
MASTER THESIS

Horizontal scalability for e-mail
delivery in Mailtrain

Department of Distributed and Dependable Systems

Author: Bc. Erik Kučák
Supervisor: prof. RNDr. Tomáš Bureš, Ph.D.

Study programme: Software Systems
Study branch: Dependable Systems

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature, and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I wish to thank my supervisor prof. RNDr. Tomáš Bureš, Ph.D. He has
generously given his time, talents, and advice to assist me in the production of
this thesis. I would also like to thank all my colleagues and friends, who supported
my work and studies. Last but not least, I thank my loving family, without them
nothing would be possible.

Název práce: Horizontální škálovatelnost pro doručování e-mailů v Mailtrainu

Autor: Bc. Erik Kučák

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoucí diplomové práce: prof. RNDr. Tomáš Bureš, Ph.D.

E-mail vedoucího: bures@d3s.mff.cuni.cz

Abstrakt: Mailtrain je samoobslužná aplikace s otevřeným zdrojovým kó-
dem postavená na Node.js, která poskytuje vlastnosti, jako je správa seznamů
odběratelů, segmentace seznamů, vlastní pole, šablony e-mailů, spouštěné a RSS
kampaně atp. Jedná z hlavních nedostatků Mailtrainu je neschopnost horizontálně
škálovat, což má za následek výkonnostní limit při doručování kampaní velmi
velkým seznamem adresátů. Hlavním cílem této práce je rozšířit Mailtrain tak,
aby dovoloval doručovat kampaně (včetně příloh, propojených obrázků a sledování
uživatelů) distribuovaným a horizontálně škálovatelným způsobem. Práce by měla
obsahovat návrh rozšíření, jeho implementaci a vyhodnocení výkonu pro srovnání
rozšíření se stávajícím výkonem Mailtrainu.

Klíčová slova: Horizontální škálovatelnost, distribuovaný systém, Node.js,
doručování e-mailů

Title: Horizontal scalability for e-mail delivery in Mailtrain

Author: Bc. Erik Kučák

Department: Department of Distributed and Dependable Systems

Supervisor: prof. RNDr. Tomáš Bureš, Ph.D.

Supervisor’s e-mail: bures@d3s.mff.cuni.cz

Abstract: Mailtrain is a self-hosted open-source newsletter application built
on Node.js which provides features such as subscriber lists management, list
segmentation, custom fields, e-mail templates, triggered and RSS campaigns, etc.
One of the main shortcomings of Mailtrain is the inability to scale horizontally,
which results in performance limits when delivering campaigns to very large mailing
lists. The main goal of this work is to extend Mailtrain to allow it to handle the
delivery of campaigns (including attachments, linked images, and user tracking) in
distributed and horizontally scalable manner. The thesis should include the design
of the extension, its implementation, and performance evaluation to compare the
extension with the existing performance of Mailtrain.

Keywords: Horizontal scalability, distributed system, Node.js, e-mail delivery

1

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Goals . 5
1.3 Contents . 6
1.4 Sources . 6

2 Mailtrain overview 7
2.1 Database model . 7

2.1.1 List . 8
2.1.2 Campaign . 8
2.1.3 Message . 10
2.1.4 File . 11

2.2 Database schema . 11
2.3 Features . 12

2.3.1 Multiple users . 12
2.3.2 Hierarchical namespaces 13
2.3.3 Subscriber lists management 13
2.3.4 Custom fields . 13
2.3.5 List segmentation . 13
2.3.6 Automation . 13
2.3.7 Campaign e-mail templates 14
2.3.8 Custom reports . 14
2.3.9 Builtin Zone-MTA . 14

2.4 Architecture . 14
2.4.1 Process tree . 16
2.4.2 Services . 17
2.4.3 Sender . 18

2.4.3.1 SenderMaster life cycle 20
2.4.3.2 SenderWorker life cycle 21

2.4.4 PUBLIC server . 22
2.5 Sending e-mail use cases . 24
2.6 Summary of goals . 25
2.7 Source code overview . 25
2.8 Deployment requirements . 26

3 Performance analysis 28
3.1 Overall Sender analysis . 28
3.2 Sender components analysis . 30

3.2.1 SenderMaster analysis . 30
3.2.2 SenderWorker and SMTP server analysis 31

3.3 Summary of Sender bottlenecks 32
3.4 Analysis conclusion . 33

2

4 New architectural design 34
4.1 New database system . 35

4.1.1 Integrating MongoDB into Mailtrain 35
4.1.2 Ensuring data consistency 38

4.2 Distributed Sender . 39
4.2.1 Synchronizer . 41
4.2.2 Scheduler . 43
4.2.3 DataCollector . 44
4.2.4 SenderWorker . 44

4.2.4.1 Life cycle . 44
4.2.4.2 Worker synchronization 46
4.2.4.3 State diagram . 47
4.2.4.4 WorkerSynchronizer 48
4.2.4.5 PlatformSolver 49
4.2.4.6 Correctness testing 49

4.3 HAPUBLIC server . 50
4.4 Modes . 52

4.4.1 Centralized . 52
4.4.2 Distributed . 52

4.5 Source code overview . 52
4.5.1 The current version . 52
4.5.2 Deleted subtree . 54
4.5.3 Updated subtree . 54

4.6 Deployment requirements . 56
4.6.1 Centralized mode . 56
4.6.2 Distributed mode . 56

5 Evaluation 57
5.1 Test data . 57
5.2 Test environment . 57
5.3 The old version . 58

5.3.1 Sender . 58
5.4 The new version . 59

5.4.1 Centralized Sender . 59
5.4.2 Distributed Sender . 60

5.4.2.1 Unsynchronized workers 60
5.4.2.2 Synchronized workers 61

5.5 Comparison of all variants . 62
5.5.1 Evenness of the distribution of messages 64
5.5.2 HAPUBLIC server . 65

5.5.2.1 Simulated version 66
5.5.2.2 Real version . 66

5.6 Evaluation summary . 67

6 Conclusion 69
6.1 Future work . 69

List of Figures 73

3

List of Abbreviations 74

A Attachment 75

4

1. Introduction
1.1 Motivation

Quality marketing is one of the most critical aspects of doing business. E-mail
marketing is an ideal way to get messages straight to the people that matter most
to building business. It could be either an e-commerce business trying to generate
more leads by e-mailing corresponding customers or a blogger sending the latest
content to related readers.

Mailtrain is one of the systems for this purpose. It supports popular features
such as subscriber lists management, list segmentation, custom fields, custom
e-mail templates, triggered and RSS campaigns, etc. All of these features are
popular today and help achieve quality business marketing. It is used by customers
who need a fast, simple, and accessible system.

1.2 Goals
In the current version 2, customers with too many extensive campaigns have

problems with performance. Mailtrain cannot effectively scale on large data
because sending campaigns with too many e-mails simultaneously to subscribers
is slow. The current version is parallel but centralized so that it can run only on
one computer node. If customers want to solve this performance problem, there is
only one possible solution to speed up the system. They have to ensure better
and more efficient hardware where Mailtrain will run. This approach is called
vertical scalability.

The most significant disadvantages of vertical scalability are that it requires
a huge amount of financial investment, greater risk of hardware failure causing
bigger outages, and limited upgradeability in the future [22].

Another significant problem is the availability of services. Some of them require
non-stop correct running, such as sending campaigns, additional sending linked
images when a subscriber opens received an e-mail, and handling subscriber events
(opening received an e-mail, clicking on some e-mail link, etc.). Such services are
called critical services, and a feature of services is called high availability. Since
Mailtrain currently does not support high availability, it may cause significant
problems. The first problem is losing critical data due to unprocessed subscriber
events or incorrect e-mail rendering when Mailtrain is not running. The second
problem is the loss of subscribers due to late e-mail receiving when Mailtrain is
too slow to send a massive amount of campaign e-mails simultaneously.

So this thesis’s first and primary goal is to make Mailtrain horizontally scalable
for sending campaigns with too many e-mails simultaneously and enable this
system to run in a distributed system. It will solve the primary problem of
customers. The second goal is to ensure the high availability of all critical services
that require non-stop running.

5

1.3 Contents
The present thesis explains all the needed technical background for Mailtrain

of the current version, followed by a meticulous analysis of the necessary system
components in terms of their performance. Based on the identified issues, a
novel architecture will be proposed to address the aforementioned problems.
Subsequently, it will be demonstrated that the updated version 3 exhibits notable
performance improvements and enhanced fault tolerance.

Below is described each chapter:

• Chapter 2 - Mailtrain overview This chapter describes the current
version of Mailtrain. It includes all needed database entities, features,
architecture, services, source code overview, and deployment requirements.
Firstly, knowing what Mailtrain provides and how it works for designing a
new and better architecture is crucial.

• Chapter 3 - Performance analysis In the third chapter, there is ana-
lyzed architecture focusing on performance and trying to find all significant
bottlenecks which cause a slowdown while sending too many e-mails simul-
taneously.

• Chapter 4 - New architectural design In the fourth, the most important
chapter, there is explained the new architecture of Mailtrain that solves all
problems using the knowledge gained in the previous chapter.

• Chapter 5 - Evaluation This chapter compares both versions with per-
formance tests on some large data. Then there is pointed out that the new
version can scale horizontally and has significantly increased performance.

• Chapter 6 - Conclusion In the last chapter, this thesis’s total results and
what is still essential to do in the future are summarized.

1.4 Sources
The source code is publicly accessible in the GitHub repository and is also

attached in the thesis attachment A. The repository can be cloned by typing the
command:

1 $ git clone https : // github . com/Riko196/mailtrain . git

6

2. Mailtrain overview
A comprehensive comprehension of Mailtrain is fundamental in identifying

performance bottlenecks and designing a new architecture. This chapter will
delve into the database model, encompassing the fundamental database entities
and their associated database schema. Additionally, the chapter will present an
overview of all supported features, the system’s architecture, the source code
overview, a summary of all required goals, and a brief description of the deploy-
ment requirements needed for using this system.

Notation: throughout the thesis, there is an assumption that the reader has
sufficient technical knowledge about terms such as SMTP server, SMTP protocol
[17], e-mail format, RSS, etc. Mailtrain is written in Node.js platform [13] using
JavaScript language and uses properties of this language [10]. Therefore, this
thesis has no explanation for these properties and terms.

2.1 Database model
To ensure a comprehensive comprehension of the supported features and system

architecture of Mailtrain, a concise depiction of the underlying database model is
presented. This encompasses an elucidation of the fundamental entities and their
relationships that are utilized throughout the system. The following is a list of
the basic database entities, along with a brief description of their roles and the
relationships that exist between them.

• User - represents an authorized entity in the system assigned role with
given permissions and manages all other entities corresponding to those
permissions, such as lists, campaigns, templates, etc. Mailtrain always
contains one unique user named admin with full permissions over the entire
system.

• Subscriber - this entity represents e-mail receiver. Each subscriber belongs
to at least one list.

• List - a group of many subscribers with customizable values fields that can
be assigned to any number of campaigns.

• Campaign - the most important entity of Mailtrain that represents a group
of lists of subscribers that, according to defined rules, receive e-mail defined
by some template.

• Message - represents a record in the database table from which e-mail is
generated for a particular subscriber.

• File - represents a record in the particular database table and the file in the
file system associated with it, which is then used as a report, a campaign
file, a campaign attachment, a campaign e-mail template, or for some other
purposes.

7

• Channel - a group of many campaigns that share common characteristics
(such as a template, newsletter information, etc.).

• Template - represents an e-mail template used by some campaign to render
specific e-mail for one particular subscriber.

• Report - stored information about some specific event that occurred in
Mailtrain.

• Namespace - a set of names to identify and refer to entities. A namespace
ensures that all of a given set of entities have unique names so that they
can be easily identified.

• Send configuration - a setting for sending e-mails that contains information
such as e-mail header, SMTP server, DKIM signing, throttling, etc. Users
can have multiple send configurations and choose which campaign is sent by
which send configuration.

Some entities are less needed than others in this thesis because there is no
direct work with them. It is essential to describe only those that will be used with
more details and technical background.

2.1.1 List
One of the first and basic entities is a list of subscribers used by many other

entities. Users can manually create each list in the admin GUI or import an
appropriate CSV file.

Figure 2.1 depicts the exact definition of all MariaDB tables related to sub-
scriber and list entities. Where subscription__i represents a table of subscribers
for an i-th list, custom_field represents a dynamically added new field for an i-th
list, and lists represents basic information about each created list.

2.1.2 Campaign
The second and most important entity is a campaign with which Mailtrain

mainly works. It is essential to describe information about what data it contains
as a record in the MariaDB database, which types exist, which statuses it has,
and which functions it supports.

In a newsletter application, a campaign is typically defined as a specific e-mail
or series of e-mails that are sent to a targeted audience with a specific goal in
mind.

In Mailtrain, a campaign is created by the user, who designs and develops
the content of the email named as an e-mail template, including the subject line,
body, images, and calls to action. This e-mail template is then used to generate
e-mail specifically for each subscriber. The campaign may be targeted towards
a particular segment of the subscriber list or the entire list, depending on the
goals of the campaign. Then each campaign contains send configuration with
information about the configuration for the SMTP server that sends all these
e-mails.

8

To measure the success of a campaign, Mailtrain provides various metrics,
such as open rates, click-through rates, and conversion rates. These metrics can
be used to track the effectiveness of the campaign and make adjustments to future
campaigns based on the results.

There are four supported types of campaigns supported by Mailtrain:

1. Regular - a classic type of campaign where is required manually set up
a time when a campaign starts delivering. It is the most commonly used
campaign.

2. RSS - a type of campaign that quickly automates the entire system which
listens on a specific defined RSS feed’s URL, and every time a newsletter
appears, it creates a new campaign (RSS_ENTRY type) with the same
subscribers. It starts delivering automatically without any manual work.

3. RSS_ENTRY - a type of campaign not directly visible to a user and
can not be manually created. This campaign is created fully automatically
by some specific RSS campaign when its listener on the RSS feed’s URL
receives information about the campaign for sending.

4. Triggered - a type of campaign that is also automated and similar to an
RSS campaign. The definition of this campaign includes a group of triggers.
A trigger is a listener that has assigned some defined event, and it checks
whether this event happened. Sending of this type of campaign is started
when for some trigger, its event happens (such as five days have passed since
the regular campaign A has been delivered).

To avoid misunderstanding, it is essential to mention that only Regular, RSS_-
ENTRY, and Triggered campaign types can be sent. RSS type represents the
listener, which creates RSS_ENTRY when sending a new campaign.

