number Re defined by

Re = ρvL

µ
,

where ρ is the fluid density, µ is its (dynamic) viscosity, v is the characteristic
fluid velocity, and L the characteristic length. The Reynolds number is used
to estimate turbulent behavior. Namely, for small Reynolds numbers, the
turbulence is virtually non-existent, and we can assume laminar flow.

• The Péclet number Pe defined by

Pe = vL

k
,

where k is the diffusivity coefficient of the fluid and v, L are as above. The
Péclet number is used to characterize the relative dominance of advection
and diffusion mechanisms in compound transport problems.

The values of the above-mentioned dimensionless numbers are

• Kn ≈ 4.85× 10−6, Re ≈ 0.012, Pe ≈ 100 in blood,
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• Kn ≈ 3.94× 10−6, Re ≈ 1.96× 10−4, Pe ≈ 1.3 in bile.

In both cases, Kn≪ 10, which means that both blood and bile compartments can
be modelled using continuum mechanics. This serves as an a posteriori validation
of the approach used throughout this thesis. Similarly, Re≪ 2300 in both cases,
so an assumption of laminar flow in Section 2.4.1 is valid. The values of the Péclet
number differ significantly in blood and bile. They suggest that while transport
in blood is advection-dominated, it is diffusion dominated in bile. This further
supports experimental studies of Vartak et al. [2021b] suggesting that bile salts
are transported by diffusion in bile canaliculi.

Additionally, we can compute values of ε = R/L from Section 2.2.3. Using
values from Table 4.1, we get ε ≈ 0.014 in blood and ε ≈ 0.001 in bile, which
means that the modelling assumption ε≪ 1 is valid in both compartments.

4.1.3 Boundary Conditions
In specifying the model setup used in numerical experiments in Chapter 3, we
imposed boundary conditions for both double perfusion flow and compound
transport. Here, we discuss the choice of boundary conditions briefly and outline
alternative possibilities.

First, for the double perfusion, we prescribed pressure values at both ends of
the domain in blood, and in bile we prescribed the pressure at the periportal end
and imposed a zero velocity at the pericentral end. The reasoning behind this
choice is that, in blood, calculating flow from pressure gradients is commonplace in
this type of model, usually by using some variation of Poiseuille flow (cf. Boissier
et al. [2021]). As for bile, zero velocity at the pericentral end is connected to
the hypothesis that bile originates in the lobule and flows in the direction from
the central vein towards the portal vein, hence no inflow is expected at the
pericentral end. We decided to prescribe a pressure value at the periportal end of
the computational domain to emphasize the difference between pressure values in
blood and bile that are at the core of the expected flow behavior. A reasonable
alternative to this choice would be to prescribe bile velocity at the pericentral
end, provided that accurate measurements of periportal bile duct velocities are
available.

Second, the choice of boundary conditions for compound transport could follow
the choices established in literature, mainly because the models there only consider
one of the competing transport mechanisms (advection for Boissier et al. [2021],
diffusion for Vartak et al. [2021b]). If only advection is considered, then an inlet
boundary condition is sufficient. The input concentration profile in blood and
zero concentration input in bile are obvious choices here. On the other hand,
Vartak et al. [2021b] consider transport purely by diffusion in bile and impose a
homogeneous Neumann (i.e. zero-gradient) condition at both ends of the PV-CV
axis. If both advection and diffusion are considered, the homogeneous Neumann
condition is different from the zero-gradient condition. The homogeneous Neumann
condition can be interpreted as equating the diffusive flux to the advective term,
while the zero-gradient condition implies that there is no diffusion at the ends of
the domain and the transport is purely advective there. Since it is reasonable
to assume that the transport in periportal bile ducts is advection dominated, we
chose the zero-gradient boundary condition.

