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že Univerzita Karlova má právo na uzavřeńı licenčńı smlouvy o užit́ı této práce
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Abstract: Single-cell RNA sequencing is a powerful technology that allows the
investigation of gene expression at an unprecedented level. Insights into gene ex-
pression in individual cells can help biologists uncover cellular heterogeneity and
identify previously unknown cell types. Here, we use single-cell RNA sequencing
datasets that reveal subtypes of mouse neurons to find population-specific mem-
brane proteins. These proteins could potentially serve as entry points for targeted
drug distribution, allowing for drugs to act only on selected neuronal populations.
We start by identifying five suitable single-cell mouse neuron datasets. Next, we
present an overview and a comparison of currently available methods for differ-
ential gene expression analysis, an approach that involves quantifying variations
in gene expression between groups and/or conditions, based on previous bench-
marks. Lastly, we apply the Wilcoxon rank-sum test to selected datasets in order
to identify population-specific membrane proteins.

Abstrakt: Single-cell RNA sekvenováńı nám umožňuje zkoumat genovou ex-
presi na nebývalé úrovni. Informace o transkripci gen̊u v jednotlivých buňkách
může poukázat na dř́ıve nerozpoznatelné rozd́ıly a pomoci nám odhalit nové
buňečné typy. Zde jsme použili existuj́ıćı single-cell RNA datasety k nalezeńı
populačně-specifických membránových protein̊u u populaćı myš́ıch neuron̊u. Tyto
membránové proteiny by mohly být později využity k zaćıleńı léčby na konkrétńı
neuronové populace. Nejprve jsme identifikovali 5 vhodných single-cell dataset̊u.
Následně jsme, na základě předchoźıch test̊u, porovnali stávaj́ıćı metody pro
analýzu diferenciálńı exprese, techniku, která zkoumá rozd́ıly v expresi gen̊u mezi
buňkami. Na závěr jsme k identifikaci populačně-specifických membránových
protein̊u v datasetech použili Wilcoxon̊uv test.
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Introduction
Single-cell RNA sequencing (scRNA-seq) is a powerful technology that enables the
investigation of gene expression in individual cells. Traditional RNA sequencing
measures gene expression in a bulk sample of cells and thus provides an average
of gene expression across the entire cell population. In contrast, scRNA-seq
measures gene expression in each individual cell, providing a more detailed view
of heterogeneity within a population. This technology can be used to identify
previously unknown cell types, study developmental trajectories of cells, identify
novel drug targets or investigate disease mechanisms at the single-cell level.

This thesis aims to use publicly available scRNA-seq datasets to identify mem-
brane molecules specific to individual neuronal populations in mice, as a part of an
ongoing research project. Today’s drugs target surface molecules/receptors but do
not target a specific neuronal population. If we were to find a population-specific
membrane molecule with suitable properties, we could select a suitable ligand
to bind to it. Through the process of internalization, the membrane molecule
alongside the ligand and the drug bound to it would then be transferred inside
the cell. Thus, enabling us to target drugs to a particular population of neurons.

The goal of the work is to, first, identify suitable publicly available datasets of
single-cell gene expression data in mouse neurons and their populations. Second,
present a brief overview of published bioinformatics methods for determining
genes that are specifically expressed by different cell populations. And third,
apply one of the methods to selected datasets and use it to identify membrane
proteins expressed by specific neuronal populations.

The thesis is composed of three chapters. Chapter 1 discusses how the datasets
were selected and introduces each one. Chapter 2 aggregates previous benchmarks
to compare differential gene expression analysis methods, which can be used to
identify population-specific genes. Finally, in Chapter 3, we perform the analysis
and identify population-specific membrane proteins in the selected datasets using
the Wilcoxon rank-sum test.
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1. Single-cell mouse neuron
datasets
To identify appropriate single-cell RNA-seq datasets that describe murine neu-
ronal populations, PubMed was used with the search queries “revealed mouse
neuron types, single cell RNA sequencing” and “mouse neuron populations, sin-
gle cell RNA sequencing” along with the “Associated data” filter enabled. In
total, over 50 articles were considered but most of them were either irrelevant
(not about scRNA-seq and cell types), about sensory neurons (which are not
of interest to us) or only contained raw sequencing data without cluster assign-
ment. In the end, three relevant datasets were identified and used for the analysis
(Zeisel et al., 2015; Tasic et al., 2016; Chen et al., 2017), along with two addi-
tional datasets as per request of the advisor (Campbell et al., 2017; Bhattacherjee
et al., 2019). Most datasets were available from the Gene Expression Omnibus
database (Barrett et al., 2012). However, the files lacked any annotation, which
made finding the required data difficult, as the only cue about what the files
contained were their cryptic names. This shortcoming could be overcome by an-
notating each supplementary file and describing its contents. This would make
the database more clear and user-friendly.