These statuses of a campaign are defined in Mailtrain (in the brackets, it is
indicated which campaign types are involved):

1. Idle - a campaign has been successfully created, but has not been scheduled
yet. (Regular and RSS_ENTRY)

2. Scheduled - a campaign is scheduled for sending and is waiting for the next
processing. (Regular and RSS_ENTRY)

3. Pausing - sending campaign is waiting for stop but is still sending (Regular
and RSS_ENTRY).

4. Paused - sending of a campaign is paused (Regular and RSS_ENTRY).

5. Sending - a campaign is currently sending (Regular and RSS_ENTRY).

6. Finished - sending of a campaign has been successfully finished (Regular
and RSS_ENTRY).

7. Inactive - a campaign is in inactive status. It is not listening to the RSS
feed’s URL (RSS) or triggers (Triggered).

9

8. Active - a campaign is in active status. It is listening to the RSS feed’s
URL (RSS) or triggers (Triggered).

Figure 2.1 depicts the exact definition of all MariaDB tables related to the
campaign entity.

2.1.3 Message
The third entity that is crucial to describe is a message. Mainly information

about what data it contains as a record in the MariaDB database, which types
exist, which statuses it has, and which functions it supports.

To avoid misunderstanding, it is crucial to explain the difference between the
terms message and e-mail. The term message is a MariaDB table record containing
only primary data for generating one e-mail intended for one subscriber. The
term e-mail means an entirely generated e-mail with all needed data (subject line,
body, addressee, receiver, linked images, attachments, etc.) prepared for sending.

There are five types of messages:

1. Regular - a classic type of message used for sending regular and RSS_-
ENTRY campaigns.

2. Triggered - a type of message used for sending triggered campaigns.

3. Test - a type of message used for testing purposes for each campaign type.

4. Subscription - a type of message used to send an e-mail to a subscriber
when she/he decides to subscribe or unsubscribe herself/himself from a
particular campaign.

5. API_Transactional - a type of message created manually by a user that
is used for a particular purpose.

The message types are further classified based on their frequency of use into
two categories: campaign messages and queued messages. The campaign message
type comprises the regular type, while the queued type includes the remaining
types. This dichotomy arises due to the large volume of campaign messages that
share a specific campaign and necessitates a more optimized and aesthetically
pleasing procedure for their sending. In contrast, queued messages are less
frequently employed, and their sending involves a relatively straightforward and
less optimized procedure in the code. Additionally, messages associated with
triggered campaigns are classified as queued messages, given their infrequent usage
in production, which may lead to confusion.

Each message is always in a precisely defined status. Below are described all
defined statuses:

1. Scheduled - a message is prepared for generating and sending e-mail.

2. Unsubscribed - a message for an unsubscribed subscriber. This status of
a message is used in case some subscriber has unsubscribed himself but has
not been removed from Mailtrain yet. A message in this status is not sent
but automatically ignored during message scheduling.

10

3. Sent - a message has been successfully sent to a particular subscriber.

4. Failed - sending of a message failed with an unrecoverable error on the
Mailtrain side, and a message will not be tried to send again.

5. Bounced - sending of a message failed with an unrecoverable error on
SMTP server size, and a message will not be tried to send again (status
used only by some special SMTP servers).

6. Complained - sending of a message failed with an unrecoverable error on
SMTP server size, and a message will not be tried to send again (status
used only by some special SMTP servers).

Figure 2.1 depicts the exact definition of MariaDB tables campaign_messages
and queued .

2.1.4 File
Mailtrain also stores a lot of unstructured data, such as reports, campaign

files, campaign attachments, campaign e-mail templates, etc. All of them are
stored directly in the file system with an appropriate MariaDB table that contains
information about them.

It would be useful to describe file entities important in this thesis. Here is the
description list:

1. Campaign file - represents a campaign file that is linked to sending an
e-mail and additionally sent when a subscriber reads it. This type of file
includes all e-mail-linked images that are requested and rendered after
opening an e-mail and all other files that are connected to an e-mail by link
and additionally sent by clicking on this link. Table files_campaign_file is
used for storing information about this entity.

2. Campaign attachment - represents a file that is directly attached to send-
ing e-mail and sent together with e-mail. Table files_campaign_attachment
is used for storing information about this entity.

3. Campaign e-mail template - a file type that stores how the e-mail
template for some created campaign should look.

Figure 2.1 depicts the exact definition of all MariaDB tables related to described
file entities. Other tables related to file entities are not necessary for this thesis,
so they do not contain schema.

2.2 Database schema
This section illustrates the precise database schema of the Mailtrain database,

derived from the database model expounded upon in the preceding section. The
tables are depicted in green, and groups of tables with shared data are highlighted
in purple. Only the tables and groups of data that are of significance for this
thesis are presented with their respective columns and data types.

11

Figure 2.1: Database schema

2.3 Features
Prior to delving into the system’s architecture, it is imperative to provide a

succinct overview of all the features supported by Mailtrain.

2.3.1 Multiple users
Mailtrain supports multiple users with granular user permissions and flexible

sharing. Each user can read and make campaigns, lists, channels, etc., and all
other entities to which a user has permission. A user can also easily share all
entities with another user that a user owns.

Below are described all roles and their permissions:

• Global Master - all permissions (default role for admin .

• Campaigns Admin - under the namespace in which the user is located,

12

the user has all permissions for managing lists, templates, and campaigns
and the permission to send configurations.

• Campaigns Admin (multiple namespaces) - has a basic set of per-
missions to set up campaigns, edit lists, and templates. The particular
namespaces to which it has access have to be shared individually.

• None - no permissions.

2.3.2 Hierarchical namespaces
Mailtrain utilizes namespaces to provide a hierarchical structure for enterprise-

level use cases. A user may create any number of namespaces, which together
form a tree with the root node labeled as root . Permissions are assigned to
individual users over their corresponding subtree. The user admin possesses root-
level permissions. It is worth noting that each entity must be created by a user
and be associated with a specific namespace, excluding the namespace itself.

2.3.3 Subscriber lists management
One of the essential features that Mailtrain supports is subscriber list man-

agement. Each user can define lists with particular subscribers. Subscribers can
be added to the list by a user with the manual procedure or automatically by
importing some CSV file. They can subscribe alone to the list by filling out the
subscriber form.

2.3.4 Custom fields
For each created list, a user can customize subscriber fields dynamically after

the list has been created. Mailtrain supports many useful types for this field, such
as Text, Number, Date, JSON, etc. This whole procedure is also GUI friendly,
and all fields can be created by Checkboxes, Radio buttons, Drop down, etc.

2.3.5 List segmentation
Each list that is created can be subdivided into segments that represent a

particular subset of the list defined based on a condition. These segments can be
used in the campaign definition as a new list instead of defining a new list, resulting
in memory conservation. Defining these segments is facilitated through the GUI,
which negates the need for the user to be proficient in a particular programming
language. Rather, familiarity with the fundamentals of mathematical logic is
sufficient for the user to effectively utilize this feature.

2.3.6 Automation
Mailtrain is designed to provide maximum automation without requiring

manual intervention within the system. It accommodates automated RSS and
triggered campaigns that function automatically upon creation. Users are solely
responsible for defining these campaigns, after which they are self-updating and

13

self-creating. This feature provides users with substantial time savings while
minimizing the probability of errors arising from user errors.

2.3.7 Campaign e-mail templates
To create a campaign, it is first necessary to define how the delivered e-mail

template should look. By template is during sending made specific e-mail to a
particular subscriber. Mailtrain supports a GUI-friendly procedure for defining
templates (WYSIWYG editor) without any programming or needing knowledge
about programming or markup languages. The final code of the defined template
is then automatically generated in HTML. The second procedure for creating
a template is MJML-based, whose definition requires knowing MJML markup
language.

2.3.8 Custom reports
After sending many different campaigns, there are a lot of interesting data,

such as the count of opened e-mails, the count of clicked links, etc. For the user
to have an overview of this mass of data, the user can define custom reports.
Each report contains some specific campaign and report template. In the report
template, it is necessary to select the output format (HTML or CSV), define a
piece of code executed on these data (in JavaScript language), output fields, and a
rendering template. That defines how computed metrics will be rendered (required
only for HTML format). Metrics are generated and available in the selected format
when the report is defined and created. These metrics are dynamically refreshed
depending on time.

2.3.9 Builtin Zone-MTA
ZoneMTA is a contemporary outbound SMTP relay (MTA/MSA) that offers

precise management over the routing of distinct messages. The system allows
the routing of messages from trusted senders through high-speed virtual "sending
zones," which utilize IP addresses with high reputation, while less trusted senders
can be directed through slower virtual "sending zones" or IP addresses with less
reputation. Furthermore, ZoneMTA provides features that are often found in
commercial software, such as message rewriting, IP warm-up, and an HTTP API
for message posting. [25].

2.4 Architecture
Upon providing an overview of all the supported features, the subsequent

section aims to provide a detailed account of the architecture of Mailtrain. Initially,
the high-level architecture will be discussed, followed by an in-depth explanation
of the crucial components associated with sending e-mails and other imperative
services that demand high availability.

14

Figure 2.2: Mailtrain architecture

Firstly, it is necessary to start with the frontend part of Mailtrain. As Figure
2.2 depicts, three participators give input to Mailtrain (user, WYSIWYG editor,
and subscriber). Two of them use GUI for interaction. A user interacts with
Mailtrain through admin GUI, whereby manages Mailtrain. It is an interactive
and responsive GUI, written in React [2]. A subscriber interacts with Mailtrain
through a received e-mail.

All of this thesis work deals with the backend part, so the thesis will now
primarily focus on it. Mailtrain contains three web servers, which are referred
to as Trusted, Sandbox, and Public. They represent separated instances of
the Express web application framework [6] within the root process running as
asynchronous operations. This separation allows Mailtrain to guarantee security
and avoid XSS attacks [14] in the multi-user settings. Each server is also responsible
for different types of requests and is made for different types of entities. The
function of these three servers is as follows:

• Trusted - This is the main server used only by authenticated and authorized
users. It provides endpoints through which users can manage lists, subscriber

15

fields, campaigns, and all other supported entities.

• Sandbox - This server is used to host WYSIWYG template editors and is
not directly visible to users.

• Public - This is a server created for subscribers. It does not require
authentication and hosts subscription management forms, files, and archives.
It means handling events (opening e-mails, clicking links, etc.), additionally
sending linked files in e-mails, and sending archived e-mails. All of these
requests are automatically sent by a subscriber through received e-mail.

Mailtrain uses two permanent storages. For structured data, it uses a relational
database. During the installation of Mailtrain, there is a choice for installation
between MySQL and MariaDB database systems. Throughout the thesis, it is
presumed that the MariaDB database system has been installed. The classical file
system is used for unstructured data, such as reports, campaign files, campaign
attachments, etc.

2.4.1 Process tree
To avoid misunderstanding, it is helpful to mention that in this thesis, the

terms ’process’ and ’processes’ mean terms in the context of operating systems. If
it is needed to use the term ’process’ in the context of some abstract procedure or
life cycle of some component, then it is used term procedure or operation. This
restriction also does not apply to the words ’processing’ or ’processed’ that are
always used outside of the operating systems context.

Mailtrain consists of many processes that together create one process tree.
The main reason for using more processes is that it is much more maintainable
to separate components that execute totally different functionality. The second
crucial reason is that the version of Node.js used on the backend side of Mailtrain
is single-threaded. All cases where parallelization is needed are solved by forking
new processes. Describing components shown in Figure 2.2 from the point of view
of processes could be divided into three categories:

1. Root process - The main process, launched first when Mailtrain is started.
It forks other processes, starts asynchronous operations related to this
process, such as all three web servers, and manages the system.

2. Services - Forked processes by the root process intended for a special
activity. Each service consists of one process forked by the root process, and
then some services may fork other auxiliary processes.

3. Others - The rest of the processes running separated from Mailtrain and its
process tree, represent all services of the operating system used by Mailtrain
(file system, MariaDB database system, etc.), or processes running separated
from the node where Mailtrain is running (user, WYSIWYG editor, and
subscriber).

16

2.4.2 Services
Mailtrain contains many services responsible for different use cases. All of

them will be described briefly, and in the next section, only the Sender will
be described more deeply because it is an essential service for us. All services
represent the processes forked during the system starting and communicate with
each other through the MariaDB database, communicate with the root process
through interprocess communication using messaging, or sometimes through
HTTPS network communication protocol (for example, Sender and SMTP server).
Most of these services work on the principle of a periodic task. A service has set
up its period, after which it executes some primary function in an endless loop.
These services and their primary purpose are described below:

• Report Processor - Service that computes all requested reports.

• Triggers - Service responsible for handling all trigger events (an event that
starts sending some triggered campaign). If any trigger event occurs, the
service prepares a particular trigger campaign for the following handling
(creating all messages of the given triggered campaign and preparing them
for the Sender, which then sends it).

• Feedcheck - Service used for handling RSS campaigns. It always checks
the feed URL of all active RSS campaigns to see whether there is some
new campaign for sending. If so, the service creates a new RSS_ENTRY
campaign and prepares it for Sender.

• Importer - Service used for creating new lists by importing files in CSV
format. If some user wants to create a list by importing a file, the Importer
handles this request and imports all given data stored in a file and creates
all needed records in the MariaDB database.

• Sender - The most critical and complex service responsible for scheduling,
making, and sending all e-mails sent by Mailtrain (campaigns and queued
messages).

• Executor - Service that represents privileged executor. If Mailtrain is
started as root, this process keeps the root privilege to be able to fork
workers who compute custom reports and can execute the command chroot .

• GDPR Cleanup - In Mailtrain, GDPR rules are respected, so there is the
GDPR Cleanup service, which is responsible for deleting all subscriber data
who unsubscribed himself.

• TZUpdate - This service re-calculates timezone offsets once a day. It is
needed for sending messages using the subscriber’s local time. The best
option would be to use the built-in timezone data of MariaDB, but the
availability of timezone data is not guaranteed as it is an optional add-on.
So instead of keeping a list of timezone offsets in a table, it is possible to
use JOIN with the subscription table. The subscription table includes a
subscriber’s timezone name, and the TZOffset table includes the offset from
UTC in minutes.

17

• SMTP Server - Server for sending generated and prepared e-mails through
SMTP protocol used by Sender. Mailtrain supports three types of SMTP
servers (centralized and serial SMTP server, Zone-MTA mentioned above,
and AWS SES cloud e-mail service [1]).

