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Abstract:

This thesis focuses on the three pillars of any high-precision ab initio calculation:
on the Hartree-Fock (HF) model, on the choice of a suitable basis set, and on the
inclusion of electron correlation.

We start with a study of singular properties of the HF model. Specifically, we
systematically investigate the stability of all atomic closed-shell systems up to
xenon using a symmetry-adapted Thouless stability matrix. To obtain a global
view on the stability of a particular isoelectronic sequence, we employ high-order
perturbative method and then analyze the obtained series. This allows us to
determine onsets of spin and orbital symmetry breaking. In addition, we also
propose a physical meaning of the instabilities.

In the next part of this thesis, we focus on the use of the Sturmian basis set
for relativistic calculations. We propose a numerically stable algorithm for the
evaluation of one- and two-electron matrix elements. Thus we defeat the major
impediment of a wider use of this basis set in precise atomic structure calculations.
The use of the proposed method and its significance is illustrated on a series
of calculations. For instance, we evaluate the so-called parity non-conserving
amplitude for cesium; this is a second-order property and thus greatly depends
on the accuracy of the used wave functions.

The last part of this thesis deals with the inclusion of electron correlation. We
use the well-known coupled cluster (CC) method for closed shells and a combined
configuration interaction-CC (CI-CC) method for one-electron open shells. We
take advantage of the spherical symmetry of atoms and propose a symmetry-
adapted form of the CC and CI-CC approaches; this idea significantly reduces
the number of terms to be evaluated as well as the number of equations to be
solved. This method is illustrated on the ionization energies of I.A elements.

Keywords: Hartree-Fock, Dirac-Hartree-Fock, coupled cluster method, configu-
ration interaction, electron correlation, symmetry breaking, adaptation to sym-
metry
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Notation
In Chapters 2 – 5, we will use the following notation:

Z, z = 1/Z nuclear charge, inverse of nuclear charge
N number of electrons
|a⟩, |A⟩ spin-orbitals, orbitals, or shells
ẑ one-particle operator
v̂ two-particle operator
f̂ Fock operator
ĥ0 one-particle Hamiltonian for an electron moving in a poten-

tial field due to a nucleus
r̂12 distance between two electrons
ε spin-orbital (or orbital) (Dirac-)Hartree-Fock energy
E total energy
EHF total (Dirac-)Hartree-Fock energy
∆E correlation energy
Λ, λ stability matrix, its eigenvalue
Ŝ, Ŝz, Ŝ2 spin operator, its z-component, and its square
L̂, L̂z, L̂2 angular momentum operator, its z-component, and its square
Ĵ, Ĵz, Ĵ2 total angular momentum operator, its z-component, and its

square
Π̂ parity operator
K̂ relativistic parity operator
Ĝ G operator
P12 permutation of 1 and 2
Aab, Aab antisymmetrization of a and b
Aabc, Aabc antisymmetrization of a, b and c, even permutations only
Pabc, Pabc antisymmetrization of a, b and c, all permutations
α fine-structure constant, α = 1/137.0359991 [1]
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Introduction
In his 1991 speech during a workshop on electron correlation, J. Č́ıžek, the father
of the well-known coupled cluster method and one of the most prominent figures
of the 20th century quantum chemistry, remembers: “Around 1960 there were
three outstanding problems in the quantum theory of atoms and molecules: the
calculation of molecular integrals, seeking a satisfactory solution of the Hartree-
Fock problem for molecules and the problem of the correlation energy.” [2] Nowa-
days, more than sixty years later and after a gigantic boom of the computational
power, these three problems seem to have been more or less resolved. The Gaus-
sian functions have become a prevalent basis for very cheap evaluation of atomic
and molecular integrals. Calculations on the Hartree-Fock (HF) level are now
a dime a dozen. Post-HF methods such as the coupled clusters (CC) or con-
figuration interaction (CI) for the inclusion of correlation energy have become
commonplace as well. In addition, the current quantum chemistry world is rife
with other not fully ab initio approaches such as the density functional theory
(DFT) or semi-empirical methods.

While the above-mentioned solutions may be satisfactory for mundane prob-
lems, once we near the high-precision frontiers of modern physics and chemistry,
we will discover that we are still facing the very same three obstacles. The Gaus-
sian functions are not suitable for a correct description of the behavior of orbital
wave functions at large distances from the nucleus, and hence for the description
of excited states. The hydrogen-like Slater functions are sometimes used as an
alternative; however, they retain the other major drawback inherent in the Gaus-
sian functions: they are non-orthogonal and thus plagued with linear dependence.
The non-linearity of the HF equations does not guarantee the unambiguity of the
obtained solution (e.g., Is it the true energy minimum?). Yet a stable HF solu-
tion is essential for further post-HF calculations. Current implementations and
truncations, mostly due to the limited computational resources, of the CC and
CI methods do not allow one to always account for the electron correlation to
satisfactory accuracy. Therefore, clearly, further methodological development is
still necessary.

One of such cutting-edge and very difficult challenges of contemporary high-
precision science is the study of the Standard Model (SM) and physics beyond
it. One can, for example, perform extremely precise measurement and ab initio
calculation of a very subtle effect known as parity violation. The combination of
such measurement and calculation then yields one of the most stringent tests of
the SM. However, the journey towards outstanding results is pathed with many
obstacles and it usually takes several years to complete it; both experimentally
and theoretically. In this thesis, we will focus on the latter and show how one
can defeat the formidable challenges.

This thesis is structured as follows. In Chapter 1 we start with a brief in-
troduction to the SM and electroweak (EW) theory. We explain parity violation
in atoms and show how one can measure and calculate this effect. In the next
Chapter 2 we introduce two concepts that will appear throughout this thesis:
the well-known HF model and the so-called Sturmian functions. In Chapter 3 we
study the HF model, which is the starting point of almost all high-quality ab initio

7



calculations, and focus on HF solutions and on their existence and properties. In
the next part of this thesis, we head towards the development of new methodolog-
ical tools for precise relativistic atomic structure calculations. In Chapter 4 we
present an algorithm for numerically stable evaluation of one- and two-electron in-
tegrals between the Sturmian functions. This basis set of hydrogen-like functions
allows for the most accurate calculations ever. In Chapter 5 we then continue
to explore the world of electron correlation and the CC and CI methods while
taking advantage of the atomic spherical symmetry.

The aim of this thesis is to present the problems and our contribution to its
solution in a readable manner for a wider audience; details and mathematical
derivations may be found in our pertinent papers [3, 4]. These two papers (both
already published) are attached to this thesis. The content of Chapter 5 forms the
basis for our next publication and will be submitted in few months. Some of the
parts of the theoretical background and description of our specific approach were
copied from the pertinent papers [3, 4] or its Supplementary Information (SI) as
we believe that there we succeeded in formulating them in the best possible way.

A Fortran 2009 program called PASC (Precise Atomic Structure Calculations)
has been developed from the scratch as a part of this thesis. This program
is available from the authors upon reasonable request. The first part of the
program, which includes the algorithm for the evaluation of one- and two-electron
matrix elements in the Sturmian basis for both relativistic and non-relativistic
calculations, the non-relativistic HF and relativistic Dirac-HF (DHF) procedures,
and procedures for evaluation of the PNC amplitude and other atomic properties,
see Chapter 4, is also accessible via the Comput. Phys. Commun. repository,
see [4]. The second part of this program containing the CC and CI procedures
is expected to be submitted also to the Comput. Phys. Commun. journal and
added to their repository.
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1. Motivation

1.1 The Standard Model and Beyond
In 1973, when the current formulation of the SM of fundamental constituents
and interactions was finalized, only eight particles were known experimentally:
electron and its neutrino, muon and its neutrino, three quarks (u, d, s), and
photon. The SM predicted the existence of nine other particles: tauon and its
neutrino, another three quarks (c, t, b), W ± bosons, Z0 boson, and the famous
Higgs boson. All of them were experimentally discovered (mostly with predicted
properties) in the succeeding years; the last one was the Higgs boson in 2012.

Unfortunately, the much celebrated discovery of the Higgs boson also marked
the beginning of what is sometimes called the “nightmare scenario at the LHC”.
We are certain that the SM is incomplete as, for example, neutrino oscillations
and dark matter indicate. However, high-energy collision experiments have not
lead to anything new after the great Higgs discovery. Moreover, we even lack
bright theoretical ideas as what type of experiments to conduct or at what energy
scale to look for new physics. Yet the cost of the construction and upkeep of
large accelerators is astronomical. For example, the CERN proposal for a new
supercollider asks for more than 21 billion euros [5].

In this situation, precise low-energy tests of the SM offer one of the viable
possibilities how to proceed further in our exploration of fundamental physical
laws. Nowadays, these are most notably rare decays of B-mesons and K-mesons
(see, e.g., [6]) and violation of discrete symmetries in atomic spectroscopy (see,
e.g., [7, 8, 9]), such as parity.

1.2 Parity Violation
In quantum mechanics, parity describes the symmetry of a wave function under
the parity transformation, i.e., under the inversion of the coordinates: P̂ : r →
−r. This transformation may be thought of as a replacement of the original state
by its mirror image. If the wave function does not change the sign under this
transformation, P̂ |Ψ⟩ = + |Ψ⟩, it is said to be of even parity; if it changes the
sign, P̂ |Ψ⟩ = − |Ψ⟩, it is said to be of odd parity. Note that the square of the
parity operator, regardless of the parity of the wave function, always gives the
original state: P̂2 |Ψ⟩ = + |Ψ⟩. Thus, the physical observables, which depend on
the square of the wave function, remain unchanged under parity transformations.

To illustrate the parity property, consider the spherical harmonics Yl,m(n) for
example. As is usual, l denotes the orbital quantum number and m its possible
projections m = −l, −l + 1, . . . , l − 1, l, and n is the unit direction vector. The
parity of Yl,m is (−1)l (see, e.g., [10] or any other textbook on quantum mechan-
ics). Thus, for instance, as one can easily imagine recalling the orbital shapes
from high-school chemistry, the spherical s-orbitals, for which l = 0 and hence
the parity (−1)0 = 1, do not change the sign under the coordinate inversion (i.e.,
are even), while the p-orbitals, for which l = 1 and hence the parity (−1)1 = −1,
do change the sign and thus are odd.
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It had been long believed that the parity of an isolated system is conserved.
However, in 1956 Lee and Young made the Nobel prize-winning suggestion that
the parity may not be conserved in weak interactions [11]. The first experimen-
tal proof was provided by Wu et al. [12] one year later as her team observed
anisotropic distribution of the electrons emitted in the β-decay of polarized 60Co
nuclei.

The theory was gradually completed in the 1960s by Glashow and Weinberg
and is now known as the theory of EW interactions. It unites the electromagnetic
(EM) and weak interactions and constitutes a part of the SM. It predicts the
existence of three types of forces: the well-known EM interactions mediated by
photons, the weak interactions mediated by the charged W ± bosons, and the EW
interactions mediated by neutral Z0 bosons.

One of the predictions of this EW theory is that an electron and a nucleus
of an atom exchange a Z0 boson, see Fig. 1.1 for illustration. This interaction
gives rise to an observable effect known as atomic parity violation or more often
termed atomic parity non-conservation (PNC) and is quantified via a so-called
PNC amplitude EPNC.

Figure 1.1: Exchange of a Z0 boson between an electron (e−) and a nucleus (N).

The PNC effect has been firmly experimentally established in several heavy
atoms, see Chapter 1.3. When these experiments are accompanied by very precise
theoretical calculations, see Chapter 1.4, they yield the most precise low energy
tests of the SM. This in turn puts strong lower bounds on masses of additional
hypothetical particles mediating the PNC interactions. If the SM is established on
some level of accuracy, the precise theory and experiment yield hitherto unknown
aspects of nuclear properties such as neutron skin and parity violating nuclear
interactions, see, e.g., [7, 8, 9].

For example, the combination of a precise measurement and precise atomic
structure calculation allows us to “weigh” the W ± and Z0 bosons. From the
comparison of the experiment and theory one can deduce the value of the so-
called weak nuclear charge QW and hence of the weak mixing angle ϑ (also known
as the Weinberg angle), see Chapter 1.4. Note that ϑ is the only parameter of
the EW theory (unlike, for instance, the many parameters of the once famous
string theory). The currently best calculation [13] and measurement [14, 15] of
the PNC amplitude for cesium give

sin2 ϑ = 0.2356(20) .
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This in turn yields the masses of the W ± and Z0 bosons:

mW =
√

απ√
2Gβ sin2 ϑ

≃ 79 GeV ,

mZ = mW

cos ϑ
≃ 90 GeV .

Here, Gβ is the Fermi constant determined from the neutron lifetime,
√

2 comes
from the historical definition of Gβ, and α is the fine-structure constant. Note
that this simple result is correct up to corrections at the order of α (and higher)
[16]. This spectroscopic “weighing” can be then compared with the masses of
the W ± and Z0 bosons that were determined from the positions of resonances
in high-energy electron-positron annihilation experiments, mW ≃ 80 GeV and
mZ ≃ 91 GeV. As Fig. 1.2 illustrates, there is still a large discrepancy among the
high-energy results. Therefore, clearly, a low-energy input, which is completely
independent of the high-energy experiments, could help to settle this issue.

Figure 1.2: Determination of the mass of the W ± bosons, mW , in a variety of
high-energy collision experiments. Clearly, the exact value of mW is still uknown.
This figure was taken from [17].

1.3 Measurement of PNC
The PNC effect has been successfully measured only on a few 6th-row heavy
elements: Cs [14, 15, 18], Yb [19, 20, 21], Tl [22, 23], Pb [24, 25, 26] and Bi [27],
and experimental detection of the PNC in chiral molecules is still to be achieved.
This subtle effect is usually measured using Stark interference (Cs, Yb) or so-
call optical rotation (Bi, Pb, Tl) technique. We will focus here on the former
approach, which yielded the so far most accurate result (for cesium). For an
overview of the latter, see, e.g., the review [7] or directly the cited papers.
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The most famous is the experiment of the C. Wieman group at CU Boulder
from 1997 [15], see also [14]. After 7 years of apparatus development and 5 years
of studying potential systematic errors, they obtained the so far most precise
measurement on the cesium atom. The experimental set up is shown in Fig. 1.3.
A beam of cesium atoms leaves the cavity and enters the interaction region, where
there are mutually perpendicular static homogeneous magnetic B and electric E
fields1. The cesium atoms are excited from their ground 6S state to the 7S state
by a dye laser with polarization ϵ and one then detects the number of photons
from the spontaneous decay via the 6P1/2 and 6P3/2 states, see the scheme with
the cesium energy levels in Fig. 1.4. One detects the photons with wavelengths
852 nm and 894 nm.

The thus obtained signal is a combination of a very strong Stark contribution,
very weak magnetic dipole transition, and an even more subtle PNC contribution.
The amplitude for the transition is, cf. Chapter 1.4,

|A6S→7S|2 ≃ E2β2ϵ2
z ± 2Eβ

(
Eexp

PNCϵzϵx + Mϵ2
z

)
; (1.1)

E is the strength of the external electric field E, β the vector transition polar-
izability, here M the magnetic dipole moment, and Eexp

PNC the PNC amplitude,
see the next Chapter 1.4 for precise definition. We can see from this expression
that the biggest experimental challenge is the elimination of the magnetic transi-
tion which mimics the true PNC contribution. This is achieved by changing the
polarization ϵx of the standing wave laser. To eliminate additional potential sys-
tematic errors, one also reverses the direction of the magnetic and electric fields
and changes the Zeeman levels from which and to which one excites. Finally, the
PNC signal is observed as modulation of the obtained signal (this is the ratio of
the second to the first term on the rhs of Eq. (1.1)):

∆P NC = 2ϵxEexp
PNC

Eϵzβ
.

Note that the experiment provides us with the ratio Eexp
PNC/β, so one needs to

determine β to be able to extract the PNC amplitude. So far the most accurate
value, β = 26.957(51)a3

B (where aB is the Bohr radius), comes from [28, 29], see
also [30, 31, 32]. Typical experimental conditions were E = 2.5 kV/cm, B = 70 G
and ϵx/ϵz = 0.94 giving ∆PNC of (1 − 2) × 10−6. Note that the detection of these
very few photons is like looking for a needle in a haystack.

1.4 Calculation of PNC
In the theoretical treatment, the description of the EW interactions amounts to
adding an extra potential term to the one-particle Dirac Hamiltonian (in natural
units):

ĤPNC = Gβ√
8

ρW (r)γ5 , (1.2)

1The electric field is applied to allow the otherwise highly forbidden 6S → 7S transition
and to enhance the PNC effect via interference. The magnetic field is introduced to break the
degeneracy in the projection of the total angular momentum M of the atomic states. The PNC
contribution depends on M , and thus if the energy levels were degenerate, the net contribution
would be zero.
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Figure 1.3: Experimental set up for the measurement of the PNC amplitude on
Cs via Stark interference (Fig. 3 in [7]).

γ5 is the Dirac matrix. ρW is the so-called weak charge density and is given in
terms of the proton and neutron densities, ρZ and ρN , respectively:

ρW (r) = ρZ(r)(1 − 4 sin2 ϑ) − ρN(r) .

If, in the first approximation, we consider the above densities to be given by the
nuclear density ρ(r) as

ρZ(r) = Zρ(r) , ρN(r) = Nρ(r) , ρW (r) = QW ρ(r) ,

where clearly Z is the nuclear charge and N the number of the neutrons, the
above expression reduces to

QW = Z(1 − 4 sin2 ϑ) − N . (1.3)

We can see the two main features of this interaction now. First, it is parity
violating; that is, it mixes states of different parity, namely an S-state and a P1/2
state. Second, the interaction is really weak. Changing to atomic units in (1.2),
we find that the interaction is proportional to

QW Gβm3
e(Zα)4 ≃ me(Zα)2

⎡⎣10−5
(

me

mp

)2

α2

⎤⎦QW Z2 ,

where we substituted Gβ ≃ 1 × 10−5m−2
p . me is the electron mass, mp the proton

mass and me/mp ≃ 10−3, and α = 1/137.0359991 is the fine-structure constant
[1]. The factor in the square brackets on the rhs is thus of the order 10−15. How-
ever, given that QW ≈ Z, there is an enhancement of the interaction strength by
the factor Z3 for heavy atoms. Indeed, as already mentioned, this effect has been
observed only on the heavy 6th-row elements.
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Figure 1.4: Energy levels in cesium with hyperfine structure and weak-field Zee-
man structure. Cesium atoms are excited from the 6S to the 7S states by a dye
laser (in blue). Photons from the decay via 6P3/2 and 6P1/2 states to the 6S
ground state (in red) are detected. Scheme adapted from [14].

The expression for the PNC amplitude is obtained as follows, see, e.g., [14].
We consider a dipole transition from an intial state |I⟩ to a final state |F⟩; the
amplitude of such a transition is proportional to

Adip
FI = Ael

FI + Amag
FI = − ⟨F| ϵ · d̂ |I⟩ − ⟨F| (η × ϵ) · µ̂ |I⟩ . (1.4)

Two terms describe the electric Ael
FI and magnetic Amag

FI contributions, respec-
tively. d̂ stands for the electric dipole operator and µ̂ for magnetic dipole moment.
ϵ is the polarization of EM radiation inducing the transition, η the direction of
propagation of the EM wave.

Now, we use the perturbative theory: the non-perturbed Hamiltonian Ĥ0 is
the Hamiltonian Ĥat of a free atom (i.e., with no external field),

Ĥ0 = Ĥat .

Its eigenstates are the (total) states of a free atom |F, I, J, MF ⟩. They are defined
by the combined spin and orbital angular momentum of the electrons, Ĵ = Ŝ + L̂
(hence the quantum number J), the spin of the nucleus, Î (hence I), and the
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total angular momentum state of the electrons and the nucleus, F̂ = Ĵ + Î (hence
F and MF ). Here, we will label the states

⏐⏐⏐I(0)
⟩

and
⏐⏐⏐F(0)

⟩
for simplicity;

Ĥat

⏐⏐⏐I(0)
⟩

= E
(0)
I

⏐⏐⏐I(0)
⟩

and similarly for the final state
⏐⏐⏐F(0)

⟩
.

The perturbative term Ĥ1 comprises the Stark interaction with the external
static electric field with intensity E and the PNC interaction with the nucleus,
Eq. (1.2),

Ĥ1 = −E · d̂ + ĤPNC .

The first-order correction to the wave function of the initial state is thus

|I⟩ ≃
⏐⏐⏐I(0)

⟩
+
⏐⏐⏐I(1)

⟩
, (1.5)⏐⏐⏐I(1)

⟩
= − 1

Ĥat − E
(0)
I

Ĥ1

⏐⏐⏐I(0)
⟩

, (1.6)

and similarly for the final state |F⟩.
For the electric part Ael

FI of the amplitude (1.4) we consider the expansion to
the first order, Eqs. (1.5) and (1.6); we thus obtain

Ael
FI =

⟨
F(0)

⏐⏐⏐ [Ĥ1
1

Ĥat − E
(0)
F

ϵ · d̂ + ϵ · d̂
1

Ĥat − E
(0)
I

Ĥ1

] ⏐⏐⏐I(0)
⟩

.

We can separate the Stark and the PNC contribution Ael
FI = AStark

FI + APNC
FI ,

AStark
FI = −Eiϵj

⟨
F(0)

⏐⏐⏐ [d̂i
1

Ĥat − E
(0)
F

d̂j + d̂j
1

Ĥat − E
(0)
I

d̂i

] ⏐⏐⏐I(0)
⟩

, (1.7)

APNC
FI = ϵi

⟨
F(0)

⏐⏐⏐ [ĤPNC
1

Ĥat − E
(0)
F

d̂i + d̂i
1

Ĥat − E
(0)
I

ĤPNC

] ⏐⏐⏐I(0)
⟩

, (1.8)

The expression for the Stark amplitude (1.7) is parametrized

AStark
FI = −α

3 E · ϵδFI − iβ (ϵ × E) · (σ)FI ;

α is the scalar polarizability, β the vector polarizability (see also Chapter 1.3),
and (σ)FI elements of the Pauli matrices between the final and initial atomic
states, (σ)FI =

⟨
F(0)

⏐⏐⏐σ ⏐⏐⏐I(0)
⟩
. This parametrization is motivated by the fact that

the term in the brackets in the expression for the Stark amplitude (1.7) is a tensor
Tij and can be decomposed into irreducible elements (a sum of a scalar, a vector
and a tensor part, respectively)

Tij = T

3 δij + 1
2 (Tij − Tji) +

[1
2 (Tij + Tji) − T

3 δij

]
.