1.1 Overview of selected datasets
Zeisel et al. constructed a cellular taxonomy of the mouse cortex and hippocam-
pus. Single-cell RNA sequencing was used to analyze 3005 single cells from the
primary somatosensory cortex (S1) and the hippocampal CA1 region. Because
traditional hierarchical clustering led to fragmented clusters, Zeisel et al. devel-
oped their own clustering method BackSPIN that identified 9 major cell types:
S1 and CA1 pyramidal neurons, interneurons, oligodendrocytes, astrocytes, mi-
croglia, vascular endothelial cells, mural cells (i.e. pericytes and vascular smooth
muscle cells) and ependymal cells. The clustering was then repeated on the 9
major populations to reveal 47 distinct cell subpopulations in total. The three
major neuronal populations, S1 pyramidal neurons, CA1 pyramidal neurons and
interneurons, had 8, 5 and 16 subtypes respectively.

Tasic et al. studied cell types in the primary visual cortex (V1) of adult mice.
After single-cell RNA sequencing of more than 1600 cells, two iterative clustering
methods were used to reveal 49 different cell subpopulations, 23 of which were
GABAergic, 19 glutamatergic and 7 non-neuronal. A machine-learning method
was used for validation and to find “intermediate” cells (cells that belong to mul-
tiple clusters). Out of the 23 GABAergic cell types, 18 belonged to previously
described classes (Vip, Pvalb and Sst) and 5 were novel. Among the glutamatergic
neurons, 6 major layer-specific types were identified in correspondence to previ-
ous studies (L2/3, L4, L5a, L5b, L6a and L6b), but further subdivision revealed
a total of 19 glutamatergic subpopulations. The 7 non-neuronal cell populations
were astrocytes, microglia, oligodendrocyte precursor cells, two types of oligo-
dendrocytes, endothelial cells and smooth muscle cells. Correspondence with cell
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types identified by Zeisel et al. was also provided.

Chen et al. analyzed the transcriptomes of over 14,000 single cells from the
hypothalamus. From the 14,000 cells, only those that expressed more than 2000
genes were used for clustering. Semi-supervised clustering of 3,319 cells that
met the above condition revealed 45 distinct cell populations. Based on known
markers, 34 of these populations were classified as neuronal and the remaining 11
as non-neuronal. The neuronal types were further divided into 15 glutamatergic
and 18 GABAergic subtypes and one additional histaminergic subtype. The
neuronal cell types were found to be largely hypothalamus-specific, while the
non-neuronal populations were similar to other brain regions.

Campbell et al. profiled gene expression of 20,921 cells from and around
the hypothalamic arcuate-median eminence complex (Arc-ME). In total, 34 neu-
ronal (24 of which were from Arc-ME) and 36 non-neuronal (26 from Arc-ME)
populations were revealed. After the first round of clustering, each cluster was
assigned one of the following identities based on the expression of marker genes:
neurons, ependymocytes, tanycytes, oligodendrocyte lineage cells, oligodendro-
cyte precursor cells, macrophages, endothelial cells, mural cells and astrocytes.
Further sub-clustering of the neuronal cells identified 34 clusters, with most of
them associated with unique candidate markers. However, some did not have a
distinct marker and were instead defined by a combination of markers or lacked
any markers altogether.

Bhattacherjee et al. performed scRNA-seq of 29,864 single cells from the
prefrontal cortex (PFC). Clustering revealed 8 major cell populations, 2 of which
were neuronal: excitatory and inhibitory neurons. The excitatory neurons, largest
population in the PFC, were found to be composed of 13 distinct subtypes. The
inhibitory neurons, which form a much smaller population compared to the exci-
tatory neurons, were classified into 12 clusters. To enable a better comparison of
the PFC neurons with other cortical regions, the excitatory neurons were clustered
once again, but at a higher resolution, resulting in 26 subtypes. Most subtypes
had corresponding clusters in other cortical regions, but some were unique to the
PFC. Despite the similarities across regions, there were still significant differences
in gene expression between corresponding groups.
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2. Identification of
population-specific genes
To identify genes that are specific to a certain population of cells, so-called marker
genes, differential gene expression analysis (DGE) can be employed. Differential
expression analysis is a widely used method in bioinformatics that compares levels
of gene expression between biological groups or conditions. The goal of this
analysis is to find genes that are up- or down-regulated in response to a certain
stimulus or between groups. This is important to gain insight into the biological
differences between cells under different conditions (e.g. healthy and diseased) or
between groups, such as different cell types.