The component that provides access to the MariaDB database and file system
is called DAL or the data access layer. It is not a new process. It represents
just API used by the root process or services containing all crucial queries to the
MariaDB database or file system. As Figure 2.2 depicts, there are also other direct
queries into the MariaDB database or file system. DAL mainly contains more
general queries used by many other components, but there are also specific queries
executed only by one component. In that case, a component executes a direct
query without DAL API. Services that execute DAL API queries are in the white
group, services that execute direct SQL queries are in the red group, and services
that execute direct file system operations are in the blue group. There can also be
group intersections. For example, the Importer uses all types of queries, and the
Executor uses only direct file system operation. On the other hand, web servers
access the data primarily only by DAL API.

In the following section, the Sender service will be explained more deeply.

2.4.3 Sender
As expected, Sender is the most critical and complex service of Mailtrain. It

is responsible for scheduling, making, and sending all e-mails to subscribers. This
system component causes the most degradation in performance. So it is necessary
to describe how the architecture looks and works deeply.

18

Figure 2.3: Sender architecture

The service architecture starts with the queue of tasks. A task in this context
means either some campaign in scheduled status or some queued messages prepared
for the scheduling procedure. So this queue component does not represent some
uniform data structure, but some abstract structure consisting of records from
different MariaDB tables (campaigns and queued) where scheduled campaigns or
queued messages are stored.

It is possible to create a task through admin GUI where a user clicks on the
start button (regular campaign), which causes a change of campaign status to
scheduled. An RSS campaign is scheduled by the Feedcheck service when it gets
new data from the relevant RSS feed’s URL, and then it creates a new RSS_-
ENTRY campaign which is then set as scheduled just like a regular campaign. The
last campaign type is started by service Triggers when a given event occurs. In that
case, it creates all messages for this campaign and stores them in queued MariaDB
table. Less used types of messages (Test, Subscription, API_Transactional) are
created at the request of the given service and stored in queued table.

19

2.4.3.1 SenderMaster life cycle

If any of these tasks appear in the queue, then SenderMaster is supposed
to schedule this task, store all scheduled messages in another queue, find idle
SenderWorker , evenly assign a chunk of messages related to this task to found
SenderWorker , and finally handle the response from SenderWorker after sending the
whole chunk. In case of failed sending, handle the error correctly and reschedule
this task if possible. Each task produces scheduled messages, which can be
described as another queue containing messages prepared for SenderWorkers . If
the details are ignored, it can be imagined as one queue of scheduled messages.
Figure 2.4 precisely depicts how SenderMaster performs this whole procedure.

Figure 2.4: SenderMaster activity diagram

The root process forks the process during the system’s start. Immediately after
initialization, SenderMaster executes three asynchronous operations (Assigner,
Listener, and Scheduler). The Assigner waits for an available task and evenly
assigns it to idle workers. After task execution, the Listener waits for responses
from SenderWorker , sets a postponing in case of a failed chunk, and notifies the
Assigner about idle workers. The Scheduler in the given period continuously checks
the queue of Sender tasks (Figure 2.3) that represents either scheduled campaigns
or queued messages prepared for the following handling before assigning them to
SenderWorker .

To avoid misunderstanding, it is essential to draw attention to the fact that
the Scheduler and the Assigner work with tasks but are entirely different types.
The Scheduler takes tasks from the queue of Sender tasks (Figure 2.3), and the
Assigner takes tasks resulting from the Scheduler. So in this context, a task
is meant as a chunk of scheduled messages (campaign or queued) prepared for

20

SenderWorker . One chunk always contains messages from the same campaign or
only queued messages.

Now it is time to focus on the Scheduler (the most critical and complex
subcomponent of SenderMaster) that, in the given periodic time, continuously
checks the queue of Sender tasks and ensures the scheduling of each task. It starts
by checking scheduled campaigns, and if there are some scheduled campaigns, the
Scheduler checks whether they are not expired or postponed and move them to
the next step. In the next step, the Scheduler selects all scheduled campaigns
that have passed the previous step and create for each campaign an asynchronous
operation that ensures sending the whole campaign. This asynchronous operation
is responsible for creating messages of the given campaign, making and notifying
the Assigner about a chunk of messages prepared for SenderWorker (new task
available), and finally changing campaign status to finished when sending is done
or paused when sending campaign is paused. Then the Scheduler continues by
the same algorithm but for scheduled queued messages. After execution of one
scheduling period, the Scheduler waits for CHECK_PERIOD ms and repeats the
period.

2.4.3.2 SenderWorker life cycle

All processes of SenderWorker are forked by SenderMaster according to defined
numbers in the configuration file. After forking, each SenderWorker starts in
state idle and waits for a task (chunk of campaign or queued messages) from
SenderMaster , which sends a task to SenderWorkers using interprocess communi-
cation.

This sending procedure contains the logical steps themselves executed by
SenderWorker when it sends one e-mail since receiving a message (from a given
chunk) from SenderMaster until sending a generated e-mail to the SMTP server.

Figure 2.5: E-mail sending procedure

After receiving a task from SenderMaster , SenderWorker generates an e-mail for
each scheduled message intended for a particular subscriber. A message data from
the received chunk contains only some of the needed information for generating
a particular e-mail, so SenderWorker has to execute a couple of SQL queries to
receive additional data. Firstly, SenderWorker is supposed to receive common data
for this chunk (such as campaign data, send configuration, lists, attachments,
template, etc.). This initialization is executed once for each chunk (end of step 1).

21

Then it generates one particular e-mail and has to execute some SQL queries for
data related to this specific e-mail (such as subscriber fields, whether a subscriber
is blacklisted, etc.). After performing these steps, the e-mail is generated and
prepared for sending (end of step 2).

When the e-mail is generated, SenderWorker will set the message status in the
database as sent (end of step 3). Then SenderWorker has to determine whether
the addressee is blacklisted. If so, just set a BLACKLISTED response on this
message. It can continue with the following message. Otherwise, SenderWorker
creates transport with the SMTP server if it has not been created yet. This
operation is done once for each send configuration during the entire program run
and sends the e-mail to the server. It is waiting for its response, and after receiving
a response, SenderWorker writes the response into the database table where a
message is stored. Then continues with the following message in a given chunk.
After sending all e-mails for each message, it sends a message using interprocess
communication to SenderMaster with information about success.

During sending e-mails between steps 3 and 5, sending is located in the critical
section (message status is sent, and message response is null). It means that in
this section, Mailtrain must not be turned off. Otherwise, some subscribers either
will not receive their e-mails or receive them more than once because at the next
start SenderMaster will not be able to recognize whether an e-mail has been sent
to the SMTP server. The response could not be saved, or an e-mail was not even
sent to the SMTP server.

The whole procedure of Sender service was described. In the following section,
the PUBLIC server will be described.

2.4.4 PUBLIC server
Now it is essential to explain the PUBLIC server more deeply. The PUBLIC

server does not require authentication and is used by subscribers for processing
requests related to sent e-mails. In Figure 2.6, there is shown the internal
architecture of the PUBLIC server.

22

Figure 2.6: PUBLIC server

There are four types of requests that are processed by the PUBLIC server:

1. Subscription - this type of request pertains to the subscription status of
a particular subscriber and can be used to either subscribe or unsubscribe
them.

2. Links - a type of request for processing requests related to links events.
When some subscriber opens a received e-mail or clicks on some e-mail’s
link, this request is automatically sent and processed. This information is
then used in making campaign statistics and reports.

3. Archive - a type of request that sends all archived e-mails which have been
already sent. According to arguments, it generates the whole e-mail for a
specific subscriber and sends it again.

4. Files - a type of request that sends all campaign files whose link is defined in
the e-mail template. These files are requested when some subscriber opens
the received e-mail. The requested file is additionally sent and received in
the subscriber’s e-mail.

In Mailtrain, it is crucial to ensure that the execution of requests of type Links
and Files is highly available. Otherwise, when the PUBLIC server is not running,
and some subscriber e-mail is open, it will cause that e-mail to be rendered without
linked images, linked files will not be sent on request, and lose any information
about subscriber events, which can even cause the loss of a subscriber itself.

23

2.5 Sending e-mail use cases
Following a detailed description of the various message types and their corre-

sponding sending components, it is beneficial to provide a comprehensive summary
of all potential use cases for each message type. This includes tracing the life
cycle of a message from its inception to its sending by the SMTP server. The use
case diagram below provides a visual representation of all potential use cases for
the various message types.

Figure 2.7 depicts four participators making Sender tasks (user, subscriber,
Triggers service, and Feedcheck service). It is either a campaign task (user changed
campaign status, Feedcheck created new RSS_ENTRY campaign) or queued
task (subscriber created subscription message, a user created API_Transactional
message, or Triggers created queued messages for a given triggered campaign).

When some task is located in the Sender queue, then the procedure of sending
continues by SenderMaster as was described above.

Figure 2.7: Sending e-mails use case diagram

24

2.6 Summary of goals
After understanding all the necessary technical background about the current

version of Mailtrain, it is important to summarize all goals also with needed
technical details that are crucial to achieving in the next version:

1. Making Sender service horizontally scalable. It means that after adding
more and more sending campaigns simultaneously, Mailtrain can increase
the number of SenderWorkers without potential limits, which causes faster
performance.

2. Ensuring high availability of critical services (Sender and PUBLIC server).
It includes ensuring that critical service is running properly and correctly
without any restrictions (except performance) in case it runs on at least one
node and regardless of whether the rest of the system is currently running.

3. Adding to Mailtrain safe shutdown of the system. In the current version, if
running Mailtrain is turned off, then it may cause sending messages will fall
into an inconsistent state if there were sending e-mails in the critical section
at that time.

4. Precise refactoring of the Sender component. The code is currently unstruc-
tured and messy, does not use any recommended standard of JavaScript
language, SenderMaster contains callback hell, and documentation is of small
scale. The goal is to create code that will be much more readable, main-
tainable, and upgradeable with quality documentation focused on quick
understanding.

2.7 Source code overview
In this tree structure, the source code structure of Mailtrain is described. Only

essential primary directories and modules used in this thesis are further described.
This version is stored in v2 Git branch.

mailtrain/
client/ - the whole source code of Admin GUI written in React
docs/ - brief documentation about features and deployment
locales/ - all supported translations of Admin GUI stored in JSON
mvis/ - the source code of a visual analytics tool
server/ - the whole source code of the backend

config/ - configuration file stored in YAML format
files/ - directory where all file entities are stored
lib/ - directory where auxiliary modules for other modules

are stored
mailers.js - a module used by SenderWorker for sending

e-mails to the SMTP server
message-sender.js - a module used by SenderWorker for

generating e-mails from messages
models/ - directory where queries for all entities

are written, it represents the DAL component

25

protected/ - this directory serves for generated reports
routes/ - directory where routing functions for all entity

endpoints are written
archive.js - a module used by the PUBLIC server where the

endpoint for sending archived e-mails is defined
files.js - a module used by the PUBLIC server where the

endpoint for sending campaign files is defined
links.js - a module used by the PUBLIC server where are

all endpoints for handling subscriber events
subscription.js - a module used by the PUBLIC server where

are all subscription endpoints defined
services/

workers/ - directory where the ReportProcessor service
is written

executor.js - source code of Executor service
feedcheck.js - source code of Feedcheck service
gdpr-cleanup.js - source code of GDPR Cleanup service
importer.js - source code of Importer service
postfix-bounce-server.js - test SMTP server source code
sender-master.js - source code of SenderMaster service
sender-worker.js - source code of SenderWorker service
test-server.js - test SMTP server source code
triggers.js - source code of Triggers service
tzupdate.js - source code of TZUpdate service
verp-server.js - test SMTP server source code

setup/ - config files for the MariaDB database system
test/ - a couple of backend tests
app-builder.js - functions for setting up servers
index.js - the main module that starts Mailtrain
package.json - records important metadata of the server

source code
setup/ - deployment scripts
shared/ - all entity enums shared between the source code of

the client and the server
zone-mta/ - config files for running the builtin Zone-MTA feature

2.8 Deployment requirements
In the last section, each requirement (hardware and software) is written that

is necessary for the proper and smooth running of the entire system.

Recommended hardware requirements:

• CPU - 2 vCPU

• RAM - 4096 MB

• Storage - At least 500GB internal data storage

• Network - Network connection with a speed of at least 1,000 Mbps

26

Recommended operating systems:

• CentOS 7+

• Debian 10+

• Ubuntu 18.04+

Mailtrain is designed primarily for the most popular Linux distribution op-
erating systems and is built on Node.js (v14+) and MySQL (v8+) or MariaDB
(v10+). For operating systems not mentioned above, deployment and correct
running are not guaranteed.

The exact deployment procedure is stored in mailtrain/docs directory.

27

3. Performance analysis
In this chapter, there will be described the base shortcomings and limits that

current architecture contains. It means making performance tests on the Sender
component as a whole, finding the main bottlenecks of the Sender component,
and finding functions and modules in the source code responsible for that. Finally,
in the next chapter, the solution for all bottlenecks and limits will be introduced
from this analysis.

As was explained in the previous chapter, sending too many campaign e-mails
simultaneously takes the most time, especially regular and RSS campaigns which
are the most often used in production. So in this performance analysis, one regular
campaign with a sufficiently large number of subscribers will be used since the
number of sending campaigns does not influence the speed of sending, just the
sum of all subscribers from each campaign.

All performance tests have been executed on Intel® Core™ i3-7100U CPU @
2.40GHz × 4 CPU and one centralized serial SMTP server (services/test-server.js)
running on the same node.

3.1 Overall Sender analysis
For a better analysis of each bottleneck described above, Figure 3.1 depicts

data from the overall Sender analysis where the x-axis indicates the number
of SenderWorkers and the y-axis indicates the time during which the work was
performed measured in seconds. In the graph, three curves represent a type of
work (Exact time, Workers’ time, and SMTP time).

The exact time is defined between points when the button to start sending
the campaign is pressed and when the campaign status of FINISHED is displayed
in the admin GUI. Workers’ time is the average time per one SenderWorker , but it
does not include SMTP server time, although after e-mail creation SenderWorker
waits for the SMTP response. Only the time between receiving a chunk of messages,
making e-mails, and sending them to the SMTP server is counted. SMTP time
represents a time that takes only sending created e-mails delivered to the server
from SenderWorker .

28

Figure 3.1: Sender performance analysis

In each test, 50000 e-mails have been sent for one regular campaign. From
measured times, it is evident that the exact time can be divided in half, where
the first half takes the SMTP server. It is a little bit more for a bigger number
of SenderWorkers , but only because the centralized and serial SMTP server was
used, and therefore increasing the number of SenderWorkers causes faster e-mail
making and sending to the SMTP server. The second half takes all SenderWorkers
working including making and sending e-mails except waiting for responses from
the SMTP server. It includes mainly SQL queries gathering data about each
chunk of messages, making e-mails, and other little operations.