46



4.2 Choice of Numerical Methods
As outlined in Section 3.2, the finite volume schemes used to solve the equations in
the 1D compartments were of first order in both time and space, with an explicit
time-stepping, an upwind flux for the diffusion term, and a central difference
approximation for the diffusive term. This is indeed a very simple choice and
has its drawbacks. The first is relatively low precision, necessitating small space-
and time-steps to capture solution details. Other than that, the presence of the
diffusive term in combination with the explicit time-stepping makes the scheme
only conditionally stable (cf. LeVeque [2002]), which leads to the need for very
small time-steps even for a relatively coarse space resolution, as can be seen from
Table 3.1.

Higher precision could be obtained using space discretizations of higher order,
as done by Boissier et al. [2021]. However, as Boissier et al. [2021] point out, this
introduces numerical diffusion into the scheme, which is partially visible even
in the first-order scheme, as explained in Appendix B. The issue of numerical
diffusion can be overcome by using slope limiters (cf. LeVeque [2002], Boissier
et al. [2021]).The stability issue introduced by the diffusion term is best treated
by using semi-implicit or implicit time-stepping. These issues are therefore purely
technical, with plenty of existing research, and were not treated as a part of this
thesis to keep the focus on methods of modelling biophysical phenomena.

Before moving on, we briefly remark on the fact that the code for the numerical
experiments was implemented directly, without using any solver libraries. Other
than being an insightful programming exercise, this was motivated by the long-
term goal of embedding the solver for this compartment model into a more complex
simulation codebase that calls for a more low-level approach.

4.3 Suggestions for Further Research
The work presented in the thesis was carried out in part in cooperation with the
SIMBIOTX team at Inria Saclay Ile-de-France. The team specializes in multiscale
models in system medicine, one of the chief aims being to develop digital twins
of these systems. Since the initial stages of the project, part of which is this
thesis, had a long-term goal of creating a model of transport inside liver micro-
architecture that would be sufficiently detailed and descriptive, but also efficient
to solve and convenient to implement and embed into a larger ensemble of models
constituting together the digital twin of the human liver. The proof-of-concept
compartment model is an initial step on this long and fairly ambitious journey.

The following steps should include fine-tuning the model parameters in order
to make the simulation results replicate observed experimental behavior. As
mentioned in the preceding sections, this is not a straight-forward task due to
lack of exact parameter values. This step would therefore consist in carrying out
sensitivity analysis for parameters where realistic ranges are known, and trying to
fit parameters with unknown values with the help of experimental data. Another
task would consist in revising the numerical implementation of the model and
re-implementing it into the codebase maintained by the SIMBIOTX team.

Finally, if the model is to be a part of a liver digital twin, its outputs should
communicate efficiently with models on different scales, from cell models to whole-
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body circulation models. This can be achieved in several ways, using ideas such
as the effective radial model outlined above and homogenization techniques.

Chapter Summary This chapter presents discussions on several points ad-
dressed in previous chapter. First, we commented on the possible extensions of
the currently proposed model to a real-world lobule setting, either by modifying
and applying it to individual branches of sinusoidal and biliary networks as well
as single hepatocytes, or by taking a more multiscale approach, starting with
effective interpretation of model parameters going through to more sophisticated
methods such as homogenization. We then provided a coarse dimensional analysis
of the real-world liver lobule, effectively validating certain modelling assumptions
made previously. After a brief discussion of the possible improvements of the
numerical implementation of the model presented here, we outlined the long-term
goals of research in this particular topic.
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Conclusion

– Alors tu t’es bien amusée ?
– Comme ça.
– T’as vu le métro ?
– Non.
– Alors, qu’est-ce que t’as fait ?
– J’ai vieilli.

Queneau [1959]

The main goal of this thesis was to derive a reduced compartment model of
fluorescent marker transport in the blood – hepatocytes – bile system inside the
liver lobule. The model should describe the system in sufficient detail to reproduce
all relevant real-world phenomena, while remaining computationally feasible.

Below, we briefly summarize the key points, results, and outlook of the thesis.