It is, however, important to note that not all differentially expressed genes
(DEGs) are marker genes. While some DEGs may be specific to certain cell
types, many have functions that are not related to cell type or may be involved
in common biological processes shared by multiple cell types. A gene can also be
upregulated in one cell population, but still expressed in others, meaning that it
is differentially expressed but may not be considered a marker in a conventional
sense. It is important to validate the expression of differentially expressed genes
using additional methods to ensure their relevance for research-specific purposes.

Numerous DGE tools and techniques are available. To provide an overview
and a comparison of the most important ones, Google Scholar was used with
the search query “comparison of differential expression analysis tools for single
cell” and the top 4 relevant review articles were selected (Dal Molin et al., 2017;
Soneson and Robinson, 2018; Wang et al., 2019; Das et al., 2021). Furthermore,
because only one of the aforementioned articles covered the popular single-cell
analysis platform Seurat (Hao et al., 2021) and none covered Scanpy (Wolf et al.,
2018) or scran (Lun et al., 2016), one additional article was taken into consider-
ation (Pullin and McCarthy, 2022).

Some tools were developed specifically for analyzing single-cell data, such as
MAST, SCDE, scDD, DEsingle or D3E, while others like edgeR, DESeq2 and
limma were initially designed for bulk RNA-seq data, but are now also being uti-
lized for single-cell data. The methods can be also classified as either parametric,
meaning they assume a certain distribution of the data (such as Poisson or neg-
ative binomial) or non-parametric, which are distribution-free. Additionally, the
methods differ in the test statistics they use. An overview of discussed DGE
methods is provided in Table 2.1.

In contrast to methods based on differential expression, some methods employ
a different approach. RankCorr (Vargo and Gilbert, 2020) uses a feature selection
algorithm to identify molecular markers, NSForest (Aevermann et al., 2021) uses
a machine learning-based approach and Cepo (Kim et al., 2021) is based on the
idea that stable gene expression is a key indicator of cell identity.
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Modeling
Method Origin paradigm Citation

BPSC single-cell parametric Vu et al. (2016)
D3E single-cell non-parametric Delmans and Hemberg (2016)
DECENT single-cell parametric Ye et al. (2019)
DESeq bulk parametric Anders and Huber (2010)
DESeq2 bulk parametric Love et al. (2014)
DEsingle single-cell parametric Miao et al. (2018)
EBSeq bulk parametric Leng et al. (2013)
edgeR bulk parametric Robinson et al. (2010)
EMDomics single-cell non-parametric Nabavi et al. (2016)
limma bulk parametric Ritchie et al. (2015)
MAST single-cell parametric Finak et al. (2015)
Monocle single-cell parametric Trapnell et al. (2014)
Monocle 2 single-cell parametric Qiu et al. (2017)
NODES single-cell non-parametric Sengupta et al. (2016)
Presto single-cell non-parametric Korsunsky et al. (2019)
ROTS bulk non-parametric Seyednasrollah et al. (2016)
SAMseq bulk non-parametric Li and Tibshirani (2013)
scDD single-cell non-parametric Korthauer et al. (2016)
SCDE single-cell parametric Kharchenko et al. (2014)
SigEMD single-cell non-parametric Wang and Nabavi (2018)
SINCERA single-cell non-parametric Guo et al. (2015)
Welch’s t-test general parametric Welch (1947)
Wilcoxon test general non-parametric Wilcoxon (1945)

Table 2.1: Overview of DGE methods
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2.1 Comparison of differential gene expression
methods

2.1.1 Bulk vs. Single-cell analysis
Single-cell RNA analysis poses several new challenges in comparison to bulk RNA.
One of the primary ones is increased technical noise due to the lower amount
of RNA in individual cells. Another challenge is so-called “dropout events”,
where genes may not be detected at all because of low expression levels. Other
challenges include high heterogeneity, low library sizes, large zero-read counts
and multimodality (the presence of multiple subpopulations within a larger cell
population). Because of these challenges, it was unclear whether traditional DGE
methods developed for bulk RNA-seq would also perform well for scRNA-seq data.

Surprisingly, all reviews found that bulk methods perform just as well on
single-cell data despite their specific characteristics, while also being generally
faster, because of their simpler design. However, Soneson and Robinson notes
that some bulk RNA methods showed a stronger dependence on data prefiltering
and Pullin and McCarthy found them to be more memory intensive in comparison
to single-cell tools.