The vector part can be further rewritten 1/2 (Tij − Tji) = 1/2ϵijkVk; ϵijk is the
Levi-Civita symbol. The tensor part does not contribute.

The expression for the PNC contribution, Eq. (1.8), is parametrized as

APNC
FI = i ImEPNC ϵ · (σ)FI . (1.9)
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Here, ImEPNC (a number) is the quantity known as the PNC amplitude that we
want to calculate.

The magnetic dipole contribution, see Eq. (1.4), which is already very weak,
is considered only in the lowest order of the perturbative method. Further, the
magnetic dipole is parametrized µ̂ = Mσ (M is a number, see also Eq. (1.1)).
We thus obtain

Amag
FI = −M (η × ϵ) · (σ)FI .

The whole expression (1.4) for the transition amplitude thus becomes

Adip
FI = −α

3 E · ϵδFI − iβ (ϵ × E) · (σ)FI + i ImEPNC ϵ · (σ)FI − M (η × ϵ) · (σ)FI .

(1.10)
This is the parametrization used by the experimentalists.

Now, we consider the experimental set up, see Chapter 1.3 and Fig. 1.3. The
external electric field E is oriented along the x axis:

E = (E, 0, 0) .

The exciting laser propagates along the y axis and is elliptically polarized

η = (0, 1, 0) ,

ϵ = (iϵx, 0, ϵz) .

The expression for the amplitude, Eq. (1.10), thus becomes:

Adip
FI = − α

3 EϵzδFI − iβϵzE (σy)FI +

+ ImEPNC
[

− ϵx (σx)FI + iϵz (σz)FI

]
−

− M
[
ϵz (σx)FI − iϵx (σz)FI

]
Further, we consider only transitions with MF = MI ± 1 (as chosen in the exper-
iment). The above expression consequently simplifies to

Adip
FI = −iβϵzE (σy)FI − ImEPNC ϵx (σx)FI − Mϵz (σx)FI

The probability is then (we neglect the very small terms involving only PNC or
magnetic dipole contributions)⏐⏐⏐Adip

FI

⏐⏐⏐2 =β2ϵ2
zE2 (σy)FI (σy)IF +

+ iϵxϵzEβ ImEPNC
[
(σy)IF (σx)FI − (σx)IF (σy)FI

]
+

+ iϵ2
zEβM

[
(σy)IF (σx)FI − (σx)IF (σy)FI

]
The terms for the Pauli matrices can be expressed via σ± matrices (as usual,
these matrices are defined σ± = σx ± iσy):

(σy)IF (σx)FI − (σx)IF (σy)FI = 1
2
[

(σ+)IF (σ−)FI − (σ−)IF (σ+)FI

]
,

(σy)IF (σy)FI = 1
4
[

(σ+)IF (σ−)FI + (σ−)IF (σ+)FI

]
.
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The first terms on the rhs describe the transition with MF = MI − 1 and the
second terms the transitions with MF = MI + 1. The final theoretical expression
for the observed signal is thus

⏐⏐⏐Adip
FI

⏐⏐⏐2 =1
4β2ϵ2

zE2
[
MIδMF,MI−1 + (MI + 1) δMF,MI+1

]
+

+ 1
2ϵzEβ

(
ImEPNC ϵx + Mϵz

)[
MIδMF,MI−1 − (MI + 1) δMF,MI+1

]
.

In the case of 133Cs, see Fig. 1.4, the atomic states are
⏐⏐⏐I(0)

⟩
= |6S⟩ and⏐⏐⏐F (0)

⟩
= |7S⟩. The nuclear spin is I = 7/2; hence the total angular momenta

are F = 3 with projections M = −3, ..., +3 and F = 4 with M = −4, ..., +4.
We consider transitions between the extreme levels (as, again, dictated by the
experiment), i.e., MI = ±3 → MF = ±4 or MI = ±4 → MF = ±3. The above
expression for the transition amplitude thus becomes, cf. Eq. (1.1),

⏐⏐⏐Adip
6S→7S

⏐⏐⏐2 = β2ϵ2
zE2 ± 2ϵzEβ

(
ImEPNC ϵx + Mϵz

)
. (1.11)

1.5 Recent Theoretical Works and their Short-
comings

As mentioned at the beginning of Chapter 1.3, the PNC amplitude has been
successfully measured on only five atoms. Theoretical calculations have been
accomplished for all of them: Cs [13, 33, 34, 35, 36, 37, 38], Yb [39, 40], Tl
[41, 42], Pb [43], and Bi [43]. However, if we take a look at the relative errors
in the theoretical and experimental determination of the PNC amplitude, see
Tab. 1.1 (adapted from [7]), we can see that – with the exception of ytterbium
where the experiment is still ongoing – the incertainty in the theory is much
larger than the experimental one. Therefore, clearly, further development on the
theoretical side is necessary.

Table 1.1: Relative error of the theoretical and experimental, respectively, deter-
mination of the PNC amplitude in various atoms. Adapted from [7].

Atom Theory [%] Experiment [%]
Cs 0.9 0.3
Yb 10 26
Tl 2.5 1.1
Pb 8 1.2
Bi 10 2

We focus on the cesium atom here. The PNC amplitude ImEPNC, see Eqs. (1.8)
and (1.9) and also Eq. (1.11), to be evaluated is defined as

iImEPNC = ⟨7s|
[
ĤPNC

1
Ĥat − E7s

d̂z + d̂z
1

Ĥat − E6s

ĤPNC

]
|6s⟩ , (1.12)
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where, recall, ĤPNC is given in Eq. (1.2) and Ĥat is the Hamiltonian of a free
atom. d̂z is the z-component of the electric dipole operator. ⟨7s| and |6s⟩ are
one-particle atomic states (in contrast to the total states 6S, 7S used by the
experimentalists). Note that, as is common, we dropped the 1/2 subscript in
s1/2 as the composition of s-states with l = 0 and spin s = 1/2 can yield only
total angular momentum j = 1/2. In literature, this PNC amplitude is usually
reported in the units of ieaB(−QW /N) · 10−11; e denotes the elementary charge.

From Eq. (1.12) one can see the probably greatest challenge in the evaluation
of the PNC amplitude: due to the presence of the dipole operator d̂z = ∑

eizi

and of the EW term ∼ ρ(R), we have to obtain the needed wave functions (for s
and p1/2 states) with great accuracy both far away from the nucleus (due to the
former term) as well as very near the nucleus (due to the latter term).

There were several attempts on the theoretical evaluation of the PNC am-
plitude in cesium, the most notable are the works [13, 33, 34, 35, 36, 37, 38],
and on the development of high-precision methods for atomic systems in general,
see, e.g., [44, 45, 46, 47]. The best calculation (as of 2022) was achieved by S.
G. Porsev, K. Beloy and A. Derevianko in 2010 [13]. In their sophisticated cal-
culation, they started with the DHF model and then employed the CC method
with singles, doubles and valence triples (see later Chapter 5.3) and a few other
corrections, see [13] for details.

However, as good as [13] is, it has several shortcomings. First of all, it is not
truly ab initio calculation; see the sentence “In this approach, the valence singles,
Sv, are rescaled by the ratio of experimental and theoretical energies”, op. cit.
p. 4 before Eq. (12). Second, the error of the theoretical determination of the
ionization energy of the normal state of Cs in [13] is 0.3 %, while that of the
normal state of Au in [48] is only 0.03 %. Needless to say that the electronic
structure of Au is much more complicated than that of Cs. The reason behind
this is that the present calculations of PNC amplitudes (summarized in [7, 8, 9])
do not squeeze all the fruit of modern CC methodology (see, e.g., [49]). This
methodology uses single-reference CC method for calculation of the ground state
of closed-shell systems and equation-of-motion CC (EOM-CC) for calculation of
the excited states and simple open shells, see Chapter 5.
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2. Preliminaries
Before we turn to our work, let us introduce two important concepts that will
appear throughout the next chapters of this thesis. First, we summarize here
the well-known HF model in its general spin-orbital formulation. Later, this
model will be used for the non-relativistic (see Chapter 3) and relativistic (see
Chapter 4) closed-shell atomic systems. The specific forms of the HF model will
be introduced in the respective chapters. Second, we define here the Sturmian
functions and show their basic properties. This basis set is used for all presented
calculations.

2.1 Hartree-Fock Model
To derive the HF equations, we start with the expression for HF energy of a system
constituted by N electrons moving in the electrostatic potential of a nucleus (or
nuclei in the case of molecules) and of other electrons

EHF =
N∑

a=1
⟨a| ẑ |a⟩ + 1

2

N∑
a=1

N∑
b=1

⟨a|1 ⟨b|2 v̂ (1 − P12) |a⟩1 |b⟩2 . (2.1)

Here, |a⟩ and |b⟩ are normalized spin-orbitals in the abstract notation. ẑ and v̂
are one- and two-particle operators, respectively. P12 exchanges the coordinates
of the two electrons. Next, we vary this expression (2.1) with respect to each
spin-orbital, subjected to normalization constraint ⟨a|a⟩ = 1, and set it equal to
zero. We thus obtain the well-known HF equations (where a = 1, . . . , N):

f̂ |a⟩ = εa |a⟩ . (2.2)

The Fock operator f̂ is given by

f̂ = ẑ +
N∑

b=1
⟨b|2 v̂ (1 − P12) |b⟩2 . (2.3)

εa are one-particle (spin-orbital) energies. These non-linear coupled equations
are then solved (usually iteratively) and we obtain the HF wave functions, i.e.,
spin-orbitals, spin-orbital energies and total energy. The total energy is related
to the orbital energies

EHF = 1
2

N∑
a=1

[εa + ⟨a| ẑ |a⟩] .

Note that all these relations are completely general and hold regardless of the
specific forms of the one- and two-particle operators ẑ and v̂ and spin-orbitals a.

2.2 Sturmian Basis Set
The Sturmian basis system is found as follows, see, e.g., [10, 50, 51]. Consider
the well-known eigenproblem for the radial hydrogenic Hamiltonian,[

p̂2
r

2 + l(l + 1)
2r2 − 1

r

]
Rh

n,l(r) = − 1
2n2 Rh

n,l(r) ; (2.4)

19



r is the radial coordinate, p̂r the radial momentum

p̂r = −i

(
∂

∂r
+ 1

r

)
, (2.5)

and n and l principal and orbital quantum numbers, respectively. We make an
energy-dependent scaling r → rn and multiply the Eq. (2.4) by r. Rearranging
the terms, we transform eigenproblem (2.4) to the eigenproblem

T̂3Rn,l(r) = nRn,l(r) , T̂3 = r

2

[
p̂2

r + l(l + 1)
r2

]
+ r

2 . (2.6)

The functions Rn,l(r) are the Sturmian functions; they are related to hydrogenic
functions by simple relation

Rh
n,l(r) = 1

n2 Rn,l

(
r

n

)
.

The advantage of the Sturmian over hydrogenic functions is that the former form
a complete discrete basis set, while the latter do not. This is most easily seen by
noting the existence of the ladder operators

T̂± = r

2

[
p̂2

r + l(l + 1)
r2

]
− r

2 ± irp̂r , [T̂3, T̂±] = ±T̂± . (2.7)

By a procedure completely analogous to that used for angular momentum, one
can show, see, e.g., [10], that n has to be a positive integer greater than l + 1 and
that

T̂±Rn,l =
√

(n ∓ l)[n ± (l + 1)]Rn±1,l . (2.8)

It is worth noting that the operator T̂3 is Hermitian with respect to the inner
product with weight r. Consequently, the eigenfunctions Rn,l(r) of the operator
T̂3 are orthonormal with weight r

(n1, l|n2, l) =
∫ ∞

0
rRn1,l(r)Rn2,l(r)dr = δn1,n2 . (2.9)

The inner product defined in the last equation is to be contrasted with the ordi-
nary inner product in the space of the radial functions

⟨n1, l|n2, l⟩ =
∫ ∞

0
r2Rh

n1,l(r)Rh
n2,l(r)dr = δn1,n2 . (2.10)

Thus, we have two kinds of inner products, Eqs. (2.9) and (2.10). Notice that we
distinguish them by using different brackets.

We can further improve this basis set by considering screened radial functions
Rn,l(ξ, r) instead of the ordinary ones Rn,l(r), Eq. (2.6), see [50]. The screening
functions are obtained from the ordinary ones by the energy-independent scaling
r → ξr and multiplication by ξ (to ensure proper normalization, see Eq. (2.9))

Rn,l(ξ, r) = ξRn,l(rξ) . (2.11)

The use of screened functions is motivated by the fact that electrons in an atom
see the nuclear charge differently. Consider a two-electron system, for example.
The electron that is closer to the nucleus is indeed effected by the true nuclear
charge Z. However, the other electron, which is further from the nucleus (i.e., in
a higher state), sees an effective nuclear charge Z − 1 as the nuclear charge Z is
screened by the electron in the lower state.
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3. Symmetry Breaking of the
Hartree-Fock Model
This chapter focuses on the well-known HF approximation (see Chapter 2.1) and
studies its singular behavior at critical regions. This work was published as [3]
(attached), see also [52]. Note that the notation in this chapter slightly differs
from the rest of this work; we have decided to follow the notation of the herein
referenced paper [3] for the sake of clarity.

3.1 Introduction

3.1.1 Hartree-Fock Method
The HF model is nowadays a cheap and a well-established approximation and
is widely used as the starting point for further accurate ab initio calculations.
Its key idea in the description of two-electron interactions is to consider each
electron to be moving in an average potential due to all other electrons. This
way we neglect a significant part of the electron correlation (we usually obtain
around 95 % of the exact energy), but, unlike the DFT method for example,
we can account for the missing correlation contribution via one of the post-HF
methods and systematically improve the accuracy of the result.

Within the HF approximation, we distinguish generally between restricted
(RHF) and unrestricted (UHF) models. A non-relativistic atomic electron wave
function consists typically of three separable contributions: a radial part, an
angular part and a spin part. In the strictest case, we assume that the radial
part is identical for all possible angular and spin parts. Consider a 2p orbital,
for example. In fact, it represents six different electronic wave functions, but we
usually consider the radial part to be the same for all six functions. This is the
RHF model and its solutions is termed symmetry-adapted (SA). If we lift any of
these spin or orbital restrictions, for example we do not a priori assume that the
radial parts are identical for 2px, 2py and 2pz orbitals, we obtain an orbital UHF
model; similarly for a spin UHF model. If we indeed obtain different radial wave
functions and lower energy than for the RHF approach, E(BS) < E(SA), we call
the solution of the UHF equations as broken-symmetry (BS).

The HF approximation leads to a system of coupled non-linear equations that
cannot be solved exactly. They are usually solved via the iterative self-consistent
field (SCF) method. In most standard situations no problems arise. However,
there is generally no guarantee that the method will indeed converge; it can,
for example, oscillate between two or more non-physical solutions or numerically
“explode”. One encounters these convergence problems predominantly due to one
of the following two reasons:

(i) The system cannot exist, i.e., we are trying to find a non-existing solution.
(ii) The system features strong electron correlation. The RHF solution is

a poor approximation to the ground state, multiple HF solutions may lie close
one to another, and instabilities appear. Their presence implies the existence
of another, BS, solution with lower energy. However, as stated by Pulay [53],
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especially in complicated systems, the SCF algorithm tends to converge to a SA
solution even if its energy lies above a BS solution.

Therefore, it would be of much help if one knew a priori what type of solution
to look for and whether any exists, for that matter.

3.1.2 Properties of HF Solutions
The first step towards the investigation of the existence of and the relation be-
tween SA and BS solutions was undertaken by Thouless in 1960 in the context
of nuclear physics [54, 55]. His bright idea was to apply tools from mathematical
analysis.

The HF equations arise from the requirement that the first variation of energy
in the space of monoexcitations vanishes. However, this requirement does not
ensure that the found solution is indeed a local minimum; δ(1)E = 0 leads to
any extremal point, i.e., also to (local) maxima and saddle points. To determine
whether the found solution is indeed a minimum, we could calculate the so-
called Hessian (a matrix of second derivatives) and find its eigenvalues. If all the
eigenvalues are positive, the found SA solution is indeed a minimum and is said
to be stable. Conversely, if there is at least one negative eigenvalue, another BS
solution of lower energy exists and the found SA solution is said to be unstable.

In atomic and molecular physics, the investigation of HF solutions and their
stability was initiated by Paldus and Č́ıžek by a series of studies in the late 1960s
and early 70s [56, 57, 58, 59, 60, 61, 62]. For the first time, a connection between
HF instabilities and symmetry breaking was pointed out and a classification of
the instabilities according to spin symmetry was proposed. They introduced a
concept of singlet and non-singlet (triplet) instabilities in the case of closed-shell
systems and doublet and non-doublet instabilities for open-shell systems, and
studied (spin) symmetry breaking in many molecular systems. A more complete
classification of instabilities was provided later by Fukutome [63] and Stuber and
Paldus [64, 65]. Symmetry breaking and the UHF problem were then revisited by
Pulay and coworkers during the development of an inexpensive quantum-chemical
method, named UNO-CAS (unrestricted natural orbital – complete active space)
method, which should be capable of describing strongly correlated systems and
has been successfully applied to systems such as polyenes, aromatic molecules
and transition metal compounds [53, 66, 67].

There is a great variety of topics that still have not been fully understood.
For instance, despite several attempts on clarification, e.g., [63, 68], the physical
and chemical significance of symmetry breaking and BS wave functions remains
not fully concluded. Likewise, the question of survival of the symmetry breaking
once the electron correlation is accounted for [69] is still unresolved. Also, as
of now, there is still no clear deterministic method for the localization of a BS
solution. There were various attempts (if interested the reader may look into
the cited papers), such as a method of the steepest descent by Paldus and Č́ıžek
[56, 62], a direct energy minimization algorithm by Stuber and Paldus [64, 65],
a method by Tóth and Pulay [70] in the context of a search for an automatic
determination of active space for strongly correlated systems. We also proposed
a method for obtaining a BS solution once we have a SA solution (and showed
how one can always obtain a SA solution), see [52].
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Given the practical importance of the knowledge whether, for a given system,
a SA or a SB solution is the energy minimum, whether a HF solution exists at
all, and how one can obtain a HF solution, we have decided to systematically
investigate all closed-shell atomic systems of the Mendeleev periodic table. This
work aims to obtain the stability matrix for those systems, to classify the found
instabilities and to ascribe a physical meaning to them.

3.2 Theory
The general formulation of the HF model was presented in Chapter 2.1. Here, we
will focus on closed-shell atomic systems in the non-relativistic approximation and
present the pertinent expressions. We will also introduce the standard formulation
of the stability matrix.

3.2.1 Restricted Hartree-Fock Model
In the non-relativistic RHF model for atoms, we put N electrons into N spin-
orbitals labeled by A. These spin-orbitals are successively put in accordance with
the Bohr Aufbau principle into ν shells labeled by a. Each shell is characterized
by the orbital angular momentum la and principal quantum number na. In a
given shell, there are 2(2la + 1) states of the type

⟨r|a⟩ = φna,la(r)Yla,m(n) |s⟩ (3.1)

where φn,l(r) are radial functions and n is the principal quantum number of the
pertinent atomic shell, Yl,m(n) are spherical harmonics and magnetic quantum
number m runs from −l to l by 1 (hence the factor 2la + 1), and |s⟩ =

⏐⏐⏐12 , ±1
2

⟩
are the spin states (hence the additional factor 2). This is commonly referred to
as the central field or shell model, see Chapter 4.3.1 for the relativistic model.
Note in passing that the shells are uniquely labeled either by a natural number
a, or by a pair of quantum numbers {na, la}. For instance, a neon-like atom has
three filled shells: 1s, 2s, 2p; thus the correspondence is 1 ↔ (1, 0), 2 ↔ (2, 0) and
3 ↔ (2, 1). Henceforth, we will use both labelings interchangeably.

In the non-relativistic case, the one-particle operator ẑ is the one-electron
Hamiltonian for the kinetic energy of the electron and its potential energy in the
Coulomb field of the nucleus with charge Z (in atomic units),

ẑ = ĥ0 = p̂2

2 − Z

r̂

and the two-electron operator is simply the inverse distance between two electrons

v̂ = r̂−1
12 .

Assuming spin and orbital restriction, we can integrate out the pertinent
degrees of freedom. Then by means of the multipole expansion of the Coulomb
potential and the Wigner-Eckart theorem for angular integrations, see, e.g., [10,
71], the expression for the RHF energy for N electrons in ν shells, Eq. (2.1),
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becomes (we scaled the electronic coordinates r(i) → r(i)/Z)

EHF

Z2 = 2
ν∑

a=1
(2la + 1) ⟨a| ĥla

0 |a⟩ +

+ 1
Z

ν∑
a=1

⎡⎣ a−1∑
b=1

(2la + 1) (2lb + 1) ⟨a|1 ⟨b|2
(

4v̂c |a⟩1 |b⟩2 − 2v̂e |b⟩1 |a⟩2

)
+

+ (2la + 1)2 ⟨a|1 ⟨a|2 (2v̂c − v̂e) |a⟩1 |a⟩2

⎤⎦ .

Here, |a⟩ and |b⟩ are the radial orbitals in the abstract notation; their projections
onto the coordinate basis are the radial functions ⟨r|a⟩ = φna,la(r), cf. (3.1). ĥl

0
is the radial part of the hydrogenic Hamiltonian, see Eqs. (2.4) and (2.5),

ĥl
0 = 1

2

[
p̂2

r + l(l + 1)
r2

]
− 1

r
,

and the radial operators of the Coulomb and exchange interaction read

v̂c = r−1
> , v̂e =

la+lb∑
l=|la−lb|

rl
<

rl+1
>

(la, 0, lb, 0|l, 0)2

2l + 1 , (3.2)

where r< = r1, r> = r2 if r1 < r2 and r< = r2, r> = r1 if r1 > r2. Finally,
(l1, i, l2, m − i|l, m) are Clebsch-Gordan (CG) coefficients.