• After a general outline of the physiological context of flow and transport in
liver micro-architecture we have established the liver lobule as the functional
unit of interest. Chemical compounds enter the lobule via branches of the
portal vein, and flow along sinusoids towards the central vein. Along the
way, they are taken up by neighboring hepatocytes, possibly metabolized,
and secreted into bile canaliculi. (cf. Section 1.2)

• For the specific case of fluorescent tracers, the uptake by hepatocytes occurs
by facilitated diffusion, while secretion into bile is active. (cf. Section 1.3)

• We have formulated governing equations for flow and transport in blood
and bile for a multi-component Class I mixture in 3D to represent the full
description of the blood and bile compartments. (cf. Section 2.1.2)

• We have derived 1D reduced forms of these equations using an approach
different from the one used in Formaggia et al. [2009]. After exposing
possible shortcomings of the approach of Formaggia et al. [2009], we have
suggested its modification that would lead to reduced equations equivalent
to ours. (cf. Section 2.2)

• We have presented models of exchanges between vessels and surrounding
cells by active transport and facilitated diffusion, as derived in Keener et al.
[2009]. (cf. Section 2.3)

• We have formulated a 1D-0D-1D compartment model for the blood – hepa-
tocytes – bile system in a simplified, proof-of-concept geometry. (cf. Section
2.4)
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• The behavior of the compartment model has been illustrated by several nu-
merical experiments, to which we have provided prototypical interpretations
extensible to a more realistic setting. (cf. Section 3.3)

• The main goals for future work in this direction include extending the model
to a real-world setting and embedding it into larger multiscale models of
liver. (cf. Section 4.3)

Out of the topics treated in Chapter 4, most pertain to tailoring the model
to realistic scenarios. One of the main subjects of interest of the SIMBIOTX
team at Inria Saclay Ile-de-France is the development of multiscale models of
biological systems and digital twins with applications in clinical practice. This
highlights the current stream of efforts to enhance cooperation among researchers
from different fields to develop a multidisciplinary approach to complex issues
such as liver carcinoma.

Although these efforts are not necessarily new, they are still far from established
methodology frameworks, which makes research in a multidisciplinary environment
very dynamic and positively challenging. Apart from reasonable expertise in their
specific field (e.g. mathematical modelling of continuous media), a researcher in a
multidisciplinary environment needs to be able to communicate with peers from
related fields (e.g. medicine, toxicology) in sufficient detail to understand the
possibilities of his contribution to their work, and to use results in those fields
to make informed decisions about research in his field. Communication across
diverse specializations in a multidisciplinary research group is a nontrivial skill,
that is however indispensable for such a research group to function efficiently and
produce high quality results.

In addition to its research results, this thesis serves the author as an intro-
duction into the above described world of multidisciplinary medical research and
applications of mathematical modelling in a biophysical context. It has broadened
the author’s vision of applied scientific research, and has helped him to gain a
lateral skill set beyond mathematical modelling in physics, which is an undeniable
asset in the modern world of science.
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Appendix A

Analytical Resolution of the
Equations for Double Perfusion

For the sake of completeness as well as for future reference, we solve the 1D
equations for double perfusion, modelling for example the flows in blood and bile.
The equations themselves are adapted from Rohan et al. [2021b]. We will describe
the solution process in detail here, complementing it by several illustrative plots.

We start by assuming that flow in both blood and bile compartments is
stationary and can be described as porous medium flow using Darcy’s law. If we
denote the permeabilities in blood and bile as H(S) and H(B) respectively, the
pressures as p(S) and p(B) respectively, and finally the permeability of the two
compartments as G, then the equations for flow read⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− ∂

∂z

(︄
H(S)∂p

(S)

∂z

)︄
+G

(︂
p(S) − p(B)

)︂
= 0,

− ∂

∂z

(︄
H(B)∂p

(B)

∂z

)︄
+G

(︂
p(B) − p(S)

)︂
= 0,

(A.1)

assuming no external forces are exerted on the system.
To solve this system (A.1) analytically, we start by rewriting it in vectorial

form as
− ∂

∂z

(︄
H
∂p

∂z

)︄
+ Gp = 0, (A.2)

where we have defined

H :=
[︄
H(S) 0

0 H(B)

]︄
, G := G

[︄
1 −1
−1 1

]︄
, p :=

[︄
p(S)

p(B)

]︄
.