2.1.2 Datasets
Usually, a combination of real and simulated datasets was used to assess the
performance of the various DGE methods. Simulated datasets were used be-
cause, unlike real data, they can be used to model different data distributions
corresponding to different scenarios as well as provide complete knowledge about
which genes are differentially expressed and which are not.

Dal Molin et al. simulated 10,000 genes across two conditions with a sample
size of 100 cells each. Out of the 10,000 genes, 2000 of them were simulated
as differentially expressed according to four distinct data distributions that aim
to model multimodality. This resulted in four groups of 500 DEGs each and
8000 non-DEGs. The procedure was repeated 10 times in order to generate 10
independent datasets. All datasets were created using scripts provided in the
scDD package.

Wang et al. also used the scDD package to generate 10 simulated datasets.
They, however, used 75 single cells for each of the two conditions and 20,000 genes.
Again, 2000 genes were simulated with different distributions and equally divided
into four groups. The rest were modeled as non-differentially expressed genes.
Apart from multimodality, dropout events were also simulated by introducing a
large number of zeros. When assessing the effect of sample size, they used a range
of 10 to 400 cells, instead of the fixed 75.

On the other hand, Pullin and McCarthy used the splat simulation model from
the Splatter package (Zappia et al., 2017) to create over 170 simulated datasets.
Parameters for the model were estimated from real data. Ten simulation scenarios
were considered, each with 2000 genes, 2000 cells and 5 clusters. The different
simulation scenarios had their parameters estimated from different real datasets.
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Soneson and Robinson utilized a modified version of the powsim R package
(Vieth et al., 2017) to create 3 two-group simulated datasets based on 3 real
datasets. These were then subsampled to generate multiple dataset instances at
different sample sizes. Each instance was modeled to have 10% of the genes either
up- or downregulated. Mean and dispersion were estimated from the respective
real datasets using edgeR.

2.1.3 Performance
True positive (TP) is defined as a truly differentially expressed gene that was
marked by the tool as such. However, if the tool incorrectly identified a gene that
isn’t differentially expressed as being differentially expressed, this is referred to as
a false positive (FP). On the other hand, a gene that the tool correctly identifies
as not being differentially expressed is referred to as a true negative (TN), while
a gene that is differentially expressed but is not identified as such by the tool is
a false negative (FN).

The reviews evaluated the performance of the investigated tools using a mul-
titude of metrics, such as true positive rate ( T P

T P +F N
), false positive rate ( F P

F P +T N
),

false discovery rate ( F P
F P +T P

), precision ( T P
T P +F P

), accuracy ( T P +T N
T P +T N+F P +F N

), F1
score ( 2T P

2T P +F P +F N
) and more.

Simulated data

The reviews agree that there is a trade-off between precision and the number
of true positives identified. This is a common phenomenon in any classification
task. Dal Molin et al. found that tools which were able to identify a large number
of truly differentially expressed genes, like D3E and Monocle, were also the least
precise, introducing a great number of false positives. This is consistent with
Soneson and Robinson, who rank Monocle amongst the worst in false discovery
rate. In contrast, the most precise tools (MAST, SCDE and DESeq) identified
lower numbers of TPs.

Wang et al. found that Monocle 2 was able to identify the greatest number of
true positives, but was also the least precise. Generally, the non-parametric meth-
ods were able to identify more TPs at the cost of precision, while the parametric
methods (like MAST, SCDE, edgeR and SINCERA) did the opposite: high pre-
cision and low number of TPs. In terms of accuracy and F1 score, DEsingle and
SigEMD performed the best, reporting a high number of TPs and not many FPs.

Pullin and McCarthy ranked scran’s Binomial-any method, Wilcoxon rank-
sum based methods (in Seurat and Scanpy), edgeR, as well as Student’s t-test as
the best tools regarding true positive rate (TPR). The worst methods in terms
of TPR were NSForest, Cepo and RankCorr. On the contrary, RankCorr and
NSForest as well as scran’s Binomial-any method were the most precise. When
ranked by the F1 score, scran’s Binomial-any method, the Wilcoxon rank-sum-
based methods and edgeR came out on top. NSForest, Cepo and scran’s other
Binomial methods showed the worst performance. In general, the best-performing
methods were the ones based on the Wilcoxon rank-sum test, Student’s t-test or
logistic regression.
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Soneson and Robinson evaluated the false discovery rate (FDR) and true
positive rate of each method. Methods that performed well in terms of both FDR
and TPR after filtering include edgeR/QLF (edgeR with Quasi-Likelihood F-
test), SAMseq, DEsingle and voom/limma. Methods that were best able to rank
truly differentially expressed genes ahead of non-differential ones, were edgeR,
followed by MAST, limma, SCDE, DEsingle, DESeq2, SeuratBimod (Seurat’s
likelihood-ratio test) without filtering and the non-parametric methods like the
t-test, Wilcoxon test and D3E. Prefiltering improved the performance of most
methods.