The non-relativistic spin and orbital RHF equations then read, see Eqs. (2.2)
and (2.3),

f̂a |a⟩ = εa |a⟩ , f̂a |a⟩1 = ĥla
0 |a⟩1 + 1

Z

ν∑
b=1

2lb + 1
⟨b|b⟩

⟨b|2
(
2v̂c |a⟩1 |b⟩2 − v̂e |b⟩1 |a⟩2

)
.

(3.3)
The one-electron energies εa are related to the total energy via the relation

EHF

Z2 =
ν∑

a=1
(2la + 1)

(
εa + ⟨a| ĥla

0 |a⟩
⟨a|a⟩

)
. (3.4)

The RHF equations are usually solved by expanding radial functions φna,la(r)
into a discrete radial basis set; the problem is thus transformed into a generalized
eigenvalue problem:

Fc = εSc .

These are the well-known Roothan equations.

3.2.2 Stability Matrix
The spin-adapted stability matrix for closed-shell atomic systems was introduced
already by Paldus and Č́ıžek [56, 57] (following the notation used in the cited
works):

ΛS
a,b = δoa,ob

(
f̂oa,ob − δoa,obεa

)
+ 1

Z

{
2(̂r−1

12 )oaob,oaob
[1 + (−1)S]− (3.5)

− (̂r−1
12 )oaob,oboa

− (̂r−1
12 )oaob,oboa

}
.
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Here, the Fock matrix f̂oaob is defined as, cf. Eq. (3.3),

f̂oaob = (ĥ0)oaob + 1
Z

∑
c occ.

[
2(̂r−1

12 )oaoc,oboc
− (̂r−1

12 )oaoc,ocob

]
where the summation in the last equation runs through all occupied orbitals. The
stability matrix is expressed here in the basis of monoexcitations labeled by a
and b. Each monoexcitation a is determined by the occupied and virtual orbitals
labeled by oa and oa, respectively. These orbitals are eigenstates of the Fock
operator and are uniquely defined by the triples of quantum numbers (na, la, ma)
and (na, la, ma), respectively. Finally, S = 0 and S = 1 correspond to spin
conserving (singlet) and spin violating (triplet) stability matrices, respectively.

To investigate the stability of the RHF solution we are to solve the eigenvalue
problem (we suppress here the superscript S)

Λ |λ⟩ = λ |λ⟩ . (3.6)

According to the sign of the lowest eigenvalue λ, the RHF solution is stable (if
λ > 0) or unstable (if λ < 0).

3.2.3 Critical Nuclear Charge
To conclude this theoretical chapter, we would like to explain the term critical
nuclear charge. This will be important later for the interpretation of our results.

It has been generally agreed that the critical nuclear charge Zc is the minimum
charge for which an atomic system has at least one bound state (so that the at-
traction of electrons to the nucleus exactly compensates for the electron-electron
repulsion). This physical meaning has been ascribed to the critical nuclear charge
by numerous studies from recent years, e.g., [72, 73, 74]. In those, the authors
obtained perturbative energy series for the exact solution of the Schrödinger equa-
tion, analyzed those series, and found their radius of convergence. The radius of
convergence is given by the position of the closest singularity, which is in turn
identified with the critical nuclear charge Zc. Note that the determination of Zc

is a challenging task as one needs to find the last bound state that is on the verge
of entering the continuum for Z = Zc.

3.3 Our Systematic Approach
Now we will turn to our contribution. The aim of this work is to systemati-
cally investigate all closed-shell atoms and determine the onsets of spin or or-
bital symmetry breaking. Therefore, we start with the adapation of the spin-SA
stability matrix to the orbital symmetry (Chapter 3.3.1). Next, we show how
one can implement the perturbative method and in three steps obtain series for
the eigenvalues of the stability matrix (Chapter 3.3.2). Finally, we summarize
methodological tools for the analysis of the obtained series (Chapter 3.3.3).

3.3.1 Symmetry-Adapted Stability Matrix
In the case of atoms in the non-relativistic approximation, there are in general
five mutually commuting operators that commute with the atomic Hamiltonian:
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Ŝ2, Ŝz, L̂2, L̂z, Π̂, where Ŝ, L̂ and Π̂ stand for the total spin, total angular momen-
tum and parity operators, respectively. The monoexcitations generally conserve
Sz and Lz, but not S(S + 1), L(L + 1) and Π. Thus, the stability matrix may be
factorized according to the total spin, total orbital momentum and total parity
of the monoexcitations.

The adaptation to spin symmetry has been already done by Paldus and Č́ıžek
[56, 57], cf. Eq. (3.5). Further factorization according to the total angular mo-
mentum L and parity Π of the monoexcitations is achieved by means of CG
coefficients; the spin and orbital SA stability matrix thus reads

ΛS,L,Π
a,b =

la∑
ma=−la

lb∑
mb=−lb

(la, ma, la, −ma|L, 0)(lb, mb, lb, −mb|L, 0)(−1)ma+mbΛS
a,b =

=
la∑

ma=−la

lb∑
mb=−lb

(la, ma, la, −ma|L, 0)(lb, mb, lb, −mb|L, 0)(−1)ma+mb×

×

⎛⎝δoa,ob

(
f̂oa,ob − δoa,obεa

)
+

+ 1
Z

{
2[1 + (−1)S](̂r−1

12 )oaob,oaob
− (̂r−1

12 )oaob,oboa
− (̂r−1

12 )oaob,oboa

}⎞⎠ .

(3.7)

The parity Π of the monoexcitation is defined as

(−1)Π = (−1)la+la = (−1)lb+lb .

Note that with this symmetry adaptation, each monoexcitation a is character-
ized by quantum numbers (na, la, na, la), where na, la and na, la are principal and
orbital quantum numbers of the occupied and virtual orbitals, respectively.

When using the SA monoexcitations, one of the blocks of the stability matrix
preserves all the symmetries of the Hamiltonian. We will term this block as a
pure singlet stability matrix, to distinguish it from the molecular case, where the
singlet stability matrix consists of a mixture of a pure stability matrix and a
stability matrix violating other than spin symmetry (usually spatial).

3.3.2 Perturbative Series for the Eigenvalues of the Sta-
bility Matrix

We found that for obtaining a global insight into the stability of a given electron
configuration in the field of nucleus with respect to variation of the nuclear charge,
it is advantageous to search for the solution of Eq. (3.6), in the form of a series
in the inverse powers of nuclear charge Z:

|λ⟩ =
∞∑

r=0
|λr⟩ zr , λ =

∞∑
r=0

λrz
r , z = 1/Z . (3.8)

This is achieved in three steps. We first find the perturbative solution of the RHF
equations. Then we use it to construct the pertubative series for the stability
matrix (3.6) and we thus obtain the well-known perturbative expansion of the
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generalized eigenvalue problem. Finally, we use this perturbative expansion of
the stability matrix (or more precisely of its each block) to find the perturbative
series (3.8) for the lowest eigenvalue.

These series are then analyzed as described in the next Chapter 3.3.3. The
goal of the analysis is to determine the values of the nuclear charge Zi for which
λS,L,Π(Z = Zi) = 0. For Z > Zi the found SA solution is stable, i.e., the HF is
a suitable starting point for further post-HF calculations. Then at Z = Zi one
root vanishes. Finally, for Z < Zi the found SA solution is unstable and a BS
solution of lower energy exists.

Note that our implementation of the perturbative approach to the stability
matrix requires introduction of so-called projectors. Given the very technical
nature of their use, we refer the reader to the SI of the attached paper [3].

The RHF Equations in the Sturmian Basis

We expand the radial orbitals ⟨r|a⟩ = φna,la(r) appearing in the HF equations
(3.3) into the scaled Sturmian basis set |j, la, ξa = 1/na), see Chapter 2.2, (here
N denotes the number of basis functions)

|a⟩ =
la+N∑

j=la+1
cj,a|j, la, 1/na) . (3.9)

Further, writing the orbital energies as hydrogenic energy and a correction ∆

εa = − 1
2n2

a

+ ∆a

and projecting the RHF equations (3.3) onto the states (i, la, 1/na|, we transform
these equations into a system of non-linear algebraic equations

∑
j

⎧⎨⎩δi,j
j − na

na

+ (3.10)

+ 1
Z

∑
b

(2lb + 1)
∑

p,q[2v(i,a)(p,b),(j,a)(q,b) − v(i,a)(p,b),(q,b)(j,a)]cp,bcq,b∑
p,q S(p,b),(q,b)cp,bcq,b

⎫⎬⎭cj,a =

= ∆a

∑
j

S(i,a),(j,a)cj,a .

The matrix elements of the Coulomb interaction between two electrons are, recall
Eq. (3.2) for the definition of v̂c and v̂e,

v(i,a)(p,b),(j,a)(q,b) = (i, la, 1/na|1(p, lb, 1/nb|2r̂1r̂2v̂c|j, la, 1/na)1|q, lb, 1/nb)2 ,

v(i,a)(p,b),(q,b)(j,a) = (i, la, 1/na|1(p, lb, 1/nb|2r̂1r̂2v̂e|q, lb, 1/nb)1|j, la, 1/na)2 ,

and the elements of the overlap matrix are

S(i,a),(j,a) = (i, la, 1/na|̂r|j, la, 1/na) .

Note that we have to distinguish between integrals in the space of ordinary func-
tions, Eq. (2.10), and Sturmian functions, Eq. (2.9). Therefore, the above matrix
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elements contain an “extra” operator r̂. The matrix elements are evaluated using
a method developed in [50], see also [4].

The total energy is then obtained by substitution of Eq. (3.9) into Eq. (3.4)

EHF

Z2 =
ν∑
a

(2la + 1)
⎛⎝εa +

∑
p,q (p, la, 1/na| r̂ĥla

0 |q, la, 1/na) cp,acq,a∑
p,q S(p,a),(q,a)cp,acq,a

⎞⎠ . (3.11)

Perturbative Solution of the RHF Equations

Equations (3.10) have the form of a pseudoeigenvalue problem; they are usually
solved by the SC method. Here, we solve Eq. (3.10) by expanding the energy
∆a and the coefficients ci,a into a perturbative series in the inverse powers of
the nuclear charge Z (note that the zeroth-order energy term is the hydrogenic
energy −1/(2n2)),

∆a =
∞∑

r=1
zrε(r)

a , ci,a =
∞∑

r=0
zrc

(r)
i,a , z = 1/Z . (3.12)

We first simplify Eq. (3.10) by imposing the normalization condition

⟨b|b⟩ =
∑
p,q

cp,bcq,bS(p,b),(q,b) = 1 . (3.13)

Substituting Eq. (3.12) into Eqs. (3.10) and (3.13) we obtain at the r-th order

n−1
a (i − na)c(r)

i,a +
∑

j

{
−

r−1∑
s=0

ε(r−s)
a S(i,a),(j,a)c

(s)
j,a+ (3.14)

+
∑

b

(2lb + 1)
∑
p,q

[
2v(i,a)(p,b),(j,a)(q,b) − v(i,a)(p,b),(q,b)(j,a)

]
+

+
r−1∑
s=0

r−1−s∑
t=0

c
(s)
p,bc

(t)
q,bc

(r−1−s−t)
j,a

}
= 0

and ∑
p,q

r∑
s=0

c
(s)
p,bc

(r−s)
q,b S(p,b),(q,b) = δr,0 , (3.15)

respectively. The zeroth-order solution of the last two equations is

c
(0)
i,a = δi,na√

na

.

At the higher orders we first solve Eq. (3.14) for i = na to obtain ε(r)
a . Next,

we successively solve Eq. (3.14) to obtain c
(r)
i,a with i descending from la + N , cf.

Eq. (3.9), to la + 1 excluding the case i = na. Finally, we use the normalization
requirement, Eq. (3.15), to obtain the last missing coefficient c(r)

na,a.
The total energy is calculated by substituting Eqs. (3.12) and (3.13) into

Eq. (3.11)
EHF

Z2 =
∞∑

r=0
zrE (r) , (3.16)

E (r) =
ν∑

a=1
(2la + 1)

⎡⎣ε(r)
a +

∑
j,k,p

(k, la, 1/na|̂rĥla
0 |j, la, 1/na)c(p)

k,ac
(r−p)
j,a

⎤⎦ .
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Perturbative Expansion of the Stability Matrix

We use the above obtained perturbative coefficients and orbital energies to con-
struct the perturbative series for the stability matrix (3.6). We then solve it and
find perturbative series for the lowest eigenvalues; see the attached paper and its
SI for details [3].

The zeroth-order solution is, see Eq. (3.7) in the limit Z → ∞,

λ0 = 1
2

(
1

n2
HO

− 1
n2

LU

)
, ⟨r|λ0⟩ = 1

n2
LU

RnLU,lHO(1/nLU, r) .

Rn,l(1/n, r) are the screened Sturmian functions, Eq. (2.11). Further, nHO de-
notes the principal quantum number of the occupied orbital with the highest
hydrogenic energy and nLU and lHO denote the principal and orbital quantum
numbers of the virtual orbital with the lowest hydrogenic energy, respectively.
For example, in the case of neon-like systems, there are two occupied orbitals
with the highest hydrogenic energy (2s and 2p) and three virtual orbitals with
the lowest hydrogenic energy (3s, 3p, and 3d). Thus, in general, one has to employ
the degenerate perturbation method.

The physical reasoning behind the choice of the zeroth-order solution is the
following. As the nuclear charge Z increases, the role of the electron-electron
interaction diminishes, cf. Eq. (3.3); in the limit Z → ∞ the one-particle ener-
gies εa become that of the hydrogen, εa = −1/(2n2

a). In this limit, the lowest
eigenvalue of the stability matrix is then simply the difference between the lowest
unoccupied hydrogenic orbital and the highest occupied hydrogenic orbital. See
SI of [3] for more details. It turns out, see the next Chapter 3.4 and also [3],
that the stability of the given electronic configuration with respect to variation
of the nuclear charge can be classified according to the sign of λ0, see, again, [3]
for details.

The calculation of the higher-order terms of the series (3.8) is too technical
and can be found in the SI of the attached paper [3].

3.3.3 Methods for the Analysis of Series
Localization of a Singularity

The obtained HF perturbative energies, derived in the last chapter, can be an-
alyzed by the method given in [75]. Let us assume that a function f(z), e.g.,
the total or orbital HF energy, has a convergent power series at the origin, cf.
Eqs. (3.12) and (3.16),

f(z) =
∞∑

n=0
Knzn (3.17)

and behaves in the vicinity of the closest singularity to the origin z0 as

f(z) = c1

(
1 − z

z0

)α1

+c2

(
1 − z

z0

)α2

+. . .+d0+d1

(
1 − z

z0

)
+d2

(
1 − z

z0

)2
+. . . ,

(3.18)
where αi are assumed to be non-integer and form an ascending sequence. The
integer powers in Eq. (3.18) do not influence the large-order behavior of the series
(3.17) and will be ignored here. We also assume that the singularity lies on the
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real axis. This turns out to be true for the series considered in this paper. For a
more general case, see [75].

Taking j terms in Eq. (3.18), using the generalized binomial theorem,(
1 − z

z0

)α

=
∞∑

n=0

Γ(α + 1)
Γ(n + 1)Γ(α − n + 1)

(−1)n

zn
0

zn ,

and comparing the terms with the same powers of z in Eqs. (3.17) and (3.18),
we obtain

Kas
n =

j∑
k=1

ck
Γ(αk + 1)

Γ(n + 1)Γ(αk − n + 1)
(−1)n

zn
0

,

Equating now these asymptotic values of Kn to the actual values of Kn, assuming
αk+1 = αk + 1 and considering these equations for n from n0 − j − 1 to n0 this
represents a set of j + 2 equations for j + 2 unknowns: z0, α1 and j coefficients
ck. We solve the set of linear equations for the coefficients ck and then solve two
non-linear equations for z0 and α1 by means of the Newton-Raphson method.

Summation of Divergent Series

We need to sum the perturbation series for the lowest eigenvalue λ of the stability
matrix, see Eq. (3.8), on the border of or even beyond its radius of convergence.

It is well-known, see, e.g., [76], that even if the limit of partial sums does not
converge it can still be unambiguously summed. For the series (3.8), the most
suitable methods seem to be the Weniger or Padé sequence transformations. The
series (3.8) are, in principle, of two types: either they do not change the sign after
the first-order term, or there are blocks of terms with the same sign.

The Weniger sequence transformation W l
n of the series (3.17) is defined as [77]

W l
n = sn +

∑l−1
j=0(−1)j (l−1)!

(l−1−j)!j!Π
l−2
i=1(j + n + i) sj+n−sn

aj+n∑l−1
j=0(−1)j (l−1)!

(l−1−j)!j!Π
l−2
i=1(j + n + i) 1

aj+n

,

where an = Knzn and sm = ∑m
n=0 an are coefficients and partial sums of the

series, respectively. Clearly, the value of n is in principle arbitrary. However, not
in practice. Since, as mentioned above, the series (3.8) become regular from the
second-order term on, we considered n from 2 to 10 to improve the performance
of the Weniger transformation.

The general Padé sequence transformation is defined

P N,M
n = sn + zn+1

∑N
m=0 Amzm∑M
m=0 Bmzm

, M = N, N + 1 .

As indicated, we considered only the diagonal and first off-diagonal sequences.
We calculated the Padé approximants by quotient-difference algorithm [78].

3.4 Results and Discussion
The full summary of results as well as their proper discussion may be found in
the original paper [3]. Here, we will only stress the most important aspects of
this study.
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Table 3.1: Values of the nuclear charge Zi(S, L, Π) for which the first zero root
appears among the eigenvalues of the pure singlet (S = 0, L = 0, Π = 0) and
spin triplet (S = 1, L = 0, Π = 0) stability matrices. The results were obtained
using Weniger (w) or Padé (p) sequence transformations. Zc is the radius of
convergence of the perturbative series for total energy of the given atom.

Zc Zi(0, 0) Zi(1, 0)
He-like 0.82 0.8(2)p 1.06p

Be-like 2.87(3) 2.84w 3.04w

Ne-like 8.5(1) 8.6p 8.5(2)w

Mg-like 10.8(3) 10.9(2)p 11.03p

Ar-like 16.6(3) 16.60w 16.29w

Ca-like − 18.9(1)p 19.0p

Zn-like − 28.9p 29.0p

Kr-like − 34.57w 34.27w

Sr-like − 37.0(1)w 37.2(1)p

Cd-like − 46.9w 47.1(2)p

Xe-like − 52.4(4)w 52.3(1)w

We have analyzed all closed-shell systems of the Mendeleev periodic table up
to xenon-like systems. For all these systems, we have obtained basis-independent
perturbative series for orbital energies and wave functions, calculated the per-
tinent stability matrices, and found perturbative series for the lowest stability
eigenvalues. We have then analyzed these series and determined onsets of sym-
metry breaking and characterized the types of symmetry breaking.

First, let us note that the perturbative energy series for the HF solutions
yield results that are in excellent agreement with the best results available in
the literature [79, 80, 81, 82]. These series for orbital (and total) energies were
analyzed using the method described in [75]. We obtained critical nuclear charges
that correspond to the lowest value of nuclear charge Zc (for a given electronic
configuration) for which a SA solution can still exist, see Tab. 3.1. We observed
that, within numerical errors, the radii of convergence of total and all orbital
energies are the same. However, this method yielded reasonable results only
for systems up to Ar-like systems. Even for these systems, the convergence of
the method was not impressive, though, see Table II of SI of [3] for illustration.
This suggests that the assumption on the nature of the closest singularity to the
expansion point, which is the basis of the method, is not completely correct; for
details see the SI of [3].

Next, the perturbative series of the lowest eigenvalue of each block of the SA
stability matrix were resummed using the Padé or Weniger sequence transfor-
mations (as we need to sum them outside of their region of convergence). We
thus obtained onsets of instabilities Zi(S, L, Π), λS,L,Π(Z = Zi) = 0 for S = 0, 1,
L = 0, 1, 2, 3 and Π = 0, 1.

The found onsets of pure singlet instabilities Zi(0, 0) are listed in Tab. 3.1.
We can see that, within numerical error, the onsets of singlet instabilities Zi(0, 0)
and the critical nuclear charges Zc coincide, see Tab. 3.1. Thus, for the first
time, a physical meaning can be ascribed to the pure singlet instabilities: they
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correspond to the lowest nuclear charge for which a given system can exist within
the HF approximation. The pure singlet instabilities Zi(0, 0) were found to lie
in the interval (Zn − 2, Zn − 1), where Zn denotes the nuclear charge for which
the given atom is electrically neutral. This means that one can obtain a HF
solution for cations, the neutral atom and once negatively charged anions. We
conclude that the results obtained in [83, 84, 85] for O2− (and S2−) are artifacts of
finite basis sets [62]. Whence these results are of no relevance to the experimental
finding of possible resonances in O2− [86], cf. [87]. Further, for helium-like atoms,
Zexact

c ≃ 0.911 [88]; whence ZHF
c = 0.82 < Zexact

c . From this example we see that
electronic correlation has a destabilizing effect and ZHF

c is a lower bound to Zexact
c .

Although we are not aware of any proof that this indeed holds in general, we find
it very likely. Thus probably no exact bound state solution of the Schrödinger
equation exists for any double and more negative isolated atomic anions.

We found the pure spin instabilities Zi(1, 0) to lie in the interval (Zn − 1, Zn),
see Tab. 3.1, in the case of rare-earth-metal-, He-, Zn-, and Cd-like systems. This
means that for once negative anions of these systems, which still can exist as
shown above, a spin-BS solution lies below the SA solution. In the cases of H− and
Li−, the presence of the BS solution manifests itself through the non-convergence
of the SC method for RHF equations. In the case of systems isoelectronic with
noble gases, see Tab. 3.1, the pure spin instability lies below Zi(0, 0). That is,
the systems cease to exist before a spin instability can appear.