Next, we introduce the substitution

q := H
1
2 p, W := H− 1

2GH− 1
2 ,

under which Equation (A.2) transforms to

−∂
2q

∂z2 + Wq = 0.

Solving the above equation analytically is reasonably straightforward. We start
by transforming it into the eigenbasis of W, proceeding then to solve the two
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resulting scalar linear ODEs. The final result, in original variables, reads

p = H− 1
2
[︂
(az + b)r1 +

(︂
ce

√
λ2z + de−

√
λ1z
)︂

r2
]︂
,

where λi, ri are eigenvalues and eigenvectors of W respectively. The integration
constants a, b, c, d ∈ R must be determined from the boundary conditions. It can
be readily shown that

λ1 = 0, λ2 = G
(︃ 1
H(S) + 1

H(B)

)︃
> 0,

and one of the possible choices of eigenvectors is

r1 =
[︄√

H(S)
√
H(B)

]︄
, r2 =

⎡⎣−√︂ 1
H(S)√︂
1

H(B)

⎤⎦ .
The velocity fields are then given by Darcy’s law as

v(S,B)
z = −H(S,B)∂p

(S,B)

∂z
.

There are multiple ways of prescribing boundary conditions to this system.
Several possibilities are illustrated in Figure A.1. The exact boundary conditions
were

• p(S)
⃓⃓⃓
z=0

= 0.01, v(S)
z

⃓⃓⃓
z=L

= 0, v(B)
z

⃓⃓⃓
z=0

= 0, p(S)
⃓⃓⃓
z=0

= 0.02 in Figure A.1a,

• p(S)
⃓⃓⃓
z=0

= 2, p(S)
⃓⃓⃓
z=L

= 3, v(B)
z

⃓⃓⃓
z=0

= v(B)
z

⃓⃓⃓
z=L

= 0 in Figure A.1b,

• v(S)
z

⃓⃓⃓
z=0

= v(B)
z

⃓⃓⃓
z=0

= 0, p(S)
⃓⃓⃓
z=L

= 3, p(B)
⃓⃓⃓
z=L

= 2 in Figure A.1c.

In all above plots, we set model parameters to L = 10, H(S) = 2, H(B) = 5, G = 1.
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(a) p(S)
⃓⃓
z=0 = 0.01, v

(S)
z

⃓⃓⃓
z=L

= 0, v
(B)
z

⃓⃓⃓
z=0

= 0, p(S)
⃓⃓
z=0 = 0.02

(b) p(S)
⃓⃓
z=0 = 2, p(S)

⃓⃓
z=L

= 3, v
(B)
z

⃓⃓⃓
z=0

= v
(B)
z

⃓⃓⃓
z=L

= 0

(c) v
(S)
z

⃓⃓⃓
z=0

= v
(B)
z

⃓⃓⃓
z=0

= 0, p(S)
⃓⃓
z=L

= 3, p(B)
⃓⃓
z=L

= 2

Figure A.1: In the plots above, we see pressure distributions and velocities in the
blood and bile compartments given by the double perfusion model from Equation (A.1)
for different boundary conditions. The parameters used in these examples were L = 10,
H(S) = 2, H(B) = 5, G = 1, and the boundary conditions are specified below each plot.
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Appendix B

Test Cases for
Advection-Diffusion-Reaction
Solvers

As the numerical implementation of the compartment model contains solver
algorithms explicitly instead of relying on calls to third-party solver libraries,
it is crucial to have a series of tests verifying that the algorithms are indeed
implemented correctly. These tests take the form of special problem settings with
analytic solutions, so that we can compare the computed result with the expected
analytical expression.