Real data

On real data, Wang et al. discovered that Monocle 2, EMDomics, SINCERA, D3E
and DEsingle had the highest TPRs, whereas SCDE, scDD and MAST the lowest.
Once again this came at the cost of precision. Gene set enrichment analysis was
also performed. Surprisingly, scDD and SCDE were unable to recover stem cell
biology terms relevant to the dataset used. Other methods performed well. This
indicates that certain methods are better at finding biologically significant genes.

Across all datasets, Das et al. found EBSeq and DECENT followed by
edgeR/QLF to be the best tools in terms of F1 score, accuracy and FDR, whereas
scDD, NODES, EMDomics, ROTS and DEsingle consistently performed the
worst. Regarding sensitivity and specificity, DECENT and EBSeq once again
performed the best, while other methods had high sensitivity and low specificity
or vice versa.

It is important to note that when the performance of tools is assessed using
real data, we do not have complete knowledge about the expression of genes. The
reviews rely on lists of differentially expressed genes that were obtained through
experimental validation. However, it is possible that some DEGs might have been
overlooked, or some genes might have been incorrectly marked as differentially
expressed.

Negative control

Most reviews also used some dataset(s), which contained no DEGs, as a negative
control to test tool performance, expecting no DEGs reported. According to
Dal Molin et al., all tools perform well, detecting 0 DEGs, except for D3E, which
consistently detected over 250 DEGs across the datasets.

Soneson and Robinson found that without prior filtering, the best-performing
tools were ROTS and SeuratTobit (no longer included in the Seurat package),
whereas edgeR/QLF and SeuratBimod introduced the largest number of FPs.
When genes with low expression were filtered out, the performance of most
methods improved. They also observed that the FPs of different methods had
distinct characteristics. False positives of NODES, ROTS, SAMseq and Seurat-
Bimod were highly expressed genes that had few zeros, while false positives of
edgeR/QLF, SeuratTobit and MAST had many zeros.

Wang et al. states that MAST, SCDE, edgeR, and SINCERA did not find
any DEGs, as expected. In contrast, DEsingle, scDD, DESeq2, SigEMD, D3E,

9



EMDomics, and Monocle 2 all found some DEGs, with EMDomics and Monocle 2
(which performed best in terms of TPR) introducing the most false positives.

2.1.4 Consensus
All review articles found low consensus among the analyzed tools. Dal Molin
et al. revealed a large discrepancy between the different methods. The number
of differentially expressed genes (DEGs) reported by the tools varied between 271
and 8,401 when using real data. The highest number of genes was reported by
D3E, but it also reported the most false positives among all tools.

The eleven tools tested by Wang et al. had only 92 DEGs in common when
considering the top 1000 reported genes of each method. Moreover, only 41 of
them were included in the gold standard list. Pairwise agreement between tools
was not observed either.

Soneson and Robinson and Das et al. both state that the level of similar-
ity between different methods varied significantly across different datasets. The
performance of the tools was also highly inconsistent across the datasets.

2.1.5 Effect of sample size
As reported by Soneson and Robinson and Wang et al., all methods show in-
creased TPRs with increased sample size, as expected. Wang et al. observed a
large increase in precision when they increased the number of cells from 10 to
75. Further increase from 75 to 400 still yielded an improvement but less dra-
matic. This highlights the importance of sample size in DGE analysis. With the
increased sample size, Monocle 2, EMDomics and DESeq2 were able to achieve
TPRs near 100%, but showed bad FPRs. However, DEsingle and SigEMD were
able to score well both in terms of TPR and FPR. Interestingly, Das et al. found
that some tools, including edgeR and DESeq, performed better with datasets
that contained a relatively small number of cells.

2.1.6 Effect of multimodality and dropout events
The authors that modeled multimodality into their simulated data, like Dal Molin
et al. and Wang et al., found that in scenarios with a high degree of multimodality,
the tools generally perform worse, with lower TPR and precision, than in the cases
of low multimodality or no multimodality at all. Wang et al. who also modeled
dropout events into their simulated datasets found that all tools perform worse
when large amount of zero counts is introduced.

2.1.7 Speed
Another important aspect of DGE tools, and any computational software for that
matter, is processing speed. This becomes especially important as the number of
cells in a dataset increases.

Dal Molin et al. tested the tools in both serial and parallel settings. Pre-
dictably, tools that support parallel execution saw a substantial speed increase.
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In general, all tools performed well, except for D3E, which took 4 days to finish.
Also, methods made for bulk RNA-seq performed generally faster than the more
complicated scRNA-seq methods.