We found that pure orbital instabilities Zi(0, L, Π) are less likely than general
instabilities Zi(1, L, Π), i.e., Zi(0, L, Π) < Zi(1, L, Π); the results for the latter
may be found in Tables II, III and IV in the attached paper [3]. Depending on
the type of the lowest monoexcitation, we can distinguish three cases. Recall
that nHO and nLU denote the principal quantum numbers of the occupied orbital
with the highest and the virtual orbital with the lowest hydrogenic energies,
respectively. First, if nLU > nHO, Zi(S, L, Π) < Zn − 1 and all existing systems
are stable. Second, if nLU = nHO, Zi(S, L, Π) lies in the interval (Zn − 1, Zn + 1)
and there are no other roots above Zc. Third, if nLU < nHO, Zi(S, L, Π) > Zn

and cations with Z > Zi(S, L, Π) are unstable. There is usually another root
Z ′

i(S, L, Π) < Zi(S, L, Π) and depending on its position, the corresponding neutral
atom is (un)stable. See Section III of our attached paper [3] for more details.
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4. Evaluation of Matrix Elements
in Relativistic Calculations
This chapter focuses on the development of a numerically stable algorithm for the
evaluation of one- and two-electron matrix elements between relativistic Sturmian
functions. We illustrate the use of the proposed method on a series of closed- and
open-shell atoms and their properties. This work has been published as [4] as a
methodological paper and as Fortran 2009 program PASC.

4.1 Introduction

One of the methodological obstacles in high-precision quantum calculation is the
evaluation of needed integrals to satisfactory accuracy. In the case of atoms, one
usually takes advantage of their spherical symmetry first and by means of the
angular momentum algebra integrates out the spinor-angular degrees of freedom.
One is then left with the radial degree of freedom only; evaluation of the radial
integrals is usually the biggest problem, though.

There are two popular approaches. One can obtain the needed radial integrals
numerically, see, e.g., [89, 90, 91], by confining the atom to an artificial cavity
and replacing the continuous radial variable by a set of discrete points, called
the radial grid. Alternatively, one can expand the wave function into a basis
set. The most popular choice for the latter is a so-called B-spline basis, see,
e.g., [92, 93, 94, 95, 96], where one again confines the atom to an artificial cavity.
The radial coordinate is divided into segments, and in each segment the radial
part of the atomic function is expanded into piecewise polynomials.

Clearly, the numerical and B-spline approaches are very similar. They both
require to enclose the atom in an artificial cavity, and thus they both start to lose
their appeal when it comes to highly excited states as then the interval where
one needs an accurate numerical description of the wave function becomes too
large. Also note that when we wish to obtain physical observables, we have
to remove all the artificial restrictions, i.e., one has to ensure that the result is
independent of a number of parameters, such as the volume of the artificial cavity,
the number of finite intervals the cavity is decomposed into, number of the basis
functions or the density of the grid used on each of the finite intervals, etc. This
could be problematic for second-order quantities, such as the PNC amplitude, see
Eq. (1.12), where summation over complete system of atomic states is required.

Finally, there is a third possibility: to expand the radial part of the atomic
function into a complete and entirely discrete set, the so-called Sturmian basis
set, see, e.g., [10, 50, 51, 97]. Moreover, this basis is orthonormal, albeit with the
weight r−1 with respect to the ordinary weight, and thus avoids the problem of
basis set linear dependence. In addition, there is only one artificial parameter:
the number of considered basis functions. Note that the most accurate non-
relativistic calculations of positions and widths of highly doubly excited states in
helium [98, 99, 100], single and double photoionization of helium [101], and so
on, were done with the use of this basis set.
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4.2 Matrix Elements in the Sturmian Basis
Direct integration to obtain matrix elements in the Sturmian basis is not possible
due to numerical instabilities. Sturmian functions with high quantum numbers
contain many nodes, and thus we are forced to add or subtract close numbers.
Fortunately, there is an alternative approach that has been already studied for the
non-relativistic case in [50]. The key idea is to consider the Sturmian functions
not “analytically”, i.e., through their explicit functional form, but “algebraically”,
i.e., as functions satisfying certain recursion relations which then imply recursion
relations for the integrals of these functions. Here, we extend the method to
the relativistic case, i.e., to non-integer quantum numbers, and introduce further
improvements, for details see the attached paper [4].

Note that the original paper [50] (and Chapters 2.2 and 3, too) indexes the
Sturmian functions with principal quantum number n. Here we use the number
of nodes k = n− l −1 to label the functions instead. While in the non-relativistic
case, the use of the principal quantum number n may be more intuitive, the use
of the number of nodes k is clearly more suitable in the relativistic regime. The
reason is that in the relativistic case, n is a non-integer, whereas k is an integer.

4.2.1 One-Electron Matrix Elements
We encounter generally two types of one-particle radial integrals: overlap-type
integrals that contain a power of the radial coordinate rp and integrals involv-
ing the radial momentum p̂r. In both cases, the trick is to use the T̂3 and T̂±
operators, see Eqs. (2.6), (2.7) and (2.8), to express the radial coordinate r or
the radial momentum p̂r and act with them on the screened Sturmian functions
(2.11)

2rξRk,l(ξ, r) = (2T3 − T+ − T−)ξRk,l(ξ, r) = (4.1)

= 2(k + l + 1)Rk,l(ξ, r) −
√

(k + 2l + 2)(k + 1)Rk+1,l(ξ, r)−

−
√

k(k + 2l + 1)Rk−1,l(ξ, r) ,

2rp̂rRk,l(ξ, r) = (T̂+ − T̂−)Rk,l(ξ, r) = (4.2)

=
√

(k + 2l + 2)(k + 1)Rk+1,l(ξ, r)−

−
√

k(k + 2l + 1)Rk−1,l(ξ, r) .

Recall that the radial momentum is given as, see Eq. (2.5),

p̂r = −i

(
∂

∂r
+ 1

r

)
.

By means of Eqs. (4.1) and (4.2) we thus reduce the one-particle integrals into
the “basic” overlap integrals

(k1, l1, ξ1|k2, l2, ξ2) =
∫ ∞

0
rR̃k1,l1(ξ1, r)R̃k2,l2(ξ2, r) dr. (4.3)

34



Here, R̃k,l(r) denote unnormalized radial functions. They are related to the nor-
malized functions Rk,l(r) via relation

R̃k,l(r) =
√

(k + 2l + 1)!
k! Rk,l(r). (4.4)

By using the unnormalized functions, the irrational factors, see Eqs. (4.1) and
(4.2), are conveniently eliminated.

The method for a numerically stable evaluation of these integals is described
in the attached paper [4], see also [50]. Here, we will focus on the evaluation of
the two-electron integrals, see below, as they are clearly more complicated.

4.2.2 Two-Electron Matrix Elements
Calculation of the matrix elements of the Coulomb and exchange interaction lies
in the evaluation of the integrals∫

d3r1

∫
d3r2Rk1,l1(ξ1, r1)Yl1,m1(n1)Rk2,l2(ξ2, r2)Yl2,m2(n2)r−1

12 ×

×Rk3,l3(ξ3, r1)Yl3,m3(n1)Rk4,l4(ξ4, r2)Yl4,m4(n2) .

To start with, one separates the radial and angular degrees of freedom. This
is achieved by means of the multipole expansion of the Coulomb potential:

r−1
12 = 1

r>

∞∑
l=0

(
r<

r>

)l 4π

2l + 1

l∑
m=−l

Yl,m(n1)Y ∗
l,m(n2)

where r< = r1, r> = r2 if r1 < r2 and r< = r2, r> = r1 if r1 > r2.
The spinor-angular part of the two-electron interaction is easily evaluated (see

Section 5 of [4]) and we are left with the radial part only. This consists of the
evaluation of a double integral over four functions:

R({k1, l1, ξ1}, {k2, l2, ξ2}, {k3, l3, ξ3}, {k4, l4, ξ4}, l) = (4.5)

=
∫ ∞

0
dr1Rk1,l1(ξ1, r1)Rk3,l3(ξ3, r1)rl+2

1

∫ ∞

r1
dr2Rk2,l2(ξ2, r2)Rk4,l4(ξ4, r2)r−l+1

2 +

+
∫ ∞

0
dr1Rk1,l1(ξ1, r1)Rk3,l3(ξ3, r1)r−l+1

1

∫ r1

0
dr2Rk2,l2(ξ2, r2)Rk4,l4(ξ4, r2)rl+2

2 .

The algorithm for its numerically stable evaluation can be described in three steps.

1. Linearization of the Product of Two Sturmians
The product of two Sturmian functions can be expressed as a linear com-
bination of a single Sturmian function:

rpRk1,l1(ξ1, r)Rk2,l2(ξ2, r) =
k1+k2+p∑

k=0
(k1, l1, ξ1, k2, l2, ξ2|k)pRk,l(ξ, r) (4.6)

with l = l1 + l2 and ξ = ξ1 +ξ2. Note that in our case of two-electron matrix
elements we have p = 1. The above coefficients (k1, l1, ξ1, k2, l2, ξ2|k)p are
obtained from Eq. (4.1) as follows, see [50].
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First, we multiply Eq. (4.6) from by rRk′,l(ξ, r), integrate over r, and use
the orthonormality of the radial functions, Eq. (2.9); we obtain

(k1, l1, ξ1, k2, l2, ξ2|k′)p =
∫ ∞

0
rp+1Rk′,l(ξ, r)Rk1,l1(ξ1, r)Rk2,l2(ξ2, r) dr .

(4.7)
Then we again take Eq. (4.6), multiply it this time by 2r, and let 2r act on
the lhs on Rk1,l1(ξ1, r) and on the rhs on Rk,l(ξ, r) according to Eq. (4.1).
We arrive at Eq. (51) of [50] with n = k + l + 1:

rpRk2,l2(ξ2, r) 1
ξ1

[
2(k1 + l1 + 1)Rk1,l1(ξ1, r)−

−
√

(k1 + 2l1 + 2)(k1 + 1)Rk1+1,l1(ξ1, r)−
√

k1(k1 + 2l1 + 1)Rk1−1,l1(ξ1, r)
]

=

=
k1+k2+p∑

k=0
(k1, l1, ξ1, k2, l2, ξ2|k)p

1
ξ

[
2(k + l + 1)Rk,l(ξ, r)−

−
√

(k + 2l + 2)(k + 1)Rk+1,l(ξ, r) −
√

k(k + 2l + 1)Rk−1,l(ξ, r)
]

.

We then multiply this equation by rRk′,l(ξ, r), integrate over r, use the
orthonormality of the functions, Eq. (2.9), and consider Eq. (4.7); we obtain
Eq. (52) of [50]:

2(k1 + l1 + 1)(k1, l1, ξ1, k2, l2, ξ2|k′)−

−
√

(k1 + 2l1 + 2)(k1 + 1)(k1 + 1, l1, ξ1, k2, l2, ξ2|k′)−

−
√

k1(k1 + 2l1 + 1)(k1 − 1, l1, ξ1, k2, l2, ξ2|k′) =

=
k1+k2+p∑

k=0
(k1, l1, ξ1, k2, l2, ξ2|k)p

ξ1

ξ

[
2(k + l + 1)δk′,k−

−
√

(k + 2l + 2)(k + 1)δk′,k+1 −
√

k(k + 2l + 1)δk′,k−1

]
.

We keep only the non-zero terms on the rhs, shift the values of k1 by one,
k1 → k1 − 1, and finally arrive at the following recurrence relation for the
coefficients (k1, l1, ξ1, k2, l2, ξ2|k)p, see Eq. (53) of [50],

(k1, l1, ξ1, k2, l2, ξ2|k)p

√
k1(k1 + 2l1 + 1) =

= 2
[
k1 + l1 − ξ1

ξ
(k1 + l1 + 1)

]
(k1 − 1, l1, ξ1, k2, l2, ξ2|k)p

−
√

(k1 + 2l1)(k1 − 1)(k1 − 2, l1, ξ1, k2, l2, ξ2|k)p+

+ξ1

ξ

√
k(k + 2l + 1)(k1 − 1, l1, ξ1, k2, l2, ξ2|k − 1)p+

+ξ1

ξ

√
(k + 1)(k + 2l + 2)(k1 − 1, l1, ξ1, k2, l2, ξ2|k + 1)p.
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This expression is used to lower k1 to 0. However, it turns out that this
equation becomes numerically unstable for large numbers of nodes (of the
order of forty) when k2 > k1. Thus, in order to achieve high numerical
stability, this equation is used for k1 ≥ k2. For k2 > k1 we use the same
equation, but with the roles of 1 and 2 swapped, see Eq. (61) in the attached
paper [4].
The value of the initial coefficients (0, l1, ξ1, 0, l2, ξ2|k)p is obtained by in-
serting the expression for the lowest screened Sturmian function (for a given
l)

R0,l(ξ, r) = 2ξ√
(2l + 1)!

(2ξr)le−ξr

into Eq. (4.6). We thus obtain

(0, l1, ξ1, 0, l2, ξ2|0)0 = 2ξl1+1
1 ξl2+1

2
(ξ1 + ξ2)l1+l2+1

√ (2l1 + 2l2 + 1)!
(2l1 + 1)!(2l2 + 1)!

and
(0, l1, ξ1, 0, l2, ξ2|k)0 = 0 , k > 0 .

The case of a nonzero p is obtained from Eqs. (4.6) and (4.1). For example

(0, l1, ξ1, 0, l2, ξ2|0)1 = 2(l1 + l2 + 1) ξl1+1
1 ξl2+1

2
(ξ1 + ξ2)l1+l2+2

√ (2l1 + 2l2 + 1)!
(2l1 + 1)!(2l2 + 1)! ,

(0, l1, ξ1, 0, l2, ξ2|1)1 = −
√

2(l1 + l2 + 1) ξl1+1
1 ξl2+1

2
(ξ1 + ξ2)l1+l2+2

√ (2l1 + 2l2 + 1)!
(2l1 + 1)!(2l2 + 1)!

and
(0, l1, ξ1, 0, l2, ξ2|k)1 = 0, k > 1 .

Thus, we reduce the double integral over four functions, Eq. (4.5), to inte-
grals over two functions:

R({k1, l1, ξ1}, {k2, l2, ξ2}, {k3, l3, ξ3}, {k4, l4, ξ4}, l) = (4.8)

=
∑
u,v

cucv

√
u!

(u + 2 (l1 + l3) + 1)!

√
v!

(v + 2 (l2 + l4) + 1)!×

×
[
P l1+l3,l2+l4,l

u,v (ξ1 + ξ3, ξ2 + ξ4) + P l2+l4,l1+l3,l
v,u (ξ2 + ξ4, ξ1 + ξ3)

]
where

P L1,L2,l
K1,K2 (ξ1, ξ2) =

∫ ∞

0
R̃K1,L1(ξ1, r1)rl+1

1

∫ ∞

r1
R̃K2,L2(ξ2, r2)r−l

2 dr2 dr1 (4.9)

and

P L2,L1,l
K2,K1 (ξ2, ξ1) =

∫ ∞

0
R̃K1,L1(ξ1, r1)r−l

1

∫ r1

0
R̃K2,L2(ξ2, r2)rl+1

2 dr2 dr1 .

(4.10)
Recall that R̃k,l(ξ, r) are unnormalized functions defined in Eq. (4.4). cu

and cv stand for the above coefficients ck = (k1, l1, ξ1, k2, l2, ξ2|k)1.
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2. Difference Equations in One Variable
The second step consists of deriving difference equations for the integrals
P L1,L2,l

K1,K2 (ξ1, ξ2) and P L2,L1,l
K2,K1 (ξ2, ξ1), Eqs. (4.9) and (4.10), respectively, and

reducing them to some “basic” integrals (usually P L2,L1,l
0,0 (ξ2, ξ1)) that can

be easily evaluated.
For illustration, we will show how one can reduce the values of K1 and
K2 (while keeping L1, L2 and l constant), see [4] and also [50]. First, we
substitute the unnormalized functions (4.4) into Eq. (4.2) and obtain, cf.
Eq. (64) of [50]:

2r

(
d
dr

+ 1
r

)
R̃k,l(ξ, r) = (k+1)R̃k+1,l(ξ, r)−(k+2l+1)R̃k−1,l(ξ, r) . (4.11)

Next, we consider the “analytic” equation (63) of [50] (which is obtained
by integration by parts)
∫ ∞

r1
r2

(
d

dr2
+ 1

r2

) [
r−l

2 R̃K2,L2(ξ2, r2)
]

dr2 = −r−l+1
1 R̃K2,L2(ξ2, r1) . (4.12)

First, by means of fundamental commutation relations, we exchange the
positions of r−l

2 and the term in the round brackets on the lhs of (4.12).
Next, we substitute Eq. (4.11) into the lhs of the above equation (4.12).
Then we multiply it by 2R̃K1,L1(ξ1, r1)rl+1

1 and integrate over r1 from zero
to infinity. We thus obtain (see Eq. (69) of [4] and also Eq. (67) of [50])

(K2 +1)P L1,L2,l
K1,K2+1(ξ1, ξ2)−2lP L1,L2,l

K1,K2 (ξ1, ξ2)−(K2 +2L2 +1)P L1,L2,l
K1,K2−1(ξ1, ξ2) =

(4.13)
= −2(K1, L1, ξ1|r|K2, L2, ξ2) .

The overlap integrals on the rhs are

(K1, L1, ξ1|r|K2, L2, ξ2) =
∫ ∞

0
r2R̃K1,L1(ξ1, r)R̃K2,L2(ξ2, r) dr , (4.14)

cf. those given by Eq. (4.3). The equation (4.13) is used to lower K2 to 0.
To obtain an expression for lowering K1 to 0, we consider a modification
of the “analytic” equation (4.12), see Eq. (71) of [50], (again obtained by
integration by parts)

∫ ∞

0
dr1 r1

(
d

dr1
+ 1

r1

) [
rl+1

1 R̃K1,L1(ξ1, r1)
] ∫ ∞

r1
dr2 R̃K2,L2(ξ2, r2)r−l

2 =

=
∫ ∞

0
dr1 r2

1R̃K1,L1(ξ1, r1)R̃K2,L2(ξ2, r1) .

As in the case of K2, we first move rl+1
1 on the lhs to the left, then we

substitute Eq. (4.11) into the lhs of the above modified “analytic” equation,
and finally we find, see Eq. (70) of [4] and also Eq. (72) of [50],

(K1 + 1)P L1,L2,l
K1+1,K2(ξ1, ξ2) + 2(l + 1)P L1,L2,l

K1,K2 (ξ1, ξ2)− (4.15)

−(K1 + 2L1 + 1)P L1,L2,l
K1−1,K2(ξ1, ξ2) = 2(K1, L1, ξ1|r|K2, L2, ξ2) .
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Thus, by means of Eqs. (4.13) and (4.15), we reduce the above integrals
P L1,L2,l

K1,K2 (ξ1, ξ2), and P L2,L1,l
K2,K1 (ξ2, ξ1), Eqs. (4.9) and (4.10), to the integrals

over nodeless functions P L1,L2,l
0,0 (ξ1, ξ2) and P L2,L1,l

0,0 (ξ2, ξ1), respectively. We
can express these nodeless integrals for general non-integer values of orbital
quantum numbers L1 and L2 in terms of the hypergeometric function F ,
see Eq. (72) in [4]:

P L1,L2,l
0,0 (ξ1, ξ2) = 2L1+L2+2ξL1+1

1 ξ−L1−2
2 Γ(L1 + L2 + 3)

l + L1 + 2 ×

×F

(
L1 + l + 2, L1 + L2 + 3, L1 + l + 3, −ξ1

ξ2

)
;

see Appendix A of [4] where we show how to obtain the hypergeometric
function for this particular case. See the attached paper [4] also for a more
detailed discussion of this algorithm.

3. Asymptotic Form
Finally, to ensure that the method is stable even for very large quantum
numbers, we find the asymptotic form of the one-variable difference equa-
tions. See Section 5.3 of the attached paper [4].
Consider the exchange integrals, for example. In this case, we can always
reduce the evaluation of the integrals to the integrals (4.9) and (4.10) with
ξ = ξ1 = ξ2 and L = L1 = L2. Note further that for K1 ̸= K2, the rhs of
(4.13) and (4.15) are zero, i.e., it suffices to solve the pertinent homogeneous
equations.
Both linearly independent solutions of homogeneous Eqs. (4.13) and (4.15)
can be obtained as a solution of the equation

(K + 1)[aK+1,p,L − aK−1,p,L] − 2LaK−1,p,L + 2paK,p,L = 0 . (4.16)

The two linearly independent solutions of the homogeneous Eq. (4.13)
are obtained by setting P L1,L2,l

K1,K2 (ξ1, ξ2) = aK2,−l,L2 and P L1,L2,l
K1,K2 (ξ1, ξ2) =

(−1)K2aK2,l,L2 . Likewise, the two linearly independent solutions of homo-
geneous Eq. (4.15) are obtained by setting P L1,L2,l

K1,K2 (ξ1, ξ2) = aK1,l+1,L1 and
P L1,L2,l

K1,K2 (ξ1, ξ2) = (−1)K1aK1,−l−1,L1 . Following the general method outlined
in [76], we search for an asymptotic solution of Eq. (4.16) in the form

aK,p,L =
Q∑

q=0
Aq

Γ(K)
Γ(K + q − L + p) . (4.17)

In the actual calculation we take Q ≃ 25. Substituting this into Eq. (4.16)
we obtain after some algebraic manipulation a recursive relation for the
coefficients Aq

Aq+1(−2)(q + 1) + Aq(q − L + p)(3q − 3 − 3L + p)−

−Aq−1(q − L + p)(q − L + p − 1)(q − L + p − 2) = 0 .

One starts this recurrence with q = 0 setting A−1 = 0; A0 is an overall
multiplicative constant undetermined from these relations, but all Aq/A0
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for q > 0 are determined uniquely. We first set A0 = 1 and determine
overall multiplicative constant later, see [4].
For |K1 − K2| > 0, a general solution of Eqs. (4.13) and (4.15) for the case
L1 = L2 = L and ξ1 = ξ2 = ξ can be written in the form

P L,L,l
K1,K2(ξ, ξ) =

[
c1,1aK1,l+1,L + c1,2aK1,−l−1(−1)K1

]
aK2,−l,L+

+
[
c2,1aK1,l+1,L + c2,2aK1,−l−1,L(−1)K1

]
aK2,l,L(−1)K2 ,

|K1 − K2| > 0 , K1,2 ≥ K0

where K0 ≃ 10 is the smallest number for which the asymptotic solution
(4.17) holds to desired accuracy; further,

P L,L,l
K1,K2(ξ, ξ) = c1,1aK1,l+1 + c1,2aK1,−l−1(−1)K1 K1 ≥ K0 > K2

and

P L,L,l
K1,K2(ξ, ξ) = c1,1aK2,−l + c2,1aK2,l(−1)K2 K2 ≥ K0 > K1 .