For measuring the exact time, manual measurement was used through the
stopwatch, and for Workers and SMTP time, there was a classical method used to
determine how much time it took for function execution. Below, as an example,
is a code for SMTP time measuring. The example function is located in the file
mailtrain/server/lib/mailer.js , and its name is _sendMail .

1 {
2 const startTime = new Date () ;
3 const re sponse = await t ranspor t . sendMailAsync (mail) ;
4 const endTime = new Date () ;
5 smtpTime += endTime − startTime ;
6 }

Figure 3.2: SMTP time measuring

So one statement before the function call is stored as the current timestamp
startTime , and one statement after the call is stored as the current timestamp
endTime . The time difference is added to the result, whose sum of all time calls
represents SMTP time.

After finding out these measured times of overall analysis, the next section

29

will analyze the performance of each Sender component which will result in more
details.

3.2 Sender components analysis
After executing the overall Sender performance analysis, it is crucial to find

out which exact functions in each source code module are responsible for slowing
down.

Figure 2.7 depicts all possible use cases for sending e-mails. In this performance
testing, one regular campaign is used, so the whole scenario starts from the user’s
point of view when a user starts sending a regular campaign. It is evident that
the status from pressing the button until making a task in the Sender queue takes
a negligible amount of time since it is just one request from the admin GUI to the
TRUSTED server and executing one simple SQL query to the MariaDB database.
The performance time of sending procedure is much more questionable from when
SenderMaster starts to execute its procedure until all e-mails are sent through the
SMTP server, and all responses are handled by SenderMaster and stored in the
MariaDB database.

Executing some performance tests and analyzing each responsible function of
the given module (component) is essential. From this point, all performance tests
will contain just one SenderWorker to achieve the most accurate executed time. In
the case of asynchronous operations, just like in SenderMaster , it is necessary to
know precisely which functions represent particular callbacks and count only time
when SenderMaster is computing and not just waiting for some another event.

The test will contain one regular campaign with 5000 subscribers and be sent
by one SenderWorker , and test-server SMTP will be used.

The result of this analysis for each critical component will be a call tree, a
structure very similar to a call stack. Still, unlike a call stack, a call tree contains
all significant function calls that were called during program execution (function
calls with a negligible amount of time are omitted). Each path from the root to
some leaf in this tree represents one particular executed call stack. Each node of
this tree contains the exact name of the function and module where this function
is written and a time in seconds representing how much time this function took.
Also, the execution time of all its children (called functions) is counted, so the
sum of the time of all its children should be equal to node time (if the noise is
neglected).

3.2.1 SenderMaster analysis
Firstly, it is essential to analyze SenderMaster component and find out how

much time takes its functions during program execution. After analyzing this
component, next will be necessary to analyze SenderWorker and SMTP server
components. Then all of these components will be compared and found out main
bottlenecks of the Sender.

30

services/sender-master.js-workersLoop-0.125s (Assigner)

services/sender-master.js-messagesProcessed-0.5s (Listener)

services/sender-master.js-periodickCheck-5s (Scheduler)

In this analysis, only times are counted when SenderMaster is computing
something and not waiting for SenderWorker response. Because it is such a short
time, the whole call tree with all called functions is not shown, just the root
functions of particular components (Assigner, Listener, and Scheduler). It looks
like that SenderMaster does not take much time compared to the exact time.

3.2.2 SenderWorker and SMTP server analysis
The second and most expensive components in terms of time are SenderWorker

together with the SMTP server. The analyzed call tree below describes the
execution time for each significant function call from SenderWorker and SMTP
server component.

The root directory for this tree is located in mailtrain/server .

services/sender-worker.js-processCampaignMessages-310.076s

lib/message-sender.js-initByCampaignId-6.901s

lib/message-sender.js-sendRegularCampaignMessage-302.136s

lib/message-sender.js-_sendMessage-239.087s

models/subscriptions.js-getById-29.538s

lib/message-sender.js-_getMessage-17.152s

lib/mailers.js-getOrCreateMailer-18.994s

lib/mailers.js-sendMassMail-162.34s

lib/mailers.js-_sendMail-161.27s

lib/mailers.js-sendMailAsync-160.59s

services/test-server.js-SMTP server-158.34s

From the call tree, it is possible to see that SenderWorker , also with the SMTP
server, takes almost all the time to send a campaign. From the total exact time
of 320 seconds, the SMTP server took 158.34 seconds, and SenderWorker took

31

310.076 seconds or 151.736 seconds if the time when SenderWorker was waiting for
the SMTP server responses is not counted.

3.3 Summary of Sender bottlenecks
There are four main bottlenecks in our current architecture of Sender sorted

in descending order of impact:

1. Inefficient SMTP server - The first and the most significant bottleneck is
the SMTP server. A centralized serial SMTP server for sending e-mails was
used. So when SenderWorker makes all e-mails for sending and sends them
to the SMTP, and the server throughput limit is reached, then all other
SenderWorkers with made e-mails must wait for SMTP server processing.
If this bottleneck wants to be removed, having a high-performance SMTP
server with the same performance as the rest of the Sender components is
crucial. Only in this case will the SMTP server not be a bottleneck that
slows down the Sender processing.

2. Centralized MariaDB database - If all functions on the call tree of
SenderWorker are analyzed in the source code, then it follows that most of
the time of SenderWorker execution (except waiting for the SMTP server)
takes SQL queries when all SenderWorkers need to query the same MariaDB
database. MariaDB database system has limited performance in parallel
computing, so in the next version, it needed to use a database system for
the Sender component that can handle large data more efficiently and scale
horizontally.

3. Centralized SenderWorkers - Since the current version of Mailtrain already
has a parallel architecture of Sender, which runs only on one node. The
limit of the node has been reached, and further adding SenderWorkers on
one node would only make the performance slower. So in the next version,
it is needed to ensure running SenderWorkers in a distributed system and
reach horizontal scalability for adding SenderWorkers .

4. Centralized SenderMaster - The last bottleneck is in the SenderMaster
component. The worker scheduling and task assignment are done by one
centralized process. Although from the executed analysis, SenderMaster does
not take too much time compared with SenderWorkers and SMTP server, if
the next version should be able to scale horizontally on large data, then the
Sender scheduling cannot depend on one centralized process. Firstly, there
would be a performance problem with too many SenderWorkers in scheduling
and processing. The second problem would be related to high availability in
case of failure since SenderMaster runs on one node. So in the next version,
SenderWorkers scheduling and processing cannot be done by this or other
similar centralized strategies.

32

3.4 Analysis conclusion
This chapter conducted a thorough analysis of the performance of the Sender

component in its entirety, as well as the individual components joined with the
source code modules and functions. Through this analysis, the performance bot-
tlenecks hindering the sending of campaigns were identified, and recommendations
were put forth to eliminate them in the subsequent version of the system.

Based on the above-mentioned findings, the subsequent chapter will be de-
voted to designing a novel Mailtrain architecture that not only addresses these
bottlenecks but also encompasses all the features outlined in Section 2.6.

33

4. New architectural design
After describing the Mailtrain overview and execution performance analysis, it

is time to introduce the architecture of the new version of Mailtrain. The whole
architecture is shown in Figure 4.1.

Figure 4.1: Distributed Mailtrain design

Mailtrain is divided into two sections. The first section is highly available and
includes three components (highly available MongoDB cluster, highly available
Sender cluster, and highly available PUBLIC or HAPUBLIC server). All of these
components can run independently on the rest of Mailtrain. They only depend on
the highly available MongoDB cluster. They can also run in a distributed system
and scale horizontally. The second section is, as expected, non-highly available,
including the rest of Mailtrain, which can still run only on one node.

The HAPUBLIC server has a purpose, just like the PUBLIC server. However,
it supports high availability, horizontal scaling, and types of requests Links and

34

Files have been moved to it from the PUBLIC server since they belong to the
group of critical services.

4.1 New database system
MongoDB [8] has been chosen as the new database system for processing

large data of the Sender component and ensuring high availability for both the
Sender component and the HAPUBLIC server. The main reasons for this choice
are summarized below compared with the current supported database systems
MySQL and MariaDB:

MySQL database system [4] has limited options for scalability, and it supports
vertical scalability by adding more resources to the existing database server, which
does not help since the upper limit has been reached. For horizontal scalability,
it offers to add read replicas. Still, it also has many limitations compared to
MongoDB (a replica set replicates a group of MongoDB servers that hold the same
data, ensuring high availability and disaster recovery). It is limited to five replicas
and can be used only for read operations. Since many write operations are in the
Sender component, this would not bring too significant an acceleration. There has
been added multi-master replication focused on solving this problem with many
write operations, but its implementation is more limited than the functionality
available in MongoDB.

In the MongoDB database system, the situation is much more comfortable
and suitable for horizontal scalability. The limit for replication is much bigger,
and it gets better with newer versions. It supports distributed transactions across
many replicas and has overall faster execution of queries on large data in most
cases.

In addition to replication, MongoDB supports one more highly flexible feature
named sharding. When some customer’s data starts to overgrow, and one node
cannot store it, or there are too many write operations, data is distributed across
many servers. A lot of memory and time is saved. This approach can horizontally
scale applications regardless of the number of read/write operations. In case of
this thesis mainly concerns the number of campaign messages.

In contrast, the MariaDB database system [3] utilizes various engines and
components integrated into the MariaDB Server, creating a robust and scalable
cluster that also supports sharding, such as the MariaDB MaxScale [15] and
MariaDB Spider engine [20]. Nevertheless, its foundation and available services
have some limitations that hinder its complete integration into the big data [11]
and cloud-based environment of modern agile development.

MongoDB was built from the ground up to support cloud elasticity and any
amount of data, starting from small on-device databases to large multi-petabyte
clusters. It runs the same way anywhere you want, including within our fully
featured and scalable cloud database offering, MongoDB Atlas.

4.1.1 Integrating MongoDB into Mailtrain
Upon the selection of a new database system for Mailtrain, various issues arise

that require resolution before its integration. For instance:

35

• Which data to store in MongoDB and which to keep in MariaDB?

• Which data should be stored temporarily and which permanently?

• How will the schema of the MongoDB database look?

• How to ensure data synchronization and consistency between MariaDB and
MongoDB?

It is simpler to start with the HAPUBLIC server where only Links and File
requests are processed. The server should be able to read the latest data for
both types of requests at any time. It means accessing the latest data in tables
campaign_links and files_campaign_file .

For the Sender component, many more tables and their SQL queries are needed
for sending some specific campaign or queued message. Except for read operations,
the Sender should also be able to write processed data into the database (for
example, the response from the SMTP server of some sent message).

The first possible solution is to migrate all the needed tables into the MongoDB
database and reprogram all their SQL queries. This solution looks straightforward
since the Sender and the HAPUBLIC server would be totally independent of the
MariaDB database. But there are too many SQL queries for these tables used
by different components for computing various metrics and reports or inserting,
updating, and deleting records. Executing many of these queries has no problem
with performance, and there is much better support of SQL language than NoSQL
MongoDB, which does not support JOIN operations. Therefore, migrating all of
these tables and reprogramming all their queries from MariaDB into MongoDB
does not make sense from a time point of view.

The second solution is to leave all the needed tables in the MariaDB database.
When MongoDB needs some data, it will send one big query into the MariaDB
database, receive the queried data and send the result back after processing.
This solution requires a slight change of SQL queries but has several problems.
MariaDB is non-highly available, so MongoDB may not get a response at any time.
Another problem is that the results of many big queries can have a significant
intersection between them. So it would be a big waste of memory (for example,
two sending campaigns can have many familiar subscribers).

Instead, a much better solution is used that considers the advantages and
disadvantages of the previously mentioned solutions. Only tables with a large
data size will have their own collections in MongoDB. This will solve the problem
of wasting a lot of memory. However, so that it is not necessary to rewrite all
SQL queries of particular tables into MongoDB queries, there is used a different
strategy. All created collections are of one of these two types:

The first type represents something called symmetric replication. It means
that the MariaDB table and its corresponding MongoDB collection must always
have the same state (each row has exactly one equivalent document and vice
versa). So Mailtrain has to maintain that if some write operation is executed
on the MariaDB table, then this operation is also automatically and atomically
called on the corresponding collection in MongoDB and vice versa. This type of
collection is named symmetric replication collection.

The second type of collection represents a processing queue. It means a record is
created in a MariaDB table, but processing it is only possible in the corresponding

36

MongoDB collection. For example, campaign messages are created and stored in
the MariaDB table, but sending procedure is done by a service that communicates
only with MongoDB. So, in this case, Mailtrain has to maintain that when this
record is created, it is sent to a particular MongoDB collection. After successful
processing, this record is returned to the MariaDB table with processed data and
removed from the MongoDB collection. It follows that Mailtrain will need to have
some component for constant synchronization between these MariaDB tables and
their corresponding MongoDB collections. This component is named Synchronizer
and will be introduced in the following sections. This type of collection is named
queued collection.

If some collection is created from its particular table, the collection’s schema
is created so that all columns represent keys and all rows represent values for a
particular key.

Here is a list of all collections created in the MongoDB database that has also its
own table in the MariaDB database:

• blacklist - a symmetric replication collection used by the Sender to store
information about each blacklisted subscriber.

• campaign_links - a queued collection used by the HAPUBLIC server
for storing information about each campaign link, mainly about how many
times subscribers clicked a link.

• campaign_messages - a queued collection used by the Sender to store all
campaign messages scheduled for sending.

• files_campaign_file - a symmetric replication collection used by the
HAPUBLIC server where information about each campaign file is stored.

• links - a queued collection used by the Sender to store information about
each campaign link used in the e-mail template.

• queued - a queued collection used by the Sender to store all queued messages
scheduled for sending.

• subscription__i - a symmetric replication collection used by the Sender
to store information about each subscriber from a list i.

There are also some still needed data from different MariaDB tables necessary
for making and sending e-mails, such as data about subscriber custom fields,
campaign attachments, campaign e-mail templates, send configurations, etc. But
all these records take up little memory, so instead of creating corresponding
collections in MongoDB, it is more optimal to constantly send data together
with newly created tasks (sending campaigns or queued messages). For example,
suppose some campaign A is set to SCHEDULED status. In that case, the non-
highly available Sender has to collect all needed data from tables that do not have
corresponding collections for sending this campaign and send them in one operation
together with task data. The newly created collection for sending campaigns is
named tasks . Collecting all required data is the responsible DataCollector and

37

will be introduced in the following sections. There can still be some intersection
data between some tasks, but it will only be negligible.

It is not crucial to store these tables in the non-highly available MariaDB
database because if the non-highly available section has failed or is turned off,
a user cannot start sending new campaigns. All campaigns that started before
failing are sent without the need for interaction with the non-highly available
section.