Soneson and Robinson ran all methods in serial mode, only utilizing a single
core, for a fair comparison. BPSC, DEsingle, D3E and SCDE, were the slowest
and tools for bulk RNA-seq were generally faster.

Wang et al. found that simpler methods, like SINCERA, edgeR, MAST,
Monocle 2 and DESeq2 ran fast, while scDD was the slowest. Additionally, the
non-parametric methods, such as SigEMD, EMDomics and D3E, ran slower than
model-based methods.

According to Das et al., DECENT was the best-performing method, but it
was also the most computationally intensive. EBSeq, ROTS, EMDomics, and
NODES were also among the slower methods. Simple methods, like the t-test
and Wilcoxon test, performed relatively well and were also the fastest.

Pullin and McCarthy found edgeR, Seurat’s Negative Binomial, MAST and
NSForest to be the most time-consuming, while most of Scanpy’s methods, Presto,
Cepo and RankCorr were the fastest. Interestingly, it was also revealed that
Seurat’s methods are much slower than scran or Scanpy’s even when employing
the same statistical tests. Memory usage was also measured and it was found
that bulk RNA-seq methods are generally more memory intensive than single-
cell-specific ones.

2.1.8 Ease of use
Most methods are implemented in R and are usually available via Bioconductor,
CRAN or a GitHub repository. Additionally, Bioconductor packages include
documentation and guides to help the users familiarize themselves with the tool.
Some tools (like Seurat, Scanpy or SCDE) even have their own websites with
documentation, tutorials, forums and more.

Some reviews ran into technical problems, which made it impossible to test
certain methods and which should be addressed. Dal Molin et al. had to exclude
BASiCS (Vallejos et al., 2016) because of its unconventional input and scDD
because it required an unstable version of R. Pullin and McCarthy were unable
to include several tools. SMaSH (Nelson et al., 2022), because of issues with
parallelization. Scanpy’s Logistic regression, because it did not return what was
documented. DESeq2 included in Seurat, because of persistent errors. COMET
(Delaney et al., 2019), because it did not allow processing in memory and lastly
Venice (Vuong et al., 2020), because of an implementation error.

2.2 Conclusions
The review articles agree that there is no single tool better than the others in
all situations. The tools usually trade their ability to detect truly differentially
expressed genes for the introduction of false positive results. There is also a
lack of agreement among the methods as each of them marks different genes
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as differentially expressed in the same dataset. It was surprising to find that
tools made specifically for scRNA analysis did not outperform the traditional
bulk methods. Almost all tools performed better with increased sample size and
less multimodal data. In terms of efficiency, bulk RNA methods and parametric
methods usually ran faster compared to the non-parametric single-cell tools.

Most reviews, however, provide overall rankings of the tested methods. Sone-
son and Robinson ranks edgeR/QLF, MAST, limma, t-test and Wilcoxon test
among the top methods. Wang et al. states that the non-parametric methods
generally perform better than the parametric ones. Das et al. found DECENT
followed by EBSeq, to perform the best and give more robust results than other
tools and Pullin and McCarthy highlight the performance of methods based on
logistic regression, Student’s t-test and the Wilcoxon rank-sum test. Thus, there
isn’t a consensus among the reviews about which tool is best overall, but since
the Wilcoxon rank-sum test showed good overall performance in both Soneson
and Robinson and Pullin and McCarthy (two out of the three reviews where it
was tested) and is non-parametric (which is highlighted by Wang et al.), it was
chosen for the analysis.
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3. Practical implementation
In order to perform the data analysis and identify population-specific membrane
molecules in the selected datasets, R version 4.2.0 was used (R Core Team, 2022),
along with R Markdown (Allaire et al., 2022). R Markdown allows the user to
combine text, code, and output from R and to generate (knit) documents in the
HTML format, among others. Packages used are listed in Table 3.1. A complete
list of all installed packages including dependencies can be found in Attachment
3.4. The R script itself can be found in Attachment 3.4.

Package Version Citation

Seurat 4.1.1 Hao et al. (2021)
tidyverse 1.3.2 Wickham et al. (2019)
org.Mm.eg.db 3.15.0 Carlson (2022)
AnnotationDbi 1.58.0 Pagès et al. (2022)
gtools 3.9.3 Bolker et al. (2022)
VennDiagram 1.7.3 Chen (2022)
details 0.3.0 Sidi (2022)

Table 3.1: Used R packages

3.1 Pipeline

3.1.1 Loading and integration
The datasets were usually made up of two files. First, a counts matrix, where
one axis represents genes and the other the individual cells. The elements of
the matrix contain the number of transcripts detected in each cell for each gene.
Second, a metadata file containing additional information about each cell, like
mouse line, sample, sex, and most importantly the cell type. Typically two cell-
type resolutions were provided. A coarser level and a more detailed level, where
each cluster was further subdivided. The only exception to this was the dataset
by Chen et al., which only contained detailed clustering and the coarse level was
reconstructed manually by combining corresponding clusters.