The coefficients c are fitted to the actual values of the integrals obtained
by running equations (4.13) and (4.15) up to K1,2 ≃ 10, see the attached
paper [4] for details.

4.3 Illustration on the DHF Model
In this chapter, we will show how the above proposed algorithm can be used in
practice. We will illustrate it on a series of calculations of closed- and open-shell
atoms and their properties in the relativistic DHF approximation. The numerical
results and their discussion may be found in the next Chapter 4.4.

4.3.1 Dirac-Hartree-Fock Model
The most general HF model was introduced in Chapter 2.1. The HF model for
atoms in the non-relativistic approximation was studied in Chapter 3. Here, we
will focus on the relativistic DHF model for atoms.

In the restricted DHF model we put N electrons into N spin-orbitals labeled
by a. These spin-orbitals are successively put in accordance with the Bohr Auf-
bau principle into ν shells labeled by A. Each shell is characterized by the total
(orbital plus spin) angular momentum jA, relativistic parity κA and principal
quantum number nA, the last number distinguishing different shells of the same
spinor-angular symmetry. Each shell comprises 2jA + 1 states of different projec-
tions m of the total angular momentum on one of the coordinate axes.

The relativistic energy of N electrons in N spin-orbitals a in the DHF approxi-
mation is, recall Eq. (2.1) (and note that here we scaled the electronic coordinates
r(i) → r(i)/Z),

EDHF

Z2 =
N∑

a=1
⟨a| ẑ |a⟩ + 1

2Z

N∑
a=1

N∑
b=1

⟨a|1 ⟨b|2 v̂ (1 − P12) |a⟩1 |b⟩2
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and the DHF equations are, see Eqs. (2.2) and (2.3),

f̂ |a⟩ = εa |a⟩ , f̂ = ẑ + 1
Z

N∑
b=1

⟨b|2 v̂ (1 − P12) |b⟩2 . (4.18)

The one-electron ẑ and two-electron v̂ operators now take the form (in atomic
units)

ẑ = 1
Zα

γ0γ · p̂ + γ0 − 1
(Zα)2 − 1

r
, (4.19)

v̂ = r̂−1
12 . (4.20)

Note that in the one-particle operator ẑ we subtract the electron rest mass,
1/(Zα)2. Here, γi are the Dirac matrices in the standard (Dirac) representa-
tion and, recall, α = 1/137.0359991 is the fine-structure constant [1].

4.3.2 Integrals of Motion
As is well-known, see, e.g., [89], there are three operators commuting with the
Dirac Hamiltonian for a particle in a spherically symmetric field: the square, Ĵ2,
and the third component, Ĵz, of the total angular momentum given by the sum
of orbital and spin angular momentum,

Ĵ = L̂ + 1
2Σ , (4.21)

and the relativistic parity operator K̂,

K̂ = γ0
(
Σ · L̂ + 1

)
. (4.22)

As noted in [102], in the case of a purely Coulomb field, v̂ = 0 in Eq. (4.20)
and hence f̂ = ẑ, another integral of motion appears for the second-order Dirac
Hamiltonian, see our attached paper [4] for more details,

Ĝ = γ0
(
K̂ + i(Zα)γ · n

)
. (4.23)

Simple calculation shows that

K̂2 = Ĵ2 + 1
4 , Ĝ2 = K̂2 − (Zα)2 .

Whence the eigenvalues of the operators K̂ and Ĝ read

K = κ|K| , κ = ±1 , |K| = j + 1/2 (4.24)

and
G = gκ|G| , g = ±1 , |G| =

√
K2 − (Zα)2 , (4.25)

respectively. Note that the sign of G is defined relative to the sign of K.
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All the four operators Ĝ, K̂, Ĵ2 and Ĵz commute one with another; whence they
possess common eigenfunctions

Ĝ|g, κ, j, m⟩ = gκ|G||g, κ, j, m⟩ , (4.26)
K̂|g, κ, j, m⟩ = κ|K||g, κ, j, m⟩ , (4.27)
Ĵ2|g, κ, j, m⟩ = j(j + 1)|g, κ, j, m⟩ , (4.28)
Ĵz|g, κ, j, m⟩ = m|g, κ, j, m⟩ . (4.29)

The explicit form of the bispinors |g, κ, j, m⟩ reads

⟨n|g, κ, j, m⟩ =
(

cg
1⟨n|j, m⟩κ

cg
2⟨n|j, m⟩−κ

)
, (4.30)

where the symbol ⟨n|j, m⟩κ denotes spherical spinors

⟨n|j, m⟩κ =
1
2∑

Sz=− 1
2

(
j − κ

2 , m − Sz,
1
2 , Sz|j, m

)
Yj− κ

2 ,m−Sz(n)
⏐⏐⏐⏐12 , Sz

⟩
.

A condition for the coefficients c in the expansion (4.30) follows from Eqs. (4.22),
(4.23), (4.26), and (4.27) and together with the normalization condition allows
us to uniquely determine these coefficients c, see the attached paper [4].

4.3.3 Form of the Spin-Orbitals
A common tehchnique in relativistic calculations is to decompose the electronic
wave function into its upper and lower components and then impose matching
conditions on them (usually known as the Grant conditions). Here, however, we
propose a different approach (in which, note, the Grant matching conditions are
automatically satisfied). See the details in Section 2.3 of [4] for our motivation.

Notice that the Fock operator (4.18) with (4.19) and (4.20) mixes states
⟨r|n, lg⟩ ⟨n|g, κ, j, m⟩ with different signs of g and different principal quantum
numbers n. Thus, a general eigenstate of this Fock operator can be searched for
in the form

⟨r|a⟩ = ⟨r|nA, κA, jA, m⟩ = (4.31)
= ⟨r|nA, |G| − δκA,+⟩ ⟨n|+, κA, jA, m⟩ + ⟨r|nA, |G| − δκA,−⟩ ⟨n|−, κA, jA, m⟩ .

The bispinors ⟨n|g, κA, jA, m⟩ are given by Eq. (4.30), see also Eqs. (26) and (27)
in [4]. The radial parts of the orbitals are expanded into the screened Sturmian
functions, Eqs. (2.6) and (2.11), (here, again, N denotes the number of basis
functions)

⟨r|nA, |G| − 1⟩ =
N∑

k=0
c+

A,kRk,|G|−1(ξA, r) , (4.32)

⟨r|nA, |G|⟩ =
N−1∑
k=0

c−
A,kRk,|G|(ξA, r) . (4.33)

The screening constant ξA is set to ξA = 1/nA, nA is the non-relativistic principal
quantum number of the pertinent shell.
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4.3.4 Roothaan Form of the DHF Equations
Substituting now expansions (4.31), (4.32) and (4.33) into the DHF equation
(4.18) and projecting this equation onto the considered basis vectors, we obtain
the Roothaan form of the DHF equations

∑
k

(
f++

ik f+−
ik

f−+
ik f−−

ik

)⎛⎝ c
δκA,+−δκA,−
A,k

c
δκA,−−δκA,+
A,k

⎞⎠ =

= εa

∑
k

(
S++

ik S+−
ik

S−+
ik S−−

ik

)⎛⎝ c
δκA,+−δκA,−
A,k

c
δκA,−−δκA,+
A,k

⎞⎠ ,

where
f g,g

ik = zg,g
ik + 1

Z
vg,g

ik .

The operators ẑ and v̂ are given by Eqs. (4.19) and (4.20), respectively. The
pertinent matrix elements are

zg,g
ik =

∫ ∞

0
drr2Ri,lg(ξ, r) ⟨g, κ, j, m| ẑ |g, κ, j, m⟩ Rk,lg(ξ, r) , (4.34)

Sg,g
ik = ⟨g, κ, j, m|g, κ, j, m⟩

∫ ∞

0
drr2Ri,lg(ξ, r)Rk,lg(ξ, r) , (4.35)

and
vg,g

ik =
∑

{nB ,jB ,κB}

∑
p,g′

∑
q,g′

c
δκB,g′ −δκB,−g′

B,p c
δκB,g′ −δκB,−g′

B,q (4.36)

∞∑
l=0

AC(jA, κA, g, g, jB, κB, g′, g′, l)×

×R({i, lg, ξA}, {p, lg′ , ξB}, {k, lg, ξA}, {q, lg′ , ξB}, l)

−AE(jA, κA, g, g, jB, κB, g′, g′, l)×

×R({i, lg, ξA}, {p, lg′ , ξB}, {q, lg′ , ξB}, {k, lg, ξA}, l) .

The explicit expressions for the spinor-angular part of the Coulomb AC and
exchange AE integrals may be found in Section 4 of [4]. The radial part R is
given by Eq. (4.8). Evaluation of these matrix elements (4.34), (4.35) and (4.36)
is discussed in Chapter 4.2.2 and in more detail in [4].

As usual, these equations are solved iteratively. In each step, we obtain 2N −
1 values for energy, see Eqs. (4.32) and (4.33). Of those, one half belongs to
negative-energy states (known as the “Dirac sea”) and the other half to positive-
energy states that correspond to the energies of the atomic shells.

4.3.5 PNC Amplitude in Cesium
The DHF model for closed shells, as described in the previous chapters, can be
also directly used for open-shell atoms with one valence electron. The one-particle
valence electron Hamiltonian is taken in the form of the Fock operator, Eq. (4.18)
with (4.19) and (4.20), where we use the field of Z − 1 core electrons obtained by
solving restricted DHF equations for the pertinent closed-shell cation, for instance
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for Cs+. This, the so-called frozen-core approximation, is advantageous for later
consideration of electron correlation, see, e.g., [8].

The PNC amplitude was derived earlier in Chapter 1.4 in natural units,
Eq. (1.12):

iImEPNC = ⟨7s|
[
ĤPNC

1
Ĥat − E7s

d̂z + d̂z
1

Ĥat − E6s

ĤPNC

]
|6s⟩ .

Changing to atomic units, see Eqs. (92)–(99) in Section 6 of [4], considering the
nucleus to be a spherically homogeneous sphere with radius rN, cf. Eq. (1.3),
inserting the value for the charge radius of 133Cs nucleus rN = 4.804 fm [103], and
substituting these expressions into the above equation, we obtain

ImEPNC = i
e

meα

(
−QW

N

)
10−11EPNC , (4.37)

where
EPNC = i

(0.5446)2
√

8
Nα

∑
n

× (4.38)

× ⟨7s|

⎧⎨⎩ργ5

⏐⏐⏐np1/2
⟩ ⟨

np1/2

⏐⏐⏐ rn3

εnp1/2 − ε7s

+
rn3

⏐⏐⏐np1/2
⟩ ⟨

np1/2

⏐⏐⏐ ργ5

εnp1/2 − ε6s

⎫⎬⎭ |6s⟩ .

In Eq. (4.37), we also separated the usual units, ie/(meα) (−QW /N) 10−11, used
for reporting theoretical results for the PNC amplitude. Recall that QW is the
weak nuclear charge, N number of neutrons (N = 78 for 133Cs nucleus), α the
fine-structure constant, e the elementary (electron) charge, and me the electron
rest mass.

We can take advantage of an important identity

[̂r, f̂] = i

Zα
γ0γ

and further rewrite Eq. (4.38) as

EPNC = (0.5446)2
√

8
N

Z
× (4.39)

×
∑

n

⟨7s|
[
ργ5

⏐⏐⏐np1/2
⟩ ⟨

np1/2

⏐⏐⏐ γ0γ3 − γ0γ3

⏐⏐⏐np1/2
⟩ ⟨

np1/2

⏐⏐⏐ ργ5
]

|6s⟩
(ε7s − εnp1/2)(ε6s − εnp1/2) .

These two expressions (4.38) and (4.39) allow us to control the numerical accuracy
of the obtained results.

We then expand the atomic states in Eqs. (4.38) or (4.39) into the basis set
Eq. (4.31) with j = 1/2 and m = 1/2, see Section 6 of [4] for details.

4.4 Results and Discussion
The full list of results and their discussion may be found in our paper [4]; here, we
will focus only on the most important ones. Also, in [4] one may find a discussion
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of the computational aspect of this work as well as a note on the use of the related
Fortran program PASC.

The most important contribution of this work is the development of a nu-
merically stable algorithm for the evaluation of one- and two-electron integrals
between relativistic (and also non-relativistic) Sturmian functions. Hopefully,
this will allow for a wider use of this basis set in high-precision atomic structure
calculations. The relative numerical error (double vs. quadruple precision) of
the obtain matrix elements is 10−9–10−15, see Table B.2 of [4] for illustration.
See also Table B.1 of [4]; it illustrates that our method yields results in excellent
agreement with the GRASP2K method [90] (GRASP2K uses numerical integra-
tion). Notice that for heavier systems, especially xenon, we obtain even slightly
better results than [90]. In addition, our program is not limited to 20 relativistic
shells, as is the case of GRASP2K.

Apart from its methodological significance, this work, using the frozen-core
DHF model for one-electron open shells, also represents the first step towards the
most precise calculation of the so-called PNC amplitude in cesium, see Eq. (1.12).
First, orbital energies for cesium 6s, 7s and several p1/2 states obtained using our
method are compared to those produced by other codes, see Tab. 4.1. One can
see that the orbital energies more or less agree. However, once we test the quality
of the wave functions near the nucleus (by calculating the hyperfine integrals, see
Tab. 4.2) as well as at large distances from the nucleus (by calculating the reduced
dipole matrix elements, see Tab. 4.3), we see that our results differ from those
published by other authors. Moreover, we obtain an even bigger disagreement for
the PNC amplitude, see Tab. 4.4.

Table 4.1: Excited one-particle energies of Cs in the frozen-core DHF approx-
imation (in atomic units). For comparison with other results we use the same
nomenclature as in [95]; FD stands for finite difference code, DKB for dual kinetic
basis set code [96] and ND for Notre Dame code [92]. See also Table B.3 in [4].

6s 7s 6p1/2
this work −0.1273734422(1) −0.0551888581(1) −0.085615749
FD −0.127368 −0.05518735 −0.08561589
DKB −0.1273674 −0.05518714 −0.08561576
ND −0.1273682 −0.0551875 −0.08561616
Ref. [13] −0.127368 −0.0551863 −0.0856135
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Table 4.2: Hyperfine integrals for cesium, see Eq. (122) of [4], (in atomic units).
As in Tab. 4.1, FD stands for finite difference code, DKB for dual kinetic basis
set code [96] and ND for Notre Dame code [92].

6s (×10−1) 7s (×10−2) 6p1/2 (×10−2)
this work 1.14301 3.1410 −1.25543
FD 1.114751 3.063077 −1.252026
DKB 1.114741 3.063069 −1.252018
ND 1.121812 3.084164 −1.218362

Table 4.3: Reduced dipole matrix elements (n′s|D|np1/2) for cesium (in atomic
units); (n′s|D|np1/2) = (n′s|z|np1/2)

√
2/(1/2, 1/2, 1, 0|1/2). See [4] for more de-

tails.
6p1/2 7p1/2 8p1/2

this work 6s 5.0367970 0.30564910 0.0956989
Ref. [13] 5.2777 0.3717
this work 7s 4.2458375 10.789637 0.857288
Ref. [13] 4.4131 11.009

Table 4.4: PNC amplitude in cesium, see Eqs. (4.38) and (4.39), in the frozen-
core DHF approximation. As in Tab. 4.1, FD stands for finite difference code,
DKB for dual kinetic basis set code [96] and ND for Notre Dame code [92].

EPNC

this work 0.8097
FD 0.74

DKB 0.7395
ND 0.8546
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5. Symmetry-Adapted Coupled
Clusters
In the previous Chapter 4, we showed how one can use the Sturmian functions
for relativistic (and non-relativistic) calculations and illustrated the proposed
method for the evaluation of one- and two-electron matix elements on a series of
calculations on the DHF level. In this chapter, we will add the missing method-
ological piece that separates us from attaining the experimental accuracy: the
electron correlation.

Our aim is to obtain ionization energies of all I.A elements that are comparable
with the pertinent experimental values. The ionization energy of an atom (e.g.,
Cs) is given as the difference between the total energy of the pertinent +1 cation
(e.g., Cs+) and the total energy of the electroneutral atom (e.g., Cs). To obtain
the energy of the closed-shell cation, we run DHF calculation followed by the
CC method to add the missing electron correlation. To calculate the energy of
a one-electron open shell, we run a DHF calculation of the pertinent closed-shell
cation first and then use the CI-CC method to include the extra electron and the
electron correlation. See also Chapter 4.3.

In this chapter, we show how one can take advantage of the spherical symmetry
of atoms and simplify the CC and CI methods. This part forms the basis of our
next paper and will be submitted once all calculations finish.

5.1 Introduction
The probably most difficult and still unresolved problem in electronic structure
calculations is the inclusion of electron correlation. By this term we understand
the influence of the motion of one electron on the motion of another electron.
This interaction is quantified via so-called correlation energy.

Traditionally, the correlation energy is defined as the difference between the
exact energy (which we usually do not know) and the HF limit (i.e., HF energy
independent of basis type and size)

∆E = Eexact − EHF .

However, we should note that this definition could be somewhat misleading as
the electron correlation is already partially included in the HF approximation.
Within the HF model, the two-electron interaction is expressed via a classical
Coulomb term and an exchange term, see Chapter 2.1. The latter describes the
correlation between two electrons with parallel spins and prevents two parallel-
spin electrons from being found at the same point in space.

The usual approach is to perform a HF (or DHF) calculation first and then
continue with one of the post-HF methods to include this missing electron cor-
relation. In atomic and molecular physics, one usually opts for the CI method,
perturbative Moller-Plesset methods, explicitly correlated wave functions, or the
CC method. Here, we will focus mainly on the last.

The CC method, also nicknamed the golden standard of quantum chemistry,
was originally introduced in 1960 by Coester and Kümmel [104] in the field of
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nuclear physics. Its use for electronic structure calculations was first proposed
by Jǐŕı Č́ıžek in his PhD thesis, later published as [105], and followed by a series
of works of Č́ıžek and Paldus, e.g., [105, 106, 107], and later by many others, see
the references, e.g., in the review [49].

The key idea of the CC method (see Chapter 5.3 for a more detailed intro-
duction) is the so-called exponential ansatz:

|Ψ⟩ = eT̂ |Φ⟩ .

We assume that the true wave function |Ψ⟩ can be obtained from a reference
state |Φ⟩ (for example a HF solution) via inclusion of all excitations. Unlike
the CI method, where we consider only a linear combination of single, double,
etc. excited states, in the CC approach the relation is via an exponential of the
excitation operator T̂.

In practice, this means that we have to solve a system of non-linear and
coupled equations to obtain the coefficients for the individual contribution of
each excitation (so-called cluster amplitudes) and only then we can calculate the
correlation energy. Many works have focused on possible simplification of such a
complicated system of equations. For example, one could take into account the
symmetry of the studied problem.

In quantum chemistry one nearly exclusively deals with spin-independent non-
relativistic Hamiltonian. Therefore, considerable attention has been devoted to
the adaptation of the CC method to spin symmetry [108, 109]. When consider-
ing relativistic theory of isolated atoms, however, the Hamiltonian is not spin-
independent, but is spherically symmetric. Adaptation of the CC method to this
symmetry has not been done so far, to the best of our knowledge, and is thus
subject of this part of this thesis. For adaptation of the non-relativistic theory
to spin and spherical symmetry see [110, 111].

The nontrivial aspect of the symmetry adaptation is that one wants the wave
function to be adapted to the spherical symmetry and at the same time to be
antisymmetric with respect to the interchange of any two electrons. Of the two
basic approaches to symmetry adaptation, the “algebraic” due to Racah, see, e.g.,
[71] and references therein, and the“geometric” due to Löwdin, see, e.g., [112, 113]
and references therein, we follow the former one. However, in contrast to Racah,
who first considers states adapted to the spherical symmetry and only then takes
care, by means of coefficients of fractional parantage, of permutation symmetry,
we found that for computer implementation is somewhat easier first to conform to
the permutation symmetry and only then take care of spherical symmetry. The
only new feature this procedure brings is that for symmetry adaptation one has
to keep the information whether for a given electron configuration the electrons
occupy the same radial orbitals.

5.2 Atomic Hamiltonian in the Second Quanti-
zation Formalism

Before turning to the CC method, let us introduce the Hamiltonian for our system
in the second quantization formalism. Throughout this Chapter, we will use the
same notation as in [114] except for the upside down reverse of biexcitation cluster
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amplitudes; our trs
ab equals tab

rs of [114]. As is common, a, b, . . . and r, s, . . . refer to
occupied and virtual spin-orbitals, respectively. The greek letters µ, ν, . . . denote
generic HF spin-orbitals.

The atomic N -electron no-pair Hamiltonian in the formalism of the second
quantization takes the form (using Einstein summation convention and dimen-
sionless atomic units with electronic coordinates scaled r(i) → r(i)/Z)

Ĥ = EHF+ : Ĥ : , : Ĥ := εµ : êµ
µ : +1

4vµν
κλ : êκλ

µν : , (5.1)

where the one- and two-electron excitation operators read

êµ
ν = X̂†

µX̂ν , êκλ
µν = X̂†

κX̂†
λX̂νX̂µ . (5.2)

Here, X̂†
µ and X̂µ designate the electron creation and annihilation operators in a

generic HF spin-orbital µ, respectively. These operators obey anticommutation
relations

{X̂µ, X̂†
ν} = δµ,ν , {X̂µ, X̂ν} = 0 , {X̂†

µ, X̂†
ν} = 0 . (5.3)

The colon symbol in Eq. (5.1) stands for normal ordering; meaning that the upper
and lower indices in excitation operator are not allowed to be contracted. Further,
EHF is the atom’s total binding energy in the HF approximation, εµ designate
generic HF one-particle energies in atomic units and the antisymmetrized two-
electron matrix elements read

vµν
κλ = 1

Z
⟨κ|1 ⟨λ|2 r̂−1

12 (|µ⟩1 |ν⟩2 − |ν⟩1 |µ⟩2) . (5.4)

These matrix elements are antisymmetric with respect to the interchange of any
pair of indices, i.e.,

vµν
κλ = −vµν

λκ = −vνµ
κλ = vνµ

λκ . (5.5)

To be obtain the correlation energy ∆E, we need to solve the Schrödinger equation
with the Hamiltonian (5.1),

: Ĥ : |Ψ⟩ = ∆E |Ψ⟩ . (5.6)

The total energy is then simply a sum of the HF and correlation energy

E = EHF + ∆E .