4.1.2 Ensuring data consistency
From the explanation of the previous section, it is pretty evident that problems

of high availability, wasting of memory, data migration, and collection schemes are
solved. However, the problem of synchronization and data consistency between
each table and its collection still remains open.

The situation is easier for queued collections since there is no requirement
for constant consistency. The main requirement is that each record from some
table has to be sent to a particular collection. In the shortest possible time after
processing, the result has to be sent back to the same table and a record updated.
A record cannot be lost in both directions. The main idea of this solution is that
each record is always first sent and then deleted from a particular table/collection.
In case of system failure between sending and deleting, it is done again after the
system starts. If a record has been already sent, the thrown exception about a
duplicated record is just ignored for the insert operation, a record is updated more
times for the update operation, or the delete operation is executed more times.
All of these cases do not break data consistency. Deeper details will be explained
in the Synchronizer section.

Ensuring data consistency for symmetric replication collections is more com-
plicated because it is crucial to ensure that each SQL operation executed on
some table will be immediately and atomically executed also on the particular
collection. It means that both databases must have the same data at any time.
This restriction is because the Sender always needs the latest data for sending
e-mails. Otherwise, if some user updated some subscriber’s records, the Sender
would still use some old data until synchronization execution. The second problem
is durability or what to do in case of system failure during transaction execution.
The requirement is that transaction upon MariaDB and MongoDB database is
either fully committed or aborted.

The solution is based on TCC [12] protocol with minor changes. Two transac-
tions must be executed as one whole transaction, one for the MariaDB database
and one for the MongoDB database. When it is needed to execute some request
consisting of some SQL and MongoDB queries, it is always first started MongoDB
transaction and immediately after that MariaDB transaction. All of these queries
are commonly executed, and after executing all queries, the MariaDB transaction
tries to commit changes, and then the MongoDB transaction tries to commit
changes. So when some error or system failure occurs during query execution or
MariaDB transaction committing, all changes are successfully roll-backed. The
only problem happens when a MariaDB transaction is successfully committed and
a MongoDB transaction is aborted for reasons such as write conflicts. In this case,
the user is appropriately informed that databases are now in an inconsistent state,

38

and the user has to fix it manually by immediately repeating the transaction.
Nevertheless, it is essential to realize that the probability of write conflicts strictly
between MariaDB and MongoDB transactions committing is extremely low since
the query is executing on databases with the same data.

There is still a problem with durability because resistance to system failures or
other external factors is not guaranteed in case failure occurs between MariaDB
and MongoDB transactions committing. So this case must be implemented
manually. As mentioned above, it is essential to realize that the probability of
system failure strictly between MariaDB and MongoDB transactions committing
is extremely low. But if it happened, the script for checking and ensuring data
consistency would be executed during the next system start.

It is helpful to mention that this solution in this situation is quite sufficient. It
is essential to realize that in production, all symmetric replications are primarily
read and updated just by the user who created them so the probability that
transactions will be successfully aborted and roll-backed because of write conflicts
is almost zero. In the next version, there can be considered using the two-phase
commit protocol [9] as the solution if it will be necessary.

4.2 Distributed Sender
As was described in the previous section, the Sender is in the new version

divided into highly available and non-highly available sections. Both sections
communicate together only through the MongoDB cluster. The primary purpose of
the highly available section is to make and send e-mails with high performance and
the possibility of horizontally scaling the number of SenderWorkers . On the other
hand, the primary purpose of the non-highly available section is scheduling tasks
(campaigns and queued messages), handling processed tasks, and synchronizing
these two sections. It means sending all the processed data from the MariaDB
database into the MongoDB cluster and vice versa.

There are three components in the non-highly available section. The main is
called Synchronizer, which ensures synchronization between these two sections.
The second is Scheduler, which schedules all campaigns and queued messages, and
the last is DataCollector , whose purpose is to collect all needed data for making
and sending all e-mails for a given task. Synchronizer uses it when sending all
needed data to MongoDB cluster in one operation.

The highly available section contains only SenderWorker that will be described
in more detail in the following sections.

The last component is the SMTP server, which remains unchanged.

39

Figure 4.2: Distributed Sender design

Compared to the previous version, this architecture has no centralized SenderMaster
for task assignment. The task assignment is done with a completely different strat-
egy which is not centralized and thus is not dependent on one specific process. Each
scheduled message always has also stored a hash of a subscriber’s e-mail address
in the database. It is a relatively long value, so the first four bytes are cut from it,
and even this value (called hashEmailPiece in the collection campaign_messages) is
used for task assignment. During SenderWorker initialization, there is an assigned
hash range for each according to this statement:

1 const range = {
2 from : Math . f l o o r (MAX_RANGE / maxWorkers) ∗ workerId ,
3 to : Math . f l o o r (MAX_RANGE / maxWorkers) ∗ (workerId + 1)
4 }
5

6 i f (workerId === maxWorkers − 1) {
7 range . to = MAX_RANGE;
8 }

Figure 4.3: SenderWorker default hash range computing

40

The value MAX_RANGE represents constant 232 and defines range <0,
MAX_RANGE) which SenderWorkers evenly divide among themselves according
to their workerId , maxWorkers represents a maximum of SenderWorkers which can
run (value can be changed in the configuration file before every Mailtrain start),
and workerId represents the Id of currently initializing SenderWorker (values from
the set Ids = {0, 1, ..., maxWorkers - 1}). Every SenderWorker sends only scheduled
messages whose hash value belongs to its hash range.

This hash is computed according to the popular algorithm SHA-512, so the
evenness of the distribution of messages among SenderWorkers is guaranteed [21]
after neglecting a minor deviation.

The following sections will describe components of non-highly available and
highly available sections in more detail.

4.2.1 Synchronizer
Since Mailtrain is divided into two sections that can run independently of each

other, it is obvious there has to be some component for bilateral synchronizing
data between these sections. For synchronizing from the non-highly available
section into highly available, there are operations for all collections of queued
collections (collections of symmetric replication are synchronized directly by the
Mailtrain strategy described above). There are operations of pausing campaigns
that are sending, starting sending of SCHEDULED campaigns, and the same
for queued messages. For synchronizing from the highly available section into
non-highly available, there is synchronizing data about sent campaigns and queued
messages, setting the FINISHED status for sent campaigns, and synchronizing
campaign links. It is helpful to mention that campaign messages contain the most
memory in both databases and take the most time in Mailtrain.

The process starts with Mailtrain forking and then with initialization. To
ensure a safe shutdown of the system, the Synchronizer during initialization catches
program interrupt signals SIGINT and SIGTERM [16]. Then it sets a callback that
changes the variable value according to Synchronizer will know that it has to stop
working after the current iteration. The Synchronizer also starts an asynchronous
operation that represents the Scheduler (the same component as the Scheduler in
the SenderMaster) which will be described in the next section. After initialization,
the Synchronizer continues in the life cycle.

Figure 4.4: Synchronizer activity diagram

41

The Synchronizer shares three lists with the Scheduler. It is the list of
pausing campaign IDs, scheduled campaign Ids, and scheduled queued messages.
These lists represent the only connection through which the Scheduler and the
Synchronizer communicate. The Scheduler, always in its check period, inserts new
values into these lists, and the Synchronizer picks them and continues with the
following processing.

So when the Synchronizer starts its life cycle, it starts with synchronizing
operations from the non-highly available section into highly available, where it
works with all these shared lists. Firstly, it checks the list of pausing campaigns.
If some sending campaign is requested to be paused, Synchronizer will remove the
corresponding sending campaign from the MongoDB database.

It is essential to mention that since this synchronizing was added to the
sending campaign procedure, a new status for a campaign was created. It is called
SYNCHRONIZING and defines the status between SCHEDULED and SENDING
statuses. So when the Scheduler finds some scheduled campaign, it changes its
status to SYNCHRONIZING. Then it is changed to the SENDING status if all
needed data are sent to the MongoDB database, and SenderWorkers can start with
sending.

The state diagram 4.5 depicts all possible campaign (Regular, RSS_ENTRY)
status changes:

Figure 4.5: Campaign statuses

So the Synchronizer picks from the list of scheduled campaigns in SYNCHRO-
NIZING status. It has to collect all the needed data from DataCollector for
sending procedure and send it to the MongoDB database in one operation. After
sending, the campaign status is set to the SENDING value, and SenderWorkers
can start with sending.

Finally, regarding operations in this direction, it checks the list of scheduled
queued messages, collects all needed data from DataCollector for sending them,
and sends them together with collected data into the MongoDB database.

The second groups of operations have the opposite direction, from the highly
available MongoDB database into the non-highly available section. Then it is
needed to synchronize all sent campaign messages. Firstly, the Synchronizer
synchronizes just the count of sent messages, and even then, it synchronizes
one chunk of sent messages. The reason for this strategy is that it represents a
trick to speed up the sending procedure. Synchronizing all messages is a much
slower operation than synchronizing the count of them. Since it is essential to

42

give current feedback to a user about sent campaign messages, the Synchronizer
first synchronizes the count of sent messages and then the chunk of messages
itself. So also, after sending the campaign when it is in FINISHED status, some
synchronizing operations of the remaining messages must be done. Then the
Synchronizer synchronizes queued messages.

The last operation is removing broken messages. The term broken message
represents a message with the status SENT, no response, and is stored in the
MongoDB for more than one day. This type of message can occur when a node
that is sending this message is turned off in an unexpected way, and the sending
procedure is in the critical section. Since it is hard to find out whether a message
was sent, this message is not tried to send again. The probability that a message
in this state occurs is very low.

After execution of the whole iteration, if there is no available task (shared lists
with the Scheduler are empty and the Synchronizer synchronized no data from
MongoDB in the last iteration), then the Synchronizer goes to sleep and is woken
up by the Scheduler at the nearest start of the check period.

4.2.2 Scheduler
As in the previous version, where SenderMaster in set period checked in the

MariaDB database whether there are some scheduled campaigns or queued mes-
sages, here it is also essential to have a component for the same purpose.

Figure 4.6: Scheduler activity diagram

The Scheduler represents an asynchronous operation started by Synchronizer
during initialization. Just like SenderMaster , campaigns and queued messages
are processed in the defined period and sends them to the Synchronizer for the
following processing described above.

This component also supports immediate calls. When a user clicks on the Send
button to send some campaign, the Scheduler can be in the state when it has just
accomplished one period and gone to sleep. In that case, a scheduled campaign
must wait for CHECK_PERIOD milliseconds until the Scheduler procedure starts.
So for this case, when some campaign is set to SCHEDULED status, the immediate
call for the Scheduler is called, so there is no need to wait for the start of the next
period if the Scheduler is sleeping right now.

43

4.2.3 DataCollector
When the Synchronizer needs to collect all data for some campaign or queued

message and send them to MongoDB in one operation, it uses DataCollector .
DataCollector represents a stateless component that executes only read queries into
the MariaDB database. It does not represent any forked process or asynchronous
operation running in the background. DataCollector is just a class with methods
for data collecting which are called by Synchronizer when it is needed.

Figure 4.7: DataCollector activity diagram

The procedure of collecting data for a campaign or queued message is shown
in Figure 4.7.

4.2.4 SenderWorker
Following the description of the components from the non-highly available

Sender section, it is now appropriate to shift focus to the most critical component
of the highly available Sender section, namely, the SenderWorker responsible for
making and sending e-mails.

4.2.4.1 Life cycle

The life cycle is preceded by initialization where SenderWorker has to set
all needed fields for running. It includes the Id, the maximum number of
SenderWorkers , the hash range, and the state in which it is actually located.

After initialization, it is asked whether worker synchronization is set. Firstly,
the life cycle will be explained when worker synchronization is not set. The
following section will explain the reason for this synchronization and how the life
cycle changes when worker synchronization is set.

Figure 4.10 depicts the whole procedure of SenderWorker from initialization to
the entire life cycle.

44

Figure 4.8: SenderWorker activity diagram

Now SenderWorker starts the life cycle. Just like the Synchronizer, to ensure a
safe shutdown of the system, SenderWorker during initialization catches program
interrupt signals SIGINT and SIGTERM . Then it sets a callback that changes the
variable value according to SenderWorker will know that it has to stop working
after the current iteration.

The sending starts with the loop that iterates each currently owned hash range
(which will be explained in the following section). Then it starts with campaign
messages, where it iterates through each campaign in SENDING status, and for
each campaign, it selects a chunk of its messages from the current hash range.
The next step includes selecting all needed data from MongoDB collections of this
chunk for making and sending e-mails. So it is important to select all subscribers
blacklisted. Everything is done in one MongoDB operation. This is the subsequent
significant optimization compared to the previous version. In the previous version,
SenderWorker received a chunk of messages from SenderMaster and executed many
SQL queries for each message separately which caused unnecessary delay. Then
SenderWorker iteratively makes e-mails from messages and sends them. The
procedure of making and sending e-mail remains the same. Only the source code
was rewritten with a focus on readability and extensibility.

If a chunk was sent for each sending campaign, it continues sending queued
messages. Here is essential to mention that MongoDB queries are not optimized
for queued messages, but it is not a big problem since queued messages are not
widely used in production.

If there is no available task right now, it generates a random number of seconds
from the SLEEP_PERIOD range (10, 30) and will go to sleep for this time.
The reason for using this strategy is that there cannot be any trigger in the
non-highly available section that would send information to all SenderWorkers

45

about tasks since it cannot depend on the non-highly available section. On the
other hand, it would not be optimal if all SenderWorkers sent their requests to
the MongoDB cluster constantly without any pause in case there is no task. It
would cause overwhelm the entire MongoDB cluster. So with this strategy, there
is no centralized trigger, nor MongoDB cluster is overwhelmed since there are
pauses between two requests, and the probability that all SenderWorkers send
their requests at the same time is very low.

4.2.4.2 Worker synchronization

So far, only SenderWorker containing one default and unique hash range com-
puted during initialization was described. But in production, it is common for
the number of SenderWorkers to change quickly depending on currently running
nodes and the amount of work available. Either some node fails, or the running
platform increases or decreases the number of SenderWorkers depending on the
amount of work available. In both cases, the Sender has to ensure that all running
SenderWorkers will temporarily substitute the work of dead SenderWorkers .

This procedure is called worker synchronization and will be described right
now. If there are currently working and dead SenderWorkers and this number
can change depending on the time, it is essential to define some states where
SenderWorkers can be. Each SenderWorker can be in one of these defined states:

1. SYNCHRONIZING - SenderWorker process has started and is waiting
for the start of its life cycle.

2. WORKING - SenderWorker process is executing work.

3. DEAD - SenderWorker process is dead.

Since every SenderWorker must be able to read the state of any other SenderWorker
at any time, it is crucial to have some place of memory where it would be stored,
accessible to any SenderWorker , and highly available. For this reason, a new
MongoDB collection has been created with the name sender_workers and contains
every information about each SenderWorker . The size of this collection is equaled
to the value of maximum SenderWorkers .