The Seurat package was used to perform the data analysis. Seurat is a widely
used computational tool specifically developed to analyze scRNA-seq data. It
provides a user-friendly interface for exploring and visualizing scRNA-seq data,
identifying subpopulations of cells, detecting differentially expressed genes and
integrating data from multiple samples.

After downloading, the counts matrix and the metadata were transformed to
the correct format and loaded into Seurat. Next, normalization was performed.
Normalization was done by dividing the gene counts of each cell by the total
counts for that cell and then multiplying by a factor of 10,000. The result was
then natural-log transformed after adding 1 (to avoid taking the log of 0).
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3.1.2 Filtering
For each gene, a list of Gene Ontology (Ashburner et al., 2000; Gene Ontology
Consortium, 2021) terms was retrieved. Gene Ontology (GO) is a bioinformatics
project that provides a hierarchical vocabulary for describing genes and their
functions across different organisms. The three main domains covered by GO are
Molecular Function, Cellular Component and Biological Process. Each gene is
assigned different GO terms based on experimental evidence or predictions.

In our case, only genes with the term “external side of plasma membrane” were
kept, in order to find genes that encode proteins embedded or anchored in the
plasmatic membrane. This reduced the number of genes by about 97%, meaning
only 3% of the original genes are known to encode proteins on the external side
of the plasma membrane.

Alongside gene filtering, the cells were also filtered by population. Non-
neuronal populations, like astrocytes, endothelial cells, microglia and oligoden-
drocytes, were filtered out with only neuronal populations remaining.

3.1.3 Differential gene expression analysis
We used the Wilcoxon rank-sum test to perform differential gene expression anal-
ysis, since it demonstrated good performance in the comparison (Section 2.2).
The threshold of log2 fold change was set to 0.25 (meaning only markers with
around 1.2 fold change in expression remained). The results were then filtered
by removing genes that were classified as markers of more than one population
due to Seurat’s “one vs all” approach to marker identification. Next, a threshold
of 5% was set on the adjusted p-value. Finally, an additional column containing
log2 fold change between each marker’s cluster and the cluster with the highest
expression from all other clusters was added. After filtering, the marker genes
were visualized using a dot plot. The same procedure was used for both the
coarse and detailed level cell types. An overview of the entire pipeline is depicted
in Figure 3.1.

3.2 Results
Population-specific markers were detected in each dataset (at both the coarse
and detailed level) and are visualized in Figures 3.2–3.11 in the form of a dot
plot. Dot plots give great visual insight into the characteristics of each detected
marker and can help you identify suitable ones. Note that each “column” of the
dot plot (representing genes) is scaled for better visualization. This means that
the color gradient reflects the relative expression levels of the genes, rather than
absolute values. This can lead to misleading results in plots with few clusters but
we opted to use it to improve overall readability. The size of the dot represents
the percentage of cells in a cluster, which express a given gene.

In total 259 potential markers were found across all datasets. Results of the
analysis from each dataset were aggregated into one table, which can be found
in Attachment 3.4. The explanation of each column of the table is available in
Table 3.2.
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Figure 3.1: Summary of the pipeline (Created with BioRender.com)

Column Explanation

p val the p-value of the statistical test used to determine
differential expression

avg log2FC the average log2 fold change in expression between
the cells from the marker’s cluster and cells from
all other clusters

avg log2FC to second the average log2 fold change in expression between
the cells from the marker’s cluster and cells from
the cluster with the highest expression other than
marker’s cluster

pct.1 the percentage of cells in marker’s cluster that ex-
press the gene

pct.2 the percentage of cells in all other clusters that
express the gene

p val adj adjusted p-value, based on Bonferroni correction
using all features in the dataset

cluster the marker’s cluster

gene the name or identifier of the gene

level the detail level at which the marker was found

dataset the dataset in which the marker was found

Table 3.2: Explanation of the results table
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Figure 3.2: Coarse level markers in Zeisel et al.. The size of the dot encodes the
percentage of cells within a class, while the color encodes the average expression
level across all cells within a class.