5.3 Coupled Cluster Method For Closed Shells
A pedagogical introduction to the CC method based on diagrams may be found,
e.g., in [115, 116]. Here, we will follow an algebraic one from [114].

As already mentioned in Chapter 5.1, the key idea of the CC method is to
use the exponential ansatz

|Ψ⟩ = eT̂ |Φ⟩ (5.7)

where, recall, |Ψ⟩ is the exact wave function, |Φ⟩ reference state wave function
and T̂ is the cluster operator. This ansatz converts Schrödinger equation (5.6)
for eigenvalues of the Hamiltonian (5.1) into an equation for eigenvalues of the
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transformed Hamiltonian Ĥ (we multiplied Eq. (5.6) with exp{−T̂} from the left),

Ĥ |Φ⟩ = ∆E |Φ⟩ , Ĥ = e−T̂ : Ĥ : eT̂ . (5.8)

For closed-shell atoms we can set

|Φ⟩ = |0⟩ ,

where |0⟩ is Fermi vacuum defined by the relations (recalling that r and a stand
for virtual and occupied spin-orbitals, respectively)

X̂r |0⟩ = 0 , X̂†
a |0⟩ = 0 . (5.9)

5.3.1 CCD Method in the Standard Spin-Orbital Form
As a first approximation, we can restrict the expansion of the cluster operator T̂

T̂ = T̂1 + T̂2 + T̂3 + T̂4 + · · ·

to only biexcited clusters
T̂ ≃ T̂2 (5.10)

as those contribute to the correlation energy the most. This is known as the CC
doubles (CCD) approximation. Sometimes, monoexcited clusters are considered
as well; this leads to the CC singles and doubles (CCSD) approximation, see, e.g.,
[114]. However, in the case of a HF reference state, the singles do not influence
the results significantly. Triple (T) and quadruple (Q) excitations are usually
included only perturbatively, if at all. Note, though, that S, T and Q begin to
contribute at the same order of the perturbative method and they influence the
correlation energy via interaction with the biexcitations. In our work, we consider
the STQ only perturbatively (not discussed here).

To obtain the CCD equations, we use Č́ıžek’s expansion [105, 106, 107, 117]
for the clusters

T̂2 = 1
4trs

abêrs
ab (5.11)

where trs
ab are cluster amplitudes that we want to find and êrs

ab is the excitation op-
erator as in Eq. (5.2). It follows from this equation that the cluster amplitudes trs

ab

are completely antisymmetric with respect to the interchange of any two indices,
cf. Eq. (5.5),

trs
ab = −trs

ba = −tsr
ab = tsr

ba . (5.12)

It follows from the last equation that no pair of electrons can occupy the same
occupied or virtual spin-orbital. This is the Pauli exclusion principle.

The projection of Eq. (5.8) onto the Fermi vacuum state, Eq. (5.9), yields an
expression for the correlation energy

∆E = ⟨0| Ĥ |0⟩

and projection onto biexcited states leads to coupled equations for the cluster
amplitudes trs

ab

0 = ⟨0| êab
rsĤ |0⟩ . (5.13)
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To obtain the explicit form of the CCD equations, we use the well-known
Baker-Campbell-Hausdorff (BCH) formula

e−B̂ÂeB̂ = Â +
[
Â, B̂

]
+ 1

2
[[

Â, B̂
]

, B̂
]

+ 1
3!
[[[

Â, B̂
]

, B̂
]

, B̂
]

+ · · · (5.14)

to expand the exponentials in the definition of the transformed Hamiltonian,
Eq. (5.8) with the CCD approximation (5.10). Thus, by virtue of Eqs. (5.3) and
(5.9), the correlation energy in terms of the cluster amplitudes is

∆E = ⟨0|
[
: Ĥ :, T̂2

]
|0⟩ = 1

4vab
rstrs

ab . (5.15)

The coupled equations for the amplitudes trs
ab, Eq. (5.13), can be simplified to

0 = ⟨0| êab
rs

(
: Ĥ : + : Ĥ : T̂2 − T̂2 : Ĥ : T̂2 + 1

2 : Ĥ : T̂2
2

)
|0⟩ .

One can easily verify that within the CCD approximation no higher commutators
contribute than the double commutator that leads to the last two terms in the
brackets. Using the expressions (5.1) and (5.11) for the Hamiltonian and cluster
operators, respectively, the anticommutation relations (5.3) and the definition
of the Fermi vacuum state, Eq. (5.9), we obtain the spin-orbital form of the
coupled CC equations for the cluster amplitudes (eab

rs denotes the equation for the
(ab) → (rs) biexcitation)

eab
rs = 0 , eab

rs = vab
rs + 1

22 tuv
cd Lab,uv

rs,cd + 1
25 tuv

cd txy
ef Qab,uv,xy

rs,cd,ef . (5.16)

The linear term is
Lab,uv

rs,cd = ⟨0| êab
rs : Ĥ : êuv

cd |0⟩ = (5.17)

= (εr + εs − εa − εb)∆uv
rs ∆ab

cd + vab
cd∆uv

rs + vuv
rs ∆ab

cd + Aab
rsAuv

cd vau
rc δs

vδd
b

and the quadratic term is

Qab,uv,xy
rs,cd,ef = ⟨0| êab

rs

[
−2êuv

cd : Ĥ : + : Ĥ : êuv
cd

]
êxy

ef |0⟩ = (5.18)

Auv
cd Axy

ef ∆vx
rs ∆ab

dev
uy
cf + 2AuvAxy∆ux

rs ∆ab
cdvyv

ef − 2AcdAef∆xy
rs ∆ab

edvuv
cf + 2∆xy

rs ∆ab
cdvuv

ef .

Here
∆rs

uv = δr
uδs

v − δr
vδs

u

and A denotes antisymmetrizer with respect to pertinent indices, for instance the
last equation can also be written

∆rs
uv = Arsδr

uδs
v .

Of course, one could further simplify the antisymmetrizers and the deltas and
obtain equations as in [114]. However, for further manipulation and then for the
actual programming of the CC methods, it is advantageous to keep this form.
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5.3.2 Adaptation to the Permutation Symmetry
There is an additional simplification that can be traced back to Pauli exclusion
principle, that is, to the antisymmetry of the matrix elements (5.5) and am-
plitudes (5.12). Equations (5.16) hold for unordered pairs of upper and lower
indices, r, s and a, b, respectively. For given pairs of upper and lower indices, one
can form four orthogonal linear combinations of unordered amplitudes that differ
by the (anti)symmetry with respect to the exchange of upper and lower indices⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
trs
ab

)++(
trs
ab

)+−(
trs
ab

)−+(
trs
ab

)−−

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = 1
2

⎛⎜⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

trs
ab

tsr
ab

trs
ba

tsr
ba

⎞⎟⎟⎟⎠ .

This transformation is orthogonal, so the inverse transformation reads

⎛⎜⎜⎜⎝
trs
ab

tsr
ab

trs
ba

tsr
ba

⎞⎟⎟⎟⎠ = 1
2

⎛⎜⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
trs
ab

)++(
trs
ab

)+−(
trs
ab

)−+(
trs
ab

)−−

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Now, if we substitute the last equation into Eq. (5.15) and Eqs. (5.16) – (5.18),
we find that, due to the antisymmetry of the matrix elements (5.5), only the
combination

(
trs
ab

)−−
contributes to the correlation energy and this combination

decouples from the other three combinations. Thus, the last equation can be
simplified to

trs
ab = 1

2Ars
abT

rs
ab

, T rs
ab

=
(
trs
ab

)−−
. (5.19)

Further, we order not only the amplitudes, but also Eqs. (5.16) themselves,

Eab
rs = 1

2Aab
rse

ab
rs = 2vab

rs + T uv
cd

Lab,uv
rs,cd + 1

22 T uv
cd

T xy

ef
Qab,uv,xy

rs,cd,ef = 0 , (5.20)

where we substituted Eq. (5.19) and used the fact that the expressions (5.16),
(5.17) and (5.18) are automatically antisymmetric with respect to the interchange
of the pertinent indices and each additional antisymmetrization in each pair of
indices produces a factor of 2. Finally, substituting Eq. (5.19) into Eq. (5.15), we
obtain the correlation energy in terms of the ordered amplitudes

∆E = 1
2vab

rsT rs
ab

.

5.3.3 Adaptation to the Spherical Symmetry
As already discussed earlier, see Chapter 4.3.3, atoms are spherically symmetric.
Mathematically, this means that the Hamiltonian (5.1) commutes with the total
angular momentum operator of the electron field

Ĵ = Jν
µêµ

ν ,
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where Jν
µ are the matrix elements of one-electron total angular momentum oper-

ator, cf. Eq. (4.21); explicitly

Jν
µ = ⟨µ| L̂ + Σ

2 |ν⟩ .

Recall that the first and second operators inside the inner product stand for the
one-electron orbital angular momentum and spin operators, respectively. Further-
more, the Hamiltonian (5.1) commutes with the parity operator of the electron
field, Eq. (4.22). Whence, the Hamiltonian (5.1) does not mix the two-electron
states of different total angular momentum and parity.

Further, the restricted DHF method for atoms yields the spin-orbitals in the
form, see Chapter 4.3.3,

|a⟩ = |na, κa, ja, ma⟩ = |A, ma⟩ ,

where, recall, n, κ, j and m designate the spin-orbital principal quantum number,
parity, total angular momentum and its projection onto one of the coordinate
axes, respectively, see Eqs. (4.26) – (4.29).

Considering the following linear combination of matrix elements (5.4)
ja∑

ma=−ja

jr∑
mr=−jr

(ja, ma, jb, m − ma|j)(jr, mr, js, m′ − mr|j′)vab
rs =

= vRS
AB(j)δm,m′δj′,j

we find that the result (the rhs of the last equation) is non-zero only if the
resulting angular momenta j, j′, and their projections m, m′, of holes and particles
are the same. If this is the case, the result is independent of the total magnetic
quantum number m. Further, for one-electron states the reflection of coordinate
axes around origin produces the factor (−1)j−κ/2. Whence the matrix elements
vab

rs and vRS
AB(j) vanish unless the combined parities of holes and particles are the

same
(−1)ja+jb−(κa+κb)/2 = (−1)jr+js−(κr+κs)/2 .

Owing to the reality and orthonormality of the CG coefficients, the matrix ele-
ments (5.4) can be expressed in terms of SA elements as

vab
rs =

min(ja+jb,jr+js)∑
j=max(|ja−jb|,|jr−js|)

(ja, ma, jb, m − ma|j)(jr, mr, js, m − mr|j)vRS
AB(j) . (5.21)

Finally, substituting Eq. (5.21) into Eq. (5.5) we obtain by virtue of the symme-
try of the CG coefficients

vRS
AB(j) = (−1)j−ja−jb−1vRS

BA(j) = (−1)j−jr−js−1vSR
AB(j) .

This in particular yields

vRS
AA(j) = (−1)j−2ja−1vRS

AA(j) = (−1)jvRS
AA(j) , (5.22)

where in the last equation we took the advantage of the fact that since ja is a
half-integer, 2ja + 1 is even. We thus see that the matrix elements vRS

AA(j) vanish
for odd j.

53



Similarly, we can make orthogonal transformation between the unordered am-
plitudes trs

ab and amplitudes tRS
AB(j+, j−, J) describing the biexcited states of defi-

nite total angular momenta J

trs
ab =

∑
j+,j−,J

(ja, ma, jb, mb|j−)(jr, mr, js, ms|j+)(j+, mr + ms, j−, −ma − mb|J)×

(5.23)
×(−1)j−−ma−mbtRS

AB(j+, j−, J)

When adding the angular momenta of particles and holes, the magnetic quantum
numbers of the holes have to be taken with the opposite sign and the pertinent
CG coefficient has to be multiplied by the appropriate phase factor, see e.g.
[108, 109, 110, 111, 118].

Now, due to the spherical symmetry, the amplitudes tRS
AB(j+, j−, J) with J > 0

decouple and do not influence the ground state energy. Therefore in the last
equation, Eq. (5.23), we keep only the first term in the expansion on the rhs,
namely,

trs
ab =

min(ja+jb,jr+js)∑
j=max(|ja−jb|,|jr−js|)

(ja, ma, jb, mb|j)(jr, mr, js, ms|j)δmr+ms
ma+mb

tRS
AB(j) , (5.24)

tRS
AB(j) = tRS

AB(j, j, 0)√
2j + 1 .

When considering the above transformation between the ordered amplitudes,
we have to distinguish whether the radial orbitals are the same or not. Thus
Eq. (5.24) is modified as follows:

T rs
ab

=
min(ja+jb,jr+js)∑

j=max(|ja−jb|,|jr−js|)
Djr,mr,js,ms,δRS

ja,ma,jb,mb,δAB
(j)T RS

AB
(j) , (5.25)

where

Djr,mr,js,ms,δRS
ja,ma,jb,mb,δAB

(j) = V jr,js,δRS
ja,jb,δAB

(j)
[
δAB(1 − (−1)j−ja−jb)Θ(mb − ma) + 1 − δAB

]
×

(5.26)
×
[
δRS(1 − (−1)j−jr−js)Θ(ms − mr) + 1 − δRS

]
×

×(ja, ma, jb, mb|j)(jr, mr, js, ms|j)δmr+ms
ma+mb

,

where Θ(x) is Heaviside function, Θ(x) = 1 for x > 0 and zero otherwise. Further,
V jr,js,δRS

ja,jb,δAB
(j) is determined from the normalization condition

∑
ma,mb,mr,ms

[
Djr,mr,js,ms,δRS

ja,ma,jb,mb,δAB
(j)
]2

= 1 . (5.27)

If the radial orbitals A and B, and R and S are different, then the coefficients
D are the same as those in Eq. (5.24). However, if, say the orbitals A and B,
are the same, then, first, the requirement of the ordering enforces the restriction
ma < mb. Second, we sum over the permutation of the spin-orbitals a and b to
exclude the values of j that are symmetric with respect of the interchange of the
spin-orbitals a and b, as then the Pauli exclusion principle is not satisfied.
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Note that these two changes do not spoil the orthogonality of the transfor-
mation (5.24). For instance, if the radial orbitals A and B are the same, then
ja = jb = j. The orthogonality relations for CG coefficients then read

j∑
m=−j

(j, −m, j, m|J)(j, −m, j, m|J ′) = δJ,J ′ .

Now, for half-integral j this can be rewritten as
−1/2∑

m=−j

(j, −m, j, m|J)(j, −m, j, m|J ′)
[
1 + (−1)J+J ′−4j

]
= δJ,J ′ ,

where the term in the square bracket is clearly independent of m. Since j is
half-integral, the term in the square-bracket vanishes if the sum J + J ′ is odd. If
the sum J + J ′ is even, then

−1/2∑
m=−j

(j, −m, j, m|J)(j, −m, j, m|J ′) = δJ,J ′

2 .

Thus, the orthogonality is preserved and one has to take care of the normalization
only.

Substituting now the transformation (5.25) into Eqs. (5.20) we obtain CCD
equations for the ordered SA amplitudes T RS

AB
(j). Their explicit form is given in

Appendix A.1.

5.4 Configuration Interaction Method for Open
Shells

In the CI approach, we express the exact wave function |Ψ⟩ as a linear combination
of possible excited states of the reference state |Φ⟩

|Ψ⟩ = R̂ |Φ⟩

and instead of Eq. (5.6), we solve

: Ĥ : R̂ |Φ⟩ = ∆ER̂ |Φ⟩ (5.28)

R̂ is a general excitation operator similar to T̂. Note that in the case of open
shells, the numbers of annihilation and creation operators differ, see for example
Eqs. (5.30) below. The so-called full CI (FCI) method, in which we include
all possible excitations, should in principle yield the exact result. However, in
practice, we have to truncate the expansion; the FCI is feasible only for small
systems.

In our case of one-electron open-shell systems, we consider only the first three
terms of the expansion:

|Ψ⟩ ≃ |1⟩ + |3⟩ + |5⟩ , (5.29)
where the one-, three- and five-particle states are

|1⟩ = cuêu |0⟩ , |3⟩ = 1
2cuv

d êuv
d |0⟩ , |5⟩ = 1

3!2cuvw
de êuvw

de |0⟩ , (5.30)
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respectively. Note that this expansion is exact for Li-like systems. The above
states represent the extra valence electron (the one-particle term) and its com-
bination with a monoexcitation (the three-particle term) or a biexcitation (the
five-particle term). As before, |0⟩ is our reference closed-shell state defined by
Eqs. (5.9) and êu, êuv

d and êuvw
de are excitation operators analogous to (5.2), and

coeffcients c we want to find. The coefficients c are completely antisymmetric in
the pertinent indices:

cuv
d = −cvu

d ,

cuvw
de = −cuvw

ed = cvwu
de = cwuv

de = −cuwv
de = −cvuw

de = −cwvu
de .

Projecting now Eq. (5.28) with (5.29) and (5.30), successively on the states
⟨0| êq, ⟨0| êa

qr and ⟨0| êab
qrs we obtain by means of the anticommutators, Eqs. (5.3),

definition of the Fermi vacuum, Eqs. (5.9), and the expansion of the exact wave
function, Eq. (5.30),⎛⎜⎝ Hu

q Huv
qd Huvw

qcd

Hau
qr Hauv

qrd Hauvw
qrcd

Habu
qrs Habuv

qrsd Habuvw
qrscd

⎞⎟⎠
⎛⎜⎝ 1 0 0

0 1
2! 0

0 0 1
3!2!

⎞⎟⎠
⎛⎜⎝ cu

cuv
d

cuvw
cd

⎞⎟⎠ = ∆E

⎛⎜⎝ cq

cqr
a

cqrs
ab

⎞⎟⎠ . (5.31)

The individual contributions are given by

Hu
q = ⟨0| êq : Ĥ : êu |0⟩ = εqδ

u
q ,

Huv
qd = ⟨0| êq : Ĥ : êuv

d |0⟩ = vuv
qd ,

Huvw
qcd = ⟨0| êq : Ĥ : êuvw

cd |0⟩ = Awuv
{
δw

q vuv
cd

}
,

Hauv
qrd = ⟨0| êa

qr : Ĥ : êuv
d |0⟩ = (εq + εr − εa)δa

d∆uv
qr + vuv

qr δa
d + Auv

qr

{
vua

dq δv
r

}
,

Hauvw
qrcd = ⟨0| êa

qr : Ĥ : êuvw
cd |0⟩ = Awuv

{
vwa

cd ∆uv
qr

}
+ AqrAwuv

cd

{
δa

c δw
q vuv

dr

}
,

Habuvw
qrscd = ⟨0| êab

qrs : Ĥ : êuvw
cd |0⟩ = (εq + εr + εs − εa − εb)∆uvw

qrs ∆ab
cd + vab

cd∆uvw
qrs +

+ Auvw
qrs

{
δw

q ∆ab
cdvuv

rs

}
+ Aab

qrsAuvw
cd

{
∆uv

rs δa
c vwb

dq

}
.

The symbol Aqrs creates all even permutations of indices involved. The remaining
matrix elements are obtained from the hermicity of the Hamilton operator,

Hau
qr = Hrq

ua , Habu
qrs = Hsrq

uba , Habuv
qrsd = Hdsrq

vuba .

5.4.1 Adaptation to the Permutation Symmetry
Following the same reasoning as in the case of the CC in Chapter 5.3.2, we can
change from unordered to ordered amplitudes⎛⎜⎝ cu

cuv
d

cuvw
cd

⎞⎟⎠ =

⎛⎜⎜⎝
1 0 0
0 Auv

√
2! 0

0 0 Puvw
cd√
3!2!

⎞⎟⎟⎠
⎛⎜⎝ Cu

Cuv
d

Cuvw
cd

⎞⎟⎠ .

The symbol Puvw denotes all (odd and even) permutations of the three indices.
Multiplying Eq. (5.31) by the operator⎛⎜⎜⎝

1 0 0
0 Aqr√

2! 0
0 0 Pab

qrs√
3!2!

⎞⎟⎟⎠
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from the left, Eq. (5.31) is transformed to⎛⎜⎝ 1 0 0
0

√
2! 0

0 0
√

3!2!

⎞⎟⎠
⎛⎜⎝ Hu

q Huv
qd Huvw

qcd

Hau
qr Hauv

qrd Hauvw
qrcd

Habu
qrs Habuv

qrsd Habuvw
qrscd

⎞⎟⎠× (5.32)

×

⎛⎜⎜⎝
1 0 0
0 1√

2! 0
0 0 1√

3!2!

⎞⎟⎟⎠
⎛⎜⎝ Cu

Cuv
d

Cuvw
cd

⎞⎟⎠ = ∆E

⎛⎜⎝ Cq

Cqr
a

Cqrs

ab

⎞⎟⎠ .

5.4.2 Adaptation to the Spherical Symmetry
We now introduce the orthogonal transformations from the spin-orbital coeffi-
cients to the coefficients describing the states of definite square of the total an-
gular momenta J and projection to the one of the axes M . The reasoning behing
this step is similar to the CC case from Chapter 5.3.3. These transformations
read for one-particle

cQ(J) = cqδjq ,Jδmq ,M ,

three-particle

c
QR,J+
A (J) =

∑
mq ,ma

(jq, mq, jr, M + ma − mq|J+)(J+, M + ma, ja, −ma|J)×

×(−1)ja−macqr
a ,

and five-particle states

c
QRS,Jrs,J+
AB,J− (J) =

∑
mr,mq ,ms,ma,mb

(jr, mr, js, ms|Jrs)(jq, mq, Jrs, mr + ms|J+)×

×(ja, ma, jb, mb|J−)(J+, mq + mr + ms, J−, −ma − mb)|J)×

×(−1)J−−ma−mbδ
mq+mr+ms

M+ma+mb
cqrs

ab .