A document from this collection has this schema:
1 {
2 "title" : "sender_workers" ,
3 "required" : [
4 "_id" ,
5 "state" ,
6 "range" ,
7 "lastReport" ,
8 "substitute"
9] ,

10 "properties" : {
11 "_id" : { "bsonType" : "number" } ,
12 "state" : { "bsonType" : "number" } ,
13 "range" : {
14 "bsonType" : "object" ,
15 "required" : [
16 "from" ,

46

17 "to"
18] ,
19 "properties" : {
20 "from" : { "bsonType" : "number" } ,
21 "to" : { "bsonType" : "number" }
22 }
23 } ,
24 "lastReport" : { "bsonType" : "timestamp" } ,
25 "substitute" : { "bsonType" : ["null" , "number"] }
26 }
27 }

Figure 4.9: A document schema for sender_workers collection

Where _id means the Id of SenderWorker , state means the current SenderWorker
state from the set of states defined above, range means its default and unique hash
range, lastReport contains the timestamp when SenderWorker lastly reported alive
state, and substitute contains the Id of SenderWorker that currently substitutes
this SenderWorker (null if not substituted).

Another property Except for the default hash range, each SenderWorker also
contains a list of hash ranges of SenderWorkers , whose this SenderWorker currently
substitutes.

4.2.4.3 State diagram

The present section outlines the state diagram for SenderWorker , where the
nodes symbolize the SenderWorker states. The upper character represents the
state defined in the preceding section, and the lower character represents the Id
of SenderWorker that currently substitutes this SenderWorker). The edges signify
transitions between these states.

Figure 4.10 depicts the state diagram with all its nodes and transitions.

Figure 4.10: SenderWorker state diagram

There are two possible initial states (S, null) and (S, i). During the entire first
start, each SenderWorker gets the initial state (S, null). Then after each next start,
SenderWorker can be either in the state (S, null) if it is not substituted or (S, i) if
it is substituted by SenderWorker i. If SenderWorker starts in the state (S, i), it
has to wait until SenderWorker i will release it.

After this step, SenderWorker can move into the state (S, null) and then into
the state (W, null). This state means that SenderWorker started the life cycle and

47

is working. From the working state, SenderWorker can get to either (S, null) state
or (D, i) state. The first transition means that SenderWorker was turned off but
started fast enough so that other SenderWorkers did not mark it as dead. The
second transition means that SenderWorker stopped to work, and another working
SenderWorker marked it as dead and substituted it.

If SenderWorker is in the (D, i) state, its process is dead and not working. But
there are two different states for dead SenderWorker . The first is (D, i) and means
that it is substituted by SenderWorker i. The second means it is not substituted
by any other SenderWorker . The exact reason for having these two different
states will be described in the next section. Still, the main reason is to achieve
balanced substitutions among all other working SenderWorkers . So sometimes
some SenderWorker has to release also dead SenderWorkers if it substitutes too
many and some another working SenderWorker substitutes too few.

4.2.4.4 WorkerSynchronizer

This component is part of SenderWorker procedure and ensures synchronization
among all other SenderWorkers . During initialization, SenderWorker starts asyn-
chronous operation, which represents WorkerSynchronizer . Its primary purpose is
to report the alive state and resolve dead SenderWorkers periodically.

The asynchronous operation starts with the period it reports its alive state. It
means updating field lastReport in the collection sender_workers to the actual
timestamp. Then it waits for SYNCHRONIZING_PERIOD of milliseconds.

After waiting for defined milliseconds, the period repeats again, and if it
executes SYNCHRONIZING round (each fifth round), WorkerSynchronizer starts
resolving dead SenderWorkers . If some SenderWorker is in the DEAD state, it
means that its lastReport was not updated for at least five rounds.

Since each SenderWorker takes all dead workers and tries to substitute them, it
is evident that there can appear some race condition which can cause inconsistent
database state in case two working SenderWorkers try to substitute some dead
SenderWorker . To solve this problem, MongoDB transactions are used that support
ACID properties [24]. So each query to the sender_workers collection has to be
executed through a transaction to avoid some inconsistent database state. Suppose
two workings SenderWorkers want to substitute some dead SenderWorker . In that
case, they execute transactions where one will be successfully committed and the
other will be aborted.

When the number of SenderWorkers decreases and increases depending on time,
it can reach the state when some working SenderWorker substitutes too many
dead SenderWorkers and some another working SenderWorker substitutes too few,
which would mean a rapid deterioration of performance in sending e-mails. So it
is also crucial to ensure balanced substitutions among all working SenderWorkers .
To achieve this balanced state, each SenderWorker always has to know how many
SenderWorkers at most it should substitute. This number is called the balance
factor and is computed according to this formula:

BF = n/w + r − s

Where n is the number of non-working (SYNCHRONIZING or DEAD state)
SenderWorkers , w is the number of working SenderWorkers , r is the remainder after

48

division, and s is the number of non-working SenderWorkers that are currently
substituted by this SenderWorker . The number w cannot be zero. Otherwise, there
would be no working SenderWorkers , and no one could compute it. If the balance
factor equals 0, it means that this SenderWorker has balanced substitutions and
does not need to change it. If the balance factor is greater than 0, it means
that this SenderWorker has too few substitutions, and it has to substitute at
most BF dead SenderWorkers . If the balance factor is less than 0, it means that
this SenderWorker has too many substitutions, and it has to release exactly |BF |
substituted SenderWorkers .

During synchronization SenderWorker knows whether it has to substitute some
dead SenderWorkers or release them. Since WorkerSynchronizer cannot release
substituted SenderWorkers directly because it has no information whether there
are some currently sending e-mails of these SenderWorkers , when SenderWorker
main loop accomplishes one iteration, it continuously checks the balance factor. It
releases all synchronizing SenderWorkers waiting to release their hash range and
redundant dead SenderWorkers .

4.2.4.5 PlatformSolver

Since the highly available Sender cluster can run under different platforms
in distributed mode (Slurm, Kubernetes, etc.), SenderWorker has to recognize
the platform under which it is running and adequately execute the initialization
and life cycle. Two environment variable names differ depending on the running
platform. It is an environment variable for worker Id and an environment variable
for maximum SenderWorkers . So this class is used by SenderWorker in initialization
to read these environment variables appropriately.

4.2.4.6 Correctness testing

Prior to proceeding to the next component, it is imperative to explicate the
methodology employed to ascertain the correctness of worker synchronization.
It should be noted that the correctness of worker synchronization is pivotal in
achieving the correctness of the entire Mailtrain system. Any latent bugs in this
component may result in sending redundant e-mails or losing some e-mails.

The verification of the correctness of distributed systems is a complex task
that cannot be solely accomplished by means of an automatic unit or end-to-end
(E2E) testing. This is because such testing methodologies fail to capture the
intricate interactions between multiple concurrent threads or processes, which can
give rise to concurrency bugs such as race conditions or deadlocks.

To effectively test the correctness of distributed systems, it is crucial to first
identify the cases in which these concurrency bugs can arise. The next step involves
determining how to trigger the program state for these cases. Finally, manual
testing on the triggered program state is necessary to detect any concurrency
bugs that may arise. So the correctness testing was conducted manually on these
significant test cases that have been specifically designed to highlight the potential
concurrency issues that may arise, namely:

1. Many SenderWorkers try to substitute dead SenderWorker - This test case
verifies that if some SenderWorker fails and all other working SenderWorkers

49

endeavor to substitute it, only one SenderWorker will do so while other
transactions either fail due to write conflicts or will not even have time to
start.

2. Multiple SenderWorkers awaken - This test case aims to ensure that if some
dead SenderWorkers have woken up, they begin working either immediately
or in the next synchronization round of their substitute.

3. SenderWorker that substitutes other dead SenderWorkers has died -
This test case verifies that if SenderWorker (A) that currently substitutes
many other dead SenderWorkers fails, the SenderWorker (B) substituting
it will first cancel all substitutions of SenderWorker A and then substitute
SenderWorker (A). So other working SenderWorkers can substitute for them.

4. Network problem - This test case aims to ensure that if some SenderWorker
has a network problem and cannot communicate with the MongoDB database,
then it automatically calls the initialization method again and has to pass
synchronization. So after reconnecting, it starts working with initialized
values.

5. Balanced substitutions - This test case aims to ensure that if many
SenderWorkers substitute other dead SenderWorkers evenly and some dead
SenderWorkers start to wake up, then all dead SenderWorkers are evenly
substituted again among all working SenderWorkers so that all substitutions
are always balanced.

6. Deadlock detected - This test case aims to ensure that if dead and
substituted SenderWorker wants to start and all other SenderWorkers are
non-working (they are either dead, synchronizing, or in the working state but
with too old last report time), then it has to mark all working SenderWorkers
as dead, remove all substitutions and start to work.

4.3 HAPUBLIC server
This section describes the last highly available component of Mailtrain, the

HAPUBLIC server, created from the PUBLIC server by moving two types of
requests (Files, Links) subscribers call through their received e-mail. Since these
two types of requests belong to critical services of Mailtrain and require non-stop
running, the HAPUBLIC server supports high availability and can ensure non-stop
running.

Figure 4.11 depicts the internal architecture of this component. The HAPUB-
LIC server consists of three parts:

1. HAProxy - a reliable and popular open-source load balancer and reverse-
proxy server that is used to distribute network traffic across multiple servers
in a high availability (HA) environment for TCP and HTTP-based applica-
tions [7].

2. HAPUBLIC worker - a process representing an independent web server
instance of Express framework for processing Files and Links types of
requests.

50

3. Keepalived - an open-source tool that is used to provide high availability
for Linux-based servers by implementing the Virtual Router Redundancy
Protocol (VRRP) protocol [19], it is used as a support service for HAProxy
to ensure high availability.

Figure 4.11: HAPUBLIC server design

The HAPUBLIC server starts by starting the HAProxy process and forking all
HAPUBLIC workers. The node where HAProxy is currently running is called the
master. All subscriber requests are received by HAProxy running on this node,
from where they are evenly distributed among HAPUBLIC workers. For this load
balancing, HAProxy uses the Round-Robin algorithm [5], which is suitable for
this purpose.

When some HAPUBLIC worker receives a request, a request is processed, and a
response is sent back to HAProxy. The optimal configuration is to have at least one
HAPUBLIC worker on each node. To ensure the independence of the non-highly
available section, a HAPUBLIC worker communicates only with the MongoDB
cluster and file system, the consequence of which is that all moved requests have

51

been reprogrammed so that not to query the MariaDB database. Also, all MariaDB
tables used by a HAPUBLIC worker (campaign_links , files_campaign_file) had
to be created in the MongoDB database, as was mentioned in Section 4.

On each node, there must also be a Keepalived process that constantly checks
the master node to see whether HAProxy is still running and did not fail. In case
of the master node failure when HAProxy does not run, Keepalived processes
from each node will elect another node where the HAProxy process starts by
leader election algorithm [23]. If a new node is elected, HAProxy starts there
and becomes a new master node. This ensures the HAPUBLIC server’s high
availability.

4.4 Modes
It is still essential to ensure the financially accessible and straightforward

maintenance of Mailtrain. For this reason, there have been created two modes
of Mailtrain. First, centralized is a cheaper mode designed for customers with
small data. The second mode is distributed and designed for customers with large
data where vertical scalability is unsuitable. The mode is selected during system
configuration before starting. The standard procedure is that a customer starts in
the centralized mode with small data, and when data is growing, a customer will
gradually switch to the distributed mode.

4.4.1 Centralized
The centralized mode defines, as the name suggests, Mailtrain will run on just

one node. It follows that in this mode, Mailtrain cannot support high availability,
and therefore all critical services do not have ensured non-stop correct running.

4.4.2 Distributed
On the other hand, the distributed mode represents the mode for which

this system was designed. Mailtrain can run on more nodes and supports high
availability. Therefore, all critical services have ensured non-stop correct running.

4.5 Source code overview
After completing the implementation, it is valuable to look at the source code

tree compared to the source code tree of the previous version. This version is
stored in v3 Git branch.

4.5.1 The current version
The current source code tree in this section is also displayed with a brief

description for each important directory or module.

mailtrain/
client/ - the whole source code of Admin GUI written in React
deployment/ - deployment scripts

52

docs/ - brief documentation about features and deployment
locales/ - all supported translations of Admin GUI stored in JSON
mvis/ - the source code of a visual analytics tool
server/ - the whole source code of the backend

config/ - configuration file stored in YAML format
files/ - directory where all file entities are stored
lib/ - directory where auxiliary modules for other modules

are stored
hapublic/ - directory where the HAPUBLIC server is

written
report-processor/ - directory where ReportProcessor

service is written
sender/

mail-maker/ - directory where classes for making
e-mails are written

mail-sender/- directory where classes for sending
e-mails are written

sender-worker/ - directory where auxiliary classes
for SenderWorker are written

synchronizer/ - directory where DataCollector
and Scheduler is written

sender.js - functions for forking Sender
models/ - directory where queries for all entities

are written, it represents the DAL component
performance-test/ - directory where is written script for

parallel file requests
protected/ - this directory serves for generated reports
routes/ - directory where routing functions for all entity

endpoints are written
services/

executor.js - source code of Executor service
feedcheck.js - source code of Feedcheck service
gdpr-cleanup.js - source code of GDPR Cleanup service
importer.js - source code of Importer service
postfix-bounce-server.js - test SMTP server source code
report-processor.js - source code of ReportProcessor

service
synchronizer.js - source code of Synchronizer service
sender-worker.js - source code of SenderWorker service
test-server.js - test SMTP server source code
triggers.js - source code of Triggers service
tzupdate.js - source code of TZUpdate service
verp-server.js - test SMTP server source code

setup/ - config files for MongoDB and MariaDB database system
test/ - a couple of backend tests
app-builder.js - functions for setting up servers
index.js - the main module that starts the whole system
package.json - records important metadata of the server

source code
shared/ - all entity enums shared between the source code of

the client and the server

53

zone-mta/ - config files for running the builtin Zone-MTA feature

4.5.2 Deleted subtree
In this section, leaves of this source code subtree display just directories or

files that have been removed compared to the previous version of Mailtrain.

For a more accurate display of all deleted files, type the command:
1 $ git diff −−name−only −−diff−filter=D v2 . . . v3

mailtrain/

server/

lib/

mailers.js

message-sender.js

senders.js

services/

workers/

sender-master.js

sender-worker.js

setup/

4.5.3 Updated subtree
In this section, leaves of this source code subtree display just directories or

files that have been inserted or updated on a large scale (red color) or updated
(blue color) on a small scale compared to the previous version of Mailtrain.