Since the implementation of the ODE solver is relatively straightforward, in
the following sections we concentrate rather on the finite volume solver used
in the Blood and Bile compartments. We look for analytic solutions of the
advection-diffusion-reaction equation

∂c

∂t
+ v

∂c

∂x
−D∂2c

∂x2 = f (B.1)

under several simplifying assumptions that lead to different analytically solv-
able scenarios, together verifying the correctness of implementation of all key
components of the model.

For the sake of simplicity, we solve all initial-boundary-value problems (IBVPs)
below on (t, x) ∈ R+ × (0, 1).

B.1 Advection-Reaction
We start with the case D = 0, where Equation (B.1) reduces to an advection-
reaction equation. At the inlet, the boundary condition is given by an input
function g(t), following the setting of the actual model. When prescribing explicit
forms of the right-hand side f , motivated by the two asymptotic regimes of
Michaelis-Menten kinetics, we consider

1. a constant right-hand side f(c(t, x), t, x) := f1 ∈ R,

2. a linear right-hand side f(c(t, x), t, x) := f1c(t, x), f1 ∈ R.
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The initial condition is set to allow for a simple analytic solution, so that the
IBVP reads

∂c

∂t
+ v

∂c

∂x
= f1 in R+ × (0, 1), c|t=0 = g

(︃
−x
v

)︃
+ f1

x

v
, c|x=0 = g(t)

for the constant right-hand side, and

∂c

∂t
+ v

∂c

∂x
= f1c in R+ × (0, 1), c|t=0 = g

(︃
−x
v

)︃
ef1

x
v , c|x=0 = g(t)

for the linear right-hand side. The corresponding analytic solutions (adapted from
the work of Boissier et al. [2021]) are

c(t, x) = g
(︃
t− x

v

)︃
+ f1

x

v
, c(t, x) = g

(︃
t− x

v

)︃
ef1

x
v ,

respectively.
The results of the two test cases for the advection-reaction scenario are shown

in Figures B.1 and B.2. Parameters used in these test simulations were

• time step: 0.001,

• space step: 0.01,

• v = 1,

• f1 = 1 (corresponding to f = f1 and f = f1c in the two scenarios),

• g(t) = e−10(t−3)2 .

We can see that the numerical solution reproduces the analytical expression
considerably well in both cases. However, the correspondence is not perfect, and
the two differ mostly in regions where the solutions undergo faster variations. This
is a minor issue that can be overcome by either refining the spatial and temporal
discretizations, or by using a higher order numerical scheme, as presented by
Boissier et al. [2021].

B.2 Steady-State Limit of Advection-Diffusion
In the model presented in this thesis, we add a diffusion term on top of the
transport equations solved, e.g., by Boissier et al. [2021], which means that the
above tests do not serve as complete validation of the solver implementation. To
test the diffusion element in the simulation code, rather than comparing against
a fully analytic solution, we study the asymptotic behavior of a solution to the
homogeneous advection-diffusion equation whose steady state is expected to be
constant. That is, we solve numerically the IBVP

∂c

∂t
+ v

∂c

∂x
−D∂2c

∂x2 = 0 in R+ × (0, 1),

c|t=0 = 5
2 − 3

⃓⃓⃓⃓
x− 1

2

⃓⃓⃓⃓
, c|x=0 = 0, D∇c · n|x=1 = 0,
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expecting that, asymptotically, the solution would tend to 1 on the whole interval
(0, 1). The initial condition is chosen for illustrative purposes, as it allows to
observe the main properties of the numerical scheme used (cf. discussion of results
below). The boundary conditions are chosen in analogy with the choice made in
the actual compartment model, and we refer to Sections 3.1 and 4.1.3 for a more
detailed discussion.