Figure 3.3: Detailed level markers in Zeisel et al.. The visualisation is the same
as in Figure 3.2.
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Figure 3.4: Coarse level markers in Tasic et al.. The visualisation is the same as
in Figure 3.2.

Figure 3.5: Detailed level markers in Tasic et al.. The visualisation is the same
as in Figure 3.2.
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Figure 3.6: Coarse level markers in Chen et al.. The visualisation is the same as
in Figure 3.2.

Figure 3.7: Detailed level markers in Chen et al.. The visualisation is the same
as in Figure 3.2.
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Figure 3.8: Coarse level markers in Campbell et al.. The visualisation is the same
as in Figure 3.2.

Figure 3.9: Detailed level markers in Campbell et al.. The visualisation is the
same as in Figure 3.2.
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Figure 3.10: Coarse level markers in Bhattacherjee et al.. The visualisation is the
same as in Figure 3.2.

Figure 3.11: Detailed level markers in Bhattacherjee et al.. The visualisation is
the same as in Figure 3.2.
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3.3 Consensus
Since Tasic et al. provided a mapping between their clusters and clusters detected
by Zeisel et al., a consensus in terms of detected population-specific membrane
molecules could be inferred. Marker genes of corresponding clusters were com-
pared, however, no intersection was found. Another type of comparison was per-
formed. The expression of marker genes from Tasic et al. was analyzed in Zeisel
et al. and each gene was labeled as having correct “cross-max” if it had maxi-
mum expression in the correct corresponding cluster, even if it was not among
the detected markers. This comparison also revealed poor consensus with only 1
gene out of 22 corresponding between the datasets.

A similar comparison was performed between Tasic et al., Chen et al. and
Bhattacherjee et al.. GABAergic population of Tasic et al., GABAergic pop-
ulation of Chen et al. and inhibitory population of Bhattacherjee et al. were
compared (since GABAergic neurons are inhibitory). The same was done for
glutamatergic and excitatory neurons. This time intersection between the three
datasets was found and is visualized in Figures 3.12 and 3.13. “Cross-max” con-
sensus was also determined. GABAergic neurons had a consensus of 55.8% and
glutamatergic 61.8%. This is a poor consensus given that there are only two
groups and a score of 50% can be achieved simply by chance.

The low consensus could be an effect of noise in the data or experimental
artifacts. It is also possible that the compared populations are heterogenous and
the poor consensus is inherent in the data.

3.4 Conclusions
We used Seurat, a popular single-cell analysis R package, to perform differential
gene expression analysis using the Wilcoxon rank-sum test on five mouse neu-
ron datasets. Altogether, we identified 259 population-specific membrane genes,
which are provided in Attachment 3.4. These potential markers may be further
investigated and experimentally validated. Consensus across datasets was also
studied where possible, however, poor-to-no consensus was found and thus the
results should be approached with great caution. We also do not expect a TPR
of 100%, which implies that there could be some markers that we might have
missed.
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Figure 3.12: Consensus of GABAergic populations

Figure 3.13: Consensus of glutamatergic populations
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Conclusion
In this thesis, we first identify publicly available single-cell RNA sequencing
datasets about murine neuronal cell types. The five chosen datasets cover cell
types in different parts of the brain, like the cortex, hippocampus or hypothala-
mus.

Next, we present an overview of methods for performing differential gene ex-
pression analysis, where differences in the expression of genes between cell groups
are studied, and provide a comparison of these methods from different perspec-
tives by combining several previous benchmarks. It was found that there isn’t an
agreement among the benchmarks about which tool is best overall, as they each
highlight different methods. Most tools showed a tradeoff between identifying
true positives and introducing false negatives. The tools also showed low consen-
sus between each other, as each tool identifies different DEGs. Interestingly, tools
made for scRNA data did not perform better than the traditional bulk RNA tools.
Small sample size and multimodality in data hindered the performance of most
methods. The bulk-parametric category of DGE tools was found to be the least
CPU-intensive. Since the Wilcoxon rank-sum test showed good performance, it
was chosen for the analysis.

Lastly, we perform DGE analysis using the Wilcoxon rank-sum test on the
five selected datasets at two resolutions each. We discovered 259 population-
specific genes embedded in the plasma membrane throughout the datasets. These
candidate marker genes could be experimentally validated and later potentially
used to design drugs that would target specific neuronal populations.
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Amit Zeisel, Ana B Muñoz-Manchado, Simone Codeluppi, Peter Lönnerberg,
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Attachments

script.Rmd
R Markdown script that performs the analysis.

script.html
Knitted HTML document generated by the script.

markers combined.csv
CSV file containing the identified markers. The meaning behind each column is
explained in Table 3.2.
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