For a more accurate display of all changed files, type the command:
1 $ git diff −−name−only v2 . . . v3

For a list of the number of changed lines, type the command:
1 $ git diff −−numstat v2 . . . v3

For displaying all changes in one particular file, type the command:
1 $ git diff v2 . . . v3 −− <file_path>

54

mailtrain/

client/

deployment/

server/

lib/

hapublic/

report-processor/

sender/

fork.js

helpers.js

mongodb.js

urls.js

models/

blacklist.js

campaign.js

files.js

links.js

lists.js

queued.js

send-configurations.js

subscriptions.js

routes/

files.js

services/

synchronizer.js

sender-worker.js

setup/

knex/

seeds/

data-generator.js

mongodb/

55

4.6 Deployment requirements
In the last section, each requirement (hardware and software) is written that

is necessary for the proper and smooth running of the entire system. Since there
are two different supported modes, requirements differ according to chosen mode.

The exact deployment procedure for both modes is stored in mailtrain/deployment
directory.

4.6.1 Centralized mode
For centralized mode, the deployment requirements remain the same as in the

previous version, described in Section 2.8. The whole guidance for deploying the
new version of Mailtrain in the centralized mode is stored in the thesis attachment
A.

4.6.2 Distributed mode
In distributed mode, the situation is much more complicated. The deployment

requirements remain the same as in the previous version, described in Section 2.8,
and several other requirements will be added.

Additional hardware and software requirements:

• Each node where the MongoDB and HAPUBLIC server will run must be
able to connect to all other nodes where all other MongoDB and HAPUBLIC
server instances will run. It is important to ensure that network and security
systems, including all interfaces and firewalls, allow these connections.

• Each node where the HAPUBLIC worker will run together with the non-
highly available section must be able to read and write into one shared file
system.

• Installed and configured Slurm Workload Manager [18] on each node. For
any other platforms, the deployment procedure is not documented and has
to be done by the customer manually.

It is important to note that the deployment procedure for distributed mode
is much more complicated than for centralized mode and requires some manual
operations.

56

5. Evaluation
In the final chapter, an evaluation and comparison of the two versions will

be conducted with respect to their performance. The principal objective is to
compare the two versions of the Sender component, the PUBLIC server with the
HAPUBLIC server, and to demonstrate that the updated version is capable of
horizontal scaling for large data sets, whereas the previous version is not.

This evaluation should also include all proper combinations of parameters
that can influence the speed of the whole procedure of components. The Sender
component includes running mode, whether worker synchronization is turned
on/off, and the number of SenderWorkers . It would also be valuable to demonstrate
the evenness of the distribution of messages among SenderWorkers for a significant
number of SenderWorkers .

The PUBLIC server includes the number of sent parallel requests, the size
of the requested file, and in the HAPUBLIC server, there is also the number of
parallel running servers.

For all of these combinations of parameters is valuable to execute performance
tests on some reasonable test data in some distributed system with the setup
using full performance and compare it with each other.

5.1 Test data
It is crucial to ensure that testing data will be large enough to reach a state

where the different behavior of both versions will be clearly visible. It means that
the vertical scaling used in the old version does not bring any acceleration, it even
slows down, but horizontal scaling used in the new version does.

For the Sender component, there will be used one big campaign with 1000000
subscribers. Since the number of sending campaigns does not significantly affect
the speed of sending procedure, only the sum of subscribers, it is not vital to have
more than one campaign for performance testing.

For the PUBLIC and HAPUBLIC servers, there will be used one 1MB image
file that represents an image with a standard size used in production.

5.2 Test environment
As a test environment for evaluation of the old and new versions, there is used

parlab cluster maintained by MFF HPC metacenter.

Here is included a brief specification of the cluster:
The cluster contains one head node and eight worker nodes, and on each

worker node are two sockets of Intel Xeon Gold 6130 CPU with 16 cores. So each
worker node contains 32 CPU cores, and the whole cluster contains 256 CPU cores.
The cluster contains 128GB RAM. All nodes are interconnected by InfiniBand
FDR (56 Gb/s) for high-performance messaging using MPI. Moreover, they are
interconnected by 10 GbE for all other traffic. The front-end server is connected
by 10 GbE to the external world.

57

All nodes share one disk array connected to the head node with 2x FC16.
The head node is connected to worker nodes with 3x 10GE. This disk array uses
auto-tiering, where on tier 0, there are SSDs with a capacity of 1.1TB, and on
tier 3, there are HDDs with a capacity of 260TB.

One of these worker nodes is used for running the non-highly available section
of Mailtrain, and it is also used for running one MongoDB server. All other worker
nodes, including the previous one, are used for running the Sender cluster and
HAPUBLIC server.

Since there is no affordable SMTP server with the same performance as the
cluster, there is no SMTP server used in the whole testing. When SenderWorker
calls the function to the SMTP server, only a constant successful response is
returned instead of the calling function.

5.3 The old version
Firstly, it is essential to analyze the old version of Mailtrain. It is crucial to

set up the cluster so that it uses the maximum number of resources for one node.
Therefore both comparisons will bring the best possible performance times with
regard to the limits of the cluster.

The PUBLIC server will be tested together with the HAPUBLIC server in the
last section.

5.3.1 Sender
The first measurement graph will be described for the Sender component. The

x-axis indicates the number of SenderWorkers , and the y-axis indicates the total
amount of time measured in seconds needed for sending the whole campaign.

Each measured time represents the exact time, just like in Chapter 3. The
exact time consists of initialization time and sending time. The initialization in
the old version defines the time between points when the start button is clicked
until SenderMaster prepares the campaign for sending. The sending time in the
old version defines the time between points when SenderWorkers start making and
sending e-mails until the campaign is sent.

The initialization time was always 50 seconds for each test, and the rest
belonged to sending time, hence the work of SenderWorkers .

58

Figure 5.1: Old Sender performance analysis

Figure 5.1 depicts the measurement graph of time for sending the campaign
with one million e-mails.

The best run for this version of the Sender component was for 160 number of
SenderWorkers with a duration of 710 seconds.

5.4 The new version
In the new version of Mailtrain, it is essential to analyze both modes and for

the distributed mode to analyze cases when worker synchronization is turned
on/off. This will show not only overall performance times for both modes but it
will also respond to questions such as what a significant acceleration will only use
the new algorithm without adding new nodes bring, what a significant acceleration
will adding more nodes bring, and what percentage of the time takes worker
synchronization.

5.4.1 Centralized Sender
The graph definition remains the same as in the previous measurement. The

exact time definition now has new points definition according to the new version
of Sender. The initialization defines the time between points when the start
button is clicked until Synchronizer prepares the campaign for sending and sends
all needed data to the MongoDB database. The sending time defines the time
between points when SenderWorkers start making and sending e-mails until the
campaign is sent but not fully synchronized with the MariaDB database.

The initialization time was always 110 seconds since now all campaign messages
had to be first created in the MariaDB database and then synchronized with

59

the MongoDB database. The rest belonged to sending time, hence the work of
SenderWorkers .

Figure 5.2: Centralized Sender performance analysis

Figure 5.2 depicts the measurement graph of time for sending the campaign
with one million e-mails in the centralized mode.

The minimum time for this version of the Sender component was for 32 number
of SenderWorkers with a duration of 210 seconds which represents approximately
3.4x acceleration compared to the old version of Mailtrain. If it is considered only
the sending time, it represents 6.6x acceleration. It is also evident that the new
version uses resources of the one node much more efficiently since the exact times
are much shorter. Also, after exceeding the limit of the number of CPU cores for
each SenderWorker , the exact times are only increasing.

5.4.2 Distributed Sender
Now, it is time to analyze performance for the distributed mode where all cluster

worker nodes are used with maximum use of resources. The first measurement will
be executed with unsynchronized SenderWorkers . Then the second measurement
with turned-on synchronization will be performed, resulting in a total increase in
time needed for worker synchronization.

5.4.2.1 Unsynchronized workers

Just like in the previous measurement of the centralized mode, the graph
definition and the exact time definition remain the same.

60

Figure 5.3: Distributed unsynchronized Sender performance analysis

Figure 5.3 depicts the measurement graph of time for sending the campaign
with one million e-mails in the distributed mode of unsynchronized SenderWorker .

It is evident from the graph that increasing the number of SenderWorkers does
not decrease the exact time so much. The main reason for this is that the shared
disk array reached the maximum bandwidth, and adding more nodes with other
CPU cores cannot bring more significant acceleration.

The minimum time for this version of the Sender component was for 256 number
of SenderWorkers with a duration of 170 seconds which represents approximately
4.2x acceleration compared to the old version of Mailtrain. If it is considered
only the sending time, it represents 11x acceleration. This acceleration is the
maximum of all measurements. Compared to the measurement of the centralized
mode, the acceleration for the exact time is approximately 1.23x, and only for the
sending time, it is approximately 1.7x. It is valuable to mention that, in this case,
the minimum time is measured in the maximum number of workers so increasing
the number of SenderWorkers does not increase the exact time for a significant
number of SenderWorkers as in the centralized mode measurement.

5.4.2.2 Synchronized workers

So far, worker synchronization was always turned off. Now it is time to compare
the previous Figure 5.3 with the example where worker synchronization is turned
on and shows what kind of system slowdown it will bring.

61

Figure 5.4: Distributed synchronized Sender performance analysis

Figure 5.4 shows the effect of worker synchronization. The times did not
change so rapidly, and the minimum changed for 256 workers from the value 170
to 185. It looks like for each number of workers, the sending time increased by
approximately 10 - 20%.

5.5 Comparison of all variants
In this Section, there is presented a comparison of all four curves measured

above, denoted as old Sender, centralized Sender, distributed unsynchronized
Sender, and distributed synchronized Sender.

62

Figure 5.5: All Senders performance analysis

As depicted in Figure 5.5, the exact times of the new version curves exhibit
considerable variability in comparison to the old version curve. The optimal
measured times for each variant, ranked in ascending order, are as follows:

• Distributed Unsynchronized Sender - SenderWorkers : 256, the exact
time: 170 (the initialization time: 110, the sending time: 60)

• Distributed Synchronized Sender - SenderWorkers : 256, the exact time:
185 (the initialization time: 110, the sending time: 75)

• Centralized Sender - SenderWorkers : 32, the exact time: 210 (the initial-
ization time: 110, the sending time: 100)

• Old Sender - SenderWorkers : 160, the exact time: 710 (the initialization
time: 50, the sending time: 660)

63

Figure 5.6: All Senders performance analysis (zoomed)

To be able to see the differences between the three curves from the new version,
there is made zoomed Figure 5.6 of the previous one that depicts these differences
primarily.

5.5.1 Evenness of the distribution of messages
As the last analysis in this section, it would be valuable to show measurement

from the evenness of the distribution of messages among 256 SenderWorkers . Figure
5.7 depicts the exact number of messages assigned to each SenderWorker .

64

Figure 5.7: Evenness of the distribution of messages

The fewest messages were assigned to SenderWorker with Id 85 and value 3728.
On the other hand, most messages were assigned to SenderWorker with Id 31
and value 4070. This measurement graph clearly proves that the hash algorithm
SHA-512 used in the new version of the Sender component distributes messages
evenly with only slight deviation.

5.5.2 HAPUBLIC server
This section will focus only on measuring request processing times for PUBLIC

and HAPUBLIC servers. The PUBLIC server is used from the old version of
Mailtrain, and the HAPUBLIC from the new version. Processing one request
contains reading a file path from the database according to URL arguments and
then sending a requested file.

It is helpful to note that although the PUBLIC server runs only on one node
as a single thread process, the processing alone is parallel because all requests are
processed by the web server asynchronously, and I/O operations are executed in
Node.js in parallel by default. Because of that, it is not necessary to run more
than one web server on one node for the HAPUBLIC server.

Since the architecture of the using cluster has a shared disk array among all
nodes, measured times of processed requests for both servers are not significantly
different. For that reason, there will be executed two different performance analysis.
The first performance analysis is simulated where a request is not really executed,
but the server will wait one second and then will send a successful and constant
response of negligible size. The second performance analysis is accurate, where a
request is really processed, and a requested file is sent as a response. The reason
for making these two different versions is that it should depict the HAPUBLIC

65

server as horizontally scalable, and the measured times are not ideal only due to
the cluster architecture.

5.5.2.1 Simulated version

The first version of measuring the performance of the PUBLIC and HAPUBLIC
servers is simulated. There are sent 1000 parallel requests to the PUBLIC and
HAPUBLIC servers. The x-axis indicates the number of workers or nodes (since
one worker runs on each node) used for the HAPUBLIC server, and the y-axis
indicates the total amount of time measured in seconds needed for processing all
requests.

Figure 5.8: (HA)PUBLIC servers simulated performance analysis

Figure 5.8 depicts that increasing the number of workers for the HAPUBLIC
server decreases the processing time. The processing time remains the same for
the PUBLIC server since it runs only on one node with one worker. So this
measurement clearly proves that the HAPUBLIC server can scale horizontally
compared with the PUBLIC server used in the old version of Mailtrain.

5.5.2.2 Real version

The second version of measuring the performance of the PUBLIC and HA-
PUBLIC servers is real. The testing parameters remain the same. There are
sent 1000 parallel requests to the PUBLIC and HAPUBLIC servers. The x-axis
indicates the number of workers or nodes (since one worker runs on each node))
used for the HAPUBLIC server, and the y-axis indicates the total amount of time
measured in seconds needed for processing all requests.

66

Figure 5.9: (HA)PUBLIC servers real performance analysis

Figure 5.9 depicts that increasing the number of workers for the HAPUBLIC
server does not change the processing time since the reading from the disk array
is a significant bottleneck.

5.6 Evaluation summary
After executing all performance tests and measuring times, it is partially shown

that the new version of Mailtrain can scale horizontally for sending extensive
campaigns and processing file requests in the HAPUBLIC server. Although
measured times are not ideal, the new version brought rapid acceleration. It is
essential to consider in these types of systems that for achieving ideal times, it
would be necessary having all system components that represent bottlenecks with
the same and high performance.

In this thesis, the main system components that cause bottlenecks are the
SMTP server, the disk array where the MongoDB database is stored, and the
cluster where SenderWorkers and HAPUBLIC server workers run as was said
in Chapter 3. Practically it is almost impossible to meet these requirements,
especially having all these components with the same performance, but the ideal
cluster architecture where Mailtrain should achieve the best performance is Big
Data architecture [11].

It means meeting all these requirements:
• Each node must have its own non-shared disk or own disk array with the

best possible bandwidth.