The inverse tranformations for the three-particle and five-particle states are

cqr
a =

∑
J+,J

(jq, mq, jr, M +ma −mq|J+)(J+, M +ma, ja, −ma|J)(−1)ja−mac
QR,J+
A (J)

(5.33)
and

cqrs
ab =

∑
Jrs,J+,J−,J

(jr, mr, js, ms|Jrs)(jq, mq, Jrs, mr + ms|J+)× (5.34)

×(ja, ma, jb, mb|J−)(J+, mq + mr + ms, J−, −ma − mb)|J)×

×(−1)J−−ma−mbδ
mq+mr+ms

M+ma+mb
c

QRS,Jrs,J+
AB,J− (J) ,

respectively.
In the case of ordered amplitudes, the transformations from Eqs. (5.33) and

(5.34) are modified as follows, cf. Eqs. (5.25), (5.26) and (5.27),

Cqr
a =

∑
J+,J

D
jq ,mq ,jr,mr,δQR

ja,ma
(J+, J)CQR,J+

A (J)
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with
D

jq ,mq ,jr,mr,δQR

ja,ma
(J+, J) = V

jq ,jr,δQR

ja
(J+, J)×

×(jq, mq, jr, M + ma − mq|J+)(J+, M + ma, ja, −ma|J)(−1)ja−ma×

×
{
1 − δQR + δQRΘ(mr − mq)[1 − (−1)J+−jr−jq ]

}
and

Cqrs

ab
=

∑
Jrs,J+,J−,J

D
jq ,mq ,jr,mr,js,ms,δQR,δRS

ja,ma,jb,mb,δAB
(Jrs, J+, J−, J)CQRS,Jrs,J+

AB,J−
(J) ,

with

D
jq ,mq ,jr,mr,js,ms,δQR,δRS

ja,ma,jb,mb,δAB
(Jrs, J+, J−, J) = V

jq ,jr,js,δQR,δRS

ja,jb,δAB
(Jrs, J+, J−, J)× (5.35)

×(J+, mq + mr + ms, J−, −ma − mb|J)(−1)J−−ma−mbδ
mq+mr+ms

M+ma+mb
×

×(ja, ma, jb, mb|J−)
{
1 − δAB + δABΘ(mb − ma)

[
1 − (−1)J−−ja−jb

]}
×

×

⎧⎨⎩(1 − δQR)(jr, mr, js, ms|Jrs)(jq, mq, Jrs, mr + ms|J+)×

×
{
1 − δRS + δRSΘ(ms − mr)

[
1 − (−1)Jrs−jr−js

]}
+

+δQRδRSΘ(ms − mr)Θ(mr − mq)×

×
[
δJrs,jr+js

1 + (−1)jr+js

2 + δJrs,jr+js−1
1 − (−1)jr+js

2

]
×

×
6∑

i=1
sgn(Pi)(jPi(r), mPi(r), jPi(s), mPi(s)|Jrs)×

×(jPi(q), mPi(q), Jrs, mPi(r) + mPi(s)|J+)

⎫⎬⎭ ,

respectively.
Substituting now the last two equations into Eq. (5.32) we obtain equations

for ordered SA coefficients C. Their explicit form is given in Appendix A.2.
The equation (5.35) requires some explanation. In general we have to distin-

guish three cases concerning three virtual radial orbitals, denoted by Q, R, S: 1)
all of them are different, 2) the two of them are the same and the third is different,
3) all of them are the same. The second case can be always arranged in such a
way that the same orbitals are labeled by R and S. In the third case the value of
Jrs is irrelevant, as all the possible symmetry adapted states with different values
of Jrs are linearly dependent. For definitness we choose the highest possible value
of Jrs.
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5.5 A Combined CI-CC Method for Open Shells
Now that we have introduced the CC and CI methods, we will turn to their
combination for open-shell systems. This approach is usually known as the EOM-
CC method (although one might find this name somewhat misleading) and a
summary may be found, e.g., in [119].

In the previous chapter, we consider the HF (or DHF) solution as our reference
state for the CI method, see Eqs. (5.29) and (5.30). We could consider the CC
wave function, Eq. (5.7), as our reference state, though:

|Ψ⟩ = R̂ |Φ⟩ = R̂eT̂ |0⟩ .

Since both R̂ and T̂ are excitation operators, they necessarily commute; the
Schrödinger equation (5.6) thus may be rewritten, considering Eq. (5.8), as

ĤR̂ |0⟩ = ∆ER̂ |0⟩ ,

i.e., into an eigenvalue problem with the effective Hamiltonian (5.8), cf. Eq.
(5.28). This CI-CC approach is, in principle, exact as none of the introduced
transformations changes the eigenvalues of the full Hamiltonian. However, in
practice we have to truncate the expansions of the excitation operators R̂ and T̂
at some level, and thereby compromise the exactness of the method.

In [119], the authors nicely summarize the superiority of the CI-CC approach
over the pure (truncated) CI method. “One rather subtle point concerning the
similarity transformation is that the wave operator is nonlinear and therefore
includes configurations that lie outside the space defined by the truncation of the
T̂ operator. As a result, the eigenvalues of Ĥ within the space of singly and doubly
substituted determinants are not the same as those of Ĥ, i.e., the configuration
interaction singles and doubles (CISD) roots. The nonlinear transformation acts
to ‘fold in’ effects of higher excitations, thereby allowing superior results to be
obtained in the same determinantal subspace.”

In our study, we focus on one-electron open-shell systems. This means that
the CI expansion is of the form (5.30) and truncated after the third term. The
CC method is restricted to only CCD as described in Chapter 5.3.1.

Now there are two options how to proceed. One could again use the BCH
formula (5.14) to expand the exponentials, and then use the expressions (5.1),
(5.11) and (5.30) for the Hamiltonian, cluster operators and one-, three- and
five-particle states, respectively, the anticommutation relations (5.3) and the def-
inition of the Fermi vacuum state, Eq. (5.9), to obtain the spin-orbital form of
the CI-CC equations.

Alternatively, we can consider the relation between this CI-CC problem and
the CI problem described in the previous chapter. The CI-CC coefficients c to
be determined can be expressed using the cluster amplitudes trs

ab and some other
coefficients f .The explicit form of Eq. (5.7) in the basis (5.30) reads

⎛⎜⎝ cq

cqr
a

cqrs
ab

⎞⎟⎠ = eT̂

⎛⎜⎝ fp

fpt
g

fptz
gh

⎞⎟⎠ ,
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where

e±T̂ =

⎛⎜⎝ δp
q 0 0
0 ∆pt

qrδ
a
g 0

±tabp
qrs 0 ∆ptz

qrs∆ab
gh

⎞⎟⎠ , (5.36)

tabp
qrs = ⟨0| êab

qrsT̂2êp |0⟩ = 1
4txy

ef ∆xyp
qrs ∆ab

ef .

Thus, the transformed Hamiltonian, Ĥ = exp{−T̂} : Ĥ : exp{T̂}, Eq. (5.8), is
obtain simply by multiplying the matrices in Eqs. (5.31) and (5.36):⎛⎜⎝H11 H13 H15

H31 H33 H35
H51 H53 H55

⎞⎟⎠ (5.37)

where

H11 = Hu
q + Hxyz

qghtghu
xyz

H31 = Hau
qr + Haxyz

qrgh tghu
xyz

H51 = Habu
qrs − tabp

qrsHxyz
pghtghu

xyz − tabp
qrsHu

p + Habxyz
qrsghtghu

xyz

H53 = Habuv
qrsd − tabp

qrsHuv
pd

H55 = Habuvw
qrscd − tabp

qrsHuvw
pcd

and the other elements are the same as in (5.31).
Note that one can formulate in a similar manner also the CCD approach

discussed in Chapter 5.3 for closed shells. In that case, one considers a basis
given by the reference state |0⟩, four-particle state (a biexcitation) êrs

ab |0⟩, eight-
particle state (a quadruple excitation) êrsuv

abcd |0⟩ etc.

5.5.1 Adaptation to the Permutation and Spherical Sym-
metry

Once again, we change first to the ordered and second to the SA amplitudes and
CI coefficients; we thus have⎛⎜⎝ Cq

Cqr
a

Cqrs

ab

⎞⎟⎠ =

⎛⎜⎝ 1 0 0
0

√
2! 0

0 0
√

3!2!

⎞⎟⎠
⎛⎜⎝ δp

q 0 0
0 ∆pt

qrδ
a
g 0

T abp
qrs 0 ∆ptz

qrs∆ab
gh

⎞⎟⎠×

×

⎛⎜⎜⎝
1 0 0
0 1√

2! 0
0 0 1√

3!2!

⎞⎟⎟⎠
⎛⎜⎜⎝

F p

F pt
g

F ptz

gh

⎞⎟⎟⎠
with

T abp
qrs = 1

2T xy

ef
∆xyp

qrs ∆ab
ef ,

and ⎛⎜⎜⎝
CQ

C
QR,Jqr

A

C
QRS,Jrs,Jqrs

AB,Jab

⎞⎟⎟⎠ =

⎛⎜⎝ 1 0 0
0

√
2! 0

0 0
√

3!2!

⎞⎟⎠×

60



×

⎛⎜⎜⎝
δP

Q 0 0
0 δP

QδR
T δA

Gδ
Jqr

Jpt
0

T ABP,Jab
QRS,Jrs,Jqrs

0 δQ
P δR

T δS
ZδG

AδH
B δJrs

Jtz
δ

Jqrs

Jptz
δJab

Jgh

⎞⎟⎟⎠×

×

⎛⎜⎜⎝
1 0 0
0 1√

2! 0
0 0 1√

3!2!

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

F P

F
P T ,Jpt

G

F
P T Z,Jtz ,Jptz

GH,Jgh

⎞⎟⎟⎟⎠ ,

respectively. Here,

T ABP
QRS = 1

2
∑

i,q,J ′
sgn(Pp)sgn(Pq)Gjx,jy ,δXY ,ja,jb,δAB ,q

je,jf ,δEF ,jq ,jr,js,δQR,δRS ,i(J ′, Jrs, Jqrs, Jab, J)×

×T XY
EF

(J ′)δX
Pi(Q)δ

Y
Pi(R)δ

P
Pi(S)δ

Pq(A)
E δ

Pq(B)
F ,

where

G
jx,jy ,δXY ,ja,jb,δAB ,q
je,jf ,δEF ,jq ,jr,js,δQR,δRS ,i(J ′, Jrs, Jqrs, Jab, J) =

∑
all m′s

D
jx,mx,jy ,myδXY

je,me,jf ,mf ,δEF
(J ′)×

×D
jq ,mq ,jr,mr,js,ms,δQR,δRS

ja,ma,jb,mb,δAB
(Jrs, Jqrs, Jab, J)δmx

mPi(q)
δmy

mPi(r)
δmp

mPi(s)
δ

mPq(a)
me δ

mPq(b)
mf .

The permutations are defined as, for instance,

P1(a) = a , P1(b) = b , sgn(P1) = 1 ,

P2(a) = b , P2(b) = a , sgn(P2) = −1

and so on.

5.6 Practical Implementation

5.6.1 Implementation of Symmetry Adaptation
The adaptation to the spherical and permutation symmetry is implemented as
follows. First, we generate a list of all possible spinor-angular states (for a given
electronic configuration); for example a list of all possible biexcited (i.e., four-
particle) states. Next, during the generation of the actual configurations that are
then used in the calculation (e.g., biexcitations for the CC method), we mark
on the above list those spinor-angular states that will be indeed needed in the
calculation. Note that this is only a small fraction of the list of all possible
states. Finally, we precalculate the SA factors for the selected spinor-angular
states. Later in the calculation of matrix elements for the CC or CI methods, we
only load them from memory.

Consider the lithium atom in the non-relativistic approximation for example.
It consists of three electrons and is the simplest many-electron open-shell system.
The pertinent closed-shell cation is Li+, i.e., a two-electron helium-like system.
On the technical side, let us consider only S and P states and a basis of 3
Sturmian functions per spin-orbital; our basis is thus: {1s1/2, 2s1/2, 3s1/2, 2p1/2,
3p1/2, 4p1/2, 2p3/2, 3p3/2, 4p3/2}. Recall that for ns1/2 states j = 1/2, |K| = 1,
κ = +1, for np1/2 states j = 1/2, |K| = 1, κ = −1, for np3/2 states j = 1/2,
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|K| = 2, κ = +1, see Eqs. (4.26)–(4.28). In the CCD calculation, the occupied
SA orbitals are A = B = 1s1/2 and the virtual SA orbitals R, S are all those
remaining ones from the above list, cf. Chapter 5.3.3. There are in general 12
possible configurations for the spinor-angular factors, see Tab. 5.1. However, the
15 possible biexcitations (AB) → (RS) lead to only 4 types of spinor-angular
factors, see Tab. 5.1. Thus, only these four factors are evaluated and then used
in the CCD calculation. Notice also that there are no pairs of same orbitals QRS
(i.e., δX,Y = 1) for the configurations 10 – 12 with J = 1; this is due to Eq. (5.22).

Table 5.1: List of possible spinor-angular configurations for biexcitations (four-
particle states) for He-like systems when S and P states are considered. Note
that for He-like systems jA = jB = 1/2 and thus are not listed in the table. J is
the combined total momentum of holes and particles. δXY denotes whether the
spin-orbitals X and Y are the same (1) or not (0). “present” designates whether
the given configuration is indeed present in the calculation.

jR jS J δAB δRS present
1 1/2 1/2 0 0 0 ×
2 1/2 1/2 0 0 1 ×
3 1/2 1/2 0 1 0 yes
4 1/2 1/2 0 1 1 yes
5 3/2 3/2 0 0 0 ×
6 3/2 3/2 0 0 1 ×
7 3/2 3/2 0 1 0 yes
8 3/2 3/2 0 1 1 yes
9 1/2 1/2 1 0 0 ×
10 1/2 3/2 1 0 0 ×
11 3/2 1/2 1 0 0 ×
12 3/2 3/2 1 0 0 ×

5.6.2 Computational Details
The described post-HF methods were added as an extension to the PASC program
published earlier [4]. The program is again written in Fortran 2009 and uses
LAPACK for linear algebra operations and OpenMP for parallelization.

The program consists of two parts. First, it contains procedures for both
relativistic and non-relativistic HF calculation of closed shells and one-electron
open shells using the Sturmian basis set. This part was published earlier [4]
and we refer the reader to Ref. [4] for computational details related to these
procedures.

Second, it contains post-HF methods described in this paper. Here, the pro-
gram starts with precalculation of two-electron integrals vkl

ij and of factors for
adaptation to spherical symmetry. Next it calculates expressions for CC or CI
and then solves the CC equations or the CI or CI-CC eigenvalue problem, respec-
tively.
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The most time-consuming part is the summation over orbital coefficients in
the evaluation of two-electron integrals vkl

ij . The problem is that there are very
many possible combinations of four orbitals i, j, k, l even when the symmetry
of the integrals is taken into account. This part is parallelized and requires the
highest number of processors of the whole program; however, it still remains the
time bottleneck of the calculation.

In terms of memory, the most problematic are the final matrices to be di-
agonalized in the CI or CI-CC methods. The reason is simply that there are
many three-particle states and even many more five-particle states that need to
be included in the calculation to obtain satisfactory results. Note, though, that
in the case of CI-CC, it suffices to consider the 2x2 block matrix; it already par-
tially includes the five-particle states and yet it spares us the evaluation of the
interaction between two five-particle states which is the most demanding part
memory-wise.

5.7 Results and Discussion
The final program contains three optimized post-HF methods: the CCD method
for closed shells, the CI method with one-, three- and five-particle states for one-
electron open shells, and the combined CI-CC method for one-electron open shells.
They all include adaptation to the permutation and spherical symmetry. During
the development of the program, we also considered the CI and CC methods
in the standard spin-orbital form without any adaptation to the symmetries,
with adaptation to the permutation symmetry only and with adaptation to the
spherical symmetry only, and verified for small systems that all the approaches
yield the same results.

See Tabs. 5.2 and 5.3 for illustration of the significance of the symmetry
adaptation and its reduction of the number of configurations. There, we consider
the simplest closed-shell system – He-like – and the simplest one-electron open-
shell system – Li-like – for illustration. It is important to realize that in the
program there are, in fact, nested loops, and thus the reduction factors listed
in the tables should be raised to the power of two for linear terms, three for
quadratic terms, etc. The factors rapidly increase with the inclusion of higher
states, as one can already deduce from the three lowest states presented in the
two tables. With increasing basis size, the factors also slightly increase, but they
seem to converge to values close (i.e. of the same order) to those listed in the
tables.

Further, we can clearly see that the huge number of possible configurations
is due to the five-particle states. Unfortunately, we cannot neglect them; their
contribution is too large as, for example, the CI method shows. Within the CI-
CC approach, it suffices, though, to consider only the 2x2 block matrix instead
of the whole 3x3 block matrix, see Eq. (5.37), to obtain accurate enough results.
We thus avoid the evaluation of the largest term H55. In addition, we only sum
over the five-particle states and we are thus left for the final diagonalization with
a square matrix which size is given by the sum of the number of one- and three-
particle states only. Note also that even the first block H11 by itself yields a good
estimate on the correlation energy.

We aim to use this methodology to obtain ionization energies of all I.A sys-

63



tems and eventually compare them with the experimental values. We start,
though, with non-relativistic calculations. For lithium, which is a very light
element with Z = 3, the non-relativistic regime should already yield a very
good estimate. Explicitly correlated functionals give ELi = −7.4780603239101
[120] and ELi+ = −7.27991341266914 [121], which then yields ionization energy
Eion ≃ 0.198147. The experimental value is Eexp

ion ≃ 0.19 814 199 04 [122]. Our
current results for lithium, where we used a completely basis independent result
EHF = −7.236415201452 and then 20 functions for the s1/2-states, 20 functions
for the p1/2- and p3/2-states, 20 functions for the d3/2- and d5/2-states, 15 func-
tions for the f5/2- and f7/2-states, gives ELi = −7.477471 and ELi+ = −7.279363
and hence Eion ≃ 0.19811. Notice that the error of the calculations of Li and Li+
energies partially cancels in the calculation of ionization energy. So far, we have
thus obtained a 4-digit agreement and we are now heading towards the 5th digit.
Calculation of heavier I.A atoms is also in progress.

Table 5.2: Number of configurations for CCD of He-like systems and illustration
of the significance of adaptation to the permutation and spherical symmetry.
“all” means all spin-orbitals, “PSA” permutation symmetry-adaptation, “SA”
permutation and spherical symmetry-adaptation, S, P , D denotes states that
are considered. For this case, 20 basis functions per state were considered.

S S, P S, P , D
all 1 444 15 524 55 204

PSA 361 3 881 13 801
SA 190 610 1 030

factor SA/PSA 2 6 13
factor SA/all 8 25 54
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Table 5.3: As Tab. 5.2, but for CI of Li-like systems. 1p, 3p and 5p stand for
one-, three- and five-particle states, respectively. For this case, 20 basis functions
per state were considered.

S S, P S, P , D
all 19 39 39

PSA 19 39 39
1p SA 19 19 19

factor SA/PSA 1 2 2
factor SA/all 1 2 2

all 1 064 13 544 51 584
PSA 532 6 772 25 792

3p SA 361 1 561 3 141
factor SA/PSA 1.5 4 8
factor SA/all 3 9 16

all 39 710 1 914 550 15 891 990
PSA 3 249 158 769 1 321 509

5p SA 2 280 25 080 116 440
factor SA/PSA 1.4 6 11
factor SA/all 17 76 136
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Conclusion
The main results reported in this thesis are:

• We first study the singular behavior of the HF equations. We employ a high-
order perturbative method to obtain RHF solutions. Next we use these series
to construct stability matrices, which we adapt to spin and orbital symmetry,
and to obtain perturbative series for the lowest eigenvalues. The series are
then analyzed and onsets of pure singlet, pure spin, pure orbital, and general
instabilities are determined. From their positions, we deduce that as long as the
shells are filled according to hydrogenic energies, electronic correlation is likely
to destabilize the system. However, once this ceases to hold, for instance the
4s orbital is filled before the 3d orbital, electronic correlation has a tendency
to stabilize the system.

• Next, we focus on the development of a numerically stable algorithm for the
evaluation of integrals between relativistic Sturmian functions. We show how
one can obtain one- and two-electron matrix elements with relative error of 10−9

– 10−15. We illustrate the method on the calculation of the ground and excited
energies, the electric dipole moments, hyperfine integrals and PNC amplitude
of Cs in the frozen-core approximation. Except for the energies, our results
significantly differ from those previously reported.

• Third, we focus on the electron correlation. We consider the CC method for
closed-shell systems and a combined CI-CC method for one-electron open-shell
systems. We propose adaptation to permutation symmetry and to the spherical
symmetry of atoms; this significantly reduces the number of configurations. We
illustrate the proposed approach on the calculation of ionization energies of the
I.A elements. So far, we obtained for the lithium atom a 4-digit agreement with
the experiment. We are currently progressing towards better agreement with
the experiment as well as towards heavier I.A atoms: Na, K, Rb, Cs. Once this
project is completed, we believe that we will be able to systematically provide
the best theoretical results that may be used for a variety of experiments.

One can continue in these research topics further, for example:

(i) Continuation of the study of singular behavior of the HF equations:

• Apply the proposed perturbative approach and consequent series analysis to
more complex systems (e.g., diatomics and extendend systems).

• Study symmetry breaking in open-shell systems.

• Focus on finding a deterministic method for the localization of BS solutions.
An idea has been already outlined in [52].

(ii) Use of the algorithm for integrals between relativistic Sturmian functions:

• Apply the devised algorithm to calculation of resonances in helium and other
atoms. We have already started this project.
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• Use the basis set for the description of the interaction of atoms with strong
EM fields, e.g., using the Floquet theory [123].

(iii) Continuation of the inclusion of electron correlation and evaluation of the
atomic PNC amplitude:

• Apply additional similarity transformation to eliminate the contribution of
three-particle states and thus transform the problem to an effective one-electron
Hamiltonian.

• Optimize the screening constants by means of golden-section search algorithm
(and thus reduce the required basis size).

• Estimate perturbatively the neglected terms (T̂1 and T̂3 clusters for closed
shells, transformed five-, Eq. (5.37), and seven-particle states for open shells).

• Transform the relativistic Hamiltonian to a positive definite operator to have
the possibility to extrapolate toward infinite basis limit.

• Calculate PNC amplitude (and other properties) for Cs with the CC wave
function and improve the convergence of the EW contribution to the PNC
amplitude.