For the sake of completeness, three test simulations were performed – one
for pure advection, one for pure diffusion, and one for advection-diffusion. The
simulation parameters were set to

• time step: 5× 10−4,

• space step: 0.01,

• v = 1 (v = 0 for pure diffusion),

• D = 1 (D = 0 for pure advection),

and the results of the tests are shown in Figures B.3, B.4, and B.5.
The numerical solutions in all three test cases reproduce the expected behavior,

at least qualitatively. One notable feature, best seen in Figure B.3, is the numerical
diffusion that is inherent to the used scheme, and results in smoothing of the
contour of the initial condition. This effect would be even more prominent for a
scheme of higher order in space, and it is very undesirable in view of the intended
practical application (cf. Boissier et al. [2021]). To overcome numerical diffusion,
slope limiters can be introduced into the numerical schemes to counteract the
diffusive properties of higher-order schemes (cf. discussion by Boissier et al. [2021]
and more extensively LeVeque [2002]).
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Figure B.1: Results of the test for the advection-reaction scenario with constant
right-hand side. As we can see, the numerical and the analytical solutions are reasonably
close for this precision, although there are slight differences, especially in region where
the solutions vary considerably. This is only a minor issue that can be overcome by
using finer discretizations in time and space or a higher order numerical scheme.
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Figure B.2: Results of the test for the advection-reaction scenario with linear right-
hand side. Again, the numerical and the analytical solutions are close except for regions
with faster variation in the solutions. As for the constant case, a finer discretization or
a higher order numerical scheme would help overcome this issue.
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Figure B.3: Steady-state behavior of the numerical solution in a pure advection
scenario. We can see that the overall behavior of the solution is as expected – the initial
condition is merely transported out of the computational domain. We do see however
non-negligible smoothing of the solution due to numerical diffusion. This is an unwanted
effect that can be suppressed by adding slope limiters into the numerical schemes.
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Figure B.4: Steady-state behavior of the numerical solution in a pure diffusion scenario.
The results agree with the expected behavior of a solution to the diffusion equation.
The asymmetry in the solution at t > 0 is given by the difference in boundary conditions
imposed at x = 0 and x = 1.
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Figure B.5: Steady-state behavior of the numerical solution in an advection-diffusion
scenario. We see that the solution is very similar to the pure diffusion test case, but we
can see that the diffusive behavior is enhanced by advective transport, resulting in the
initial condition “disappearing faster” from the computational domain.

66



Appendix C

Source Code Repository

The source code for the simulations presented in Chapter 3 is openly avail-
able on a GitLab repository at Inria. The code is bound to be modified even
after the submission of the thesis, but the state of the repository relevant
to the thesis is stored under the tag v1.0-thesis-submission on the follow-
ing link: https://gitlab.inria.fr/pkottman/bile-compartment-model/-/
tree/v1.0-thesis-submission.

67

https://gitlab.inria.fr/pkottman/bile-compartment-model/-/tree/v1.0-thesis-submission
https://gitlab.inria.fr/pkottman/bile-compartment-model/-/tree/v1.0-thesis-submission

	List of Symbols and Abbreviations
	List of Figures
	List of Tables
	Introduction
	Physiology of Liver Function and Fluorescent Marker Transport
	Liver Organization and Function
	Liver Lobule
	Transport Mechanisms
	Blood-Hepatocyte Interface
	Hepatocyte-Bile Interface
	Effect of Zonation


	Mathematical Modelling of Fluorescent Compound Transport
	3D Model Description
	General Modelling Assumptions
	Mixture Theory Formulation

	Model Reduction
	Reduction of a General Balance Law
	One-dimensional Balance Laws
	Alternative Model Reduction Approaches

	Modelling Transport across Interfaces
	Active Transport
	Facilitated Diffusion

	Compartment Model
	Flow in Blood and Bile: Double Perfusion
	Blood Compartment
	Hepatocyte Compartment
	Bile Compartment


	Numerical Experiments
	Governing Equations
	Numerical Implementation
	Results

	Discussion and Outline of Future Work
	Modelling Assumptions
	Model Geometry
	Dimensional Analysis
	Boundary Conditions

	Choice of Numerical Methods
	Suggestions for Further Research

	Conclusion
	Bibliography
	Appendices
	Analytical Resolution of the Equations for Double Perfusion
	Test Cases for Advection-Diffusion-Reaction Solvers
	Advection-Reaction
	Steady-State Limit of Advection-Diffusion

	Source Code Repository