• Each node must have an appropriate number of CPUs and the operation
memory to be able to run as many SenderWorkers as possible.

67

• Each node in the system necessitates an independent MongoDB server that
is configured for replication and sharding based on the e-mail hash. This
implies that SenderWorkers executing on a given node solely send e-mails
that are stored on that particular node.

• Having the SMTP server with the same performance as the rest of the
system.

68

6. Conclusion
The main goals of the thesis were to implement a new architecture for Mailtrain

that can scale horizontally on large data, supports high availability of all critical
services, contains safe shutdown of the system, and has more readable and
upgradeable source code of the Sender component. All of these goals have been
accomplished and proved in the Evaluation chapter.

One of the biggest successes of this thesis is that the current version solves
problems beyond the original scope. The original scope was only to make Mailtrain
horizontally scalable for sending campaigns that are the most used in production
(regular and RSS) and ensure high availability for critical services. The current
version supports horizontal scalability not only for each type of campaign but also
for each type of queued message and all critical services. The same applies to
high availability. This solution made the Sender source code more readable and
upgradeable since the new Sender supports all types of messages, and therefore
the old Sender could be totally removed.

Further, the current version supports two modes (centralized and distributed)
and thus is accessible to customers with less financial budget and more minor
data. It is also satisfying to demanding customers that send many campaigns
simultaneously and need to run Mailtrain in some high-performance distributed
system.

6.1 Future work
The current version could be improved and extended in many ways. After

analysis of the Sender component, it is evident that some are not optimal oper-
ations. This thesis mainly focuses on campaigns that are most frequently used
in production (regular and RSS), as mentioned above. The consequence is that
sending queued messages is not implemented with a big emphasis on optimality.
For triggered campaigns, there are duplicated data for each message in MongoDB
queued collection. Also, handling and rescheduling unsuccessfully sent queued
messages are done more complicatedly. The best solution is to entirely change
sending triggered campaigns as campaign messages, not as queued ones, and
optimize rescheduling other types of queued messages. It would also be helpful to
add another status to a campaign that would distinguish between states when a
campaign is only sent and when all campaign messages are synchronized with the
MariaDB database.

The next thing the current version should improve is removing the PUBLIC
server and moving all requests to the new HAPUBLIC server. Since there is
no need to have two different types of servers with requests used for the same
purpose, the source code will be more understandable and extensible.

If a customer wants to deploy Mailtrain in the distributed mode, it can be
run only under the Slurm platform. There are much more popular platforms for
running distributed systems, such as Amazon EC2 Container Service, Google
Kubernetes Engine, Azure Kubernetes Service, etc. It would be helpful to make
Mailtrain support also these popular platforms. Support for these platforms
includes creating deployment scripts and testing actual deployments or some little

69

change in PlatformSolver if needed.
Another service that could be expanded with other options is an SMTP server.

There are only three types of SMTP servers that the current version supports. It
is a centralized and serial SMTP server, Zone-MTA, and AWS SES. There are
some other popular services for sending e-mails, such as Elastic Email, Mailjet,
etc. Starting to support them would also improve the popularity of Mailtrain.

70

Bibliography
[1] AWS SES Cloud Email Service. url: https://aws.amazon.com/ses/.
[2] Eve; Banks Alex; Porcello. Learning React. O’Reilly Media, 2017. isbn:

978-1491954621.
[3] Comparing The Differences - MongoDB Vs MariaDB | MongoDB. url:

https://www.mongodb.com/compare/mariadb-vs-mongodb.
[4] Comparing The Differences - MongoDB Vs MySQL | MongoDB. url: https:

//www.mongodb.com/compare/mongodb-mysql?fbclid=IwAR2h0H2H6B0V
c4izYK52TDjbOj_BdpqBpfs-qtWfPmMKdisiG9i4spr7Rew.

[5] Mustafa Elgili. “Load Balancing Algorithms Round-Robin (RR), Least-
Connection and Least Loaded Efficiency”. In: (Oct. 2017).

[6] Express - Node.js web application framework. url: https://expressjs.
com/.

[7] HAProxy technologies. url: https://www.haproxy.com/.
[8] Guy Harrison and Michael Harrison. MongoDB performance tuning: Opti-

mizing MongoDB databases and their applications. 1st ed. Berlin, Germany:
APress, 2021. isbn: 978-1484268780.

[9] Yousef Al-houmaily and George Samaras. “Two-Phase Commit”. In: (Jan.
2009), pp. 3204–3209. doi: 10.1007/978-1-4899-7993-3_713-2.

[10] Thomas Hunter and Bryan English. Multithreaded Javascript: Concur-
rency beyond the Event Loop. O’Reilly Media, Inc, USA, 2021. isbn: 978-
1098104436.

[11] W.H. Inmon, Daniel Linstedt, and Mary Levins. “Chapter 4.2 - What Is Big
Data?” In: Data Architecture (Second Edition). Ed. by W.H. Inmon, Daniel
Linstedt, and Mary Levins. Second Edition. Academic Press, 2019, pp. 73–80.
isbn: 978-0-12-816916-2. doi: https://doi.org/10.1016/B978-0-12-
816916-2.00011-5. url: https://www.sciencedirect.com/science/
article/pii/B9780128169162000115.

[12] Hui Lei. “TCC: State of the Transactions”. In: IEEE Transactions on Cloud
Computing 7 (Jan. 2019), pp. 1–4. doi: 10.1109/TCC.2019.2892015.

[13] Greg; Lim. Beginning node.Js, express MongoDB development. Indepen-
dently Published, 2019. isbn: 978-1078379557.

[14] Shaimaa Khalifa Mahmoud et al. “A comparative analysis of Cross Site
Scripting (XSS) detecting and defensive techniques”. In: 2017 Eighth In-
ternational Conference on Intelligent Computing and Information Systems
(ICICIS). 2017, pp. 36–42. doi: 10.1109/INTELCIS.2017.8260024.

[15] MariaDB MaxScale. url: https://mariadb.com/kb/en/maxscale/.
[16] John O’Gorman. The Linux process manager - the internals of scheduling,

interrupts and signals: The internals of scheduling, interrupts and signals.
en. Chichester, England: John Wiley & Sons, 2003. isbn: 978-0470847718.

[17] John; Rhoton. Programmer’s Guide to Internet Mail: SMTP, POP, IMAP,
and LDAP. Digital Press, 1999. isbn: 978-1555582128.

71

https://aws.amazon.com/ses/
https://www.mongodb.com/compare/mariadb-vs-mongodb
https://www.mongodb.com/compare/mongodb-mysql?fbclid=IwAR2h0H2H6B0Vc4izYK52TDjbOj_BdpqBpfs-qtWfPmMKdisiG9i4spr7Rew
https://www.mongodb.com/compare/mongodb-mysql?fbclid=IwAR2h0H2H6B0Vc4izYK52TDjbOj_BdpqBpfs-qtWfPmMKdisiG9i4spr7Rew
https://www.mongodb.com/compare/mongodb-mysql?fbclid=IwAR2h0H2H6B0Vc4izYK52TDjbOj_BdpqBpfs-qtWfPmMKdisiG9i4spr7Rew
https://expressjs.com/
https://expressjs.com/
https://www.haproxy.com/
https://doi.org/10.1007/978-1-4899-7993-3_713-2
https://doi.org/https://doi.org/10.1016/B978-0-12-816916-2.00011-5
https://doi.org/https://doi.org/10.1016/B978-0-12-816916-2.00011-5
https://www.sciencedirect.com/science/article/pii/B9780128169162000115
https://www.sciencedirect.com/science/article/pii/B9780128169162000115
https://doi.org/10.1109/TCC.2019.2892015
https://doi.org/10.1109/INTELCIS.2017.8260024
https://mariadb.com/kb/en/maxscale/

[18] Slurm Workload Manager. url: https://slurm.schedmd.com/.
[19] Joseph Soon et al. “Implementing of Virtual Router Redundancy Protocol in

a Private University”. In: Journal of Industrial and Intelligent Information
1 (Jan. 2013), pp. 255–259. doi: 10.12720/jiii.1.4.255-259.

[20] Spider Storage Engine Overview. url: https://mariadb.com/kb/en/
spider-storage-engine-overview/.

[21] Meiliana Sumagita and Imam Riadi. “Analysis of Secure Hash Algorithm
(SHA) 512 for Encryption Process on Web Based Application”. In: 7 (Sept.
2018), pp. 373–381.

[22] Muhammad Syafrudin et al. “Chapter 5 - An Open Source-Based Real-Time
Data Processing Architecture Framework for Manufacturing Sustainability”.
In: Sustainability 9.11 (2017). issn: 2071-1050. doi: 10.3390/su9112139.
url: https://www.mdpi.com/2071-1050/9/11/2139.

[23] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Prin-
ciples and Paradigms. 2nd ed. Upper Saddle River, NJ: Pearson Prentice
Hall, 2007. isbn: 978-0-13-239227-3.

[24] What are ACID Properties in Database Management Systems? url: https:
//www.mongodb.com/basics/acid-transactions.

[25] ZoneMTA (internal code name X-699). url: https://github.com/zone-
eu/zone-mta.

72

https://slurm.schedmd.com/
https://doi.org/10.12720/jiii.1.4.255-259
https://mariadb.com/kb/en/spider-storage-engine-overview/
https://mariadb.com/kb/en/spider-storage-engine-overview/
https://doi.org/10.3390/su9112139
https://www.mdpi.com/2071-1050/9/11/2139
https://www.mongodb.com/basics/acid-transactions
https://www.mongodb.com/basics/acid-transactions
https://github.com/zone-eu/zone-mta
https://github.com/zone-eu/zone-mta

List of Figures

2.1 Database schema . 12
2.2 Mailtrain architecture . 15
2.3 Sender architecture . 19
2.4 SenderMaster activity diagram . 20
2.5 E-mail sending procedure . 21
2.6 PUBLIC server . 23
2.7 Sending e-mails use case diagram 24

3.1 Sender performance analysis . 29

4.1 Distributed Mailtrain design . 34
4.2 Distributed Sender design . 40
4.4 Synchronizer activity diagram . 41
4.5 Campaign statuses . 42
4.6 Scheduler activity diagram . 43
4.7 DataCollector activity diagram 44
4.8 SenderWorker activity diagram 45
4.10 SenderWorker state diagram . 47
4.11 HAPUBLIC server design . 51

5.1 Old Sender performance analysis 59
5.2 Centralized Sender performance analysis 60
5.3 Distributed unsynchronized Sender performance analysis 61
5.4 Distributed synchronized Sender performance analysis 62
5.5 All Senders performance analysis 63
5.6 All Senders performance analysis (zoomed) 64
5.7 Evenness of the distribution of messages 65
5.8 (HA)PUBLIC servers simulated performance analysis 66
5.9 (HA)PUBLIC servers real performance analysis 67

73

List of Abbreviations
ACID - Atomicity, Consistency, Isolation, and Durability
API - Application Programming Interface
AWS - Amazon Web Services
AWS SES - Amazon Web Services Simple Email Service
CPU - Central Processing Unit
CSV - Comma Separated Values
CTA - Call To Action
DKIM - DomainKeys Identified Mail
GDPR - General Data Protection Regulation
GUI - Graphical User Interface
HA - Highly Available
HTML - Hypertext Markup Language
HTTP - Hypertext Transfer Protocol
HTTPS - Hypertext Transfer Protocol Secure
IP - Internet Protocol
JSON - JavaScript Object Notation
MJML - Mailjet Markup Language
MTA - Message Transfer Agent
RAM - Random Access Memory
RSS - Really Simple Syndication
SMTP - Simple Mail Transfer Protocol
SQL - Structured Query Language
TCC - Try, Confirm, Cancel
TZ - Time Zone
URL - Uniform Resource Locator
UTC - Coordinated Universal Time
VRRP - Virtual Router Redundancy Protocol
WYSIWYG - What You See Is What You Get
XSS - Cross Site Scripting
YAML - Yet Another Markup Language

74

A. Attachment
Enclosed herewith is a USB flash drive that contains the necessary components

for deploying the new version of Mailtrain on a virtual machine operating on
Ubuntu 18.04. The deployment will be facilitated by Oracle VM VirtualBox, a
publicly accessible virtualization tool offered at no cost. The USB drive includes
all needed components, such as the virtual machine, source code, and instructional
video outlining all steps involved in the deployment procedure, including setting
up the virtual machine, running Mailtrain, and generating randomized data.

The centralized mode is used to build Mailtrain, and the generated data is
intended for testing purposes.

All file descriptions:

1. guidance.mp4 - the whole guidance step-by-step in MP4 video format for
setting up the virtual machine, running Mailtrain, and generating random
data.

2. mailtrain/ - Git repository of Mailtrain source code, including all versions.
The old version of Mailtrain is stored in branch v2 , and the new version of
Mailtrain is stored in branch v3 .

3. ubuntu-18.04.6-desktop-amd64.iso - ISO image of Ubuntu 18.04 virtual
machine.

75

	Introduction
	Motivation
	Goals
	Contents
	Sources

	Mailtrain overview
	Database model
	List
	Campaign
	Message
	File

	Database schema
	Features
	Multiple users
	Hierarchical namespaces
	Subscriber lists management
	Custom fields
	List segmentation
	Automation
	Campaign e-mail templates
	Custom reports
	Builtin Zone-MTA

	Architecture
	Process tree
	Services
	Sender
	SenderMaster life cycle
	SenderWorker life cycle

	PUBLIC server

	Sending e-mail use cases
	Summary of goals
	Source code overview
	Deployment requirements

	Performance analysis
	Overall Sender analysis
	Sender components analysis
	SenderMaster analysis
	SenderWorker and SMTP server analysis

	Summary of Sender bottlenecks
	Analysis conclusion

	New architectural design
	New database system
	Integrating MongoDB into Mailtrain
	Ensuring data consistency

	Distributed Sender
	Synchronizer
	Scheduler
	DataCollector
	SenderWorker
	Life cycle
	Worker synchronization
	State diagram
	WorkerSynchronizer
	PlatformSolver
	Correctness testing

	HAPUBLIC server
	Modes
	Centralized
	Distributed

	Source code overview
	The current version
	Deleted subtree
	Updated subtree

	Deployment requirements
	Centralized mode
	Distributed mode

	Evaluation
	Test data
	Test environment
	The old version
	Sender

	The new version
	Centralized Sender
	Distributed Sender
	Unsynchronized workers
	Synchronized workers

	Comparison of all variants
	Evenness of the distribution of messages
	HAPUBLIC server
	Simulated version
	Real version

	Evaluation summary

	Conclusion
	Future work

	List of Figures
	List of Abbreviations
	Attachment