• Focus on two-, three-, and more-electron open-shell systems, specifically on Yb,
Tl, Pb, and Bi, on which the PNC amplitude has been measured.
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[2] J. Č́ıžek. Origins of coupled cluster technique for atoms and molecules.
Theoretica Chimica Acta, 80:91–94, 1991.
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Appendix A

A.1 Symmetry-Adapted Form of CC Equations
Forming the SA equations for the cluster amplitudes, we obtain

EAB
RS

(J) =
∑

ma,mb,mr,ms

Dja,ma,jb,mb,δAB
jr,mr,js,ms,δRS

(J)Eab
rs =

∑
J ′

{
2vAB

RS (J ′)[A0]ja,jb,δAB
jr,js,δRS

(J, J ′) + T UV
CD

(J ′)LAB,UV
RS,CD (J, J ′)+

+ 1
22

∑
J ′′

T UV
CD

(J ′)T XY
EF

(J ′′)QAB,UV,XY
RS,CD,EF (J, J ′, J ′′)

}
= 0 ,

where the absolute term is

[A0]ja,jb,δAB
jr,js,δRS

(J, J ′) =
∑

all m′s

Dja,ma,jb,mb,δAB
jr,mr,js,ms,δRS

(J)×

× (jr, mr, js, ms|J ′)(ja, ma, jb, mb|J ′)δmr+ms
ma+mb

,

the linear term is

LAB,UV
RS,CD (J, J ′) = (εr + εs − εa − εb)δU

RδV
S δA

CδB
DδJ,J ′+

+
∑
J ′′

⎧⎨⎩[A11]ja,jb,δAB ,ju,jv ,δUV
jr,js,δRS ,jc,jd,δCD

(J, J ′, J ′′)vAB
CD(J ′′)δU

RδV
S +

+ [A12]ja,jb,δAB ,ju,jv ,δUV
jr,js,δRS ,jc,jd,δCD

(J, J ′, J ′′)vUV
RS (J ′′)δA

CδB
D+

+
∑

p1,p2,q1,q2

2∏
i=1

sgn(Ppi
)sgn(Pqi

)[A13]ja,jb,δAB ,q1,ju,jv ,δUV ,q2
jr,js,δRS ,p1,jc,jd,δCD,p2 (J, J ′, J ′′)×

× v
Pq1 (A),Pq2 (U)
Pp1 (R),Pp2 (C)(J

′′)δPp1 (S)
Pq2 (V )δ

Pp2 (D)
Pq1 (B)

⎫⎬⎭
and the quadratic term is

QAB,UV,XY
RS,CD,EF (J, J ′, J ′′) =

∑
J ′′′

⎧⎨⎩ ∑
p1,p2,p3,q1,q2,q3

3∏
i=1

sgn(Ppi
)sgn(Pqi

)×

× [A21]ja,jb,δAB ,q1,ju,jv ,δUV ,q2,jx,jy ,δXY ,q3
jr,js,δRS ,p1,jc,jd,δCD,p2,je,jf ,δEF ,p3 (J, J ′, J ′′, J ′′′)×

× δ
Pq2 (V )
Pp1 (R)δ

Pq3 (X)
Pp1 (S) δ

Pq1 (A)
Pp2 (D)δ

Pq1 (B)
Pp3 (E)v

Pq2 (U),Pq3 (Y )
Pp2 (C),Pp3 (F )(J

′′′)

+ 2
∑

p1,q1,q2,q3

3∏
i=1

sgn(Pp1)sgn(Pqi
)×

× [A22]ja,jb,δAB ,q1,ju,jv ,δUV ,q2,jx,jy ,δXY ,q3
jr,js,δRS ,p1,jc,jd,δCD,je,jf ,δEF

(J, J ′, J ′′, J ′′′)×

× δ
Pq2 (U)
Pp1 (R)δ

Pq3 (X)
Pp1 (S) δ

Pq1 (A)
C δ

Pq1 (B)
D v

Pq3 (Y ),Pq2 (V )
E,F (J ′′′)

− 2
∑

p1,p2,p3,q1

3∏
i=1

sgn(Ppi
)sgn(Pq1)×

× [A23]ja,jb,δAB ,q1,ju,jv ,δUV ,jx,jy ,δXY

jr,js,δRS ,p1,jc,jd,δCD,p2,je,jf ,δEF ,p3(J, J ′, J ′′, J ′′′)×
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× δX
Pp1 (R)δ

Y
Pp1 (S)δ

Pq1 (A)
Pp3 (E)δ

Pq1 (B)
Pp2 (D)v

U,V
Pp2 (C),Pp3 (F )(J

′′′)

+ 2
∑
p1,q1

sgn(Pp1)sgn(Pq1)[A24]ja,jb,δAB ,q1,ju,jv ,δUV ,jx,jy ,δXY

jr,js,δRS ,p1,jc,jd,δCD,je,jf ,δEF
(J, J ′, J ′′, J ′′′)×

× δX
Pp1 (R)δ

Y
Pp1 (S)δ

Pq1 (A)
C δ

Pq1 (B)
D vU,V

E,F (J ′′′)

⎫⎬⎭ .

The functions A arising from the spinor-angular integrations are for the linear
terms

[A11]ja,jb,δAB ,ju,jv ,δUV
jr,js,δRS ,jc,jd,δCD

(J, J ′, J ′′) =
∑

all m′s

Dja,ma,jb,mb,δAB
jr,mr,js,ms,δRS

(J)Dju,mu,jv ,mv ,δUV
jc,mc,jd,md,δCD

(J ′)×

× (ja, ma, jb, mb|J ′′)(jc, md, jc, md|J ′′)δma+mb
mc+md

δmu
mr

δmv
ms

,

[A12]ja,jb,δAB ,ju,jv ,δUV
jr,js,δRS ,jc,jd,δCD

(J, J ′, J ′′) =
∑

all m′s

Dja,ma,jb,mb,δAB
jr,mr,js,ms,δRS

(J)Dju,mu,jv ,mv ,δUV
jc,mc,jd,md,δCD

(J ′)×

× (jr, mr, js, ms|J ′′)(ju, mu, jv, mv|J ′′)δmu+mv
mr+ms

δma
mc

δmb
md

,

[A13]ja,jb,δAB ,q1,ju,jv ,δUV ,q2
jr,js,δRS ,p1,jc,jd,δCD,p2 (J, J ′, J ′′) =
=

∑
all m′s

Dja,ma,jb,mb,δAB
jr,mr,js,ms,δRS

(J)Dju,mu,jv ,mv ,δUV
jc,mc,jd,md,δCD

(J ′)×

× (jPp1 (r), mPp1 (r), jPp2 (c), mPp2 (c)|J ′′)×
× (jPq1 (a), mPq1 (a), jPq2 (u), mPq2 (u)|J ′′)×

× δ
mPq1 (a)+mPq2 (u)
mPp1 (r)+mPp2 (c) δ

mPp1 (s)
mPq2 (v) δ

mPp2 (d)
mPq1 (b) ,

and for the quadratic terms

[A21]ja,jb,δAB ,q1,ju,jv ,δUV ,q2,jx,jy ,δXY ,q3
jr,js,δRS ,p1,jc,jd,δCD,p2,je,jf ,δEF ,p3 (J, J ′, J ′′, J ′′′) =

=
∑

all m′s

Dja,ma,jb,mb,δAB
jr,mr,js,ms,δRS

(J)Dju,mu,jv ,mv ,δUV
jc,mc,jd,md,δCD

(J ′)Djx,mx,jy ,my ,δXY

je,me,jf ,md,δEF
(J ′′)×

× δ
mPq2 (v)
mPp1 (r) δ

mPq3 (x)
mPp1 (s) δ

mPq1 (a)
mPp2 (d)δ

mPq1 (b)
mPp3 (e)δ

mPq2 (u)+mPq3 (y)
mPp2 (c)+mPp3 (f) ×

× (jPp2 (c), mPp2 (c), jPp3 (f), mPp3 (f)|J ′′′)×
× (jPq2 (u), mPq2 (u), jPq3 (y), mPq3 (y)|J ′′′) ,

[A22]ja,jb,δAB ,q1,ju,jv ,δUV ,q2,jx,jy ,δXY ,q3
jr,js,δRS ,p1,jc,jd,δCD,je,jf ,δEF

(J, J ′, J ′′, J ′′′) =

=
∑

all m′s

Dja,ma,jb,mb,δAB
jr,mr,js,ms,δRS

(J)Dju,mu,jv ,mv ,δUV
jc,mc,jd,md,δCD

(J ′)Djx,mx,jy ,my ,δXY

je,me,jf ,md,δEF
(J ′′)×

× δ
mPq2 (u)
mPp1 (r) δ

mPq3 (x)
mPp1 (s) δ

mPq1 (a)
mc δ

mPq1 (b)
md δ

mPq3 (y)+mPq2 (v)
me+mf

×
× (je, me, jf , mf |J ′′′)(jPq3 (y), mPq3 (y), jPq2 (v), mPq2 (v)|J ′′′) ,
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[A23]ja,jb,δAB ,q1,ju,jv ,δUV ,jx,jy ,δXY

jr,js,δRS ,p1,jc,jd,δCD,p2,je,jf ,δEF ,p3(J, J ′, J ′′, J ′′′) =

=
∑

all m′s

Dja,ma,jb,mb,δAB
jr,mr,js,ms,δRS

(J)Dju,mu,jv ,mv ,δUV
jc,mc,jd,md,δCD

(J ′)Djx,mx,jy ,my ,δXY

je,me,jf ,md,δEF
(J ′′)×

× δmx
mPp1 (r)

δmy
mPp1 (s)

δ
mPq1 (a)
mPp3 (e) δ

mPq1 (b)
mPp2 (d)δ

mu+mv
mPp2 (c)+mPp3 (f)

×

× (jPp2 (c), mPp2 (c), jPp3 (f), mPp3 (f)|J ′′′)(ju, mu, jv, mv|J ′′′)

[A24]ja,jb,δAB ,q1,ju,jv ,δUV ,jx,jy ,δXY

jr,js,δRS ,p1,jc,jd,δCD,je,jf ,δEF
(J, J ′, J ′′, J ′′′) =

=
∑

all m′s

Dja,ma,jb,mb,δAB
jr,mr,js,ms,δRS

(J)Dju,mu,jv ,mv ,δUV
jc,mc,jd,md,δCD

(J ′)Djx,mx,jy ,my ,δXY

je,me,jf ,md,δEF
(J ′′)×

× δmx
mPp1 (r)

δmy
mPp1 (s)

δ
mPq1 (a)
mc δ

mPq1 (b)
md δ

me+mf

mu+mv
×

× (je, me, jf , mf |J ′′′)(ju, mu, jv, mv|J ′′′) .

A.2 Symmetry-Adapted Form of CI Method
The SA form of the CI method for one-electron open-shell systems reads
⎛⎜⎝ 1 0 0

0
√

2! 0
0 0

√
3!2!

⎞⎟⎠
⎛⎜⎜⎝

HU
Q HUV,Juv

QD HUV W,Jvw,Juvw

QCD,Jcd

HAU
QR,Jqr

HAUV,Juv

QRD,Jqr
HAUV W,Jvw,Juvw

QRCD,Jqr,Jcd

HABU,Jab
QRS,Jrs,Jqrs

HABUV,Jab,Juv

QRSD,Jrs,Jqrs
HABUV W,Jab,Jvw,Juvw

QRSCD,Jrs,Jqrs,Jcd

⎞⎟⎟⎠×

×

⎛⎜⎜⎝
1 0 0
0 1√

2! 0
0 0 1√

3!2!

⎞⎟⎟⎠
⎛⎜⎜⎝

CU

CUV ,Juv

D

CUV W ,Jvw,Juvw

CD,Jcd

⎞⎟⎟⎠ = ∆E

⎛⎜⎜⎝
CQ

C
QR,Jqr

A

C
QRS,Jrs,Jqrs

AB,Jab

⎞⎟⎟⎠ ,

where

HUV,J+
QD (J) =

∑
J ′

vUV
QD(J ′)[B13]ju,jv ,δUV

J,jd
(J+, J ′, J) ,

HUV W,Jvw,J+
QCD,J− (J) =

∑
J ′,q

1 + sgn(Pq)
2 δ

Pq(W )
Q v

Pq(U)Pq(V )
CD (J ′)×

× [B15]ju,jv ,jw,δUV ,δV W ,q
jc,jd,δCD

(J ′, Jvw, J+, J−, J) ,

HAUV,Juv

QRD,Jqr
(J) = (εq + εr − εa)δA

DδU
QδV

R+
+
∑
J ′

δA
DvUV

QR(J ′)[B33,1]ja,ju,jv ,δUV
jd,jq ,jr,δQR

(J ′, Juv, Jqr, J)+

+
∑

J ′,p,q

sgnPpsgnPqδ
Pq(V )
Pp(R)v

Pq(U)A
DPp(Q)(J

′)[B33,2]ja,ju,jv ,δUV ,q
jd,jq ,jr,δQR,p (J ′, Juv, Jqr, J)
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HAUV W,Jvw,J+
QRCD,Jqr,J− (J) =

∑
J ′,q

sgn(Pq)δPq(U)
Q δ

Pq(V )
R v

Pq(W )A
CD (J ′)×

× [B35,1]ja,ju,jv ,jw,δUV ,δV W ,q
jq ,jr,δQR,jc,jd,δCD

(J ′, Jqr, Jvw, J+, J−, J)+

+
∑

J ′,q,p1,p2

1 + sgn(Pq)
2

2∏
i=1

sgn(Ppi
)δA

Pp2 (C)δ
Pq(W )
Pp1 (Q)v

Pq(U)Pq(V )
Pp2 (D)Pp1 (R)(J

′)×

× [B35,2]ja,ju,jv ,jw,δUV ,δV W ,q
jq ,jr,δQR,p1,jc,jd,δCD,p2(J ′, Jqr, Jvw, J+, J−, J) ,

HABUV W,Jab,Jvw,Juvw

QRSCD,Jrs,Jqrs,Jcd
(J) = (εq + εr + εs − εa − εb)δA

CδB
DδU

QδV
RδW

S +
+
∑
J ′

δU
QδV

RδW
S vAB

CD(J ′)×

× [B55,1]ja,jb,δAB ,ju,jv ,jw,δUV ,δV W
jq ,jr,js,δQR,δRS ,jc,jd,δCD

(J ′, Jqr, Jqrs, Jab, Jvw, Jqvw, Jcd, J)+

+
∑

J ′,p,q

1 + sgn(Pp)
2

1 + sgn(Pq)
2 δA

CδB
Dδ

Pq(W )
Pp(Q) v

Pq(U)Pq(V )
Pp(R)Pp(S) (J ′)×

× [B55,2]ja,jb,δAB ,ju,jv ,jw,δUV ,δV W ,q
jq ,jr,js,δQR,δRS ,p,jc,jd,δCD

(J ′, Jqr, Jqrs, Jab, Jvw, Jqvw, Jcd, J)+

+
∑

J ′,q1,q2,p1,p2

1 + sgn(Pq2)
2 sgn(Pq1)

2∏
i=1

sgn(Ppi
)×

× δ
Pq2 (U)
Pp1 (R)δ

Pq2 (V )
Pp1 (S) δ

Pq1 (A)
Pp2 (C)v

Pq2 (W )Pq1 (B)
Pp2 (D)Pp1 (Q) (J ′)×

× [B55,3]ja,jb,δAB ,q1,ju,jv ,jw,δUV ,δV W ,q2
jq ,jr,js,δQR,δRS ,p1,jc,jd,δCD,p2 (J ′, Jqr, Jqrs, Jab, Jvw, Jqvw, Jcd, J) .

Here, the various spinor-angular functions B read
[B13]ju,jv ,δUV

J,jd
(J+, J ′, J) =

∑
all m′s

Dju,mu,jv ,mv ,δUV
jd,md

(J+, J)×

× (ju, mu, jv, mv|J ′)(J, M, jd, md|J ′)δmu+mv
M+md

,

[B15]ju,jv ,jw,δUV ,δV W ,i
jc,jd,δCD

(J ′, Jvw, J+, J−, J) =

= δ
jPi(w)
J

∑
all m′s

Dju,mu,jv ,mv ,jw,mw,δUV ,δV W
jc,mc,jd,md,δCD

(Jvw, J+, J−, J)×

× (jPi(u), mPi(u), jPi(v), mPi(v)|J ′)(jc, mc, jd, md|J ′)δmPi(u)+mPi(v)
mc+md

δ
mPi(w)
M ,

[B33,1]ja,ju,jv ,δUV
jd,jq ,jr,δQR

(J ′, Juv, Jqr, J) = δja
jd

×

×
∑

all m′s

Dju,mu,jv ,mv ,δUV
jd,md

(Juv, J)Djq ,mq ,jr,mr,δQR

ja,ma
(Jqr, J)×

× (ju, mu, jv, mv|J ′)(jq, mq, jr, mr|J ′)δmu+mv
mq+mr

δma
md

,

[B33,2]ja,ju,jv ,δUV ,k
jd,jq ,jr,δQR,i (J ′, Juv, Jqr, J) = δ

jPk(v)
jPi(r)

×

×
∑

all m′s

Dju,mu,jv ,mv ,δUV
jd,md

(Juv, J)Djq ,mq ,jr,mr,δQR

ja,ma
(Jqr, J)×

× (jd, md, jPi(q), mPi(q)|J ′)(jPk(u), mPk(u), ja, ma|J ′)δmPk(u)+ma

md+mPi(q) δ
mPk(v)
mPi(r) ,

86



[B35,1]ja,ju,jv ,jw,δUV ,δV W ,q
jq ,jr,δQR,jc,jd,δCD

(J ′, Jqr, Jvw, J+, J−, J) = δ
jPq(u)
jq

δ
jPq(v)
jr

×

×
∑

all m′s

D
jq ,mq ,jr,mr,δQR

ja,ma
(Jqr, J)Dju,mu,jv ,mv ,jw,mw,δUV ,δV W

jc,mc,jd,md,δCD
(Jvw, J+, J−, J)×

× δ
mPq(u)
mq δ

mPq(v)
mr (jc, mc, jd, md|J ′)(jPq(w), mPq(w), ja, ma|J ′)δmPq(w)+ma

mc+md
,

[B35,2]ja,ju,jv ,jw,δUV ,δV W ,q
jq ,jr,δQR,p1,jc,jd,δCD,p2(J ′, Jqr, Jvw, J+, J−, J) = δja

jPp2 (c)
δ

jPq(w)
jPp1 (q)

×

×
∑

all m′s

D
jq ,mq ,jr,mr,δQR

ja,ma
(Jqr, J)Dju,mu,jv ,mv ,jw,mw,δUV ,δV W

jc,mc,jd,md,δCD
(Jvw, J+, J−, J)×

× δma
mPp2 (c)

δ
mPq(w)
mPp1 (q)(jPq(u), mPq(u), jPq(v), mPq(v)|J ′)×

× (jPp2 (d), mPp2 (d), jPp1 (r), mPp1 (r)|J ′)δmPq(u)+mPq(v)
mPp2 (d)+mPp1 (r) ,

[B55,1]ja,jb,δAB ,ju,jv ,jw,δUV ,δV W
jq ,jr,js,δQR,δRS ,jc,jd,δCD

(J ′, Jqr, Jqrs, Jab, Jvw, Jqvw, Jcd, J) = δju
jq

δjv
jr

δjw
js

×

×
∑

all m′s

D
jq ,mq ,jr,mr,js,ms,δQR,δRS

ja,ma,jb,mb,δAB
(Jqr, Jqrs, Jab, J)×

× Dju,mu,jv ,mv ,jw,mw,δUV ,δV W
jc,mc,jd,md,δCD

(Jvw, Juvw, Jcd, J)×
× δmu

mq
δmv

mr
δmw

ms
(ja, ma, jb, mb|J ′)(jc, mc, jd, md|J ′)δmc+md

ma+mb
,

[B55,2]ja,jb,δAB ,ju,jv ,jw,δUV ,δV W ,q
jq ,jr,js,δQR,δRS ,p,jc,jd,δCD

(J ′, Jqr, Jqrs, Jab, Jvw, Jqvw, Jcd, J) = δja
jc

δjb
jd

δ
jPq(w)
jPp(q)

×

×
∑

all m′s

D
jq ,mq ,jr,mr,js,ms,δQR,δRS

ja,ma,jb,mb,δAB
(Jqr, Jqrs, Jab, J)×

× Dju,mu,jv ,mv ,jw,mw,δUV ,δV W
jc,mc,jd,md,δCD

(Jvw, Juvw, Jcd, J)×
× δma

mc
δmb

md
δ

mPq(w)
mPp(q) (jPq(u), mPq(u), jPq(v), mPq(v)|J ′)×

× (jPp(r), mPp(r), jPp(s), mPp(s)|J ′)δmPq(u)+mPq(v)
mPp(r)+mPp(s)

and

[B55,3]ja,jb,δAB ,q1,ju,jv ,jw,δUV ,δV W ,q2
jq ,jr,js,δQR,δRS ,p1,jc,jd,δCD,p2 (J ′, Jqr, Jqrs, Jab, Jvw, Jqvw, Jcd, J) =

= δ
jPq2 (u)
jPp1 (r)

δ
jPq2 (v)
jPp1 (s)

δ
jPq1 (a)
jPp2 (c)

×

×
∑

all m′s

D
jq ,mq ,jr,mr,js,ms,δQR,δRS

ja,ma,jb,mb,δAB
(Jqr, Jqrs, Jab, J)×

× Dju,mu,jv ,mv ,jw,mw,δUV ,δV W
jc,mc,jd,md,δCD

(Jvw, Juvw, Jcd, J)×
× δ

mPq2 (u)
mPp1 (r) δ

mPq2 (v)
mPp1 (s) δ

mPq1 (a)
mPp2 (c) (jPq2 (w), mPq2 (w), jPq1 (b), mPq1 (b)|J ′)×

× (jPp2 (d), mPp2 (d), jPp1 (q), mPp1 (q)|J ′)δ
mPq2 (w)+mPq1 (b)
mPp2 (d)+mPp1 (q) .
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[3] T. Uhĺı̌rová and J. Zamastil. Stability of the closed-shell atomic configura-
tions with respect to variations in nuclear charge. Physical Review A, 101:062504,
2020. Including SI.
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